WO2024100911A1 - 制御装置、制御方法および空気調和機 - Google Patents
制御装置、制御方法および空気調和機 Download PDFInfo
- Publication number
- WO2024100911A1 WO2024100911A1 PCT/JP2023/004308 JP2023004308W WO2024100911A1 WO 2024100911 A1 WO2024100911 A1 WO 2024100911A1 JP 2023004308 W JP2023004308 W JP 2023004308W WO 2024100911 A1 WO2024100911 A1 WO 2024100911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- current value
- axis current
- angular velocity
- estimated
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
Definitions
- This disclosure relates to a control device, a control method, and an air conditioner.
- This application claims priority to Japanese Patent Application No. 2022-178328, filed on November 7, 2022, the contents of which are incorporated herein by reference.
- Patent Documents 1 and 2 describe a control device that controls a motor using the motor speed and rotational position (rotational angle) estimated based on the value of the current flowing through the motor.
- Patent Document 2 also contains the following description of harmonic components generated by an interior permanent magnet synchronous motor (IPMSM (Interior Permanent Magnet Synchronous Motor)) that rotates using magnet torque and reluctance torque. That is, Patent Document 2 states that "the rotor magnetic flux, which includes spatial harmonics, does not excite even-order harmonics due to the point symmetry of the waveform. Also, since there are no 3n-order harmonic components in a three-phase connection, the harmonic components of the rotor magnetic flux are 6n ⁇ 1 order components.
- IPMSM Internal Permanent Magnet synchronous motor
- Patent Document 3 also contains the following statement regarding the harmonic components of reluctance torque ripple: "As is well known to those skilled in the art, in a synchronous motor that generates reluctance torque, the main components of the spatially dependent reluctance torque ripple are 6th and 12th order components" (paragraph 0041 of Patent Document 3).
- Patent Documents 1 and 2 have the problem that, when estimating the motor speed and rotational position, they may be affected by the above-mentioned harmonic components generated in the motor, and therefore there are cases where it is desirable to further improve the estimation accuracy of the motor speed and rotational position.
- the present disclosure has been made to solve the above problems, and aims to provide a control device, control method, and air conditioner that can accurately estimate the rotational position and speed of a motor.
- the control device is a control device that controls an inverter that AC drives a motor that rotates using magnet torque and reluctance torque, and when estimating the mechanical angular velocity and position of the rotor of the motor based on the d-axis current value and q-axis current value flowing through the motor and the number of pole pairs of the motor, it estimates the mechanical angular velocity and the position by removing 6n-th order (n includes 1, 2, and natural numbers greater than or equal to 0 and greater than or equal to 3) harmonic components of the value obtained by multiplying the mechanical angular velocity by the number of pole pairs from the d-axis current value and the q-axis current value or the estimated angular velocity of the rotor, and then controls the inverter using the estimated mechanical angular velocity and the position.
- 6n-th order includes 1, 2, and natural numbers greater than or equal to 0 and greater than or equal to 3
- the control method is a control method for controlling an inverter that AC drives a motor that rotates using magnet torque and reluctance torque, and when estimating the mechanical angular velocity and position of the rotor of the motor based on the d-axis current value and q-axis current value flowing through the motor and the number of pole pairs of the motor, the method estimates the mechanical angular velocity and the position by removing 6n-th order (n includes 1, 2, and natural numbers from 0 to 3) harmonic components, which include at least the 6th and 12th orders, of the value obtained by multiplying the mechanical angular velocity by the number of pole pairs from the d-axis current value and the q-axis current value or the estimated angular velocity of the rotor, and controls the inverter using the estimated mechanical angular velocity and position.
- 6n-th order includes 1, 2, and natural numbers from 0 to 3
- the air conditioner according to the present disclosure includes a compressor, a motor that uses magnet torque and reluctance torque to drive the compressor, an inverter that drives the motor with AC, and a control device that controls the inverter.
- the control device estimates the mechanical angular velocity and position by removing 6n-th order (n includes 1, 2, and natural numbers from 0 to 3) harmonic components, which include at least the 6th and 12th orders, of the value obtained by multiplying the mechanical angular velocity by the number of pole pairs from the d-axis current value and the q-axis current value or the estimated angular velocity of the rotor, and controls the inverter using the estimated mechanical angular velocity and position.
- control device control method, and air conditioner disclosed herein enable the motor's rotational position and speed to be estimated with high accuracy.
- FIG. 1 is a block diagram showing an example configuration of a motor control device according to a first embodiment of the present disclosure
- 3 is a block diagram showing a configuration example of a speed/position estimation unit according to the first embodiment of the present disclosure.
- FIG. 13 is a block diagram showing another configuration example of the speed/position estimation unit according to the first embodiment of the present disclosure.
- FIG. 4A to 4C are schematic diagrams for explaining an example of estimating a velocity and a position according to the first embodiment of the present disclosure.
- FIG. 4 is a schematic diagram showing a configuration example of a normalized torque pattern table according to the first embodiment of the present disclosure.
- FIG. 11 is a diagram illustrating an example of a relationship between a rotor rotation angle and a plurality of coefficient values in a normalized torque pattern table according to the first embodiment of the present disclosure.
- FIG. 11 is a block diagram showing an example configuration of a motor control device according to a second embodiment of the present disclosure.
- FIG. 13 is a schematic diagram for explaining a configuration example of a motor control device according to a second embodiment of the present disclosure.
