WO2023171530A1 - ロータコア、ロータおよび回転電機 - Google Patents
ロータコア、ロータおよび回転電機 Download PDFInfo
- Publication number
- WO2023171530A1 WO2023171530A1 PCT/JP2023/007827 JP2023007827W WO2023171530A1 WO 2023171530 A1 WO2023171530 A1 WO 2023171530A1 JP 2023007827 W JP2023007827 W JP 2023007827W WO 2023171530 A1 WO2023171530 A1 WO 2023171530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- circumferential
- outer end
- rotor core
- region
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 103
- 239000004020 conductor Substances 0.000 claims description 41
- 230000000052 comparative effect Effects 0.000 description 22
- 230000004907 flux Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/24—Rotor cores with salient poles ; Variable reluctance rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/26—Rotor cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/02—Synchronous motors
Definitions
- the present invention relates to a rotor core, a rotor, and a rotating electrical machine.
- a rotating electric machine has a rotor that includes a rotor core and a hole provided in the rotor core.
- the rotor core of Patent Document 1 has a plurality of holes serving as flux barriers that are convex toward the inside in the radial direction when viewed in the axial direction of the rotor core.
- the plurality of holes have an asymmetric shape with respect to the center axis in the circumferential direction of two adjacent magnetic pole parts.
- the plurality of holes in Patent Document 1 include holes that are asymmetrical with respect to the center axis in the circumferential direction of two adjacent magnetic pole parts in order to reduce torque ripple. In some cases, the performance of the rotating electrical machine at startup and the efficiency during normal rotation when the rotating electrical machine reaches its rated speed cannot be sufficiently improved.
- an object of the present invention is to provide a rotor core, a rotor, and a rotating electrical machine having a structure that can improve the torque at startup while suitably maintaining the flow of magnetic flux during normal rotation in the rotating electrical machine. Make it one.
- One aspect of the rotor core of the present invention is a rotor core that is rotatable around a central axis, and includes a plurality of magnetic pole portions arranged at intervals in the circumferential direction, and a space between the magnetic pole portions that are adjacent to each other in the circumferential direction.
- a plurality of magnetic pole intermediate portions are respectively located.
- Each of the plurality of magnetic pole intermediate portions has a through hole group including a plurality of through holes arranged at intervals in the radial direction.
- Each of the through holes has an outer end located at a radially outer edge of the rotor core, and in each of the plurality of magnetic pole intermediate portions, a first region is disposed across the circumferential center of the magnetic pole intermediate portion.
- the outer end portions are arranged in the and second regions, respectively. The number of the outer ends arranged in the second region is smaller than the number of the outer ends arranged in the first region.
- One aspect of the rotor of the present invention includes the rotor core described above and a conductor located within the through hole.
- One aspect of the rotating electric machine of the present invention includes the above-mentioned rotor and a stator located on the radially outer side of the rotor.
- a rotor core, a rotor, and a rotating electrical machine having a structure that can improve the torque at startup while suitably maintaining the flow of magnetic flux during normal rotation in the rotating electrical machine.
- FIG. 1 is a sectional view showing a schematic diagram of a rotating electric machine according to this embodiment.
- FIG. 2 is a sectional view showing the rotor of this embodiment, and is a sectional view taken along line II-II in FIG.
- FIG. 3 is a partially enlarged view of the rotor core of this embodiment.
- FIG. 4 is a partial sectional view showing a modification of the rotor core of this embodiment.
- FIG. 5 is a sectional view showing another modification of the rotor core of this embodiment.
- FIG. 6 is a sectional view showing another modification of the rotor core of this embodiment.
- FIG. 7 is a partially enlarged view showing the rotor core of Comparative Example 1.
- FIG. 8 is a partially enlarged view showing the rotor core of Comparative Example 2.
- the Z-axis direction appropriately shown in each figure is an up-down direction in which the positive side is the "upper side” and the negative side is the “lower side.”
- a central axis J shown as appropriate in each figure is an imaginary line that is parallel to the Z-axis direction and extends in the vertical direction.
- the axial direction of the central axis J that is, the direction parallel to the vertical direction
- the radial direction centered on the central axis J is simply referred to as the "radial direction.”
- the circumferential direction centered on is simply called the “circumferential direction.”
- the direction of clockwise movement in the circumferential direction is called the + ⁇ side
- the direction of movement counterclockwise is called the - ⁇ side.
- the rotating electrical machine 1 of this embodiment shown in FIG. 1 is an inner rotor type motor.
- the rotating electric machine 1 of this embodiment includes a housing 2, a rotor 10, a stator 3, a bearing holder 4, and bearings 5a and 5b.
- the housing 2 houses therein a rotor 10, a stator 3, a bearing holder 4, and bearings 5a and 5b.
- the bottom of the housing 2 holds a bearing 5b.
- the bearing holder 4 holds a bearing 5a.
- the bearings 5a and 5b are, for example, ball bearings.
- the stator 3 is located on the outside of the rotor 10 in the radial direction.
- the stator 3 includes a stator core 3a, an insulator 3d, and a plurality of coils 3e.
- Stator core 3a has a core back 3b and a plurality of teeth 3c.
- the core back 3b has an annular shape centered on the central axis J.
- the plurality of teeth 3c extend radially inward from the core back 3b.
- the plurality of teeth 3c are arranged at equal intervals all around the circumferential direction.
- the plurality of coils 3e are attached to the stator core 3a via an insulator 3d.
- the rotor 10 is rotatable around the central axis J.
- the rotor 10 includes a shaft 11, a rotor core 20, a conductor 40, and an annular conductive portion 50.
- the shaft 11 has a cylindrical shape that extends in the axial direction centering on the central axis J.
- the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
- Rotor core 20 is a magnetic material.
