JP2021170038A - Evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns - Google Patents
Evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns Download PDFInfo
- Publication number
- JP2021170038A JP2021170038A JP2021125239A JP2021125239A JP2021170038A JP 2021170038 A JP2021170038 A JP 2021170038A JP 2021125239 A JP2021125239 A JP 2021125239A JP 2021125239 A JP2021125239 A JP 2021125239A JP 2021170038 A JP2021170038 A JP 2021170038A
- Authority
- JP
- Japan
- Prior art keywords
- specimen
- test piece
- crack
- concrete
- reinforcing bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
【課題】安価で簡易な評価試験が可能となる小型の簡易試験片による試験方法が確立され、また荷重負荷による亀裂幅をミクロン単位で精度よく制御可能にすることで、評価試験の効率を飛躍的に向上させることができるコンクリート柱亀裂に伴う鉄筋腐食の評価試験方法を提供する。【解決手段】本発明は、コンクリート柱から少なくとも1本の鉄筋を含むコンクリート片を供試体として切り出す切出工程S1と、切り出した供試体において、所定の亀裂を発生させる予定面以外の部分を封止材により封止する封止工程S2と、供試体を架台に設置し、封止材により封止した部分以外の面に亀裂を発生させる亀裂導入工程S3と、供試体の亀裂幅の観察を実施しつつ、供試体を所定期間暴露する暴露工程S4と、暴露後の供試体を解体し、コンクリート材の中性化の進展度及び鉄筋の腐食状況を確認する解体確認工程S5と、を有することを特徴とする。【選択図】図9PROBLEM TO BE SOLVED: To dramatically improve the efficiency of an evaluation test by establishing a test method using a small simple test piece which enables an inexpensive and simple evaluation test and making it possible to accurately control the crack width due to a load in micron units. Provided is an evaluation test method for reinforcing bar corrosion associated with a crack in a concrete column, which can be improved. According to the present invention, a cutting step S1 of cutting out a concrete piece containing at least one reinforcing bar from a concrete pillar as a specimen and a portion of the cut out specimen other than the planned surface on which a predetermined crack is generated are sealed. Observation of the sealing step S2 of sealing with a stopper, the crack introducing step S3 of installing the specimen on a pedestal and generating cracks on the surface other than the portion sealed with the sealing material, and observing the crack width of the specimen. While carrying out, it has an exposure step S4 for exposing the specimen for a predetermined period of time, and a disassembly confirmation step S5 for disassembling the specimen after exposure and confirming the progress of neutralization of the concrete material and the corrosion status of the reinforcing bar. It is characterized by that. [Selection diagram] FIG. 9
Description
本発明は、例えば配電設備等におけるコンクリート柱の亀裂(ひび割れ)の幅と鉄筋の腐食度との相関関係を解明するためのコンクリート柱の亀裂に伴う鉄筋腐食の評価試験方法に関するものである。 The present invention relates to an evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns for clarifying the correlation between the width of cracks (cracks) in concrete columns and the degree of corrosion of reinforcing bars in, for example, power distribution equipment.
一般的に、コンクリート柱に亀裂が発生して内部の鉄筋が露出すると、鉄筋は腐食し錆びてしまい、コンクリート柱自体の性能に悪影響を与えてしまう危険性がある。 Generally, when a crack occurs in a concrete column and the internal reinforcing bar is exposed, the reinforcing bar is corroded and rusted, and there is a risk that the performance of the concrete column itself is adversely affected.
そこで、コンクリート柱の亀裂(ひび割れ)の幅と鉄筋の腐食度との相関関係を解明するために、従来では、例えば、長さ14m等の実構造物であるコンクリート柱自体を、重機を使って建てて設計荷重を掛けて亀裂(ひび割れ)を導入させ、このまま所定期間暴露し、その後、解体することで、亀裂の幅と鉄筋の腐食状況の確認を行っていた。 Therefore, in order to elucidate the correlation between the width of cracks in concrete columns and the degree of corrosion of reinforcing bars, conventionally, for example, the concrete columns themselves, which are actual structures with a length of 14 m or the like, are used with heavy machinery. By building and applying a design load to introduce cracks (cracks), exposing them for a predetermined period of time, and then disassembling them, the width of the cracks and the corrosion status of the reinforcing bars were confirmed.