- FIG. 1 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
- Fig. 1 is a block diagram showing an example of the configuration of a motor control device according to a first embodiment of the present disclosure.
- Fig. 2 is a block diagram showing an example of the configuration of a speed/position estimator according to a first embodiment of the present disclosure.
- Fig. 3 is a block diagram showing another example of the configuration of a speed/position estimator according to a first embodiment of the present disclosure.
- Fig. 4 is a schematic diagram for explaining an example of speed and position estimation according to a first embodiment of the present disclosure.
- Fig. 1 is a block diagram showing an example of the configuration of a motor control device according to a first embodiment of the present disclosure.
- Fig. 2 is a block diagram showing an example of the configuration of a speed/position estimator according to a first embodiment of the present disclosure.
- Fig. 3 is a block diagram showing another example of the configuration of a speed/position estimator according to a first embodiment of the present disclosure.
- Fig. 4 is a schematic diagram for explaining
- FIG. 5 is a schematic diagram showing an example of the configuration of a normalized torque pattern table according to a first embodiment of the present disclosure.
- Fig. 6 is a diagram showing an example of the relationship between the rotor rotation angle and a plurality of coefficient values in a normalized torque pattern table according to a first embodiment of the present disclosure.
- Fig. 7 is a block diagram showing an example of the configuration of a motor control device according to a second embodiment of the present disclosure.
- Fig. 8 is a schematic diagram for explaining an example of the configuration of a motor control device according to a second embodiment of the present disclosure.
- Fig. 9 is a schematic block diagram showing the configuration of a computer according to at least one embodiment. Note that the same or corresponding configurations in each figure are designated by the same reference numerals and the description will be omitted as appropriate.
- FIG. 1 shows a configuration example of a control device 1 according to a first embodiment of the present disclosure.
- the control device 1 is a control device that controls an inverter 4 that drives an AC motor 2 that rotates a compressor 5 included in an air conditioner 100.
- the motor 2 is, for example, an IPMSM that rotates using magnet torque and reluctance torque.
- the inverter 4 uses an AC power source 3 as a power source and supplies power to the motor 2.
- a current sensor 10 detects a current value passed from the inverter 4 to the motor 2.
- the air conditioner 100 includes a control device 1, a motor 2, an inverter 4, and a current sensor 10.
- the control device 1 includes, for example, a computer such as a microcomputer, and peripheral devices and peripheral circuits of the computer.
- the control device 1 includes a subtraction unit 14, a speed control unit 20, a load torque compensation unit 13, a speed/position estimation unit 11, a two-phase/three-phase conversion unit 21, and a three-phase/two-phase conversion unit 22 as a functional configuration configured by a combination of hardware such as a computer and software such as a program executed by the computer.
- the speed control unit 20 includes a speed PI control unit (speed proportional integral control unit) 12 , an adder 15 , a current conversion unit 16 , a subtractor 17 , and a current PI control unit 18 .
- the control device is not limited to the example shown in FIG. 1, and may be, for example, a control device that controls a motor that rotates using magnet torque and reluctance torque.
- the motor 2 is not limited to one that drives the compressor 5, and the motor 2 is not limited to one that is provided in an air conditioner.
- FIG. 1 shows the main components related to the control of the rotation speed of the motor 2 by the control device 1, and some other components within the air conditioner 100 or control device 1, such as the refrigerant circuit, fan, and components related to temperature control and humidity control, are not shown.
- the three-phase/two-phase converter 22 receives the three-phase current value I detected by the current sensor 10 and the rotational position (rotational angle) ⁇ es of the rotor of the motor 2 estimated by the speed/position estimator 11, converts the three-phase current value I detected by the current sensor 10 into a d-axis current value id and a q-axis current value iq of two phases of the d-axis and q-axis, and outputs the converted current.
- the current sensor 10 detects, for example, a phase current flowing through the motor 2. However, the configuration of the current sensor 10 is not limited to this.
- the current sensor 10 may be configured to detect currents flowing through a plurality of switching elements included in the inverter 4 and calculate the phase currents.
- the two-phase/three-phase converter 21 receives the rotational position ⁇ es and the two-phase d-axis and q-axis d-axis command voltage value vd* and q-axis command voltage value vq* output by the current PI controller 18, converts them into a three-phase voltage value V, and outputs the three-phase voltage value V to the inverter 4.
- the inverter 4 controls a plurality of switching elements (not shown) included in the inverter based on the three-phase voltage value V output by the two-phase/three-phase converter 21.
- the speed/position estimation unit 11 inputs the two-phase d-axis voltage value vd and q-axis voltage value vq output by the current PI control unit 18 and the two-phase d-axis current value id and q-axis current value iq output by the three-phase/two-phase conversion unit 22, and estimates the rotational position ⁇ es and rotational speed (mechanical angular velocity) ⁇ mes of the rotor of the motor 2 based on the two-phase d-axis current value id and q-axis current value iq and the number of pole pairs Np of the motor 2.
- FIG. 2 shows an example of the configuration of the speed/position estimation unit 11.
- the speed/position estimation unit 11 includes an adjustment model 111, a speed estimation unit 112, an integrator 113, a divider 114, and a harmonic component removal unit 115.
- the adjustment model 111 uses a data model of the motor 2 to calculate the model q-axis current value iq ⁇ and the model d-axis current value id ⁇ based on the q-axis current value iq and the d-axis current value id, and the rotor estimated speed (electrical angular velocity (hereinafter also simply referred to as angular velocity)) ⁇ es in the previous clock cycle.