- the material of the rotor core 20 is, for example, silicon steel, which has higher magnetic permeability and lower electrical conductivity than an alloy of iron and carbon.
- the rotor core 20 is fixed to the outer peripheral surface of the shaft 11.
- the rotor core 20 has a center through hole 20a that passes through the rotor core 20 in the axial direction. As shown in FIG. 2, the center through hole 20a has a circular shape centered on the center axis J when viewed in the axial direction.
- the shaft 11 is passed through the center through hole 20a.
- the shaft 11 is fixed within the center through hole 20a by, for example, press fitting.
- the rotor core 20 is configured by, for example, a plurality of electromagnetic steel sheets laminated in the axial direction.
- the annular conductive portions 50 are arranged at both ends of the rotor core 20 in the axial direction.
- the annular conductive portion 50 has an annular shape centered on the central axis J.
- the outer diameter of the annular conductive portion 50 is equivalent to the outer diameter of the rotor core 20, and the inner diameter of the annular conductive portion 50 is larger than the inner diameter of the center through hole 20a of the rotor core 20.
- the material constituting the annular conductive portion 50 is a material with high electrical conductivity. Examples of the material constituting the annular conductive portion 50 include aluminum, copper, and an alloy of aluminum and copper.
- the rotor core 20 provided with the through holes 30 in this manner becomes a rotor core of a synchronous reluctance motor having a magnetic salient pole structure. More specifically, since the through-holes 30 through which magnetic flux is difficult to pass act as flux barriers for the rotor 10, when viewed from the axial direction, the two adjacent through-hole groups 130 are in the direction of salient poles through which magnetic flux can easily pass. A direction in which magnetic flux is difficult to pass is provided at the center in the circumferential direction of each through-hole group 130.
- the salient pole direction through which the magnetic flux easily passes is referred to as the "d-axis direction”
- the direction through which the magnetic flux is difficult to pass is referred to as the "q-axis direction”. Since the rotor core 20 has magnetic anisotropy in the q-axis direction and the d-axis direction, reluctance torque is generated when a magnetic field is generated by the stator 3, making it possible to rotate the rotor 10.
- the d-axis direction is a radial direction passing through the circumferential center of the magnetic pole portions P of the rotor core 20
- the q-axis direction is a radial direction passing through the circumferential center between circumferentially adjacent magnetic pole portions P.
- the portion located between circumferentially adjacent magnetic pole portions P will hereinafter be referred to as a magnetic pole intermediate portion M.
- the q-axis passes through the middle part M of the magnetic pole.
- the rotor 10 is provided with a plurality of magnetic pole parts P provided along the circumferential direction and a plurality of magnetic pole intermediate parts M located between circumferentially adjacent magnetic pole parts P. .
- Each of the magnetic pole intermediate portions M has a through hole group 130.
- a conductor 40 is disposed within the through hole 30 .
- the material constituting the conductor 40 has high electrical conductivity.
- the material constituting the conductor 40 is the same as the material constituting the annular conductive portion 50, and examples thereof include aluminum, copper, and an alloy of aluminum and copper.
- the material constituting the conductor 40 is a non-ferromagnetic metal so as not to affect the magnetic salient pole structure constituted by the through hole 30.
- the conductor 40 disposed in each through hole 30 is electrically connected to an annular conductive portion 50, respectively.
- the conductors 40 in each through hole 30 are electrically connected to each other via the annular conductive part 50, and the annular conductor 50 electrically shorts the conductors 40 in each through hole 30 to each other.
- the conductor 40 in the through hole 30 is made by heating the metal that will become the conductor 40 and pouring it into the through hole 30.
- the conductor 40 and the annular conductive portion 50 are part of the same single member. For example, molds for the annular conductive portion 50 are placed on both sides of the rotor core 20 in the axial direction, and the conductor 40 and the metal that will become the annular conductive portion 50 are heated and poured into the through hole 30 and the mold. And an annular conductive part 50 is made. Note that the conductor 40 and the annular conductive portion 50 may be separate members or may be made of different constituent materials.
- the rotor 10 having a magnetic salient pole structure since the conductors 40 are not arranged in the magnetic pole part P, the amount of the conductors 40 arranged in the circumferential direction is not equal. For this reason, compared to conventional induction motors, the Lorentz force generated during startup is small, resulting in poor performance during startup.
- a rotor core 20 having a plurality of through holes 30 having an asymmetric shape when the q-axis is an axis of symmetry the inventors have developed It has been found that by increasing the cross-sectional area of the conductor 40 in the through hole 30 and increasing the arrangement area of the conductor 40 in the through hole 30, a larger torque due to the Lorentz force can be obtained when starting the stationary rotor 10. Furthermore, it has been found that with such a rotor core 20, efficiency can also be suitably ensured during normal rotation when the rotating electric machine 1 rotates at the rated speed.
- the rotor core 20 of this embodiment includes four sets of through holes 30, each including an outermost through hole 31, a first intermediate through hole 32, a second intermediate through hole 33, and an innermost through hole 34. It has a group of through holes 130.
- the outermost through hole 31, the first intermediate through hole 32, the second intermediate through hole 33, and the innermost through hole 34 are arranged in this order from the radially outer side to the radially inner side.
- the through-hole group 130 of the present embodiment among the plurality of through-holes 30, the through-hole located most radially outward is the outermost through-hole 31, and the through-hole located most radially inward is the innermost through-hole 31. It is 34.
- the number of through holes 30 in one set of through hole groups 130 is not limited to four, as long as two or more through holes 30 including the outermost through hole 31 and the innermost through hole 34 are arranged. . That is, the intermediate through hole between the outermost through hole 31 and the innermost through hole 34 may not be arranged.