また、従来では、特許文献1に開示されているように、セラミックス、コンクリート、岩石等のような脆性材料の試験片に、予亀裂を導入し、且つ、その予亀裂の長さを制御できる予亀裂導入装置及び予亀裂導入方法が提案されている。
Further, conventionally, as disclosed in
即ち、この予亀裂導入装置は、試験片に引張力を負荷する引張力負荷手段と、試験片に引張力の作用方向と直交する方向に圧縮荷重を負荷することにより試験片に予亀裂を導入する予亀裂導入冶具とを有し、試験片に予亀裂を導入するに際しては、予亀裂導入手段により圧縮荷重を負荷した状態で、引張力負荷手段により試験片に引張力を負荷して予亀裂を導入するものとされ、引張力負荷手段は、倍力用ギヤ群が収容されたハウジングと、引張方向に進退する引張用ロッドを収容したロッドケースと、引張力創生用のハンドルとを有する引張力発生手段を備えたものを用いている。 That is, this pre-crack introduction device introduces a pre-crack into the test piece by applying a tensile force loading means for applying a tensile force to the test piece and a compressive load on the test piece in a direction orthogonal to the direction in which the tensile force acts. When introducing a pre-crack into a test piece, the test piece is pre-cracked by applying a tensile force to the test piece with a tensile force loading means while a compressive load is applied by the pre-crack introducing means. The tensile force loading means includes a housing containing a group of boosting gears, a rod case containing a pulling rod that moves forward and backward in the tensile direction, and a handle for creating tensile force. Those equipped with a tensile force generating means are used.
上記した様に、従来においては、重量性のあるコンクリート柱の実構造物自体をそのままの形で暴露して解体していることから、重機を使用する等の大掛かりな工事が要求され、しかも、作業を実施すると、費やされる時間と労力が極めて大きいものとなる。 As mentioned above, in the past, since the actual structure of heavy concrete columns was exposed and dismantled as it was, large-scale construction such as using heavy machinery was required, and moreover, Performing the work can be extremely time consuming and labor intensive.
このため、コンクリート柱の亀裂幅の進展状況と、これによる内部の鉄筋の腐食状況の関係を明らかにする簡易な試験方法の確立が、不可欠なものとなっていた。 For this reason, it has become indispensable to establish a simple test method for clarifying the relationship between the progress of the crack width of the concrete column and the corrosion state of the internal reinforcing bars.
また、上記した特許文献1の場合、予亀裂導入装置は、倍力用ギヤ群が収容されたハウジングと、引張方向に進退する引張用ロッドを収容したロッドケースと、引張力創生用のハンドルとを有する引張力負荷手段によるため、構成が非常に複雑で、高価なものとなる。
Further, in the case of
しかも、特許文献1の予亀裂導入装置は、小さな試験片が圧縮力受容部材やハンドル及びロッドケース等により囲まれ障害となるため、試験片をそのまま予亀裂導入冶具にセットした状態で暴露試験を行うことは困難である。
Moreover, in the pre-cracking introduction device of
また、上記した特許文献1の場合、予亀裂の長さや深さ等を制御することを発明の課題や目的としているが、亀裂幅を制御することに関しては何等開示されていない。
Further, in the case of
即ち、荷重負荷の掛かり方(作用面積や作用位置等)により、亀裂幅の発生の態様が様々異なるものとなる。従って、評価試験の効率を向上させるためには、亀裂幅をミクロン単位で精度よく制御できるようにすることが必要不可欠であった。 That is, the mode of occurrence of the crack width varies depending on how the load is applied (acting area, acting position, etc.). Therefore, in order to improve the efficiency of the evaluation test, it is indispensable to be able to control the crack width in micron units with high accuracy.
そこで、本発明は如上のような従来存した諸事情に鑑み創出されたもので、安価で簡易な評価試験が可能となる小型の簡易試験片による試験方法が確立され、また、荷重負荷による亀裂幅をミクロン単位で精度よく制御可能にすることで、評価試験の効率を飛躍的に向上させることができるコンクリート柱亀裂に伴う鉄筋腐食の評価試験方法を提供することを目的とする。 Therefore, the present invention was created in view of the above-mentioned conventional circumstances, and a test method using a small simple test piece that enables an inexpensive and simple evaluation test has been established, and a crack due to a load load has been established. It is an object of the present invention to provide an evaluation test method for reinforcing bar corrosion associated with a crack in a concrete column, which can dramatically improve the efficiency of the evaluation test by enabling the width to be controlled accurately in micron units.
本発明に係るコンクリート柱の亀裂に伴う鉄筋腐食の評価試験方法は、コンクリート柱から少なくとも1本の鉄筋を含むコンクリート片を供試体(試験片)として切り出す切出工程と、
切り出した供試体(試験片)において、所定の亀裂(ひび割れ)を発生させる予定面以外の部分を封止材により封止する封止工程と、
供試体(試験片)を架台に設置し、封止材により封止した部分以外の面に亀裂を発生させる亀裂導入工程と、
供試体(試験片)の亀裂幅の観察を実施しつつ、供試体(試験片)を所定期間暴露する暴露工程と、
暴露後の供試体(試験片)を解体し、コンクリート材の中性化の進展度及び鉄筋の腐食状況を確認する解体確認工程と、からなることで、上述した課題を解決した。
The evaluation test method for reinforcing bar corrosion associated with cracks in a concrete column according to the present invention includes a cutting step of cutting out a concrete piece containing at least one reinforcing bar from a concrete column as a specimen (test piece).
In the cut-out specimen (test piece), a sealing step of sealing a portion other than the planned surface on which a predetermined crack (crack) is to be generated with a sealing material, and a sealing step.
A crack introduction process in which the specimen (test piece) is installed on a pedestal and cracks are generated on the surface other than the part sealed with the sealing material.
An exposure process in which the specimen (test piece) is exposed for a predetermined period while observing the crack width of the specimen (test piece).
The above-mentioned problems were solved by disassembling the specimen (test piece) after exposure and confirming the progress of neutralization of the concrete material and the corrosion status of the reinforcing bars.
本発明に係るコンクリート柱亀裂に伴う鉄筋腐食の評価試験方法により、安価で簡易な評価試験が可能となる小型の簡易試験片による試験方法が確立され、評価試験の効率を飛躍的に向上させることができる。 The evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns according to the present invention establishes a test method using a small simple test piece that enables an inexpensive and simple evaluation test, and dramatically improves the efficiency of the evaluation test. Can be done.
以下に、図面を参照して、本発明の一実施の形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
<実施の形態>
本発明で用いるコンクリート柱亀裂に伴う鉄筋腐食の評価試験装置(以下に本装置と称する)は、コンクリート柱から切り出したコンクリート片の少なくとも1本の鉄筋を含む供試体(試験片)Pを設置して、その両端位置を固定する架台1により構成されている。この架台1は、供試体(試験片)Pの中間部分に過重負荷を付与する押付治具3を備えている。
<Embodiment>
In the evaluation test device for reinforcing bar corrosion associated with cracks in concrete columns (hereinafter referred to as this device) used in the present invention, a specimen (test piece) P containing at least one reinforcing bar of a concrete piece cut out from a concrete column is installed. It is composed of a
そして、本装置は、架台1側から供試体(試験片)Pの裏面に向けてねじ込まれて押付治具3を供試体(試験片)Pの裏面を押し付けるボルトBを備えており、ボルトBの一般的なピッチとなる1mm〜2.5mmの回転ピッチ(ボルトの1回転による前進距離)により、供試体(試験片)Pの表面に発生する亀裂幅を制御している。
The apparatus is provided with a bolt B that is screwed from the
<本装置の構成>
次に、本装置の具体的な構成について、図1、図2、図3、図4に基づき詳述する。
<Configuration of this device>
Next, the specific configuration of this device will be described in detail with reference to FIGS. 1, 2, 3, and 4.
架台1は、中央ウエブWの両端にフランジFを備えているH型鋼により構成されている。片側フランジF面の長さ方向における両端部には、供試体(試験片)Pの両端部を挟み込むようにして固定する挟持部材2を配置している。
The
挟持部材2は、例えば、L字型板状のアングル材等により構成された支持当て部材2Aと、支持当て部材2Aを片側フランジF面に固定するためのボルトBとナットNとからなる。
The
挟持部材2の使用においては、先ず、供試体(試験片)Pの端部を片側フランジF面と支持当て部材2Aにより挟み込み、片側フランジF面と支持当て部材2Aがそれぞれ備えている一対の孔HにボルトBの軸部を貫通させ、片側フランジF面から突出している軸部にナットNを宛がって締め付けるものである。
In using the
片側フランジF面の略中央部には、供試体(試験片)Pを押圧して亀裂Cを発生させる押付治具3を配置している。
A
架台1の中央には、片側フランジF面の幅方向に沿って対向設置した略台形形板状の一対のガイド片3Aと、一対のガイド片3Aそれぞれの中央に縦溝となって形成された相対向するガイド溝3Bに跨るようにして横架され、ガイド溝3Bに沿って片側フランジF面から離れる方向に移動可能とした押付治具3を備えている。
At the center of the
本実施形態の押付治具3は、供試体(試験片)Pの裏面中央に対し幅方向に沿って均一に当接させるための例えば円柱状の押し当てロッド3Dと、押し当てロッド3Dの後方に溶接された、後述するボルトB先端が後面に当接する矩形板状の押し当て部材3Cと、により形成されている。
The
尚、本実施形態では、押し当てロッド3Dは押し当て部材3Cの片面に溶接されて一体となっているが、押し当てロッド3Dと押し当て部材3Cとが別体となっていても良い。
In the present embodiment, the
そして、押付治具3は、押し当て部材3Cを押圧して片側フランジF面から離れる方向に移動させるよう片側フランジF下面とウエブWとの間に形成された開口部3Eにおいて片側フランジFの中央に形成されたボルト孔3F(図3参照)に軸部B1が捩じ込められるボルトBを設けている。
Then, the
このように、押付治具3は、片側フランジF面にボルト孔にボルトBの軸部B1を捩じ込んで軸部B1の先端を押し当て部材3Cに当接させて、押し当てロッド3Dを片側フランジF面から離れる方向に移動させるものである。
In this way, in the
また、本発明に係るコンクリート柱亀裂に伴う鉄筋腐食の評価試験方法は、図9に示すように、鉄筋コンクリート柱Kから少なくとも1本の鉄筋Qを含むコンクリート片を供試体Pとして切り出す切出工程(S1)と、切り出した供試体(試験片)Pにおいて、所定の亀裂(ひび割れ)Cを発生させる面以外の部分を封止材Vにより封止する封止工程(S2)と、供試体(試験片)Pを架台1に設置し、封止材Vにより封止した部分以外の面に亀裂Cを発生させる亀裂導入工程(S3)と、供試体(試験片)Pの亀裂Cの幅(図8参照)の観察を実施しつつ、供試体(試験片)Pを所定期間暴露する暴露工程(S4)と、暴露後の供試体(試験片)Pを解体し、コンクリート材の中性化の進展度及び鉄筋の腐食状況を確認する解体確認工程(S5)と、からなる。
Further, as shown in FIG. 9, the evaluation test method for reinforcing bar corrosion associated with a crack in a concrete column according to the present invention is a cutting step of cutting out a concrete piece containing at least one reinforcing bar Q from a reinforced concrete column K as a specimen P. In S1) and the cut-out specimen (test piece) P, a sealing step (S2) in which a portion other than the surface where a predetermined crack (crack) C is generated is sealed with the sealing material V, and the specimen (test). Piece) The crack introduction step (S3) in which the P is installed on the
ここで、コンクリート材の中性化とは、本来アルカリ性を有するコンクリートが外部環境の影響として、例えば大気中の炭酸ガスや酸性雨等の影響を受けてアルカリ性を消失してゆく現象であり、この中性化により内部の鉄筋の不動態皮膜が破壊されて活性化し鉄筋の腐食が進行する。 Here, the neutralization of concrete material is a phenomenon in which concrete, which is originally alkaline, loses its alkalinity due to the influence of the external environment, such as carbon dioxide gas in the atmosphere and acid rain. Neutralization destroys and activates the passivation film of the internal reinforcing bars, and the corrosion of the reinforcing bars progresses.
次に、上記した架台1を使用しての鉄筋腐食の評価試験の手順について詳述する。
Next, the procedure of the evaluation test of the reinforcing bar corrosion using the above-mentioned
<切出工程>
切出工程S1において、図5に示すように、円筒状の鉄筋コンクリート柱Kの一部を、所定の長さの円環状に切り出し、この切り出した円環状部分を、1本の鉄筋Qが略中心にくるように円筒軸方向に沿うように切り出して、断面が略台形となる棒状のコンクリート片の供試体(試験片)Pにする。
<Cutout process>
In the cutting step S1, as shown in FIG. 5, a part of the cylindrical reinforced concrete column K is cut out in an annular shape having a predetermined length, and the cut out annular portion is substantially centered on one reinforcing bar Q. It is cut out along the direction of the cylindrical axis so as to come to the sample (test piece) P of a rod-shaped concrete piece having a substantially trapezoidal cross section.
これにより、供試体(試験片)Pの裏面R3が、円筒状の鉄筋コンクリート柱Kの内周面に相当し、供試体(試験片)Pの表面R0が、円筒状の鉄筋コンクリート柱Kの外周面に相当する。 As a result, the back surface R3 of the specimen (test piece) P corresponds to the inner peripheral surface of the cylindrical reinforced concrete column K, and the surface R0 of the specimen (test piece) P is the outer peripheral surface of the cylindrical reinforced concrete column K. Corresponds to.
<封止工程>
封止工程S2において、図5に示すように、切出工程S1により切り出された供試体(試験片)Pに亀裂C(ひび割れ)を発生させる表面以外の、略台形状の上下端面R1、長方形状の左右側面R2、円筒状の鉄筋コンクリート柱Kの内周面に相当する裏面R3それぞれに、耐候性を有する封止材Vとしてエポキシ樹脂を塗布する。
<Sealing process>
In the sealing step S2, as shown in FIG. 5, a substantially trapezoidal upper and lower end surfaces R1 and a rectangle other than the surface that causes cracks C (cracks) in the specimen (test piece) P cut out in the cutting step S1. Epoxy resin is applied as a weather-resistant sealing material V to each of the left and right side surfaces R2 and the back surface R3 corresponding to the inner peripheral surface of the cylindrical reinforced concrete column K.
<亀裂導入工程>
亀裂導入工程S3において、図1、図2、図6に示すように、円筒状の鉄筋コンクリート柱Kの内周面に相当する供試体(試験片)Pの裏面R3が、架台1側の片側フランジF面に位置するようにして、供試体(試験片)Pを架台1に沿うように設置し、供試体(試験片)Pの両端部分を、挟持部材2の支持当て部材2Aと片側フランジF面により挟み込んで固定する。
<Rhagades introduction process>
In the crack introduction step S3, as shown in FIGS. 1, 2, and 6, the back surface R3 of the specimen (test piece) P corresponding to the inner peripheral surface of the cylindrical reinforced concrete column K is a flange on one side of the
そして、図7、図8に示すように、供試体(試験片)Pの裏面R3の略中央部分に、押付治具3の押し当てロッド3Dを宛がい、ウエブWにおける開口部3E側から片側フランジFのボルト孔3FにボルトBの軸部B1を捩じ込んでボルトBの軸部B1の先端で押し当て部材3Cを片側フランジF面から離れる方向に移動させて押し当てロッド3Dを供試体(試験片)Pの裏面R3に押し付けるようにして荷重を掛け、円筒状の鉄筋コンクリート柱Kの外周面に相当する供試体(試験片)Pの表面R0の略中央部分に亀裂Cを発生させる。
Then, as shown in FIGS. 7 and 8, the
ここでの曲げ荷重の加え方について、図10を参照して説明する。 The method of applying the bending load here will be described with reference to FIG.
亀裂導入工程S3において、上記切出工程S1及び封止工程S2で得られた供試体(試験片)Pの架台1に固定された両端部分と、手前方向に垂直に荷重を加える供試体(試験片)P中央の裏面R3部分との3点曲げ荷重により、供試体(試験片)Pの表面R0が膨張(表面に沿っての引張り)し且つ裏面R3が圧縮される曲げ応力が付与されて、表面R0部分に亀裂C(ひび割れ)が導入される。
In the crack introduction step S3, both ends of the specimen (test piece) P obtained in the cutting step S1 and the sealing step S2 fixed to the
<暴露工程>
暴露工程S4では、鉄筋コンクリート柱Kが現地に設置される外的環境と同一条件下で、亀裂Cの幅の進展度の観察を実施する。この場合、水平置きでは雨の影響が大きくなるため、架台1を実構造物と同様の縦置きとする。
<Exposure process>
In the exposure step S4, the degree of development of the width of the crack C is observed under the same conditions as the external environment in which the reinforced concrete column K is installed at the site. In this case, since the influence of rain is large when the gantry is placed horizontally, the
<解体確認工程>
解体確認工程S5では、上記亀裂導入工程S3により供試体(試験片)Pの表面に亀裂Cを発生させた後の、供試体(試験片)Pの内部の鉄筋Qの経時的な腐食度を測定する。このように、暴露工程S4後の解体による鉄筋腐食の評価を行うことで、実構造物の鉄筋コンクリート柱Kに亀裂Cが生じた後の鉄筋Qおよびコンクリート材の劣化状態や劣化速度の想定値を得ることができる。
<Disassembly confirmation process>
In the disassembly confirmation step S5, the degree of corrosion of the reinforcing bar Q inside the specimen (test piece) P with time after the crack C is generated on the surface of the specimen (test piece) P by the crack introduction step S3 is determined. taking measurement. In this way, by evaluating the corrosion of the reinforcing bars due to the dismantling after the exposure step S4, the estimated values of the deterioration state and deterioration rate of the reinforcing bars Q and the concrete material after the cracks C are generated in the reinforced concrete columns K of the actual structure can be obtained. Obtainable.
<亀裂幅の検証>
ここで、試験条件を一定とするため高さ方向の亀裂の発生位置を供試体(試験片)P毎に揃える必要がある。図11(a)に示すように、3点曲げは荷重負荷位置の反対面の試験体の厚さの範囲内にひびが発生した。
<Verification of crack width>
Here, in order to keep the test conditions constant, it is necessary to align the crack generation positions in the height direction for each specimen (test piece) P. As shown in FIG. 11A, the three-point bending caused cracks within the thickness range of the test piece on the opposite surface of the load-bearing position.
また、図11(b)に示すように、4点曲げは荷重負荷位置の反対面の2か所の荷重負荷幅から更に試験体の厚さ分外れた広い範囲でひびが発生した。 Further, as shown in FIG. 11B, the four-point bending caused cracks in a wide range further deviated from the load load width at two locations on the opposite surface of the load load position by the thickness of the test piece.
更に、図11(c)に示すように、3点曲げで端部を荷重負荷位置とした片持ち3点曲げの場合は、支点となる中央の固定位置から端部の荷重負荷位置の広い範囲でひびが発生した。 Further, as shown in FIG. 11C, in the case of cantilever three-point bending in which the end is the load-bearing position in the three-point bending, a wide range from the central fixed position serving as the fulcrum to the load-load position at the end. Cracked.
これにより、供試体(試験片)の表面に発生する荷重負荷による亀裂幅をミクロン単位で精度よく制御可能にするには、3点曲げによる方式が有効であることが判明した。 From this, it was found that the three-point bending method is effective in making it possible to accurately control the crack width due to the load generated on the surface of the specimen (test piece) in micron units.
<荷重負荷の方法>
上記したように、本実施形態における荷重負荷の方法は、ボルトBの回転による変位(ピッチ)を利用する方式としている。即ち、亀裂幅を0.01mm単位で制御するためには、ストロークを0.1mm単位で制御する必要があることが判明してボルト方式としている。
<Load-loading method>
As described above, the method of loading the load in the present embodiment is a method using the displacement (pitch) due to the rotation of the bolt B. That is, in order to control the crack width in units of 0.01 mm, it was found that it was necessary to control the stroke in units of 0.1 mm, and the bolt method was adopted.
また、ボルトBおよび押付治具3の材質はクロム(Cr)含有量が17%以上のステンレスとする。アルカリ性のコンクリートには接しているものの、試験の結果、クロム(Cr)含有量が17%未満の鋼材は屋外環境での長期使用で発錆が著しく、ボルトBが固着し試験途中での亀裂幅の調整が不可能である。
The material of the bolt B and the
<押付治具の態様>
図12(a)に示すように、押付治具3が面状に接する場合、押付治具3の試験体長手方向幅LAは、試験体厚みの10%以上〜60%以下であることが必要である。10%以下で押付部のコンクリート表面で割れが発生し、60%を超えると亀裂の発生位置のバラツキが試験体厚みを超える。
<Aspect of pressing jig>
As shown in FIG. 12A, when the
図12(b)に示すように、押付治具3が円柱で線状に接する場合、円柱の直径は5mm以上を要する。5mm未満で押付部のコンクリート表面で割れが発生する。
As shown in FIG. 12B, when the
図13に示すように、押付治具3が面状あるいは線状に接する場合、押付治具3の試験体幅方向幅WAは試験体幅WBに比較して試験体厚さの40%以上狭くならない。即ち、試験体幅方向幅WAが試験体幅WBに比較して試験体厚さの40%以上狭くなると押付治具3の端部のコンクリート表面で割れ発生する。
As shown in FIG. 13, when the
<治具形状の比較>
図14(a)に示すように、押付治具3がボルトB面あるいは面状に接する場合、押付治具3の試験体幅方向幅WAは試験体幅WBに比較して試験体厚さの40%%以上狭くならない。
<Comparison of jig shapes>
As shown in FIG. 14A, when the
図14(b)に示すように、試験体幅方向幅WAが試験体幅WBに比較して試験体厚さの40%以上狭くなると押付治具3の端部や押付面のコンクリート表面で割れが発生する。
As shown in FIG. 14 (b), when the width WA in the width direction of the test body becomes 40% or more narrower than the thickness of the test body as compared with the width WB of the test body, the end portion of the
その他、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the present invention is carried out with various modifications within a range not deviating from the gist thereof.
本発明は、鉄筋コンクリート柱Kの亀裂C(ひび割れ)の幅と鉄筋Qの腐食度との相関関係を解明することのできる手法として、種々の作業現場において、幅広く利用されるものである。 The present invention is widely used in various work sites as a method capable of clarifying the correlation between the width of the crack C (crack) of the reinforced concrete column K and the degree of corrosion of the reinforcing bar Q.
S1…切出工程
S2…封止工程
S3…亀裂導入工程
S4…暴露工程
S5…解体確認工程
K…鉄筋コンクリート柱
W…ウエブ
F…フランジ
P…供試体(コンクリート片)
R0…表面
R1…上下端面
R2…左右側面
R3…裏面
Q…鉄筋
C…亀裂(ひび割れ)
V…封止材
B…ボルト
B1…軸部
N…ナット
H…孔
1…架台
2…挟持部材
2A…支持当て部材
3…押付治具
3A…ガイド片
3B…ガイド溝
3C…押し当て部材
3D…押し当てロッド
3E…開口部
3F…ボルト孔
S1 ... Cutting process S2 ... Sealing process S3 ... Crack introduction process S4 ... Exposure process S5 ... Disassembly confirmation process K ... Reinforced concrete column W ... Web F ... Flange P ... Specimen (concrete piece)
R0 ... Front surface R1 ... Upper and lower end surfaces R2 ... Left and right side surfaces R3 ... Back surface Q ... Reinforcing bars C ... Cracks
V ... Encapsulant B ... Bolt B1 ... Shaft N ... Nut H ...
Claims (5)
切り出した供試体(試験片)において、所定の亀裂(ひび割れ)を発生させる予定面以外の部分を封止材により封止する封止工程と、
供試体(試験片)を架台に設置し、封止材により封止した部分以外の面に亀裂を発生させる亀裂導入工程と、
供試体(試験片)の亀裂幅の観察を実施しつつ、供試体(試験片)を所定期間暴露する暴露工程と、
暴露後の供試体(試験片)を解体し、コンクリート材の中性化の進展度及び鉄筋の腐食状況を確認する解体確認工程と、
からなることを特徴とする、コンクリート柱の亀裂に伴う鉄筋腐食の評価試験方法。 A cutting process in which a concrete piece containing at least one reinforcing bar is cut out as a specimen (test piece) from a concrete column, and
In the cut-out specimen (test piece), a sealing step of sealing a portion other than the planned surface on which a predetermined crack (crack) is to be generated with a sealing material, and a sealing step.
A crack introduction process in which the specimen (test piece) is installed on a pedestal and cracks are generated on the surface other than the part sealed with the sealing material.
An exposure process in which the specimen (test piece) is exposed for a predetermined period while observing the crack width of the specimen (test piece).
A dismantling confirmation process that dismantles the specimen (test piece) after exposure and confirms the progress of neutralization of the concrete material and the corrosion status of the reinforcing bars.
An evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns, which is characterized by consisting of.
亀裂導入工程は、架台側から供試体(試験片)の裏面に向けてねじ込まれたボルトの回転ピッチにより、押付治具を供試体(試験片)の表面に発生する亀裂幅を制御した状態で保持して実行するものである請求項4に記載のコンクリート柱の亀裂に伴う鉄筋腐食の評価試験方法。 The gantry pressing jig includes a pair of guide pieces provided in the width direction of one side flange surface and a pressing member that can move along the pair of guide pieces in a direction away from one side flange surface, and has one side flange surface. A screw hole is provided in the bolt, and the shaft portion of the bolt is screwed into the screw hole to bring the tip of the shaft portion into contact with the pressing member, and the pressing member is moved in a direction away from the flange surface on one side.
In the crack introduction process, the crack width generated on the surface of the specimen (test piece) is controlled by the pressing jig by the rotation pitch of the bolt screwed from the gantry side toward the back surface of the specimen (test piece). The evaluation test method for reinforcing bar corrosion associated with cracks in a concrete column according to claim 4, which is carried out by holding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021125239A JP7195510B2 (en) | 2017-05-23 | 2021-07-30 | Evaluation test method for rebar corrosion associated with cracks in concrete columns |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017101385A JP6924367B2 (en) | 2017-05-23 | 2017-05-23 | Evaluation test equipment and evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns |
JP2021125239A JP7195510B2 (en) | 2017-05-23 | 2021-07-30 | Evaluation test method for rebar corrosion associated with cracks in concrete columns |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017101385A Division JP6924367B2 (en) | 2017-05-23 | 2017-05-23 | Evaluation test equipment and evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021170038A true JP2021170038A (en) | 2021-10-28 |
JP7195510B2 JP7195510B2 (en) | 2022-12-26 |
Family
ID=64663247
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017101385A Active JP6924367B2 (en) | 2017-05-23 | 2017-05-23 | Evaluation test equipment and evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns |
JP2021125239A Active JP7195510B2 (en) | 2017-05-23 | 2021-07-30 | Evaluation test method for rebar corrosion associated with cracks in concrete columns |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017101385A Active JP6924367B2 (en) | 2017-05-23 | 2017-05-23 | Evaluation test equipment and evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6924367B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024257171A1 (en) * | 2023-06-12 | 2024-12-19 | 日本電信電話株式会社 | Method for manufacturing concrete specimen |
WO2024257174A1 (en) * | 2023-06-12 | 2024-12-19 | 日本電信電話株式会社 | Method for manufacturing concrete test piece |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110044688B (en) * | 2019-04-23 | 2024-04-09 | 浙江工业大学 | Multifunctional clamp for concrete splitting tensile strength experiment |
CN110361254B (en) * | 2019-08-27 | 2022-02-18 | 内蒙古工业大学 | Corrosion environment repeated load coupling device |
CN111413179B (en) * | 2020-05-26 | 2024-07-30 | 深圳大学 | Concrete crack control device and control system thereof |
CN112903497B (en) * | 2021-01-15 | 2021-10-22 | 清华大学 | Steel constant-load stress corrosion test device and method under periodic infiltration condition |
CN113466115B (en) * | 2021-06-18 | 2022-07-19 | 燕山大学 | A steel corrosion monitoring device with temperature self-compensation |
CN114755170B (en) * | 2022-04-14 | 2025-06-27 | 燕山大学 | Device and method for testing the ion corrosion resistance of cracked concrete |
CN114509382B (en) * | 2022-04-19 | 2022-06-14 | 交通运输部公路科学研究所 | A reinforced concrete beam testing device and testing method |
CN115479836A (en) * | 2022-09-13 | 2022-12-16 | 中国第一汽车股份有限公司 | A salt spray corrosion test evaluation method, system, equipment and storage medium |
CN116773663B (en) * | 2023-08-25 | 2023-11-03 | 山东省路桥集团有限公司 | Ultrasonic technology crack detection system for concrete |
CN117309742B (en) * | 2023-12-01 | 2024-02-02 | 内蒙古工业大学 | Multisource corrosion acceleration simulation device for reinforced concrete member |
CN118258748B (en) * | 2024-03-27 | 2024-10-18 | 青岛理工大学 | Device and method for applying prestress and testing local corrosion of reinforced concrete test piece |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051451U (en) * | 1983-09-17 | 1985-04-11 | 三菱重工業株式会社 | Three-point bending test jig |
JPS61279657A (en) * | 1985-06-03 | 1986-12-10 | Nippon Steel Corp | Salt resistant iron reinforcing rod for preventing deterioration of concrete |
