WO2024104274A1 - 表面活性剂、其制备方法及应用 - Google Patents
表面活性剂、其制备方法及应用 Download PDFInfo
- Publication number
- WO2024104274A1 WO2024104274A1 PCT/CN2023/131095 CN2023131095W WO2024104274A1 WO 2024104274 A1 WO2024104274 A1 WO 2024104274A1 CN 2023131095 W CN2023131095 W CN 2023131095W WO 2024104274 A1 WO2024104274 A1 WO 2024104274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surfactant
- fluorine
- monomer
- methacrylate
- vinylidene fluoride
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F114/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F114/18—Monomers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/06—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
Definitions
- the present application relates to the field of polymers, and in particular, to a surfactant, a preparation method and application thereof, and a preparation method of a fluorine-containing polymer.
- emulsion polymerization is one of the most commonly used polymerization methods.
- surfactants as emulsifiers are one of the most core raw materials.
- the most commonly used surfactants in the polymerization of fluorinated monomers are two types of fluorinated surfactants headed by PFOA and GenX.
- Their advantages mainly lie in: special surface activity and excellent chemical stability.
- these advantages are also the direct cause of the extremely long degradation half-life and extremely high toxicity of fluorinated surfactants. This leads to not only very high waste disposal costs in the production and use of fluorinated polymers, but also a certain amount of emissions into nature that is difficult to avoid.
- the research and development of easily degradable, low-toxic or even non-toxic surfactants suitable for the polymerization of fluorinated monomers is an urgent and important issue.
- Patent documents CN1535989A and CN111148772A adopt this design idea. This design idea brings another technical problem.
- the block-type amphiphilic polymer surfactant has poor mobility at the fluorine-containing resin surface and the gas-liquid interface, resulting in a decrease in the material exchange rate between the interfaces.
- the present application unexpectedly discovered that a surfactant with dispersed distribution of hydrophobic monomers and hydrophilic monomers can effectively replace PFOA-like substances.
- the surfactant of the present application can form a single-molecule micelle structure in water, and can also be adsorbed to the interface of polymer particles to form amphoteric membrane structures.
- the conversion between the micelle structure and the membrane structure state only needs to change the partial conformation of the copolymer main chain, which makes the surfactant of the present application have good mobility while reducing the interfacial energy, increasing the material exchange rate and promoting the polymerization reaction.
- the surfactant of the present application has the characteristics of excellently reducing the side reactions of emulsion polymerization, improving the wettability of the interface, increasing the steric hindrance of the surface hydration layer, and improving the stability of the dispersed system.
- the present application provides a surfactant, wherein the surfactant is a copolymer, and the copolymer monomers for preparing the surfactant include at least one hydrophobic monomer having a structure as shown in formula (1) and at least one hydrophilic monomer having a structure as shown in formula (2),
- R1 is selected from hydrogen, C 1 ⁇ C 18 straight or branched alkyl, C 1 ⁇ C 18 straight or branched alkyl ether, C 1 ⁇ C 18 straight or branched halogenated alkyl, C 2 ⁇ C 18 aliphatic hydroxy, C 2 ⁇ C 18 aliphatic thioether, C 2 ⁇ C 18 aliphatic ester, C 2 ⁇ C 18 aliphatic cyano;
- R2 is selected from oxygen, sulfur, imino, C 1 ⁇ C 18 straight chain or branched or cyclic alkyl imino, C 1 ⁇ C 18 aryl imino;
- R3 is selected from phenyl, C 1 ⁇ C 4 straight chain or branched alkyl, C 5 ⁇ C 18 straight chain or branched alkyl, benzyl, 2-phenyl-2-propyl, allyl,
- R4 is selected from hydrogen, C 1 ⁇ C 18 straight or branched alkyl, C 1 ⁇ C 18 straight or branched alkyl ether, C 1 ⁇ C 18 straight or branched halogenated alkyl, C 2 ⁇ C 18 aliphatic hydroxy, C 2 ⁇ C 18 aliphatic thioether, C 2 ⁇ C 18 aliphatic ester, C 2 ⁇ C 18 aliphatic cyano;
- R5 is selected from oxygen, sulfur, imino, C 1 ⁇ C 18 straight chain or branched or cyclic alkyl imino, C 1 ⁇ C 18 aryl imino;
- R6 is selected from polyethylene glycol derivatives (CH 2 CH 2 O) q Z, wherein q is an integer greater than 4 and less than or equal to 100, and Z is selected from hydrogen, C 1 -C 3 straight chain or branched alkyl.
- hydrophobic monomer represented by formula (1) described in the present application, wherein:
- R1 is selected from hydrogen, C 1 ⁇ C 18 straight chain or branched chain alkyl, C 1 ⁇ C 18 straight chain or branched chain alkyl ether, C 1 ⁇ C 18 straight chain or branched chain halogenated alkyl, C 2 ⁇ C 18 aliphatic hydroxy, C 2 ⁇ C 18 aliphatic thioether, C 2 ⁇ C 18 aliphatic ester, C 2 ⁇ C 18 aliphatic cyano;
- R2 is selected from oxygen, sulfur, imino, C 1 ⁇ C 18 straight chain or branched or cyclic alkyl imino, C 1 ⁇ C 18 aryl imino;
- R3 is selected from phenyl, C 1 ⁇ C 4 straight chain or branched alkyl, C 5 ⁇ C 18 straight chain or branched alkyl, benzyl, 2-phenyl-2-propyl, allyl,
- R1 is selected from hydrogen, C 1 ⁇ C 5 straight or branched alkyl, C 1 ⁇ C 5 straight or branched alkyl ether;
- R2 is selected from oxygen, imino, C 1 ⁇ C 9 straight or branched or cyclic alkyl imino, C 1 ⁇ C 9 aryl imino;
- R 3 is selected from phenyl, C 1 ⁇ C 4 straight or branched alkyl, C 5 ⁇ C 9 straight or branched alkyl.
- the surfactant has an active CH bond, a chain transfer reaction will occur, resulting in the insertion of the surfactant into the fluorinated polymer.
- the chain transfer activity of the CH bonds of primary carbon and phenyl is the lowest.
- the CH content of methyl or phenyl in existing non-fluorinated surfactants is generally low.
- PLURONIC 31R1 contains a large amount of tertiary carbon, and the tertiary carbon activity is relatively high.
- R3 As the number of carbon atoms in R3 increases, the volume of the hydrophobic group of the side chain will become larger and larger.
- R3 is an alkyl group with more than 10 carbon atoms and more than 2 side chains, the volume of the hydrophobic group of the side chain is too large, resulting in insufficient mobility of the main chain, reducing the surface performance of the product, and poor effect as an emulsion polymerization emulsifier.
- the degree of polymerization of ethylene glycol in R6 in the matching hydrophilic monomer also needs to be increased.
- the hydrophobic monomer represented by formula (1) described in the present application satisfies the above conditions, and is preferably selected from at least one of methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, octadecyl methacrylate, n-hexyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzylic acid ester, hydroxypropyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexy
- the hydrophobic monomer is selected from at least one of methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, At least one of butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, phenyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, tert-butyl acrylate and phenyl acrylate.
- R4 is selected from hydrogen, C 1 ⁇ C 18 straight chain or branched chain alkyl, C 1 ⁇ C 18 straight chain or branched chain alkyl ether, C 1 ⁇ C 18 straight chain or branched chain halogenated alkyl, C 2 ⁇ C 18 aliphatic hydroxyl, C 2 ⁇ C 18 aliphatic thioether, C 2 ⁇ C 18 aliphatic ester, C 2 ⁇ C 18 aliphatic cyano;
- R6 is selected from polyethylene glycol derivatives (CH 2 CH 2 O) q Z, wherein q is an integer greater than 4 and less than or equal to 100, and Z is selected from hydrogen, and a C 1 -C 3 straight or branched alkyl group.
- R4 is selected from hydrogen, C 1 ⁇ C 5 straight chain or branched alkyl, C 1 ⁇ C 5 straight chain or branched alkyl ether;
- R5 is selected from oxygen, imino, C 1 ⁇ C 9 straight chain or branched or cyclic alkyl imino, C 1 ⁇ C 9 aryl imino;
- R6 is selected from polyethylene glycol derivatives (CH 2 CH 2 O) q Z, wherein q is an integer greater than 9 and less than or equal to 100, and Z is selected from hydrogen, C 1 ⁇ C 3 straight chain or branched alkyl.
- R4 is selected from hydrogen and methyl; R5 is selected from oxygen and imino; R6 is selected from polyethylene glycol derivatives (CH 2 CH 2 O) q Z, wherein q is an integer greater than 9 and less than or equal to 100, and Z is selected from hydrogen, C1 ⁇ C3 straight chain or branched alkyl. More preferably, R4 is selected from methyl; R5 is selected from oxygen; R6 is selected from polyethylene glycol derivative (CH 2 CH 2 O) q Z, wherein q is an integer greater than 9 and less than or equal to 50, and Z is selected from hydrogen, C 1 -C 3 straight chain or branched alkyl.
- Small molecule fluorinated surfactants rely on their extremely low surface tension to form thermodynamically stable particles.
- the surfactants described in the present application can rely on steric effects to increase kinetic stability, and the length of the polyethylene glycol segment on the surfactant side chain is a key factor.
- the degree of polymerization (q value) of polyethylene glycol in R6 is too low, the steric hindrance of the polyethylene glycol segment is too small, resulting in a larger emulsion particle size, poor stability, and easy demulsification during the polymerization process.
- the degree of polymerization (q value) of polyethylene glycol in R6 is greater than 4, especially greater than 9, polyethylene glycol can form a high steric hindrance hydration layer, so that the surfactant can form a stable unimolecular micelle structure in water, a smaller micelle particle size can be obtained, and the surface activity performance is better.
- the degree of polymerization (q value) of polyethylene glycol in R6 is greater than 20.
- the degree of polymerization (q value) of polyethylene glycol in R6 is less than or equal to 100, preferably, less than or equal to 50.
- the hydrophilic monomer represented by formula (2) described in the present application meets the above conditions.
- the hydrophilic monomer has a molecular weight of 400 to 2000 and is selected from at least one of polyethylene glycol methyl ether methacrylate, polyethylene glycol ethyl ether methacrylate, polyethylene glycol propyl ether methacrylate and polyethylene glycol methacrylate.
- halogenation refers to substitution with fluorine, chlorine, bromine or iodine.
- monofluoromethane is a compound in which one hydrogen in methane is replaced by fluorine.
- the molar content of the hydrophobic monomer structural unit represented by formula (1) in the surfactant described in the present application is x
- the molar content of the hydrophilic monomer structural unit represented by formula (2) is y
- the hydrophilic monomers are distributed in the form of blocks on the hydrophobic main chain, and the degree of polymerization of the hydrophobic monomer segments is low, resulting in a decrease in the adsorption of the surfactant on the surface of the emulsion.
- the surfactant cannot form a single-molecule micelle structure in water, and the micelle particle size formed in water is larger.
- the HLB value of the surfactant described in the present application is 8 to 14. From the perspectives of increasing the emulsion polymerization rate, reducing the occurrence of side reactions in emulsion polymerization, improving the wettability of the water-oil interface, increasing the steric hindrance of the surface hydration layer, and improving the stability of the dispersion system, preferably, the HLB value is 10 to 12.
- the surfactant described in the present application is a random copolymer of a hydrophobic monomer and a hydrophilic monomer, and the reactivity ratio of the hydrophobic monomer and the hydrophilic monomer is 0.5 to 2.5, which enables the hydrophobic monomer and the hydrophilic monomer to be dispersed on the main chain of the surfactant, and has better surface activity.
- the surfactant described in the present application is a multi-block copolymer in which the number of blocks of hydrophobic monomers and hydrophilic monomers is greater than 5, and the block length of the hydrophobic monomer structural unit or the hydrophilic monomer structural unit in a single block is 1 to 10. This allows the hydrophobic monomer and the hydrophilic monomer to be dispersed on the main chain of the surfactant, and the surface active performance is better.
- the number average molecular weight of the surfactant described in the present application is 5000 to 100000.
- the molecular weight is lower than the lower limit, it is impossible to form a stable single-molecule micelle and cannot satisfy the structure of a multi-block copolymer.
- the molecular weight is higher than the upper limit, the micelle particle size is too high and the mobility of the molecular chain segments decreases, resulting in reduced surface performance.
- the surfactant described in the present application is easy to form unimolecular micelles in aqueous media, and there is no critical micelle concentration limit.
- the polyethylene glycol segment of the surfactant described in the present application can form a high steric hindrance hydration layer, so that the surfactant can form a stable unimolecular micelle structure in water, and the unimolecular micelle content is ⁇ 50%, preferably ⁇ 70%, and more preferably ⁇ 80%.
- the micelle particle size formed by the surfactant in water is 1 to 90nm.
- the emulsion particle size of fluorinated polymers is generally between 100 and 300nm.
- the micelle particle size formed by the surfactant in water is 5 to 30nm, and more preferably, the micelle particle size is 7 to 15nm.
- the size of the micelle particle size is related to the ratio of hydrophobic monomers and hydrophilic monomers and the molecular weight of the copolymer.
- the micelle particle size is too large, the micelle formed is a multi-molecular micelle, which is not conducive to the adsorption of the surfactant on the polymer surface.
- the micelle particle size is too small, the polymer does not form an effective micelle.
- the ratio of the hydrophobic monomer structural unit and the hydrophilic monomer structural unit in the surfactant described in this application and the surface activity According to the molecular structure and molecular weight of hydrophobic monomer and hydrophilic monomer, different ratios are selected to meet the application of emulsifier in emulsion polymerization.
- the surfactant described in the present application has a hydrophobic main chain and a hydrophilic side chain.
- the carbon main chain has hydrophobic properties
- the hydrophilic monomers are dispersed in the form of chains on the hydrophobic main chain
- the side chains have hydrophilic properties.
- This special molecular chain structure allows the surfactant to form a single-molecule micelle structure in water, and can also be adsorbed on the interface of polymer particles to form an amphoteric membrane structure.
- the conversion between the micelle structure and the membrane structure state only requires changing the partial conformation of the copolymer main chain, which allows it to have good mobility while reducing the interfacial energy, increase the material exchange rate, and promote the polymerization reaction.
- the present application also provides a method for preparing a surfactant, which comprises the steps of obtaining a surfactant by polymerizing at least one hydrophobic monomer having a structure as shown in formula (1) and at least one hydrophilic monomer having a structure as shown in formula (2) in a solvent containing an initiator, wherein the definitions of formula (1) and formula (2) are the same as described above.
- the initiator is not particularly limited, and can achieve monomer polymerization.
- the initiator is selected from at least one of peroxides and azo compounds, and the peroxide may include persulfates, such as ammonium persulfate, potassium persulfate, sodium persulfate, etc., and may also include organic peroxides, such as alkyl, dialkyl or diacyl peroxides, such as di-tert-butyl peroxide or benzoyl peroxide, peroxyesters such as tert-amyl peroxytrimethylacetate, succinic acid peroxide or tert-butyl peroxytrimethylacetate, or peroxydicarbonates such as di-n-propyl peroxydicarbonate or diisopropyl peroxydicarbonate.
- Azo compounds may be selected from dimethyl azobisisobutyrate, azobisisobutyronitrile, 2,2'-azobis-(2,4-dimethyl-4-
- the solvent is not particularly limited, as long as it can achieve monomer polymerization.
- the solvent is selected from at least one of alcohol small molecule compounds, ester small molecule compounds, and ether small molecule compounds.
- the alcohol small molecule compound is selected from C1-C10 alcohol compounds, such as isopropanol, tert-butanol and the like.
- the ester small molecule compound is selected from C1-C10 ester compounds, such as ethyl acetate, diethyl carbonate and the like.
- the ether small molecule compound is selected from C1-C10 ether compounds, such as diethyl ether and the like.
- the obtained surfactant is used directly without separation from the solvent.
- the solvent can play a role in adjusting the molecular weight of the polymer, that is, the role of a chain transfer agent.
- the conversion rate of the hydrophobic monomer and the hydrophilic monomer is above 99%.
- the conversion rate of the hydrophobic monomer and the hydrophilic monomer is close to 100%. More preferably, the conversion rate of the hydrophobic monomer and the hydrophilic monomer is 100%.
- the present application also provides an application of a surfactant, wherein the surfactant is used as an emulsifier in an emulsion polymerization reaction.
- the amount of surfactant added in the emulsion polymerization reaction described in the present application is 0.001 to 5wt% of the polymer generated, preferably 0.01 to 0.1wt%. Increasing the amount of surfactant used can reduce the emulsion particle size. When the amount of surfactant added is 0.3 to 3wt% of the polymer generated, the emulsion particle size can be less than 100nm. However, if the amount is too much, the induction period is long, the polymerization rate is slow, and the polymerization cost is high. If the amount is too little, the emulsion stability is poor and the yield is low. Compared with the current PFOA surfactants, the amount used is reduced to 1/5 of it under the same performance. Compared with the mainstream non-fluorinated surfactants, under the same usage amount, the particle size can be reduced by 40% and the stability time is more than doubled.
- the emulsion polymerization reaction described in the present application is a polymerization reaction of a fluorine-containing monomer or a polymerization reaction of a fluorine-containing monomer and a non-fluorine-containing monomer.
- the fluorine-containing monomer is selected from at least one of vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, tetrafluoropropylene, trifluorochloroethylene, 1,1-fluorochloroethylene, 1,2-fluorochloroethylene, perfluoroalkylethylene, perfluoroalkyl vinyl ether, perfluoro-n-propyl vinyl ether, perfluoromethyl vinyl ether and perfluoro(2,2-dimethyl-1,3-dioxole); preferably, the fluorine-containing monomer is selected from at least one of vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene, trifluorochloroethylene, 1,1-fluorochloroethylene, perfluoro-n-propyl vinyl ether, perfluoromethyl vinyl ether and perfluoro(2,2-di
- perfluoroalkyl vinyl ether can be selected from perfluoromethyl vinyl ether, perfluoroethyl vinyl ether, perfluoro-n-propyl vinyl ether and perfluorobutyl vinyl ether.
- the non-fluorine-containing monomer is selected from at least one of ethylene, acrylate, methyl acrylate, methacrylate, methyl methacrylate, vinyl ether, vinyl acetate, acrylonitrile, butadiene, isoprene, styrene, maleic anhydride and itaconic acid, and accounts for 0 to 50 mol% of the total amount of the polymerized monomers.