- the number of through holes 30 may be changed as appropriate depending on the size of rotor core 20.
- the through hole 30 when any one of the outermost through hole 31, the first intermediate through hole 32, the second intermediate through hole 33, and the innermost through hole 34 is referred to, it will also simply be referred to as the through hole 30.
- the four through-hole groups 130 are arranged at equal intervals along the circumferential direction of the rotor core 20.
- Each set of through-hole groups 130 has the same configuration except that each set is arranged in a position rotated by 90° in the circumferential direction.
- the through-hole 30 included in one representative group among the four through-hole groups 130 will be described.
- the outermost through hole 31, the first intermediate through hole 32, the second intermediate through hole 33, and the innermost through hole 34 included in the through hole group 130 are not in contact with each other and are separated from each other in the radial direction. It is well located.
- a radially outer region of the outermost through hole 31, a region between two radially adjacent through holes 30, and a radially inner region of the through hole group 130 are This becomes a magnetic path MP through which the magnetic flux generated by 3 flows.
- the through hole 30 has an arcuate shape that is convex radially inward when viewed in the axial direction.
- the arc radius of the first intermediate through hole 32 is larger than the arc radius of the outermost through hole 31.
- the arc radius of the second intermediate through hole 33 is larger than the arc radius of the first intermediate through hole 32.
- the arc radius of the innermost through hole 34 is larger than the arc radius of the second intermediate through hole 33.
- the direction in which the through hole 30 extends when viewed in the axial direction will be referred to as the "stretching direction.”
- the directions in which the outermost through hole 31, the first intermediate through hole 32, the second intermediate through hole 33, and the innermost through hole 34 extend when viewed in the axial direction are referred to as a “first stretching direction” and a “second stretching direction,” respectively. They will be referred to as the “third stretching direction” and the “fourth stretching direction.”
- the farther the through hole 30 is located on the outer side in the radial direction the shorter the dimension in the extending direction of the through hole 30 is. That is, the dimension of the outermost through hole 31 in the first stretching direction is shorter than the dimension of the first intermediate through hole 32 in the second stretching direction.
- the dimension of the first intermediate through hole 32 in the second extending direction is shorter than the dimension of the second intermediate through hole 33 in the third extending direction.
- one of the two ends in the fourth stretching direction does not extend to the radially outer edge 20b of the rotor core 20, and the dimension of the innermost through hole 34 in the fourth stretching direction is It is shorter than the dimension of the second intermediate through hole 33 in the third extending direction.
- the radially outer edge portion 20b of the rotor core 20 is a region of the rotor core 20 that is inside the outer circumferential end of the rotor core 20 in the radial direction, and includes the outermost through hole 31, the first intermediate through hole 32, and the second intermediate through hole. Both ends of the through hole 33 in the extending direction and an end of the innermost through hole 34 on the ⁇ side in the extending direction are arranged.
- Both ends of the outermost through hole 31, the first intermediate through hole 32, and the second intermediate through hole 33 in the extending direction and the ⁇ side end of the innermost through hole 34 in the circumferential direction are the radial outer edge of the rotor core 20. 20b, hereinafter referred to as the outer end.
- the - ⁇ side outer ends of the outermost through hole 31, the first intermediate through hole 32, the second intermediate through hole 33, and the innermost through hole 34 are connected to the first outer end 31a, the first outer end 32a, and the - ⁇ side. They are referred to by reference numerals as a first outer end portion 33a and a first outer end portion 34a.
- the second outer end 31b has a larger circumferential dimension than the first outer end 31a. That is, the second outer end 30b disposed in the second region P2 has at least one second outer end 30b having a larger circumferential dimension than the first outer end 30a disposed in the first region P1. include.
- the through holes 30 can be arranged asymmetrically when the circumferential center IM of the magnetic pole intermediate portion M is set as the axis of symmetry, so that both the performance at startup and the efficiency during normal rotation of the rotating electric machine 1 can be improved. In this way, the shape of the through hole 30 can be made into a suitable shape.
- the first outer end 31a and the first outer end 32a are arranged at positions overlapping the second outer end 31b with the circumferential center IM as the axis of symmetry.
- the first outer end portions 33a and 34a are arranged line-symmetrically with the second outer end portions 32b and 33b, respectively, with the circumferential center IM as an axis of symmetry.
- the circumferential width of the second outer end 31b of the outermost through hole 31 can be increased to ensure a large cross-sectional area of the outermost through hole 31, so that the conductor 40 disposed within the outermost through hole 31 can be
- the arrangement area can also be increased. Therefore, the performance of the rotating electric machine 1 at startup can be improved.
- the cross-sectional area in the first region P1 of the outermost through hole 31 is smaller than that in the second region P2, but the number of first outer end portions 30a in the first region P1 is smaller than that in the first region P1.
- the number is greater than the number of second outer ends 30b in the second region P2.
- the plurality of through-holes are arranged so that the difference between the sum of the cross-sectional areas of the through-holes 30 in the first region P1 and the sum of the cross-sectional areas of the through-holes 30 in the second region P2 does not become excessively large when viewed in the axial direction. 30 can be placed. Thereby, performance can be improved when the rotor 10 starts rotating in either the + ⁇ side or the - ⁇ side.
- the width of the through hole 30 is the dimension in the direction perpendicular to the extending direction of each through hole 30 when viewed in the axial direction.
- the width of the outermost through hole 31 increases from the first outer end 31a toward the second outer end 31b.
- the circumferential width of the outermost through hole 31 on the second outer end 31b side can be increased to ensure a large cross-sectional area of the outermost through hole 31, so that the conductor disposed inside the outermost through hole 31 can
- the arrangement area of 40 can also be increased. Therefore, the performance of the rotating electric machine 1 at startup can be improved.
