WO2024018946A1 - 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 - Google Patents
樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 Download PDFInfo
- Publication number
- WO2024018946A1 WO2024018946A1 PCT/JP2023/025509 JP2023025509W WO2024018946A1 WO 2024018946 A1 WO2024018946 A1 WO 2024018946A1 JP 2023025509 W JP2023025509 W JP 2023025509W WO 2024018946 A1 WO2024018946 A1 WO 2024018946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- resin composition
- polyphenylene ether
- group
- resin
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3415—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/357—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
Definitions
- the present invention relates to a resin composition, a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board.
- wiring boards used in various electronic devices are required to be high-frequency compatible wiring boards, such as millimeter wave radar boards for automotive applications.
- Substrate materials used in the insulating layers of wiring boards used in various electronic devices are required to have low dielectric constant and dielectric loss tangent in order to increase signal transmission speed and reduce loss during signal transmission. .
- Polyphenylene ether has excellent low dielectric properties such as low dielectric constant and low dielectric loss tangent, and also has low dielectric properties such as low dielectric constant and low dielectric loss tangent even in the high frequency band (high frequency region) from the MHz band to the GHz band. is known to be excellent. For this reason, polyphenylene ether is being considered for use as a high frequency molding material, for example. More specifically, polyphenylene ether is preferably used as a substrate material for forming an insulating layer of a wiring board included in electronic equipment that uses high frequency bands.
- Patent Document 1 describes a resin composition containing modified polyphenylene ether that has a polyphenylene ether moiety in its molecular structure, and has a p-ethenylbenzyl group or m
- a polyphenylene ether resin composition containing a polyphenylene ether having -ethenylbenzyl groups and the like and a number average molecular weight of 1000 to 7000 and a crosslinked curing agent is disclosed.
- the polyphenylene ether resin composition described in Patent Document 1 can provide a laminate having dielectric properties and heat resistance.
- the insulating layer of the wiring board be able to appropriately remove smear (excellent desmear properties) while suppressing damage to the insulating layer of the wiring board using permanganic acid or the like. From this, it is required that a cured product with excellent desmear properties can be obtained as a substrate material for forming an insulating layer of a wiring board.
- wiring boards used in various electronic devices are required to be less susceptible to changes in the external environment. That is, in order to obtain a wiring board that has excellent reliability over a wide temperature range, it is desirable that a cured product with a high glass transition temperature be obtained as a substrate material for forming the insulating layer of the wiring board.
- metal-clad laminates and resin-coated metal foils used in manufacturing wiring boards and the like include not only an insulating layer but also a metal foil on the insulating layer.
- the wiring board is also provided with not only an insulating layer but also wiring on the insulating layer. Examples of the wiring include wiring derived from metal foil provided in the metal-clad laminate or the like.
- the wiring provided on the wiring board is a miniaturized wiring, it is desirable that the wiring does not peel off from the insulating layer.
- the wiring board has high adhesion between the wiring and the insulating layer. Therefore, metal-clad laminates are required to have high adhesion between the metal foil and the insulating layer, and the substrate material for forming the insulating layer of the wiring board must be a hardened material that has excellent adhesion to the metal foil. It is required that things be obtained.
- the present invention has been made in view of the above circumstances, and aims to provide a resin composition that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. purpose.
- Another object of the present invention is to provide a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board, which are obtained using the resin composition.
- the resin composition according to one embodiment of the present invention includes a polyphenylene ether compound (A) having a hydroxyl group in the molecule, a polyphenylene ether compound (B) having an unsaturated double bond in the molecule, a maleimide compound (C1), and a reactive compound (C) containing at least one selected from benzoxazine compounds (C2); and an inorganic filler (D);
- the content of the polyphenylene ether compound (A) is 1 part by mass or more and less than 50 parts by mass relative to 100 parts by mass in total.
- FIG. 1 is a schematic cross-sectional view showing an example of a prepreg according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad laminate according to an embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view showing an example of a wiring board according to an embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil according to an embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view showing an example of a resin-coated film according to an embodiment of the present invention.
- the resin composition according to one embodiment of the present invention comprises a polyphenylene ether compound (A) having a hydroxyl group in the molecule, a polyphenylene ether compound (B) having an unsaturated double bond in the molecule, and a maleimide compound (C1). , and a reactive compound (C) containing at least one selected from benzoxazine compounds (C2), and an inorganic filler (D), the polyphenylene ether compound (A) and the polyphenylene ether compound (B)
- the content of the polyphenylene ether compound (A) is 1 part by mass or more and less than 50 parts by mass based on a total of 100 parts by mass.
- the present embodiment it is possible to provide a resin composition that is excellent in low dielectric properties, desmear properties, and adhesion to metal foil, and provides a cured product with a high glass transition temperature. Further, according to the present embodiment, it is possible to provide a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board, which are obtained using the resin composition.
- the polyphenylene ether compound (A) is not particularly limited as long as it is a polyphenylene ether compound having a hydroxyl group in its molecule.
- the polyphenylene ether compound having a hydroxyl group in the molecule may be any polyphenylene ether having one or more hydroxyl groups in the molecule, and is not particularly limited. Examples include the remaining polyphenylene ether compound. More specifically, the polyphenylene ether compound (A) has a polyphenylene ether chain in the molecule, and the polyphenylene ether compound (A) has, for example, a repeating unit represented by the following formula (1) in the molecule. It is preferable to have it within.
- t represents 1 to 50.
- R 1 to R 4 are each independent. That is, R 1 to R 4 may be the same group or different groups.
- R 1 to R 4 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
- R 1 to R 4 Specific examples of the functional groups listed in R 1 to R 4 include the following.
- the alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
- examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
- the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable.
- examples of the alkenyl group include a vinyl group, an allyl group, and a 3-butenyl group.
- the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable.
- examples of the alkynyl group include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
- the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
- examples of the alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
- the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
- examples of the alkenylcarbonyl group include an acryloyl group, a methacryloyl group, and a crotonoyl group.
- the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
- the alkynylcarbonyl group includes, for example, a propioloyl group.
- the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyphenylene ether compound (A) are not particularly limited, but are, for example, preferably from 500 to 5,000, preferably from 800 to 4,000, and from 1,000 to Preferably, it is 3000. It is thought that by having a molecular weight of 500 or more, heat resistance of the cured product can be obtained more reliably. Furthermore, it is believed that by having a molecular weight of 5000 or less, sufficient fluidity can be obtained and molding defects can be suppressed. Therefore, if the weight average molecular weight of the polyphenylene ether compound (A) is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
- the weight average molecular weight and number average molecular weight here may be those measured by a general molecular weight measurement method, and specifically, for example, values measured using gel permeation chromatography (GPC), etc. can be mentioned.
- GPC gel permeation chromatography
- t is the weight average molecular weight and number average molecular weight of the polyphenylene ether compound (A). It is preferable that the value is within the above range. Specifically, t in the above formula (1) is preferably 1 to 50.
- the average number of hydroxyl groups (number of hydroxyl groups) in the polyphenylene ether compound (A) is not particularly limited, but is preferably 1 to 5, more preferably 1.5 to 3. If the number of hydroxyl groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. Moreover, when the number of hydroxyl groups is too large, the reactivity becomes too high, and for example, there is a risk that the storage stability of the resin composition will be reduced.
- the number of hydroxyl groups in the polyphenylene ether compound (A) can be determined, for example, from the standard value of the product of the polyphenylene ether compound used. Further, the number of hydroxyl groups here specifically includes, for example, a numerical value representing the average value of hydroxyl groups per molecule of all polyphenylene ether compounds present in 1 mole of the polyphenylene ether compound.
- the intrinsic viscosity of the polyphenylene ether compound (A) is not particularly limited, but is preferably 0.03 to 0.12 dl/g, more preferably 0.04 to 0.11 dl/g, More preferably, it is 0.06 to 0.095 dl/g. It is considered that when the intrinsic viscosity is 0.03 dl/g or more, the heat resistance of the cured product can be more reliably obtained. Furthermore, it is believed that by having the intrinsic viscosity of 0.12 dl/g or less, sufficient fluidity can be obtained and molding defects can be suppressed. Therefore, if the intrinsic viscosity of the polyphenylene ether compound (A) is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
- the intrinsic viscosity here can be found from the standard value of the product of the polyphenylene ether compound used.
- the intrinsic viscosity here is the intrinsic viscosity measured in methylene chloride at 25°C, and more specifically, for example, a 0.18 g/45 ml methylene chloride solution (liquid temperature 25°C) is measured using a viscometer. These are the values measured in . Examples of this viscometer include AVS500 Visco System manufactured by Schott.
- the polyphenylene ether compound (A) is not particularly limited, and includes, for example, polyphenylene ether consisting of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol, and poly(2,6-dimethyl- Examples include those whose main component is polyphenylene ether such as 1,4-phenylene oxide). More specifically, the polyphenylene ether compound (A) includes, for example, a polyphenylene ether compound represented by the following formula (2), a polyphenylene ether compound represented by the following formula (3), and the like.
- R 5 to R 20 and R 21 to R 36 are each independent. That is, R 5 to R 20 and R 21 to R 36 may be the same group or different groups. Furthermore, examples of R 5 to R 20 and R 21 to R 36 include the same ones as R 1 to R 4 in the above formula (1). That is, R 5 to R 20 and R 21 to R 36 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Moreover, in formula (3), Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
- m and n each represent 0 to 20. Further, m and n preferably represent numerical values such that the total value of m and n is 1 to 30. Therefore, it is more preferable that m represents 0 to 20, n represents 0 to 20, and the sum of m and n represents 1 to 30.
- Y is a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms, as described above.
- Examples of Y include a group represented by the following formula (4).
- R 37 and R 38 each independently represent a hydrogen atom or an alkyl group.
- the alkyl group include a methyl group.
- examples of the group represented by formula (4) include a methylene group, a methylmethylene group, a dimethylmethylene group, and the like, and among these, a dimethylmethylene group is preferable.
- polyphenylene ether compound represented by the formula (2) include, for example, the polyphenylene ether compound represented by the following formula (5).
- polyphenylene ether compound represented by the formula (3) include, for example, the polyphenylene ether compound represented by the following formula (6).
- m and n are the same as m and n in the above formula (2) and the above formula (3), and specifically, m and n are respectively, It is preferable to show a value of 0 to 20.
- Y may be the same as Y in the above formula (3).
- the polyphenylene ether (B) is not particularly limited as long as it is a polyphenylene ether compound having an unsaturated double bond in the molecule.
- the polyphenylene ether compound (B) for example, the polyphenylene ether compound (A) having a repeating unit represented by the above formula (1) in the molecule is combined with a substituent having a carbon-carbon unsaturated double bond. Examples include terminal-modified polyphenylene ether compounds.
- the substituent having a carbon-carbon unsaturated double bond is not particularly limited.
- Examples of the substituent include a substituent represented by the following formula (7).
- s represents 0 to 10.
- Z represents an arylene group.
- R 39 to R 41 are each independent. That is, R 39 to R 41 may be the same group or different groups.
- R 39 to R 41 represent a hydrogen atom or an alkyl group.
- This arylene group is not particularly limited, but specifically, the arylene group is a monocyclic aromatic group such as a phenylene group, or a polycyclic aromatic group in which the aromatic group is not a monocyclic ring but a polycyclic aromatic group such as a naphthalene ring. Examples include ring aromatic groups.
- the arylene group also includes derivatives in which the hydrogen atom bonded to the aromatic ring is substituted with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
- the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
- examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
- the substituent includes vinylbenzyl groups (ethenylbenzyl groups) such as p-ethenylbenzyl group and m-ethenylbenzyl group, vinylphenyl group, acrylate group, and methacrylate group. can be mentioned.
- a preferable specific example of the substituent represented by the above formula (7) is a functional group containing a vinylbenzyl group. Specifically, at least one substituent selected from the following formula (8) or formula (9) can be mentioned.
- R 42 represents a hydrogen atom or an alkyl group.
- the alkyl group is not particularly limited, and, for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
- examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
- the weight average molecular weight (Mw) of the polyphenylene ether compound (B) is not particularly limited, but specifically, it is preferably from 500 to 5,000, more preferably from 800 to 4,000, and from 1,000 to 3,000. It is even more preferable.
- the weight average molecular weight here may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography (GPC), etc. can be mentioned.
- GPC gel permeation chromatography
- t is such that the weight average molecular weight of the modified polyphenylene ether compound falls within such a range. It is preferable that the numerical value is as follows. Specifically, t in the above formula (1) is preferably 1 to 50.
- the weight average molecular weight of the polyphenylene ether compound (B) is within this range, the polyphenylene ether has excellent dielectric properties, and the cured product not only has better heat resistance but also has excellent moldability. Become something.
- the average number of substituents (number of terminal functional groups) per molecule of the polyphenylene ether compound (B) at the molecular terminals in the polyphenylene ether compound (B) is not particularly limited, but specifically, The number is preferably 1 to 5, more preferably 1 to 3, even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. In addition, if the number of terminal functional groups is too large, the reactivity becomes too high, which may cause problems such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition. .
- the number of terminal functional groups of the polyphenylene ether compound (B) is, for example, a numerical value representing the average value of the substituents per molecule of all polyphenylene ether compounds present in 1 mole of the polyphenylene ether compound. Can be mentioned. More specifically, the number of terminal functional groups is measured, for example, by measuring the number of hydroxyl groups remaining in the obtained polyphenylene ether compound and calculating the decrease from the number of hydroxyl groups in the polyphenylene ether before modification. be able to. The number of terminal functional groups is the decrease from the number of hydroxyl groups in the polyphenylene ether before modification.
- the method for measuring the number of hydroxyl groups remaining in a polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of the polyphenylene ether compound, and measure the UV absorbance of the mixed solution. It can be found by
- the intrinsic viscosity of the polyphenylene ether compound (B) is not particularly limited. Specifically, it is preferably 0.03 to 0.12 dl/g, more preferably 0.04 to 0.11 dl/g, and even more preferably 0.06 to 0.095 dl/g. preferable. It is considered that when the intrinsic viscosity is 0.03 dl/g or more, the heat resistance of the cured product can be more reliably obtained. Furthermore, it is believed that by having the intrinsic viscosity of 0.12 dl/g or less, sufficient fluidity can be obtained and molding defects can be suppressed. Therefore, if the intrinsic viscosity of the polyphenylene ether compound (B) is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
- the intrinsic viscosity here is the intrinsic viscosity measured in methylene chloride at 25°C, and more specifically, for example, a 0.18 g/45 ml methylene chloride solution (liquid temperature 25°C) is measured using a viscometer. These are the values measured in . Examples of this viscometer include AVS500 Visco System manufactured by Schott.
- the polyphenylene ether compound (B) a commercially available product may be used, or one produced by a known synthesis method may be used.
- the method for synthesizing the polyphenylene ether compound (B) is not particularly limited as long as the polyphenylene ether compound (B) terminally modified with a substituent having a carbon-carbon unsaturated double bond can be synthesized.
- Examples of the method for synthesizing the polyphenylene ether compound (B) include a method of reacting the polyphenylene ether (A) with a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded. Can be mentioned.
- Examples of the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include a compound represented by the following formula (11).
- s, Z, and R 39 to R 41 are the same as s, Z, and R 39 to R 41 in formula (7) above.
- s represents 0 to 10.
- Z represents an arylene group.
- R 39 to R 41 are each independent. That is, R 39 to R 41 may be the same group or different groups.
- R 39 to R 41 represent a hydrogen atom or an alkyl group.
- W represents a halogen atom, and specific examples thereof include a chlorine atom, a bromine atom, an iodine atom, a fluorine atom, and the like. Among these, a chlorine atom is preferred.
- Examples of compounds in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include p-chloromethylstyrene and m-chloromethylstyrene.
- the reactive compound (C) is not particularly limited as long as it is a reactive compound containing at least one selected from a maleimide compound (C1) and a benzoxazine compound (C2). Further, as described above, the reactive compound (C) may contain only the maleimide compound (C1), may contain only the benzoxazine compound (C2), or may contain only the maleimide compound (C2). It may contain both (C1) and the benzoxazine compound (C2). Moreover, it is preferable that the reactive compound (C) contains both the maleimide compound (C1) and the benzoxazine compound (C2). Thereby, it is possible to more reliably obtain a resin composition from which a cured product with excellent heat resistance and adhesion to metal foil can be obtained.
- the maleimide compound (C1) is not particularly limited as long as it is a compound having a maleimide group in its molecule.
- Examples of the maleimide compound (C1) include monofunctional maleimide compounds having one maleimide group in the molecule, polyfunctional maleimide compounds having two or more maleimide groups in the molecule, and modified maleimide compounds.
- modified maleimide compound examples include a modified maleimide compound in which part of the molecule is modified with an amine compound, a modified maleimide compound in which part of the molecule is modified with a silicone compound, and a modified maleimide compound in which part of the molecule is modified with an amine compound. and modified maleimide compounds modified with silicone compounds.
- the reactive compound (C) can be a maleimide compound (C1) having a biphenylaralkyl structure, a maleimide compound having a phenylmaleimide group, a maleimide compound having an alkyl group having 6 or more carbon atoms, a maleimide compound having 6 or more carbon atoms, and a maleimide compound having a phenylmaleimide group. It is preferable to include at least one selected from the group consisting of a maleimide compound having an alkylene group, and a maleimide compound having an alkyl group having 6 or more carbon atoms and an alkylene group having 6 or more carbon atoms. Thereby, a resin composition from which a cured product having an excellent dielectric constant and a high glass transition temperature can be obtained can be obtained more reliably.
- maleimide compound having a biphenylaralkyl structure examples include, but are not limited to, biphenylaralkyl-type bismaleimide compounds.
- maleimide compound having a phenylmaleimide group examples include a maleimide compound having an arylene structure oriented and bonded at the meta position, 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, bisphenol A diphenyl ether bismaleimide, and 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide.
- maleimide compound having an arylene structure oriented and bonded to the meta position examples include m-phenylene bismaleimide and 4-methyl-1,3-phenylene bismaleimide.
- the maleimide compound having an alkyl group having 6 or more carbon atoms, the maleimide compound having an alkylene group having 6 or more carbon atoms, and the maleimide compound having an alkyl group having 6 or more carbon atoms and an alkylene group having 6 or more carbon atoms examples include, but are not limited to, long-chain alkyl bismaleimides.
