[go: up one dir, main page]

WO2024257174A1 - Method for manufacturing concrete test piece - Google Patents

Method for manufacturing concrete test piece Download PDF

Info

Publication number
WO2024257174A1
WO2024257174A1 PCT/JP2023/021758 JP2023021758W WO2024257174A1 WO 2024257174 A1 WO2024257174 A1 WO 2024257174A1 JP 2023021758 W JP2023021758 W JP 2023021758W WO 2024257174 A1 WO2024257174 A1 WO 2024257174A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
concrete specimen
crack
exposed surface
specimen
Prior art date
Application number
PCT/JP2023/021758
Other languages
French (fr)
Japanese (ja)
Inventor
憲宏 藤本
貴志 三輪
香織 根岸
真奈美 鳥本
聡 杉山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/021758 priority Critical patent/WO2024257174A1/en
Publication of WO2024257174A1 publication Critical patent/WO2024257174A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • This disclosure relates to a method for manufacturing a concrete specimen.
  • the reinforcing bars inside the concrete will not corrode as long as the concrete remains alkaline, but if the concrete becomes neutral or salt penetrates into the concrete, the reinforcing bars will begin to corrode. If cracks appear in the concrete, the concrete becomes more susceptible to neutralization and salt penetration. Therefore, in order to maintain and manage concrete structures, it is important to understand the deterioration of the concrete structure over time when cracks appear in the concrete.
  • Non-Patent Document 1 describes concrete specimens in which cracks of 0.1 mm and 0.3 mm width were introduced into prestressed concrete cut from utility poles.
  • Non-Patent Document 1 when cracks are introduced into a concrete specimen using a three-point bending test jig, there is a problem in that numerous cracks often occur, making it difficult to control the crack width to 0.3 mm or more.
  • This disclosure has been made in consideration of the above, and aims to provide a concrete specimen with a larger crack width.
  • both ends of the exposed surface of the concrete specimen where the crack is to be introduced are reinforced, leaving the central portion of the exposed surface, and bending stress is applied to the concrete specimen with both ends reinforced to introduce a single crack in the central portion of the exposed surface.
  • the crack width is controlled by applying loads to both ends of the concrete specimen using the opposite surface of the concrete specimen corresponding to the crack as a fulcrum.
  • This disclosure makes it possible to provide concrete specimens with larger crack widths.
  • FIG. 1 is a flow chart showing an example of a process flow of a method for manufacturing a concrete specimen.
  • FIG. 2 is a diagram showing an example of a concrete specimen having reinforced both ends.
  • FIG. 3 is a diagram showing an example of a concrete specimen having a crack.
  • FIG. 4 is a side view showing an example of a concrete specimen fixed to a fixing jig.
  • FIG. 5 is a top view showing an example of a concrete specimen fixed to a fixing jig.
  • step S1 the worker reinforces both ends of the concrete specimen 100.
  • the concrete specimen 100 is a piece of concrete cut out from a cylindrical prestressed concrete structure (e.g., a utility pole).
  • the length of the long side of the concrete specimen 100 is preferably 150 mm to 600 mm.
  • the span when bending stress is applied is 3 times the thickness of the specimen ⁇ 20% or more.
  • Figure 2 shows an example of a concrete specimen 100 with reinforced ends.
  • both ends of the exposed surface 120 (the surface where cracks will occur) of the concrete specimen 100 are reinforced with epoxy resin 130, leaving the central portion of the concrete specimen 100.
  • the exposed surface 120 that is not reinforced with epoxy resin 130 is the part where cracks will occur on the surface. Since it is necessary to experimentally evaluate the effects of the surface other than cracks, it is recommended to reinforce both ends of the exposed surface 120 of the concrete specimen 100, leaving at least 100 mm.
  • the surface other than the exposed surface is covered with epoxy resin paint, but in this embodiment, both ends of the exposed surface 120 are covered with epoxy resin 130, which is different.
  • step S2 the worker applies a bending stress to the concrete specimen 100 with both ends reinforced, causing a crack in the concrete specimen 100.
  • the stress is released before multiple cracks appear.
  • Bending stress may be applied to the concrete specimen 100 using a bending tester capable of precise load control, or bending stress may be applied to the concrete specimen 100 using a fixed jig, which will be described later.
  • the occurrence of a crack may be confirmed visually, or by detecting acoustic emissions. If acoustic emissions are detected, bending stress can be reliably released before multiple cracks appear.
  • Figure 3 shows an example of a concrete specimen 100 with a crack 110.
  • the concrete specimen 100 in Figure 3 has only one crack on the exposed surface 120 that is not reinforced with epoxy resin 130. By reinforcing both ends of the exposed surface 120 of the concrete specimen 100 with epoxy resin 130, the location of the crack and the number of cracks can be easily controlled.
  • step S3 the worker fixes the concrete specimen with the cracks introduced to the fixture.
  • Figures 3 and 4 show the concrete specimen 100 fixed to the fixing jig 30.
  • Figure 3 is a side view
  • Figure 4 is a top view.
  • the worker places the concrete specimen 100 on the base 31 with the fulcrum 32 against the back side of the crack 110, and sandwiches both ends of the long side of the concrete specimen 100 between the base 31 and the metal plate 33.
  • the base 31 and the metal plate 33 are connected with bolts 34.
  • the fixing jig 30 is not limited to the one shown in the figure, and may have any structure that can apply a load to both ends of the concrete specimen 100 and fix it.
  • step S4 the worker uses the center of the concrete specimen 100 as a fulcrum and applies a load to both ends of the concrete specimen 100 until the crack 110 reaches the desired crack width.
  • the bolts 34 are tightened and a load is applied to both ends of the concrete specimen 100 until the crack reaches the desired crack width.
  • both ends of the exposed surface 120 of the concrete specimen 100 in which a crack is to be introduced are reinforced, leaving the central portion of the exposed surface, and bending stress is applied to the concrete specimen 100 with both ends reinforced to introduce a single crack 110 in the central portion of the exposed surface 120.
  • the opposite surface of the concrete specimen 100 corresponding to the crack 110 is used as a fulcrum 32, and a load is applied to both ends of the concrete specimen 100 to control the crack width. This makes it possible to provide a concrete specimen with a larger crack width.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