- the width of the first intermediate through hole 32, the width of the second intermediate through hole 33, and the width of the innermost through hole 34 excluding the second end 34m are all uniform in the stretching direction. There is. As a result, even when the cross-sectional area of the outermost through hole 31 is increased, the magnetic path MP between the outermost through hole 31 and the first intermediate through hole 32, the first intermediate through hole 32 and the second intermediate through hole 33 It is possible to prevent the magnetic path MP between the second intermediate through hole 33 and the innermost through hole 34 from becoming too narrow. In the second end 34m, the width of the innermost through hole 34 in the fourth stretching direction becomes smaller toward the tip of the second end 34m. Thereby, in the rotor core 20, the dimension between the center through hole 20a and the innermost through hole 34 can be secured, so that the mechanical strength of the rotor core 20 can be maintained.
- the through-hole group 130 includes three or more through-holes 30, and in the through-hole group 130, the through-holes excluding the through-hole 30 located most radially outside and the through-hole 30 located most radially inside At least one of the through holes 30 is provided with a bridge portion 30g that connects a first edge 30e1 on the radially inner side of the through hole 30 and a second edge 30e2 on the radially outer side.
- the outermost through hole 31 and the innermost through hole 34 are not provided with the bridge portion 30g, and the first intermediate through hole 32 and the second intermediate through hole 33 are provided with no bridge portion 30g.
- Bridge portions 30g are arranged at positions overlapping with the circumferential center IM. As a result, the mechanical strength of the rotor core 20 can be suitably maintained. Further, since the bridge portion 30g that electrically separates the conductor 40 is not arranged in the outermost through hole 31, the performance at startup can be suitably improved. Note that the bridge portion 30g may be provided in only one of the first intermediate through hole 32 and the second intermediate through hole 33. The number of bridge portions 30g provided in each through hole 30 is not limited to one, but may be two or more. Further, the bridge portion 30g may be arranged at a position other than the circumferential center IM.
- the through holes 30 of the rotor core 20 of Example 1 are shown overlapped by broken lines.
- the positions of the first outer ends 230a of the rotor core 200 are the same as the positions of the first outer ends 30a of the rotor core 20.
- the second outer end 231b of the first through hole 231 of the rotor core 200 and the second outer end 232b of the second through hole 232 are the second outer end of the outermost through hole 31 of the rotor core 20. It is arranged at a position overlapping the portion 31b.
- the circumferential end of the second outer end 231b of the first through hole 231 of the rotor core 200 that is closer to the circumferential center IM is located at the circumferential center of the second outer end 31b of the outermost through hole 31 of the rotor core 20.
- the circumferential end of the second outer end 232b of the second through hole 232 of the rotor core 200 that is far from the circumferential center IM is disposed at the same position as the circumferential end of the second through hole 232 of the rotor core 200. It is arranged at the same position as the circumferential end of the second outer end 31b of the through hole 31 that is far from the circumferential center IM.
- the second outer end 233b of the third through hole 233 of the rotor core 200 and the second outer end 234b of the fourth through hole 234 are respectively the second outer end 32b of the first intermediate through hole 32 of the rotor core 20 and the second outer end 234b of the third through hole 233 of the rotor core 200. It is arranged at the same position as the second outer end 33b of the intermediate through hole 33.
- the rotor core 201 shown in FIG. 8 has the same shape as the rotor core 200 except that the shape of the first through hole 231 is different. More specifically, compared to the rotor core 200, the first through hole 231 of the rotor core 201 widens toward the outside in the radial direction when viewed from the axial direction. Therefore, the cross-sectional area of the first through hole 231 of the rotor core 201 is larger than that of the rotor core 200, and the arrangement area of the conductor 40 arranged inside the first through hole 231 is also larger.
- the "starting load capacity" column shown in Table 1 shows the results of evaluating the load capacity required to start rotation of the rotor core. Comparative Example 1 gave poor results. This is because in Comparative Example 1, the cross-sectional area of the first through hole 231 disposed at the outermost position in the radial direction is smaller than in Comparative Example 2 and Example 1, and the conductor disposed at the radially outer peripheral edge of the rotor core 200 This is thought to be because the area in which 40 is arranged is narrow. Therefore, in Comparative Example 1, it was not possible to suitably obtain torque due to Lorentz force at the time of startup. Comparative Example 2, in which the conductor 40 was arranged in a wider area than Comparative Example 1, had good results.
- Example 1 The performance of Example 1 at startup was very good compared to Comparative Example 2.
- the through hole 30 has an asymmetric shape when the circumferential center IM is set as the axis of symmetry, and the position where the conductor 40 is arranged and the area of the arrangement region are optimized, so compared to Comparative Example 2. This is thought to be due to the fact that the Lorentz force at startup could be obtained more favorably.
- the "performance at rated condition" column shown in Table 1 shows the results of evaluating the efficiency during normal rotation when the rotation speed of the rotor core is the rated speed.
- Example 1 Comparative Example 1, and Comparative Example 2, the through holes that serve as flux barriers are arranged in all cases, so the reluctance torque generated by the magnetic anisotropy of the rotor core allows for good rotation during normal rotation. I understand that.
- the rotor core 20 of Example 1 can satisfactorily improve the performance at startup while suitably ensuring strength and rotational efficiency during normal rotation.
- the rotor core 20 of the present embodiment is a rotor core 20 that is rotatable around the central axis J, and includes a plurality of magnetic pole parts P arranged at intervals in the circumferential direction, and a plurality of magnetic pole parts P arranged at intervals in the circumferential direction.
- a plurality of magnetic pole intermediate parts M are respectively located between the magnetic pole parts P, and each of the plurality of magnetic pole intermediate parts M has a through hole including a plurality of through holes 30 arranged at intervals in the radial direction.