- angular velocity electric angular velocity
- a typical data model is as shown in the following equation.
- R is the winding resistance
- Ld is the d-axis inductance
- Lq is the q-axis inductance
- Ke the induced voltage constant
- model q-axis current value iq ⁇ and the model d-axis current value id ⁇ are calculated by solving this differential equation using a numerical calculation method such as Runge-Kutta.
- the speed estimation unit 112 receives the model q-axis current value iq ⁇ and the model d-axis current value id ⁇ , as well as the q-axis current value iq and the d-axis current value id after a predetermined harmonic component has been removed by the harmonic component removal unit 115 described below, calculates the evaluation function Err shown in the following equation according to Popov's theory of ultrastability, and determines the rotor estimated speed ⁇ es by PI control of this evaluation function Err. Note that there are various ways to determine the evaluation function Err, and this is not limited to this example.
- L is the inductance
- Kp is the proportional constant
- Ki is the integral constant
- the rotor estimated speed ⁇ es obtained by the speed estimation unit 112 is integrated by the integrator 113 to obtain the rotor estimated position ⁇ es.
- the rotor estimated position ⁇ es in the next clock cycle supplied to the two-phase/three-phase conversion unit 21 is generated by applying a correction corresponding to the rotor estimated speed ⁇ es to the rotor estimated position ⁇ es obtained here.
- the harmonic component removal unit 115 In a motor that rotates using magnet torque and reluctance torque, such as an IPMSM, the 5th and 7th distortion components of the induced voltage become 6th distortion on the dq axis, and similarly, the 6n-1st and 6n+1st distortion components become 6nth distortion on the dq axis. In addition, the 5th and 7th distortion components of the inductance become 12th distortion on the dq axis, and the 6n-1st and 6m+1st distortion components become 12nth distortion on the dq axis.
- the influence of distortion appears in the model q-axis current value iq ⁇ and the model d-axis current value id ⁇ at 6th, 12th, ..., 6nth order (n is a natural number).
- n is a natural number.
- the order here is an electrical angle, so for a motor with Np pole pairs, the order is 6n, or 6Np x n, which is the rotation speed (mechanical angular velocity) multiplied by the pole pair number Np.
- the 6Np x n estimated speed fluctuation in the rotation speed appears as an error, so by removing the 6Np x n estimated speed fluctuation in the rotation speed (mechanical angular velocity) from the estimated speed fluctuation, the error in the estimated speed fluctuation can be reduced for motors with large distortion.
- the harmonic component removal unit 115 of this embodiment removes 6n-order harmonic components, including at least the 6th and 12th orders, of the mechanical angular velocity multiplied by the number of pole pairs, from the d-axis current value id and the q-axis current value iq input to the speed/position estimation unit 11.
- Any means such as a resonant notch filter or Fourier transform, can be used to remove a specific frequency.
- the harmonic components may be removed using an LPF (low pass filter).
- the value of the coefficient k can be set, for example, according to the frequency corresponding to the desired response speed in speed control.
- n the value of n to include 1 and 2, that is, the 6th and 12th orders.
- the harmonic component removal unit 115 it is desirable for the harmonic component removal unit 115 to remove 6n-th order (n includes 1 and 2, and natural numbers 0 to 3 (in this case, n includes at least 1 and 2, does not include a natural number 3 or greater (in the case of 0), or includes one or more natural numbers 3 or greater) harmonic components, which include at least the 6th and 12th orders of the mechanical angular velocity multiplied by the number of pole pairs, from the d-axis current value id and the q-axis current value iq input to the speed/position estimation unit 11.
- speed/position estimation may not be possible if harmonic components are removed from the d-axis current value id and q-axis current value iq.
- the d-axis current value id and q-axis current value iq output by the three-phase/two-phase converter 22 are not removed from the speed estimator 112 of the speed/position estimator 11a (corresponding to the speed/position estimator 11 in Figure 2), and are input as is to the speed estimator 112. Then, the 6Np x n-th harmonic component of the rotation speed is removed from the output of the estimated speed ⁇ es by the harmonic component remover 115a.
- the error in the estimated speed fluctuation can be reduced in motors with large distortion.
- the estimated speed ⁇ es output by the speed estimator 112 is input to the harmonic component remover 115a, and the output of the harmonic component remover 115a is input to the divider 114.
- the output of the harmonic component remover 115a may be input to the integrator 113 or the adjustment model 111.
- the divider 114 also calculates the rotor speed (mechanical angular speed) ⁇ mes of the motor 2 by dividing the estimated rotor speed ⁇ es by the number of pole pairs Np of the motor 2.
- the speed/position estimation unit 11 can estimate the speed using, for example, the motor constant and induced voltage in addition to the d-axis current value id and the q-axis current value iq.
- the inductance and induced voltage waveform of the motor 2 can be determined on the assumption that they are sinusoidal waves.
- FIG. 4 shows the definition of the axes used in the estimation. The coordinates according to the estimated position are the ⁇ axes, while the coordinates according to the actual position are the dq axes. The difference between the actual position and the estimated position is ⁇ .
- the adjustment model 111 calculates the model q-axis current value iq ⁇ and the model d-axis current value id ⁇ using the data model of the motor 2 shown in equation (1) based on the q-axis current value iq and the d-axis current value id, and the rotor estimated speed ⁇ es in the previous clock cycle.