- the reactive compound (C) is a maleimide compound (C1- It is more preferable to contain 1). Thereby, it is possible to more reliably obtain a resin composition from which a cured product having excellent adhesion to metal foil and a high glass transition temperature can be obtained.
- the reactive compound (C) further includes, as the maleimide compound (C1), the maleimide compound (C1-1) and a maleimide compound (C1-2) other than the maleimide compound (C1-1). preferable.
- the maleimide compound (C1-2) for example, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, long-chain alkyl bismaleimide, etc. are preferable.
- the maleimide compounds (C1) as described above may be used alone or in combination of two or more.
- maleimide compound (C1) commercially available products can be used. Specifically, for example, BMI-1000 (4,4'-diphenylmethane bismaleimide) manufactured by Daiwa Kasei Industries, Ltd., BMI-2300 (polyphenylmethane maleimide) manufactured by Daiwa Kasei Industries, Ltd.
- BMI-3000 (m-phenylene bismaleimide) manufactured by Daiwa Kasei Kogyo Co., Ltd.
- BMI-4000 bisphenol A diphenyl ether bismaleimide
- BMI-5100 (3,3'-dimethyl-5 , 5'-diethyl-4,4'-diphenylmethane bismaleimide
- BMI-7000 (4-methyl-1,3-phenylene bismaleimide) manufactured by Daiwa Kasei Co., Ltd., MIR-3000 manufactured by Nippon Kayaku Co., Ltd.
- BMI-TMH bismaleimide-(2,2,4-trimethyl)hexane
- Daiwa Kasei Kogyo Co., Ltd. and the like
- BMI-1700, BMI-1500, BMI-689, and the like manufactured by Manufacturer Co., Ltd. can be used as a long-chain alkyl bismaleimide.
- the benzoxazine compound (C2) is a compound having a benzoxazine ring in the molecule, and examples include benzoxazine resin.
- examples of the benzoxazine compound (C2) include benzoxazine compounds having a phenolphthalein structure in the molecule (phenolphthalein type benzoxazine compounds), benzoxazine compounds having an alkenyl group in the molecule, and bisphenol F type benzoxazine. and diaminodiphenylmethane (DDM) type benzoxazine compounds.
- the benzoxazine compound (C2) is 3,3'-(methylene-1,4-diphenylene)bis(3,4-dihydro-2H-1,3-benzoxazine) (P- d-type benzoxazine compound), and 2,2-bis(3,4-dihydro-2H-3-phenyl-1,3-benzoxazine)methane (Fa-type benzoxazine compound).
- the benzoxazine compound (C2) may be used alone or in combination of two or more.
- benzoxazine compounds (C2) it is preferable to use benzoxazine compounds (C2-1) having an alkenyl group in the molecule.
- benzoxazine compound (C2-1) having an alkenyl group it is possible to more reliably obtain a resin composition that has excellent adhesion to metal foil and can yield a cured product with a higher glass transition temperature.
- the alkenyl group is not particularly limited, but includes, for example, an alkenyl group having 2 to 6 carbon atoms.
- Specific examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, and the like, and among these, an allyl group is preferable.
- examples of the benzoxazine compound (C2-1) having an alkenyl group include compounds having a benzoxazine group having an alkenyl group in the molecule.
- examples of the benzoxazine group (benzoxazine group having an alkenyl group) include a benzoxazine group represented by the following formula (12) and a benzoxazine group represented by the following formula (13).
- examples of the benzoxazine compound having an alkenyl group in the molecule include a benzoxazine compound having a benzoxazine group represented by the following formula (12) in the molecule, and a benzoxazine group represented by the following formula (13).
- Examples include benzoxazine compounds having in the molecule, and benzoxazine compounds having a benzoxazine group represented by the following formula (12) and a benzoxazine group represented by the following formula (13) in the molecule.
- Examples of the benzoxazine compound having a benzoxazine group represented by the following formula (12) in the molecule include a benzoxazine compound represented by the following formula (14).
- R 43 represents an alkenyl group
- p is the average value of the degree of substitution of R 43 and is 1 to 4, preferably 1.
- R 44 represents an alkenyl group.
- R 45 and R 46 each independently represent an alkenyl group
- X represents an alkylene group
- q and r each independently represent 1 to 4.
- the alkenyl group in the formulas (12) to (14) is not particularly limited, as described above, but is preferably an allyl group.
- the alkylene group is not particularly limited, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octane group, an icosane group, and a hexatriacontane group.
- a methylene group is preferable as the alkylene group.
- q is the average value of the degree of substitution of R 45 and is 1 to 4, preferably 1.
- r in the above formula (14) is the average value of the degree of substitution of R 46 and is 1 to 4, preferably 1.
- a commercially available product can also be used as the benzoxazine compound (C2).
- the benzoxazine compound having an alkenyl group ALP-d type benzoxazine compound manufactured by Shikoku Kasei Kogyo Co., Ltd., etc. can be used.
- ALP-d type benzoxazine compound manufactured by Shikoku Kasei Kogyo Co., Ltd., etc. can be used.
- 3,3'-(methylene-1,4-diphenylene)bis(3,4-dihydro-2H-1,3-benzoxazine) Pd type benzoxazine compound manufactured by Shikoku Kasei Kogyo Co., Ltd. etc. can be used.
- the reactive compound (C) contains at least one selected from the maleimide compound (C1) and the benzoxazine compound (C2), as well as another reactive compound (C3). May contain.
- the other reactive compounds (C3) include allyl compounds, acrylate compounds, methacrylate compounds, polybutadiene compounds, vinyl compounds such as styrene compounds, acenaphthylene compounds, cyanate ester compounds, epoxy compounds, and active ester compounds. etc.
- the allyl compound is a compound having an allyl group in the molecule, and includes, for example, triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
- triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
- the acrylate compound is a compound having an acryloyl group in the molecule, and includes, for example, a monofunctional acrylate compound having one acryloyl group in the molecule, and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule. It will be done.
- the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
- Examples of the polyfunctional acrylate compound include diacrylate compounds such as tricyclodecane dimethanol diacrylate.
- the methacrylate compound is a compound having a methacryloyl group in the molecule, and includes, for example, a monofunctional methacrylate compound having one methacryloyl group in the molecule, and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule. It will be done.
- the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
- Examples of the polyfunctional methacrylate compound include dimethacrylate compounds such as tricyclodecane dimethanol dimethacrylate (DCP).
- the vinyl compound is a compound having a vinyl group in the molecule.
- the vinyl compound include monofunctional vinyl compounds (monovinyl compounds) having one vinyl group in the molecule, and polyfunctional vinyl compounds having two or more vinyl groups in the molecule.
- the monofunctional vinyl compound include styrene compounds and the like.
- the polyfunctional vinyl compound include polyfunctional aromatic vinyl compounds, vinyl hydrocarbon compounds, and the like.
- examples of the vinyl hydrocarbon compounds include divinylbenzene and polybutadiene compounds.
- the acenaphthylene compound is a compound having an acenaphthylene structure in its molecule.
- the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
- the alkylacenaphthylenes include 1-methylacenaphthylene, 3-methylacenaphthylene, 4-methylacenaphthylene, 5-methylacenaphthylene, 1-ethylacenaphthylene, and 3-ethylacenaphthylene.
- Examples include phthylene, 4-ethylacenaphthylene, 5-ethylacenaphthylene, and the like.
- Examples of the halogenated acenaphthylenes include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, and 3-bromoacenaphthylene.
- Examples include ethylene, 4-bromoacenaphthylene, 5-bromoacenaphthylene, and the like.
- phenylacenaphthylenes examples include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, and 5-phenylacenaphthylene.
- the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule, as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule. .
- the cyanate ester compound is a compound having a cyanato group in the molecule, and examples thereof include 2,2-bis(4-cyanatophenyl)propane, bis(3,5-dimethyl-4-cyanatophenyl)methane, and 2-bis(4-cyanatophenyl)propane. , 2-bis(4-cyanatophenyl)ethane and the like.
- the epoxy compound is a compound having an epoxy group in the molecule, and includes, for example, an epoxy compound having a naphthalene skeleton, an epoxy compound having a dicyclopentadiene skeleton, and the like.
- the active ester compound is a compound having a highly reactive ester group in its molecule, such as benzenecarboxylic acid active ester, benzenedicarboxylic acid active ester, benzenetricarboxylic acid active ester, benzenetetracarboxylic acid active ester, naphthalenecarboxylic acid active ester, etc.
- Acid activated ester naphthalene dicarboxylic acid active ester, naphthalene tricarboxylic acid active ester, naphthalene tetracarboxylic acid active ester, fluorene carboxylic acid active ester, fluorene tricarboxylic acid active ester, fluorene tricarboxylic acid active ester, and fluorene tetracarboxylic acid active ester, etc. Can be mentioned.
- the reactive compound (C) contains the other reactive compound (C3) other than the maleimide compound (C1) and the benzoxazine compound (C2), the reactive compound (C3) as described above. These may be used alone or in combination of two or more.
- the inorganic filler (D) is not particularly limited as long as it can be used as an inorganic filler contained in a resin composition.
- examples of the inorganic filler (D) include silica, alumina, titanium oxide, metal oxides such as magnesium oxide and mica, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, talc, aluminum borate, and sulfuric acid.
- examples include barium, aluminum nitride, boron nitride, barium titanate, magnesium carbonate such as anhydrous magnesium carbonate, and calcium carbonate.
- silica, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, aluminum oxide, boron nitride, barium titanate, etc. are preferred, and silica is more preferred.
- the silica is not particularly limited, and examples thereof include crushed silica, spherical silica, and silica particles.
- the inorganic filler (D) may be a surface-treated inorganic filler or may be an unsurface-treated inorganic filler. Furthermore, examples of the surface treatment include treatment with a silane coupling agent.
- silane coupling agent examples include a group consisting of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, a phenylamino group, an isocyanurate group, a ureido group, a mercapto group, an isocyanate group, an epoxy group, and an acid anhydride group.
- silane coupling agents having at least one functional group selected from the following.
- this silane coupling agent contains a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, a phenylamino group, an isocyanurate group, a ureido group, a mercapto group, an isocyanate group, an epoxy group, and an acid anhydride group as reactive functional groups.
- Examples include compounds having at least one of the chemical groups and further having a hydrolyzable group such as a methoxy group or an ethoxy group.
- Examples of the silane coupling agent having a vinyl group include vinyltriethoxysilane and vinyltrimethoxysilane.
- Examples of the silane coupling agent having a styryl group include p-styryltrimethoxysilane and p-styryltriethoxysilane.
- Examples of the silane coupling agent having a methacryloyl group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxypropylmethyl. Examples include diethoxysilane and 3-methacryloxypropylethyldiethoxysilane.
- silane coupling agent having an acryloyl group examples include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane.
- silane coupling agent having a phenylamino group examples include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
- the average particle diameter of the inorganic filler (D) is not particularly limited, and is preferably, for example, 0.05 to 10 ⁇ m, more preferably 0.1 to 8 ⁇ m. Note that the average particle size herein refers to the volume average particle size.
- the volume average particle diameter can be measured, for example, by a laser diffraction method.
- the content of the polyphenylene ether compound (A) is 1 part by mass or more and less than 50 parts by mass, based on a total of 100 parts by mass of the polyphenylene ether compound (A) and the polyphenylene ether compound (B).
- the amount of the polyphenylene ether compound (A) is 1 part by mass or more, there is an advantage that a resin composition from which a cured product with excellent desmear properties can be obtained can be provided. Further, since the amount of the polyphenylene ether compound (A) is less than 50 parts by mass, there is an advantage that a resin composition can be provided that provides a cured product with excellent adhesion to metal foil and desmear properties.
- the content of the polyphenylene ether compound (A) is preferably 3 to 45 parts by mass based on the total of 100 parts by mass of the polyphenylene ether compound (A) and the polyphenylene ether compound (B).
- the content of the polyphenylene ether compound (A) is 0.1 to 45 parts by mass based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C).
- the amount of the polyphenylene ether compound (A) is 0.1 part by mass or more, it is possible to more reliably obtain a resin composition from which a cured product with excellent desmear properties can be obtained.
- the polyphenylene ether compound (A) is 45 parts by mass or less, it is possible to more reliably obtain a resin composition from which a cured product with excellent adhesion to metal foil and desmear properties can be obtained.
- the lower limit of the content of the polyphenylene ether compound (A) is 3 parts by mass or more based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C). More preferably, the amount is 5 parts by mass or more. Further, the upper limit of the content of the polyphenylene ether compound (A) is preferably 40 parts by mass or less, more preferably 30 parts by mass or less.
- the content of the polyphenylene ether compound (B) is 10 to 70 parts by mass based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C). It is preferable that there be.
- the amount of the polyphenylene ether compound (B) is 10 parts by mass or more, it is possible to more reliably obtain a resin composition from which a cured product having excellent adhesion to metal foil and dielectric constant can be obtained.
- the amount of the polyphenylene ether compound (B) is 70 parts by mass or less, a resin composition from which a cured product with excellent desmear properties can be obtained can be more reliably obtained.
- the lower limit of the content of the polyphenylene ether compound (B) is 15 parts by mass with respect to a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C).
- the amount is more preferably 20 parts by mass or more, and even more preferably 20 parts by mass or more.
- the upper limit of the content of the polyphenylene ether compound (B) is more preferably 65 parts by mass or less, and even more preferably 60 parts by mass or less.
- the content of the reactive compound (C) is not particularly limited, but is based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C).
- the amount is preferably 10 to 80 parts by mass.
- the content of the reactive compound (C) is 10 parts by mass or more, a resin composition from which a cured product having a high glass transition temperature can be obtained can be more reliably obtained.
- the content of the reactive compound (C) is 80 parts by mass or less, it is possible to more reliably obtain a resin composition from which a cured product having an excellent dielectric constant can be obtained.
- the lower limit of the content of the reactive compound (C) is 15 parts by mass or more based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C). More preferably, the amount is 20 parts by mass or more. Further, the upper limit of the content of the reactive compound (C) is more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less.
- the reactive compound (C) includes the maleimide compound (C1)
- the content of the maleimide compound (C1) is preferably 10 to 70 parts by mass.
- the lower limit of the content of the maleimide compound (C1) is 15 parts by mass or more based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C). More preferably, the amount is 20 parts by mass or more. Further, the upper limit of the content of the maleimide compound (C1) is more preferably 65 parts by mass or less, and even more preferably 60 parts by mass or less.
- the reactive compound (C) includes the benzoxazine compound (C2)
- the lower limit of the content of the benzoxazine compound (C2) is 3 parts by mass based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C). It is more preferably at least 5 parts by mass, even more preferably at least 5 parts by mass.
- the content of the benzoxazine compound (C2) when the reactive compound (C) does not contain the maleimide compound (C1) but contains the benzoxazine compound (C2), the content of the polyphenylene ether compound ( It is more preferable that the content of the benzoxazine compound (C2) is 60 parts by mass or less, and 50 parts by mass, based on a total of 100 parts by mass of A), the polyphenylene ether compound (B), and the reactive compound (C). It is more preferable that the amount is less than 1 part.
- the reactive compound (C) contains both the maleimide compound (C1) and the benzoxazine compound (C2), the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reaction
- the content of the benzoxazine compound (C2) is more preferably 50 parts by mass or less, even more preferably 40 parts by mass or less, and even more preferably 20 parts by mass or less, based on a total of 100 parts by mass of the sexual compound (C). Most preferably.
- the reactive compound (C) is a maleimide compound (C1-1) containing at least one selected from the group consisting of a maleimide compound having a biphenylaralkyl structure and polyphenylmethanemaleimide; ) other than the maleimide compound (C1-2), the content of the maleimide compound (C1-1) is based on 100 parts by mass of the maleimide compound (C1) (the maleimide compound (C1-2)).
- C1-1) and the maleimide compound (C1-2)) is preferably 10 to 90 parts by weight, more preferably 10 to 80 parts by weight, and 25 to 60 parts by weight. It is more preferable that it is part.
- the content of the maleimide compound (C1-1) is 10 to 90 parts by mass based on the total 100 parts by mass of the maleimide compound (C1), it has excellent relative permittivity and adhesion to the metal foil, A resin composition from which a cured product having a high glass transition temperature can be obtained can be obtained more reliably. Further, it is thought that the effect of increasing the uniformity of the contained components in the cured product of the obtained resin composition can be achieved.
- the content of the other reactive compound (C3) is preferably 1 to 40 parts by mass, and preferably 1 to 20 parts by mass, based on 100 parts by mass of the reactive compound (C). is more preferable.
- the content of the inorganic filler (D) is not particularly limited, but is 10 parts by mass based on a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C).
- the amount is preferably 250 parts by mass.
- the content of the inorganic filler (D) is 10 parts by mass or more, there is an advantage that a resin composition that provides a cured product with better dimensional stability can be obtained.
- the content of the inorganic filler is 250 parts by mass or less, there is an advantage that it is possible to obtain a resin composition from which a cured product with better moldability can be obtained.
- the lower limit of the content of the inorganic filler (D) with respect to a total of 100 parts by mass of the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C) is 40 parts by mass or more. It is more preferable that the amount is 60 parts by mass or more, and even more preferably 60 parts by mass or more. Further, the upper limit of the content of the inorganic filler (D) is more preferably 200 parts by mass or less, and even more preferably 180 parts by mass or less.
- the resin composition according to the present embodiment may contain a polyphenylene ether compound (A), the polyphenylene ether compound (B), the reactive compound (C), and an inorganic filler, as necessary, within a range that does not impair the effects of the present invention. It may contain components other than material (D) (other components).
- components contained in the resin composition according to the present embodiment include not only the above-mentioned inorganic fillers, but also reaction initiators, curing accelerators, catalysts, polymerization retarders, polymerization inhibitors, It may further contain additives such as a dispersant, a leveling agent, a silane coupling agent, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a dye or pigment, and a lubricant.
- additives such as a dispersant, a leveling agent, a silane coupling agent, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a dye or pigment, and a lubricant.
- the resin composition according to the present embodiment may contain a reaction initiator. Even if the resin composition does not contain a reaction initiator, the curing reaction can proceed. However, depending on the process conditions, it may be difficult to raise the temperature to a high temperature until curing progresses, so a reaction initiator may be added.
- the reaction initiator is not particularly limited as long as it can promote the curing reaction of the resin composition, and examples thereof include peroxides and organic azo compounds. Examples of the peroxide include dicumyl peroxide, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, and 2,5-dimethyl-2,5-di(t-butylperoxy).
- ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene is preferably used. Since ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene has a relatively high reaction initiation temperature, it suppresses the acceleration of the curing reaction at times when curing is not necessary, such as during prepreg drying.
- ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene has low volatility, so it does not volatilize during prepreg drying or storage, and has good stability.
- the reaction initiators may be used alone or in combination of two or more.
- the resin composition according to this embodiment may contain a curing accelerator.
- the curing accelerator is not particularly limited as long as it can promote the curing reaction of the resin composition.
- the curing accelerator includes imidazoles and derivatives thereof, organic phosphorus compounds, amines such as secondary amines and tertiary amines, quaternary ammonium salts, organic boron compounds, and metal soap.
- the imidazoles include 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-phenyl-4-methylimidazole, 2-phenylimidazole, and 1-benzyl-2-methylimidazole.
- examples of the organic phosphorus compounds include triphenylphosphine, diphenylphosphine, phenylphosphine, tributylphosphine, and trimethylphosphine.
- examples of the amines include dimethylbenzylamine, triethylenediamine, triethanolamine, and 1,8-diaza-bicyclo(5,4,0)undecene-7 (DBU).
- examples of the quaternary ammonium salt include tetrabutylammonium bromide and the like.
- organic boron compounds examples include tetraphenylboron salts such as 2-ethyl-4-methylimidazole and tetraphenylborate, and tetra-substituted phosphonium and tetra-substituted borates such as tetraphenylphosphonium and ethyltriphenylborate.
- the metal soap refers to a fatty acid metal salt, and may be a linear fatty acid metal salt or a cyclic fatty acid metal salt. Specific examples of the metal soap include linear aliphatic metal salts and cyclic aliphatic metal salts having 6 to 10 carbon atoms.
- linear fatty acids such as stearic acid, lauric acid, ricinoleic acid, and octylic acid
- cyclic fatty acids such as naphthenic acid
- aliphatic metal salts consisting of these metals.
- zinc octylate and the like can be mentioned.
- the curing accelerators may be used alone or in combination of two or more.
- the resin composition according to this embodiment may contain a silane coupling agent.
- the silane coupling agent may be contained in the resin composition as it is, or may be contained as a silane coupling agent used when surface-treating the inorganic filler in advance.
- the silane coupling agent is preferably contained as a silane coupling agent used when surface-treating the inorganic filler in advance.
- it is more preferable that the silane coupling agent is contained as a silane coupling agent used when surface-treating the inorganic filler in advance, and that the silane coupling agent is further contained in the resin composition as it is.
- the prepreg may contain a silane coupling agent used when surface-treating the fibrous base material in advance.
- a silane coupling agent used when surface-treating the fibrous base material in advance.
- examples of the silane coupling agent include those similar to the silane coupling agents described above that are used when surface treating the inorganic filler.
- the resin composition according to this embodiment may contain a flame retardant, as described above.
- a flame retardant By containing a flame retardant, the flame retardancy of the cured product of the resin composition can be improved.
- the flame retardant is not particularly limited. Specifically, in fields where halogenated flame retardants such as brominated flame retardants are used, for example, ethylene dipentabromobenzene, ethylene bistetrabromoimide, decabromodiphenyl oxide, and tetradecabromoimide, which have a melting point of 300°C or higher, are used. Preferred are phenoxybenzene and a bromostyrene compound that reacts with the polymerizable compound.
- a halogen-based flame retardant desorption of halogen at high temperatures can be suppressed, and a decrease in heat resistance can be suppressed. Furthermore, in fields where halogen-free products are required, flame retardants containing phosphorus (phosphorus-based flame retardants) are sometimes used.
- the phosphorus-based flame retardant is not particularly limited, and examples thereof include phosphate-based flame retardants, phosphazene-based flame retardants, bisdiphenylphosphine oxide-based flame retardants, and phosphinate-based flame retardants.
- a specific example of the phosphoric acid ester flame retardant includes a condensed phosphoric acid ester of dixylenyl phosphate.
- a specific example of the phosphazene flame retardant is phenoxyphosphazene.
- a specific example of the bisdiphenylphosphine oxide flame retardant is xylylene bisdiphenylphosphine oxide.
- Specific examples of phosphinate-based flame retardants include phosphinate metal salts of dialkyl phosphinate aluminum salts. As the flame retardant, each of the exemplified flame retardants may be used alone or in combination of two or more.
- the resin composition is used when manufacturing a prepreg, as described below. Further, the resin composition is used when forming a resin layer included in a resin-coated metal foil and a resin-coated film, and an insulating layer included in a metal-clad laminate and a wiring board. Further, as described above, the resin composition provides a cured product having excellent low dielectric properties such as a low relative dielectric constant. Therefore, the resin composition is suitably used to form an insulating layer included in a high frequency compatible wiring board such as a wiring board for an antenna or an antenna substrate for millimeter wave radar. That is, the resin composition is suitable for manufacturing wiring boards compatible with high frequencies.
- the method for producing the resin composition is not particularly limited, and includes, for example, the polyphenylene ether compound (A), the polyphenylene ether compound (B), the reactive compound (C), and the inorganic filler (D). For example, a method of mixing them to a predetermined content.
- a varnish-like composition containing an organic solvent methods such as those described below may be used.
- symbol is 1: prepreg, 2: resin composition or semi-cured product of a resin composition, 3: fibrous base material, 11: metal-clad laminate, 12: insulating layer, 13: metal Foil, 14: Wiring, 21: Wiring board, 31: Metal plate with resin, 32 and 42: Resin layer, 41: Film with resin, 43: Support film.
- FIG. 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
- the prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3.
- This prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3 present in the resin composition or the semi-cured product 2 of the resin composition.
- the semi-cured product is a state in which the resin composition is partially cured to the extent that it can be further cured. That is, the semi-cured product is a semi-cured (B-staged) resin composition.
- the semi-cured product is a semi-cured (B-staged) resin composition.
- semi-curing includes a state between when the viscosity begins to rise and before it is completely cured.
- the prepreg obtained using the resin composition according to the present embodiment may include a semi-cured product of the resin composition as described above, or a prepreg obtained using the resin composition that has not been cured. It may be provided with the same. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition at the B stage) and a fibrous base material, or a prepreg comprising the semi-cured product of the resin composition (the resin composition at the A stage), or a prepreg comprising the resin composition before curing (the resin composition at the A stage). It may be a prepreg comprising a material) and a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition.
- the resin composition 2 is often prepared in the form of a varnish and used in order to impregnate the fibrous base material 3, which is the base material for forming the prepreg. That is, the resin composition 2 is usually a resin varnish prepared in the form of a varnish.
- a varnish-like resin composition (resin varnish) is prepared, for example, as follows.
- each component that can be dissolved in an organic solvent is added to the organic solvent and dissolved. At this time, heating may be performed if necessary. Thereafter, components that are not soluble in organic solvents are added as needed, and the mixture is dispersed using a ball mill, bead mill, planetary mixer, roll mill, etc. until a predetermined dispersion state is obtained.
- a composition is prepared.
- the organic solvent used here is particularly one that can dissolve the polyphenylene ether compound (A), the polyphenylene ether compound (B), the reactive compound (C), etc. and does not inhibit the curing reaction. Not limited. Specific examples include toluene and methyl ethyl ketone (MEK).
- the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
- the flattening process includes, for example, a method in which a glass cloth is continuously pressed with a press roll at an appropriate pressure to compress the yarn into a flat shape.
- the thickness of the commonly used fibrous base material is, for example, 0.01 mm or more and 0.3 mm or less.
- the glass fibers constituting the glass cloth are not particularly limited, and examples thereof include Q glass, NE glass, E glass, S glass, T glass, L glass, and L2 glass.
- the surface of the fibrous base material may be surface-treated with a silane coupling agent.
- the silane coupling agent is not particularly limited, but for example, a silane coupling agent having at least one member selected from the group consisting of a vinyl group, an acryloyl group, a methacryloyl group, a styryl group, an amino group, and an epoxy group in its molecule. agents, etc.
- the method for manufacturing the prepreg is not particularly limited as long as the prepreg can be manufactured. Specifically, when manufacturing the prepreg, the resin composition according to the present embodiment described above is often prepared in the form of a varnish and used as a resin varnish, as described above.
- a method for manufacturing the prepreg 1 includes a method of impregnating the fibrous base material 3 with the resin composition 2, for example, the resin composition 2 prepared in the form of a varnish, and then drying the impregnated resin composition 2. .
- the resin composition 2 is impregnated into the fibrous base material 3 by dipping, coating, or the like. It is also possible to repeat the impregnation multiple times if necessary. Further, at this time, by repeating impregnation using a plurality of resin compositions having different compositions and concentrations, it is possible to finally adjust the desired composition and impregnation amount.
- the fibrous base material 3 impregnated with the resin composition (resin varnish) 2 is heated under desired heating conditions, for example, at 40° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less.
- desired heating conditions for example, at 40° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less.
- prepreg 1 in a pre-cured (A stage) or semi-cured state (B stage) is obtained.
- the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
- the resin composition according to this embodiment is a resin composition that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. Therefore, a prepreg comprising this resin composition or a semi-cured product of this resin composition is a prepreg that can obtain a cured product that has low dielectric properties, excellent desmear properties, and adhesion to metal foil, and has a high glass transition temperature. .
- This prepreg has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can suitably produce a wiring board including an insulating layer containing a cured product with a high glass transition temperature.
- FIG. 2 is a schematic cross-sectional view showing an example of the metal-clad laminate 11 according to the embodiment of the present invention.
- the metal-clad laminate 11 includes an insulating layer 12 containing a cured product of the resin composition, and a metal foil 13 provided on the insulating layer 12.
- the metal-clad laminate 11 is composed of, for example, an insulating layer 12 containing a cured product of the prepreg 1 shown in FIG. Examples include metal-clad laminates.
- the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg.
- the thickness of the metal foil 13 is not particularly limited and varies depending on the performance required of the ultimately obtained wiring board.
- the thickness of the metal foil 13 can be appropriately set depending on the desired purpose, and is preferably 0.2 to 70 ⁇ m, for example. Further, examples of the metal foil 13 include copper foil and aluminum foil, and when the metal foil is thin, it may be a carrier-attached copper foil provided with a release layer and a carrier to improve handling properties. Good too.
- the method for manufacturing the metal-clad laminate 11 is not particularly limited as long as the metal-clad laminate 11 can be manufactured.
- a method of producing a metal-clad laminate 11 using the prepreg 1 can be mentioned. This method involves stacking one or more prepregs 1, further stacking metal foil 13 such as copper foil on both or one side of the top and bottom, and forming the metal foil 13 and prepreg 1 under heat and pressure. Examples include a method of producing a laminate 11 with metal foil on both sides or with metal foil on one side by laminating and integrating the layers. That is, the metal-clad laminate 11 is obtained by laminating the metal foil 13 on the prepreg 1 and molding it under heat and pressure.
- the conditions for heating and pressing can be appropriately set depending on the thickness of the metal-clad laminate 11, the type of resin composition contained in the prepreg 1, and the like.
- the temperature can be 170 to 230°C
- the pressure can be 2 to 4 MPa
- the time can be 60 to 150 minutes.
- the metal-clad laminate may be manufactured without using prepreg.
- a method may be used in which a varnish-like resin composition is applied onto a metal foil, a layer containing the resin composition is formed on the metal foil, and then heated and pressed.
- the resin composition according to this embodiment is a resin composition that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. Therefore, a metal-clad laminate including an insulating layer containing a cured product of this resin composition has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and has an insulating layer containing a cured product having a high glass transition temperature. This is a metal-clad laminate.
- the prepreg according to the present embodiment is a prepreg that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. Therefore, a metal-clad laminate with an insulating layer containing a cured product of this prepreg has excellent low dielectric properties, desmear properties, and adhesion with metal foil, and has a high glass transition temperature. It is a tension laminate.
- the metal-clad laminate has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can suitably produce a wiring board including an insulating layer containing a cured product with a high glass transition temperature.
- FIG. 3 is a schematic cross-sectional view showing an example of the wiring board 21 according to the embodiment of the present invention.
- the wiring board 21 includes an insulating layer 12 containing a cured product of the resin composition, and wiring 14 provided on both or one side of the upper and lower sides of the insulating layer 12. .
- the wiring board 21 includes, for example, an insulating layer 12 that is used by curing the prepreg 1 shown in FIG.
- a wiring board configured with wiring 14 formed by the above-mentioned method may be mentioned.
- the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg.
- the method for manufacturing the wiring board 21 is not particularly limited as long as the wiring board 21 can be manufactured. Specifically, a method of producing the wiring board 21 using the prepreg 1 may be mentioned. In this method, for example, wiring is formed on the surface of the insulating layer 12 as a circuit by etching the metal foil 13 on the surface of the metal-clad laminate 11 produced as described above. Examples include a method of manufacturing the provided wiring board 21. That is, the wiring board 21 is obtained by partially removing the metal foil 13 on the surface of the metal-clad laminate 11 to form a circuit. In addition to the above-mentioned methods, methods for forming the circuit include, for example, semi-additive process (SAP) and modified semi-additive process (MSAP).
- SAP semi-additive process
- MSAP modified semi-additive process
- the wiring board 21 is a wiring board that includes an insulating layer 12 containing a cured product that has low dielectric properties, excellent desmear properties, and adhesion to metal foil, and has a high glass transition temperature.
- FIG. 4 is a schematic cross-sectional view showing an example of the resin-coated metal foil 31 according to the embodiment of the present invention.
- the resin-coated metal foil 31 includes a resin layer 32 containing the resin composition or a semi-cured product of the resin composition, and a metal foil 13.
- This resin-coated metal foil 31 has a metal foil 13 on the surface of the resin layer 32. That is, this resin-coated metal foil 31 includes the resin layer 32 and the metal foil 13 laminated together with the resin layer 32. Further, the resin-coated metal foil 31 may include another layer between the resin layer 32 and the metal foil 13.
- the resin layer 32 may include a semi-cured product of the resin composition as described above, or may include an uncured resin composition. That is, the resin-coated metal foil 31 may be a resin-coated metal foil that includes a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a metal foil, or The resin-coated metal foil may include a resin layer containing the previous resin composition (the A-stage resin composition) and a metal foil. Further, the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition. Further, as the fibrous base material, the same fibrous base material as the prepreg can be used.
- metal foils used for metal-clad laminates and resin-coated metal foils can be used without limitation.
- examples of the metal foil include copper foil and aluminum foil.
- the resin-coated metal foil 31 may be provided with a cover film or the like, if necessary.
- a cover film By providing a cover film, it is possible to prevent foreign matter from entering.
- the cover film is not particularly limited, but includes, for example, a polyolefin film, a polyester film, a polymethylpentene film, and a film formed by providing a release agent layer on these films.
- the method for manufacturing the resin-coated metal foil 31 is not particularly limited as long as the resin-coated metal foil 31 can be manufactured.
- Examples of the method for manufacturing the resin-coated metal foil 31 include a method in which the varnish-like resin composition (resin varnish) is applied onto the metal foil 13 and heated.
- the varnish-like resin composition is applied onto the metal foil 13 using, for example, a bar coater.
- the applied resin composition is heated under conditions of, for example, 40° C. or more and 180° C. or less and 0.1 minutes or more and 10 minutes or less.
- the heated resin composition is formed on the metal foil 13 as an uncured resin layer 32 .
- the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
- the resin composition according to this embodiment is a resin composition that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. Therefore, a resin-coated metal foil comprising a resin layer containing this resin composition or a semi-cured product of this resin composition has excellent low dielectric properties, desmear properties, and adhesion to the metal foil, and is cured with a high glass transition temperature. This is a resin-coated metal foil with a resin layer from which products can be obtained.
- This resin-coated metal foil has excellent low dielectric properties, desmear properties, and adhesion to the metal foil, and can be used when manufacturing a wiring board including an insulating layer containing a cured product with a high glass transition temperature.
- a multilayer wiring board can be manufactured by laminating it on a wiring board.
- Wiring boards obtained using such resin-coated metal foils include wiring boards that have low dielectric properties, excellent desmear properties, and excellent adhesion to the metal foil, and that have an insulating layer containing a cured product with a high glass transition temperature. can get.
- FIG. 5 is a schematic cross-sectional view showing an example of the resin-coated film 41 according to the embodiment of the present invention.
- the resin-coated film 41 includes a resin layer 42 containing the resin composition or a semi-cured product of the resin composition, and a support film 43.
- This resin-coated film 41 includes the resin layer 42 and a support film 43 laminated together with the resin layer 42. Further, the resin-coated film 41 may include another layer between the resin layer 42 and the support film 43.
- the resin layer 42 may include a semi-cured product of the resin composition as described above, or may include an uncured resin composition. That is, the resin-coated film 41 may be a resin-coated film including a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a support film, or may be a resin-coated film including a support film.
- the resin-coated film may include a resin layer containing the resin composition (the A-stage resin composition) and a support film. Further, the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition. Further, as the fibrous base material, the same fibrous base material as the prepreg can be used.
- any support film used for resin-coated films can be used without limitation.
- the support film include electrically insulating films such as polyester film, polyethylene terephthalate (PET) film, polyimide film, polyparabanic acid film, polyether ether ketone film, polyphenylene sulfide film, polyamide film, polycarbonate film, and polyarylate film. Examples include films.
- the resin-coated film 41 may include a cover film or the like, if necessary. By providing a cover film, it is possible to prevent foreign matter from entering.
- the cover film is not particularly limited, and examples thereof include polyolefin film, polyester film, and polymethylpentene film.
- the support film and the cover film may be subjected to surface treatments such as matte treatment, corona treatment, mold release treatment, and roughening treatment, as necessary.
- the method for producing the resin-coated film 41 is not particularly limited as long as the resin-coated film 41 can be produced.
- Examples of the method for manufacturing the resin-coated film 41 include a method in which the varnish-like resin composition (resin varnish) is applied onto the support film 43 and heated.
- the varnish-like resin composition is applied onto the support film 43 using, for example, a bar coater.
- the applied resin composition is heated, for example, under conditions of 40° C. or more and 180° C. or less and 0.1 minutes or more and 10 minutes or less.
- the heated resin composition is formed on the support film 43 as an uncured resin layer 42 .
- the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
- the resin composition according to this embodiment is a resin composition that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. Therefore, a resin-coated film having a resin layer containing this resin composition or a semi-cured product of this resin composition is a cured product with excellent low dielectric properties, desmear properties, and adhesion to metal foil, and a high glass transition temperature.
- This is a resin-coated film including a resin layer that provides a resin layer.
- This resin-coated film has excellent low dielectric properties, desmear properties, and adhesion to metal foils, and can be suitably used in manufacturing wiring boards that include an insulating layer containing a cured product with a high glass transition temperature.
- a multilayer wiring board can be manufactured by laminating it on a wiring board and then peeling off the support film, or by peeling off the support film and then laminating it on the wiring board.
- a wiring board obtained using such a resin-coated film has an insulating layer containing a cured product with a high glass transition temperature, which has excellent low dielectric properties, desmear properties, and adhesion to metal foil. It will be done.
- the present invention it is possible to provide a resin composition that has excellent low dielectric properties, desmear properties, and adhesion to metal foil, and can yield a cured product with a high glass transition temperature. Further, according to the present invention, it is possible to provide prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and wiring boards obtained using the resin composition.
- the resin composition in the first aspect includes a polyphenylene ether compound (A) having a hydroxyl group in the molecule, a polyphenylene ether compound (B) having an unsaturated double bond in the molecule, a maleimide compound (C1), and a benzene ether compound (A).
- the content of the polyphenylene ether compound (A) based on parts by mass is 1 part by mass or more and less than 50 parts by mass.
- the reactive compound (C) is a maleimide compound having a biphenylaralkyl structure, a maleimide compound having a phenylmaleimide group, a maleimide compound having a carbon number of 6 or more. At least one selected from the group consisting of a maleimide compound having an alkyl group, a maleimide compound having an alkylene group having 6 or more carbon atoms, and a maleimide compound having an alkyl group having 6 or more carbon atoms and an alkylene group having 6 or more carbon atoms. including.
- the resin composition in the third aspect is the resin composition in the first or second aspect, in which the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C) contain a total of 100%
- the content of the polyphenylene ether compound (A) based on parts by weight is 0.1 to 45 parts by weight.
- the resin composition in a fourth aspect is the resin composition in any one of the first to third aspects, wherein the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C )
- the content of the polyphenylene ether compound (B) is 10 to 70 parts by mass based on a total of 100 parts by mass.
- the resin composition in a fifth aspect is the resin composition in any one of the first to fourth aspects, wherein the polyphenylene ether compound (A), the polyphenylene ether compound (B), and the reactive compound (C )
- the content of the reactive compound (C) is 10 to 80 parts by weight based on a total of 100 parts by weight.
- the resin composition in a sixth aspect is the resin composition in any one of the first to fifth aspects, wherein the polyphenylene ether compound (A), the polyphenylene ether compound (B), the reactive compound (C)
- the amount of the inorganic filler (D) is 10 to 250 parts by mass based on a total of 100 parts by mass.
- the resin composition according to a seventh aspect is the resin composition according to any one of the first to sixth aspects, in which the reactive compound (C) contains a maleimide compound (C1) and a benzoxazine compound (C2). .
- the resin composition according to an eighth aspect is the resin composition according to any one of the first to seventh aspects, wherein the benzoxazine compound (C2) contains a benzoxazine compound (C2-1) having an alkenyl group.
- Item 1 The resin composition according to item 1.
- the prepreg in the ninth aspect includes the resin composition in any one of the first to eighth aspects or a semi-cured product of the resin composition, and a fibrous base material.
- the resin-coated film in the tenth aspect includes a resin layer containing the resin composition in any one of the first to eighth aspects or a semi-cured product of the resin composition, and a support film.
- the resin-coated metal foil in the eleventh aspect includes a resin layer containing the resin composition in any one of the first to eighth aspects or a semi-cured product of the resin composition, and a metal foil.
- the metal-clad laminate according to the twelfth aspect includes an insulating layer containing a cured product of the resin composition according to any one of the first to eighth aspects, and a metal foil.
- the metal-clad laminate according to the thirteenth aspect includes an insulating layer containing a cured product of the prepreg according to the ninth aspect, and a metal foil.
- the wiring board in the fourteenth aspect includes an insulating layer containing a cured product of the resin composition in any one of the first to eighth aspects, and wiring.
- the wiring board according to the fifteenth aspect includes an insulating layer containing a cured product of the prepreg according to the ninth aspect, and wiring.
- PPE polyphenylene ether compound having a hydroxyl group in the molecule (SA90 manufactured by SABIC Innovative Plastics, number of terminal hydroxyl groups: 2, number average molecular weight Mn 1700, phenol equivalent (hydroxyl group equivalent) 850 g/eq)
- Modified PPE polyphenylene ether compound (styrene-modified polyphenylene ether) having a vinylbenzyl group (ethenylbenzyl group) at the molecular end (OPE-1200 manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight Mn 1200, functional group equivalent of vinylbenzyl group) 670g/eq)
- Maleimide compound 1 Biphenylaralkyl type bismaleimide compound (MIR-3000-70MT manufactured by Nippon Kayaku Co., Ltd., bismaleimide compound, functional group equivalent of maleimide group
- Preparation method Components other than the inorganic filler were added to methyl ethyl ketone (MEK) with the composition (parts by mass) listed in Table 1 so that the solid content concentration was 60% by mass, and homogenized by stirring and mixing with a disper. I let it happen. Inorganic fillers were added to this homogenized mixture in the composition (parts by mass) shown in Table 1, and the mixture was stirred and mixed with a disper for 2 hours to homogenize the mixture. By doing so, a varnish-like resin composition (varnish) was obtained.
- MEK methyl ethyl ketone
- prepreg and evaluation board 1 (metal-clad laminate) were obtained as follows.
- a fibrous base material (glass cloth: "2116 type cloth” manufactured by Nittobo Co., Ltd.) was impregnated with the obtained varnish, and then heated and dried at 150° C. with a non-contact type heating unit. By doing so, the solvent in the varnish was removed and the resin composition was semi-cured, so that a prepreg (340 mm x 510 mm) was obtained. At that time, the content (resin content) of the components constituting the resin composition in the prepreg by curing reaction was adjusted to 47% by mass.
- evaluation board 1 metal-clad laminate
- a copper clad laminate with a thickness of approximately 0.8 mm with copper foil adhered to both sides was prepared in the same manner as the evaluation board 1, except that the number of prepregs used was changed to 8 (evaluation board 2: metal clad laminate). board) was obtained.
- a copper clad laminate with a thickness of approximately 0.1 mm (evaluation board 3: metal clad laminate) with copper foil adhered to both sides was prepared in the same manner as the evaluation board 1, except that the number of prepregs used was changed to one. board) was obtained.
- Evaluation substrates 1 to 3 (copper-clad laminates) prepared as described above were evaluated by the method shown below.
- the copper foil on the surface of the evaluation board 1 was removed by etching.
- the substrate from which the copper foil has been removed is immersed in a swelling solution (Swelling Dip Securigant P manufactured by Atotech Japan Co., Ltd.) at 60°C for 5 minutes, and then immersed in a potassium permanganate aqueous solution (manufactured by Atotech Japan Co., Ltd.) for 5 minutes.
- a swelling solution Silicon Dip Securigant P manufactured by Atotech Japan Co., Ltd.
- a potassium permanganate aqueous solution manufactured by Atotech Japan Co., Ltd.
- neutralization treatment was performed.
- the weight of the substrate is measured before and after such a desmear process, and the amount of weight loss due to the desmear process is calculated (weight of the board before the desmear process - weight of the board after the desmear process), and the amount of weight loss is calculated. From this, the amount of weight decrease per 1 mm 2 (mg/mm 2 ) was calculated. Based on the amount of weight loss per 1 mm 2 , evaluation was made as follows.
- weight loss per 1 mm 2 is less than 15 mg/mm 2 , it will be evaluated as "A (x)", and if it is 15 mg/mm 2 or more and less than 30 mg/mm 2 , it will be evaluated as “B ( ⁇ )”. However, if it was 30 mg/ mm2 or more and less than 45 mg/ mm2 , it was evaluated as "C ( ⁇ )”, and if it was 45 mg/mm2 or more , it was evaluated as "D (x)".
- Glass transition temperature (Tg) An unclad plate obtained by removing the copper foil from the evaluation board 2 (copper-clad laminate) by etching was used as a test piece, and a viscoelastic spectrometer "DMS6100" manufactured by Seiko Instruments Co., Ltd. was used to test the unclad plate (evaluation board).
- the glass transition temperature (Tg) of the insulating layer provided in No. 2 was measured.
- DMA dynamic mechanical analysis
- the temperature was set as Tg (°C). Note that it is preferable that the glass transition temperature is 240°C or higher.
- the copper foil was peeled off from the evaluation board 3, and the peel strength at that time was measured in accordance with JIS C6481. Specifically, the copper foil was peeled off from the evaluation board 3 at a rate of 50 mm/min using a tensile tester, and the peel strength (N/mm) at that time was measured.
- a polyphenylene ether compound (A) having a hydroxyl group in the molecule from a polyphenylene ether compound (A) having a hydroxyl group in the molecule, a polyphenylene ether compound (B) having an unsaturated double bond in the molecule, a maleimide compound (C1), and a benzoxazine compound (C2).
- the resin compositions In the case of resin compositions in which the content of the ether compound (A) is 1 part by mass or more and less than 50 parts by mass (Examples 1 to 12), the resin compositions have excellent low dielectric properties, desmear properties, and peel strength, and have a high glass transition temperature. It was found that a cured product could be obtained.
- the polyphenylene ether compound (A) is based on a total of 100 parts by mass of the polyphenylene ether compound (A) and the polyphenylene ether compound (B). It was found that desmear properties were poor when the content was 50 parts by mass or more (Comparative Examples 4 to 6).
- Example 4 when the benzoxazine (C2) contains a benzoxazine compound (C2-1) having an alkenyl group (Example 4), the peel strength is superior and the glass It was found that a cured product with a higher transition temperature could be obtained.
- the reactive compound (C), as the maleimide compound (C1) is the maleimide compound (C1-1) and a maleimide compound other than the maleimide compound (C1-1).
- C1-2 Examples 8 and 12
- the present invention has wide industrial applicability in technical fields related to electronic materials and various devices using the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
本発明における一局面は、水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、無機充填材(D)とを含み、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である樹脂組成物に関する。
Description
本発明は、樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板に関する。
各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの、高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。また、各種電子機器に用いられる配線板としては、例えば、車載用途におけるミリ波レーダ基板等の、高周波対応の配線板であることが求められる。各種電子機器に用いられる配線板の絶縁層を構成するための基板材料には、信号の伝送速度を高め、信号伝送時の損失を低減させるために、誘電率及び誘電正接が低いことが求められる。
ポリフェニレンエーテルは、比誘電率や誘電正接が低い等の低誘電特性に優れており、MHz帯からGHz帯という高周波数帯(高周波領域)においても低比誘電率や低誘電正接等の低誘電特性が優れていることが知られている。このため、ポリフェニレンエーテルは、例えば、高周波用成形材料として用いられることが検討されている。より具体的には、ポリフェニレンエーテルは、高周波数帯を利用する電子機器に備えられる配線板の絶縁層を構成するための基板材料等に好ましく用いられる。
これまでにも、変性ポリフェニレンエーテルを含有する樹脂組成物として、例えば、特許文献1には、ポリフェニレンエーテル部分を分子構造内に有し、かつ、この分子末端に、p-エテニルベンジル基やm-エテニルベンジル基等を有し、且つ数平均分子量が1000~7000であるポリフェニレンエーテルと架橋型硬化剤とを含むポリフェニレンエーテル樹脂組成物が開示されている。
特許文献1記載のポリフェニレンエーテル樹脂組成物では、誘電特性と耐熱性を有する積層板を提供することができるとされている。
その一方で、電子機器は、特に携帯通信端末やノートパソコン等の小型携帯機器において、多様化、高性能化、薄型化、及び小型化が急速に進んでいる。これに伴い、これらの製品に用いられる配線板においても、導体配線の微細化、導体配線層の多層化、薄型化、及び機械特性等の、高性能化がさらに要求されている。このため、最近のプリント配線板等の絶縁層における各種特性の要求はさらに高まっており、優れた誘電(電気)特性を維持したまま、さらに高いレベルでデスミア性、金属箔との密着性、ガラス転移温度等の特性を兼ね備えた基板材料が求められている。
具体的には、各種電子機器において用いられる配線板の絶縁層には、ドリルやレーザ等によって穴あけ加工を施した際、穴あけ加工により発生したかす(スミア)を適切に除去できることが望ましい。すなわち、配線板の絶縁層には、過マンガン酸等によって、配線板の絶縁層に対する損傷を抑制しつつ、スミアを適切に除去できること(デスミア性に優れていること)が好ましい。このことから、配線板の絶縁層を構成するための基板材料には、デスミア性に優れた硬化物が得られることが求められる。
また、各種電子機器において用いられる配線板には、外部環境の変化等の影響を受けにくいことも求められる。すなわち、幅広い温度範囲において優れた信頼性を有する配線板を得るためにも、配線板の絶縁層を構成するための基板材料には、ガラス転移温度が高い硬化物が得られることが望ましい。
さらに、配線板等を製造する際に用いられる金属張積層板及び樹脂付き金属箔は、絶縁層だけではなく、前記絶縁層上に金属箔を備える。また、配線板も、絶縁層だけではなく、前記絶縁層上に配線が備えられる。そして、前記配線としては、前記金属張積層板等に備えられる金属箔由来の配線等が挙げられる。
前記配線板には、備えられる配線が微細化された配線であっても、前記絶縁層から前記配線が剥離しないことが望ましい。この要求を満たすために、前記配線板には、配線と絶縁層との密着性が高いことが好ましい。よって、金属張積層板には、金属箔と絶縁層との密着性が高いことが求められ、配線板の絶縁層を構成するための基板材料には、金属箔との密着性に優れた硬化物が得られることが求められる。
本発明は、かかる事情に鑑みてなされたものであって、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物を提供することを目的とする。また、本発明は、前記樹脂組成物を用いて得られる、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板を提供することを目的とする。
本発明の一態様に係る樹脂組成物は、水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、無機充填材(D)とを含み、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である。
以下、本発明に係る実施形態について説明するが、本発明はこれらに限定されるものではない。
[樹脂組成物]
本発明の一実施形態に係る樹脂組成物は、水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、無機充填材(D)とを含み、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である。このような構成の樹脂組成物は、硬化させることによって、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる。
本発明の一実施形態に係る樹脂組成物は、水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、無機充填材(D)とを含み、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である。このような構成の樹脂組成物は、硬化させることによって、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる。
本実施形態によれば、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物を提供することができる。また、本実施形態によれば、前記樹脂組成物を用いて得られる、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板を提供することができる。
(ポリフェニレンエーテル化合物(A))
前記ポリフェニレンエーテル化合物(A)は、水酸基を分子内に有するポリフェニレンエーテル化合物であれば、特に限定されない。水酸基を分子内に有するポリフェニレンエーテル化合物とは、水酸基を1個以上分子内に有するポリフェニレンエーテルであればよく、特に限定されないが、例えば、ポリフェニレンエーテル化合物の両末端または片末端に水酸基が未変性のまま残っているポリフェニレンエーテル化合物等が挙げられる。より具体的には、前記ポリフェニレンエーテル化合物(A)は、ポリフェニレンエーテル鎖を分子内に有し、前記ポリフェニレンエーテル化合物(A)としては、例えば、下記式(1)で表される繰り返し単位を分子内に有していることが好ましい。
前記ポリフェニレンエーテル化合物(A)は、水酸基を分子内に有するポリフェニレンエーテル化合物であれば、特に限定されない。水酸基を分子内に有するポリフェニレンエーテル化合物とは、水酸基を1個以上分子内に有するポリフェニレンエーテルであればよく、特に限定されないが、例えば、ポリフェニレンエーテル化合物の両末端または片末端に水酸基が未変性のまま残っているポリフェニレンエーテル化合物等が挙げられる。より具体的には、前記ポリフェニレンエーテル化合物(A)は、ポリフェニレンエーテル鎖を分子内に有し、前記ポリフェニレンエーテル化合物(A)としては、例えば、下記式(1)で表される繰り返し単位を分子内に有していることが好ましい。
式(1)において、tは、1~50を示す。また、R1~R4は、それぞれ独立している。すなわち、R1~R4は、それぞれ同一の基であっても、異なる基であってもよい。また、R1~R4は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
R1~R4において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的に、前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的に、前記アルケニル基としては、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的に、前記アルキニル基としては、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的に、前記アルキルカルボニル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的に、前記アルケニルカルボニル基としては、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的に、前記アルキニルカルボニル基としては、例えば、プロピオロイル基等が挙げられる。
前記ポリフェニレンエーテル化合物(A)の重量平均分子量(Mw)及び数平均分子量(Mn)は、特に限定されないが、例えば、500~5000であることが好ましく、800~4000であることが好ましく、1000~3000であることが好ましい。分子量が500以上であることにより、硬化物の耐熱性をより確実に得ることができると考えられる。また、分子量が5000以下であることにより、充分な流動性が得られ、成形不良を抑制できると考えられる。よって、ポリフェニレンエーテル化合物(A)の重量平均分子量が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
なお、ここで、重量平均分子量及び数平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、例えば、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、前記ポリフェニレンエーテル化合物(A)が、前記式(1)で表される繰り返し単位を分子中に有している場合、tは、前記ポリフェニレンエーテル化合物(A)の重量平均分子量及び数平均分子量が前記範囲内になるような数値であることが好ましい。具体的には、前記式(1)におけるtは、1~50であることが好ましい。
前記ポリフェニレンエーテル化合物(A)における、前記水酸基の平均個数(水酸基数)は、特に限定されないが、例えば、1~5個であることが好ましく、1.5~3個であることがより好ましい。前記水酸基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、前記水酸基数が多すぎると、反応性が高くなりすぎて、例えば、樹脂組成物の保存性が低下するおそれがある。
なお、前記ポリフェニレンエーテル化合物(A)の水酸基数は、例えば、使用するポリフェニレンエーテル化合物の製品の規格値からわかる。また、ここでの水酸基数としては、具体的には、例えば、ポリフェニレンエーテル化合物1モル中に存在する全てのポリフェニレンエーテル化合物の1分子あたりの水酸基の平均値を表した数値等が挙げられる。
前記ポリフェニレンエーテル化合物(A)の固有粘度は、特に限定されないが、例えば、0.03~0.12dl/gであることが好ましく、0.04~0.11dl/gであることがより好ましく、0.06~0.095dl/gであることがさらに好ましい。前記固有粘度が0.03dl/g以上であることにより、硬化物の耐熱性をより確実に得ることができると考えられる。また、前記固有粘度が0.12dl/g以下であることにより、充分な流動性が得られ、成形不良を抑制できると考えられる。よって、前記ポリフェニレンエーテル化合物(A)の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
なお、ここでの固有粘度は、使用するポリフェニレンエーテル化合物の製品の規格値からわかる。また、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
前記ポリフェニレンエーテル化合物(A)は、特に限定されず、例えば、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテル、及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。前記ポリフェニレンエーテル化合物(A)としては、より具体的には、例えば、下記式(2)で表されるポリフェニレンエーテル化合物、及び下記式(3)で表されるポリフェニレンエーテル化合物等が挙げられる。
式(2)及び式(3)中、R5~R20並びにR21~R36は、それぞれ独立している。すなわち、R5~R20並びにR21~R36は、それぞれ同一の基であっても、異なる基であってもよい。また、R5~R20並びにR21~R36としては、上記式(1)におけるR1~R4と同じものが挙げられる。すなわち、R5~R20並びにR21~R36は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。また、式(3)中、Yは、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素を示す。m及びnは、それぞれ、0~20を示すことが好ましい。また、m及びnは、mとnとの合計値が、1~30となる数値を示すことが好ましい。よって、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことがより好ましい。
前記式(3)中において、Yは、上述したように、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素である。Yとしては、例えば、下記式(4)で表される基等が挙げられる。
前記式(4)中、R37及びR38は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(4)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられ、この中でも、ジメチルメチレン基が好ましい。
前記式(2)で表されるポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(5)で表されるポリフェニレンエーテル化合物等が挙げられる。また、前記式(3)で表されるポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(6)で表されるポリフェニレンエーテル化合物等が挙げられる。
上記式(5)及び上記式(6)において、m及びnは、上記式(2)及び上記式(3)におけるm及びnと同様であり、具体的には、m及びnは、それぞれ、0~20を示すことが好ましい。また、上記式(6)において、Yは、上記式(3)におけるYと同じものが挙げられる。
(ポリフェニレンエーテル(B))
前記ポリフェニレンエーテル(B)は、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物であれば、特に限定されない。前記ポリフェニレンエーテル化合物(B)としては、例えば、上記式(1)で表される繰り返し単位を分子内に有する前記ポリフェニレンエーテル化合物(A)を、炭素-炭素不飽和二重結合を有する置換基により末端変性したポリフェニレンエーテル化合物等が挙げられる。
前記ポリフェニレンエーテル(B)は、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物であれば、特に限定されない。前記ポリフェニレンエーテル化合物(B)としては、例えば、上記式(1)で表される繰り返し単位を分子内に有する前記ポリフェニレンエーテル化合物(A)を、炭素-炭素不飽和二重結合を有する置換基により末端変性したポリフェニレンエーテル化合物等が挙げられる。
炭素-炭素不飽和二重結合を有する置換基としては、特に限定されない。前記置換基としては、例えば、下記式(7)で表される置換基等が挙げられる。
式(7)中、sは、0~10を示す。また、Zは、アリーレン基を示す。また、R39~R41は、それぞれ独立している。すなわち、R39~R41は、それぞれ同一の基であっても、異なる基であってもよい。また、R39~R41は、水素原子またはアルキル基を示す。
なお、式(7)において、sが0である場合は、Zがポリフェニレンエーテルの末端に直接結合しているものを示す。
このアリーレン基は、特に限定されないが、具体的には、前記アリーレン基は、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子がアルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。
また、前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
また、前記置換基としては、より具体的には、p-エテニルベンジル基やm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。
上記式(7)に示す置換基の好ましい具体例としては、ビニルベンジル基を含む官能基が挙げられる。具体的には、下記式(8)又は式(9)から選択される少なくとも1つの置換基等が挙げられる。
また、炭素-炭素不飽和二重結合を有する他の置換基としては、(メタ)アクリレート基が挙げられ、例えば、下記式(10)で示される。
式(10)中、R42は、水素原子またはアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的に、前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
前記ポリフェニレンエーテル化合物(B)の重量平均分子量(Mw)は、特に限定されないが、具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。
なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、ポリフェニレンエーテル化合物(B)が、上記式(1)で表される繰り返し単位を分子中に有している場合、tは、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、上記式(1)におけるtは1~50であることが好ましい。
前記ポリフェニレンエーテル化合物(B)の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。
また、前記ポリフェニレンエーテル化合物(B)における、ポリフェニレンエーテル化合物(B)1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されないが、具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。
なお、前記ポリフェニレンエーテル化合物(B)の末端官能基数としては、例えば、ポリフェニレンエーテル化合物1モル中に存在する全てのポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、さらに具体的には、例えば、得られたポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
また、前記ポリフェニレンエーテル化合物(B)の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであることが好ましく、0.04~0.11dl/gであることがより好ましく、0.06~0.095dl/gであることがさらに好ましい。前記固有粘度が0.03dl/g以上であることにより、硬化物の耐熱性をより確実に得ることができると考えられる。また、前記固有粘度が0.12dl/g以下であることにより、充分な流動性が得られ、成形不良を抑制できると考えられる。よって、ポリフェニレンエーテル化合物(B)の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
また、前記ポリフェニレンエーテル化合物(B)としては、市販の製品を用いてもよく、公知の合成方法により製造したものを用いてもよい。前記ポリフェニレンエーテル化合物(B)の合成方法としては、炭素-炭素不飽和二重結合を有する置換基により末端変性されたポリフェニレンエーテル化合物(B)を合成できれば、特に限定されない。前記ポリフェニレンエーテル化合物(B)の合成方法としては、例えば、前記ポリフェニレンエーテル(A)に、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。
炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とは、例えば、下記式(11)で表される化合物等が挙げられる。
式(11)中、s、Z、R39~R41は、上記式(7)でのs、Z、R39~R41と同じものを示す。具体的には、sは、0~10を示す。また、Zは、アリーレン基を示す。また、R39~R41は、それぞれ独立している。すなわち、R39~R41は、それぞれ同一の基であっても、異なる基であってもよい。また、R39~R41は、水素原子またはアルキル基を示す。また、Wは、ハロゲン原子を示し、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子等が挙げられる。この中でも、塩素原子が好ましい。
また、式(11)で表される化合物は、上記例示したものを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、例えば、p-クロロメチルスチレンやm-クロロメチルスチレン等が挙げられる。
(反応性化合物(C))
前記反応性化合物(C)としては、マレイミド化合物(C1)及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物であれば特に限定されない。また、前記反応性化合物(C)は、上述したように、前記マレイミド化合物(C1)のみを含んでいてもよいし、前記ベンゾオキサジン化合物(C2)のみを含んでいてもよいし、前記マレイミド化合物(C1)と前記ベンゾオキサジン化合物(C2)との両者を含んでいてもよい。また、反応性化合物(C)は、前記マレイミド化合物(C1)と前記ベンゾオキサジン化合物(C2)との両者を含むことが好ましい。それにより、耐熱性及び金属箔との密着性に優れた硬化物が得られる樹脂組成物をより確実に得ることができる。
前記反応性化合物(C)としては、マレイミド化合物(C1)及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物であれば特に限定されない。また、前記反応性化合物(C)は、上述したように、前記マレイミド化合物(C1)のみを含んでいてもよいし、前記ベンゾオキサジン化合物(C2)のみを含んでいてもよいし、前記マレイミド化合物(C1)と前記ベンゾオキサジン化合物(C2)との両者を含んでいてもよい。また、反応性化合物(C)は、前記マレイミド化合物(C1)と前記ベンゾオキサジン化合物(C2)との両者を含むことが好ましい。それにより、耐熱性及び金属箔との密着性に優れた硬化物が得られる樹脂組成物をより確実に得ることができる。
・マレイミド化合物(C1)
前記マレイミド化合物(C1)は、分子中にマレイミド基を有する化合物であれば、特に限定されない。前記マレイミド化合物(C1)としては、分子中にマレイミド基を1個有する単官能マレイミド化合物、分子中にマレイミド基を2個以上有する多官能マレイミド化合物、及び変性マレイミド化合物等が挙げられる。
前記マレイミド化合物(C1)は、分子中にマレイミド基を有する化合物であれば、特に限定されない。前記マレイミド化合物(C1)としては、分子中にマレイミド基を1個有する単官能マレイミド化合物、分子中にマレイミド基を2個以上有する多官能マレイミド化合物、及び変性マレイミド化合物等が挙げられる。
前記変性マレイミド化合物としては、例えば、分子中の一部がアミン化合物で変性された変性マレイミド化合物、分子中の一部がシリコーン化合物で変性された変性マレイミド化合物、及び分子中の一部がアミン化合物及びシリコーン化合物で変性された変性マレイミド化合物等が挙げられる。
また、反応性化合物(C)は、マレイミド化合物(C1)として、ビフェニルアラルキル構造を有するマレイミド化合物、フェニルマレイミド基を有するマレイミド化合物、炭素数6以上のアルキル基を有するマレイミド化合物、炭素数6以上のアルキレン基を有するマレイミド化合物、並びに、炭素数6以上のアルキル基及び炭素数6以上のアルキレン基を有するマレイミド化合物からなる群より選択される少なくとも1つを含むことが好ましい。それにより、優れた比誘電率や高いガラス転移温度を有する硬化物が得られる樹脂組成物をより確実に得ることができる。
前記ビフェニルアラルキル構造を有するマレイミド化合物としては、例えば、ビフェニルアラルキル型ビスマレイミド化合物等が挙げられるが、これに限定されない。
前記フェニルマレイミド基を有するマレイミド化合物としては、例えば、メタ位に配向して結合されているアリーレン構造を有するマレイミド化合物、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、及び、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド等が挙げられる。また、前記メタ位に配向して結合されているアリーレン構造を有するマレイミド化合物としては、例えば、m-フェニレンビスマレイミド、及び、4-メチル-1,3-フェニレンビスマレイミド等が挙げられる。
前記炭素数6以上のアルキル基を有するマレイミド化合物、前記炭素数6以上のアルキレン基を有するマレイミド化合物、並びに、前記炭素数6以上のアルキル基及び炭素数6以上のアルキレン基を有するマレイミド化合物としては、例えば、長鎖アルキルビスマレイミド等が挙げられるが、これに限定されない。
また、前記反応性化合物(C)は、前記マレイミド化合物(C1)として、ビフェニルアラルキル構造を有するマレイミド化合物、及び、ポリフェニルメタンマレイミドからなる群より選択される少なくとも1つを含むマレイミド化合物(C1-1)を含有することがより好ましい。それにより、金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物をより確実に得ることができる。
前記反応性化合物(C)は、前記マレイミド化合物(C1)として、前記マレイミド化合物(C1-1)と、前記マレイミド化合物(C1-1)以外のマレイミド化合物(C1-2)とを含むことがさらに好ましい。それにより、比誘電率及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物をより確実に得ることができる。また、得られた樹脂組成物の硬化物において、含有される成分の均一性を高めるといった効果を奏することができると考えられる。前記マレイミド化合物(C1-2)としては、例えば、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、長鎖アルキルビスマレイミド等が好ましい。
上述したようなマレイミド化合物(C1)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、前記マレイミド化合物(C1)としては、市販品を使用することができる。具体的には、例えば、大和化成工業株式会社製のBMI-1000(4,4’-ジフェニルメタンビスマレイミド)、大和化成工業株式会社製のBMI-2300(ポリフェニルメタンマレイミド)、大和化成工業株式会社製のBMI-3000(m-フェニレンビスマレイミド)、大和化成工業株式会社製のBMI-4000(ビスフェノールAジフェニルエーテルビスマレイミド)、大和化成工業株式会社製のBMI-5100(3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド)、大和化成工業株式会社製のBMI-7000(4-メチル-1,3-フェニレンビスマレイミド)、日本化薬株式会社製のMIR-3000-70T(ビフェニルアラルキル型マレイミド化合物)、大和化成工業株式会社製のBMI-TMH(1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン)などを用いることができる。また、長鎖アルキルビスマレイミドとして、Designer Molercules Inc.製のBMI-1700、BMI-1500、及びBMI-689などを用いることができる。
・ベンゾオキサジン化合物(C2)
前記ベンゾオキサジン化合物(C2)は、分子内にベンゾオキサジン環を有する化合物であり、ベンゾオキサジン樹脂等が挙げられる。前記ベンゾオキサジン化合物(C2)としては、例えば、分子内にフェノールフタレイン構造を有するベンゾオキサジン化合物(フェノールフタレイン型ベンゾオキサジン化合物)、分子内にアルケニル基を有するベンゾオキサジン化合物、ビスフェノールF型ベンゾオキサジン化合物、及びジアミノジフェニルメタン(DDM)型ベンゾオキサジン化合物等が挙げられる。前記ベンゾオキサジン化合物(C2)としては、より具体的には、3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン)(P-d型ベンゾオキサジン化合物)、及び2,2-ビス(3,4-ジヒドロ-2H-3-フェニル-1,3-ベンゾオキサジン)メタン(F-a型ベンゾオキサジン化合物)等が挙げられる。前記ベンゾオキサジン化合物(C2)は、1種を単独で用いてよいし、2種以上を組み合わせて用いてもよい。
前記ベンゾオキサジン化合物(C2)は、分子内にベンゾオキサジン環を有する化合物であり、ベンゾオキサジン樹脂等が挙げられる。前記ベンゾオキサジン化合物(C2)としては、例えば、分子内にフェノールフタレイン構造を有するベンゾオキサジン化合物(フェノールフタレイン型ベンゾオキサジン化合物)、分子内にアルケニル基を有するベンゾオキサジン化合物、ビスフェノールF型ベンゾオキサジン化合物、及びジアミノジフェニルメタン(DDM)型ベンゾオキサジン化合物等が挙げられる。前記ベンゾオキサジン化合物(C2)としては、より具体的には、3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン)(P-d型ベンゾオキサジン化合物)、及び2,2-ビス(3,4-ジヒドロ-2H-3-フェニル-1,3-ベンゾオキサジン)メタン(F-a型ベンゾオキサジン化合物)等が挙げられる。前記ベンゾオキサジン化合物(C2)は、1種を単独で用いてよいし、2種以上を組み合わせて用いてもよい。
前記ベンゾオキサジン化合物(C2)の中でも、分子内にアルケニル基を有するベンゾオキサジン化合物(C2-1)を用いることが好ましい。アルケニル基を有するベンゾオキサジン化合物(C2-1)を用いることにより、金属箔との密着性により優れ、ガラス転移温度がより高い硬化物を得られる樹脂組成物をより確実に得ることができる。
前記アルケニル基としては、特に限定されないが、例えば、炭素数2~6のアルケニル基等が挙げられる。前記アルケニル基としては、具体的には、ビニル基、アリル基、及びブテニル基等が挙げられ、この中でも、アリル基が好ましい。
また、前記アルケニル基を有するベンゾオキサジン化合物(C2-1)としては、例えば、アルケニル基を有するベンゾオキサジン基を分子内に有する化合物等が挙げられる。前記ベンゾオキサジン基(アルケニル基を有するベンゾオキサジン基)としては、例えば、下記式(12)で表されるベンゾオキサジン基、及び下記式(13)で表されるベンゾオキサジン基等が挙げられる。前記分子内にアルケニル基を有するベンゾオキサジン化合物としては、例えば、下記式(12)で表されるベンゾオキサジン基を分子内に有するベンゾオキサジン化合物、下記式(13)で表されるベンゾオキサジン基を分子内に有するベンゾオキサジン化合物、及び下記式(12)で表されるベンゾオキサジン基と下記式(13)で表されるベンゾオキサジン基とを分子内に有するベンゾオキサジン化合物等が挙げられる。下記式(12)で表されるベンゾオキサジン基を分子内に有するベンゾオキサジン化合物としては、例えば、下記式(14)で表されるベンゾオキサジン化合物等が挙げられる。
式(12)中、R43は、アルケニル基を示し、pは、R43の置換度の平均値であって、1~4であり、1であることが好ましい。
式(13)中、R44は、アルケニル基を示す。
式(14)中、R45及びR46は、それぞれ独立して、アルケニル基を示し、Xは、アルキレン基を示し、q及びrは、それぞれ独立して、1~4を示す。
前記式(12)~式(14)における前記アルケニル基は、上述したように、特に限定されないが、アリル基であることが好ましい。
前記アルキレン基は、特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクタン基、イコサン基、及びヘキサトリアコンタン基等が挙げられる。この中でも、前記アルキレン基としては、メチレン基が好ましい。
前記式(14)におけるqは、R45の置換度の平均値であって、1~4であり、1であることが好ましい。また、前記式(14)におけるrは、R46の置換度の平均値であって、1~4であり、1であることが好ましい。
前記ベンゾオキサジン化合物(C2)としては、市販品を使用することもできる。例えば、アルケニル基を有するベンゾオキサジン化合物としては、四国化成工業株式会社製のALP-d型ベンゾオキサジン化合物等を用いることができる。また、3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン)としては、四国化成工業株式会社製のP-d型ベンゾオキサジン化合物等を用いることができる。
・他の反応性化合物
さらに、前記反応性化合物(C)は前記マレイミド化合物(C1)及び前記ベンゾオキサジン化合物(C2)から選択される少なくとも1つに加えて、他の反応性化合物(C3)を含んでいてもよい。前記他の反応性化合物(C3)としては、例えば、アリル化合物、アクリレート化合物、メタクリレート化合物、ポリブタジエン化合物及び、スチレン化合物等のビニル化合物、アセナフチレン化合物、シアン酸エステル化合物、エポキシ化合物、並びに、活性エステル化合物等が挙げられる。
さらに、前記反応性化合物(C)は前記マレイミド化合物(C1)及び前記ベンゾオキサジン化合物(C2)から選択される少なくとも1つに加えて、他の反応性化合物(C3)を含んでいてもよい。前記他の反応性化合物(C3)としては、例えば、アリル化合物、アクリレート化合物、メタクリレート化合物、ポリブタジエン化合物及び、スチレン化合物等のビニル化合物、アセナフチレン化合物、シアン酸エステル化合物、エポキシ化合物、並びに、活性エステル化合物等が挙げられる。
前記アリル化合物は、分子中にアリル基を有する化合物であり、例えば、トリアリルイソシアヌレート(TAIC)等のトリアリルイソシアヌレート化合物、ジアリルビスフェノール化合物、及びジアリルフタレート(DAP)等が挙げられる。
前記アクリレート化合物は、分子中にアクリロイル基を有する化合物であり、例えば、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物等が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等のジアクリレート化合物等が挙げられる。
前記メタクリレート化合物は、分子中にメタクリロイル基を有する化合物であり、例えば、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物等が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート(DCP)等のジメタクリレート化合物等が挙げられる。
前記ビニル化合物が、分子中にビニル基を有する化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)、及び分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。前記単官能ビニル化合物としては、例えば、スチレン化合物等が挙げられる。前記多官能ビニル化合物としては、多官能芳香族ビニル化合物、及びビニル炭化水素系化合物等が挙げられる。また、前記ビニル炭化水素系化合物としては、例えば、ジビニルベンゼン、及びポリブタジエン化合物等が挙げられる。
前記アセナフチレン化合物は、分子中にアセナフチレン構造を有する化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。
前記シアン酸エステル化合物は、分子中にシアナト基を有する化合物であり、例えば、2,2-ビス(4-シアネートフェニル)プロパン、ビス(3,5-ジメチル-4-シアネートフェニル)メタン、及び2,2-ビス(4-シアネートフェニル)エタン等が挙げられる。
前記エポキシ化合物は、分子中にエポキシ基を有する化合物であり、例えば、ナフタレン骨格を有するエポキシ化合物、ジシクロペンタジエン骨格を有するエポキシ化合物等が挙げられる。
前記活性エステル化合物は、分子中に反応活性の高いエステル基を有する化合物であり、例えば、ベンゼンカルボン酸活性エステル、ベンゼンジカルボン酸活性エステル、ベンゼントリカルボン酸活性エステル、ベンゼンテトラカルボン酸活性エステル、ナフタレンカルボン酸活性エステル、ナフタレンジカルボン酸活性エステル、ナフタレントリカルボン酸活性エステル、ナフタレンテトラカルボン酸活性エステル、フルオレンカルボン酸活性エステル、フルオレンジカルボン酸活性エステル、フルオレントリカルボン酸活性エステル、及びフルオレンテトラカルボン酸活性エステル等が挙げられる。
前記反応性化合物(C)が、前記マレイミド化合物(C1)及び前記ベンゾオキサジン化合物(C2)以外の前記他の反応性化合物(C3)を含む場合は、上述したような前記反応性化合物(C3)を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(無機充填材(D))
前記無機充填材(D)は、樹脂組成物に含有される無機充填材として使用できる無機充填材であれば、特に限定されない。前記無機充填材(D)としては、例えば、シリカ、アルミナ、酸化チタン、酸化マグネシウム及びマイカ等の金属酸化物、水酸化マグネシウム及び水酸化アルミニウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、窒化アルミニウム、窒化ホウ素、チタン酸バリウム、無水炭酸マグネシウム等の炭酸マグネシウム、及び炭酸カルシウム等が挙げられる。この中でも、シリカ、水酸化マグネシウム及び水酸化アルミニウム等の金属水酸化物、酸化アルミニウム、窒化ホウ素、及びチタン酸バリウム等が好ましく、シリカがより好ましい。前記シリカは、特に限定されず、例えば、破砕状シリカ、球状シリカ、及びシリカ粒子等が挙げられる。
前記無機充填材(D)は、樹脂組成物に含有される無機充填材として使用できる無機充填材であれば、特に限定されない。前記無機充填材(D)としては、例えば、シリカ、アルミナ、酸化チタン、酸化マグネシウム及びマイカ等の金属酸化物、水酸化マグネシウム及び水酸化アルミニウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、窒化アルミニウム、窒化ホウ素、チタン酸バリウム、無水炭酸マグネシウム等の炭酸マグネシウム、及び炭酸カルシウム等が挙げられる。この中でも、シリカ、水酸化マグネシウム及び水酸化アルミニウム等の金属水酸化物、酸化アルミニウム、窒化ホウ素、及びチタン酸バリウム等が好ましく、シリカがより好ましい。前記シリカは、特に限定されず、例えば、破砕状シリカ、球状シリカ、及びシリカ粒子等が挙げられる。
前記無機充填材(D)は、表面処理された無機充填材であってもよいし、表面処理されていない無機充填材であってもよい。また、前記表面処理としては、例えば、シランカップリング剤による処理等が挙げられる。
前記シランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリロイル基、アクリロイル基、フェニルアミノ基、イソシアヌレート基、ウレイド基、メルカプト基、イソシアネート基、エポキシ基、及び酸無水物基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、ビニル基、スチリル基、メタクリロイル基、アクリロイル基、フェニルアミノ基、イソシアヌレート基、ウレイド基、メルカプト基、イソシアネート基、エポキシ基、及び酸無水物基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。
前記シランカップリング剤としては、ビニル基を有するものとして、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。前記シランカップリング剤としては、スチリル基を有するものとして、例えば、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、メタクリロイル基を有するものとして、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。前記シランカップリング剤としては、アクリロイル基を有するものとして、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、フェニルアミノ基を有するものとして、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン及びN-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。
前記無機充填材(D)の平均粒子径は、特に限定されず、例えば、0.05~10μmであることが好ましく、0.1~8μmであることがより好ましい。なお、ここで平均粒子径とは、体積平均粒子径のことを指す。体積平均粒子径は、例えば、レーザ回折法等によって測定することができる。
(含有量)
前記ポリフェニレンエーテル化合物(A)の含有量は、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対して、1質量部以上50質量部未満である。前記ポリフェニレンエーテル化合物(A)が1質量部以上であることにより、デスミア性に優れる硬化物が得られる樹脂組成物を提供することができるといった利点がある。また、前記ポリフェニレンエーテル化合物(A)が50質量部未満であることにより、金属箔との密着性及びデスミア性に優れる硬化物が得られる樹脂組成物を提供することができるといった利点がある。
前記ポリフェニレンエーテル化合物(A)の含有量は、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対して、1質量部以上50質量部未満である。前記ポリフェニレンエーテル化合物(A)が1質量部以上であることにより、デスミア性に優れる硬化物が得られる樹脂組成物を提供することができるといった利点がある。また、前記ポリフェニレンエーテル化合物(A)が50質量部未満であることにより、金属箔との密着性及びデスミア性に優れる硬化物が得られる樹脂組成物を提供することができるといった利点がある。
前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量は3~45質量部であることが好ましい。
さらに、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が0.1~45質量部であることが好ましい。前記ポリフェニレンエーテル化合物(A)が0.1質量部以上であることにより、デスミア性に優れる硬化物が得られる樹脂組成物をより確実に得ることができる。また、前記ポリフェニレンエーテル化合物(A)が45質量部以下であることにより、金属箔との密着性及びデスミア性に優れる硬化物が得られる樹脂組成物をより確実に得ることができる。
前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量の下限値としては3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、前記ポリフェニレンエーテル化合物(A)の含有量の上限値としては40質量部以下であることが好ましく、30質量部以下であることがより好ましい。
また、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(B)の含有量が10~70質量部であることが好ましい。前記ポリフェニレンエーテル化合物(B)が10質量部以上であることにより、金属箔との密着性及び比誘電率に優れる硬化物が得られる樹脂組成物をより確実に得ることができる。前記ポリフェニレンエーテル化合物(B)が70質量部以下であることにより、デスミア性に優れる硬化物が得られる樹脂組成物をより確実に得ることができる。
前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(B)の含有量の下限値としては、15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。また、前記ポリフェニレンエーテル化合物(B)の含有量の上限値としては、65質量部以下であることがより好ましく、60質量部以下であることがさらに好ましい。
さらに、前記反応性化合物(C)の含有量は、特に限定されないが、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対して、10~80質量部であることが好ましい。前記反応性化合物(C)の含有量が10質量部以上であることにより、ガラス転移温度が高い硬化物が得られる樹脂組成物をより確実に得ることができる。前記反応性化合物(C)の含有量が80質量部以下であることにより、比誘電率に優れる硬化物が得られる樹脂組成物をより確実に得ることができる。
前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記反応性化合物(C)の含有量の下限値としては15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。また、前記反応性化合物(C)の含有量の上限値としては75質量部以下であることがより好ましく、70質量部以下であることがさらに好ましい。
前記反応性化合物(C)が、前記マレイミド化合物(C1)を含む場合には、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記マレイミド化合物(C1)の含有量は10~70質量部であることが好ましい。上記範囲とすることにより、比誘電率に優れ、ガラス転移温度の高い硬化物を得られる樹脂組成物をより確実に得ることができるという利点がある。
前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記マレイミド化合物(C1)の含有量の下限値としては15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。また、前記マレイミド化合物(C1)の含有量の上限値としては65質量部以下であることがより好ましく、60質量部以下であることがさらに好ましい。
前記反応性化合物(C)が、前記ベンゾオキサジン化合物(C2)を含む場合には、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ベンゾオキサジン化合物(C2)の含有量は1~70質量部以上であることが好ましい。上記範囲とすることにより、より高いガラス転移温度の硬化物を得られる樹脂組成物を得ることができるという利点がある。
前記ベンゾオキサジン化合物(C2)の含有量の下限値としては、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対して、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。
前記ベンゾオキサジン化合物(C2)の含有量の上限値としては、前記反応性化合物(C)が前記マレイミド化合物(C1)を含まず、前記ベンゾオキサジン化合物(C2)を含む場合、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ベンゾオキサジン化合物(C2)の含有量が60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましい。また、前記反応性化合物(C)が、前記マレイミド化合物(C1)と前記ベンゾオキサジン化合物(C2)とを両方含む場合、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ベンゾオキサジン化合物(C2)の含有量が50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましく、20質量部以下であることが最も好ましい。
さらに、前記反応性化合物(C)が、ビフェニルアラルキル構造を有するマレイミド化合物及びポリフェニルメタンマレイミドからなる群より選択される少なくとも1つを含むマレイミド化合物(C1-1)と前記マレイミド化合物(C1-1)以外のマレイミド化合物(C1-2)とを含有する場合には、前記マレイミド化合物(C1-1)の含有量が、前記マレイミド化合物(C1)の質量100質量部に対して(前記マレイミド化合物(C1-1)と前記マレイミド化合物(C1-2)との合計100質量部に対して)10~90質量部であることが好ましく、10~80質量部であることがより好ましく、25~60質量部であることがさらに好ましい。前記マレイミド化合物(C1-1)の含有量が、前記マレイミド化合物(C1)の合計100質量部に対して10~90質量部であることにより、比誘電率及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物をより確実に得ることができる。また、得られた樹脂組成物の硬化物において、含有される成分の均一性を高めるといった効果を奏することができると考えられる。
また、前記反応性化合物(C)が、前記マレイミド化合物(C1)及び前記ベンゾオキサジン化合物(C2)から選択される少なくとも1つに加えて、前記他の反応性化合物(C3)を含む場合には、前記他の反応性化合物(C3)の含有量は、前記反応性化合物(C)の質量100質量部に対して、1~40質量部であることが好ましく、1~20質量部であることがより好ましい。
前記無機充填材(D)の含有量は、特に限定されないが、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)の合計100質量部に対して、10~250質量部であることが好ましい。前記無機充填材(D)の含有量が10質量部以上であることにより、より優れた寸法安定性の硬化物が得られる樹脂組成物を得ることができるという利点がある。前記無機充填材の含有量が250質量部以下であることにより、より成型性に優れた硬化物が得られる樹脂組成物を得ることができるという利点がある。
前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)の合計100質量部に対する前記無機充填材(D)の含有量の下限値としては、40質量部以上であることがより好ましく、60質量部以上であることがさらに好ましい。また、前記無機充填材(D)の含有量の上限値としては、200質量部以下であることがより好ましく、180質量部以下であることがさらに好ましい。
(その他の成分)
本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)及び無機充填材(D)以外の成分(その他の成分)を含有してもよい。本実施形態に係る樹脂組成物に含有されるその他の成分としては、上述したような、無機充填材だけではなく、例えば、反応開始剤、硬化促進剤、触媒、重合遅延剤、重合禁止剤、分散剤、レベリング剤、シランカップリング剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、及び滑剤等の添加剤をさらに含んでもよい。
本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)及び無機充填材(D)以外の成分(その他の成分)を含有してもよい。本実施形態に係る樹脂組成物に含有されるその他の成分としては、上述したような、無機充填材だけではなく、例えば、反応開始剤、硬化促進剤、触媒、重合遅延剤、重合禁止剤、分散剤、レベリング剤、シランカップリング剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、及び滑剤等の添加剤をさらに含んでもよい。
本実施形態に係る樹脂組成物には、上述したように、反応開始剤を含有してもよい。前記樹脂組成物は、反応開始剤を含有しないものであっても、硬化反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。前記反応開始剤は、前記樹脂組成物の硬化反応を促進することができるものであれば、特に限定されず、例えば、過酸化物及び有機アゾ化合物等が挙げられる。前記過酸化物としては、例えば、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、及び過酸化ベンゾイル等が挙げられる。また、前記有機アゾ化合物としては、例えば、アゾビスイソブチロニトリル等が挙げられる。また、必要に応じて、カルボン酸金属塩等を併用することができる。そうすることによって、硬化反応を一層促進させることができる。これらの中でも、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンが好ましく用いられる。α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、樹脂組成物の保存性の低下を抑制することができる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、プリプレグ乾燥時や保存時に揮発せず、安定性が良好である。また、反応開始剤は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
本実施形態に係る樹脂組成物には、上述したように、硬化促進剤を含有してもよい。前記硬化促進剤としては、前記樹脂組成物の硬化反応を促進することができるものであれば、特に限定されない。前記硬化促進剤としては、具体的には、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類及び第三級アミン類等のアミン類、第四級アンモニウム塩、有機ボロン系化合物、及び金属石鹸等が挙げられる。前記イミダゾール類としては、例えば、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニルイミダゾール、及び1-ベンジル-2-メチルイミダゾール等が挙げられる。また、前記有機リン系化合物としては、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン、トリブチルホスフィン、及びトリメチルホスフィン等が挙げられる。また、前記アミン類としては、例えば、ジメチルベンジルアミン、トリエチレンジアミン、トリエタノールアミン、及び1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7(DBU)等が挙げられる。また、前記第四級アンモニウム塩としては、テトラブチルアンモニウムブロミド等が挙げられる。また、前記有機ボロン系化合物としては、例えば、2-エチル-4-メチルイミダゾール・テトラフェニルボレート等のテトラフェニルボロン塩、及びテトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられる。また、前記金属石鹸は、脂肪酸金属塩を指し、直鎖状の脂肪酸金属塩であっても、環状の脂肪酸金属塩であってもよい。前記金属石鹸としては、具体的には、炭素数が6~10の、直鎖状の脂肪族金属塩及び環状の脂肪族金属塩等が挙げられる。より具体的には、例えば、ステアリン酸、ラウリン酸、リシノール酸、及びオクチル酸等の直鎖状の脂肪酸や、ナフテン酸等の環状の脂肪酸と、リチウム、マグネシウム、カルシウム、バリウム、銅及び亜鉛等の金属とからなる脂肪族金属塩等が挙げられる。例えば、オクチル酸亜鉛等が挙げられる。前記硬化促進剤は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
本実施形態に係る樹脂組成物には、上述したように、シランカップリング剤を含有してもよい。シランカップリング剤は、前記シランカップリング剤は、前記樹脂組成物にそのまま含有されていてもよいし、前記無機充填材を予め表面処理する際に用いるシランカップリング剤として含有されていてもよい。この中でも、前記シランカップリング剤としては、無機充填材を予め表面処理する際に用いるシランカップリング剤として含有されることが好ましい。また、無機充填材を予め表面処理する際に用いるシランカップリング剤として含有され、さらに、樹脂組成物にシランカップリング剤がそのまま含有されることがより好ましい。また、プリプレグの場合、そのプリプレグには、繊維質基材を予め表面処理する際に用いるシランカップリング剤として含有されていてもよい。前記シランカップリング剤としては、例えば、上述した、前記無機充填材を表面処理する際に用いるシランカップリング剤と同様のものが挙げられる。
本実施形態に係る樹脂組成物には、上述したように、難燃剤を含有してもよい。難燃剤を含有することによって、樹脂組成物の硬化物の難燃性を高めることができる。前記難燃剤は、特に限定されない。具体的には、臭素系難燃剤等のハロゲン系難燃剤を使用する分野では、例えば、融点が300℃以上のエチレンジペンタブロモベンゼン、エチレンビステトラブロモイミド、デカブロモジフェニルオキサイド、テトラデカブロモジフェノキシベンゼン、及び前記重合性化合物と反応するブロモスチレン系化合物が好ましい。ハロゲン系難燃剤を使用することにより、高温時におけるハロゲンの脱離が抑制でき、耐熱性の低下を抑制できると考えられる。また、ハロゲンフリーが要求される分野では、リンを含有する難燃剤(リン系難燃剤)が用いられることもある。前記リン系難燃剤としては、特に限定されないが、例えば、リン酸エステル系難燃剤、ホスファゼン系難燃剤、ビスジフェニルホスフィンオキサイド系難燃剤、及びホスフィン酸塩系難燃剤が挙げられる。リン酸エステル系難燃剤の具体例としては、ジキシレニルホスフェートの縮合リン酸エステルが挙げられる。ホスファゼン系難燃剤の具体例としては、フェノキシホスファゼンが挙げられる。ビスジフェニルホスフィンオキサイド系難燃剤の具体例としては、キシリレンビスジフェニルホスフィンオキサイドが挙げられる。ホスフィン酸塩系難燃剤の具体例としては、例えば、ジアルキルホスフィン酸アルミニウム塩のホスフィン酸金属塩が挙げられる。前記難燃剤としては、例示した各難燃剤を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(用途)
前記樹脂組成物は、後述するように、プリプレグを製造する際に用いられる。また、前記樹脂組成物は、樹脂付き金属箔及び樹脂付きフィルムに備えられる樹脂層、及び金属張積層板及び配線板に備えられる絶縁層を形成する際に用いられる。また、前記樹脂組成物は、上述したように、比誘電率が低い等の低誘電特性に優れた硬化物が得られる。このため、前記樹脂組成物は、アンテナ用の配線板やミリ波レーダ向けアンテナ基板等の高周波対応の配線板に備えられる絶縁層を形成するために好適に用いられる。すなわち、前記樹脂組成物は、高周波対応の配線板製造用として好適である。
前記樹脂組成物は、後述するように、プリプレグを製造する際に用いられる。また、前記樹脂組成物は、樹脂付き金属箔及び樹脂付きフィルムに備えられる樹脂層、及び金属張積層板及び配線板に備えられる絶縁層を形成する際に用いられる。また、前記樹脂組成物は、上述したように、比誘電率が低い等の低誘電特性に優れた硬化物が得られる。このため、前記樹脂組成物は、アンテナ用の配線板やミリ波レーダ向けアンテナ基板等の高周波対応の配線板に備えられる絶縁層を形成するために好適に用いられる。すなわち、前記樹脂組成物は、高周波対応の配線板製造用として好適である。
(製造方法)
前記樹脂組成物を製造する方法としては、特に限定されず、例えば、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)、及び前記無機充填材(D)を、所定の含有量となるように混合する方法等が挙げられる。また、有機溶媒を含むワニス状の組成物を得る場合は、後述する方法等が挙げられる。
前記樹脂組成物を製造する方法としては、特に限定されず、例えば、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)、及び前記無機充填材(D)を、所定の含有量となるように混合する方法等が挙げられる。また、有機溶媒を含むワニス状の組成物を得る場合は、後述する方法等が挙げられる。
次に、本実施形態に係る樹脂組成物を用いたプリプレグ、金属張積層板、配線板、樹脂付き金属箔、及び樹脂付きフィルムについて図面を参照しながら説明する。なお、それぞれの図面において各符号は、1:プリプレグ、2:樹脂組成物又は樹脂組成物の半硬化物、3:繊維質基材、11:金属張積層板、12:絶縁層、13:金属箔、14:配線、21:配線板、31:樹脂付き金属板、32・42:樹脂層、41:樹脂付きフィルム、43:支持フィルムを示す。
[プリプレグ]
図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。
図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。
本実施形態に係るプリプレグ1は、図1に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1は、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、前記樹脂組成物又は前記樹脂組成物の半硬化物2の中に存在する繊維質基材3とを備える。
なお、本実施形態において、半硬化物とは、樹脂組成物をさらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。
本実施形態に係る樹脂組成物を用いて得られるプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。
前記プリプレグを製造する際には、プリプレグを形成するための基材である繊維質基材3に含浸するために、前記樹脂組成物2は、ワニス状に調製されて用いられることが多い。すなわち、前記樹脂組成物2は、通常、ワニス状に調製された樹脂ワニスであることが多い。このようなワニス状の樹脂組成物(樹脂ワニス)は、例えば、以下のようにして調製される。
まず、有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる、有機溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の樹脂組成物が調製される。ここで用いられる有機溶媒としては、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び、前記反応性化合物(C)等を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエンやメチルエチルケトン(MEK)等が挙げられる。
前記繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。前記偏平処理加工としては、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮する方法が挙げられる。なお、一般的に使用される繊維質基材の厚さは、例えば、0.01mm以上0.3mm以下である。また、前記ガラスクロスを構成するガラス繊維としては、特に限定されないが、例えば、Qガラス、NEガラス、Eガラス、Sガラス、Tガラス、Lガラス、及びL2ガラス等が挙げられる。また、前記繊維質基材の表面は、シランカップリング剤で表面処理されていてもよい。このシランカップリング剤としては、特に限定されないが、例えば、ビニル基、アクリロイル基、メタクリロイル基、スチリル基、アミノ基、及びエポキシ基からなる群から選ばれる少なくとも1種を分子内に有するシランカップリング剤等が挙げられる。
前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、前記プリプレグを製造する際には、上述した本実施形態に係る樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。
プリプレグ1を製造する方法としては、具体的には、前記樹脂組成物2、例えば、ワニス状に調製された樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。前記樹脂組成物2は、前記繊維質基材3へ、浸漬及び塗布等によって含浸される。必要に応じて複数回繰り返して含浸することも可能である。また、この際、組成や濃度の異なる複数の樹脂組成物を用いて含浸を繰り返すことにより、最終的に希望とする組成及び含浸量に調整することも可能である。
前記樹脂組成物(樹脂ワニス)2が含浸された繊維質基材3は、所望の加熱条件、例えば、40℃以上180℃以下で1分間以上10分間以下加熱される。加熱によって、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
本実施形態に係る樹脂組成物は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物である。このため、この樹脂組成物又はこの樹脂組成物の半硬化物を備えるプリプレグは、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られるプリプレグである。そして、このプリプレグは、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える配線板を好適に製造することができる。
[金属張積層板]
図2は、本発明の実施形態に係る金属張積層板11の一例を示す概略断面図である。
図2は、本発明の実施形態に係る金属張積層板11の一例を示す概略断面図である。
本実施形態に係る金属張積層板11は、図2に示すように、前記樹脂組成物の硬化物を含む絶縁層12と、前記絶縁層12の上に設けられた金属箔13とを有する。前記金属張積層板11としては、例えば、図1に示したプリプレグ1の硬化物を含む絶縁層12と、前記絶縁層12の上下の両面又は片面に積層される金属箔13とから構成される金属張積層板等が挙げられる。また、前記絶縁層12は、前記樹脂組成物の硬化物からなるものであってもよいし、前記プリプレグの硬化物からなるものであってもよい。また、前記金属箔13の厚みは、最終的に得られる配線板に求められる性能等に応じて異なり、特に限定されない。前記金属箔13の厚みは、所望の目的に応じて、適宜設定することができ、例えば、0.2~70μmであることが好ましい。また、前記金属箔13としては、例えば、銅箔及びアルミニウム箔等が挙げられ、前記金属箔が薄い場合は、ハンドリング性を向上のために剥離層及びキャリアを備えたキャリア付銅箔であってもよい。
前記金属張積層板11を製造する方法としては、前記金属張積層板11を製造することができれば、特に限定されない。具体的には、前記プリプレグ1を用いて金属張積層板11を作製する方法が挙げられる。この方法としては、前記プリプレグ1を1枚又は複数枚重ね、さらに、その上下の両面又は片面に銅箔等の金属箔13を重ね、前記金属箔13及び前記プリプレグ1を加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層板11を作製する方法等が挙げられる。すなわち、前記金属張積層板11は、前記プリプレグ1に前記金属箔13を積層して、加熱加圧成形して得られる。また、前記加熱加圧の条件は、前記金属張積層板11の厚みや前記プリプレグ1に含まれる樹脂組成物の種類等により適宜設定することができる。例えば、温度を170~230℃、圧力を2~4MPa、時間を60~150分間とすることができる。また、前記金属張積層板は、プリプレグを用いずに製造してもよい。例えば、ワニス状の樹脂組成物を金属箔上に塗布し、金属箔上に樹脂組成物を含む層を形成した後に、加熱加圧する方法等が挙げられる。
本実施形態に係る樹脂組成物は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物である。このため、この樹脂組成物の硬化物を含む絶縁層を備える金属張積層板は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える金属張積層板である。
また、本実施形態に係るプリプレグは、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られるプリプレグである。このため、このプリプレグの硬化物を含む絶縁層を備える金属張積層板は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える金属張積層板である。
そして、上記金属張積層板は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える配線板を好適に製造することができる。
[配線板]
図3は、本発明の実施形態に係る配線板21の一例を示す概略断面図である。
図3は、本発明の実施形態に係る配線板21の一例を示す概略断面図である。
本実施形態に係る配線板21は、図3に示すように、前記樹脂組成物の硬化物を含む絶縁層12と、前記絶縁層12の上下の両面又は片面に設けられた配線14とを有する。前記配線板21としては、例えば、図1に示したプリプレグ1を硬化して用いられる絶縁層12と、前記絶縁層12の上下の両面又は片面に積層され、前記金属箔13を部分的に除去して形成された配線14とから構成される配線板等が挙げられる。また、前記絶縁層12は、前記樹脂組成物の硬化物からなるものであってもよいし、前記プリプレグの硬化物からなるものであってもよい。
前記配線板21を製造する方法は、前記配線板21を製造することができれば、特に限定されない。具体的には、前記プリプレグ1を用いて配線板21を作製する方法等が挙げられる。この方法としては、例えば、上記のように作製された金属張積層板11の表面の前記金属箔13をエッチング加工等して配線形成をすることによって、前記絶縁層12の表面に回路として配線が設けられた配線板21を作製する方法等が挙げられる。すなわち、前記配線板21は、前記金属張積層板11の表面の前記金属箔13を部分的に除去することにより回路形成して得られる。また、回路形成する方法としては、上記の方法以外に、例えば、セミアディティブ法(SAP:Semi Additive Process)やモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)による回路形成等が挙げられる。
前記配線板21は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層12を備える配線板である。
[樹脂付き金属箔]
図4は、本発明の実施形態に係る樹脂付き金属箔31の一例を示す概略断面図である。
図4は、本発明の実施形態に係る樹脂付き金属箔31の一例を示す概略断面図である。
本実施形態に係る樹脂付き金属箔31は、図4に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層32と、金属箔13とを備える。この樹脂付き金属箔31は、前記樹脂層32の表面上に金属箔13を有する。すなわち、この樹脂付き金属箔31は、前記樹脂層32と、前記樹脂層32とともに積層される金属箔13とを備える。また、前記樹脂付き金属箔31は、前記樹脂層32と前記金属箔13との間に、他の層を備えていてもよい。
前記樹脂層32としては、上記のような、前記樹脂組成物の半硬化物を含むものであってもよいし、また、硬化させていない前記樹脂組成物を含むものであってもよい。すなわち、前記樹脂付き金属箔31は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付き金属箔であってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付き金属箔であってもよい。また、前記樹脂層としては、前記樹脂組成物又は前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。また、前記繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。
前記金属箔としては、金属張積層板や樹脂付き金属箔に用いられる金属箔を限定なく用いることができる。前記金属箔としては、例えば、銅箔及びアルミニウム箔等が挙げられる。
前記樹脂付き金属箔31は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより、異物の混入等を防ぐことができる。前記カバーフィルムとしては、特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、ポリメチルペンテンフィルム、及びこれらのフィルムに離型剤層を設けて形成されたフィルム等が挙げられる。
前記樹脂付き金属箔31を製造する方法は、前記樹脂付き金属箔31を製造することができれば、特に限定されない。前記樹脂付き金属箔31の製造方法としては、上記ワニス状の樹脂組成物(樹脂ワニス)を金属箔13上に塗布し、加熱することにより製造する方法等が挙げられる。ワニス状の樹脂組成物は、例えば、バーコーターを用いることにより、金属箔13上に塗布される。塗布された樹脂組成物は、例えば、40℃以上180℃以下、0.1分以上10分以下の条件で加熱される。加熱された樹脂組成物は、未硬化の樹脂層32として、前記金属箔13上に形成される。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
本実施形態に係る樹脂組成物は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物である。このため、この樹脂組成物又はこの樹脂組成物の半硬化物を含む樹脂層を備える樹脂付き金属箔は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂層を備える樹脂付き金属箔である。そして、この樹脂付き金属箔は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える配線板を製造する際に用いることができる。例えば、配線板の上に積層することによって、多層の配線板を製造することができる。このような樹脂付き金属箔を用いて得られた配線板としては、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える配線板が得られる。
[樹脂付きフィルム]
図5は、本発明の実施形態に係る樹脂付きフィルム41の一例を示す概略断面図である。
図5は、本発明の実施形態に係る樹脂付きフィルム41の一例を示す概略断面図である。
本実施形態に係る樹脂付きフィルム41は、図5に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層42と、支持フィルム43とを備える。この樹脂付きフィルム41は、前記樹脂層42と、前記樹脂層42とともに積層される支持フィルム43とを備える。また、前記樹脂付きフィルム41は、前記樹脂層42と前記支持フィルム43との間に、他の層を備えていてもよい。
前記樹脂層42としては、上記のような、前記樹脂組成物の半硬化物を含むものであってもよいし、また、硬化させていない前記樹脂組成物を含むものであってもよい。すなわち、前記樹脂付きフィルム41は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、支持フィルムとを備える樹脂付きフィルムであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、支持フィルムとを備える樹脂付きフィルムであってもよい。また、前記樹脂層としては、前記樹脂組成物又は前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。また、繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。
前記支持フィルム43としては、樹脂付きフィルムに用いられる支持フィルムを限定なく用いることができる。前記支持フィルムとしては、例えば、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、ポリアミドフィルム、ポリカーボネートフィルム、及びポリアリレートフィルム等の電気絶縁性フィルム等が挙げられる。
前記樹脂付きフィルム41は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより、異物の混入等を防ぐことができる。前記カバーフィルムとしては、特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、及びポリメチルペンテンフィルム等が挙げられる。
前記支持フィルム及び前記カバーフィルムとしては、必要に応じて、マット処理、コロナ処理、離型処理、及び粗化処理等の表面処理が施されたものであってもよい。
前記樹脂付きフィルム41を製造する方法は、前記樹脂付きフィルム41を製造することができれば、特に限定されない。前記樹脂付きフィルム41の製造方法は、例えば、上記ワニス状の樹脂組成物(樹脂ワニス)を支持フィルム43上に塗布し、加熱することにより製造する方法等が挙げられる。ワニス状の樹脂組成物は、例えば、バーコーターを用いることにより、支持フィルム43上に塗布される。塗布された樹脂組成物は、例えば、40℃以上180℃以下、0.1分以上10分以下の条件で加熱される。加熱された樹脂組成物は、未硬化の樹脂層42として、前記支持フィルム43上に形成される。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。
本実施形態に係る樹脂組成物は、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物である。このため、この樹脂組成物又はこの樹脂組成物の半硬化物を含む樹脂層を備える樹脂付きフィルムは、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂層を備える樹脂付きフィルムである。そして、この樹脂付きフィルムは、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える配線板を好適に製造する際に用いることができる。例えば、配線板の上に積層した後に、支持フィルムを剥離すること、又は、支持フィルムを剥離した後に、配線板の上に積層することによって、多層の配線板を製造することができる。このような樹脂付きフィルムを用いて得られた配線板としては、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物を含む絶縁層を備える配線板が得られる。
以上より、本発明によれば、低誘電特性、デスミア性及び金属箔との密着性に優れ、ガラス転移温度の高い硬化物が得られる樹脂組成物を提供することができる。また、本発明によれば、前記樹脂組成物を用いて得られる、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板を提供することができる。
本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
第1の態様における樹脂組成物は、水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、無機充填材(D)とを含み、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である。
第2の態様における樹脂組成物は、第1の態様における樹脂組成物において、前記反応性化合物(C)は、ビフェニルアラルキル構造を有するマレイミド化合物、フェニルマレイミド基を有するマレイミド化合物、炭素数6以上のアルキル基を有するマレイミド化合物、炭素数6以上のアルキレン基を有するマレイミド化合物、並びに、炭素数6以上のアルキル基及び炭素数6以上のアルキレン基を有するマレイミド化合物からなる群より選択される少なくとも1つを含む。
第3の態様における樹脂組成物は、第1または第2の態様における樹脂組成物において、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が0.1~45質量部である。
第4の態様における樹脂組成物は、第1から第3のいずれか1つの態様における樹脂組成物において、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(B)の含有量が10~70質量部である。
第5の態様における樹脂組成物は、第1から第4のいずれか1つの態様における樹脂組成物において、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記反応性化合物(C)の含有量が10~80質量部である。
第6の態様における樹脂組成物は、第1から第5のいずれか1つの態様における樹脂組成物において、前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)の合計100質量部に対する、前記無機充填材(D)が10~250質量部である。
第7の態様における樹脂組成物は、第1から第6のいずれか1つの態様における樹脂組成物において、前記反応性化合物(C)がマレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)を含む。
第8の態様における樹脂組成物は、第1から第7のいずれか1つの態様における樹脂組成物において、前記ベンゾオキサジン化合物(C2)がアルケニル基を有するベンゾオキサジン化合物(C2-1)を含む請求項1に記載の樹脂組成物。
第9の態様におけるプリプレグは、第1から第8のいずれか1つの態様における樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備える。
第10の態様における樹脂付きフィルムは、第1から第8のいずれか1つの態様における樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを備える。
第11の態様における樹脂付き金属箔は、第1から第8のいずれか1つの態様における樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを備える。
第12の態様における金属張積層板は、第1から第8のいずれか1つの態様における樹脂組成物の硬化物を含む絶縁層と、金属箔とを備える。
第13の態様における金属張積層板は、第9の態様におけるプリプレグの硬化物を含む絶縁層と、金属箔とを備える。
第14の態様における配線板は、第1から第8のいずれか1つの態様における樹脂組成物の硬化物を含む絶縁層と、配線とを備える。
第15の態様における配線板は、第9の態様におけるプリプレグの硬化物を含む絶縁層と、配線とを備える。
以下に、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
[実施例1~12、及び比較例1~6]
まず、本実施例においてプリプレグを調製する際に用いる各成分について説明する。
まず、本実施例においてプリプレグを調製する際に用いる各成分について説明する。
(ポリフェニレンエーテル化合物(A))
PPE:水酸基を分子内に有するポリフェニレンエーテル化合物(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、数平均分子量Mn1700、フェノール当量(水酸基当量)850g/eq)
(ポリフェニレンエーテル化合物(B))
変性PPE:ビニルベンジル基(エテニルベンジル基)を分子末端に有するポリフェニレンエーテル化合物(スチレン変性ポリフェニレンエーテル)(三菱ガス化学株式会社製のOPE-1200、数平均分子量Mn1200、ビニルベンジル基の官能基当量670g/eq)
(反応性化合物(C))
マレイミド化合物1:ビフェニルアラルキル型ビスマレイミド化合物(日本化薬株式会社製のMIR-3000-70MT、ビスマレイミド化合物、マレイミド基の官能基当量275g/eq)
マレイミド化合物2:3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド(日本化薬株式会社製のBMI-5100、ビスマレイミド化合物、マレイミド基の官能基当量221g/eq)
マレイミド化合物3:炭素数6以上のアルキル基及び炭素数6以上のアルキレン基を有するマレイミド化合物(Designer Molercules Inc.製のBMI-689)
ベンゾオキサジン化合物1:3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン)(四国化成工業株式会社製のP-d型ベンゾオキサジン化合物、ベンゾオキサジン基の官能基当量217g/eq)
ベンゾオキサジン化合物2:アルケニル基であるアリル基を分子内に有するベンゾオキサジン化合物(前記式(14)で表され、Xがメチレン基であり、R45及びR46がアリル基であり、q及びrが1であるベンゾオキサジン化合物(四国化成工業株式会社製のALP-d型ベンゾオキサジン化合物、ベンゾオキサジン基の官能基当量244g/eq))
(無機充填材(D))
SC2300-SVJ:ビニルシランにより表面処理された球状シリカ(株式会社アドマテックス製のSC2300-SVJ)
(硬化促進剤)
2E4MZ:イミダゾール系硬化促進剤(2-エチル-4-メチルイミダゾール、四国化成工業株式会社製の2E4MZ)
PPE:水酸基を分子内に有するポリフェニレンエーテル化合物(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、数平均分子量Mn1700、フェノール当量(水酸基当量)850g/eq)
(ポリフェニレンエーテル化合物(B))
変性PPE:ビニルベンジル基(エテニルベンジル基)を分子末端に有するポリフェニレンエーテル化合物(スチレン変性ポリフェニレンエーテル)(三菱ガス化学株式会社製のOPE-1200、数平均分子量Mn1200、ビニルベンジル基の官能基当量670g/eq)
(反応性化合物(C))
マレイミド化合物1:ビフェニルアラルキル型ビスマレイミド化合物(日本化薬株式会社製のMIR-3000-70MT、ビスマレイミド化合物、マレイミド基の官能基当量275g/eq)
マレイミド化合物2:3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド(日本化薬株式会社製のBMI-5100、ビスマレイミド化合物、マレイミド基の官能基当量221g/eq)
マレイミド化合物3:炭素数6以上のアルキル基及び炭素数6以上のアルキレン基を有するマレイミド化合物(Designer Molercules Inc.製のBMI-689)
ベンゾオキサジン化合物1:3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン)(四国化成工業株式会社製のP-d型ベンゾオキサジン化合物、ベンゾオキサジン基の官能基当量217g/eq)
ベンゾオキサジン化合物2:アルケニル基であるアリル基を分子内に有するベンゾオキサジン化合物(前記式(14)で表され、Xがメチレン基であり、R45及びR46がアリル基であり、q及びrが1であるベンゾオキサジン化合物(四国化成工業株式会社製のALP-d型ベンゾオキサジン化合物、ベンゾオキサジン基の官能基当量244g/eq))
(無機充填材(D))
SC2300-SVJ:ビニルシランにより表面処理された球状シリカ(株式会社アドマテックス製のSC2300-SVJ)
(硬化促進剤)
2E4MZ:イミダゾール系硬化促進剤(2-エチル-4-メチルイミダゾール、四国化成工業株式会社製の2E4MZ)
(調製方法)
無機充填材以外の成分を、表1に記載の組成(質量部)で、固形分濃度が60質量%となるように、メチルエチルケトン(MEK)に添加し、ディスパーで攪拌及び混合して、均一化させた。この均一化された混合物に無機充填材を、表1に記載の組成(質量部)で添加し、ディスパーで2時間攪拌及び混合して、均一化させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
無機充填材以外の成分を、表1に記載の組成(質量部)で、固形分濃度が60質量%となるように、メチルエチルケトン(MEK)に添加し、ディスパーで攪拌及び混合して、均一化させた。この均一化された混合物に無機充填材を、表1に記載の組成(質量部)で添加し、ディスパーで2時間攪拌及び混合して、均一化させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
次に、以下のようにして、プリプレグ、及び評価基板1(金属張積層板)を得た。
得られたワニスを繊維質基材(ガラスクロス:日東紡績株式会社製の「2116タイプクロス」)に含浸させた後、非接触タイプの加熱ユニットで150℃で加熱乾燥した。そうすることによって、前記ワニス中の溶媒が除去されたり、前記樹脂組成物が半硬化されることにより、プリプレグ(340mm×510mm)が得られた。その際、硬化反応により樹脂組成物を構成する成分の、プリプレグに対する含有量(レジンコンテント)が47質量%となるように調整した。
次に、以下のようにして、評価基板1(金属張積層板)を得た。
得られた各プリプレグを6枚重ね合わせ、その両側に、銅箔(三井金属鉱業株式会社製、厚み35μm、ST箔、片面が粗化面)を、その粗化面がプリプレグ側となるように配置した。これを被圧体とし、200℃、90分間、圧力2.94MPaの条件で加熱加圧することにより、両面に銅箔が接着された、厚み約0.6mmの銅張積層板(評価基板1:金属張積層板)を得た。
用いるプリプレグの枚数を8枚に変えたこと以外、上記評価基板1と同様の方法により、両面に銅箔が接着された、厚み約0.8mmの銅張積層板(評価基板2:金属張積層板)を得た。
用いるプリプレグの枚数を1枚に変えたこと以外、上記評価基板1と同様の方法により、両面に銅箔が接着された、厚み約0.1mmの銅張積層板(評価基板3:金属張積層板)を得た。
上記のように調製された評価基板1~3(銅張積層板)について、以下に示す方法により評価を行った。
[デスミア性]
まず、前記評価基板1(銅張積層板)の表面の銅箔をエッチングにより除去した。デスミア工程として、銅箔を除去した基板を、膨潤液(アトテックジャパン株式会社製のスウェリングディップセキュリガントP)に60℃で5分間浸漬させ、次いで、過マンガン酸カリウム水溶液(アトテックジャパン株式会社製のコンセントレートコンパクトCP)に80℃で10分間浸漬させた後、中和処理を行った。このようなデスミア工程の前後で、それぞれ基板の重量を測定し、デスミア工程による重量減少量(デスミア工程前の基板の重量-デスミア工程後の基板の重量)を算出し、さらに、その重量減少量から、1mm2当りの重量減少量(mg/mm2)を算出した。この1mm2当りの重量減少量から、以下のように評価した。
まず、前記評価基板1(銅張積層板)の表面の銅箔をエッチングにより除去した。デスミア工程として、銅箔を除去した基板を、膨潤液(アトテックジャパン株式会社製のスウェリングディップセキュリガントP)に60℃で5分間浸漬させ、次いで、過マンガン酸カリウム水溶液(アトテックジャパン株式会社製のコンセントレートコンパクトCP)に80℃で10分間浸漬させた後、中和処理を行った。このようなデスミア工程の前後で、それぞれ基板の重量を測定し、デスミア工程による重量減少量(デスミア工程前の基板の重量-デスミア工程後の基板の重量)を算出し、さらに、その重量減少量から、1mm2当りの重量減少量(mg/mm2)を算出した。この1mm2当りの重量減少量から、以下のように評価した。
1mm2当りの重量減少量が、15mg/mm2未満であれば、「A(×)」と評価し、15mg/mm2以上30mg/mm2未満であれば、「B(〇)」と評価し、30mg/mm2以上45mg/mm2未満であれば、「C(◎)」と評価し、45mg/mm2以上であれば、「D(×)」と評価した。
なお、前記「A(×)」は、デスミアが取れにくいという点から、また、前記「D(×)」は、樹脂が過剰に取れてしまうため、ビア等の形状が維持できないという点から好ましくない。これに対して、「B(〇)」及び「C(◎)」が、ビア等の形状を維持しつつ、デスミアを除去できるという点から好ましく、この点から「C(◎)」が、より好ましい。
[比誘電率(Dk)]
前記評価基板2(銅張積層板)から銅箔をエッチングにより除去したアンクラッド板を試験片とし、1GHzにおける比誘電率(Dk)を、空洞共振器摂動法で測定した。具体的には、Hewlett-Packard社製の「インピーダンス/マテリアルアナライザー4291A」を用い、IPC-TM-650 2.5.5.9に準じて、1GHzにおける前記アンクラッド板(評価基板2に備えられる絶縁層)の比誘電率(Dk)を測定した。なお、比誘電率が3.4以下であると良好である。
前記評価基板2(銅張積層板)から銅箔をエッチングにより除去したアンクラッド板を試験片とし、1GHzにおける比誘電率(Dk)を、空洞共振器摂動法で測定した。具体的には、Hewlett-Packard社製の「インピーダンス/マテリアルアナライザー4291A」を用い、IPC-TM-650 2.5.5.9に準じて、1GHzにおける前記アンクラッド板(評価基板2に備えられる絶縁層)の比誘電率(Dk)を測定した。なお、比誘電率が3.4以下であると良好である。
[ガラス転移温度(Tg)]
前記評価基板2(銅張積層板)から銅箔をエッチングにより除去したアンクラッド板を試験片とし、セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS6100」を用いて、前記アンクラッド板(評価基板2に備えられる絶縁層)のガラス転移温度(Tg)を測定した。このとき、曲げモジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から280℃まで昇温した際のtanδが極大を示す温度をガラス転移温度Tg(℃)とした。なお、ガラス転移温度が240℃以上であると良好である。
前記評価基板2(銅張積層板)から銅箔をエッチングにより除去したアンクラッド板を試験片とし、セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS6100」を用いて、前記アンクラッド板(評価基板2に備えられる絶縁層)のガラス転移温度(Tg)を測定した。このとき、曲げモジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から280℃まで昇温した際のtanδが極大を示す温度をガラス転移温度Tg(℃)とした。なお、ガラス転移温度が240℃以上であると良好である。
[ピール強度]
前記評価基板3から銅箔を引き剥がし、そのときのピール強度をJIS C6481に準拠して測定した。具体的には、前記評価基板3から銅箔を、引っ張り試験機により50mm/分の速度で引き剥がし、そのときのピール強度(N/mm)を測定した。
前記評価基板3から銅箔を引き剥がし、そのときのピール強度をJIS C6481に準拠して測定した。具体的には、前記評価基板3から銅箔を、引っ張り試験機により50mm/分の速度で引き剥がし、そのときのピール強度(N/mm)を測定した。
上記評価における結果は表1に示す。
表1から、水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、無機充填材(D)とを含み、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である樹脂組成物の場合(実施例1~12)は、低誘電特性、デスミア性及びピール強度に優れ、ガラス転移温度の高い硬化物が得られることがわかった。
これに対して、前記ポリフェニレンエーテル化合物(A)を含まない場合(比較例1)は、デスミア性に劣ることがわかった。また、前記ポリフェニレンエーテル化合物(B)を含まない場合(比較例2)は、ピール強度が低く、デスミア性に劣ることがわかった。さらに、前記反応性化合物(C)を含まない場合(比較例3)は、ガラス転移温度が低くなることがわかった。
前記ポリフェニレンエーテル化合物(A)及び前記ポリフェニレンエーテル化合物(B)を含んでいても、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が50質量部以上である場合(比較例4~6)は、デスミア性に劣ることがわかった。
上述した比較例1、2及び比較例4~6と、実施例1~12(特に実施例1~3、及び実施例5)との比較から、前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満であることが必要であることがわかった。
また、実施例3と実施例4との比較から、前記ベンゾオキサジン(C2)として、アルケニル基を有するベンゾオキサジン化合物(C2-1)を含む場合(実施例4)は、ピール強度により優れ、ガラス転移温度のより高い硬化物が得られることがわかった。
また、実施例8~10、12を比較すると、反応性化合物(C)が、マレイミド化合物(C1)として、前記マレイミド化合物(C1-1)と、前記マレイミド化合物(C1-1)以外のマレイミド化合物(C1-2)とを含む場合(実施例8、12)は、比誘電率、ピール強度、及びガラス転移温度についてバランスよく優れた硬化物が得られることがわかった。
この出願は、2022年7月20日に出願された日本国特許出願特願2022-115729号を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明は、電子材料やそれを用いた各種デバイスに関する技術分野において、広範な産業上の利用可能性を有する。
Claims (15)
- 水酸基を分子内に有するポリフェニレンエーテル化合物(A)と、
不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(B)と、
マレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)から選択される少なくとも1つを含む反応性化合物(C)と、
無機充填材(D)とを含み、
前記ポリフェニレンエーテル化合物(A)と前記ポリフェニレンエーテル化合物(B)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が1質量部以上50質量部未満である、樹脂組成物。 - 前記反応性化合物(C)は、ビフェニルアラルキル構造を有するマレイミド化合物、フェニルマレイミド基を有するマレイミド化合物、炭素数6以上のアルキル基を有するマレイミド化合物、炭素数6以上のアルキレン基を有するマレイミド化合物、並びに、炭素数6以上のアルキル基及び炭素数6以上のアルキレン基を有するマレイミド化合物からなる群より選択される少なくとも1つを含む、請求項1に記載の樹脂組成物。
- 前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(A)の含有量が0.1~45質量部である、請求項1に記載の樹脂組成物。
- 前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記ポリフェニレンエーテル化合物(B)の含有量が10~70質量部である、請求項1に記載の樹脂組成物。
- 前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、及び前記反応性化合物(C)の合計100質量部に対する、前記反応性化合物(C)の含有量が10~80質量部である、請求項1に記載の樹脂組成物。
- 前記ポリフェニレンエーテル化合物(A)、前記ポリフェニレンエーテル化合物(B)、前記反応性化合物(C)の合計100質量部に対する、前記無機充填材(D)が10~250質量部である、請求項1に記載の樹脂組成物。
- 前記反応性化合物(C)はマレイミド化合物(C1)、及びベンゾオキサジン化合物(C2)を含む、請求項1に記載の樹脂組成物。
- 前記ベンゾオキサジン化合物(C2)はアルケニル基を有するベンゾオキサジン化合物(C2-1)を含む、請求項1に記載の樹脂組成物。
- 請求項1~8のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備える、プリプレグ。
- 請求項1~8のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを備える、樹脂付きフィルム。
- 請求項1~8のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを備える、樹脂付き金属箔。
- 請求項1~8のいずれかに記載の樹脂組成物の硬化物を含む絶縁層と、金属箔とを備える、金属張積層板。
- 請求項9に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを備える、金属張積層板。
- 請求項1~8のいずれかに記載の樹脂組成物の硬化物を含む絶縁層と、配線とを備える、配線板。
- 請求項9に記載のプリプレグの硬化物を含む絶縁層と、配線とを備える、配線板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024535033A JPWO2024018946A1 (ja) | 2022-07-20 | 2023-07-10 | |
CN202380051049.7A CN119487125A (zh) | 2022-07-20 | 2023-07-10 | 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022115729 | 2022-07-20 | ||
JP2022-115729 | 2022-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024018946A1 true WO2024018946A1 (ja) | 2024-01-25 |
Family
ID=89617894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/025509 WO2024018946A1 (ja) | 2022-07-20 | 2023-07-10 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2024018946A1 (ja) |
CN (1) | CN119487125A (ja) |
TW (1) | TW202409197A (ja) |
WO (1) | WO2024018946A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152427A1 (ja) * | 2014-04-04 | 2015-10-08 | 日立化成株式会社 | N-置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板 |
JP2017206578A (ja) * | 2016-05-16 | 2017-11-24 | 住友ベークライト株式会社 | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板、及び半導体装置 |
WO2019138992A1 (ja) * | 2018-01-09 | 2019-07-18 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板 |
WO2019188189A1 (ja) * | 2018-03-28 | 2019-10-03 | パナソニックIpマネジメント株式会社 | 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 |
JP2020169273A (ja) * | 2019-04-03 | 2020-10-15 | 日立化成株式会社 | 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ |
JP2021109944A (ja) * | 2020-01-15 | 2021-08-02 | 太陽ホールディングス株式会社 | ポリフェニレンエーテル、ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品 |
WO2021157249A1 (ja) * | 2020-02-07 | 2021-08-12 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
JP2021138802A (ja) * | 2020-03-03 | 2021-09-16 | 住友ベークライト株式会社 | 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置 |
JP2021152107A (ja) * | 2020-03-24 | 2021-09-30 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
-
2023
- 2023-07-10 CN CN202380051049.7A patent/CN119487125A/zh active Pending
- 2023-07-10 WO PCT/JP2023/025509 patent/WO2024018946A1/ja active Application Filing
- 2023-07-10 JP JP2024535033A patent/JPWO2024018946A1/ja active Pending
- 2023-07-14 TW TW112126357A patent/TW202409197A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152427A1 (ja) * | 2014-04-04 | 2015-10-08 | 日立化成株式会社 | N-置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板 |
JP2017206578A (ja) * | 2016-05-16 | 2017-11-24 | 住友ベークライト株式会社 | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板、及び半導体装置 |
WO2019138992A1 (ja) * | 2018-01-09 | 2019-07-18 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板 |
WO2019188189A1 (ja) * | 2018-03-28 | 2019-10-03 | パナソニックIpマネジメント株式会社 | 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 |
JP2020169273A (ja) * | 2019-04-03 | 2020-10-15 | 日立化成株式会社 | 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ |
JP2021109944A (ja) * | 2020-01-15 | 2021-08-02 | 太陽ホールディングス株式会社 | ポリフェニレンエーテル、ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品 |
WO2021157249A1 (ja) * | 2020-02-07 | 2021-08-12 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
JP2021138802A (ja) * | 2020-03-03 | 2021-09-16 | 住友ベークライト株式会社 | 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置 |
JP2021152107A (ja) * | 2020-03-24 | 2021-09-30 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024018946A1 (ja) | 2024-01-25 |
CN119487125A (zh) | 2025-02-18 |
TW202409197A (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022054303A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
US20240182614A1 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
US20230331957A1 (en) | Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
JP7607247B2 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2017122249A1 (ja) | 金属張積層板および樹脂付金属箔 | |
WO2021157249A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
US20230399511A1 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
US20240190112A1 (en) | Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
US20230323104A1 (en) | Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
WO2022202347A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2024018946A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
US12286500B2 (en) | Resin composition, prepreg, resin-equipped film, resin- equipped metal foil, metal-clad laminate, and wiring board | |
WO2024018945A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
US20250171628A1 (en) | Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board | |
WO2024043083A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2024043084A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2024202879A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2024009831A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
JP2024070465A (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2024127869A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
JP2024070466A (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 | |
WO2024009830A1 (ja) | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23842871 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024535033 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23842871 Country of ref document: EP Kind code of ref document: A1 |