- Each through hole 30 has an outer end portion 30a, 30b located at the radially outer edge portion 20b of the rotor core 20, and in each of the plurality of magnetic pole intermediate portions M, each through hole 30 has an outer end portion 30a, 30b located at the radial outer edge portion 20b of the rotor core 20.
- Outer end portions 30a and 30b are arranged in the first region P1 and the second region P2, which are arranged on both sides of the center IM, respectively, and the number of the second outer end portions 30b arranged in the second region P2 is as follows. The number is smaller than the number of first outer end portions 30a arranged in the first region P1.
- the circumferential width of one of the second outer ends 30b disposed in the second region P2 is increased to enlarge the through hole 30, and the arrangement area of the conductor 40 disposed within the through hole 30 is enlarged. can do. Furthermore, even if the cross-sectional area of the through-holes 30 is increased when viewed from the axial direction, it is possible to prevent the magnetic path MP between the through-holes 30 from becoming too narrow, and the magnetic flux can be suitably distributed in the magnetic path MP. can flow. Therefore, the torque at startup can be improved while suitably maintaining the flow of magnetic flux during normal rotation. Furthermore, since the dimensions of the rotor core 20 near the through hole 30 can be suitably secured, the strength of the rotor core 20 can be improved.
- torque ripples may occur when the rotor 10 rotates around the central axis J and the position of the magnetic path MP in the circumferential direction relative to the stator 3 moves, the width of each magnetic path MP can be appropriately secured. , torque ripple can be reduced.
- the rotor 10 of this embodiment includes the above-described rotor core 20 and a conductor 40 located within the through hole 30.
- the Lorentz force generated in the conductor 40 can improve the torque at the time of starting the rotor 10.
- the rotating electrical machine 1 of the present embodiment includes the above-described rotor 10 and the stator 3 located on the outside of the rotor 10 in the radial direction. As a result, it is possible to obtain the rotating electric machine 1 that satisfactorily ensures the strength of the rotor 10 and the efficiency of rotation during normal rotation, while improving the performance during startup.
- the first region P1 is arranged on the ⁇ side with respect to the circumferential center IM of the magnetic pole intermediate portion M, and on the + ⁇ side with respect to the circumferential center IM of the magnetic pole intermediate portion M.
- the second region P2 having a smaller number of second outer ends 30b than the number of first outer ends 30a arranged in the first region P1 has been arranged, the present invention is not limited to this example.
- the first region P1 is arranged on the + ⁇ side of the circumferential center IM of the magnetic pole intermediate portion M, and the first outer region P1 is arranged on the ⁇ side of the circumferential center IM of the magnetic pole intermediate portion M.
- the second region P2 having a smaller number of second outer end portions 30b than the number of end portions 30a may be arranged.
- two circumferentially adjacent through hole groups 130 may be mirror symmetrical with respect to the d-axis as an axis of symmetry.
- the partially enlarged view of the rotor core 20 shown in FIG. 4 shows two through-hole groups 130 including a through-hole group 130A and a through-hole group 130B arranged on the ⁇ side of the through-hole group 130A. .
- the through-hole group 130A and the through-hole group 130B are mirror-image symmetrical with respect to the d-axis between the two through-hole groups 130A and 130B.
- the ⁇ side with respect to the circumferential center IM of the magnetic pole intermediate portion M is the first region P1, and the + ⁇ side is the second region P2.
- the + ⁇ side with respect to the circumferential center IM of the magnetic pole intermediate portion M is the first region P1, and the ⁇ side is the second region P2.
- the number of through holes 30 that each through hole group 130 has is not limited to four, and it is sufficient that it has at least two through holes 30, an outermost through hole and an innermost through hole.
- the number of through holes 30 that each through hole group 130 has may be two, three, or four or more.
- each through-hole group 130 has two through-holes 30, and no intermediate through-hole is arranged.
- the number of magnetic pole parts P of the rotor core 20 is not limited to four poles, and may be less than four poles or more than four poles.
- the number of magnetic pole parts P of the rotor 10 may be, for example, two poles, six poles, or eight poles.
- FIG. 5 shows a rotor 10 having a six-pole structure.
- the six through-hole groups 130 are arranged at equal intervals along the circumferential direction of the rotor 10. Since the magnetic pole portions P are provided between the through hole groups 130 adjacent to each other in the circumferential direction, the rotor 10 shown in FIG. 5 is provided with six magnetic pole portions P.
- the bridge portion 30g may not be provided in the through hole 30.
- the bridge portion 30g is not provided in the first intermediate through hole 32 and the second intermediate through hole 33, compared to the rotor core 20 shown in FIG.
- the conductor 40 is electrically separated by the bridge portion 30g, the Lorentz force generated when the rotor 10 starts rotating may not be obtained appropriately.
- the shape of the plurality of through holes 30 is an arc shape that is convex radially inward when viewed in the axial direction, but is not limited to this example. It may also be in the form of a polygonal line that is convex inward in the radial direction. Furthermore, one set of through-hole groups 130 may include both arc-shaped through-holes 30 and polygonal-line-shaped through holes 30.
- the rotor 10 may include a magnet located within the through hole 30.
- a ferrite magnet may be provided in at least one through hole 30 at a position overlapping the circumferential center IM of the magnetic pole intermediate portion M.
- ferrite magnets may be provided on the outer end portions 30a and 30b of at least one through hole 30, respectively.
- the type of magnet is not particularly limited, and the magnet may be a neodymium magnet. In this case, the torque of the rotor 10 can be improved by the magnetic force of the magnet.
- the magnet may be placed in the through hole 30, and after the magnet is placed, the through hole 30 may be filled with a molten conductor 40, so that the inside of the through hole 30 is closed by the conductor 40 and the magnet. .