- the speed estimation unit 112 uses an evaluation function Err related to the error ⁇ between the actual position and the estimated position to obtain the estimated speed ⁇ es by PI control (Kp ⁇ Err+ ⁇ Ki ⁇ Err). If ⁇ is positive, the estimated position lags behind the actual position, so the estimated speed is increased, and conversely, if it is negative, the estimated speed is decreased. This causes the evaluation function Err to converge to 0.
- the subtraction unit 14 subtracts the rotation speed ⁇ mes from the rotation speed (mechanical angular velocity) command value ⁇ m*, calculates the deviation ⁇ m, and outputs it to the speed PI control unit 12.
- the speed PI control unit 12 calculates an average torque command value, which is the average value of the output torque command value of the motor 2 for reducing the deviation ⁇ m by proportional-integral action with respect to the deviation ⁇ m, and outputs it to the adding unit 15 and the load torque compensation unit 13. In this case, the speed PI control unit 12 calculates and outputs the average output torque command value according to the deviation ⁇ m between the rotation speed ⁇ mes of the motor 2 and the rotation speed command value ⁇ m*.
- the load torque compensation unit 13 includes a normalized torque pattern table 131, and receives the average torque command value output by the speed PI control unit 12 and the rotational position ⁇ es output by the speed/position estimation unit 11. Using the normalized torque pattern table 131, the load torque compensation unit 13 calculates a compensation torque value and outputs it to the addition unit 15.
- the compensation torque value is a torque value for compensating for fluctuations in the load torque of the motor 2 during one rotation of the motor 2.
- the normalized torque pattern table 131 is a table that defines a normalized torque pattern, which is a pattern of multiple coefficient values that change according to the rotational position (rotational angle) ⁇ es of the motor 2.
- the motor 2 drives a compressor 5, such as a rotary compressor.
- a rotary compressor changes in refrigerant gas pressure occur during each of the suction, compression, and discharge strokes during one rotation, resulting in steady load torque fluctuations. Therefore, in this embodiment, the motor speed fluctuations are suppressed by compensating the output torque command according to the estimated rotor position using the product of the average torque and the normalized torque pattern.
- the load torque compensation unit 13 determines a coefficient value according to the rotational position (rotational angle) ⁇ es of the motor 2 based on the normalized torque pattern table 131, and calculates a compensation torque value by multiplying the average torque command value by the determined coefficient value.
- the compensation torque value and the coefficient value are positive, negative, or zero.
- the compensation torque value is a value that compensates for the load torque fluctuation during one rotation, and the average value of the output torque command value for one rotation compensated by the compensation torque value is required to match the average torque command value.
- the total value of the compensation torque value for one rotation is required to be zero.
- the total value of the coefficient values that configure (define) the normalized torque pattern for one rotation is also required to be zero.
- FIG. 5 shows an example of the configuration of the normalized torque pattern table 131.
- FIG. 6 also shows an example of the relationship between the rotor rotation angle and multiple coefficient values, with the horizontal axis representing the rotor rotation angle [deg] and the vertical axis representing the coefficient value [%].
- the normalized torque pattern table 131 divides one rotation (360 degrees) into 12 sections, each section being 30 degrees apart, and sets a coefficient value y(n1)(m1) for each section.
- n1 represents the number of adjustments made when adjusting the normalized torque pattern table 131 to reduce speed fluctuations.
- a pattern consisting of the coefficient values y(n1)(m1) is called a normalized torque pattern y(n1).
- the coefficient values y(n1)(m1) are set so that the total value for one rotation is zero.
- the number of divisions of the rotational position in the normalized torque pattern table 131 i.e., the number of divisions of the phase axis
- the phase axis of the normalized torque pattern is divided up to 2 x lcm(1, ..., k) x ndiv.
- 2 represents a coefficient based on the sampling theorem.
- lcm(1, ..., k) represents the least common multiple of the natural numbers from 1 to k.
- ndiv is an arbitrary natural number. This makes it possible to express torque fluctuations including harmonics up to the kth order. For example, when reducing the 1st to 3rd order components, when ndiv is 1, the number of divisions is 2 x 6 x 1, or 12 divisions.
- the adder 15 adds the average torque command value output by the speed PI control unit 12 and the compensation torque value output by the load torque compensation unit 13 to calculate the output torque command value, and outputs it to the current conversion unit 16.
- the current conversion unit 16 inputs the output torque command value output by the addition unit 15, converts the output torque command value into a current, calculates the d-axis command current value id* and the q-axis command current value iq*, and outputs them to the subtraction unit 17.
- the subtraction unit 17 inputs the d-axis command current value id*, the q-axis command current value iq*, and the d-axis current value id and the q-axis current value iq, subtracts the d-axis current value id and the q-axis current value iq from the d-axis command current value id* and the q-axis command current value iq*, respectively, calculates the deviations of the d-axis component and the q-axis component between the command value and the motor current value, and outputs them to the current PI control unit 18.
- the current PI control unit 18 calculates the d-axis command voltage value vd* and the q-axis command voltage value vq* to reduce each deviation output by the subtraction unit 17 through proportional-integral operation, and outputs them to the 2-phase/3-phase conversion unit 21 and the speed/position estimation unit 11.
- FIG. 7 shows a configuration example of the control device 1a and the inverter 4a according to the second embodiment of the present disclosure.
- the control device 1a is different from the control device 1 of the first embodiment in that it newly includes a harmonic component removal unit 23a.
- the other configurations of the control device 1 and the control device 1a are the same.
