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On the superposition principle in 
interference experiments
Aninda Sinha1, Aravind H. Vijay1,2 & Urbasi Sinha2,3

The superposition principle is usually incorrectly applied in interference experiments. This has 
recently been investigated through numerics based on Finite Difference Time Domain (FDTD) 
methods as well as the Feynman path integral formalism. In the current work, we have derived 
an analytic formula for the Sorkin parameter which can be used to determine the deviation 
from the application of the principle. We have found excellent agreement between the analytic 
distribution and those that have been earlier estimated by numerical integration as well as resource 
intensive FDTD simulations. The analytic handle would be useful for comparing theory with future 
experiments. It is applicable both to physics based on classical wave equations as well as the non-
relativistic Schrödinger equation.

It is not widely appreciated that the superposition principle is incorrectly applied in most textbook expo-
sitions of interference experiments both in optics and quantum mechanics1–4. For example, in a double 
slit experiment, the amplitude at the screen is usually obtained by adding the amplitudes corresponding 
to the slits open one at a time. However, the conditions described here correspond to different boundary 
conditions (or different Hamiltonians) and as such the superposition principle should not be directly 
applicable in this case. This incorrect application was pointed out in a physically inaccessible domain 
by5 and in a classical simulation of Maxwell equations by6. More recently7, dealt with the quantification 
of this correction in the quantum mechanical domain where the Feynman path integral formalism8 was 
used to solve the problem of scattering due to the presence of slits . According to the path integral for-
malism, the probability amplitude to travel from point A to B should take into account all possible paths 
with proper weightage given to the different paths. In the nomenclature used, paths which extremize the 
classical action are called “classical” paths whereas paths which do not extremize the action are called 
“non-classical” paths. In the usual Fresnel theory of diffraction, the assumption is that the wave ampli-
tude at a particular slit would be the same as it would be away from the slits. Adding to Fresnel theory, 
we take into account a higher order effect and also account for influence by waves arriving through 
neighboring slits. This way the naive application of the superposition principle is violated. This discus-
sion makes it clear that our approach is equally applicable to physics described by Maxwell theory and 
Schrödinger equation—see supplementary material of Ref. 7 for further details.

In Refs. 7, 9, 10, the normalized version of the Sorkin parameter κ (defined later) was estimated. This 
would be zero if only the classical paths contribute and would be non-zero when the non-classical paths 
are taken into account. The proposed experiment in Ref. 7 to detect the presence of the non-classical 
paths uses a triple slit configuration as shown in fig. (1). However7, was restricted to semi-analytic and 
numerical methods. The analysis using path integrals was restricted to the far field regime i.e., the 
Fraunhofer regime in optics and considered cases in which the thickness of the slits is negligible. Only 
the first order correction term was considered in which paths of the kind shown in the inset of fig. (1) 
contribute. In the current work, we have derived an analytic formula for κ as a function of detector 
position in the Fraunhofer regime. We find that the quantity κ is very sensitive to certain length param-
eters. Thus having an analytic handle is very important as this makes it a much more accessible quantity 
to experimentalists. This would enable experimentalists to have a feel for how errors in the precise 
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knowledge of various parameters can affect the κ distribution on the detector plane thus making it easier 
to compare theory with experiments. The analytic formula now makes the understanding of the devia-
tion from the naive application of the superposition principle more tractable, shedding more light on the 
“black-box” like understanding that numerical simulations could afford. We have showed that the ana-
lytic formula gives us an excellent match with both photon and electron parameters used in Ref. 7. 
Moreover, it compares very well with Ref. 6, where a classical simulation of Maxwell equations using 
Finite Difference Time Domain (FDTD) methods was done. An important point to note here is that an 
FDTD simulation of κ in Ref. 6 needed several days of computation time of a supercomputer and several 
terabytes of memory, while our analytic formula gives us a κ distribution almost immediately on a stand-
ard laptop using Mathematica. Of course, an FDTD simulation will be able to capture effects due to 
material properties of the absorber as well as be applicable to near field regimes. However, our analytic 
approximation now makes it easy to describe the effect of non-classical paths in different experimental 
scenarios without having to go through resource intensive detailed numerics.

