Skip to main content
Biodegradable amphiphilic multi-block poly(ether-ester-urethane)s were prepared by one-step bulk polycondensation of PEG and PCL macro-diols and HMDI. For biomedical or environmental applications of the proposed materials, one of the... more
Biodegradable amphiphilic multi-block poly(ether-ester-urethane)s were prepared by one-step bulk polycondensation of PEG and PCL macro-diols and HMDI. For biomedical or environmental applications of the proposed materials, one of the critical steps is the study of the degradation characteristics under physiological or environmental conditions. Different ratios of PEG/PCL and molecular weights of the resultant copolymers allowed for tuning their hydrophilicity, as
... Elvira De Giglio*; Stefania Cometa; Luigia Sabbatini; Pier Giorgio Zambonin ... è stato possibile formulare uno studio preliminare per la comprensione delle modalità e delle velocità di rilascio che sono stati interpretati mediante... more
... Elvira De Giglio*; Stefania Cometa; Luigia Sabbatini; Pier Giorgio Zambonin ... è stato possibile formulare uno studio preliminare per la comprensione delle modalità e delle velocità di rilascio che sono stati interpretati mediante l'uso dell'equazione di Rigter e Peppas [7]. I risultati ...
Research Interests:
Biodegradable amphiphilic multi-block poly(ether-ester-urethane)s were prepared by one-step bulk polycondensation of PEG and PCL macro-diols and HMDI. For biomedical or environmental applications of the proposed materials, one of the... more
Biodegradable amphiphilic multi-block poly(ether-ester-urethane)s were prepared by one-step bulk polycondensation of PEG and PCL macro-diols and HMDI. For biomedical or environmental applications of the proposed materials, one of the critical steps is the study of the degradation characteristics under physiological or environmental conditions. Different ratios of PEG/PCL and molecular weights of the resultant copolymers allowed for tuning their hydrophilicity, as
Research Interests:
Research Interests:
Research Interests:
Nafion/silicon oxide (SiO2)/phosphotungstic acid (PWA) and Nafion/silicon oxide composite membranes were studied for the H2/O2 proton exchange membrane fuel cells (PEMFCs) operated above 100°C. The composite membranes were prepared by the... more
Nafion/silicon oxide (SiO2)/phosphotungstic acid (PWA) and Nafion/silicon oxide composite membranes were studied for the H2/O2 proton exchange membrane fuel cells (PEMFCs) operated above 100°C. The composite membranes were prepared by the recasting procedure, using Nafion solution mixed with SiO2 and PWA/SiO2 mixtures. The physico-chemical properties of these recast composite membranes were studied by means of scanning electron microscopy (SEM), X-ray
Microbial colonization and biofilm formation on implanted devices represent an important complication in orthopaedic and dental surgery and may result in implant failure. Controlled release of antibacterial agents directly at the implant... more
Microbial colonization and biofilm formation on implanted devices represent an important complication in orthopaedic and dental surgery and may result in implant failure. Controlled release of antibacterial agents directly at the implant site may represent an effective approach to treat these chronic complications. Resistance to conventional antibiotics by pathogenic bacteria has emerged in recent years as a major problem of public health. In order to overcome this problem, non-conventional antimicrobial agents have been under investigation. In this study, polyacrylate-based hydrogel thin coatings have been electrosynthesised on titanium substrates starting from poly(ethylene glycol diacrylate)-co-acrylic acid. Silver nanoparticles (AgNPs) with a narrow size distribution have been synthesized using a "green" procedure and immobilized on Ti implant surfaces exploiting hydrogel coatings' swelling capabilities. The coatings have been characterized by XPS and SEM/EDX, while their silver release performances have been monitored by ICP-MS. The antibacterial activity of these AgNP-modified hydrogel coatings was tested evaluating in vitro inhibition growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, among the most common pathogens in orthopaedic infections. Moreover, a preliminary investigation of the biocompatibility of silver-loaded coatings versus MG63 human osteoblast-like cells has been performed. An important point of strength of this paper, in fact, is the concern about the effect of silver species on the surrounding cell system in implanted medical devices. Silver ion release has been properly tuned in order to assure antibacterial activity while preserving osteoblasts' response at the implant interface.
The protection of metal orthopedic implants against corrosion is a crucial medical problem. It was found that electrochemical polymerization of thin, passive poly(acrylic acid) (PAA) films on titanium and TiAlV substrates provides good... more
The protection of metal orthopedic implants against corrosion is a crucial medical problem. It was found that electrochemical polymerization of thin, passive poly(acrylic acid) (PAA) films on titanium and TiAlV substrates provides good anti-corrosion properties. In this work, an investigation of anti-corrosion features was carried out to clarify the hypothesis of the presence of an electrostatic contribution to the performance
... Domingos a b * , F. Chiellini b , S. Cometa b , E. De Giglio c , E. Grillo-Fernandes b , P. B??rtolo a & E. Chiellini b pages 65-73. ... Mota , C. , Almeida , HA , Mateus , A. , B??rtolo , PJ , Ferreira ,... more
... Domingos a b * , F. Chiellini b , S. Cometa b , E. De Giglio c , E. Grillo-Fernandes b , P. B??rtolo a & E. Chiellini b pages 65-73. ... Mota , C. , Almeida , HA , Mateus , A. , B??rtolo , PJ , Ferreira , N. , Domingos , M. and Alves , NM 2010 . Portuguese Patent 104247 . View all references). ...
A novel ciprofloxacin loaded chitosan nanoparticle-based coating onto titanium substrates has been developed and characterized to obtain an orthopaedic implant surface able to in situ release the antibiotic for the prevention of... more
A novel ciprofloxacin loaded chitosan nanoparticle-based coating onto titanium substrates has been developed and characterized to obtain an orthopaedic implant surface able to in situ release the antibiotic for the prevention of post-operative infections. Ciprofloxacin loaded chitosan nanoparticles were obtained using the combination of sulfobutyl ether-beta-cyclodextrin and gamma-cyclodextrin. The resulting nanoparticulate system was characterized by TEM, HPLC and XPS. Particle size was in the range 426-552 nm and zeta potential values were around +30 mV. This antibacterial coating was able to in vitro inhibit two nosocomial Staphylococcus aureus strains growth, with a reduction of about 20 times compared to controls. No impairment in MG63 osteoblast-like cells viability, adhesion and gene expression were detected at 48 h, 7 and 14 days of culture. Overall, the investigated coating represents a promising candidate for the development of a new antibiotic carrier for titanium implants.
Diphenyl carbonate (DPC) plays a key role in phosgene-free carbonylation processes. It can be produced by transesterification of dimethyl carbonate (DMC) with phenol in the presence of catalysts. Methyl phenyl carbonate (MPC) is first... more
Diphenyl carbonate (DPC) plays a key role in phosgene-free carbonylation processes. It can be produced by transesterification of dimethyl carbonate (DMC) with phenol in the presence of catalysts. Methyl phenyl carbonate (MPC) is first produced that is then converted into DPC by either disproportionation or further transesterification with phenol. Cerium-based bimetallic oxides (with the heterometal being niobium, iron, palladium, or aluminum) are used as catalysts in the transesterification of DMC to synthesize MPC. The catalytic activity is affected by the type and concentration of the heterometal. XPS, IR and elementary analyses are employed to characterize the new catalysts. Differently from pure oxides, the mixed oxides produce a significant increase of the conversion and selectivity towards MPC.
Osteointegration of titanium implants could be significantly improved by coatings capable of promoting both mineralization and angiogenesis. In the present study, a copolymeric hydrogel coating, poly-2-hydroxyethyl... more
Osteointegration of titanium implants could be significantly improved by coatings capable of promoting both mineralization and angiogenesis. In the present study, a copolymeric hydrogel coating, poly-2-hydroxyethyl methacrylate-2-methacryloyloxyethyl phosphate (P(HEMA-MOEP)), devised to enhance calcification in body fluids and to entrap and release growth factors, was electrosynthesized for the first time on titanium substrates and compared to poly-2-hydroxyethyl methacrylate (PHEMA), used as a blank reference. Polymers exhibiting negatively charged groups, such as P(HEMA-MOEP), help to enhance implant calcification. The electrosynthesized coatings were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. MG-63 human osteoblast-like cell behaviour on the coated specimens was investigated by scanning electron microscopy, MTT viability test and osteocalcin mRNA detection. The ability of negatively charged phosphate groups to promote hydroxyapatite-like calcium phosphate deposition on the implants was explored by immersing them in simulated body fluid. Similar biological responses were observed in both coated specimens, while calcium-phosphorus globules were detected only on P(HEMA-MOEP) surfaces pretreated with alkaline solution. Testing of the ability of P(HEMA-MOEP) hydrogels to entrap and release human recombinant vascular endothelial growth factor, to tackle the problem of insufficient oxygen and nutrient delivery, suggested that P(HEMA-MOEP)-coated titanium prostheses could represent a multifunctional material suitable for bone restoration applications.