- the inverter 4a in an air conditioner 100a corresponding to the air conditioner 100 of FIG. 1, the inverter 4a includes a configuration corresponding to the current sensor 10 shown in FIG. 1 as a current sensor 10a, and the phase current of the motor 2 is calculated based on the result of the current sensor 10a detecting the DC current on the input side of the inverter 4a.
- the current sensor 10a detects each phase current with a shifted timing in synchronization with the on/off timing of a predetermined switching element. Due to this difference in timing, a 3m-th harmonic component of the estimated speed (electrical angular velocity) is generated in the detected current (m is a natural number). Note that it is desirable that m includes at least 1. Therefore, in this embodiment, the harmonic component removing unit 23a removes 3m-th order (m includes 1 and natural numbers of 0 to 2 or more) harmonic components of the value obtained by multiplying the mechanical angular velocity ⁇ mes by the number of pole pairs Np from the d-axis current value and the q-axis current value input to the speed/position estimating unit 11.
- the control device 1a removes 6n-th order (n includes 1 and 2 and natural numbers of 0 to 3 or more) harmonic components including at least the 6th and 12th orders of the value obtained by multiplying the mechanical angular velocity ⁇ mes of the rotor of the motor 2 by the number of pole pairs Np from the d-axis current value and the q-axis current value, and 3m-th order (m includes 1 and natural numbers of 0 to 2 or more) harmonic components of the value obtained by multiplying the mechanical angular velocity ⁇ mes by the number of pole pairs Np from the d-axis current value and the q-axis current value.
- the variables n and m may be the same or different.
- the harmonic component removal section 23a and the harmonic component removal section 115 may be integrated into one body.
- control device 1a and inverter 4a shown in FIG. 7 correspond to the control device 1 and inverter 4 shown in FIG. 1, respectively.
- the combination of the current sensor 10a and current detection unit 43 shown in FIG. 7 corresponds to the current sensor 10 shown in FIG. 1.
- the harmonic component removal unit 23a the other configurations are basically the same in the first and second embodiments.
- the inverter device 4a includes a three-phase PWM (pulse width modulation) inverter main circuit 41, a rectifier circuit 42 that converts AC power supplied from the AC power source 3 into DC power, a current sensor 10a through which current flows back to the main circuit 41 via the motor 2, a current detection unit 43, and a three-phase PWM waveform generation unit 44.
- PWM pulse width modulation
- the main circuit 41 is connected to the power supply 3 via a rectifier circuit 42, and includes a U-phase circuit 12U, a V-phase circuit 12V, and a W-phase circuit 12W.
- the U-phase circuit 12U includes an upper arm switching element PU and a lower arm switching element NU
- the V-phase circuit 12V includes an upper arm switching element PV and a lower arm switching element NV
- the W-phase circuit 12W includes an upper arm switching element PW and a lower arm switching element NW.
- the upper arm switching elements and lower arm switching elements in each circuit are connected in series with each other.
- the output of each circuit is connected to a three-phase motor 2 that includes U-phase, V-phase, and W-phase coils (not shown).
- the three-phase PWM waveform generator 44 generates a three-phase PWM waveform to be provided to the main circuit 41 based on the three-phase voltage value V from the two-phase/three-phase converter 21.
- the current detection unit 43 calculates the current values of the U-phase current Iu, V-phase current Iv, and W-phase current Iw of the motor 2 based on the detection results of the current sensor 10a and the combination of the ON/OFF timing of each of the upper arm switching elements PU to PW and the lower arm switching elements NU to NW shown in FIG. 8.
- the three-phase current I calculated (detected) by the current detection unit 43 is output to the three-phase/two-phase conversion unit 22.
- the motor current is detected by detecting the current flowing through the DC bus of the inverter.
- the current flowing through the current sensor 10a sometimes coincides with the phase current of the motor 2, so the current detection unit 43 detects each phase current of the motor 2 by reading it in synchronization with the three-phase PWM signal.
- the timing of detecting the three-phase motor current changes and is not simultaneous for all three phases, so the current has an error including the ripple component due to the PWM.
- the estimated speed fluctuation has an error of 3mth order in electrical angle (m includes 1 and natural numbers 0 to 2).
- the harmonic component removal unit 23a removes 3m-th order (m includes 1 and natural numbers of 0 to 2 or more) harmonic components obtained by multiplying the mechanical angular velocity ⁇ mes of the rotor of the motor 2 by the number of pole pairs Np from the d-axis current value and q-axis current value input to the speed/position estimation unit 11.
- FIG. 9 illustrates a computer configuration according to at least one embodiment.
- the computer 90 comprises a processor 91 , a main memory 92 , a storage 93 , and an interface 94 .
- the above-mentioned control devices 1 and 1a are implemented in a computer 90.
- the operations of the above-mentioned processing units are stored in the form of a program in a storage 93.
- the processor 91 reads the program from the storage 93, loads it in the main memory 92, and executes the above-mentioned processing in accordance with the program.
- the processor 91 also secures storage areas in the main memory 92 corresponding to the above-mentioned storage units in accordance with the program.
- the program may be for realizing some of the functions to be performed by the computer 90.
- the program may be for realizing the functions by combining with other programs already stored in the storage, or by combining with other programs implemented in other devices.
- the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
- PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array), etc.
- PLDs Programmable Logic Device
- PAL Programmable Array Logic
- GAL Generic Array Logic
- CPLD Complex Programmable Logic Device
- FPGA Field Programmable Gate Array
- storage 93 examples include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory), semiconductor memory, etc.