- the surfactant described in the present application is used as an emulsifier to prepare fluorine-containing polymers, such as polyvinylidene fluoride (PVDF), polyvinyl fluoride, polytrifluoroethylene, polychlorotrifluoroethylene, polytetrafluoroethylene, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-trifluoroethylene-chlorofluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, and the like.
- PVDF polyvinylidene fluoride
- PVDF polyvinyliden
- the emulsion polymerization reaction described in the present application is usually carried out at a polymerization temperature of 5 to 130° C. and a polymerization pressure of 0.05 to 10 MPa, preferably at a polymerization temperature of 60 to 100° C. and a polymerization pressure of 1 to 6 MPa.
- the polymerization temperature and polymerization pressure are appropriately determined according to the type of fluorinated monomer used, the molecular weight of the target fluorinated polymer, and the reaction rate.
- the surfactant described in the present application can be used together with initiators, chain transfer agents, and detergents commonly used in the field of polymerization, and will not decompose under the polymerization temperature and polymerization pressure of emulsion polymerization.
- the surfactant provided in this application has the following beneficial effects:
- the surfactant provided in this application replaces PFOA-type fluorinated surfactants, thereby solving the environmental pollution pressure of PFOA-type fluorinated surfactants;
- the surfactant provided in the present application replaces the hydrophilic comonomer surfactant to avoid the fluorine-containing polymer obtained by polymerization containing an inseparable hydrophilic group;
- the surfactant provided in the present application replaces the block copolymer surfactant, thereby increasing the gas-liquid material exchange rate and improving production efficiency.
- the present application also provides a method for preparing a fluorine-containing polymer, the preparation method comprising the steps of obtaining a fluorine-containing polymer by emulsion polymerization of polymerization monomers in an aqueous medium in the presence of a surfactant and an initiator, wherein the surfactant is the surfactant provided in the first aspect of the present application.
- the amount of the surfactant used in the present application is the same as that described in the polymerization reaction using the surfactant in the third aspect above, and will not be repeated here.
- the particle size of the fluorine-containing polymer emulsion described in the present application is 70 to 240 nm, preferably, the particle size of the emulsion is 110 to 160 nm.
- the emulsion polymerization described in the present application comprises the step of obtaining a fluorine-containing polymer by emulsion polymerization of polymerized monomers, wherein the polymerized monomers are fluorine-containing monomers or a mixture of fluorine-containing monomers and non-fluorine-containing monomers.
- the process conditions of the emulsion polymerization reaction described in the present application are as described in the third aspect above and will not be repeated here.
- the emulsion polymerization reaction described in the present application is carried out under stirring, and the stirring rate is 50 to 700 rpm.
- the stirring method is preferably magnetic stirring or mechanical stirring, and other stirring methods that can achieve the corresponding stirring function can also be selected.
- the content of the surfactant is 0.1 ppm to 1000 ppm on a mass basis relative to the mass of the fluorine-containing polymer, preferably, 100 ppm or less, and more preferably, 10 ppm or less.
- the fluorine-containing polymer described in the present application is any polymer containing fluorine atoms.
- the specific materials of the fluorine-containing polymer are as described in the third aspect above and will not be repeated here.
- the initiator described in the present application is a commonly used initiator in the field of fluorine-containing monomer polymerization.
- the initiator includes persulfate, such as ammonium persulfate or potassium persulfate.
- the initiator can also include an azo initiator, such as 2,2'-azobis-(2,4-dimethyl-4-methoxyvaleronitrile) or azobisisobutyronitrile (AIBN).
- the initiator can also include organic peroxides, such as alkyl peroxides, dialkyl peroxides, diacyl peroxides, peroxyesters and peroxydicarbonates; such as 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane, benzoyl peroxide and its derivatives, tert-butyl peroxypivalate, tert-amyl peroxypivalate, bis(4-tert-butylcyclohexyl) peroxydicarbonate, sodium peroxydicarbonate or di(n-alkyl) peroxydicarbonate, tert-butyl diperoxy, peroxysuccinic acid, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate.
- organic peroxides such as alkyl peroxides, dialkyl peroxides, diacyl peroxides, peroxyesters and peroxydicarbonates
- the emulsion polymerization reaction described in the present application may add a chain transfer agent to adjust the molecular weight of the fluorinated polymer.
- the chain transfer agent is a commonly used chain transfer agent in the field of fluorinated monomer polymerization, and the chain transfer agent is selected from at least one of alcohol small molecule compounds, ether small molecule compounds, ester small molecule compounds, thiol small molecule compounds, and halogen-containing organic compounds.
- the amount of the chain transfer agent used in the emulsion polymerization reaction accounts for 0.005wt% to 5wt% of the total amount of the polymerized monomers.
- the method for preparing the surfactant described in the present application comprises the step of obtaining a surfactant by polymerizing at least one hydrophobic monomer having a structure as shown in formula (1) and at least one hydrophilic monomer having a structure as shown in formula (2) in a solvent containing an initiator, wherein the definitions of formula (1) and formula (2) are the same as those described in the first aspect.
- the preparation method of the surfactant described in the present application is the same as described in the second aspect of the present application, and will not be repeated here.
- the method for preparing the fluorinated polymer provided in the present application has the following beneficial effects:
- the surfactant provided in this application replaces PFOA-type fluorinated surfactants, thereby solving the environmental pollution pressure of PFOA-type fluorinated surfactants;
- the surfactant provided in the present application replaces the hydrophilic comonomer surfactant to avoid the fluorine-containing polymer obtained by polymerization containing an inseparable hydrophilic group;
- the surfactant provided in the present application replaces the block copolymer surfactant, thereby increasing the gas-liquid material exchange rate and improving production efficiency.
- the inventors of the present application unexpectedly discovered during the study of the surfactant structure that when the HLB value of the surfactant is greater than 7, only by changing the average degree of polymerization of the polyethylene glycol segment in the surfactant while other polymerization reaction conditions remain unchanged, the particle size of the fluorinated polymer emulsion can be adjusted within the range of 100nm to 250nm. This is because the spatial repulsion between the hydrophilic segments of the surfactant described in the present application on the emulsion surface is affected by the average degree of polymerization of the polyethylene glycol segment.
- the particle size of the emulsion will also change under the same polymerization conditions.
- the water-oil balance value HLB of the surfactant changes, it will also affect the spatial repulsion between the hydrophilic segments, and the emulsion particle size will also change.
- the two work together to achieve the adjustment of the particle size of the fluorinated polymer emulsion in the present application within the range of 100nm to 250nm.
- the present application also provides a method for adjusting the particle size of a fluorine-containing polymer emulsion, the method comprising: polymerizing monomers in an aqueous medium in the presence of a surfactant to obtain a fluorine-containing polymer having an emulsion particle size of 100 nm to 250 nm through a polymerization reaction;
- the surfactant is a multi-block copolymer with a block number greater than 5, and the block length of the hydrophobic monomer structural unit or the hydrophilic monomer structural unit in a single block is 1 to 10.
- the surfactant is selected from at least one copolymer containing a polyethylene glycol segment, and its water-oil balance value HLB is 8 to 16,
- the average degree of polymerization of the polyethylene glycol segments in the surfactant is greater than 4 and less than or equal to 100.
- the water-oil balance value HLB of the surfactant described in the present application is 9 to 12 and the average degree of polymerization of the polyethylene glycol segment in the surfactant is greater than 9 and less than or equal to 50.
- the increase in the average degree of polymerization of the polyethylene glycol segments in the surfactant described in the present application achieves a decrease in the particle size of the fluorinated polymer emulsion.
- the surfactant of the present invention can form a single-molecule micelle structure in water, and can also be adsorbed to the interface of polymer particles to form an amphoteric membrane structure.
- the conversion between the micelle structure and the membrane structure state only requires changing the main chain of the copolymer. Partial conformation can be achieved, which makes the surfactant have good mobility while reducing the interfacial energy, increasing the material exchange rate and promoting the polymerization reaction.
- the surfactant of the present application has the characteristics of excellently reducing the side reaction of emulsion polymerization, improving the wettability of the interface, increasing the steric hindrance of the surface hydration layer, and improving the stability of the dispersion system.
- the surfactant described in the present application is selected from at least one of the copolymers containing polyethylene glycol segments.
- the surfactant is the surfactant described in the first aspect of the present application and will not be described in detail here.
- the HLB value of the surfactant described in the present application is 8 to 16. From the perspectives of increasing the emulsion polymerization rate, reducing the occurrence of side reactions in emulsion polymerization, improving the wettability of the water-oil interface, increasing the steric hindrance of the surface hydration layer, and improving the stability of the dispersion system, the HLB value is preferably 9 to 12.
- the amount of the surfactant used in the polymerization reaction described in the present application is the same as the amount added in the emulsion polymerization reaction in the third aspect above, and will not be repeated here.
- the polymerizable monomer described in the present application is a fluorine-containing monomer or a mixture of a fluorine-containing monomer and a non-fluorine-containing monomer.
- the fluorine-containing monomer and the non-fluorine-containing monomer are the same as described in the third aspect above and will not be repeated here.
- the fluorine-containing polymer described in the present application is any polymer containing fluorine atoms.
- the specific materials of the fluorine-containing polymer are as described in the third aspect above and will not be repeated here.
- the number average molecular weight of the fluorine-containing polymer described in the present application is ⁇ 100,000, preferably ⁇ 200,000.
- the number average molecular weight of the fluorine-containing polymer is mainly affected by the polymerization process.
- the preparation method of the surfactant described in the present application is the same as described in the second aspect of the present application, and will not be repeated here.
- the method for adjusting the particle size of the fluorinated polymer emulsion provided in the present application has the following beneficial effects:
- the particle size of the fluorinated polymer emulsion is adjusted within the range of 100 nm to 250 nm by adjusting the water-oil balance value HLB of the surfactant and the average degree of polymerization of the polyethylene glycol segment;
- the surfactant provided in this application replaces PFOA-type fluorinated surfactants, thereby solving the environmental pollution pressure caused by PFOA-type fluorinated surfactants;
- the surfactant provided in the present application replaces the hydrophilic comonomer surfactant to avoid the presence of inseparable hydrophilic groups in the fluorinated polymer obtained by polymerization;
- the surfactant provided in this application replaces the block copolymer surfactant, thereby increasing the gas-liquid material exchange rate and improving production efficiency.
- the present application has found that by using the surfactant described in the present application in combination with an ionic compound participating in the emulsion polymerization reaction, the preparation of a small-particle fluorine-containing polymer emulsion can be achieved.
- the surfactant of the present invention can form a single-molecule micelle structure in water, and can also be adsorbed to the interface of polymer particles to form an amphoteric membrane structure.
- the transition between the micelle structure and the membrane structure state can be achieved by simply changing the partial conformation of the copolymer main chain, which makes the surfactant have good mobility while reducing the interfacial energy, increasing the material interaction.
- the surfactant of the present application has the characteristics of excellently reducing the side reaction of emulsion polymerization, improving the wettability of the interface, increasing the steric hindrance of the surface hydration layer, and improving the stability of the dispersion system.
- the surfactant described in the present application is used in combination with an ionic compound participating in an emulsion polymerization reaction to prepare a fluorinated polymer with an emulsion particle size in the range of 70 to 100 nm. This is due to the combined effect of the steric hindrance of the hydrophilic chain segment of the surfactant and the interfacial potential of the ionic group of the ionic compound. In the hydration layer interface formed by the high steric hindrance hydrophilic chain segment, adding a layer of interfacial potential can better prevent the aggregation of the emulsion particles, and also better reduce the interfacial energy between the polymer and water.
- the present application also provides a method for preparing a small-particle fluorine-containing polymer emulsion, the method comprising: in the presence of a surfactant, polymerizing monomers in an aqueous medium to perform an emulsion polymerization reaction to obtain a fluorine-containing polymer emulsion with a particle size of 70 to 100 nm,
- the ionic compound participates in the emulsion polymerization reaction and the ionic compound is bonded to the fluorine-containing polymer molecular chain.
- the amount of the ionic compound used is 0.005wt% to 5wt% of the generated fluorine-containing polymer.
- the surfactant is a multi-block copolymer with a block number greater than 5, and the block length of the hydrophobic monomer structural unit or the hydrophilic monomer structural unit in a single block is 1 to 10.
- the surfactant is the surfactant described in the first aspect above, which will not be described in detail here.
- the ionic compound described in the present application can be bonded to the molecular chain of the fluorine-containing polymer.
- the ionic compound acts as a polymerization chain transfer agent.
- the ionic compound is selected from at least one of carboxylic acid oligomers, sulfonic acid oligomers, phosphoric acid oligomers, imidazolium oligomers, pyrazolium oligomers, phosphonium oligomers, phosphonium oligomers, sulfobetaine oligomers, carboxybetaine oligomers and quaternary ammonium oligomers.
- the oligomer is defined in this paragraph as a compound with a number average molecular weight between 50 and 5000 g/mol.
- the ionic compound is selected from at least one of sodium polyacrylate, sodium polymethacrylate, lithium polyacrylate, lithium polymethacrylate, ammonium polyacrylate, ammonium polymethacrylate, polyquaternium salt-1 to 51, sodium polystyrene sulfonate, lithium polystyrene sulfonate and ammonium polystyrene sulfonate.
- the ionic compound When the ionic compound is bonded to the fluorine-containing polymer molecular chain, the ionic compound acts as a comonomer, and the ionic compound is selected from at least one of acrylates, ionic acrylates, methacrylates, ionic methacrylates, ionic allyl alcohol esters, ionic allyl alcohol ethers, ionic vinyl ethers, fumaric acid monoester salts, itaconates and 10-undecenoates.
- the usage amount of the ionic compound in the present application is 0.005 wt% to 5 wt% of the generated fluorine-containing polymer.
- the usage amount of the ionic compound is 0.01 wt% to 0.1 wt% of the generated fluorine-containing polymer.
- the HLB value of the surfactant described in the present application is 8 to 16. From the perspectives of increasing the emulsion polymerization rate, reducing the occurrence of side reactions in emulsion polymerization, improving the wettability of the water-oil interface, increasing the steric hindrance of the surface hydration layer, and improving the stability of the dispersion system, the HLB value is preferably 10 to 12.
- the amount of the surfactant used in the polymerization reaction is the same as that added in the emulsion polymerization reaction in the third aspect. The quantity will not be elaborated here.
- the polymerizable monomer described in the present application is a fluorine-containing monomer or a mixture of a fluorine-containing monomer and a non-fluorine-containing monomer.
- the fluorine-containing monomer and the non-fluorine-containing monomer are the same as described in the third aspect above and will not be repeated here.
- the fluorine-containing polymer described in the present application is any polymer containing fluorine atoms.
- the specific materials of the fluorine-containing polymer are as described in the third aspect above and will not be repeated here.
- the number average molecular weight of the fluorinated polymer described in the present application is greater than 170,000, preferably greater than 200,000, and more preferably greater than 1,000,000.
- the number average molecular weight of the fluorinated polymer is mainly affected by the polymerization process. If the emulsion polymerization reaction described in the present application does not use ionic compounds, although the emulsion particle size can be less than 100 nm when the amount of surfactant used is increased, the number average molecular weight of the fluorinated polymer is low, and the preparation of a high number average molecular weight fluorinated polymer cannot be achieved.
- the present application also provides an application of a small-particle fluorine-containing polymer emulsion, wherein the small-particle fluorine-containing polymer emulsion is used as a component in coatings, adhesives, rubbers, 3D printing materials, diaphragm coatings, water treatment membranes, composite material additives, microgels, and structural adhesives for electronic products.
- the preparation method of the surfactant described in the present application is the same as described in the second aspect of the present application, and will not be repeated here.
- the small particle size fluorinated polymer emulsion provided in this application has the following beneficial effects:
- the particle size of the small-particle fluorinated polymer emulsion of the present application is 70-100 nm, and the number average molecular weight of the fluorinated polymer is greater than 170,000;
- the surfactant provided in this application replaces PFOA-type fluorinated surfactants, thereby solving the environmental pollution pressure caused by PFOA-type fluorinated surfactants;
- the polymerization reaction of the present application uses ionic oligomers instead of small molecules as chain transfer agents to improve the grafting efficiency of ionic groups and avoid the use of a large amount of surfactants and water-soluble initiators that would reduce the upper limit of polymer molecular weight;
- the present application can also use ionic copolymer monomers to introduce trace polar groups to stabilize the emulsion particles.
- FIG1 is a schematic diagram of the structure of a surfactant in the prior art.
- the hydrophilic monomer is distributed as dots, 1 is a hydrophobic segment, and 2 is a hydrophilic segment.
- FIG2 is a schematic diagram of the structure of the surfactant of the present application, 1 is a hydrophobic segment, and 2 is a hydrophilic segment.
- FIG3 is a schematic diagram of the surfactant of the present application forming a single-molecule micelle structure in water, 1 is a hydrophobic segment, and 2 is a hydrophilic segment.
- FIG4 is a schematic diagram showing that the surfactant of the present application is adsorbed onto the interface of the fluoropolymer to form an amphiphilic membrane structure, where 1 is a hydrophobic segment and 2 is a hydrophilic segment.
- FIG5 is a schematic diagram showing the principle of particle size control of the fluorine-containing polymer emulsion of the present application, where 1 is the emulsion particle and 2 is the hydrophilic segment.
- FIG. 6 is a SEM image of the fluorine-containing polymer emulsion prepared in Example III-1.
- FIG. 7 is a SEM image of the fluorine-containing polymer emulsion prepared in Example III-2.
- FIG8 is a SEM image of the fluorine-containing polymer emulsion prepared in Example III-3.
- FIG. 9 is a SEM image of the fluorine-containing polymer emulsion prepared in Example III-4.
- FIG. 10 is a SEM image of the fluorine-containing polymer emulsion prepared in Example III-5.
- FIG. 12 is a SEM image of the fluorine-containing polymer emulsion prepared in Example IV-1.
- FIG. 13 is a SEM image of the fluorine-containing polymer emulsion prepared in Example IV-2.
- FIG. 14 is a SEM image of the fluorine-containing polymer emulsion prepared in Comparative Example IV-1.
- FIG. 15 is a SEM image of the fluorine-containing polymer emulsion prepared in Comparative Example IV-2.
- Mn refers to the number average molecular weight of the polymer
- PDI refers to the polymer dispersibility index. The larger the PDI, the wider the molecular weight distribution; the smaller the PDI, the more uniform the molecular weight distribution.
- PLURONIC 31R1 Difunctional block copolymer surfactant with terminal secondary hydroxyl groups, nonionic surfactant, non-toxic, from BASF.
- Rh is the hydrodynamic radius.
- the micelle particle size (hydrodynamic radius) of the surfactant described in the present application in the aqueous medium is similar to the hydrodynamic radius in isopropanol, indicating that the micelles formed by the surfactant in the aqueous medium are mostly unimolecular micelles; when the difference is large, it indicates that the surfactant in the aqueous medium has folding and the unimolecular micelle content is relatively low.
- the hydrodynamic radius is measured using a HORIBA/SZ-100Z2 instrument.
- V-50 azobisisobutyramidine hydrochloride initiator.
- Surfactant A1 was prepared from methyl methacrylate and polyethylene glycol methyl ether methacrylate.
- methyl methacrylate (4.0 g), polyethylene glycol methyl ether methacrylate (degree of polymerization 20, molecular weight about 950, 6.0 g), and isopropanol (5.0 g) into a three-necked flask replaced with vacuum nitrogen, keep stirring and heat to 80°C. After the temperature is constant, add dimethyl azobisisobutyrate (0.60 g), continue heating and stirring for 15 hours, and the monomer and initiator are completely converted (conversion rate is greater than 99%). Add pure water (85 g) and keep stirring until completely dissolved. Cool and let stand to room temperature to obtain a solution containing a surfactant.
- Surfactant A2 was prepared from methyl methacrylate and polyethylene glycol methyl ether methacrylate.
- methyl methacrylate (2.5g), polyethylene glycol methyl ether methacrylate (polymerization degree 9, molecular weight about 475, 2.5g), and isopropanol (5.0g) into a three-necked flask replaced with vacuum nitrogen, keep stirring and heat to 90°C. After the temperature is constant, add dimethyl azobisisobutyrate (0.30g), continue heating and stirring for 8 hours, and the monomer and initiator are completely converted (conversion rate is greater than 99%). Add pure water (85g) and keep stirring until completely dissolved. After cooling and standing to room temperature, a solution containing a surfactant is obtained.
- Surfactant A3 was prepared from tert-butyl methacrylate and polyethylene glycol methyl ether methacrylate.
- tert-butyl methacrylate (4.0 g), polyethylene glycol methyl ether methacrylate (degree of polymerization 20, molecular weight about 950, 6.0 g), and isopropanol (5.0 g) into a three-necked flask replaced with vacuum nitrogen, keep stirring and heat to 90°C. After the temperature is constant, add dimethyl azobisisobutyrate (0.60 g), continue heating and stirring for 8 hours, and the monomer and initiator are completely converted (conversion rate is greater than 99%). Add pure water (85 g) and keep stirring until completely dissolved. After cooling and standing to room temperature, a solution containing a surfactant is obtained.
- Surfactant A4 was prepared from tert-butyl methacrylate and polyethylene glycol methyl ether methacrylate.
- Surfactant A5 was prepared from tert-butyl methacrylate and polyethylene glycol methacrylate.
- Surfactant A6 was prepared from phenyl methacrylate and polyethylene glycol methyl ether methacrylate.
- Phenyl methacrylate (4.0 g), polyethylene glycol methyl ether methacrylate (degree of polymerization 20, molecular weight about 950, 6.0 g), isopropanol (5.0 g) are added to a three-necked flask replaced with vacuum nitrogen, and the mixture is stirred and heated to 90°C. After the temperature is constant, dimethyl azobisisobutyrate (0.60 g) is added, and after continuous heating and stirring for 8 hours, the monomer and initiator are completely converted (conversion rate is greater than 99%). Pure water (85 g) is added and stirred until completely dissolved. After cooling and standing to room temperature, a solution containing a surfactant is obtained.
- Copolymer A7 was prepared from 1-methyldodecyl methacrylate and polyethylene glycol methyl ether methacrylate.
- the hydrophobic monomer R3 groups of Examples I-1 to I-6 are phenyl, methyl, and tert-butyl, and the degree of polymerization of polyethylene glycol in the hydrophilic monomer R6 group is 9, 10, and 20, and the Mn of the obtained surfactant is 46800-64200, which can form a single-molecule micelle structure in water, and its micelle particle size in water is 10.9-15.8nm, and the surface activity performance is good, and it can be used as an emulsifier to achieve the preparation of different polymer emulsion particle sizes.
- the hydrophobic monomer R3 group of Comparative Example I-1 is 1-methyldodecyl.
- the main chain mobility is insufficient, which reduces the surface performance of the surfactant.
- the Mn of the obtained surfactant is 51300, it forms multimolecular micelles in water, and its micelle particle size is 98.3nm, and the surface activity performance is poor, and it is not preferred to be used as an emulsifier for polymer preparation.
- PVDF was prepared using the surfactant A1 prepared in Example I-1 as an emulsifier.
- the total demulsified material content is 0.16 wt% calculated based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 125 nm, and the viscosity of its 7 wt% NMP solution is 1280 cp (shear rate is 2.325 s-1).
- Surfactant A3 prepared in Example I-3 was used as an emulsifier to prepare PVDF-HFP.
- the emulsion (2290g, solid content 24.7wt%) was collected.
- the total demulsified material content was calculated as 0.02wt% based on the polymer mass.
- the average particle size of the obtained PVDF-HFP emulsion observed by SEM was 134nm.
- PVDF was prepared using copolymer A7 prepared in Comparative Example I-1 as an emulsifier.
- Example I-1 The same as Example I-1, except that the copolymer A7 (150 g, copolymer content 0.1 wt%, isopropanol content 0.3 wt%) prepared in Comparative Example I-1 is used instead of the surfactant A1 (150 g, surfactant content 0.1 wt%, isopropanol content 0.3 wt%) prepared in Example I-1.
- the stirring is stopped and the pressure relief valve is opened, the emulsion (1984 g, solid content 15.8 wt%) is collected after the pressure drops to normal pressure.
- the total demulsified material content is 16.2 wt% calculated based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 243 nm, and the viscosity of its 7 wt% NMP solution is 770 cp (shear rate is 2.325 s-1).
- PFOA was used as an emulsifier to prepare PVDF.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 132 nm, and the viscosity of its 7 wt% NMP solution is 2896 cp (shear rate is 2.325 s-1).
- PVDF was prepared using block copolymers as emulsifiers.
- Application Example I-1 and Application Example I-2 use the surfactant of the present application, and the amount used accounts for 0.01 to 0.1 wt% of the polymerization amount.
- the obtained polymer emulsion has a high solid content and a low demulsification amount.
- Application Comparative Example I-1 uses 1-methyldodecyl methacrylate as a surfactant prepared by a hydrophobic monomer.
- the micelle particle size formed in water is 98.3 nm.
- the obtained polymer emulsion has a low solid content and a high demulsification amount. It is not preferred to use it as an emulsifier.
- the amount of PFOA used in Application Comparative Example I-2 is 8.3 times that of Application Example I-1 (calculated as a percentage of the polymer generated amount).
- the amount of PLURONIC31R1 used in Application Comparative Example I-3 is 5.4 times that of Application Example I-1 (calculated as a percentage of the polymer generated amount), and the demulsification amount is 7.5 times that of Application Example I-1.
- the preparation method is the same as that of surfactant B2, except that tert-butyl alcohol is used instead of isopropanol.
- the preparation method is the same as that of surfactant B2, except that ethyl acetate is used instead of isopropanol.
- Surfactant B6-tert-butyl methacrylate polyethylene glycol methyl ether methacrylate (molecular weight about 475, q is 9) As a monomer
- the hydrophobic monomer R3 group of the surfactant is phenyl, methyl, and tert-butyl
- the degree of polymerization of polyethylene glycol in the hydrophilic monomer R6 group is 9 and 20
- the Mn of the obtained surfactant is 43300-64200
- the micelle particle size in water is 11.6-15.8 nm, which is equivalent to the hydrodynamic radius in isopropanol, indicating that it can form a unimolecular micelle structure in water, has good surface activity, and can be used as an emulsifier to achieve the preparation of polymer emulsions of different particle sizes.
- Example II-1 Preparation of fluorinated polymer PVDF using surfactant B1
- the total demulsified material content is 0.16 wt% based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 125 nm, and the viscosity of its 7 wt% NMP solution is 1280 cp (shear rate is 2.325 s -1 ).
- Example II-2 Preparation of fluorinated polymer PVDF-HFP using surfactant B2
- the emulsion (2290g, solid content 24.7wt%) was collected.
- the total demulsified material content was calculated as 0.02wt% based on the polymer mass.
- the average particle size of the obtained PVDF-HFP emulsion observed by SEM was 134nm.
- Pure water (1500g) was added to a 3.4L polymerization reactor. After the reactor was closed, an oil-sealed vacuum pump was used to continuously evacuate for 5 minutes, and then high-purity nitrogen was backfilled to 0.15MPa. This operation was repeated three times. After the last vacuuming, trifluorochloroethylene (604g) was added using a high-pressure gas cylinder, and a B2 dilution solution (150g, surface active content 0.1wt%, isopropanol content 0.3wt%) was added using a plunger pump, 350g of pure water was added, and stirring (700rpm) was turned on to heat the mixture to 80°C.
- a B2 dilution solution 150g, surface active content 0.1wt%, isopropanol content 0.3wt
- an ammonium persulfate solution (50g, 2wt%) was added using a plunger pump to initiate the polymerization reaction.
- the temperature in the reactor 80 ⁇ 0.5°C
- the reaction pressure (2.33MPa) were maintained.
- stirring was stopped and the pressure relief valve was opened.
- the emulsion (2113g, solid content 8.1wt%) was collected.
- the total demulsified material content was 0.01wt% calculated based on the polymer mass.
- the average particle size of the PCTFE emulsion obtained was estimated to be 98 nm by SEM observation.
- Example II-5 Preparation of fluoropolymer PTFE using surfactant B2
- Pure water (1800 g) was added to a 3.4 L polymerization reactor. After the reactor was closed, an oil-sealed vacuum pump was used to continuously evacuate for 5 minutes, and high-purity nitrogen was backfilled to 0.15 MPa. This operation was repeated three times. After the last evacuation, a plunger pump was used to add a B2 dilution solution (150 g, surface active content 0.1 wt%, isopropanol content 0.3 wt%), tetrafluoroethylene was added to a pressure of 1.75 MPa, and stirring (700 rpm) was turned on to heat the mixture to 80°C.
- a B2 dilution solution 150 g, surface active content 0.1 wt%, isopropanol content 0.3 wt%
- tetrafluoroethylene was added to a pressure of 1.75 MPa
- stirring 700 rpm
- an ammonium persulfate solution 50 g, 1 wt%) was added with a plunger pump to initiate the polymerization reaction.
- the temperature in the reactor was maintained at 80 ⁇ 0.5°C, and tetrafluoroethylene was continuously added to maintain the pressure in the reactor (1.75 MPa).
- stirring was stopped and the pressure relief valve was opened.
- the emulsion 2213 g, solid content 12.8 wt%) was collected.
- the total demulsified material content was 0.09 wt% calculated based on the polymer mass.
- the average particle size of the obtained TFE emulsion was estimated to be 179 nm by SEM observation.
- Example II-6 Preparation of fluorinated polymer PVDF using surfactant B2
- the total demulsified material content is 0.02 wt% based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 116 nm, and the viscosity of its 7 wt% NMP solution is 3680 cp (shear rate is 2.325 s -1 ).
- Example II-7 Preparation of fluorinated polymer PVDF using surfactant B2
- the total demulsified material content was calculated as 1.1wt% based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM was 194nm, and the viscosity of its 7wt% NMP solution was 16220cp (shear rate was 2.325s -1 ).
- Example II-8 Preparation of fluorinated polymer PVDF using surfactant B2
- the total demulsified material content is 0.06 wt% calculated based on the polymer mass.
- the obtained polyvinylidene fluoride is analyzed by SEM. The average particle size of the emulsion was observed to be 160 nm, and the viscosity of its 7 wt % NMP solution was 3648 cp (shear rate was 2.325 s -1 ).
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 154 nm, and the viscosity of its 7 wt% NMP solution is 2408 cp (shear rate is 2.325 s -1 ).
- Example II-12 Preparation of fluorinated polymer PVDF using surfactant B5
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 202 nm, and the viscosity of its 7 wt% NMP solution is 1152 cp (shear rate is 2.325 s -1 ).
- Example II-13 Preparation of fluorinated polymer PVDF using surfactant B6
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 194 nm, and the viscosity of its 7 wt% NMP solution is 1568 cp (shear rate is 2.325 s -1 ).
- the total demulsified material content is 0.53wt% calculated based on the mass of the polymer.
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM was 183 nm, and the viscosity of its 7wt% NMP solution was 1843 cp (shear rate was 2.325 s-1).
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 132 nm, and the viscosity of its 7 wt% NMP solution is 2896 cp (shear rate is 2.325 s -1 ).
- the average particle size of the obtained polyvinylidene fluoride emulsion observed by SEM is 198 nm, and the viscosity of its 7 wt% NMP solution is 1152 cp (shear rate is 2.325 s -1 ).
- Example II-8 uses surfactant B2 to prepare PVDF.
- the amount of surfactant used accounts for 0.599wt% (greater than 0.3wt%) of the polymer generated, the emulsion particle size can be less than 100nm, but the induction period is long and the polymerization reaction rate is slow.
- the surfactant of the present application can realize the preparation of fluoropolymers with different emulsion particle sizes.
- Example II-1 Compared with Example II-1, the emulsion particle size, solid content and demulsification amount of the fluoropolymer in Comparative Example II-1 are equivalent, but the amount of PFOA used in Comparative Example II-1 is 8.3 times that of Example II-1 (calculated as a percentage of the polymer generated). Compared with Example II-1, the usage of PLURONIC 31R1 in Comparative Example II-2 is 5.4 times that of Example II-1 (calculated as a percentage of the polymer generated), the demulsification amount is 7.5 times that of Example II-1, and the induction period is 2 times that of Example II-1.
- Methyl methacrylate and polyethylene glycol methyl ether methacrylate (molecular weight of about 950, q of 20) were used as polymerization monomers to prepare surfactant C1.
- Methyl methacrylate and polyethylene glycol methyl ether methacrylate (molecular weight of about 475, q of 9) were used as polymerization monomers to prepare surfactant C2.
- Methyl methacrylate and polyethylene glycol methyl ether methacrylate (molecular weight of about 475, q of 9) were used as polymerization monomers to prepare surfactant C3.
- Methyl methacrylate (5.0 g), polyethylene glycol methyl ether methacrylate (molecular weight about 475, 5.0 g, q is 9), and isopropanol (5.0 g) were added to a three-necked flask replaced with vacuum nitrogen, and stirred and heated to 90°C. After the temperature was constant, dimethyl azobisisobutyrate (0.60 g) was added, and after continuous heating and stirring for 8 hours, pure water (85 g) was added and stirred until completely dissolved. After cooling and standing to room temperature, a surfactant solution C3 that can be directly used in the polymerization reaction of fluorinated monomers was obtained.
- Example III-1 Preparation of PVDF using surfactant C1
- the total demulsified material content is 0.16 wt% calculated based on the polymer mass.
- the average particle size of the polyvinyl chloride olefin (PVDF) emulsion observed by SEM was 116 nm (particle size range was 109.4 nm to 125.2 nm), and the viscosity of its 7 wt % NMP solution was 1280 cp (shear rate was 2.325 s -1 ).
- the total demulsified material content is 0.09 wt% calculated based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride PVDF emulsion observed by SEM is 202 nm (particle size range is 194.6 nm to 210.6 nm), and the viscosity of its 7 wt% NMP solution is 1568 cp (shear rate is 2.325 s -1 ).
- Example III-3 Preparation of PVDF using surfactants C1 and C2 (mass ratio 2:1)
- the total demulsified material content was calculated as 0.06wt% based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride PVDF emulsion was 140nm (particle size range 134.2nm ⁇ 145.9nm) observed by SEM, and the viscosity of its 7wt% NMP solution was 1384cp (shear rate 2.325s -1 ).
- Example III-4 Preparation of PVDF using surfactants C1 and C2 (mass ratio 1:2)
- the total demulsified material content was 0.11wt% calculated based on the polymer mass.
- the obtained poly(vinylidene fluoride) The average particle size of the ethylene PVDF emulsion observed by SEM is 158 nm (particle size range is 154.3 nm to 165.7 nm), and the viscosity of its 7 wt % NMP solution is 1456 cp (shear rate is 2.325 s -1 ).
- the emulsion (2084g, solid content 23.0wt%) was collected.
- the total demulsified material content was calculated as 1.1wt% based on the polymer mass.
- the average particle size of the obtained polyvinylidene fluoride PVDF emulsion observed by SEM was 239nm (particle size range 234.0nm ⁇ 247.3nm), and the viscosity of its 7wt% NMP solution was 1448cp (shear rate 2.325s -1 ).
- Methyl methacrylate and polyethylene glycol methyl ether methacrylate (molecular weight of about 950, q of 20) were used as polymerization monomers to prepare surfactant D1.
- Methyl methacrylate (4.0 g), polyethylene glycol methyl ether methacrylate (molecular weight about 950, q is 20, 6.0 g), and isopropanol (5.0 g) were added to a three-necked flask replaced with vacuum nitrogen, and the mixture was stirred and heated to 80°C. After the temperature was constant, dimethyl azobisisobutyrate (0.60 g) was added, and the mixture was heated and stirred for 15 hours until the monomer and initiator were completely converted (conversion Pure water (85 g) was added and stirred until completely dissolved. The mixture was cooled and allowed to stand to room temperature to obtain a surfactant solution D1 which can be directly used in the polymerization reaction of fluorinated monomers.
- Tert-butyl methacrylate and polyethylene glycol methyl ether methacrylate (molecular weight of about 950, q of 20) were used as polymerization monomers to prepare surfactant D2.
- tert-butyl methacrylate (4.0g), polyethylene glycol methyl ether methacrylate (molecular weight about 950, 6.0g), and isopropanol (5.0g) into a three-necked flask replaced with vacuum nitrogen, keep stirring and heat to 90°C. After the temperature is constant, add dimethyl azobisisobutyrate (0.60g), continue heating and stirring for 8 hours, and the monomer and initiator are completely converted (conversion rate is greater than 99%). Add pure water (85g) and keep stirring until it is completely dissolved. After cooling and standing to room temperature, a surfactant solution D2 that can be directly used in fluorine-containing polymerization reactions is obtained.
- Phenyl methacrylate and polyethylene glycol methyl ether methacrylate (molecular weight of about 950, q of 20) were used as polymerization monomers to prepare surfactant D3.
- Phenyl methacrylate (4.0 g), polyethylene glycol methyl ether methacrylate (degree of polymerization 20, molecular weight about 950, 6.0 g), and isopropanol (5.0 g) were added to a three-necked flask replaced with vacuum nitrogen, and stirred and heated to 90°C. After the temperature was constant, dimethyl azobisisobutyrate (0.60 g) was added, and after continuous heating and stirring for 8 hours, the monomer and initiator were completely converted (conversion rate was greater than 99%). Pure water (85 g) was added and stirred until completely dissolved. After cooling and standing to room temperature, the surfactant D3 that can be directly used in fluorine-containing polymerization reactions was obtained.
- Comparative Example IV-1 does not add ionic compounds. Although the particle size is also in the range of 70 to 100 nm, the amount of surfactant used is large (accounting for 0.6wt% of the polymer generated), the polymerization reaction rate is slow, and compared with Example IV-3, the polymerization reaction time is increased. In addition, the upper limit of the polymer molecular weight is limited. Comparative Example IV-2 is compared with Example IV-3. Under the condition of the same amount of surfactant, no ionic compound is added, and the particle size of the fluoropolymer emulsion cannot be achieved in the range of 70 to 100 nm. When the surfactant PLURONIC 31R1 used in Comparative Examples IV-3 and Comparative Examples IV-4 is added, even if the amount of ionic compound used is high, the particle size of the fluoropolymer is greater than 100 nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
本申请公开了一种表面活性剂、其制备方法及应用,所述表面活性剂为共聚物,制备所述表面活性剂的共聚单体包括至少一种结构如式(1)所示的疏水性单体和至少一种结构如式(2)所示的亲水性单体。本申请所述表面活性剂可以在水中形成单分子胶束结构,也可以吸附到聚合物粒子界面上形成两性的膜状结构,这种特殊的结构使得表面活性剂具有低界面能的同时具有很好的运动性,增加物质交换速率,促进聚合反应。
Description
相关申请的交叉引用
本申请要求在2022年11月14日提交中国专利局、申请号为“202211419402.6”,申请名称为“一种表面活性剂、其制备方法及应用”;2022年11月14日提交中国专利局、申请号为“202211425292.4”,申请名称为“一种含氟聚合物的制备方法”;2022年11月14日提交中国专利局、申请号为202211419393.0、申请名称为“一种含氟聚合物乳液粒径的调整方法”;2022年11月14日提交中国专利局、申请号为202211431306.3、申请名称为“一种小粒径含氟聚合物乳液的制备方法及其应用”四件中国专利申请的优先权,全部内容通过引用结合在本申请中。
本申请涉及聚合物领域,具体而言,涉及一种表面活性剂,其制备方法和应用以及含氟聚合物的制备方法。
当前含氟聚合物的合成方法中,乳液聚合是最为常用的聚合方法之一。其中,表面活性剂作为乳化剂是最为核心的原料之一。迄今为止,含氟单体聚合中使用最多的表面活性剂是以PFOA和GenX为首的两类含氟表面活性剂。他们的优点主要在于:特殊的表面活性和优秀的化学稳定性。然而这些优点同时也是含氟表面活性剂超长的降解半衰期与超高毒性的直接原因。这导致含氟聚合物在生产和使用上不仅有着很高废弃物处理成本,同时难以避免向自然界有着一定的排放量。为了解决上述问题,研发适用于含氟单体聚合的易降解、低毒甚至无毒的表面活性剂是一项紧急且重要的议题。
目前,关于含氟表面活性剂的毒性问题,现有技术公开了以非含氟表面活性剂进行替代,非含氟表面活性剂的设计思路有:
1)设计成可以与含氟单体发生共聚的亲水性单体,共聚得到的齐聚物作为表面活性剂用途,专利文献CN104292374A、CN104292378A、US2847404A、US5859123A采用了这种设计思路,虽然一定程度上解决了毒性问题,但是生成的含氟聚合物中会有无法去除的亲水基团,导致产品性能下降,应用范围受限,另外,这种设计思路制备的聚合物固含量普遍比较低。
2)设计成嵌段型的两性高分子表活,专利文献CN1535989A、CN111148772A采用了这种设计思路,这种设计思路带来另一个技术问题,这种嵌段型的两性高分子表面活性剂在含氟树脂表面与气液界面的运动型较差,导致界面间物质交换速率降低。
发明内容
为了解决上述仍存在的技术问题,本申请意外发现疏水性单体和亲水性单体分散分布的表面活性剂可以实现PFOA类物质的有效替代。本申请的表面活性剂可以在水中形成单分子胶束结构,同时也可以被吸附到聚合物粒子界面上形成两性的膜状结构,胶束结构一膜状结构状态之间的转换只需要改变共聚物主链的部分构象即可实现,这使得本申请的表面活性剂在降低界面能的同时具有很好的运动性,增加物质交换速率,促进聚合反应。此外本申请的表面活性剂具有优异地降低乳液聚合副反应、提升界面润湿性、增加表面水化层的位阻、提升分散体系稳定性的特点。
在本申请的第一方面,本申请提供一种表面活性剂,所述表面活性剂为共聚物,制备所述表面活性剂的共聚单体包括至少一种结构如式(1)所示的疏水性单体和至少一种结构如式(2)所示的亲水性单体,
其中,R1选自氢、C1~C18直链或支链烷基、C1~C18直链或支链烷基醚基、C1~C18直链或支链卤代烷基、C2~C18脂肪族羟基、C2~C18脂肪族硫醚、C2~C18脂肪族酯基、C2~C18脂肪族氰基;
R2选自氧、硫、亚氨基、C1~C18直链或支链或环状烷基亚氨基、C1~C18芳基亚氨基;
R3选自苯基、C1~C4直链或支链烷基、C5~C18直链或支链烷基、卞基、2-苯基-2-丙基、烯丙基,
其中,R4选自氢、C1~C18直链或支链烷基、C1~C18直链或支链烷基醚基、C1~C18直链或支链卤代烷基、C2~C18脂肪族羟基、C2~C18脂肪族硫醚、C2~C18脂肪族酯基、C2~C18脂肪族氰基;
R5选自氧、硫、亚氨基、C1~C18直链或支链或环状烷基亚氨基、C1~C18芳基亚氨基;
R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于4且小于等于100的整数,Z选自氢、C1~C3直链或支链烷基。
本申请所述式(1)所示的疏水性单体,其中,
R1选自氢、C1~C18直链或支链烷基、C1~C18直链或支链烷基醚基、C1~C18直链或支链卤代烷基、C2~C18脂肪族羟基、C2~C18脂肪族硫醚、C2~C18脂肪族酯基、C2~C18脂肪族氰基;
R2选自氧、硫、亚氨基、C1~C18直链或支链或环状烷基亚氨基、C1~C18芳基亚氨基;
R3选自苯基、C1~C4直链或支链烷基、C5~C18直链或支链烷基、卞基、2-苯基-2-丙基、烯丙基,
从降低聚合副反应、提升界面润湿性等方面考虑,优选地,R1选自氢、C1~C5直链或支链烷基、C1~C5直链或支链烷基醚基;R2选自氧、亚氨基、C1~C9的直链或支链或环状烷基亚氨基、C1~C9芳基亚氨基;R3选自苯基、C1~C4直链或支链烷基、C5~C9直链或支链烷基。更优选地,R1选自氢、甲基;R2选自氧、亚氨基;R3选自苯基、C1~C4直链或单支链烷基。当表面活性剂存在活性C-H键的情况下,会发生链转移反应,导致在含氟聚合物中接入表面活性剂。在所有的C-H键中,伯碳和苯基的C-H键的链转移活性最低。现有的非含氟表面活性剂中甲基或苯基的C-H含量普遍较低,如PLURONIC 31R1中含有大量的叔碳,叔碳活性较高。为了进一步降低链转移副反应的发生,防止表面活性剂连接到含氟聚合物中,影响含氟聚合物产品的应用性能,更更优选地,R1选自甲基;R2选自氧;R3选自甲基、叔丁基、苯基。
随着R3中碳原子数的增加,侧链的疏水基团体积会越来越大,当R3为含有2个以上的支链的碳原子数为10以上的烷基时,侧链的疏水基团体积过于庞大,导致主链运动性不足,降低产品表面性能,作为乳液聚合乳化剂使用效果不佳。另外,随着R3中碳原子数的增加,相匹配的亲水性单体中R6的乙二醇聚合度也需要增加。
本申请所述式(1)所示的疏水性单体满足上述条件,优选地,选自甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸异丙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸叔丁酯、2-乙基己基甲基丙烯酸酯、环己基甲基丙烯酸酯、甲基丙烯酸十八酯、甲基丙烯酸正己酯、异冰片基甲基丙烯酸酯、甲基丙烯酸苯酯、甲基丙烯酸卞酯、甲基丙烯酸羟丙酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸异丙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、2-乙基己基丙烯酸酯、环己基丙烯酸酯、丙烯酸十八酯、丙烯酸正己酯、异冰片基丙烯酸酯、丙烯酸苯酯、丙烯酸卞酯和丙烯酸羟丙酯中的至少一种。更优选地,所述疏水性单体选自甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸异丙酯、
甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸苯酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸异丙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸叔丁酯和丙烯酸苯酯中的至少一种。
本申请所述式(2)所示的亲水性单体,
R4选自氢、C1~C18直链或支链烷基、C1~C18直链或支链烷基醚基、C1~C18直链或支链卤代烷基、C2~C18脂肪族羟基、C2~C18脂肪族硫醚、C2~C18脂肪族酯基、C2~C18脂肪族氰基;
R5选自氧、硫、亚氨基、C1~C18直链或支链或环状烷基亚氨基、C1~C18芳基亚氨基;
R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于4且小于等于100的整数,Z选自氢、C1~C3的直链或支链的烷基。
为降低聚合副反应、提升界面润湿性、增加表面水化层的位阻、提升分散系稳定性等方面考虑,优选地,R4选自氢、C1~C5直链或支链烷基、C1~C5直链或支链烷基醚基;R5选自氧、亚氨基、C1~C9直链或支链或环状烷基亚氨基、C1~C9芳基亚氨基;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于9且小于等于100的整数,Z选自氢、C1~C3直链或支链烷基。更优选地,R4选自氢、甲基;R5选自氧、亚氨基;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于9且小于等于100的整数,Z选自氢、C1~C3直链或支链烷基。更更优选地,R4选自甲基;R5选自氧;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于9且小于等于50的整数,Z选自氢、C1~C3直链或支链烷基。
小分子含氟表面活性剂依靠其极低表面张力形成热力学稳定粒子。本申请所述表面活性剂可以依靠位阻效应增加动力学上的稳定性,表面活性剂侧链上聚乙二醇链段的长度是关键因素。当R6中聚乙二醇的聚合度(q值)过低时,由于聚乙二醇链段的位阻过小,导致乳液粒径较大,稳定性差,聚合过程中容易破乳。当R6中聚乙二醇的聚合度(q值)大于4,尤其是大于9时,聚乙二醇可以形成高位阻的水化层,使得表面活性剂可以在水中形成稳定的单分子胶束结构,可以获得较小的胶束粒径,表面活性性能更好。优选地,R6中聚乙二醇的聚合度(q值)大于20。R6中聚乙二醇的聚合度(q值)小于等于100,优选地,小于等于50。
本申请所述式(2)所示的亲水性单体满足上述条件,优选地,所述亲水性单体的分子量为400~2000,选自聚乙二醇甲醚甲基丙烯酸酯、聚乙二醇乙醚甲基丙烯酸酯、聚乙二醇丙醚甲基丙烯酸酯和聚乙二醇甲基丙烯酸酯中的至少一种。
本申请上述所述卤代为可以是全卤代也可以是部分卤代,卤代指被氟、氯、溴、碘取代,如一氟代甲烷是甲烷中的一个氢被氟取代。
本申请所述表面活性剂中式(1)所示的疏水性单体结构单元的摩尔含量为x,式(2)所示的亲水性单体结构单元的摩尔含量为y,且x+y=1、x/y=1~9。从提高乳液聚合速率、降低乳液聚合副反应发生、提升水油界面润湿性、增加表面水化层的位阻、提升分散体系稳定性等多个方面考虑,优选地,x+y=1、x/y=2~6。
当x/y的数值过低时,亲水性单体以嵌段的形式分布在疏水性主链上,同时疏水性单体链段聚合度较低,导致表面活性剂在乳液表面的吸附力下降,另外导致表面活性剂无法在水中形成单分子胶束结构,在水中形成的胶束粒径较大。当x/y的数值过大时,疏水性单体链段聚合度过长,导致疏水链段运动性下降,使得表面活性剂形成的胶束过于稳定,不容易吸附在乳液表面,乳液稳定性下降。
进一步地,本申请所述表面活性剂的HLB值为8~14。从提高乳液聚合速率、降低乳液聚合副反应发生、提升水油界面润湿性、增加表面水化层的位阻、提升分散体系稳定性等多个方面考虑,优选地,HLB值为10~12。
本申请所述表面活性剂为疏水性单体和亲水性单体的随机共聚物,所述疏水性单体和亲水性单体的竞聚率为0.5~2.5。这使得疏水性单体和亲水性单体在表面活性剂主链上实现分散分布,表面活性性能更好。
从表面活性剂分子结构角度来看,本申请所述表面活性剂是疏水性单体和亲水性单体的嵌段数大于5的多嵌段共聚物,单一嵌段中疏水性单体结构单元或亲水性单体结构单元的嵌段长度为1~10。这使得疏水性单体和亲水性单体在表面活性剂主链上实现分散分布,表面活性性能更好。
本申请所述表面活性剂的数均分子量为5000~100000。当分子量低于下限时,无法组成稳定的单分子胶束,且不能满足多嵌段共聚物的结构。当分子量高于上限时,胶束粒径偏高,且分子链段运动性下降,导致表面性能降低。
本申请所述表面活性剂在水性介质中容易形成单分子胶束,无临界胶束浓度限值。相较于现有表面活性剂,本申请所述表面活性剂的聚乙二醇链段可以形成高位阻的水化层,使得表面活性剂可以在水中形成稳定的单分子胶束结构,单分子胶束含量≥50%,优选地≥70%,更优选地≥80%。所述表面活性剂在水中形成的胶束粒径为1~90nm。含氟聚合物的乳液粒径普遍在100~300nm之间,过大的胶束粒径容易导致表面活性剂在乳液表面的吸附量偏低,优选地,表面活性剂在水中形成的胶束粒径为5~30nm,更优选地,胶束粒径为7~15nm。胶束粒径的大小与疏水性单体、亲水性单体的比例和共聚物的分子量有关。当胶束粒径过大时,形成的胶束为多分子胶束,不利于表面活性剂吸附在聚合物表面,当胶束粒径过小时,聚合物未形成有效胶束。
本申请所述表面活性剂中疏水性单体结构单元和亲水性单体结构单元的配比与表面活性
剂的性能有关。根据疏水性单体和亲水性单体的分子结构、分子量,选择不同的配比,满足乳液聚合的乳化剂应用。
本申请所述表面活性剂具有疏水性主链和亲水性侧链,碳主链具有疏水性能,亲水性单体以链的形式分散分布在疏水性主链上,侧链具有亲水性能,这种特殊的分子链结构使得表面活性剂可以在水中形成单分子胶束结构,同时也可以被吸附到聚合物粒子界面上,形成两性的膜状结构,胶束结构一膜状结构状态之间的转换只需要改变共聚物主链的部分构象即可实现,这使得在降低界面能的同时具有很好的运动性,增加物质交换速率,促进聚合反应。
在本申请的第二方面,本申请还提供一种表面活性剂的制备方法,所述制备方法包括在含有引发剂的溶剂中,至少一种结构如式(1)所示的疏水性单体和至少一种结构如式(2)所示的亲水性单体进行聚合反应获得表面活性剂的步骤,其中,式(1)和式(2)的定义同上文描述。
所述引发剂没有特殊限定,能够实现单体聚合即可。优选地,所述引发剂选自过氧化物、偶氮化合物中的至少一种,所述过氧化物可以包括过硫酸盐,如过硫酸铵、过硫酸钾、过硫酸钠等,也可以包括有机过氧化物,如烷基、二烷基或者二酰基过氧化物,如过氧化二叔丁基或过氧化苯甲酰,过氧化酯如过氧化三甲基乙酸叔戊酯、丁二酸过氧化物或者过氧化三甲基乙酸叔丁酯,或者过氧化二碳酸酯如过氧化二碳酸二正丙酯或者过氧化二碳酸二异丙酯。偶氮化合物可选自偶氮二异丁酸二甲酯、偶氮二异丁腈、2,2’-偶氮二-(2,4-二甲基-4-甲氧基戊腈)。
所述溶剂没有特殊限定,能够实现单体聚合即可。优选地,所述溶剂选自醇类小分子化合物、酯类小分子化合物、醚类小分子化合物中的至少一种。
醇类小分子化合物选自C1~C10的醇类化合物,如异丙醇、叔丁醇等。
酯类小分子化合物选自C1~C10的酯类化合物,如乙酸乙酯、碳酸二乙酯等。
醚类小分子化合物选自C1~C10的醚类化合物,如乙醚等。
当所述溶剂选自甲醇、乙醇、正丙醇、异丙醇、叔丁醇、乙酸乙酯、碳酸二甲酯、四氢呋喃、乙二醇二甲醚和1,3-二氧戊环中的至少一种,制得的表面活性剂不经与溶剂分离直接使用。当直接使用时,其中的溶剂可以起到调整聚合物分子量的作用,既链转移剂的作用。
所述聚合反应的温度为50~100℃,反应时间为5~25h。
所述疏水性单体和所述亲水性单体的转化率在99%以上,优选地,所述疏水性单体和亲水性单体的转化率接近100%,更优选地,所述疏水性单体和亲水性单体的转化率为100%。
在本申请的第三方面,本申请还提供一种表面活性剂的应用,所述表面活性剂作为乳化剂应用于乳液聚合反应。
本申请所述表面活性剂在乳液聚合反应中的加入量为聚合物生成量的0.001~5wt%,优选地为0.01~0.1wt%。增大表面活性剂用量,能够降低乳液粒径,当表面活性剂的加入量为聚合物生成量的0.3~3wt%,乳液粒径可以小于100nm。但是加入量过多诱导期长、聚合速率慢、聚合成本高。使用量过少乳液稳定性差、产率低。与目前PFOA类表面活性剂相比,在性能相同的情况下,使用量减少至其的1/5。与主流的非含氟表面活性剂相比,在相同使用量的情况下,粒径可以减少40%,稳定时长增加一倍以上。
本申请所述乳液聚合反应为含氟单体的聚合反应或含氟单体与非含氟单体的聚合反应。
所述含氟单体选自氟乙烯、偏氟乙烯、三氟乙烯、四氟乙烯、六氟丙烯、四氟丙烯、三氟氯乙烯、1,1-氟氯乙烯、1,2-氟氯乙烯、全氟烷基乙烯、全氟烷基乙烯基醚、全氟正丙基乙烯基醚、全氟甲基乙烯基醚和全氟(2,2-二甲基-1,3-二氧杂环戊烯)中的至少一种;优选地,含氟单体选自氟乙烯、偏氟乙烯、三氟乙烯、六氟丙烯、三氟氯乙烯、1,1-氟氯乙烯、全氟正丙基乙烯基醚、全氟甲基乙烯基醚和全氟(2,2-二甲基-1,3-二氧杂环戊烯)中的至少一种。上述全氟烷基乙烯基醚可选自全氟甲基乙烯基醚、全氟乙基乙烯基醚、全氟正丙基乙烯基醚、全氟丁基乙烯基醚。
所述非含氟单体选自乙烯、丙烯酸酯、丙烯酸甲酯、甲基丙烯酸酯、甲基丙烯酸甲酯、乙烯基醚、乙烯基醋酸酯、丙烯腈、丁二烯、异戊二烯、苯乙烯、马来酸酐和衣康酸中的至少一种。所述非含氟单体占聚合单体总量的0~50mol%。
本申请所述表面活性剂作为乳化剂制备含氟聚合物,如聚偏二氟乙烯(PVDF)、聚氟乙烯、聚三氟乙烯、聚三氟氯乙烯、聚四氟乙烯、偏二氟乙烯-三氟乙烯共聚物、偏二氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-三氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-三氟乙烯-氟氯乙烯共聚物、乙烯-三氟氯乙烯共聚物等。
本申请所述乳液聚合反应,通常聚合温度为5~130℃、聚合压力为0.05~10MPa,优选地,聚合温度为60~100℃,聚合压力为1~6MPa。聚合温度和聚合压力根据所使用的含氟单体的种类、目标含氟聚合物的分子量、反应速率来适当地确定。
本申请所述表面活性剂可以与聚合领域常用的引发剂、链转移剂、去污剂一同使用。在乳液聚合的聚合温度和聚合压力下不会发生分解。
与现有技术相比,本申请提供的表面活性剂具有的有益效果为:
1)本申请提供的表面活性剂替代PFOA类含氟表面活性剂,解决PFOA类含氟表面活性剂对于环境污染的压力;
2)本申请提供的表面活性剂替代亲水共聚单体类表面活性剂,避免聚合制得的含氟聚合物中含有无法分离的亲水基团;
3)本申请提供的表面活性剂替代嵌段型共聚物类表面活性剂,提高气液物质交换速率,提高生产效率。
在本申请的第四方面,本申请还提供了一种含氟聚合物的制备方法,所述制备方法包括在水性介质中,在表面活性剂和引发剂的存在下,聚合单体进行乳液聚合反应获得含氟聚合物的步骤,所述表面活性剂为本申请第一方面提供的表面活性剂。
本申请所述表面活性剂的使用量如前第三方面表面活性剂的应用中进行聚合反应所述,在此不再赘述。
本申请所述含氟聚合物的乳液粒径为70~240nm,优选地,乳液粒径为110~160nm。
本申请所述乳液聚合包含聚合单体经乳液聚合反应得到含氟聚合物的步骤,所述聚合单体为含氟单体或含氟单体和非含氟单体的混合物。
本申请所述含氟单体、非含氟单体同前第三方面描述,在此不再赘述。
本申请所述乳液聚合反应的工艺条件,如聚合温度以及聚合压力等如前第三方面中描述,在此不再赘述。本申请所述乳液聚合反应在搅拌下进行,搅拌速率为50~700rpm,搅拌方式首选磁力搅拌或机械搅拌,其他能实现相应搅拌功能的搅拌方式亦可以选择。
本申请制备的含氟聚合物,相对于所述含氟聚合物的质量,所述表面活性剂的含量以质量基准计为0.1ppm~1000ppm,优选地,为100ppm以下,更优选地,为10ppm以下。
本申请所述含氟聚合物为任意含氟原子的聚合物,含氟聚合物的具体物质如前第三方面中描述,在此不再赘述。
本申请所述引发剂为含氟单体聚合领域常用的引发剂。例如引发剂包括过硫酸盐,如过硫酸铵或过硫酸钾。引发剂还可以包括偶氮引发剂,如2,2’-偶氮二-(2,4-二甲基-4-甲氧基戊腈)或偶氮二异丁腈(AIBN)。引发剂还可以包括有机过氧化物,如烷基过氧化物、二烷基过氧化物、二酰基过氧化物、过氧酯和过氧二碳酸酯;如2,5-双(叔丁基过氧基)-2,5-二甲基己烷、过氧化苯甲酰及其衍生物、过氧化新戊酸叔丁酯、过氧化新戊酸叔戊酯、双(4-叔丁基环己基)过氧化二碳酸酯、过氧化二碳酸钠或二(正烷基)过氧化二碳酸酯、二过氧化叔丁酯、过氧化琥珀酸、过二碳酸二正丙酯、过二碳酸二异丙酯。引发剂的使用量占比聚合单体总量的0.005wt%~2.5wt%。
本申请所述乳液聚合反应可以添加链转移剂,用于调节含氟聚合物的分子量。所述链转移剂为含氟单体聚合领域常用的链转移剂,所述链转移剂选自醇类小分子化合物、醚类小分子化合物、酯类小分子化合物、硫醇类小分子化合物、含卤有机化合物中的至少一种。所述乳液聚合反应中链转移剂的使用量占比聚合单体总量的0.005wt%~5wt%。
本申请所述表面活性剂的制备方法,包括在含有引发剂的溶剂中,至少一种结构如式(1)所示的疏水性单体和至少一种结构如式(2)所示的亲水性单体进行聚合反应获得表面活性剂的步骤,其中式(1)和式(2)的定义同第一方面中描述。
本申请所述表面活性剂的制备方法同本申请第二方面描述,在此不再赘述。
与现有技术相比,本申请提供的含氟聚合物的制备方法具有的有益效果为:
1)相对于现有的含氟单体聚合用表面活性剂,本申请提供的表面活性剂使用量大大降低,后处理洗涤工序操作更简便;
2)本申请提供的表面活性剂替代PFOA类含氟表面活性剂,解决PFOA类含氟表面活性剂对于环境污染的压力;
3)本申请提供的表面活性剂替代亲水共聚单体类表面活性剂,避免聚合制得的含氟聚合物中含有无法分离的亲水基团;
4)本申请提供的表面活性剂替代嵌段型共聚物类表面活性剂,提高气液物质交换速率,提高生产效率。
在本申请的第五方面,本申请的发明人在研究表面活性剂结构时意外发现,当表面活性剂的HLB值大于7,在其他聚合反应条件不变的情况下,仅改变表面活性剂中聚乙二醇链段的平均聚合度,就可以实现含氟聚合物乳液粒径在100nm~250nm范围内进行调整。这是由于本申请所述表面活性剂在乳液表面上亲水链段间的空间排斥作用受到聚乙二醇链段的平均聚合度的影响,当增加或减小聚乙二醇链段的平均聚合度时,在相同聚合条件下乳液粒径也会随之变化,同时所述表面活性剂的水油平衡值HLB变化时,也会影响亲水链段间的空间排斥作用,乳液粒径也会随之变化,两者共同作用,实现本申请含氟聚合物乳液粒径在100nm~250nm范围进行调整。
本申请还提供一种含氟聚合物乳液粒径的调整方法,所述调整方法包括,在表面活性剂存在下,在水性介质中聚合单体经聚合反应获得乳液粒径为100nm~250nm的含氟聚合物,
所述表面活性剂为嵌段数大于5的多嵌段共聚物,单一嵌段中疏水性单体结构单元或亲水性单体结构单元的嵌段长度为1~10,
所述表面活性剂选自含有聚乙二醇链段的共聚物中的至少一种,且其水油平衡值HLB为8~16,
所述表面活性剂中聚乙二醇链段的平均聚合度大于4且小于等于100。
优选地,本申请所述表面活性剂的水油平衡值HLB为9~12,所述表面活性剂中聚乙二醇链段的平均聚合度大于9且小于等于50。
本申请所述表面活性剂中聚乙二醇链段的平均聚合度的增加实现所述含氟聚合物乳液粒径的下降,聚乙二醇链段的平均聚合度越大,相对应的含氟聚合物乳液粒径越小,乳液越稳定。
本申请的表面活性剂可以在水中形成单分子胶束结构,同时也可以被吸附到聚合物粒子界面上形成两性的膜状结构,胶束结构一膜状结构状态之间的转换只需要改变共聚物主链的
部分构象即可实现,这使得表面活性剂在降低界面能的同时具有很好的运动性,增加物质交换速率,促进聚合反应。除此之外,本申请的表面活性剂具有优异地降低乳液聚合副反应、提升界面润湿性、增加表面水化层的位阻、提升分散体系稳定性的特点。
本申请所述表面活性剂选自含有聚乙二醇链段的共聚物中的至少一种,该表面活性剂为本申请第一方面描述的表面活性剂,在此不再赘述。
本申请所述表面活性剂的HLB值为8~16。从提高乳液聚合速率、降低乳液聚合副反应发生、提升水油界面润湿性、增加表面水化层的位阻、提升分散体系稳定性等多个方面考虑,优选地,HLB值为9~12。
本申请所述表面活性剂在聚合反应中的使用量如前第三方面中在乳液聚合反应中的加入量,在此不再赘述。
本申请所述聚合单体为含氟单体或含氟单体和非含氟单体的混合物,所述含氟单体、非含氟单体同前第三方面描述,在此不再赘述。
本申请所述含氟聚合物为任意含氟原子的聚合物,含氟聚合物的具体物质如前第三方面中描述,在此不再赘述。
本申请所述含氟聚合物的数均分子量≥10万,优选地,≥20万,含氟聚合物的数均分子量主要受聚合工艺影响。
本申请所述表面活性剂的制备方法同本申请第二方面描述,在此不再赘述。
与现有技术相比,本申请提供的含氟聚合物乳液粒径的调整方法具有的有益效果为:
(1)在其他聚合反应条件不变的情况下,通过调节表面活性剂的水油平衡值HLB和聚乙二醇链段的平均聚合度,实现含氟聚合物乳液粒径在100nm~250nm的范围内进行调整;
(2)本申请提供的表面活性剂替代PFOA类含氟表面活性剂,解决PFOA类含氟表面活性剂对于环境污染的压力;
(3)本申请提供的表面活性剂替代亲水共聚单体类表面活性剂,避免聚合制得的含氟聚合物中含有无法分离的亲水基团;
(4)本申请提供的表面活性剂替代嵌段型共聚物类表面活性剂,提高气液物质交换速率,提高生产效率。
在本申请的第六方面,本申请发现通过使用本申请所述表面活性剂,配合使用参与乳液聚合反应的离子型化合物可以实现小粒径含氟聚合物乳液的制备。
本申请的表面活性剂可以在水中形成单分子胶束结构,同时也可以被吸附到聚合物粒子界面上形成两性的膜状结构,胶束结构一膜状结构状态之间的转换只需要改变共聚物主链的部分构象即可实现,这使得表面活性剂在降低界面能的同时具有很好的运动性,增加物质交
换速率,促进聚合反应。除此之外,本申请的表面活性剂具有优异地降低乳液聚合副反应、提升界面润湿性、增加表面水化层的位阻、提升分散体系稳定性的特点。
本申请所述表面活性剂配合参与乳液聚合反应的离子型化合物使用可以实现制备乳液粒径在70~100nm范围内的含氟聚合物,这是由于表面活性剂的亲水链段的位阻作用和离子型化合物离子基团的界面电势共同作用的结果,在高位阻的亲水链段形成的水化层界面内,增加一层界面电势可以更好地防止乳液粒子的聚并,同时也更好的降低聚合物和水之间的界面能。
本申请还提供了一种小粒径含氟聚合物乳液的制备方法,所述制备方法包括,在表面活性剂存在下,在水性介质中聚合单体进行乳液聚合反应获得粒径为70~100nm含氟聚合物乳液,
离子型化合物参与乳液聚合反应,且离子型化合物键合到含氟聚合物分子链,
所述离子型化合物的使用量为含氟聚合物生成量的0.005wt%~5wt%,
所述表面活性剂为嵌段数大于5的多嵌段共聚物,单一嵌段中疏水性单体结构单元或亲水性单体结构单元的嵌段长度为1~10。
所述表面活性剂为上述第一方面所述的表面活性剂,在此不再赘述。
本申请所述离子型化合物可以键合到含氟聚合物分子链上,当所述离子型化合物键合到含氟聚合物分子链端时,所述离子型化合物作为聚合链转移剂,所述离子型化合物选自羧酸类低聚物、磺酸类低聚物、磷酸类低聚物、咪唑鎓低聚物、吡唑鎓低聚物、磷磷鎓低聚物、磷鎓低聚物、磺基甜菜碱低聚物、羧基甜菜碱低聚物和季铵盐低聚物中的至少一种。所述低聚物在本段中的定义为数均分子量在50~5000g/mol之间的化合物。优选地,所述离子型化合物选自聚丙烯酸钠、聚甲基丙烯酸钠、聚丙烯酸锂、聚甲基丙烯酸锂、聚丙烯酸铵、聚甲基丙烯酸铵、聚季铵盐-1~51、聚苯乙烯磺酸钠、聚苯乙烯磺酸锂和聚苯乙烯磺酸铵中的至少一种。
当所述离子型化合物键合到含氟聚合物分子链中时,所述离子型化合物作为共聚单体,所述离子型化合物选自丙烯酸盐、离子型丙烯酸酯、甲基丙烯酸盐、离子型甲基丙烯酸酯、离子型烯丙醇酯、离子型烯丙醇醚、离子型乙烯基醚、富马酸单酯盐、衣康酸盐和10-十一烯酸盐中的至少一种。
本申请所述离子型化合物的使用量为含氟聚合物生成量的0.005wt%~5wt%,优选地,所述离子型化合物的使用量为含氟聚合物生成量的0.01wt%~0.1wt%。
本申请所述表面活性剂的HLB值为8~16。从提高乳液聚合速率、降低乳液聚合副反应发生、提升水油界面润湿性、增加表面水化层的位阻、提升分散体系稳定性等多个方面考虑,优选地,HLB值为10~12。
本申请所述表面活性剂在聚合反应中的使用量如前第三方面中在乳液聚合反应中的加入
量,在此不再赘述。
本申请所述聚合单体为含氟单体或含氟单体和非含氟单体的混合物,所述含氟单体、非含氟单体同前第三方面描述,在此不再赘述。
本申请所述含氟聚合物为任意含氟原子的聚合物,含氟聚合物的具体物质如前第三方面中描述,在此不再赘述。
本申请所述含氟聚合物的数均分子量大于17万,优选地,大于20万,更优选地,大于100万,含氟聚合物的数均分子量主要受聚合工艺影响。本申请所述乳液聚合反应若不使用离子型化合物,虽然表面活性剂使用量增多时可以实现乳液粒径小于100nm,但是含氟聚合物的数均分子量偏低,无法实现高数均分子量含氟聚合物的制备。
本申请还提供一种小粒径含氟聚合物乳液的应用,所述小粒径含氟聚合物乳液作为组分应用于涂料、粘结剂、橡胶、3D打印材料、隔膜涂层、水处理膜、复合材料添加剂、微凝胶、电子产品结构胶。
本申请所述表面活性剂的制备方法同本申请第二方面描述,在此不再赘述。
与现有技术相比,本申请提供的小粒径含氟聚合物乳液具有的有益效果为:
(1)本申请的小粒径含氟聚合物乳液的粒径为70-100nm,同时实现含氟聚合物的数均分子量大于170000;
(2)本申请提供的表面活性剂替代PFOA类含氟表面活性剂,解决PFOA类含氟表面活性剂对于环境污染的压力;
(3)本申请的聚合反应用离子型低聚物替代小分子作为链转移剂,提升离子基团的接枝效率,避免使用大量表面活性剂和水溶性引发剂导致的降低聚合物分子量上限;
(4)本申请还可以使用离子型共聚型单体,引入微量极性基团稳定乳液粒子。
图1为现有技术的表面活性剂的结构示意图,现有技术中亲水性单体以点分布,1是疏水链段,2是亲水链段。
图2为本申请的表面活性剂的结构示意图,1是疏水链段,2是亲水链段。
图3为本申请的表面活性剂在水中形成单分子胶束结构的示意图,1是疏水链段,2是亲水链段。
图4为本申请的表面活性剂被吸附到氟聚合物界面上形成两性膜状结构的示意图,1是疏水链段,2是亲水链段。
图5为本申请的含氟聚合物乳液粒径调控的原理示意图,1是乳液颗粒,2是亲水链段。
图6为实施例III-1制备的含氟聚合物乳液的SEM图。
图7为实施例III-2制备的含氟聚合物乳液的SEM图。
图8为实施例III-3制备的含氟聚合物乳液的SEM图。
图9为实施例III-4制备的含氟聚合物乳液的SEM图。
图10为实施例III-5制备的含氟聚合物乳液的SEM图。
图11为实施例III-1~III-4制备的含氟聚合物乳液粒径与表面活性剂结构关联图,粒径=-7.5聚乙二醇平均链长(即平均聚合度)+262.7,R2=0.9593。
图12为实施例IV-1制备的含氟聚合物乳液的SEM图。
图13为实施例IV-2制备的含氟聚合物乳液的SEM图。
图14为对比例IV-1制备的含氟聚合物乳液的SEM图。
图15为对比例IV-2制备的含氟聚合物乳液的SEM图。
下面结合具体实施例来对本申请进行进一步说明,但并不将本申请局限于这些具体实施方式。本领域技术人员应该认识到,本申请涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
本申请中Mn指代聚合物数均分子量;PDI指代聚合物分散性指数,PDI越大,分子量分布越宽;PDI越小,分子量分布越均匀。
PLURONIC 31R1:具有末端仲羟基的双官能嵌段共聚物表面活性剂,非离子表面活性剂,无毒,来自BASF。
Rh为流体力学半径,本申请所述表面活性剂在水性介质中的胶束粒径(流体力学半径)与在异丙醇中的流体力学半径相近,说明表面活性剂在水性介质中形成的胶束绝大多数为单分子胶束;当相差较大时,说明表面活性剂水性介质中存在折叠,单分子胶束含量相对较低。流体力学半径使用HORIBA/SZ-100Z2仪器进行测定。
V-50:偶氮二异丁脒盐酸盐引发剂。
I、表面活性剂的制备
实施例I-1
甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯制备表面活性剂A1。
将甲基丙烯酸甲酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度20,分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至80℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌15h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温,制得含表面活性剂的溶液。表面活性剂的Mn=64200,PDI=1.89,在水中形成的胶束粒径为11.6nm,在异丙醇中的流体力学半径Rh为16.3nm。
实施例I-2
甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯制备表面活性剂A2。
将甲基丙烯酸甲酯(2.5g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度9,分子量约475,2.5g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.30g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得含表面活性剂的溶液。表面活性剂Mn=48300,PDI=1.79,在水中形成的胶束粒径为15.8nm,在异丙醇中的流体力学半径Rh为12.6nm。
实施例I-3
甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯制备表面活性剂A3。
将甲基丙烯酸叔丁酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度20,分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得含表面活性剂的溶液。表面活性剂的Mn=53500,PDI=1.93,在水中形成的胶束粒径为13.3nm,在异丙醇中的流体力学半径Rh为13.8nm。
实施例I-4
甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯制备表面活性剂A4。
将甲基丙烯酸叔丁酯(2.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度9,分子量约475,3.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.30g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得含表面活性剂的溶液。表面活性剂Mn=50400,PDI=1.75,在水中形成的胶束粒径为11.9nm,在异丙醇中的流体力学半径Rh为13.5nm。
实施例I-5
甲基丙烯酸叔丁酯、聚乙二醇甲基丙烯酸酯制备表面活性剂A5。
将甲基丙烯酸叔丁酯(2.0g)、聚乙二醇甲基丙烯酸酯(聚合度10,分子量约500,3.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.30g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得含表面活性剂的溶液。表面活性剂Mn=62300,PDI=1.83,在水中形成的胶束粒径为10.9nm,在异丙醇中的流体力学半径Rh为15.9nm。
实施例I-6
甲基丙烯酸苯酯、聚乙二醇甲醚甲基丙烯酸酯制备表面活性剂A6。
将甲基丙烯酸苯酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度20,分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得含表面活性剂的溶液。表面活性剂的Mn=46800,PDI=1.88,在水中形成的胶束粒径为14.2nm,在异丙醇中的流体力学半径Rh为12.3nm。
对比例I-1
甲基丙烯酸1-甲基十二烷基、聚乙二醇甲醚甲基丙烯酸酯制备共聚物A7。
将甲基丙烯酸1-甲基十二烷基(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度9,分子量约475,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得含共聚物的溶液。共聚物的Mn=51300,PDI=1.91,在水中形成的胶束粒径为98.3nm,在异丙醇中的流体力学半径Rh为14.0nm。
实施例和对比例制备的表面活性剂的性能如表1所示。
表1实施例和对比例制备的表面活性剂的性能数据
从表1可以看出:实施例I-1至实施例I-6的疏水性单体R3基团为苯基、甲基、叔丁基,亲水性单体R6基团中聚乙二醇的聚合度为9、10、20,获得的表面活性剂的Mn为46800~64200,其在水中可以形成单分子胶束结构,且其在水中的胶束粒径为10.9~15.8nm,表面活性性能较好,能够作为乳化剂实现不同聚合物乳液粒径的制备。对比例I-1的疏水性单体R3基团为1-甲基十二烷基,此时由于1-甲基十二烷基的基团体积过于庞大,导致主链运动性不足,降低了表面活性剂的表面性能,虽然获得的表面活性剂的Mn为51300,但是其在水中形成多分子胶束,且其胶束粒径为98.3nm,表面活性性能差,作为乳化剂用于聚合物制备不是优选。
使用本申请的表面活性剂作为乳化剂制备含氟聚合物
应用例I-1
使用实施例I-1制备表面活性剂A1作为乳化剂制备PVDF。
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入实施例I-1制备的表面活性剂A1(150g,表活含量0.1wt%,异丙醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2076g,固含量20.0wt%)。总破乳物料含量按聚合物质量计算为0.16wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为125nm,其7wt%NMP溶液黏度为1280cp(剪切速率为2.325s-1)。
应用例I-2
使用实施例I-3制备表面活性剂A3作为乳化剂制备PVDF-HFP。
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入六氟丙烯(80g),用柱塞泵加实施例I-3制备的表面活性剂A3(150g,表活含量0.1wt%,异丙醇含量0.3wt%),并开启搅拌(700rpm)将混合物加热至100℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(196g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(100±0.5℃),并持续加入过硫酸铵溶液(1wt%)保持单体消耗速率大于3g/min,并加入偏氟乙烯保持压力(4.25±0.25MPa),直至单体达到总投料目标(620g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2290g,固含量24.7wt%)。总破乳物料含量按聚合物质量计算为0.02wt%。所得PVDF-HFP用SEM观测乳液粒径平均为134nm。
应用对比例I-1
使用对比例I-1制备的共聚物A7作为乳化剂制备PVDF。
同应用实施例I-1,不同之处在于:使用对比例I-1制备的共聚物A7(150g,共聚物含量0.1wt%,异丙醇含量0.3wt%)代替实施例I-1制备的表面活性剂A1(150g,表活含量0.1wt%,异丙醇含量0.3wt%)。当停止搅拌并打开泄压阀,待压力降至常压后收集乳液(1984g,固含量15.8wt%)。总破乳物料含量按聚合物质量计算为16.2wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为243nm,其7wt%NMP溶液黏度为770cp(剪切速率为2.325s-1)。
应用对比例I-2
使用PFOA作为乳化剂制备PVDF。
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入PFOA稀释溶液(150g,表活含量0.9wt%,乙酸乙酯含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(74g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2022g,固含量22.4wt%)。总破乳物料含量按聚合物质量计算为0.10wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为132nm,其7wt%NMP溶液黏度为2896cp(剪切速率为2.325s-1)。
应用对比例I-3
使用嵌段型共聚物作为乳化剂制备PVDF。
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入PLURONIC 31R1稀释溶液(150g,表活含量0.6wt%,乙酸乙酯含量0.05
wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(82g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2002g,固含量23.2wt%)。总破乳物料含量按聚合物质量计算为1.2wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为198nm,其7wt%NMP溶液黏度为1152cp(剪切速率为2.325s-1)。
应用例和应用对比例制备的含氟聚合物性能测试如表2所示。
表2应用例和应用对比例制备的含氟聚合物性能数据
从表2可以看出:应用例I-1和应用例I-2使用本申请的表面活性剂,其使用量占聚合生成量的0.01~0.1wt%,所得的聚合物乳液固含量高、破乳量低。应用对比例I-1使用甲基丙烯酸1-甲基十二烷基作为疏水性单体制备的表面活性剂,其在水中形成的胶束粒径为98.3nm,制得的聚合物乳液固含量低、而且破乳量很高,作为乳化剂使用不优选。应用对比例I-2与应用例I-1相比,虽然聚合物乳液的固含量和破乳量相当,但是应用对比例I-2的PFOA使用量是应用例I-1的8.3倍(以占聚合物生成量计算)。应用对比例I-3与应用例I-1相比,PLURONIC31R1的使用量是应用例I-1的5.4倍(以占聚合物生成量计算),破乳量是应用例I-1的7.5倍。
相对于PFOA,应用例I-1和应用例I-2的表面活性剂的毒性为低毒。
相对于嵌段共聚物表面活性剂PLURONIC 31R1,应用例I-1和应用例I-2的诱导期缩小2~3倍,聚合速率快。
II、表面活性剂的制备
表面活性剂B1-甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为单体
将甲基丙烯酸甲酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至80℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌15h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温,制得可直接应用于含氟聚合反应的表面活性剂溶液B1。经测试,表面活性剂B1,Mn=64200,PDI=1.89,HLB值=11.1,甲基丙烯酸甲酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为6.3。
表面活性剂B2-甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为单体
将甲基丙烯酸叔丁酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟聚合反应的表面活性剂溶液B2。经测试,表面活性剂B2,Mn=53500,PDI=1.93,HLB值=11.1,甲基丙烯酸叔丁酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为4.5。
表面活性剂B3-甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为单体
与表面活性剂B2的制备方法相同,不同之处在于,使用叔丁醇代替异丙醇。经测试,表面活性剂B3,Mn=43300,PDI=1.86,HLB值=11.1,甲基丙烯酸叔丁酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为4.5。
表面活性剂B4-甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为单体
与表面活性剂B2的制备方法相同,不同之处在于,使用乙酸乙酯代替异丙醇。经测试,表面活性剂B4,Mn=46300,PDI=1.95,HLB值=11.1,甲基丙烯酸叔丁酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为4.5。
表面活性剂B5-甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,q为9)作为单体
将甲基丙烯酸甲酯(2.5g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,2.5g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.30g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟聚合反应的表面活性剂B5。经测试,表面活性剂B5,Mn=48300,PDI=1.79,HLB值=8.5,甲基丙烯酸叔丁酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为4.7。
表面活性剂B6-甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,q为9)
作为单体
将甲基丙烯酸叔丁酯(2.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,3.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.30g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟聚合反应的表面活性剂B6。经测试,表面活性剂B6,Mn=50400,PDI=1.75,HLB值=10.2,甲基丙烯酸叔丁酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为2.2。
表面活性剂B7-甲基丙烯酸苯酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为单体
将甲基丙烯酸苯酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度20,分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟聚合反应的表面活性剂B7。经测试,表面活性剂B7,Mn=46800,PDI=1.88,HLB值=11.1,甲基丙烯酸苯酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为3.7。
表面活性剂B1~B7的性能如表3所示。
表3表面活性剂B1~B7的性能数据
从表3可以看出:表面活性剂的疏水性单体R3基团为苯基、甲基、叔丁基,亲水性单体R6基团中聚乙二醇的聚合度为9、20,获得的表面活性剂的Mn为43300~64200,在水中的胶束粒径为11.6~15.8nm,与在异丙醇中的流体力学半径相当,说明其在水中可以形成单分子胶束结构,表面活性性能较好,能够作为乳化剂实现不同聚合物乳液粒径的制备。
实施例II-1、使用表面活性剂B1制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入B1稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2076g,固含量20.0wt%)。总破乳物料含量按聚合物质量计算为0.16wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为125nm,其7wt%NMP溶液黏度为1280cp(剪切速率为2.325s-1)。
实施例II-2、使用表面活性剂B2制备含氟聚合物PVDF-HFP
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入六氟丙烯(80g),用柱塞泵加入B2稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.3wt%),并开启搅拌(700rpm)将混合物加热至100℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(196g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(100±0.5℃),并持续加入过硫酸铵溶液(1wt%)保持单体消耗速率大于3g/min,并加入偏氟乙烯保持压力(4.25±0.25MPa),直至单体达到总投料目标(620g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2290g,固含量24.7wt%)。总破乳物料含量按聚合物质量计算为0.02wt%。所得PVDF-HFP用SEM观测乳液粒径平均为134nm。
实施例II-3、使用表面活性剂B2制备含氟聚合物PVF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用压缩机加入氟乙烯(80g),用柱塞泵加入B2稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.3wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入氟乙烯(38g)至2.75MPa,用柱塞泵加入V-50溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并持续加入V-50溶液(1wt%)保持单体消耗速率大于3g/min,并加入氟乙烯保持压力(2.75±0.25MPa),直至单体达到总投料目标(500g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(1890g,固含量19.5wt%)。总破乳物料含量按聚合物质量计算为0.05wt%。所得PVF用SEM观测乳液粒径平均为168nm。
实施例II-4、使用表面活性剂B2制备含氟聚合物PCTFE
往3.4L的聚合釜中加入纯水(1500g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入三氟氯乙烯(604g),用柱塞泵加入B2稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.3wt%),加入纯水350g,并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用柱塞泵加入过硫酸铵溶液(50g,2wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃)和反应压力(2.33MPa)。反应三小时后停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2113g,固含量8.1wt%)。总破乳物料含量按聚合物质量计算为0.01wt%。所得PCTFE用SEM观测乳液粒径平均预估为98nm。
实施例II-5、使用表面活性剂B2制备含氟聚合物PTFE
往3.4L的聚合釜中加入纯水(1800g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用柱塞泵加入B2稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.3wt%),加入四氟乙烯至压力为1.75Mpa,并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并持续加入四氟乙烯保持反应釜内压力(1.75MPa)。反应两小时后停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2213g,固含量12.8wt%)。总破乳物料含量按聚合物质量计算为0.09wt%。所得TFE用SEM观测乳液粒径平均预估为179nm。
实施例II-6、使用表面活性剂B2制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入B2稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(96g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(1970g,固含量21.33wt%)。总破乳物料含量按聚合物质量计算为0.02wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为116nm,其7wt%NMP溶液黏度为3680cp(剪切速率为2.325s-1)。
实施例II-7、使用表面活性剂B2制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入B2稀释溶液(150g,表活含量0.03wt%,异丙醇含量0.015wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(98g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应
期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2010g,固含量20.6wt%)。总破乳物料含量按聚合物质量计算为1.1wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为194nm,其7wt%NMP溶液黏度为16220cp(剪切速率为2.325s-1)。
实施例II-8、使用表面活性剂B2制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液B2稀释溶液(150g,B2含量1.3wt%,异丙醇含量1.3wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(500g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2015g,固含量16.13wt%)。总破乳物料含量按聚合物质量计算为1.6wt%。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为98nm。
实施例II-9、使用表面活性剂B2制备含氟聚合物PVDF-HFP-AA
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入六氟丙烯(50g),用柱塞泵加入B2稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(238g)至4.50MPa。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(84g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(40g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),使用平流泵加入过硫酸铵溶液(1ml/min,0.2wt%)和丙烯酸钠溶液(1ml/min,0.5wt%),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(628g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2144g,固含量23.3wt%)。总破乳物料含量按聚合物质量计算为0.02wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为78nm,其7wt%NMP溶液黏度为2310cp(剪切速率为2.325s-1)。
实施例II-10、使用表面活性剂B3制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯单体(180g),用柱塞泵加入B3稀释溶液(150g,表活含量0.1wt%,叔丁醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(80g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并持续加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2084g,固含量21.9wt%)。总破乳物料含量按聚合物质量计算为0.06wt%。所得聚偏氟乙烯用SEM
观测乳液粒径平均为160nm,其7wt%NMP溶液黏度为3648cp(剪切速率为2.325s-1)。
实施例II-11、使用表面活性剂B4制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入B4稀释溶液(150g,表活含量0.1wt%,乙酸乙酯含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(86g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2040g,固含量23.3wt%)。总破乳物料含量按聚合物质量计算为0.18wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为154nm,其7wt%NMP溶液黏度为2408cp(剪切速率为2.325s-1)。
实施例II-12、使用表面活性剂B5制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入B5稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.1wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(90g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(1986g,固含量22.9wt%)。总破乳物料含量按聚合物质量计算为0.13wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为202nm,其7wt%NMP溶液黏度为1152cp(剪切速率为2.325s-1)。
实施例II-13、使用表面活性剂B6制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入B6稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.1wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(84g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(1986g,固含量24.1wt%)。总破乳物料含量按聚合物质量计算为0.17wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为194nm,其7wt%NMP溶液黏度为1568cp(剪切速率为2.325s-1)。
实施例II-14、使用表面活性剂B7制备含氟聚合物PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180
g),用柱塞泵加入B7稀释溶液(150g,表活含量0.1wt%,异丙醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2036g,固含量21.1wt%)。总破乳物料含量按聚合物质量计算为0.53wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为183nm,其7wt%NMP溶液黏度为1843cp(剪切速率为2.325s-1)。
对比例II-1
PFOA类表活剂制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入PFOA稀释溶液(150g,表活含量0.9wt%,乙酸乙酯含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(74g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2022g,固含量22.4wt%)。总破乳物料含量按聚合物质量计算为0.10wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为132nm,其7wt%NMP溶液黏度为2896cp(剪切速率为2.325s-1)。
对比例II-2
嵌段型共聚物类表面活性剂制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入PLURONIC 31R1稀释溶液(150g,表活含量0.6wt%,乙酸乙酯含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(82g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2002g,固含量23.2wt%)。总破乳物料含量按聚合物质量计算为1.2wt%。所得聚偏氟乙烯用SEM观测乳液粒径平均为198nm,其7wt%NMP溶液黏度为1152cp(剪切速率为2.325s-1)。
实施例和对比例制备的含氟聚合物进行性能测试,数据详见表4。
表4实施例和对比例含氟聚合物性能数据
从表4可以看出:当表面活性剂的使用量占聚合物生成量为0.01~0.1wt%时,制备的含氟聚合物乳液粒径为78~202nm,乳液固含量高,破乳量小。实施例II-8使用表面活性剂B2制备PVDF,当表面活性剂的使用量占聚合物生成量为0.599wt%(大于0.3wt%)时,乳液粒径能够实现小于100nm,但是诱导期长、聚合反应速率慢。本申请的表面活性剂可以实现不同乳液粒径的含氟聚合物制备,对比例II-1与实施例II-1相比,含氟聚合物的乳液粒径、固含量和破乳量相当,但是对比例II-1的PFOA使用量是实施例II-1的8.3倍(以占聚合物生成量计算)。对比例II-2与实施例II-1相比,PLURONIC 31R1的使用量是实施例II-1的5.4倍(以占聚合物生成量计算),破乳量是实施例II-1的7.5倍,诱导期是实施例II-1的2倍。
III、表面活性剂C1的制备
甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为聚合单体制备表面活性剂C1。
将甲基丙烯酸甲酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,6.0g,q为20)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至80℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌15h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温,制得可直接应用于含氟单体聚合反应的表面活性剂溶液C1。
经测试,表面活性剂C1,Mn=64200,PDI=1.89,HLB=11.1,甲基丙烯酸甲酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为6.3。
表面活性剂C2的制备
甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,q为9)作为聚合单体制备表面活性剂C2。
将甲基丙烯酸甲酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,6.0g,q为9)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定
后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟单体聚合反应的表面活性剂溶液C2。
经测试,表面活性剂的Mn=53400,PDI=1.83,HLB=10.2,甲基丙烯酸甲酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为3.2。
表面活性剂C3的制备
甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,q为9)作为聚合单体制备表面活性剂C3。
将甲基丙烯酸甲酯(5.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约475,5.0g,q为9)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟单体聚合反应的表面活性剂溶液C3。
经测试,表面活性剂的Mn=48300,PDI=1.79,HLB=8.5,甲基丙烯酸甲酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为4.7。
表面活性剂C1至C3的性能数据如表5。
表5表面活性剂C1至C3的性能数据
含氟聚合物的制备
实施例III-1、使用表面活性剂C1制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液C1稀释溶液(150g,C1含量0.1wt%,异丙醇含量0.05wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2076g,固含量21.3wt%)。总破乳物料含量按聚合物质量计算为0.16wt%。所得聚偏氟乙
烯PVDF用SEM观测乳液粒径平均为116nm(粒径范围为109.4nm~125.2nm),其7wt%NMP溶液黏度为1280cp(剪切速率为2.325s-1)。
实施例III-2、使用表面活性剂C2制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液C2稀释溶液(150g,C2含量0.1wt%,异丙醇含量0.1wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(82g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至偏氟乙烯单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2032g,固含量24.1wt%)。总破乳物料含量按聚合物质量计算为0.09wt%。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为202nm(粒径范围为194.6nm~210.6nm),其7wt%NMP溶液黏度为1568cp(剪切速率为2.325s-1)。
实施例III-3、使用表面活性剂C1和C2(质量比2∶1)制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液C2稀释溶液(50g,C2含量0.1wt%,异丙醇含量0.1wt%),用柱塞泵加入表面活性剂溶液C1稀释溶液(100g,C1含量0.1wt%,异丙醇含量0.1wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(80g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至偏氟乙烯单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2034g,固含量21.8wt%)。总破乳物料含量按聚合物质量计算为0.06wt%。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为140nm(粒径范围为134.2nm~145.9nm),其7wt%NMP溶液黏度为1384cp(剪切速率为2.325s-1)。
实施例III-4、使用表面活性剂C1和C2(质量比1∶2)制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液C2稀释溶液(100g,C2含量0.1wt%,异丙醇含量0.1wt%),用柱塞泵加入表面活性剂溶液C1稀释溶液(50g,C1含量0.1wt%,异丙醇含量0.1wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯单体(76g)至4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯单体保持压力(4.25±0.25MPa),直至偏氟乙烯单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2072g,固含量22.5wt%)。总破乳物料含量按聚合物质量计算为0.11wt%。所得聚偏氟
乙烯PVDF用SEM观测乳液粒径平均为158nm(粒径范围为154.3nm~165.7nm),其7wt%NMP溶液黏度为1456cp(剪切速率为2.325s-1)。
实施例III-5、使用表面活性剂C3制备PVDF
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液C3稀释溶液(150g,C3含量0.1wt%,异丙醇含量0.3wt%),并开启搅拌(700rpm)将混合物加热至100℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(86g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(100±0.5℃),并持续加入过硫酸铵溶液(1wt%)保持单体消耗速率大于3g/min,并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯单体达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2084g,固含量23.0wt%)。总破乳物料含量按聚合物质量计算为1.1wt%。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为239nm(粒径范围为234.0nm~247.3nm),其7wt%NMP溶液黏度为1448cp(剪切速率为2.325s-1)。
实施例III-1~III-5制备的含氟聚合物粒径测试数据如表6。
表6实施例III-1~III-5制备的含氟聚合物粒径性能数据
从表6中可以看出,当其他聚合反应条件均不变的情况下,仅改变表面活性剂中聚乙二醇链段的平均聚合度,就可以实现乳液粒径的调整,同时含氟聚合物乳液的固含量高、破乳量少。从实施例III-1至实施例III-4可以看出,随着表面活性剂中聚乙二醇链段平均聚合度的下降,含氟聚合物的乳液粒径逐渐增大,满足拟合方程:粒径=-7.5聚乙二醇平均链长(即平均聚合物)+262.7,R2=0.9593。
IV、表面活性剂D1的制备
甲基丙烯酸甲酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为聚合单体制备表面活性剂D1。
将甲基丙烯酸甲酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至80℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌15h后,单体与引发剂完全转化(转
化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温,制得可直接应用于含氟单体聚合反应的表面活性剂溶液D1。
经测试,表面活性剂的Mn=64200,PDI=1.89,HLB=11.1,甲基丙烯酸甲酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔含量之比x/y=6.3。
表面活性剂D2的制备
甲基丙烯酸叔丁酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为聚合单体制备表面活性剂D2。
将甲基丙烯酸叔丁酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟聚合反应的表面活性剂溶液D2。
经测试,表面活性剂D2,Mn=53500,PDI=1.93,HLB值=11.1,甲基丙烯酸叔丁酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为4.5。
表面活性剂D3的制备
甲基丙烯酸苯酯、聚乙二醇甲醚甲基丙烯酸酯(分子量约950,q为20)作为聚合单体制备表面活性剂D3。
将甲基丙烯酸苯酯(4.0g)、聚乙二醇甲醚甲基丙烯酸酯(聚合度20,分子量约950,6.0g)、异丙醇(5.0g)加入经真空氮气置换好的三颈烧瓶中,保持搅拌并加热至90℃。待温度恒定后,加入偶氮二异丁酸二甲酯(0.60g),持续加热搅拌8h后,单体与引发剂完全转化(转化率大于99%)。加入纯水(85g)并保持搅拌直至完全溶解。冷却静置至室温后,制得可直接应用于含氟聚合反应的表面活性剂D3。
经测试,表面活性剂D3,Mn=46800,PDI=1.88,HLB值=11.1,甲基丙烯酸苯酯与聚乙二醇甲醚甲基丙烯酸酯的摩尔比为3.7。
表面活性剂D1至D3的性能数据如表7。
表7表面活性剂D1至D3的性能数据
含氟聚合物的制备
实施例IV-1
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液D1稀释溶液(150g,D1含量0.1wt%,异丙醇含量0.05wt%,聚丙烯酸钠(Mn=2000g/mol)含量0.3wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2204g,固含量30.8wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为82nm,其分子量为Mn=1054000,PDI=2.36。
实施例IV-2
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液D1稀释溶液(150g,D1含量0.1wt%,异丙醇含量0.05wt%,丙烯酸钠含量0.15wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2158g,固含量23.4wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为80nm,其分子量为Mn=1273000,PDI=2.53。
实施例IV-3
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液D2稀释溶液(150g,D2含量0.1wt%,异丙醇含量0.05wt%,丙烯酸钠含量0.15wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2074g,固含量22.5wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为88nm,其分子量为Mn=1084000,PDI=2.61。
实施例IV-4
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液D3稀释溶液(150g,D3含量0.1wt%,异丙醇含量0.05wt%,丙烯酸钠含量0.15wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,
1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2112g,固含量24.3wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为88nm,其分子量为Mn=1101000,PDI=2.46。
对比例IV-1
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液D2稀释溶液(150g,D2含量1.3wt%,异丙醇含量1.3wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(500g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2015g,固含量16.13wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为98nm(92.10nm~99.09nm),其分子量为Mn=163000,PDI=1.91。
对比例IV-2
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液D2稀释溶液(150g,D2含量0.1wt%,异丙醇含量0.1wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2076g,固含量20.0wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为156nm(126.4nm~176.8nm),其分子量为Mn=1088000,PDI=2.55。
对比例IV-3
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液(150g,PLURONIC 31R1含量1.8wt%,聚丙烯酸钠(Mn=2000g/mol)含量0.64wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,1wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2034g,固含量24.34wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为128nm(126.4nm~176.8nm),其分子量为Mn=663000,PDI=2.34。
对比例IV-4
往3.4L的聚合釜中加入纯水(1400g)。合釜后用油封真空泵持续抽真空5分钟后,回填高纯氮气至0.15MPa。该操作重复三次,在最后一次抽真空后用高压气瓶加入偏氟乙烯(180g),用柱塞泵加入表面活性剂溶液(150g,PLURONIC 31R1含量1.8wt%,丙烯酸钠含量0.64wt%),并开启搅拌(700rpm)将混合物加热至80℃。待温度稳定5分钟后,用高压气瓶加入偏氟乙烯(100g)至压力为4.50MPa,用柱塞泵加入过硫酸铵溶液(50g,2wt%)引发聚合反应。聚合反应期间保持釜内温度(80±0.5℃),并加入偏氟乙烯保持压力(4.25±0.25MPa),直至偏氟乙烯达到总投料目标(600g)。停止搅拌并打开泄压阀,待压力降至常压后收集乳液(2018g,固含量23.35wt%)。所得聚偏氟乙烯PVDF用SEM观测乳液粒径平均为143nm,其分子量为Mn=485000,PDI=2.26。
实施例和对比例制备的含氟聚合物乳液进行性能测试,数据详见表8。
表8实施例和对比例含氟聚合物乳液性能数据
从表8可以看出:对比例IV-1没有加入离子型化合物,虽然粒径也在70~100nm范围内,但是表面活性剂的用量多(占聚合物生成量的0.6wt%),聚合反应速率慢,与实施例IV-3对比,聚合反应时间增加,此外聚合物分子量上限受限。对比例IV-2与实施例IV-3对比,在相同表面活性剂用量的情况下,没有加入离子型化合物,无法实现含氟聚合物乳液粒径在70~100nm的范围内。对比例IV-3和对比例IV-4使用的表面活性剂PLURONIC 31R1,在加入离子型化合物时,即使离子型化合物使用量高,含氟聚合物粒径也大于100nm。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (45)
- 一种表面活性剂,所述表面活性剂为共聚物,其特征在于:制备所述表面活性剂的共聚单体包括至少一种结构如式(1)所示的疏水性单体和至少一种结构如式(2)所示的亲水性单体,
其中,R1选自氢、C1~C18直链或支链烷基、C1~C18直链或支链烷基醚基、C1~C18直链或支链卤代烷基、C2~C18脂肪族羟基、C2~C18脂肪族硫醚、C2~C18脂肪族酯基、C2~C18脂肪族氰基;R2选自氧、硫、亚氨基、C1~C18直链或支链或环状烷基亚氨基、C1~C18芳基亚氨基;R3选自苯基、C1~C4直链或支链烷基、C5~C18直链或支链烷基、卞基、2-苯基-2-丙基、烯丙基,
其中,R4选自氢、C1~C18直链或支链烷基、C1~C18直链或支链烷基醚基、C1~C18直链或支链卤代烷基、C2~C18脂肪族羟基、C2~C18脂肪族硫醚、C2~C18脂肪族酯基、C2~C18脂肪族氰基;R5选自氧、硫、亚氨基、C1~C18直链或支链或环状烷基亚氨基、C1~C18芳基亚氨基;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于4且小于等于100的整数,Z选自氢、C1~C3直链或支链烷基。 - 根据权利要求1所述的表面活性剂,其特征在于:其中R1、R4独立地选自氢、C1~C5直链或支链烷基、C1~C5直链或支链烷基醚基;R2、R5独立地选自氧、亚氨基、C1~C9直链或支链或环状烷基亚氨基、C1~C9芳基亚氨基;R3选自苯基、C1~C4直链或支链烷基;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于9且小于等于100的整数,Z选自氢、C1~C3直链或支链烷基。
- 根据权利要求2所述的表面活性剂,其特征在于:其中R1、R4独立地选自氢、甲基;R2、R5独立地选自氧、亚氨基;R3选自苯基、C1~C4直链或单支链烷基;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于9且小于等于100的整数,Z选自氢、C1~C3直链或支链烷基。
- 根据权利要求3所述的表面活性剂,其特征在于:其中R1、R4独立地选自甲基;R2、R5独立地选自氧;R3选自苯基、甲基、叔丁基;R6选自聚乙二醇衍生物(CH2CH2O)qZ,其中,q为大于9且小于等于50的整数,Z选自氢、C1~C3直链或支链烷基。
- 根据权利要求1所述的表面活性剂,其特征在于:所述疏水性单体选自甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸异丙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸叔丁酯、2-乙基己基甲基丙烯酸酯、环己基甲基丙烯酸酯、甲基丙烯酸十八酯、甲基丙烯酸正己酯、异冰片基甲基丙烯酸酯、甲基丙烯酸苯酯、甲基丙烯酸卞酯、甲基丙烯酸羟丙酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸异丙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、2-乙基己基丙烯酸酯、环己基丙烯酸酯、丙烯酸十八酯、丙烯酸正己酯、异冰片基丙烯酸酯、丙烯酸苯酯、丙烯酸卞酯和丙烯酸羟丙酯中的至少一种。
- 根据权利要求1所述的表面活性剂,其特征在于:所述亲水性单体的分子量为400~2000,选自聚乙二醇甲醚甲基丙烯酸酯、聚乙二醇乙醚甲基丙烯酸酯、聚乙二醇丙醚甲基丙烯酸酯和聚乙二醇甲基丙烯酸酯中的至少一种。
- 根据权利要求1所述的表面活性剂,其特征在于:所述表面活性剂中疏水性单体结构单元的摩尔含量为x,亲水性单体结构单元的摩尔含量为y,且x+y=1、x/y=1~9。
- 根据权利要求7所述的表面活性剂,其特征在于:x+y=1、x/y=2~6。
- 根据权利要求7或8所述的表面活性剂,其特征在于:所述表面活性剂的HLB值为8~14。
- 根据权利要求9所述的表面活性剂,其特征在于:所述表面活性剂的HLB值为10~12。
- 根据权利要求1至6中任一项所述的表面活性剂,其特征在于:所述表面活性剂是疏水性单体和亲水性单体的随机共聚物,所述疏水性单体和亲水性单体的竞聚率为0.5~2.5。
- 根据权利要求1至6中任一项所述的表面活性剂,其特征在于:所述表面活性剂是嵌段数大于5的多嵌段共聚物,单一嵌段中疏水性单体结构单元或亲水性单体结构单元的嵌段长度为1~10。
- 根据权利要求12所述的表面活性剂,其特征在于:所述表面活性剂的数均分子量为5000~100000。
- 根据权利要求13所述的表面活性剂,其特征在于:所述表面活性剂在水中形成胶束,该胶束的粒径为1~90nm,该胶束中单分子胶束含量≥50%。
- 根据权利要求14所述的表面活性剂,其特征在于:所述胶束的粒径为5~30nm。
- 根据权利要求15所述的表面活性剂,其特征在于:所述胶束的粒径为7~15nm。
- 一种权利要求1至16任一项所述表面活性剂的制备方法,其特征在于:所述制备方法包括在含有引发剂的溶剂中,至少一种结构如式(1)所示的疏水性单体和至少一种结构如式(2)所示的亲水性单体进行聚合反应获得表面活性剂的步骤,其中,式(1)和式(2)的定义同权利要求1。
- 根据权利要求17所述的表面活性剂的制备方法,其特征在于:所述溶剂选自甲醇、乙醇、正丙醇、异丙醇、叔丁醇、乙酸乙酯、碳酸二甲酯、四氢呋喃、乙二醇二甲醚和1,3-二氧戊环中的至少一种,获得的表面活性剂不经与溶剂分离直接使用。
- 一种权利要求1至16中任一项所述表面活性剂的应用,其特征在于:所述表面活性剂作为乳化剂应用于乳液聚合反应。
- 根据权利要求19所述的表面活性剂的应用,其特征在于:所述表面活性剂在乳液聚合反应中的加入量为聚合物生成量的0.001~5wt%。
- 根据权利要求20所述的表面活性剂的应用,其特征在于:所述表面活性剂在乳液聚合反应中的加入量为聚合物生成量的0.01~0.1wt%。
- 根据权利要求19所述的表面活性剂的应用,其特征在于:所述乳液聚合反应为含氟单体的聚合反应或含氟单体与非含氟单体的聚合反应;所述含氟单体选自氟乙烯、偏氟乙烯、三氟乙烯、四氟乙烯、六氟丙烯、四氟丙烯、三氟氯乙烯、1,1-氟氯乙烯、1,2-氟氯乙烯、全氟烷基乙烯、全氟烷基乙烯基醚、全氟正丙基乙烯基醚、全氟甲基乙烯基醚和全氟(2,2-二甲基-1,3-二氧杂环戊烯)中的至少一种;所述非含氟单体选自乙烯、丙烯酸酯、丙烯酸甲酯、甲基丙烯酸酯、甲基丙烯酸甲酯、乙烯基醚、乙烯基醋酸酯、丙烯腈、丁二烯、异戊二烯、苯乙烯、马来酸酐和衣康酸中的至少一种;当乳液聚合反应为含氟单体与非含氟单体的聚合反应时,所述非含氟单体占聚合单体总量的0~50mol%。
- 根据权利要求22所述的表面活性剂的应用,其特征在于:所述表面活性剂作为乳化剂应用于聚氟乙烯、聚偏二氟乙烯、聚三氟乙烯、聚三氟氯乙烯、聚四氟乙烯、偏二氟乙烯-三氟乙烯共聚物、偏二氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-三氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-三氟乙烯-氟氯乙烯共聚物、乙烯-三氟氯乙烯共聚物的制备。
- 一种含氟聚合物的制备方法,该制备方法包括,在水性介质中,在表面活性剂和引发剂的存在下,聚合单体进行乳液聚合反应获得含氟聚合物的步骤,其特征在于:所述表面活性剂为权利要求1至16中任一项所述的表面活性剂。
- 根据权利要求24所述的含氟聚合物的制备方法,其特征在于:所述表面活性剂的使用量为所述含氟聚合物生成量的0.001~5wt%。
- 根据权利要求25所述的含氟聚合物的制备方法,其特征在于:所述表面活性剂的使用量为所述含氟聚合物生成量的0.01~0.1wt%。
- 根据权利要求25所述的含氟聚合物的制备方法,其特征在于:所述含氟聚合物的乳液粒径为70~240nm。
- 根据权利要求24所述的含氟聚合物的制备方法,其特征在于:所述聚合单体为含氟单体或含氟单体和非含氟单体的混合物,所述含氟单体选自氟乙烯、偏氟乙烯、三氟乙烯、四氟乙烯、六氟丙烯、四氟丙烯、五氟丙烯、三氟氯乙烯、1,1-氟氯乙烯、1,2-氟氯乙烯、全氟烷基乙烯、全氟烷基乙烯基醚、全氟正丙基乙烯基醚、全氟甲基乙烯基醚和全氟(2,2-二甲基-1,3-二氧杂环戊烯)中的至少一种,所述非含氟单体选自乙烯、丙烯酸酯、丙烯酸甲酯、甲基丙烯酸酯、甲基丙烯酸甲酯、乙烯基醚、乙烯基醋酸酯、丙烯腈、丁二烯、异戊二烯、苯乙烯、马来酸酐和衣康酸中的至少一种,当聚合单体为含氟单体和非含氟单体的混合物时,所述非含氟单体占聚合单体总量的0~50mol%。
- 根据权利要求24所述的含氟聚合物的制备方法,其特征在于:所述含氟聚合物选自聚偏二氟乙烯、聚氟乙烯、聚三氟乙烯、聚三氟氯乙烯、聚四氟乙烯、偏二氟乙烯-三氟乙烯共聚物、偏二氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-六 氟丙烯共聚物、偏二氟乙烯-三氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-三氟乙烯-氟氯乙烯共聚物和乙烯-三氟氯乙烯共聚物中的至少一种。
- 根据权利要求24所述的含氟聚合物的制备方法,其特征在于,所述乳液聚合反应的温度为5~130℃,聚合反应的压力为0.5~10MPa。
- 一种含氟聚合物乳液粒径的调整方法,所述调整方法包括,在表面活性剂存在下,在水性介质中聚合单体聚合反应获得乳液粒径为100nm~250nm的含氟聚合物,其特征在于:所述表面活性剂为嵌段数大于5的多嵌段共聚物,单一嵌段中疏水性单体结构单元或亲水性单体结构单元的嵌段长度为1~10,所述表面活性剂选自含有聚乙二醇链段的共聚物中的至少一种,且其水油平衡值HLB为8~16,所述表面活性剂中聚乙二醇链段的平均聚合度大于4且小于等于100;其中,所述表面活性剂为权利要求1至16中任一项所述的表面活性剂。
- 根据权利要求31所述的含氟聚合物乳液粒径的调整方法,其特征在于,所述表面活性剂的水油平衡值HLB为9~12,所述表面活性剂中聚乙二醇链段的平均聚合度大于9且小于等于50。
- 根据权利要求31所述的含氟聚合物乳液粒径的调整方法,其特征在于:所述表面活性剂的使用量为所述含氟聚合物生成量的0.01~0.1wt%。
- 根据权利要求31至33中任一项所述的含氟聚合物乳液粒径的调整方法,其特征在于:所述聚合单体为含氟单体或含氟单体和非含氟单体的混合物,所述含氟单体选自氟乙烯、偏氟乙烯、三氟乙烯、四氟乙烯、六氟丙烯、四氟丙烯、五氟丙烯、三氟氯乙烯、1,1-氟氯乙烯、1,2-氟氯乙烯、全氟烷基乙烯、全氟烷基乙烯基醚、全氟正丙基乙烯基醚、全氟甲基乙烯基醚和全氟(2,2-二甲基-1,3-二氧杂环戊烯)中的至少一种,所述非含氟单体选自乙烯、丙烯酸酯、丙烯酸甲酯、甲基丙烯酸酯、甲基丙烯酸甲酯、乙烯基醚、乙烯基醋酸酯、丙烯腈、丁二烯、异戊二烯、苯乙烯、马来酸酐和衣康酸中的至少一种,当聚合单体为含氟单体和非含氟单体的混合物时,所述非含氟单体占聚合单体总量的0~50mol%。
- 根据权利要求31所述的含氟聚合物乳液粒径的调整方法,其特征在于:所述含氟聚合物选自聚偏二氟乙烯、聚氟乙烯、聚三氟乙烯、聚三氟氯乙烯、聚四氟乙烯、偏二氟乙烯- 三氟乙烯共聚物、偏二氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-三氟乙烯-氟氯乙烯共聚物和乙烯-三氟氯乙烯共聚物中的至少一种。
- 根据权利要求31所述的含氟聚合物乳液粒径的调整方法,其特征在于:所述含氟聚合物的数均分子量≥100000。
- 一种小粒径含氟聚合物乳液的制备方法,所述制备方法包括,在表面活性剂存在下,在水性介质中,聚合单体进行乳液聚合反应获得粒径为70~100nm含氟聚合物乳液,其特征在于:离子型聚合物参与乳液聚合反应,且离子型化合物键合到含氟聚合物分子链,所述离子型化合物的使用量为含氟聚合物生成量的0.005wt%~5wt%,所述表面活性剂为嵌段数大于5的多嵌段共聚物,单一嵌段中疏水性单体结构单元或亲水性单体结构单元的嵌段长度为1~10;其中,所述表面活性剂为权利要求1至16中任一项所述的表面活性剂。
- 根据权利要求37所述的小粒径含氟聚合物乳液的制备方法,其特征在于:所述离子型化合物选自丙烯酸盐、离子型丙烯酸酯、甲基丙烯酸盐、离子型甲基丙烯酸酯、离子型烯丙醇酯、离子型烯丙醇醚、离子型乙烯基醚、富马酸单酯盐、衣康酸盐、10-十一烯酸盐、聚丙烯酸钠、聚甲基丙烯酸钠、聚丙烯酸锂、聚甲基丙烯酸锂、聚丙烯酸铵、聚甲基丙烯酸铵、聚季铵盐-1~51、聚苯乙烯磺酸钠、聚苯乙烯磺酸锂和聚苯乙烯磺酸铵中的至少一种。
- 根据权利要求38所述的小粒径含氟聚合物乳液的制备方法,其特征在于:所述离子型化合物的使用量为含氟聚合物生成量的0.01wt%~0.1wt%。
- 根据权利要求37所述的小粒径含氟聚合物乳液的制备方法,其特征在于:所述表面活性剂的HLB值为8~16。
- 根据权利要求37所述的小粒径含氟聚合物乳液的制备方法,其特征在于:所述表面活性剂的使用量为所述含氟聚合物生成量的0.01~0.1wt%。
- 根据权利要求37所述的小粒径含氟聚合物乳液的制备方法,其特征在于:所述聚合单体为含氟单体为含氟单体或含氟单体和非含氟单体的混合物,所述含氟单体选自氟乙烯、偏氟乙烯、三氟乙烯、四氟乙烯、六氟丙烯、四氟丙烯、五氟丙烯、三氟氯乙烯、1,1-氟氯乙烯、1,2-氟氯乙烯、全氟烷基乙烯、全氟烷基乙烯基醚、全氟正丙基乙烯基醚、全氟甲基乙烯基醚和全氟(2,2-二甲基-1,3-二氧杂环戊烯)中的至少一种,所述非含氟单体选自乙烯、丙烯酸酯、丙烯酸甲酯、甲基丙烯酸酯、甲基丙烯酸甲酯、乙烯基醚、乙烯基醋酸酯、丙烯腈、丁二烯、异戊二烯、苯乙烯、马来酸酐和衣康酸中的至少一种,当聚合单体为含氟单体和非含氟单体的混合物时,所述非含氟单体占聚合单体总量的0~50mol%。
- 根据权利要求37所述的小粒径含氟聚合物乳液的制备方法,其特征在于,所述含氟聚合物选自聚偏二氟乙烯、聚氟乙烯、聚三氟乙烯、聚三氟氯乙烯、聚四氟乙烯、偏二氟乙烯-三氟乙烯共聚物、偏二氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-三氟乙烯-三氟氯乙烯共聚物、偏二氟乙烯-三氟乙烯-氟氯乙烯共聚物和乙烯-三氟氯乙烯共聚物中的至少一种。
- 根据权利要求37所述的小粒径含氟聚合物乳液的制备方法,其特征在于,所述含氟聚合物的数均分子量大于170000。
- 一种权利要求37至44任一项所述小粒径含氟聚合物乳液的应用,其特征在于,所述小粒径含氟聚合物乳液作为组分应用于涂料、粘结剂、橡胶、3D打印材料、隔膜涂层、水处理膜、复合材料添加剂、微凝胶、电子产品结构胶。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211425292.4A CN118063653A (zh) | 2022-11-14 | 2022-11-14 | 一种含氟聚合物的制备方法 |
CN202211419393.0 | 2022-11-14 | ||
CN202211419402.6A CN118027306A (zh) | 2022-11-14 | 2022-11-14 | 一种表面活性剂、其制备方法及应用 |
CN202211431306.3 | 2022-11-14 | ||
CN202211431306.3A CN118027298A (zh) | 2022-11-14 | 2022-11-14 | 一种小粒径含氟聚合物乳液的制备方法及其应用 |
CN202211419402.6 | 2022-11-14 | ||
CN202211425292.4 | 2022-11-14 | ||
CN202211419393.0A CN118027261A (zh) | 2022-11-14 | 2022-11-14 | 一种含氟聚合物乳液粒径的调整方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024104274A1 true WO2024104274A1 (zh) | 2024-05-23 |
Family
ID=91083805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/131095 WO2024104274A1 (zh) | 2022-11-14 | 2023-11-10 | 表面活性剂、其制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024104274A1 (zh) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2847404A (en) | 1955-06-30 | 1958-08-12 | Goodrich Co B F | High stability latices |
CN1136285A (zh) * | 1993-09-03 | 1996-11-20 | 奈科姆成像有限公司 | 聚合物表面活性剂包裹的微泡及它们在超声波成像方面的用途 |
WO1997004756A2 (en) * | 1995-07-26 | 1997-02-13 | Nanosystems L.L.C. | Methacrylate backbone surfactants in nanoparticulate formulations |
US5859123A (en) | 1995-11-15 | 1999-01-12 | Central Glass Company, Limited | Water-based fluorine-containing emulsion |
JP2001164065A (ja) * | 1999-12-13 | 2001-06-19 | Asahi Glass Co Ltd | フッ素系共重合体の水性分散液 |
CN1535989A (zh) | 2003-03-28 | 2004-10-13 | ���з��ɻ�ѧ�ɷ�����˾ | 使用硅氧烷表面活性剂聚合含卤素的单体 |
CN101547966A (zh) * | 2006-12-08 | 2009-09-30 | 阿科玛股份有限公司 | 用于制造一种稳定的氟聚合物分散体的水性方法 |
CN102046672A (zh) * | 2008-06-04 | 2011-05-04 | 旭硝子株式会社 | 共聚物、其制造方法及斥水斥油剂组合物 |
CN102091564A (zh) * | 2010-12-07 | 2011-06-15 | 余林华 | 一种丙烯酸酯类高分子表面活性剂及其制备方法 |
CN104292374A (zh) | 2013-07-15 | 2015-01-21 | 河北工业大学 | 一种基于改变非交联种子亲水性的各向异性粒子制备方法 |
CN104292378A (zh) | 2013-07-15 | 2015-01-21 | 河北工业大学 | 一种基于改变种子亲水性和交联度的非球形粒子制备方法 |
CN111148772A (zh) | 2017-09-27 | 2020-05-12 | 阿科玛法国公司 | 通过raft乳液聚合合成不含表面活性剂的聚(偏二氟乙烯)胶乳 |
CN113227167A (zh) * | 2018-11-12 | 2021-08-06 | 阿科玛股份有限公司 | 用于制造含氟聚合物分散体的方法 |
CN114106622A (zh) * | 2020-08-31 | 2022-03-01 | 浙江省化工研究院有限公司 | 一种水分散体涂料 |
-
2023
- 2023-11-10 WO PCT/CN2023/131095 patent/WO2024104274A1/zh active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2847404A (en) | 1955-06-30 | 1958-08-12 | Goodrich Co B F | High stability latices |
CN1136285A (zh) * | 1993-09-03 | 1996-11-20 | 奈科姆成像有限公司 | 聚合物表面活性剂包裹的微泡及它们在超声波成像方面的用途 |
WO1997004756A2 (en) * | 1995-07-26 | 1997-02-13 | Nanosystems L.L.C. | Methacrylate backbone surfactants in nanoparticulate formulations |
US5859123A (en) | 1995-11-15 | 1999-01-12 | Central Glass Company, Limited | Water-based fluorine-containing emulsion |
JP2001164065A (ja) * | 1999-12-13 | 2001-06-19 | Asahi Glass Co Ltd | フッ素系共重合体の水性分散液 |
CN1535989A (zh) | 2003-03-28 | 2004-10-13 | ���з��ɻ�ѧ�ɷ�����˾ | 使用硅氧烷表面活性剂聚合含卤素的单体 |
CN101547966A (zh) * | 2006-12-08 | 2009-09-30 | 阿科玛股份有限公司 | 用于制造一种稳定的氟聚合物分散体的水性方法 |
CN102046672A (zh) * | 2008-06-04 | 2011-05-04 | 旭硝子株式会社 | 共聚物、其制造方法及斥水斥油剂组合物 |
CN102091564A (zh) * | 2010-12-07 | 2011-06-15 | 余林华 | 一种丙烯酸酯类高分子表面活性剂及其制备方法 |
CN104292374A (zh) | 2013-07-15 | 2015-01-21 | 河北工业大学 | 一种基于改变非交联种子亲水性的各向异性粒子制备方法 |
CN104292378A (zh) | 2013-07-15 | 2015-01-21 | 河北工业大学 | 一种基于改变种子亲水性和交联度的非球形粒子制备方法 |
CN111148772A (zh) | 2017-09-27 | 2020-05-12 | 阿科玛法国公司 | 通过raft乳液聚合合成不含表面活性剂的聚(偏二氟乙烯)胶乳 |
CN113227167A (zh) * | 2018-11-12 | 2021-08-06 | 阿科玛股份有限公司 | 用于制造含氟聚合物分散体的方法 |
CN114106622A (zh) * | 2020-08-31 | 2022-03-01 | 浙江省化工研究院有限公司 | 一种水分散体涂料 |
Non-Patent Citations (5)
Title |
---|
CHAN DOREEN, YU ANTHONY C.; APPEL ERIC A.: "Single-Chain Polymeric Nanocarriers: A Platform for Determining Structure–Function Correlations in the Delivery of Molecular Cargo", BIOMACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 18, no. 4, 10 April 2017 (2017-04-10), US , pages 1434 - 1439, XP093170691, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.7b00249 * |
CHERN CHORNG‐SHYAN, LEE CHENG: "Effect of the structure of amphiphilic poly(ethylene glycol)‐containing graft copolymers on styrene emulsion polymerization", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 40, no. 10, 15 May 2002 (2002-05-15), US , pages 1608 - 1624, XP093170695, ISSN: 0887-624X, DOI: 10.1002/pola.10243 * |
HOU XU-MING, SHEN YI-DING*, XIE NING, QIU LIE-WEI, MA GUO-YAN, YANG KAI: "Preparation of Acrylate Copolymer Surfactant/polyisocyanate Emulsion and Surface Sizing Performance", CHINESE JOURNAL OF SYNTHETIC CHEMISTRY, vol. 28, no. 4, 1 January 2020 (2020-01-01), pages 263 - 269, XP093170706, DOI: 10.15952/j.cnki.cjsc.1005-1511.19419 * |
IMAI SHOTA, HIRAI YUJI; NAGAO CHITOSE; SAWAMOTO MITSUO; TERASHIMA TAKAYA: "Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and Thermoresponsive Micelles in Water", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 51, no. 2, 23 January 2018 (2018-01-23), US , pages 398 - 409, XP093170693, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b01918 * |
SOMUNCUOGLU BIRSEN; LEE YU LIN; CONSTANTINOU ANNA P.; POUSSIN DAVID L.M.; GEORGIOU THEONI K.: "Ethyl methacrylate diblock copolymers as polymeric surfactants: Effect of molar mass and composition", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 154, 27 May 2021 (2021-05-27), GB , XP086635549, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2021.110537 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410987B2 (ja) | 安定な含フッ素ポリマー分散液を製造するための水系方法 | |
JP4714991B2 (ja) | 含フッ素ポリマーの製造法 | |
JP5506392B2 (ja) | 含フッ素ポリマーを製造するための水系方法 | |
CN102471427B (zh) | 含氟嵌段共聚物的制造方法 | |
CN102504063B (zh) | 一种含氟聚合物的制备方法 | |
JP6225683B2 (ja) | フルオロポリマー水性分散液の製造方法 | |
CN111040058A (zh) | 聚四氟乙烯水性分散液的制造方法 | |
JP5598476B2 (ja) | 含フッ素重合体の製造方法 | |
CN102482362B (zh) | 含氟聚合物的制造方法 | |
CN118063653A (zh) | 一种含氟聚合物的制备方法 | |
CN118027298A (zh) | 一种小粒径含氟聚合物乳液的制备方法及其应用 | |
WO2024104274A1 (zh) | 表面活性剂、其制备方法及应用 | |
JP2009227754A (ja) | 含フッ素共重合体の製造法 | |
CN118027261A (zh) | 一种含氟聚合物乳液粒径的调整方法 | |
KR20250107824A (ko) | 계면활성제 및 이의 제조 방법과 용도 | |
CN118027306A (zh) | 一种表面活性剂、其制备方法及应用 | |
JP5454470B2 (ja) | 含フッ素重合体の製造方法 | |
CN120118250A (zh) | 一种表面活性剂、制备方法及其应用 | |
JP7042924B2 (ja) | ゲル状電解質および非水電解質二次電池 | |
KR101207422B1 (ko) | 폴리플루오로카복실산 염의 불소계 계면활성제를 사용하는 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법 | |
CN120118232A (zh) | 一种含氟聚合物乳液的制备方法及其应用 | |
CN120118223A (zh) | 一种含氟聚合物乳液粒径的调整方法 | |
KR101207421B1 (ko) | 플루오로설포네이트계 불소계 계면활성제를 사용하는 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법 | |
CN120157791A (zh) | 一种含氟聚合物的制备方法 | |
WO2022257300A1 (zh) | 一种聚醚二酸或其盐类表面活性剂及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23890708 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023890708 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023890708 Country of ref document: EP Effective date: 20250612 |