In addition to the analytic handle on κ, we have done a path integral based simulation using a differ-
ent numerical approach from Ref. 7 based on Riemannian integration. This has enabled us to include 
both far field and near field regimes in our analysis. We have also verified the effect of increasing the 
number of kinks in the non-classical paths. Our current results now make the experimental conditions 
required less restrictive in terms of length parameters other than of course providing further verification 
for the results obtained in Refs. 6 and 7.

The Sorkin parameter κ
Consider the triple slit configuration shown in fig. (1). Let the three slits be labelled A, B and C respec-
tively. The wave function corresponding to slit A being open is Aψ , that corresponding to slit B being 
open is Bψ  and that corresponding to slit C being open is Cψ . Similarly, for both A and B open, it will 
be ABψ , for A, B and C open, it will be ABCψ  and so on. Now, a naive application of the superposition 
principle will dictate that AB A Bψ ψ ψ= +  . However as pointed out in Refs. 5, 6, 7, this approximation 
is strictly not true as the situations described correspond to three different boundary conditions and the 
superposition principle cannot be applied to add solutions to different boundary conditions to arrive at 
a solution for yet another one. This leads to a modification of the wave function at the screen which now 
becomes:

1AB A B ncψ ψ ψ ψ= + + ( )

where ncψ  is the contribution due to the kinked i.e., non-classical paths7. uses the Feynman path integral 
formalism to quantify the effect due to non classical paths in interference experiments which helps in 
getting an idea about the correction ncψ . The normalized version of the Sorkin parameter called κ was 
used to propose experiments which can be done to measure such deviations. The quantity κ has a special 
symmetry in its formulation which ensures that it evaluates to zero in the absence of any contribution 

Figure 1.  The triple slit set-up with a representative non-classical path. A grazing path has been illustrated 
in the inset where a path enters slit A, goes to slit C, just enters it and then goes to the detector. We 
integrate over the widths of slits A and C for this path.



www.nature.com/scientificreports/

3Scientific Reports | 5:10304 | DOI: 10.1038/srep10304

from the correction term but assumes a finite non-zero value when the correction term is present. The 
numerator of κ which we call ε is defined as follows:

I I I I I I I 2ABC AB BC CA A B Cε = − ( + + ) + ( + + ) ( )

where I ABC is the probability or the intensity at the screen when all three slits are open, I AB is the inten-
sity at the screen when slits A and B are open and so on. Taking into account eqn. (2), κ is defined as 
follows:

3κ
ε
δ

= ( )

where δ is defined as the value of the intensity at the central maximum of the triple slit interference 
pattern. If the correction term in eqn. (1) is not taken into account, then κ will evaluate to zero from 
algebra (This is under the assumption that Born’s rule for probability i.e. Probability 2ψ∝  is true). The 
presence of the correction term ncψ  makes κ manifestly non-zero (as explicitly shown in the next section) 
thus making it a perfect tool to investigate such correction effects to the application of the superposition 
principle in interference experiments. One has to note here that such correction effects are not a purview 
of quantum mechanics alone. Even if one considers classical Maxwell equations and then applies the 
different boundary conditions corresponding to slits being open one at a time and then all together, one 
is able to get a difference in the two situations as per eqn. (1). This was shown through FDTD solutions 
in Ref. 6. In Ref. 7, we used Feynman Path integral formalism to analyze the problem and this made the 
analysis applicable to the domain of single particles like electrons, photons and neutrons. One has to note 
that the path integral analysis is also applicable to the classical domain as we had used the time inde-
pendent Helmholtz equation propagator which is applicable to both Maxwell equations and for instance 
the time independent Schrodinger equation.

Analytic approximation for κ in the thin slit case.  In this section we will discuss how to get an 
analytic expression for the normalized Sorkin parameter κ in the thin slit approximation (t in fig.1 is 
much smaller than other length parameters in the problem) and in the Fraunhofer limit. We begin by 
reviewing the logic in Ref. 7. The wave function at the screen gets contributions from several paths. We 
can subdivide the paths into ones which involve the classical straight paths going from source to slit and 
then slit to screen, ones which go from source to slit P then from slit P to slit Q and then to the screen 
and so on. The second category of paths can further have kinks in them. We will assume that the dom-
inant path from source to slit P is the straight line one and then from slit P to slit Q is also a straight 
line one (since the classical path from P to Q is a straight line one) and from slit Q to the screen is again 
the straight path. This approximation seems reasonable to us and we have confirmed this by explicitly 
adding kinks to these paths and numerically checking that their contribution is negligible. Keeping this 
discussion in mind we can for example write the wave function at the screen as:

A B C open 4A B C A B A C B A B C C A C Bψ ψ ψ ψ ψ ψ ψ ψ ψ ψ= + + + + + + + + , , , ( ), , , , , ,

A B open 5A A B B Aψ ψ ψ ψ= + + , , ( ), ,

A open 6Aψ ψ= , ( )

where Aψ  denotes the classical contribution, A Bψ ,  denotes the non-classical contribution corresponding 
to a path going from source to A, A to B and then B to detector, A Cψ ,  denotes the non-classical contri-
bution corresponding to a path going from source to A, A to C and then C to detector. Similarly for the 
other cases. Using this it is easy to check that the numerator in κ becomes

e2R [ ] 7A B C C B B A C C A C A B B Aε ψ ψ ψ ψ ψ ψ ψ ψ ψ≈ ( + ) + ( + ) + ( + ) , ( ), , , , , ,
⁎ ⁎ ⁎

where we have ignored the second order terms like B C C Aψ ψ, ,
⁎  since these turn out to be much smaller 

compared to the terms displayed above. An important point to note here is that we could replace Pψ  by 
P P

kψ ψ+  where P
kψ  denote contributions due to kinks in the paths going from the source to the slit P 

and then to the detector. However these contributions cancel out in κ as can be easily checked. This is 
one of the main reasons why κ the triple-slit set up is preferred over the double-slit interference 
I I IAB A B− −  in our discussion of non-classical paths, since in the latter, contributions from P

kψ  cannot 
be ignored and these are difficult to estimate. As in Ref. 7 we will use the free particle propagator for a 
particle with wave number k going from r→ to r→′ 
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K r r k
i

e
r r2 8

ik r r

π
(→, →′) = → − →′

.
( )

→−→′

Here the normalization factor has been fixed by demanding the composition rule following11 
K r r d r K r r K r r1 3 2 1 2 2 3∫(→ , → ) = → (→ , → ) (→ , → )

⊥  where the integration is over a plane perpendicular to 
r r1 3
→ −→ . We will consider the evolution of the wavefunction from the source to the detector which is 
given in the Feynman path integral formulation of quantum mechanics by summing over all paths that 
go from the source to the detector. Any path can be thought to be made by integrating small straight line 
propagators. The y-coordinate extents of the slits are A d w d w: 2 2− / , + / , B w w: 2 2− / , /  and 
C d w d w: 2 2− − / , − + / . Namely the centre to centre distance is d and the width is w. We will 
assume that the slit has negligible thickness and hence there is no need for an x-integration. Further as 
argued in Ref. 7, after the stationary phase approximation, the z-integration along the height of the slit 
in the numerator and denominator are the same and hence we will not have to worry about this either 
and we will drop the z integrals from the beginning. We will further assume a Fraunhofer regime so that 
the source to slit distance L and slit to detector/screen distance D are both large compared to any other 
scale in the problem. Using the results of Ref. 7, we have
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where e LDik L Dγ = /( + ) . In the first line, we have dropped the quadratic terms since y L y D2 2/ , /  are 
very small in the domain of integration while we have retained the linear term y y DD/  in order to be 
able to compute what happens at the detector screen far away from the centre. After doing the stationary 
phase approximation as explained in Ref. 7, we find that

i k d y d y y y e
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D3 2

5 2
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where the y1 integral runs over slit P and the y 2 integral runs over slit Q. At this stage we observe that 
if y y2 1−  is large in the domain of integration, then we can approximate the y y1 2,  integrals by retain-
ing the leading order term obtained by integrating by parts--this is the standard technique used to 
approximate such integrals leading to an asymptotic series. Explicitly, we use denoting y DD θ/ =  and 
rescaling y y1 2,  by k we have
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where xΘ( ) is the Heaviside step function and takes into account the modulus sign in the integrand (we 
have assumed that 1θ  ). Using this we finally find (here all length variables have been rescaled by k)
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In deriving the above expression, we have put in an extra factor of 1 4/  that arises from inclination 
factors as argued in Ref. 7. One important cross check that this formula satisfies is that κ θ( ) becomes 
zero when w goes to zero. We point out that the above result is a very good approximation to κ in the 
limit when d w 1   since the term that is neglected in eqn. (13) is O d w23 2 3 2 3 2λ π( /( ) ( − ) )

/ / /  after 
reinstating factors of k.

Using this approximate expression we can compare with the results of numerical integration in Ref. 
7. This is shown in fig.2(a) and fig.2(b). We find that the agreement with the numerics is excellent in 
the far field regime.

Now using the analytic expression, we can derive a bound on κ in the regime kw d w1,  . By 
setting the trigonometric functions to their maximum value and adjusting all the relative signs to be the 
same, we find after reinstating factors of k

Figure 2.  Comparison between numerics in Ref. 7 and the analytic approximation. Figure on the left shows 
κ as a function of angle θ (where y

D
180Dθ =
π

 in degrees) for the photon parameters i.e., slit width =  30 mμ , 
inter- slit distance =  100 mμ  and wavelength of incident photon =  810nm. The red dotted line indicates the 
result of numerical integration where source-slit distance and slit-detector distance =  18.1cm as in7. This 
corresponds to a Fresnel number of 0.006. The blue line indicates the result of application of the analytic 
formula in eqn. (14) and the blue dots show the result of numerical integration when the Fresnel number 
has been adjusted to 0.0002. This implies that in the far field regime, the analytic formula and numerical 
integration results show perfect overlap. We find that for Fresnel number 0 001.⪅  leads to a discrepancy of 

10%⪅  at the centre. Figure on the right shows κ as a function of detector position for the electron 
parameters13 i.e., slit width =  62nm, inter-slit distance =  272 nm, distance between source and slits =  30.5cm 
and distance between slits and detector = 24 cm and de Broglie wavelength of incident electrons =  50 pm.The 
red dots indicate the result of numerical integration as per7. The blue line indicates the result of application 
of the analytic formula in eqn. (14). The Fresnel number is 0.0002.
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In all examples we have numerically verified that this is a strict upper bound. It will be a useful simple 
formula to remember.

Comparison with FDTD.  We can use the analytic expression to compare with the FDTD results in 
Ref. 6. Although the FDTD simulations were done for non-zero thickness for the slits and for non-ideal 
materials, we will find that the analytic formula agrees remarkably well with the FDTD results. The rea-
son for this agreement is the following. One can repeat the steps outlined above but now with thickness. 
To handle the thick slit case, we can consider two slit planes instead of one where the separation between 
the two planes is given by the thickness of the slit. Then there are paths that reach from the source to 
the first slit plane, from the first plane to the second plane, and finally from the second plane to the 
detector. We can as before use the stationary phase approximation. In the end we find that again the z
-integrals cancel out and we are left with expressions of the form
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where t here is the thickness. y y1 2,  are the y-coordinates on the first and second slit plane respectively 
involving slit A and y3 is on the second slit plane involving slits B or C--this denotes a path where the 
kink in the path occurs at the second slit plane. Now there are two observations to make. First, there 
should also be a contribution from a path that has a kink in the first slit plane. When the thickness is 
small (t λ∼ ) then these two paths will approximately be in phase and hence there will be an overall 
factor of 2 42 =  in κ compared to the thin slit approximation. Second, when t is small, the factor 

y y t1 2 1
2 2 1 4

/ ( − ) + 

/

 will be sharply peaked around y y2 1=  and hence the result of the y 2 integral will 
lead to an expression which is the same as in the thin slit case. Now if we wanted to compare with the 
FDTD simulations in6, we note that the material making the slits in the simulations was considered to 
be steel with a complex refractive index. The effect of the imaginary part of the refractive index is to 
make the effective slit width bigger compared to the idealized scenario we are considering. By consider-
ing a slightly bigger w, we find that the agreement of the analytic expression for κ with the FDTD sim-
ulation for d w t3 4λ λ λ= , = , =  as considered in6 is remarkably good as shown in fig.(3). The complex 
refractive index for steel as used in 6 for FDTD simulation is n n n i i2 29 2 61R I= + = . + . . Using the 

Figure 3.  Comparison with the FDTD simulations in6 for the d w t3 4λ λ λ= , = , =  case. In the figure on 
the left, the black dots indicate the FDTD values which have been read off from fig.(2b) in Ref. 6. The 
orange line indicates the analytic expression while the blue line which leads to an agreement with the FDTD 
result is the analytic expression with d w3 1 15λ λ= , = . . This choice of w in the analytic expression has 
been justified in the text. In the figure on the right, we compare the analytic formula with the numerical 
integration as in Ref. 7 for the d w t3 1 15 4λ λ λ= , = . , =  case. The red dots indicate the result from 
numerical integration while the blue line indicates the analytic expression. The good agreement, especially 
close to the central region justifies our usage of the analytic approximation for this choice of parameters.
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fact that the wave gets attenuated by n xexp 2 Iπ λ(− / )12 at a distance of x inside the material, we find that 
for x 0 075λ= .  the attenuation factor is 30%. This gives an effective increase in the slit width which we 
will take to be 2 0 075 0 15λ λ× . = . .

The Sorkin parameter in the Fresnel regime.  In Ref. 7 as well as in deriving the analytic approx-
imation in our current work, we needed to be in the Fraunhofer regime. This enabled us to expand the 
propagator distance for example in eqn. (9) which was crucial in the simplifications arising from the 
stationary phase approximation namely the integral over the height of the slits cancelled between the 
numerator and denominator in κ. However, in order to consider the Fresnel regime, we can no longer 
appeal to this simplification and will need to consider a different numerical approach. While FDTD can 
enable us to address the same question, as pointed out in the Introduction, it is computationally resource 
intensive. The approach we will outline below is more efficient in addressing this issue. We will use the 
common technique for numerical integration which is Riemannian integration14. The technique involves 
dividing a certain domain into many smaller sub-domains and assuming that the integrand function is 
constant across the domain. One then sums up the constants multiplied by the area of the sub-domains 
to get the integral of the function over the whole domain. Our code to evaluate κ was written in the 
C+ +  programing language. We retained the exact propagator distances and integrated over the length 
of the slit along the z-axis in fig. 1. We used the same parameters that were used to generate fig.(3a) of 
reference7 and in addition chose the height to be 300μm.

Figure 4 shows κ  as a function of distance between slit plane and detector plane D. We find that using 
this approach, the value of κ  at D cm20=  is 6 10 7κ ≈ × −  while the analytic formula gives 5 6 10 7≈ . × −  
which means a deviation of around 7%. Thus, already for a Fresnel number of 0.005 (which corresponds 
to D =  20cm), the agreement between our numerical integration approach and analytic approximation is 
very good. As the distance between the slit plane and the detector plane decreases, the value of κ  starts 
increasing which can be explained by the decrease of the value of the denominator of κ . However, the 
sudden dip at very close distances may be an artefact of our approximation and the fact that the parax-
ial approximation breaks down in the extreme near field regime.

Can we use the new numerical approach to compare with FDTD results? In our current numerical 
approach, we have made certain assumptions which are summarized next. The first assumption is of a 
steady source which follows scalar electrodynamics. This approximation will break down in case of polar-
ized radiation but in construction of the quantity κ for unpolarized light, the polarization sums cancel 
in the numerator and denominator. Moreover, induction of currents in materials used for building the 
apparatus and scattering of radiation are not accounted for in the above derivations i.e., we have assumed 
that our material is a perfect absorber. This approximation will break down when the material scatters 
radiation to a significant effect and behaves as a secondary source due to induction. We have also used 
an approximate form for Kirchoff ’s integral theorem1 whereby it is important that length scales in the 
problem are much larger than the wavelength of incident radiation. One could use the complete Kirchoff ’s 
boundary integral in order to investigate problems where the length scales are comparable to wavelength. 
A final approximation used in this section is that of paraxial rays. This one breaks down when the dis-
tance between the slit plane and source or screen is not large compared to the vertical position on the 
screen or the slit width i.e., when we want to plot κ as a function of detector positions which are very 
far from the central region. We leave more careful investigation of the Fresnel regime for the comparison 

Figure 4.  κ  (at the central maximum of the triple slit interference pattern) as a function of distance 
between slit plane and detector screen plane D. The parameters used are slit width w 30μ= m, inter slit 
distance d 100μ= m, height of the slit =  300μm, incident wavelength λ =  810 nm, source to slit plane 
distance L cm20= .
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between the Riemannian integration based technique outlined above and the resource intensive FDTD 
approach for future work.

Discussion
In this paper, we have derived an analytic expression for the Sorkin parameter κ which has been used to 
quantify deviations from the naive application of the superposition principle in slit-based interference 
set-ups. Our main formula in eqn. (14) can be trusted in the Fraunhofer regime and in a thin-slit approx-
imation. When the thickness of the slit plane is not too big, we have given an argument on how to use 
our analytic formula which led to impressive agreements with the FDTD simulations of Ref. 6 as well as 
numerical integrations of Ref. 7. In the future, it will be interesting to develop systematics of the thick-slit 
scenario following some of the techniques used in this paper. One important point to note is that in the 
final expression for κ . i.e. eqn. (14),  appears only indirectly through the de Broglie wavelength. This 
is in keeping with our claim that our analytic formula should be applicable for both Maxwell’s equations 
as well as the Schrödinger equation. The non-zeroness of κ is essentially due to boundary condition 
considerations and should affect both classical as well as quantum physics. In existing experimental 
results in literature which measure κ for example Refs. 10, 15, 16, 17, the experimental inaccuracies have 
prevented us from concluding that κ is non-zero. As is easy to see in our analytic formula, κ is very 
sensitive to experimental parameters. Future experimental attempts will benefit from our analytic handle 
as it would be much easier to compare experimental data with theoretical expectations. One has to note 
here that the quantity κ has been measured previously to test for a possible deviation from Born rule. 
So, what do our findings imply for using κ as a test for Born rule? κ should be used for a Born rule test 
in experimental situations where the non-zeroness due to the correction to the superposition principle 
is very small. For instance, a set-up like in15 has a very small correction from non classical paths and 
could be a good experiment still to test Born rule. Thus, any potentially detectable violation of the Born 
rule should be bigger than that due to non-classical paths and any future test should take this into 
account.
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