- Storage 93 may be internal media directly connected to the bus of computer 90, or may be external media connected to computer 90 via interface 94 or a communication line.
- computer 90 that receives the program may expand the program into main memory 92 and execute the above-mentioned processing.
- storage 93 is a non-transitory tangible storage medium.
- control devices 1 and 1a described in each embodiment can be understood, for example, as follows.
- the control device 1 and 1a is a control device 1 and 1a that controls an inverter 4, 4a that AC drives a motor 2 that rotates using magnet torque and reluctance torque, and when estimating the mechanical angular velocity and position of the rotor of the motor based on the d-axis current value and q-axis current value flowing through the motor and the number of pole pairs Np of the motor, the control device removes 6n-th order (n includes 1, 2, and natural numbers 0 to 3) harmonic components including at least the 6th and 12th orders of the value obtained by multiplying the mechanical angular velocity by the number of pole pairs from the d-axis current value and the q-axis current value or the estimated angular velocity of the rotor, estimates the mechanical angular velocity and the position, and controls the inverter using the estimated mechanical angular velocity and the position.
- the rotational position and speed of the motor can be accurately estimated.
- the control device 1a according to the second aspect is the control device 1a according to (1), in which the d-axis current value and the q-axis current value are calculated based on the detection result of the DC current on the input side of the inverter, and 3mth order (m includes 1 and natural numbers of 0 or more and 2 or more) harmonic components of the value obtained by multiplying the mechanical angular velocity by the number of pole pairs are further removed from the d-axis current value and the q-axis current value. According to this aspect, it is possible to remove harmonic components that occur due to current detection.
- control device control method, and air conditioner disclosed herein enable the motor's rotational position and speed to be estimated with high accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
図1は、本開示の第1実施形態に係る制御装置1の構成例を示す。制御装置1は、空気調和機100が備える圧縮機5を回転駆動するモータ2を交流駆動するインバータ4を制御する制御装置である。モータ2は、例えば、マグネットトルクとリラクタンストルクを用いて回転するIPMSMである。インバータ4は、交流電源3を電源として、モータ2へ電力を供給する。電流センサ10は、インバータ4からモータ2に通電される電流値を検出する。図1に示す例では、空気調和機100は、制御装置1、モータ2、インバータ4、および、電流センサ10を備える。制御装置1は、例えばマイクロコンピュータ等のコンピュータと、そのコンピュータの周辺装置、周辺回路等とを備える。そして、制御装置1は、コンピュータ等のハードウェアと、そのコンピュータが実行するプログラム等のソフトウェアとの組み合わせ等から構成される機能的構成として、減算部14、速度制御部20、負荷トルク補償部13、速度・位置推定部11、2相/3相変換部21、および3相/2相変換部22を備える。速度制御部20は、速度PI制御部(速度比例積分(Proportional Integral)制御部)12と、加算部15と、電流変換部16と、減算部17と、電流PI制御部18とを備える。
3相/2相変換部22は、電流センサ10が検出した3相電流値Iと速度・位置推定部11が推定したモータ2のロータの回転位置(回転角度)θesとを入力し、電流センサ10が検出した3相電流値Iをd軸およびq軸の2相のd軸電流値idおよびq軸電流値iqに変換して出力する。電流センサ10は、例えばモータ2に流れる相電流を検知する。ただし、電流センサ10の構成はこれに限定されない。例えば、インバータ4が備える複数のスイッチング素子に流れる電流を検知し、相電流を算出する構成等とすることができる。2相/3相変換部21は、回転位置θesと電流PI制御部18が出力したd軸およびq軸の2相のd軸指令電圧値vd*およびq軸指令電圧値vq*とを入力し、3相電圧値Vに変換してインバータ4へ出力する。なお、インバータ4は、2相/3相変換部21が出力した3相電圧値Vに基づいてインバータが備える図示してない複数のスイッチング素子を制御する。
本実施形態によれば、位置および速度を推定する際に、電流値または推定速度から、モータの歪みによる成分による誤差成分を除去するので、位置および推定速度の誤差を減らして、正しくモータを制御し、例えば速度変動等を抑制することができる。本実施形態によれば、モータの回転位置と速度を精度よく推定することができる。
図7は、本開示の第2実施形態に係る制御装置1aとインバータ4aの構成例を示す。第2実施形態では、制御装置1aが、第1実施形態の制御装置1と比較して、新たに高調波成分除去部23aを備える点で異なる。他の構成については制御装置1と制御装置1aは同一である。また、第2実施形態では、図1の空気調和機100に対応する空気調和機100aにおいて、図1に示す電流センサ10に対応する構成を、インバータ4aが電流センサ10aとして内部に備え、電流センサ10aがインバータ4aの入力側の直流電流を検知した結果に基づき、モータ2の相電流が算出される。その際、電流センサ10aは、所定のスイッチング素子のオン/オフのタイミングに同期して、タイミングをずらして各相電流を検知する。このタイミングの違いによって検知電流には、推定速度(電気角速度)の3m次の高調波成分発生する(mは自然数)。なお、mは少なくとも1を含むことが望ましい。そこで、本実施形態では、高調波成分除去部23aが、速度・位置推定部11へ入力されるd軸電流値およびq軸電流値から、機械角速度ωmesに極対数Npを乗じた値の3m次(mは1と、0個以上の2以上の自然数を含む)の高調波成分を除去する。この場合、高調波成分除去部23aと、図2に示す高調波成分除去部115との組み合わせによって、制御装置1aでは、d軸電流値およびq軸電流値から、モータ2のロータの機械角速度ωmesに極対数Npを乗じた値の6次および12次を少なくとも含む6n次(nは1および2と、0個以上の3以上の自然数を含む)の高調波成分と、機械角速度ωmesに極対数Npを乗じた値の3m次(mは1と、0個以上の2以上の自然数を含む)の高調波成分が除去されることになる。なお、変数nと変数mは同一であってもよいし、異なっていてもよい。また、高調波成分除去部23aと高調波成分除去部115は一体として構成されていてもよい。
本実施形態によれば、d軸電流値およびq軸電流値をインバータ4aの入力側の直流電流の検知結果に基づき算出する場合に、3m次の高調波成分を除去するので、モータの回転位置と速度を精度よく推定することができる。
上記各実施形態に係る制御装置、制御方法および空気調和機によれば、モータの回転位置と速度を精度よく推定することができる。
以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、機械角速度と電気角速度については、相互に変換可能であるため、両方を例えば算出対象として用いたり、機械角速度に代えて電気角速度を用いたり、電気角速度に代えて機械角速度を用いたりしてもよい。
図9は、少なくとも1つの実施形態に係るコンピュータの構成を示す。
コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、および、インタフェース94を備える。
上述の制御装置1および1aは、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。
各実施形態に記載の制御装置1および1aは、例えば以下のように把握される。
2 モータ
3 交流電源
4、4a インバータ
5 圧縮機
10、10a 電流センサ
11、11a 速度・位置推定部
12 速度PI制御部
13 負荷トルク補償部
14 減算部
15 加算部
16 電流変換部
17 減算部
18 電流PI制御部
20 速度制御部
115、115a、23a 高調波成分除去部
27 加算部
100、100a 空気調和機
131 正規化トルクパターンテーブル
Claims (4)
- マグネットトルクとリラクタンストルクを用いて回転するモータを交流駆動するインバータを制御する制御装置であって、
前記モータに流れるd軸電流値およびq軸電流値と前記モータの極対数とに基づき、前記モータのロータの機械角速度と位置とを推定する際に、
前記d軸電流値および前記q軸電流値または推定した前記ロータの角速度から、前記機械角速度に前記極対数を乗じた値の6次および12次を少なくとも含む6n次(nは1および2と、0個以上の3以上の自然数を含む)の高調波成分を除去して、前記機械角速度と前記位置とを推定し、
推定した前記機械角速度と前記位置とを利用して前記インバータを制御する
制御装置。 - 前記d軸電流値および前記q軸電流値は、前記インバータの入力側の直流電流の検知結果に基づき算出されたものであり、
前記d軸電流値および前記q軸電流値から、前記機械角速度に前記極対数を乗じた値の3m次(mは1と、0個以上の2以上の自然数を含む)の高調波成分をさらに除去する 請求項1に記載の制御装置。 - マグネットトルクとリラクタンストルクを用いて回転するモータを交流駆動するインバータを制御する制御方法であって、
前記モータに流れるd軸電流値およびq軸電流値と前記モータの極対数とに基づき、前記モータのロータの機械角速度と位置とを推定する際に、前記d軸電流値および前記q軸電流値または推定した前記ロータの角速度から、前記機械角速度に前記極対数を乗じた値の6次および12次を少なくとも含む6n次(nは1および2と、0個以上の3以上の自然数を含む)の高調波成分を除去して、前記機械角速度と前記位置とを推定し、
推定した前記機械角速度と前記位置とを利用して前記インバータを制御する
制御方法。 - 圧縮機と、
マグネットトルクとリラクタンストルクを用いて前記圧縮機を回転駆動するモータと、 前記モータを交流駆動するインバータと、
前記インバータを制御する制御装置と、
を備え、
前記制御装置は、
前記モータに流れるd軸電流値およびq軸電流値と前記モータの極対数とに基づき、前記モータのロータの機械角速度と位置とを推定する際に、
前記d軸電流値および前記q軸電流値または推定した前記ロータの角速度から、前記機械角速度に前記極対数を乗じた値の6次および12次を少なくとも含む6n次(nは1および2と、0個以上の3以上の自然数を含む)の高調波成分を除去して、前記機械角速度と前記位置とを推定し、
推定した前記機械角速度と前記位置とを利用して前記インバータを制御する
空気調和機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2023375902A AU2023375902A1 (en) | 2022-11-07 | 2023-02-09 | Control device, control method, and air conditioner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-178328 | 2022-11-07 | ||
JP2022178328A JP2024067912A (ja) | 2022-11-07 | 2022-11-07 | 制御装置、制御方法および空気調和機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024100911A1 true WO2024100911A1 (ja) | 2024-05-16 |
Family
ID=91032462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/004308 WO2024100911A1 (ja) | 2022-11-07 | 2023-02-09 | 制御装置、制御方法および空気調和機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024067912A (ja) |
AU (1) | AU2023375902A1 (ja) |
WO (1) | WO2024100911A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0956176A (ja) * | 1995-08-10 | 1997-02-25 | Matsushita Electric Ind Co Ltd | インバータ制御装置 |
JP2004120993A (ja) * | 2002-09-26 | 2004-04-15 | Lg Electronics Inc | 同期リラクタンスモータの磁束測定装置およびそのセンサレス制御システム |
JP2008245506A (ja) | 2007-02-28 | 2008-10-09 | Mitsubishi Heavy Ind Ltd | 圧縮機に接続されたモータの制御装置 |
JP2009095145A (ja) * | 2007-10-09 | 2009-04-30 | Denso Corp | 回転機の制御装置 |
JP2009296788A (ja) * | 2008-06-05 | 2009-12-17 | Denso Corp | 回転機の回転角度推定装置 |
WO2020240748A1 (ja) * | 2019-05-29 | 2020-12-03 | 三菱電機株式会社 | 回転機の制御装置 |
JP2021121163A (ja) | 2020-01-30 | 2021-08-19 | 有限会社シー・アンド・エス国際研究所 | リラクタンストルクを発生する同期電動機の数学モデルと同モデルに立脚した模擬・特性解析・制御装置 |
JP2021136806A (ja) | 2020-02-28 | 2021-09-13 | サンデン・アドバンストテクノロジー株式会社 | モータ制御装置 |
JP2022178328A (ja) | 2021-05-20 | 2022-12-02 | 古河電気工業株式会社 | インバータ及び無線電力伝送システム |
-
2022
- 2022-11-07 JP JP2022178328A patent/JP2024067912A/ja active Pending
-
2023
- 2023-02-09 WO PCT/JP2023/004308 patent/WO2024100911A1/ja active Application Filing
- 2023-02-09 AU AU2023375902A patent/AU2023375902A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0956176A (ja) * | 1995-08-10 | 1997-02-25 | Matsushita Electric Ind Co Ltd | インバータ制御装置 |
JP2004120993A (ja) * | 2002-09-26 | 2004-04-15 | Lg Electronics Inc | 同期リラクタンスモータの磁束測定装置およびそのセンサレス制御システム |
JP2008245506A (ja) | 2007-02-28 | 2008-10-09 | Mitsubishi Heavy Ind Ltd | 圧縮機に接続されたモータの制御装置 |
JP2009095145A (ja) * | 2007-10-09 | 2009-04-30 | Denso Corp | 回転機の制御装置 |
JP2009296788A (ja) * | 2008-06-05 | 2009-12-17 | Denso Corp | 回転機の回転角度推定装置 |
WO2020240748A1 (ja) * | 2019-05-29 | 2020-12-03 | 三菱電機株式会社 | 回転機の制御装置 |
JP2021121163A (ja) | 2020-01-30 | 2021-08-19 | 有限会社シー・アンド・エス国際研究所 | リラクタンストルクを発生する同期電動機の数学モデルと同モデルに立脚した模擬・特性解析・制御装置 |
JP2021136806A (ja) | 2020-02-28 | 2021-09-13 | サンデン・アドバンストテクノロジー株式会社 | モータ制御装置 |
JP2022178328A (ja) | 2021-05-20 | 2022-12-02 | 古河電気工業株式会社 | インバータ及び無線電力伝送システム |
Also Published As
Publication number | Publication date |
---|---|
JP2024067912A (ja) | 2024-05-17 |
AU2023375902A1 (en) | 2025-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4065903B2 (ja) | 誘導電動機のベクトル制御装置、誘導電動機のベクトル制御方法および誘導電動機の駆動制御装置 | |
CN113866480B (zh) | 用于马达控制系统的相电流测量中的偏移误差的检测 | |
JP5637042B2 (ja) | 電動機の脈動抑制装置および電動機の脈動抑制方法 | |
JP5510842B2 (ja) | 3相モータ制御装置、3相モータシステム、3相モータ制御方法及びプログラム | |
JP5877733B2 (ja) | 電動モータの制御装置 | |
JP5709932B2 (ja) | 同期機制御装置 | |
KR101485989B1 (ko) | 모터 제어 장치 | |
JP4722002B2 (ja) | Pwmインバータ制御装置及びpwmインバータ制御方法並びに冷凍空調装置 | |
Kolano | New method of vector control in PMSM motors | |
JP2011050178A (ja) | モータ制御装置及び発電機制御装置 | |
JP5104219B2 (ja) | 永久磁石形同期電動機の制御装置 | |
JP2013150498A (ja) | 同期電動機の制御装置及び制御方法 | |
JP2019106768A (ja) | モータ制御装置 | |
JP6293401B2 (ja) | 空気調和機のモータ制御装置及び空気調和機 | |
JP5621103B2 (ja) | 単相信号入力装置及び系統連系装置 | |
JP2008206330A (ja) | 同期電動機の磁極位置推定装置および磁極位置推定方法 | |
JP7225550B2 (ja) | モータ制御装置 | |
WO2024100911A1 (ja) | 制御装置、制御方法および空気調和機 | |
JP2007006664A (ja) | 交流回転機の制御装置 | |
JP5675435B2 (ja) | インバータ制御装置 | |
CN116266744A (zh) | 旋转机控制装置 | |
JP7247468B2 (ja) | モータ制御装置 | |
JP5744151B2 (ja) | 電動機の駆動装置および電動機の駆動方法 | |
JP7009861B2 (ja) | モータ制御装置 | |
JP7520747B2 (ja) | インバータ制御装置およびインバータ制御装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23888270 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023888270 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2023375902 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2023888270 Country of ref document: EP Effective date: 20250430 |
|
ENP | Entry into the national phase |
Ref document number: 2023375902 Country of ref document: AU Date of ref document: 20230209 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |