[go: up one dir, main page]

Li et al., 1999 - Google Patents

MFMOS Capacitor with Pb5Ge3O11 Thin Film for One Transistor Ferroelectric Memory Applications

Li et al., 1999

Document ID
17788793186784573416
Author
Li T
Hsu S
Lee J
Gao Y
Engelhard M
Publication year
Publication venue
MRS Online Proceedings Library (OPL)

External Links

Snippet

A ferroelectric Pb5Ge3O11 thin film with a low dielectric constant is proposed for application in one transistor ferroelectric memories. A strong depolarization voltage on the ferroelectric capacitor with MIFSFET structures diminishes the remanent polarization significantly and …
Continue reading at www.cambridge.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes; Multistep manufacturing processes therefor
    • H01L29/43Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/112Read-only memory structures [ROM] and multistep manufacturing processes therefor
    • H01L27/115Electrically programmable read-only memories; Multistep manufacturing processes therefor
    • H01L27/11502Electrically programmable read-only memories; Multistep manufacturing processes therefor with ferroelectric memory capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Similar Documents

Publication Publication Date Title
Chin et al. Stack gate PZT/Al 2 O 3 one transistor ferroelectric memory
EP1049147A2 (en) Epitaxially grown lead germanate film
US6716645B2 (en) MFMOS capacitors with high dielectric constant materials
Li et al. Ferroelectric Pb5Ge3O11 MFMOS capacitor for one transistor memory applications
US6475813B1 (en) MOCVD and annealing processes for C-axis oriented ferroelectric thin films
Li et al. MFMOS Capacitor with Pb5Ge3O11 Thin Film for One Transistor Ferroelectric Memory Applications
Li et al. The ferroelectric properties of c-axis oriented Pb 5 Ge 3 O 11 thin films prepared by metalorganic chemical vapor deposition
ISHITANI et al. Trends in capacitor dielectrics for DRAMs
Tokumitsu et al. Characterization of metal-ferroelectric-(metal-) insulator-semiconductor (MF (M) IS) structures using (Pb, La)(Zr, Ti) O3 and Y2O3 films
Noda et al. A significant improvement in memory retention of metal-ferroelectric-insulator-semiconductor structure for one transistor-type ferroelectric memory by rapid thermal annealing
KR100363393B1 (en) Ndro-fram memory cell device and the fabrication method there of
Fujisaki et al. Long retention performance of a MFIS device achieved by introducing high-k Al2O3/Si3N4/Si buffer layer
Kim et al. Ferroelectric Sr2 (Nb, Ta) 2O7 Thin Films Prepared by Chemical Solution Deposition
Kang et al. Data retention characteristics of metal–ferroelectric-metal–insulator–semiconductor diodes with SrBi2Ta2O9 ferroelectrics and Al2O3 buffer layers
Lee et al. Characteristics of Pt/Bi 3.25 La 0.75 Ti 3 O 12/ZrO 2/Si structures using ZrO 2 as buffer layers for ferroelectric-gate field-effect transistors
Li et al. The ferroelectric properties of Pb/sub 5/Ge/sub 3/O/sub 11/thin films made by MOCVD and RTP techniques
EP1195799A1 (en) High pressure process for the formation of crystallized ceramic films at low temperatures
Li et al. Comparison of MFMOS and MFOS one transistor memory devices
Li et al. Ferroelectric C-Axis Oriented Pb5Ge3O11 Thin Films for One Transistor Memory Application
Sudhama et al. Thickness-scaling of sputtered PZT films in the 200 nm range for memory applications
Li et al. Selective Deposition of C-axis Oriented Pb5Ge3O11 on the Patterned High k Gate Oxide by MOCVD Processes
Lee et al. Preparation of (Pb 0.88 La 0.12) TiO 3 thin films for dynamic random access memory by low pressure-metalorganic chemical vapor deposition
Li et al. The Properties of Mfmos and MFOS Capacitors with High K Gate Oxides for one Transistor Memory Applications
Kijima et al. Novel si-substituted ferroelectric films
Krishnamoorthi et al. Structural and Electrical Characteristics of Metal‐Ferroelectric Pb1. 1 (Zr0. 40Ti0. 60) O3‐Insulator (ZnO)‐Silicon Capacitors for Nonvolatile Applications