This method involves: reinforcing both end parts of an exposed surface 120 of a concrete test piece 100, to which a crack is to be introduced, while leaving the central part of the exposed surface; introducing one crack 110 into the central part of the exposed surface 120 by applying bending stress to the concrete test piece 100 having said both end parts reinforced; and controlling the crack width by applying loads onto said both end parts of the concrete test piece 100 while setting a surface of the concrete test piece 100 oppositely corresponding to the crack 110 as a fulcrum 32.

Description

コンクリート供試体の製造方法Manufacturing method of concrete specimen

 本開示は、コンクリート供試体の製造方法に関する。 This disclosure relates to a method for manufacturing a concrete specimen.

 コンクリート構造物は、コンクリートのアルカリ性が維持されていればコンクリート内部の鉄筋は腐食しないが、コンクリートが中性化したり、コンクリートに塩分が浸透したりすると鉄筋が腐食し始める。コンクリートにひびが入ると、コンクリートの中性化、塩分浸透が起こりやすくなる。そのため、コンクリート構造物を維持管理する上では、コンクリートにひびが入ったときのコンクリート構造物の経年劣化を把握することが重要である。 In concrete structures, the reinforcing bars inside the concrete will not corrode as long as the concrete remains alkaline, but if the concrete becomes neutral or salt penetrates into the concrete, the reinforcing bars will begin to corrode. If cracks appear in the concrete, the concrete becomes more susceptible to neutralization and salt penetration. Therefore, in order to maintain and manage concrete structures, it is important to understand the deterioration of the concrete structure over time when cracks appear in the concrete.

 コンクリート構造物の経年劣化を評価するため、予めひびを入れ、ひび幅を制御したコンクリート供試体を製造する。非特許文献1には、電柱から切り出したプレストレストコンクリートに幅0.1 mmおよび0.3 mmのひびを導入したコンクリート供試体が記載されている。 In order to evaluate the deterioration of concrete structures over time, concrete specimens are manufactured with cracks introduced in advance and the width of the cracks controlled. Non-Patent Document 1 describes concrete specimens in which cracks of 0.1 mm and 0.3 mm width were introduced into prestressed concrete cut from utility poles.

大谷俊介、若林徹、市場幹之、「電柱内部の鉄筋の腐食モニタリングの検討」、第64回材料と環境検討会(2017)、B-102Shunsuke Otani, Toru Wakabayashi, and Mikio Ichiba, "Study on corrosion monitoring of rebars inside utility poles," 64th Materials and Environment Review Meeting (2017), B-102 「コンクリートの曲げ強度試験方法 JIS A 1106:2018」、日本工業規格"Test method for bending strength of concrete JIS A 1106:2018", Japan Industrial Standards 「建築補修用注入エポキシ樹脂 JIS A 6024:2008」、日本工業規格"Injectable epoxy resin for architectural repair JIS A 6024:2008", Japan Industrial Standards

 非特許文献1と同様に、3点曲げ試験治具でコンクリート供試体にひびを導入する場合、無数にひびが生じることが多く、ひび幅を0.3mm以上に制御することが難しいという問題があった。 As with Non-Patent Document 1, when cracks are introduced into a concrete specimen using a three-point bending test jig, there is a problem in that numerous cracks often occur, making it difficult to control the crack width to 0.3 mm or more.

 本開示は、上記に鑑みてなされたものであり、ひび幅のより大きいコンクリート供試体を提供することを目的とする。 This disclosure has been made in consideration of the above, and aims to provide a concrete specimen with a larger crack width.

 本開示の一態様のコンクリート供試体の製造方法は、ひびを導入するコンクリート供試体の暴露面の中央部分を残して暴露面の両端部を補強し、両端部を補強した前記コンクリート供試体に曲げ応力を負荷して前記暴露面の中央部分に1本のひびを導入し、前記コンクリート供試体の前記ひびに対応する反対側の面を支点として前記コンクリート供試体の両端部に荷重を負荷してひび幅を制御する。 In one embodiment of the method for manufacturing a concrete specimen disclosed herein, both ends of the exposed surface of the concrete specimen where the crack is to be introduced are reinforced, leaving the central portion of the exposed surface, and bending stress is applied to the concrete specimen with both ends reinforced to introduce a single crack in the central portion of the exposed surface. The crack width is controlled by applying loads to both ends of the concrete specimen using the opposite surface of the concrete specimen corresponding to the crack as a fulcrum.

 本開示によれば、ひび幅のより大きいコンクリート供試体を提供できる。 This disclosure makes it possible to provide concrete specimens with larger crack widths.

図1は、コンクリート供試体の製造方法の処理の流れの一例を示すフローチャートである。FIG. 1 is a flow chart showing an example of a process flow of a method for manufacturing a concrete specimen. 図2は、両端部を補強したコンクリート供試体の一例を示す図である。FIG. 2 is a diagram showing an example of a concrete specimen having reinforced both ends. 図3は、ひびを入れたコンクリート供試体の一例を示す図である。FIG. 3 is a diagram showing an example of a concrete specimen having a crack. 図4は、固定治具に固定したコンクリート供試体の一例を示す側面図である。FIG. 4 is a side view showing an example of a concrete specimen fixed to a fixing jig. 図5は、固定治具に固定したコンクリート供試体の一例を示す上面図である。FIG. 5 is a top view showing an example of a concrete specimen fixed to a fixing jig.

 図1を参照し、本実施形態のコンクリート供試体の製造方法の一例について説明する。 With reference to Figure 1, an example of a method for manufacturing a concrete specimen according to this embodiment will be described.

 ステップS1にて、作業者は、コンクリート供試体100の両端部を補強する。 In step S1, the worker reinforces both ends of the concrete specimen 100.

 コンクリート供試体100は、筒状のプレストレスコンクリート構造物(例えば電柱)から切り出したコンクリート片である。コンクリート供試体100の長辺方向の長さは150mmから600mmであることが望ましい。非特許文献2に記載のコンクリートの曲げ強度試験方法の規格を満たすように、曲げ応力を負荷するときのスパンが供試体の厚みの3倍±20%以上をとれるようにするとよい。電柱から切り出したコンクリート片を用いる場合、コンクリート供試体100の短辺方向は湾曲し、コンクリート供試体100内に鉄筋が存在する。 The concrete specimen 100 is a piece of concrete cut out from a cylindrical prestressed concrete structure (e.g., a utility pole). The length of the long side of the concrete specimen 100 is preferably 150 mm to 600 mm. To satisfy the standards of the bending strength test method for concrete described in Non-Patent Document 2, it is preferable that the span when bending stress is applied is 3 times the thickness of the specimen ±20% or more. When using a concrete piece cut out from a utility pole, the short side of the concrete specimen 100 is curved, and reinforcing bars are present inside the concrete specimen 100.

 図2に、両端部を補強したコンクリート供試体100の一例を示す。図2の例では、コンクリート供試体100の中央部分を残して、暴露面120(ひびを生成する面)の両端部をエポキシ樹脂130で補強した。エポキシ樹脂130で補強していない暴露面120は表面にひびを生じさせる部分である。ひび以外の表面からの影響も実験的に評価する必要があるため、コンクリート供試体100の暴露面120を最低100mm残して両端部を補強するとよい。非特許文献1は暴露面以外をエポキシ樹脂塗料により被覆したが、本実施形態では、暴露面120の両端部をエポキシ樹脂130で被覆した点で異なる。 Figure 2 shows an example of a concrete specimen 100 with reinforced ends. In the example of Figure 2, both ends of the exposed surface 120 (the surface where cracks will occur) of the concrete specimen 100 are reinforced with epoxy resin 130, leaving the central portion of the concrete specimen 100. The exposed surface 120 that is not reinforced with epoxy resin 130 is the part where cracks will occur on the surface. Since it is necessary to experimentally evaluate the effects of the surface other than cracks, it is recommended to reinforce both ends of the exposed surface 120 of the concrete specimen 100, leaving at least 100 mm. In Non-Patent Document 1, the surface other than the exposed surface is covered with epoxy resin paint, but in this embodiment, both ends of the exposed surface 120 are covered with epoxy resin 130, which is different.

 コンクリートの曲げ試験では中心部以外のところからも容易にひびが入ることから、コンクリートのひびはコンクリート表面のわずかな欠陥を起点として生じると考えられる。したがって、コンクリートの補強には、コンクリート表面を隙間なく補強する方法を採用したほうがよい。具体的には、テープのようなものでコンクリート表面を補強するのではなく、樹脂などコンクリート表面に浸透し密着して補強できるものであることが望ましい。コンクリートへの浸透性の高い樹脂、例えば非特許文献3に記載の低粘度(粘度100~1000mPa・s)に分類されるエポキシ樹脂を用いればよい。エポキシ樹脂に限らずコンクリート供試体100を補強できる樹脂であればよい。樹脂を厚く塗るほど補強効果が大きくなる。コンクリート表面のわずかな欠陥が残っているとひびの起点になりうるため、塗り残しがないように塗料の膜厚は30μm以上であることが望ましい。 In bending tests, concrete cracks can easily appear in places other than the center, so it is believed that cracks in concrete originate from small defects on the concrete surface. Therefore, to reinforce concrete, it is better to adopt a method of reinforcing the concrete surface without any gaps. Specifically, rather than reinforcing the concrete surface with something like tape, it is preferable to use something that can penetrate the concrete surface and adhere to it for reinforcement. It is sufficient to use a resin that has high permeability to concrete, such as an epoxy resin classified as having a low viscosity (viscosity 100 to 1000 mPa·s) as described in Non-Patent Document 3. It is not limited to epoxy resin, but any resin that can reinforce the concrete specimen 100 will do. The thicker the resin is applied, the greater the reinforcing effect. If even a small defect remains on the concrete surface, it can become the starting point of a crack, so it is desirable to have a paint film thickness of 30 μm or more so that no part is left unpainted.