JP2006233569A (en) * | 2005-02-24 | 2006-09-07 | Kurabo Ind Ltd | Corrosion prevention method for reinforced concrete structures |
JP2014092416A (en) * | 2012-11-02 | 2014-05-19 | Nippon Telegr & Teleph Corp <Ntt> | Method of manufacturing reinforced concrete specimen |
JP2016031276A (en) * | 2014-07-29 | 2016-03-07 | 日本電信電話株式会社 | Crack detection method for reinforced concrete, and crack detection system for reinforced concrete structure |
JP2016038243A (en) * | 2014-08-06 | 2016-03-22 | 日本電信電話株式会社 | Reinforced concrete specimen preparation method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6918306B1 (en) * | 2003-09-08 | 2005-07-19 | The United States Of America As Represented By The Secretary Of The Navy | Adjustable flexure loading apparatus for testing long span beams |
JP2015010978A (en) * | 2013-07-01 | 2015-01-19 | 日本電信電話株式会社 | Method for preparing sample |
-
2017
- 2017-05-23 JP JP2017101385A patent/JP6924367B2/en active Active
-
2021
- 2021-07-30 JP JP2021125239A patent/JP7195510B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051451U (en) * | 1983-09-17 | 1985-04-11 | 三菱重工業株式会社 | Three-point bending test jig |
JPS61279657A (en) * | 1985-06-03 | 1986-12-10 | Nippon Steel Corp | Salt resistant iron reinforcing rod for preventing deterioration of concrete |
JP2006233569A (en) * | 2005-02-24 | 2006-09-07 | Kurabo Ind Ltd | Corrosion prevention method for reinforced concrete structures |
JP2014092416A (en) * | 2012-11-02 | 2014-05-19 | Nippon Telegr & Teleph Corp <Ntt> | Method of manufacturing reinforced concrete specimen |
JP2016031276A (en) * | 2014-07-29 | 2016-03-07 | 日本電信電話株式会社 | Crack detection method for reinforced concrete, and crack detection system for reinforced concrete structure |
JP2016038243A (en) * | 2014-08-06 | 2016-03-22 | 日本電信電話株式会社 | Reinforced concrete specimen preparation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024257171A1 (en) * | 2023-06-12 | 2024-12-19 | 日本電信電話株式会社 | Method for manufacturing concrete specimen |
WO2024257174A1 (en) * | 2023-06-12 | 2024-12-19 | 日本電信電話株式会社 | Method for manufacturing concrete test piece |
Also Published As
Publication number | Publication date |
---|---|
JP2018197656A (en) | 2018-12-13 |
JP6924367B2 (en) | 2021-08-25 |
JP7195510B2 (en) | 2022-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021170038A (en) | Evaluation test method for reinforcing bar corrosion associated with cracks in concrete columns | |
CN105842093B (en) | Steel-concrete interface shear stress Fatigue Behavior of Riveted structure test device and application process | |
CN106996900B (en) | Axial tension-compression test device and test method under restraint | |
JP2017167060A (en) | Crack specimen manufacturing device and crack specimen manufacturing method | |
CN106969978A (en) | Axial tension experimental rig and its test method under effect of contraction | |
JP6092575B2 (en) | Reinforced concrete specimen preparation method | |
CN113049203A (en) | System and method for testing out-of-plane anti-seismic performance of masonry wall | |
JP4677588B2 (en) | Pre-crack introduction method and apparatus | |
Hasham et al. | Section capacity of thin-walled I-section beam-columns | |
Suryanto et al. | Investigating the mechanism of shear fatigue in reinforced concrete beams subjected to pulsating and moving loads using digital image correlation | |
CN203869941U (en) | Springback detection positioner applicable to concrete columns and beams | |
CA2140196C (en) | Mechanical connection for reinforcing bars, device for placing this mechanical connection and process for fixing the mechanical connection for reinforcing bars | |
KR20200062755A (en) | the jig for compression test | |
O'hEachteirn et al. | Lateral buckling tests on monosymmetric plate girders | |
CN107894362A (en) | A kind of longitudinal direction, rotational stiffness constrain certainly and self-balancing experimental rig and test method | |
Mirza et al. | Structural Performance of Blind Bolt Shear Connector under Static Loading | |
KR101801809B1 (en) | Device for applying pre-stress of tubular structure | |
Garad et al. | Design and Development of Automatic Bending Machine | |
CN213749319U (en) | Assembled loading device capable of fixing end and adjusting eccentricity | |
JP6571345B2 (en) | Prestressing method for concrete structures | |
Ahmat et al. | Experimental Study on the Effect of Gusset Plates’ Geometry on the Behavior of Steel Lattice Transmission Line Tower Connections | |
Yang et al. | FLEXURAL BEHAVIOR OF REINFORCED HOLLOW HIGH STRENGTH CONCRETE FILLED SQUARE STEEL TUBE | |
Klym et al. | Stress-strain state of RC beams after restoration of the compressed concrete zone | |
Serazutdinov et al. | Method for Calculating Assembly Stresses in Frame Structures Strengthened in Deformed State | |
JP2025082920A (en) | Two-point distance measuring device and two-point distance measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7195510 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |