[go: up one dir, main page]

Academia.eduAcademia.edu
Hindawi Publishing Corporation Advances in Difference Equations Volume 2010, Article ID 389109, 21 pages doi:10.1155/2010/389109 Research Article Oscillation of Second-Order Mixed-Nonlinear Delay Dynamic Equations M. Ünal1 and A. Zafer2 1 2 Department of Software Engineering, Bahçeşehir University, Beşiktaş, 34538 Istanbul, Turkey Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey Correspondence should be addressed to M. Ünal, munal@bahcesehir.edu.tr Received 19 January 2010; Accepted 20 March 2010 Academic Editor: Josef Diblik Copyright q 2010 M. Ünal and A. Zafer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. New oscillation criteria are established for second-order mixed-nonlinear delay dynamic equations on time scales by utilizing an interval averaging technique. No restriction is imposed on the coefficient functions and the forcing term to be nonnegative. 1. Introduction In this paper we are concerned with oscillatory behavior of the second-order nonlinear delay dynamic equation of the form n  Δ  rtxΔ t  p0 txτ0 t  pi t|xτi t|αi −1 xτi t  et, i1 t ≥ t0 1.1 on an arbitrary time scale T, where α1 > α2 > · · · > αm > 1 > αm1 > · · · > αn > 0, n > m ≥ 1; 1.2 the functions r, pi , e: T → R are right-dense continuous with r > 0 nondecreasing; the delay functions τi : T → T are nondecreasing right-dense continuous and satisfy τi t ≤ t for t ∈ T with τi t → ∞ as t → ∞. We assume that the time scale T is unbounded above, that is, sup T  ∞ and define the time scale interval t0 , ∞T by t0 , ∞T : t0 , ∞ ∩ T. It is also assumed that the reader is already familiar with the time scale calculus. A comprehensive treatment of calculus on time scales can be found in 1–3 . 2 Advances in Difference Equations By a solution of 1.1 we mean a nontrivial real valued function x : T → R such that 1 1 T, ∞T and rxΔ ∈ Crd T, ∞T for all T ∈ T with T ≥ t0 , and that x satisfies 1.1. x ∈ Crd A function x is called an oscillatory solution of 1.1 if x is neither eventually positive nor eventually negative, otherwise it is nonoscillatory. Equation 1.1 is said to be oscillatory if and only if every solution x of 1.1 is oscillatory. Notice that when T  R, 1.1 is reduced to the second-order nonlinear delay differential equation  n  ′ rtx′ t  p0 txτ0 t  pi t|xτi t|αi −1 xτi t  et, i1 t ≥ t0 1.3 k ≥ k0 . 1.4 while when T  Z, it becomes a delay difference equation ΔrkΔxk  p0 kxτ0 k  n  pi k|xτi k|αi −1 xτi k  ek, i1 Another useful time scale is T  qN : {qm : m ∈ N and q > 1 is a real number}, which leads to the quantum calculus. In this case, 1.1 is the q-difference equation n    Δq rtΔq xt  p0 txτ0 t  pi t|xτi t|αi −1 xτi t  et, i1 t ≥ t0 , 1.5 where Δq ft  fσt − ft /µt, σt  qt, and µt  q − 1t. Interval oscillation criteria are more natural in view of the Sturm comparison theory since it is stated on an interval rather than on infinite rays and hence it is necessary to establish more interval oscillation criteria for equations on arbitrary time scales as in T  R. As far as we know when T  R, an interval oscillation criterion for forced second-order linear differential equations was first established by El-Sayed 4 . In 2003, Sun 5 demonstrated nicely how the interval criteria method can be applied to delay differential equations of the form x′′ t  pt|xτt|α−1 xτt  et, α ≥ 1, 1.6 where the potential p and the forcing term e may oscillate. Some of these interval oscillation criteria were recently extended to second-order dynamic equations in 6–10 . Further results on oscillatory and nonoscillatory behavior of the second order nonlinear dynamic equations on time scales can be found in 11–23 , and the references cited therein. Therefore, motivated by Sun and Meng’s paper 24 , using similar techniques introduced in 17 by Kong and an arithmetic-geometric mean inequality, we give oscillation criteria for second-order nonlinear delay dynamic equations of the form 1.1. Examples are considered to illustrate the results. Advances in Difference Equations 3 2. Main Results We need the following lemmas in proving our results. The first two lemmas can be found in 25, Lemma 1 . Lemma 2.1. Let {αi }, i  1, 2, . . . , n be the n-tuple satisfying α1 > α2 > · · · > αm > 1 > αm1 > · · · > αn > 0. Then, there exists an n-tuple {η1 , η2 , . . . , ηn } satisfying n  αi ηi  1, i1 n  ηi < 1, 0 < ηi < 1. 2.1 i1 Lemma 2.2. Let {αi }, i  1, 2, . . . , n be the n-tuple satisfying α1 > α2 > · · · > αm > 1 > αm1 > · · · > αn > 0. Then there exists an n-tuple {η1 , η2 , . . . , ηn } satisfying n  αi ηi  1, i1 n  ηi  1, 0 < ηi < 1. 2.2 i1 The next two lemmas are quite elementary via differential calculus; see 23, 25 . Lemma 2.3. Let u, A, and B be nonnegative real numbers. Then  1/γ−1 1/γ 1−1/γ Auγ  B ≥ γ γ − 1 A B u, γ > 1. 2.3 Lemma 2.4. Let u, A, and B be nonnegative real numbers. Then   Cu − Duγ ≥ γ − 1 γ γ/1−γ Cγ/γ−1 D1/1−γ , 0 < γ < 1. 2.4 The last important lemma that we need is a special case of the one given in 6 . For completeness, we provide a proof. Lemma 2.5. Let τ : T → T be a nondecreasing right-dense continuous function with τt ≤ t, and 1 a, b ∈ T with a < b. If x ∈ Crd τa, b T is a positive function such that rtxΔ t is nonincreasing on τa, b T with r > 0 nondecreasing, then xτt τt − τa ≥ , xσ t σt − τa t ∈ a, b T . 2.5 Proof. By the Mean Value Theorem 2, Theorem 1.14   xt − xτa ≥ xΔ η t − τa, 2.6 for some η ∈ τa, tT , for any t ∈ τa, b T . Since rtxΔ t is nonincreasing and rt is nondecreasing, we have       rtxΔ t ≤ r η xΔ η ≤ rtxΔ η , t>η 2.7 4 Advances in Difference Equations and so xΔ t ≤ xΔ η, t ≥ η. Now xt − xτa ≥ xΔ tt − τa, 2.8 t ∈ τa, b T . Define µs : xs − s − τaxΔ s, It follows from 2.8 that µs ≥ xτa > 0 for s ∈ τt, σt 0<  σt τt µs Δs  xsxσ s  σt  τt s − τa xs 2.9 s ∈ τt, σt T , t ∈ a, bT . Δ Δs  T and t ∈ a, bT . Thus, we have σt − τa τt − τa , − xσ t xτt 2.10 which completes the proof. In what follows we say that a function Ht, s : T2 → R belongs to HT if and only if H is right-dense continuous function on {t, s ∈ T2 : t ≥ s ≥ t0 } having continuous Δ-partial  0 for all t /  s. Note derivatives on {t, s ∈ T2 : t > s ≥ t0 }, with Ht, t  0 for all t and Ht, s / that in case HR , the Δ-partial derivatives become the usual partial derivatives of Ht, s. The partial derivatives for the cases HZ and HN will be explicitly given later. Denoting the Δ-partial derivatives H Δt t, s and H Δs t, s of Ht, s with respect to t and s by H1 t, s and H2 t, s, respectively, the theorems below extend the results obtained in 5 to nonlinear delay dynamic equation on arbitrary time scales and coincide with them when H 2 t, s is replaced by Ht, s. Indeed, if we set Ht, s  Ut, s, then it follows that H1 t, s  U1 t, s Uσt, s  Ut, s H2 t, s  , U2 t, s Ut, σs  Ut, s . 2.11 When T  R, they become ∂Ht, s ∂Ut, s/∂t  , ∂t 2 Ut, s ∂Ht, s ∂Ut, s/∂s  ∂s 2 Ut, s 2.12 as in 5 . However, we prefer using H 2 t, s instead of Ut, s for simplicity. Theorem 2.6. Suppose that for any given (arbitrarily large) T ∈ T there exist subintervals a1 , b1 and a2 , b2 T of T, ∞T , where a1 < b1 and a2 < b2 such that pi t ≥ 0 for t ∈ a1 , b1 T ∪ a2 , b2 T , i  0, 1, 2, . . . , n, −1l et > 0 for t ∈ al , bl T , l  1, 2, T 2.13 where al  min τj al  : j  0, 1, 2, . . . , n 2.14 Advances in Difference Equations 5 hold. Let {η1 , η2 , . . . ηn } be an n-tuple satisfying 2.1 of Lemma 2.1. If there exist a function H ∈ HT and numbers cν ∈ aν , bν T such that 1 2 H cν , aν   cν aν  QtH 2 σt, aν  − rtH12 t, aν  Δt 1  2 H bν , cν   bν cν 2 QtH bν , σt − rtH22 bν , t 2.15  Δt > 0 for ν  1, 2, where Qt  p0 t  n  η τi t − τi aν   τ0 t − τ0 aν   k0 |et|η0 pi t i σt − τ0 aν  σt − τi aν  i1 n  −η ηi i , k0  i0 αi ηi , n  η 0  1 − ηi , 2.16 i1 then 1.1 is oscillatory. Proof. Suppose on the contrary that x is a nonoscillatory solution of 1.1. First assume that xt and xτj t j  0, 1, 2 . . . , n are positive for all t ≥ t1 for some t1 ∈ t0 , ∞T . Choose a1 sufficiently large so that τj τj a1  ≥ t1 . Let t ∈ a1 , b1 T . Define wt  −rt xΔ t , xt t ≥ t1 . 2.17 Using the delta quotient rule, we have   2 2 Δ Δ   rt xΔ t rtxΔ t rtxΔ t xt − rt xΔ t w t  − −  . xtxσ t xσ t xtxσ t Δ 2.18 Notice that     x2 t  wt xtxσ t  xt xt  µtxΔ t  x2 t 1 − µt  rt − µtwt rt rt 2.19 which implies rt − µtwt  rt xσ t > 0. xt 2.20 Hence, we obtain Δ  rtxΔ t w2 t w t  −  . σ x t rt − µtwt Δ 2.21 6 Advances in Difference Equations Substituting 2.21 into 1.1 yields wΔ t  n  p0 txτ0 t xτi t w2 t et  − σ .  pi t|xτi t|αi −1 σ xσ t rt − µtwt i1 x t x t 2.22 By assumption, we can choose a1 , b1 ≥ t1 such that pi t ≥ 0 i  1, 2, 3 . . . , n and et ≤ 0 for all t ∈ a1 , b1 T , where a1 is defined as in 2.14. Clearly, the conditions of Lemma 2.5 are satisfied when, τ replaced with τj for each fixed j  0, 1, 2, . . . , n. Therefore, from 2.5, we have   τj t − τj a1  x τj t , ≥ σ x t σt − τj a1  t ∈ a1 , b1 2.23 T and taking into account 2.22 yields wΔ t ≥ p0 t  n  τ0 t − τ0 a1  w2 t τi t − τi a1   pk t  σt − τ0 a1  rt − µtwt i1 σt − τi a1  αi xσ tαi −1  |et| . xσ t 2.24 Denote Q0∗ t τ0 t − τ0 a1  : p0 t , σt − τ0 a1  Qi∗ t  τi t − τi a1  : pi t σt − τi a1  αi . 2.25 From 2.24, we have wΔ t ≥ Q0∗ t  n  w2 t |et|  Qi∗ txσ tαi −1  σ . rt − µtwt i1 x t 2.26 Now recall the well-known arithmetic-geometric mean inequality, see 26 , n n   ηi ui ηi ≥ ui , i0 where η0  1 − n i1 2.27 i0 ηi and ηi > 0, i  1, 2, . . . , n. Setting u0 η0 : |et| , xσ t ui ηi : Qi∗ txσ tαi −1 2.28 in 2.26 yields wΔ t ≥ Q0∗ t  n n   w2 t w2 t  ui ηi  u0 η0  Q0∗ t   ui ηi . rt − µtwt i1 rt − µtwt i0 2.29 Advances in Difference Equations 7 From 2.29 and taking into account 2.27, we get wΔ t ≥ Q0∗ t  n  w2 t η  ui rt − µtwt i0 i 2.30 and hence, wΔ t ≥ Q0∗ t   Q0∗ t   Q0∗ t  η0  n η ηi  σ w2 t −η |et| −ηi  ∗ αi −1 i  η0 0 σ t η t Q x i rt − µtwt x tη0 i1 i n n  η w2 t −η  −η  η0 0 |et|η0 ηi i Qi∗ t i xσ t−η0  j1 αj ηj −ηj  rt − µtwt i1 2.31 n  η w2 t −η −η   η0 0 |et|η0 ηi i Qi∗ t i rt − µtwt i1 which yields wΔ t ≥ Q0∗ t   n  ηi τi t − τi a1  w2 t −η  −η  η0 0 |et|η0 ηi i pi t rt − µtwt σt − τi a1  i1 αi ηi 2.32 w2 t ,  Qt  rt − µtwt where Qt  Q0∗ t   n  ηi τi t − τi a1  −ηi  −η0 η0 ηi pi t η0 |et| σt − τi a1  i1 αi ηi . 2.33 Multiplying both sides of 2.32 by H 2 σt, a1  and integrating both sides of the resulting inequality from a1 to c1 , a1 < c1 < b1 yield  c1 a1 Δ 2 w tH σt, a1 Δt ≥  c1 2 QtH σt, a1 Δt  a1  c1 a1 w2 tH 2 σt, a1  Δt. rt − µtwt 2.34 Fix s and note that   Δt Δt wtH 2 t, s  H 2 σt, swΔ t  H 2 t, s wt 2 2.35 Δ  H σt, sw t  H1 t, sHσt, swt  Ht, sH1 t, swt, from which we obtain  Δt − H1 t, sHσt, swt − Ht, sH1 t, swt. 2.36 H 2 σt, swΔ t  wtH 2 t, s 8 Advances in Difference Equations Therefore,  c1 a1  c1  Δt wtH 2 t, a1  Δt w tH σt, a1 Δt  Δ 2 a1 −  c1 H1 t, a1 Hσt, a1 wt  Ht, a1 H1 t, a1 wt Δt. a1 2.37 Notice that  c1  Δt wtH 2 t, a1  Δt  wc1 H 2 c1 , a1  − wa1 H 2 a1 , a1   wc1 H 2 c1 , a1  2.38 a1 since Ha1 , a1   0 and hence, we obtain from 2.34 that 2 wc1 H c1 , a1  ≥  c1 2 QtH σt, a1 Δt  a1   c1 a1  c1 w2 t H 2 σt, a1 Δt rt − µtwt 2.39 H1 t, a1 Hσt, a1 wt  Ht, a1 H1 t, a1 wt Δt. a1 On the other hand, w2 tH 2 σt, s  wtHσt, sH1 t, s  Ht, sH1 t, swt rt − µtwt   wtHσt, s rt − µtwt   rt − µtwtH1 t, s 2 2.40   − rt − µtwt H12 t, s − wtHσt, sH1 t, s  Ht, sH1 t, swt. Taking into account that Hσt, s  Ht, s  µtH1 t, s, we have w2 tH 2 σt, a1   wtHσt, a1 H1 t, a1   Ht, a1 H1 t, a1 wt ≥ −rtH12 t, a1 . rt − µtwt 2.41 Using this inequality in 2.39, we have wc1 H 2 c1 , a1  ≥  c1 a1  QtH 2 σt, a1  − rtH12 t, a1  Δt. 2.42 Advances in Difference Equations 9 Similarly, by following the above calculation step by step, that is, multiplying both sides of 2.32 this time by H 2 b1 , σs after taking into account that Δs  − H2 t, sHt, σsws − Ht, sH2 t, sws, 2.43 H 2 t, σswΔ s  wsH 2 t, s one can easily obtain −wc1 H 2 b1 , c1  ≥  b1  QsH 2 b1 , σs − rsH22 b1 , s Δs. c1 2.44 Adding up 2.42 and 2.44, we obtain 0≥ 1 2 H c1 , a1   c1 a1 1  2 H b1 , c1   QtH 2 σt, a1  − rtH12 t, a1  Δt  b1 c1 2.45  QtH 2 b1 , σt − rsH22 b1 , t Δt. This contradiction completes the proof when xt is eventually positive. The proof when xt is eventually negative is analogous by repeating the above arguments on the interval a2 , b2 T instead of a1 , b1 T . Corollary 2.7. Suppose that for any given (arbitrarily large) T ≥ t0 there exist subintervals a1 , b1 and a2 , b2 of T, ∞ such that pi t ≥ 0 for t ∈ a1 , b1 ∪ a2 , b2 , i  0, 1, 2, . . . , n, 2.46 −1l et ≥ 0 for t ∈ al , bl , l  1, 2, where al  min{τj al  : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.1 of Lemma 2.1. If there exist a function H ∈ HR and numbers cν ∈ aν , bν  such that 1 2 H cν , aν   cν aν  QtH 2 t, aν  − rtH12 t, aν  dt 1  2 H bν , cν   bν cν 2.47  QtH 2 bν , t − rtH22 bν , t dt > 0 for ν  1, 2, where Qt  p0 t  n  η τi t − τi aν   τ0 t − τ0 aν   k0 |et|η0 pi t i t − τ0 aν  t − τi aν  i1 n  −η k0  ηi i , i0 then 1.3 is oscillatory. n  η 0  1 − ηi , i1 αi ηi , 2.48 10 Advances in Difference Equations Corollary 2.8. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1 , b1 , a2 , b2 ∈ Z with T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i  0, 1, 2, . . . , n, pi t ≥ 0 for t ∈ {a1 , a1  1, a1  2, . . . , b1 } ∪ {a2 , a2  1, a2  2, . . . , b2 }, −1l et ≥ 0 for t ∈ {al , al  1, al  2, . . . , bl } l  1, 2, 2.49 where al  min{τj al  : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.1 of Lemma 2.1. If there exist a function H ∈ HZ and numbers cν ∈ {aν  1, aν  2, . . . , bν − 1} such that c ν −1 1 H 2 c ν , aν  taν  QtH 2 t  1, aν  − rtH12 t, aν  b  ν −1 1  2 QtH 2 bν , t  1 − rtH22 bν , t > 0 H bν , cν  tcν 2.50 for ν  1, 2, where H2 bν , t : Hbν , t  1 − Hbν , t,  n  ηi τi t − τi aν  αi ηi  τ0 t − τ0 aν  η0 Qt  p0 t  k0 |et| , pi t t  1 − τ0 aν  t  1 − τi aν  i1 H1 t, aν  : Ht  1, aν  − Ht, aν , k0  n  i0 −η ηi i , η0  1 − n  2.51 ηi , i1 then 1.4 is oscillatory. Corollary 2.9. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1 , b1 , a2 , b2 ∈ N with T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i  0, 1, 2, . . . , n,     pi t ≥ 0 for t ∈ qa1 , qa1 1 , . . . , qb1 ∪ qa2 , qa2 1 , . . . , qb2 , l −1 et ≥ 0   for t ∈ qal , qal 1 , . . . , qbl , l  1, 2 2.52 where qal  min{τj qal  : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.1 of Lemma 2.1. If there exist a function H ∈ Hq and numbers qcν ∈ {qaν 1 , qaν 2 , . . . , qbν −1 } such that c  ν −1        1 qm Q qm H 2 qm1 , qaν − r qm H12 qm , qaν   2 c a H q ν , q ν maν  1 b ν −1 qm   H 2 qbν , qcν mcν         Q qm H 2 qbν , qm1 − r qm H22 qbν , qm > 0 2.53 Advances in Difference Equations 11 for ν  1, 2, where  m H1 q , q aν        H qbν , qm1 − H qbν , qm bν m : H2 q , q ,   q − 1 qm     H qm1 , qaν − H qm , qaν , :   q − 1 qm Qt  p0 t    n  τ0 t − τ0 qaν η τi t − τi qaν   pi t i  a   k0 |et|η0 qt − τi qaν  qt − τ0 q ν i1 k0  n  −η ηi i , i0 η0  1 − αi ηi n  ηi , , i1 2.54 then 1.5 is oscillatory. Notice that Theorem 2.6 does not apply if there is no forcing term, that is, et ≡ 0. In this case we have the following theorem. Theorem 2.10. Suppose that for any given (arbitrarily large) T ∈ T there exists a subinterval a, b of T, ∞T , where a < b such that pi t ≥ 0 for t ∈ a, b T , i  0, 1, 2, . . . , n, T 2.55 where a  min{τj a : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.2 in Lemma 2.2. If there exist a function H ∈ HT and a number c ∈ a, bT such that 1 H 2 c, a c a  QtH 2 σt, a − rtH12 t, a Δt 1  2 H b, c b c 2.56  QtH 2 b, σt − rsH22 b, t2 Δt > 0, where Qt  p0 t  n  η τi t − τi a  τ0 t − τ0 a  k0 pi t i σt − τ0 a σt − τi a i1 αi ηi , k0  n  −η ηi i , 2.57 i1 then 1.1 with et ≡ 0 is oscillatory. Proof. We will just highlight the proof since it is the same as the proof of Theorem 2.6. We should remark here that taking et ≡ 0 and η0  0 in proof of Theorem 2.6, we arrive at wΔ t ≥ Q0∗ t  n  w2 t  ui ηi . rt − µtwt i1 2.58 12 Advances in Difference Equations The arithmetic-geometric mean inequality we now need is n n   η ui i , ui ηi ≥ i1 where 1  n i1 2.59 i1 ηi and ηi > 0, i  1, 2, . . . , n are as in Lemma 2.2. Corollary 2.11. Suppose that for any given (arbitrarily large) T ≥ t0 there exists a subinterval a, b of T, ∞, where T ≤ a < b with a, b ∈ R such that pi t ≥ 0 for t ∈ a, b , i  0, 1, 2, . . . , n, 2.60 where a  min{τj a : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.2 in Lemma 2.2. If there exist a function H ∈ HR and a number c ∈ a, b such that 1 2 H c, a c a  QtH 2 t, a − rtH12 t, a dt 1  2 H b, c b c 2.61  QsH 2 b, t − rtH22 b, t dt > 0, where Qt  p0 t  n  η τi t − τi a  τ0 t − τ0 a  k0 pi t i t − τ0 a t − τi a i1 αi ηi , k0  n  −η ηi i , 2.62 i1 then 1.3 with et ≡ 0 is oscillatory. Corollary 2.12. Suppose that for any given (arbitrarily large) T ≥ t0 there exists a, b ∈ Z with T ≤ a < b such that pi t ≥ 0 for t ∈ {a, a  1, . . . , b}, i  0, 1, 2, . . . , n, 2.63 where a  min{τj a : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.2 in Lemma 2.2. If there exist a function H ∈ HZ and a number c ∈ {a  1, a  2, . . . , b − 1} such that 1 H 2 c, a c−1  ta QtH 2 t  1, a − rtH12 t, a  b−1   1  2 QtH 2 b, t  1 − rtH22 b, t > 0, H b, c tc 2.64 Advances in Difference Equations 13 where H2 b, t : Hb, t  1 − Hb, t,  n n   η τi t − τi a αi ηi  τ0 t − τ0 a −η Qt  p0 t  k0 , k0  ηi i , pi t i t  1 − τ0 a t  1 − τi a i1 i1 H1 t, a : Ht  1, a − Ht, a, 2.65 then 1.4 with et ≡ 0 is oscillatory. Corollary 2.13. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a, b ∈ N with T ≤ a < b such that pi t ≥ 0   for t ∈ qa , qa1 , . . . , qb , i  0, 1, 2, . . . , n 2.66 where qa  min{τj qa  : j  0, 1, 2, . . . , n} holds. Let {η1 , η2 , . . . , ηn } be an n-tuple satisfying 2.2 in Lemma 2.2. If there exist a function H ∈ HqN and a number qc ∈ {qa , qa1 , . . . , qb } such that c−1   m  2  m1 a   m    1 m m a 2 Q q q − r q q , q q , q  H H   1 H 2 qc , qa ma 2.67  b−1  2        1  2  b c  qm Q qm H 2 qb , qm1 − r qm H2 qb , qm  > 0, H q , q mc where     H qm1 , qa − H qm , qa  m a H1 q , q : ,   q − 1 qm       H qb , qm1 − H qb , qm b m : H2 q , q ,   q − 1 qm    n  τ0 t − τ0 qa η τi t − τi qa   Qt  p0 t pi t i  a   k0 qt − τi qa  qt − τ0 q i1 αi ηi , k0  n  −η ηi i , i1 2.68 then 1.5 with et ≡ 0 is oscillatory. It is obvious that Theorem 2.6 is not applicable if the functions pi t are nonpositive for i  m  1, m  2, . . . , n. In this case the theorem below is valid. Theorem 2.14. Suppose that for any given (arbitrarily large) T ∈ T there exist subintervals a1 , b1 and a2 , b2 T of T, ∞T , where a1 < b1 and a2 < b2 such that pi t ≥ 0 for t ∈ a1 , b1 T ∪ a2 , b2 T , i  0, 1, 2, . . . , n, −1l et > 0 for t ∈ al , bl T , l  1, 2, T 2.69 14 Advances in Difference Equations where al  min{τj al  : j  0, 1, 2, . . . , n} holds. If there exist a function H ∈ HT , positive numbers λi and νi satisfying m n   λi  νi  1, i1 2.70 im1 and numbers cν ∈ aν , bν T such that 1 2 H cν , aν   cν aν  QtH 2 σt, aν  − rtH12 t, aν  Δt 1  2 H bν , cν   bν cν  QtH 2 bν , σt − rtH22 bν , t Δt > 0 2.71 for ν  1, 2, where  m τ0 t − τ0 aν   τi t − τi aν  1−1/αi  1/αi Qt  p0 t  µi λi |et| pi t σt − τ0 aν  i1 σt − τi aν   n  2.72 τi t − τi aν  − , βi νi |et|1−1/αi  pi 1/αi t σt − τi aν  im1 with βi  αi 1 − αi 1/αi −1 , µi  αi αi − 11/αi −1 , then 1.1 is oscillatory. pi  max −pi t, 0 , 2.73 Proof. Suppose that 1.1 has a nonoscillatory solution. Without losss of generality, we may assume that xt and xτi t i  0, 1, 2, . . . , n are eventually positive on a1 , b1 T when a1 is sufficiently large. If xt is eventually negative, one may repeat the same proof step by step on the interval a2 , b2 T . Rewriting 1.1 for t ∈ a1 , b1 T as n m  Δ       rtxΔ t  p0 txτ0 t  pi txαi τi t  νi |et|  0 pi txαi τi t  λi |et|  im1 i1 2.74 and applying Lemma 2.3 to each term in the first sum, we obtain m Δ   rtxΔ t  p0 txτ0 t  µi λi |et|1−1/αi  pi1/αi txτi t i1  n   im1  pi txαi τi t  νi |et| ≤ 0, 2.75 Advances in Difference Equations 15 where µi  αi αi − 11/αi −1 for i  1, 2, . . . , m. Setting wt  −rt xΔ t xt 2.76 yields Δ  rtxΔ t w2 t w t  − .  σ x t rt − µtwt Δ 2.77 Substituting the above last equality into 2.75, we have wΔ t ≥ p0 t m xτ0 t  xτi t  µi λi |et|1−1/αi  pi1/αi t σ σ x t x t i1 n   w2 t 1  .  σ pi txαi τi t  νi |et|  x t im1 rt − µtwt 2.78 It follows from 2.5 that xτ0 t τ0 t − τ0 a1  , ≥ xσ t σt − τ0 a1  2.79 xτi t τi t − τi a1  , ≥ xσ t σt − τi a1  2.80 xαi τi t τi t − τi a1  . ≥ xαi −1 τi t σ x t σt − τi a1  2.81 Notice that the second sum in 2.78 can be written as  n  n    1  xαi τi t νi |et| αi p    ν p tx t τ t |et| i i i i xσ t im1 xσ t xσ t im1   n   1 1 τi t − τi a1  νi |et| − pi t  σt − τ xτ xτ  a t i 1 i i t im1 1−αi  2.82 , and hence applying the Lemma 2.4 yields   n   1 τi t − τi a1  1 νi |et| − pi t σt − τ xτ xτ  a t i 1 i i t im1  n   τi t − τi a1  βi νi |et|1−1/αi  pi 1/αi t, ≥− σt − τ  a 1 i im1 1−αi  2.83 16 Advances in Difference Equations where βi  αi 1 − αi 1/αi −1 and pi  max{−pi t, 0} for i  m  1, m  2, . . . , n. Using 2.79, 2.80, and 2.78 into 2.78, we obtain wΔ t ≥ p0 t  m  τ0 t − τ0 a1   τi t − τi a1  µi λi |et|1−1/αi  pi1/αi t  σt − τ0 a1  i1 σt − τi a1   n   τi t − τi a1  w2 t − . βi νi |et|1−1/αi  pi 1/αi t  σt − τi a1  rt − µtwt im1 2.84 Setting  m τ0 t − τ0 a1   τi t − τi a1  1−1/αi  1/αi  µi λi |et| pi t Qt  p0 t σt − τ0 a1  i1 σt − τi a1   n  2.85 τi t − τi a1  − βi νi |et|1−1/αi  pi 1/αi t , σt − τi a1  im1 we have wΔ t ≥ Qt  w2 t . rt − µtwt 2.86 The rest of the proof is the same as that of Theorem 2.6 and hence it is omitted. Corollary 2.15. Suppose that for any given (arbitrarily large) T ≥ t0 there exist subintervals a1 , b1 and a2 , b2 of T, ∞, where T ≤ a1 < b1 and T ≤ a2 < b2 such that pi t ≥ 0 for t ∈ a1 , b1 ∪ a2 , b2 , i  0, 1, 2, . . . , n, −1l et > 0 for t ∈ al , bl , l  1, 2, 2.87 where al  min{τj al  : j  0, 1, 2, . . . , n} holds. If there exist a function H ∈ HR , positive numbers λi and νi satisfying m n   λi  νi  1, i1 2.88 im1 and numbers cν ∈ aν , bν  such that 1 2 H cν , aν    cν aν  QtH 2 t, aν  − rtH12 t, aν  dt 1 H 2 bν , cν   bν cν  QtH 2 bν , t − rtH22 bν , t dt > 0 2.89 Advances in Difference Equations 17 for ν  1, 2, where Qt  p0 t −  m τ0 t − τ0 aν   τi t − τi aν   µi λi |et|1−1/αi  pi1/αi t t − τ0 aν  t − τi aν  i1 n  βi νi |et| 1−1/αi  im1 pi 1/αi  2.90 τi t − τi aν  t t − τi aν  with µi  αi αi − 11/αi −1 , βi  αi 1 − αi 1/αi −1 , then 1.3 is oscillatory. pi  max −pi t, 0 , 2.91 Corollary 2.16. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1 , b1 , a2 , b2 ∈ Z with T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i  0, 1, 2, . . . , n, pi t ≥ 0 for t ∈ {a1 , a1  1, . . . , b1 } ∪ {a2 , a2  1, . . . , b2 } −1l et > 0 2.92 for t ∈ {al , al  1, . . . , bl }, l  1, 2, where al  min{τj al  : j  0, 1, 2, . . . , n} holds. If there exist a function H ∈ HZ , positive numbers λi and νi satisfying m n   λi  νi  1, i1 2.93 im1 and numbers cν ∈ {aν  1, aν  2, . . . , bν − 1} such that c  ν −1 1 QtH 2 t  1, aν  − rtH12 t, aν  2 H cν , aν  taν 2.94  b ν −1 1 QtH 2 bν , t  1 − rtH22 bν , t > 0 H 2 bν , cν  tcν  for ν  1, 2, where H1 t, aν  : Ht  1, aν  − Ht, aν , H2 bν , t : Hbν , t  1 − Hbν , t,  m τ0 t − τ0 aν   τi t − τi aν  1−1/αi  1/αi Qt  p0 t  µi λi |et| pi t t  1 − τ0 aν  i1 t  1 − τi aν  − n  βi νi |et|1−1/αi  pi 1/αi t im1  τi t − τi aν  t  1 − τi aν  2.95 18 Advances in Difference Equations with µi  αi αi − 11/αi −1 , βi  αi 1 − αi 1/αi −1 , then 1.4 is oscillatory. pi  max −pi t, 0 , 2.96 Corollary 2.17. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1 , b1 , a2 , b2 ∈ N with T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i  0, 1, 2, . . . , n,     pi t ≥ 0 for t ∈ qa1 , qa1 1 , . . . , qb1 ∪ qa2 , qa2 1 , . . . , qb2 ,   −1 et > 0 for t ∈ qal , qal 1 , . . . , qbl , l  1, 2, 2.97 l where qal  min{τj qal  : j  0, 1, 2, . . . , n} holds. If there exist a function H ∈ Hq , positive numbers λi and νi satisfying m n   λi  νi  1, i1 2.98 im1 and numbers qcν ∈ {qaν 1 , qaν 2 , . . . , qbν −1 } such that c ν −1  m  2  m1 aν   m aν  1 m 2 Q q q − rtH q , q H q ,q   1 H 2 qcν , qaν maν  b ν −1 1 qm   H 2 qbν , qcν mcν 2.99       Q qm H 2 qbν , qm1 − rtH22 qbν , qm > 0 for ν  1, 2, where       H qbν , qm1 − H qbν , qm m bν : H2 q , q ,   q − 1 qm     H qm1 , qaν − H qm , qaν  m aν  H1 q , q , :   q − 1 qm      m  τi t − τi qaν τ0 t − τ0 qaν 1−1/αi  1/αi pi t Qt  p0 t    µi λi |et|   qt − τ0 qaν qt − τi qaν i1 − n  βi νi |et| 1−1/αi  im1 pi 1/αi  t   τi t − τi qaν   qt − τi qaν 2.100 with µi  αi αi − 11/αi −1 , then 1.5 is oscillatory. βi  αi 1 − αi 1/αi −1 , pi  max −pi t, 0 , 2.101 Advances in Difference Equations 19 3. Examples In this section we give three examples when n  2, and α1  2, α2  1/2 in 1.1. That is, we consider xΔΔ t  p0 txτ0 t  p1 t|xτ1 t|xτ1 t  p2 t|xτ1 t|−1/2 xτ2 t  0. 3.1 For simplicity we take Ht, s  t − s, thus H1 t, s  −H2 t, s  1. Note that η1  1/3 and η2  2/3 by Lemma 2.2. Example 3.1. Let A ≥ 0 and B, C > 0 be constants. Consider the differential equation x′′ t  Axt − 1  B|xt − 2|xt − 2  C|xt − 1|−1/2 xt − 1  0. 3.2 Let a  j, b  j  2, and c  j  1, j ∈ N. We calculate  t−j Qt  A t−j 1   t−j 3 1/3 2/3 √ B C  2/3  1/3 3 4 t−j 2 t−j 1 3.3 and see that 2.61 holds if  1/3 4A  9 BC2 > 27. 3.4 Since all conditions of Corollary 2.11 are satisfied, we conclude that 3.2 is oscillatory when 3.4 holds. Example 3.2. Let A ≥ 0 and B, C > 0 be constants. Define p0 t  A, p1 t  B, and p2 t  C for t  10j  k, k  −3, −2, −1, 0, 1, 2, 3, j ≥ 1; otherwise, the functions are defined arbitrarily. Consider the difference equation Δ2 xt  p0 txt − 1  p1 t|xt − 2|xt − 2  p2 t|xt − 1|−1/2 xt − 1  0. 3.5 Let a  10j, b  10j  3, and c  10j  1. We derive Qt  A t − 10j t − 10j 3  2 1/3 BC √    1/3 3 2/3 t − 10j  2 4 t − 3j  3 t − 10j  4 3.6 and see that positivity in 2.64 satisfies if  1/3 9 BC2 48 > A . √ 5 435 3.7 Since all conditions of Corollary 2.12 are satisfied, we conclude that 3.5 is oscillatory if 3.7 holds. 20 Advances in Difference Equations Example 3.3. Let A ≥ 0 and B, C > 0 be constants. Define p0 t  A, p1 t  B and p2 t  C for t  210jk , k  −3, −2, −1, 0, 1, 2, 3, j ≥ 1; otherwise, the functions are defined arbitrarily. Consider the q-difference equation, q  2, Δ2q xt  t  p0 tx 2    t  p1 tx 4    x t  4    t  p2 tx 8 Let a  10j, b  10j  3, and c  10j  1. We have Qt  A −1/2   t  x  8 t − 210j 3  2 1/3 t − 210j √ BC 1/3 .   3 10j 2/3  4t − 2 4 16t − 210j 8t − 210j  0. 3.8 3.9 We see that 2.67 holds for all A ≥ 0 and B, C > 0. Since all conditions of Corollary 2.12 are satisfied, we conclude that 3.8 is oscillatory if A ≥ 0 and B, C > 0 are positive. Acknowledgments The paper is supported in part by the Scientific and Research Council of Turkey TUBITAK under Contract 108T688. The authors would like to thank the referees for their valuable comments and suggestions. References 1 M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA, 2001. 2 M. Bohner and A. Peterson, Eds., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2003. 3 V. Lakshmikantham, S. Sivasundaram, and B. Kaymakçalan, Dynamic Systems on Measure Chains, vol. 370 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. 4 M. A. El-Sayed, “An oscillation criterion for a forced second order linear differential equation,” Proceedings of the American Mathematical Society, vol. 118, no. 3, pp. 813–817, 1993. 5 Y. G. Sun, “A note on Nasr’s and Wong’s papers,” Journal of Mathematical Analysis and Applications, vol. 286, no. 1, pp. 363–367, 2003. 6 R. P. Agarwal, D. R. Anderson, and A. Zafer, “Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities,” Computers and Mathematics with Applications, vol. 59, no. 2, pp. 977–993, 2010. 7 R. P. Agarwal and A. Zafer, “Oscillation criteria for second-order forced dynamic equations with mixed nonlinearities,” Advances in Difference Equations, vol. 2009, Article ID 938706, 20 pages, 2009. 8 D. R. Anderson, “Oscillation of second-order forced functional dynamic equations with oscillatory potentials,” Journal of Difference Equations and Applications, vol. 13, no. 5, pp. 407–421, 2007. 9 D. R. Anderson and A. Zafer, “Interval criteria for second-order super-half-linear functional dynamic equations with delay and advanced arguments,” to appear in Journal of Difference Equations and Applications . 10 A. F. Güvenilir and A. Zafer, “Second-order oscillation of forced functional differential equations with oscillatory potentials,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1395–1404, 2006. 11 M. Bohner and C. C. Tisdell, “Oscillation and nonoscillation of forced second order dynamic equations,” Pacific Journal of Mathematics, vol. 230, no. 1, pp. 59–71, 2007. 12 M. Bohner and S. H. Saker, “Oscillation of second order nonlinear dynamic equations on time scales,” The Rocky Mountain Journal of Mathematics, vol. 34, no. 4, pp. 1239–1254, 2004. Advances in Difference Equations 21 13 O. Došlý and S. Hilger, “A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 147–158, 2002. 14 L. Erbe, A. Peterson, and S. H. Saker, “Oscillation criteria for second-order nonlinear delay dynamic equations,” Journal of Mathematical Analysis and Applications, vol. 333, no. 1, pp. 505–522, 2007. 15 L. Erbe, T. S. Hassan, and A. Peterson, “Oscillation of second order neutral delay differential equations,” Advances in Dynamical Systems and Applications, vol. 3, no. 1, pp. 53–71, 2008. 16 M. Huang and W. Feng, “Oscillation for forced second-order nonlinear dynamic equations on time scales,” Electronic Journal of Differential Equations, no. 145, pp. 1–8, 2006. 17 Q. Kong, “Interval criteria for oscillation of second-order linear ordinary differential equations,” Journal of Mathematical Analysis and Applications, vol. 229, no. 1, pp. 258–270, 1999. 18 A. Del Medico and Q. Kong, “Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain,” Journal of Mathematical Analysis and Applications, vol. 294, no. 2, pp. 621–643, 2004. 19 A. Del Medico and Q. Kong, “New Kamenev-type oscillation criteria for second-order differential equations on a measure chain,” Computers & Mathematics with Applications, vol. 50, no. 8-9, pp. 1211– 1230, 2005. 20 P. Řehák, “On certain comparison theorems for half-linear dynamic equations on time scales,” Abstract and Applied Analysis, vol. 2004, no. 7, pp. 551–565, 2004. 21 Y. Şahiner, “Oscillation of second-order delay differential equations on time scales,” Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5–7, pp. e1073–e1080, 2005. 22 S. H. Saker, “Oscillation of nonlinear dynamic equations on time scales,” Applied Mathematics and Computation, vol. 148, no. 1, pp. 81–91, 2004. 23 A. Zafer, “Interval oscillation criteria for second order super-half linear functional differential equations with delay and advanced arguments,” Mathematische Nachrichten, vol. 282, no. 9, pp. 1334– 1341, 2009. 24 Y. G. Sun and F. W. Meng, “Interval criteria for oscillation of second-order differential equations with mixed nonlinearities,” Applied Mathematics and Computation, vol. 198, no. 1, pp. 375–381, 2008. 25 Y. G. Sun and J. S. W. Wong, “Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 549–560, 2007. 26 E. F. Beckenbach and R. Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, 30, Springer, Berlin, Germany, 1961.