 エポキシ樹脂の硬化後、ステップS2にて、作業者は、両端部を補強したコンクリート供試体100に曲げ応力を負荷し、コンクリート供試体100にひびを入れる。このとき、ひびが複数本入る前に応力を除荷する。つまり、ひびが1本入るまでコンクリート供試体100に曲げ応力を負荷する。精密な荷重制御が可能な曲げ試験機を用いてコンクリート供試体100に曲げ応力を負荷してもよいし、後述の固定治具を用いてコンクリート供試体100に曲げ応力を負荷してもよい。目視によりひびが入ったことを確認してもよいし、アコースティック・エミッションを検出してひびが入ったことを確認してもよい。アコースティック・エミッションを検出すれば、ひびが複数本入る前に確実に曲げ応力を除荷できる。 After the epoxy resin has hardened, in step S2, the worker applies a bending stress to the concrete specimen 100 with both ends reinforced, causing a crack in the concrete specimen 100. At this time, the stress is released before multiple cracks appear. In other words, bending stress is applied to the concrete specimen 100 until a single crack appears. Bending stress may be applied to the concrete specimen 100 using a bending tester capable of precise load control, or bending stress may be applied to the concrete specimen 100 using a fixed jig, which will be described later. The occurrence of a crack may be confirmed visually, or by detecting acoustic emissions. If acoustic emissions are detected, bending stress can be reliably released before multiple cracks appear.

 図3に、ひび110を入れたコンクリート供試体100の一例を示す。図3のコンクリート供試体100は、エポキシ樹脂130で補強していない暴露面120にひびが1本のみ入っている。コンクリート供試体100の暴露面120の両端部をエポキシ樹脂130で補強することで、ひびの入る位置およびひびの入る本数を容易に制御できる。 Figure 3 shows an example of a concrete specimen 100 with a crack 110. The concrete specimen 100 in Figure 3 has only one crack on the exposed surface 120 that is not reinforced with epoxy resin 130. By reinforcing both ends of the exposed surface 120 of the concrete specimen 100 with epoxy resin 130, the location of the crack and the number of cracks can be easily controlled.

 ステップS3にて、作業者は、ひびを導入したコンクリート供試体を固定治具に固定する。 In step S3, the worker fixes the concrete specimen with the cracks introduced to the fixture.

 図3および図4に、固定治具30にコンクリート供試体100を固定した様子を示す。図3は側面図であり、図4は上面図である。作業者は、ひび110の裏側に支点32を当ててコンクリート供試体100を土台31上に配置し、コンクリート供試体100の長辺方向の両端を土台31と金属板33で挟む。土台31と金属板33をボルト34で連結する。図示したものに限らず、固定治具30は、コンクリート供試体100の両端部に荷重を負荷し、固定できる構造であればよい。 Figures 3 and 4 show the concrete specimen 100 fixed to the fixing jig 30. Figure 3 is a side view, and Figure 4 is a top view. The worker places the concrete specimen 100 on the base 31 with the fulcrum 32 against the back side of the crack 110, and sandwiches both ends of the long side of the concrete specimen 100 between the base 31 and the metal plate 33. The base 31 and the metal plate 33 are connected with bolts 34. The fixing jig 30 is not limited to the one shown in the figure, and may have any structure that can apply a load to both ends of the concrete specimen 100 and fix it.

 ステップS4にて、作業者は、コンクリート供試体100の中心部分を支点とし、ひび110が所望のひび幅になるまでコンクリート供試体100の両端部に荷重を負荷する。図3の固定治具30を用いる場合、所望のひび幅になるまでボルト34を締めてコンクリート供試体100の両端部に荷重を負荷する。 In step S4, the worker uses the center of the concrete specimen 100 as a fulcrum and applies a load to both ends of the concrete specimen 100 until the crack 110 reaches the desired crack width. When using the fixing jig 30 in FIG. 3, the bolts 34 are tightened and a load is applied to both ends of the concrete specimen 100 until the crack reaches the desired crack width.

 以上説明したように、ひびを導入するコンクリート供試体100の暴露面120の中央部分を残して暴露面の両端部を補強し、両端部を補強したコンクリート供試体100に曲げ応力を負荷して暴露面120の中央部分に1本のひび110を導入し、コンクリート供試体100のひび110に対応する反対側の面を支点32としてコンクリート供試体100の両端部に荷重を負荷してひび幅を制御する。これにより、ひび幅のより大きいコンクリート供試体を提供できる。 As explained above, both ends of the exposed surface 120 of the concrete specimen 100 in which a crack is to be introduced are reinforced, leaving the central portion of the exposed surface, and bending stress is applied to the concrete specimen 100 with both ends reinforced to introduce a single crack 110 in the central portion of the exposed surface 120. The opposite surface of the concrete specimen 100 corresponding to the crack 110 is used as a fulcrum 32, and a load is applied to both ends of the concrete specimen 100 to control the crack width. This makes it possible to provide a concrete specimen with a larger crack width.

 100 コンクリート供試体
 110 ひび
 120 暴露面
 130 エポキシ樹脂
 30 固定治具
 31 土台
 32 支点
 33 金属板
 34 ボルト
REFERENCE SIGNS LIST 100 Concrete specimen 110 Crack 120 Exposed surface 130 Epoxy resin 30 Fixing jig 31 Base 32 Support 33 Metal plate 34 Bolt

Claims (3)

 ひびを導入するコンクリート供試体の暴露面の中央部分を残して暴露面の両端部を補強し、
 両端部を補強した前記コンクリート供試体に曲げ応力を負荷して前記暴露面の中央部分に1本のひびを導入し、
 前記コンクリート供試体の前記ひびに対応する反対側の面を支点として前記コンクリート供試体の両端部に荷重を負荷してひび幅を制御する
 コンクリート供試体の製造方法。
The exposed ends of the concrete specimen are reinforced, leaving the central portion of the exposed surface in which the cracks are to be introduced.
A bending stress is applied to the concrete specimen having reinforced both ends to introduce a single crack in the central portion of the exposed surface;
A method for manufacturing a concrete specimen, comprising: applying loads to both ends of the concrete specimen using the opposite surface of the concrete specimen corresponding to the crack as a fulcrum, thereby controlling the crack width.
 請求項1に記載のコンクリート供試体の製造方法であって、
 前記暴露面の両端部に樹脂塗料を塗布して補強する
 コンクリート供試体の製造方法。
A method for producing a concrete specimen according to claim 1,
A method for manufacturing a concrete specimen, comprising the steps of: applying a resin coating to both ends of the exposed surface to reinforce the surface.
 請求項2に記載のコンクリート供試体の製造方法であって、
 前記暴露面の両端部にエポキシ樹脂を塗布して補強する
 コンクリート供試体の製造方法。
A method for producing a concrete specimen according to claim 2,
A method for manufacturing a concrete specimen, comprising the steps of: applying epoxy resin to both ends of the exposed surface to reinforce it.
PCT/JP2023/021758 2023-06-12 2023-06-12 Method for manufacturing concrete test piece WO2024257174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/021758 WO2024257174A1 (en) 2023-06-12 2023-06-12 Method for manufacturing concrete test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/021758 WO2024257174A1 (en) 2023-06-12 2023-06-12 Method for manufacturing concrete test piece

Publications (1)

Publication Number Publication Date
WO2024257174A1 true WO2024257174A1 (en) 2024-12-19

Family

ID=93851680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021758 WO2024257174A1 (en) 2023-06-12 2023-06-12 Method for manufacturing concrete test piece

Country Status (1)

Country Link
WO (1) WO2024257174A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160259A (en) * 1992-11-16 1994-06-07 Toyota Motor Corp Method for measuring cracks in ceramics
JP2016038243A (en) * 2014-08-06 2016-03-22 日本電信電話株式会社 Reinforced concrete specimen preparation method
JP2021170038A (en) * 2017-05-23 2021-10-28 東京電力ホールディングス株式会社 Evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160259A (en) * 1992-11-16 1994-06-07 Toyota Motor Corp Method for measuring cracks in ceramics
JP2016038243A (en) * 2014-08-06 2016-03-22 日本電信電話株式会社 Reinforced concrete specimen preparation method
JP2021170038A (en) * 2017-05-23 2021-10-28 東京電力ホールディングス株式会社 Evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns

Similar Documents

Publication Publication Date Title
Hass et al. Bending and pull-out tests on a novel screw type reinforcement for extrusion-based 3D printed concrete
Otero-Chans et al. Experimental analysis of glued-in steel plates used as shear connectors in Timber-Concrete-Composites
del Rey Castillo et al. Straight FRP anchors exhibiting fiber rupture failure mode
CN105625197B (en) A kind of anti-bend reinforced method of beams of concrete based on steel plate pre-stressed carbon fiber plate
CN110453930B (en) Prestressing device and reinforcement method of reinforcement bar near surface of reinforced concrete beam
Cuypers et al. Durability of glass fibre reinforced composites experimental methods and results
CA3005009C (en) System and method for embedding substrate in concrete structure
Casadei et al. Strengthening of impacted prestressed concrete bridge I-girder using prestressed near surface mounted C-FRP bars
WO2024257174A1 (en) Method for manufacturing concrete test piece
CN107165060B (en) Bridge prestressing force high strength wire rope bending resistance reinforcing apparatus
CN1816672A (en) cable bolt
Younis et al. Tensile characterization of textile reinforced mortar
US20220186759A1 (en) Fiber-Reinforced Polymer Anchors and Connectors For Repair and Strengthening of Structures Configured for Field Testing, and Assemblies for Field Testing the Same
WO2024257171A1 (en) Method for manufacturing concrete specimen
JP7471767B2 (en) Method for joining concrete members and joined concrete
Ciupack et al. Adhesive bonded joints in steel structures
US11174639B2 (en) Anchor block method for reanchoring live tendons
del Rey Castillo et al. Tensile strength of straight Frp anchors in Rc structures
Sangeetha et al. Flexural Strength of Steel-Concrete Composite Beams Under Two-Point Loading
JP5664000B2 (en) Method for improving reinforcement performance of floor slab and structure for improving reinforcement performance
Sharifi An Experimental Investigation on Uniaxial Tensile, Slip-Bond and Creep Behavior of Carbon Textile Reinforced Cementitious Composites (C-TRCC)
Ebead Studies on the strengthening of reinforced concrete structures using FRCM
Askouni et al. Mechanical Characterization of an Innovative Textile-Reinforced Mortar System Combined with Thermal Insulation for Application to Masonry Walls
Pushpakumara Vibration effect on extended rebar of columns due to external load
Mayco-nel et al. Post-Installed Reinforcement with the Application of Adhesives: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23941484

Country of ref document: EP

Kind code of ref document: A1