- the through hole 30 is not particularly limited as long as it can suppress the flow of magnetic flux.
- the conductor 40 is arranged inside the through hole 30, but the inside of the through hole 30 may be a void. Further, the through hole 30 may be formed by filling the void with a nonmagnetic material such as resin.
- the use of the rotating electric machine to which the present invention is applied is not particularly limited.
- the rotating electrical machine may be mounted on a vehicle, or may be mounted on equipment other than the vehicle, for example.
- the configurations described above in this specification can be combined as appropriate within a mutually consistent range.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Synchronous Machinery (AREA)
Abstract
ロータコアは、中心軸線回りに回転可能なロータコアであって、周方向に間隔を空けて配置された複数の磁極部と、周方向に隣り合う磁極部同士の間にそれぞれ位置する複数の磁極中間部と、を備える。複数の磁極中間部のそれぞれは、径方向に間隔を空けて配置された複数の貫通孔を含む貫通孔群を有する。各貫通孔は、ロータコアの径方向外縁部に位置する外端部を有し、複数の磁極中間部のそれぞれにおいて、磁極中間部の周方向中心を挟んで配置された第1領域と第2領域とには、それぞれ外端部が配置される。第2領域に配置された外端部の数は、第1領域に配置された外端部の数よりも少ない。
Description
本発明は、ロータコア、ロータおよび回転電機に関する。
本出願は、2022年3月8日に提出された日本特許出願第2022-035304号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。
ロータコアとロータコアに設けられた孔とを備えるロータを有する回転電機が知られている。例えば、特許文献1のロータコアは、ロータコアの軸方向に見て、径方向内側に向かって凸形状であるフラックスバリアとなる複数の孔を有する。複数の孔は、隣り合う2つの磁極部の周方向中心の軸に対して、非対称な形状である。
特許文献1の複数の孔は、トルクリップルを低減するために、隣り合う2つの磁極部の周方向中心の軸に対して、非対称な孔が含まれているが、このような形状の孔では、回転電機の起動時の性能と、回転電機が定格速度となる通常回転時の効率とが十分に向上できない場合があった。
本発明は、上記事情に鑑みて、回転電機において通常回転時における磁束の流れを好適に維持しつつ、起動時のトルクを向上できる構造を有するロータコア、ロータおよび回転電機を提供することを目的の一つとする。
本発明のロータコアの一つの態様は、中心軸線回りに回転可能なロータコアであって、周方向に間隔を空けて配置された複数の磁極部と、周方向に隣り合う前記磁極部同士の間にそれぞれ位置する複数の磁極中間部と、を備える。前記複数の磁極中間部のそれぞれは、径方向に間隔を空けて配置された複数の貫通孔を含む貫通孔群を有する。各前記貫通孔は、前記ロータコアの径方向外縁部に位置する外端部を有し、前記複数の磁極中間部のそれぞれにおいて、前記磁極中間部の周方向中心を挟んで配置された第1領域と第2領域とには、それぞれ前記外端部が配置される。前記第2領域に配置された前記外端部の数は、前記第1領域に配置された前記外端部の数よりも少ない。
本発明のロータの一つの態様は、上記のロータコアと、前記貫通孔内に位置する導電体と、を備える。
本発明の回転電機の一つの態様は、上記のロータと、前記ロータの径方向外側に位置するステータと、を備える。
本発明の一つの態様によれば、回転電機において通常回転時における磁束の流れを好適に維持しつつ、起動時のトルクを向上できる構造を有するロータコア、ロータおよび回転電機を提供することができる。
各図に適宜示すZ軸方向は、正の側を「上側」とし、負の側を「下側」とする上下方向である。各図に適宜示す中心軸線Jは、Z軸方向と平行であり、上下方向に延びる仮想線である。以下の説明においては、中心軸線Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸線Jを中心とする径方向を単に「径方向」と呼び、中心軸線Jを中心とする周方向を単に「周方向」と呼ぶ。軸方向の上側から見て、周方向で時計回りに進む方向を+θ側と呼び、反時計回りに進む方向を-θ側と呼ぶ。
なお、上下方向、上側、および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。
図1に示す本実施形態の回転電機1は、インナーロータ型のモータである。図1に示すように、本実施形態の回転電機1は、ハウジング2と、ロータ10と、ステータ3と、ベアリングホルダ4と、ベアリング5a,5bと、を備える。ハウジング2は、ロータ10、ステータ3、ベアリングホルダ4、およびベアリング5a,5bを内部に収容している。ハウジング2の底部は、ベアリング5bを保持している。ベアリングホルダ4は、ベアリング5aを保持している。ベアリング5a,5bは、例えば、ボールベアリングである。
ステータ3は、ロータ10の径方向外側に位置する。図1に示すように、ステータ3は、ステータコア3aと、インシュレータ3dと、複数のコイル3eと、を有する。ステータコア3aは、コアバック3bと、複数のティース3cと、を有する。コアバック3bは、中心軸線Jを中心とする円環状である。複数のティース3cは、コアバック3bから径方向内側に延びている。複数のティース3cは、周方向に沿って一周に亘って等間隔に配置されている。複数のコイル3eは、インシュレータ3dを介してステータコア3aに装着されている。
ロータ10は、中心軸線Jを中心として回転可能である。図1および図2に示すように、ロータ10は、シャフト11と、ロータコア20と、導電体40と、環状導電部50と、を備える。シャフト11は、中心軸線Jを中心として軸方向に延びる円柱状である。図1に示すように、シャフト11は、ベアリング5a,5bによって中心軸線J回りに回転可能に支持されている。
ロータコア20は、磁性体である。ロータコア20の材質は、例えば、鉄と炭素との合金よりも透磁率の高く電気伝導率の低いケイ素鋼である。ロータコア20は、シャフト11の外周面に固定されている。ロータコア20は、ロータコア20を軸方向に貫通する中心貫通孔20aを有する。図2に示すように、中心貫通孔20aは、軸方向に見て、中心軸線Jを中心とする円形状である。中心貫通孔20aには、シャフト11が通されている。シャフト11は、例えば圧入等により、中心貫通孔20a内に固定されている。図示は省略するが、ロータコア20は、例えば、複数の電磁鋼板が軸方向に積層されて構成されている。
環状導電部50は、ロータコア20の軸方向両端にそれぞれ配置されている。環状導電部50は中心軸線Jを中心とする円環状である。環状導電部50の外径はロータコア20の外径と同等であり、環状導電部50の内径はロータコア20の中心貫通孔20aの内径よりも大きい。環状導電部50を構成する材料は、電気伝導率の高い材料である。環状導電部50を構成する材料としては、例えばアルミニウム、銅、およびアルミニウムと銅との合金等が挙げられる。
環状導電部50は、ロータコア20の軸方向両端にそれぞれ配置されている。環状導電部50は中心軸線Jを中心とする円環状である。環状導電部50の外径はロータコア20の外径と同等であり、環状導電部50の内径はロータコア20の中心貫通孔20aの内径よりも大きい。環状導電部50を構成する材料は、電気伝導率の高い材料である。環状導電部50を構成する材料としては、例えばアルミニウム、銅、およびアルミニウムと銅との合金等が挙げられる。
ロータコア20は、複数の貫通孔30を有する。本実施形態において各貫通孔30はロータコア20に設けられた孔によって構成されている。貫通孔30は、例えば、ロータコア20を軸方向に貫通している。各貫通孔30は、軸方向と直交する平面に沿って延びており、軸方向に見て径方向内側に凸となる形状となっている。ロータコア20には、2つ以上の貫通孔30を含む組が複数組設けられている。1組の貫通孔30を貫通孔群130とも呼ぶ。各貫通孔群130は、複数の貫通孔30を含む。
このように貫通孔30が設けられたロータコア20は、磁気突極構造を有するシンクロナスリラクタンスモータのロータコアとなる。より詳しくは、磁束を通しにくい貫通孔30はロータ10のフラックスバリアとなるため、軸方向から見て、隣り合う2組の貫通孔群130同士の間は磁束が通りやすい突極方向となり、1組の貫通孔群130の周方向における中央部には磁束が通りにくい方向が設けられる。なお、以下の説明では、上記の磁束が通りやすい突極方向を「d軸方向」と呼び、上記の磁束が通りにくい方向を「q軸方向」と呼ぶ。ロータコア20はq軸方向およびd軸方向において磁気的な異方性を有するため、ステータ3により磁界が発生した際にリラクタンストルクが発生し、ロータ10を回転させることが可能となる。
また、d軸方向はロータコア20の磁極部Pの周方向の中心を通る径方向であり、q軸方向は周方向で隣り合う磁極部P同士の間における周方向中心を通る径方向である。周方向で隣り合う磁極部P同士の間に位置する部分を、以降、磁極中間部Mと呼ぶ。q軸は磁極中間部Mを通る。
このように、ロータ10には、周方向に沿って設けられた複数の磁極部Pと、周方向に隣り合う磁極部P同士の間にそれぞれ位置する複数の磁極中間部Mと、が設けられる。磁極中間部Mは、貫通孔群130をそれぞれ有する。
このように、ロータ10には、周方向に沿って設けられた複数の磁極部Pと、周方向に隣り合う磁極部P同士の間にそれぞれ位置する複数の磁極中間部Mと、が設けられる。磁極中間部Mは、貫通孔群130をそれぞれ有する。
本実施形態では、貫通孔30内には導電体40が配置されている。複数の貫通孔30のうち、すべての貫通孔30の内側に導電体40が充填されている。導電体40を構成する材料は、電気伝導率の高い材料である。導電体40を構成する材料は、環状導電部50を構成する材料と同じであり、例えばアルミニウム、銅、およびアルミニウムと銅との合金等が挙げられる。導電体40を構成する材料は、貫通孔30により構成された磁気突極構造に影響を与えないよう、強磁性体でない金属である。
各貫通孔30内に配置された導電体40は、それぞれ、環状導電部50と電気的に接続されている。このため、各貫通孔30内の導電体40同士は環状導電部50を介して電気的に接続されており、環状導電部50は各貫通孔30内の導電体40同士を電気短絡させている。
貫通孔30内の導電体40は、導電体40となる金属を加熱して貫通孔30内に流し込むことで作られている。
本実施形態において、導電体40および環状導電部50は、同一の単一部材の一部である。例えば、ロータコア20の軸方向両側にそれぞれ環状導電部50の金型を配置し、導電体40および環状導電部50となる金属を加熱して貫通孔30および金型内に流し込むことで導電体40および環状導電部50は作られている。
なお、導電体40および環状導電部50は、別部材であってもよいし、異なる構成材料であってもよい。
各貫通孔30内に配置された導電体40は、それぞれ、環状導電部50と電気的に接続されている。このため、各貫通孔30内の導電体40同士は環状導電部50を介して電気的に接続されており、環状導電部50は各貫通孔30内の導電体40同士を電気短絡させている。
貫通孔30内の導電体40は、導電体40となる金属を加熱して貫通孔30内に流し込むことで作られている。
本実施形態において、導電体40および環状導電部50は、同一の単一部材の一部である。例えば、ロータコア20の軸方向両側にそれぞれ環状導電部50の金型を配置し、導電体40および環状導電部50となる金属を加熱して貫通孔30および金型内に流し込むことで導電体40および環状導電部50は作られている。
なお、導電体40および環状導電部50は、別部材であってもよいし、異なる構成材料であってもよい。
シンクロナスリラクタンスモータの貫通孔30内に導電体40が配置された場合、回転する磁界の中に導体が配置されることになる。このため、ステータ3により発生した磁界が回転した際に、電磁誘導により導電体40に誘導電流が流れ、誘導電流のローレンツ力によりロータ10に回転力を発生させることが可能となる。特に、静止したロータ10の回転を開始する時にローレンツ力によるトルクを得ることができるため、起動時の性能を高めることができる。このように、起動時の特性を向上させたシンクロナスリラクタンスモータは、特にDOL SynRM(Direct-On-Line Synchronous Reluctance Motor)とも呼ばれる。
ここで、磁気突極構造を有するロータ10では、磁極部Pには導電体40が配置されていないため、周方向において導電体40の配置される量は均等ではない。このため、従来の誘導モータと比較して起動時に発生するローレンツ力が小さく、起動時の性能が悪い場合があった。
そこで、発明者らは、q軸を対称軸とした時に非対称な形状である複数の貫通孔30を有するロータコア20において、径方向において最も径方向外側の配置された貫通孔30の軸方向から見た時の断面積を大きくし、当該貫通孔30内の導電体40の配置領域を大きくすることで、静止したロータ10を起動させる際により大きなローレンツ力によるトルクを得られることを見出した。また、このようなロータコア20では、回転電機1が定格速度で回転する通常回転時における効率も好適に確保できることを見出した。
以下、図2および図3を用い、本実施形態のロータコア20の貫通孔30の構成についてより詳細に説明する。
(貫通孔30)
本実施形態のロータコア20は、最外貫通孔31と、第1中間貫通孔32と、第2中間貫通孔33と、最内貫通孔34とを含む4つの貫通孔30をそれぞれ備える4組の貫通孔群130を有する。最外貫通孔31と、第1中間貫通孔32と、第2中間貫通孔33と、最内貫通孔34と、は径方向外側から径方向内側に向かって、この順に配置されている。本実施形態の貫通孔群130では、複数の貫通孔30のうち、最も径方向外側に位置する貫通孔は最外貫通孔31であり、最も径方向内側に位置する貫通孔は最内貫通孔34である。
本実施形態のロータコア20は、最外貫通孔31と、第1中間貫通孔32と、第2中間貫通孔33と、最内貫通孔34とを含む4つの貫通孔30をそれぞれ備える4組の貫通孔群130を有する。最外貫通孔31と、第1中間貫通孔32と、第2中間貫通孔33と、最内貫通孔34と、は径方向外側から径方向内側に向かって、この順に配置されている。本実施形態の貫通孔群130では、複数の貫通孔30のうち、最も径方向外側に位置する貫通孔は最外貫通孔31であり、最も径方向内側に位置する貫通孔は最内貫通孔34である。
本実施形態では4つの貫通孔30が、1組の貫通孔群130に配置されている。1組の貫通孔群130における貫通孔30の数は4つに限られず、最外貫通孔31と、最内貫通孔34と、を含む2つ以上の貫通孔30が配置されていればよい。すなわち、最外貫通孔31と最内貫通孔34との間の中間貫通孔は配置されていなくてもよい。貫通孔30の数は、ロータコア20の大きさにより適宜変更されてもよい。
以降、最外貫通孔31、第1中間貫通孔32、第2中間貫通孔33、および最内貫通孔34のいずれかを指す場合は、単に貫通孔30とも呼ぶ。
以降、最外貫通孔31、第1中間貫通孔32、第2中間貫通孔33、および最内貫通孔34のいずれかを指す場合は、単に貫通孔30とも呼ぶ。
4組の貫通孔群130はロータコア20の周方向に沿って等間隔に並べられている。 貫通孔群130の各組は、それぞれ周方向に90°回転した姿勢で配置されている点を除いて、同様の構成である。以下の各貫通孔30の説明においては、4組の貫通孔群130のうち代表して1つの組に含まれる貫通孔30について説明する。
貫通孔群130に含まれる、最外貫通孔31と、第1中間貫通孔32と、第2中間貫通孔33と、最内貫通孔34と、はそれぞれ接触しておらず、径方向において離れて位置している。ロータコア20のうち、最外貫通孔31の径方向外側の領域と、径方向に隣り合う2つの貫通孔30同士の間の領域と、貫通孔群130の径方向内側の領域と、は、ステータ3により生じる磁束の流れる磁路MPとなる。
貫通孔30は、軸方向に見て径方向内側に凸となる円弧状である。第1中間貫通孔32の円弧半径は、最外貫通孔31の円弧半径よりも大きい。第2中間貫通孔33の円弧半径は、第1中間貫通孔32の円弧半径よりも大きい。最内貫通孔34の円弧半径は、第2中間貫通孔33の円弧半径よりも大きい。
以下の説明においては、軸方向に見て貫通孔30が延びる方向を「延伸方向」と呼ぶ。軸方向に見て最外貫通孔31、第1中間貫通孔32、第2中間貫通孔33、および最内貫通孔34が延びる方向をそれぞれ「第1延伸方向」、「第2延伸方向」、「第3延伸方向」、および「第4延伸方向」と呼ぶ。
以下の説明においては、軸方向に見て貫通孔30が延びる方向を「延伸方向」と呼ぶ。軸方向に見て最外貫通孔31、第1中間貫通孔32、第2中間貫通孔33、および最内貫通孔34が延びる方向をそれぞれ「第1延伸方向」、「第2延伸方向」、「第3延伸方向」、および「第4延伸方向」と呼ぶ。
軸方向に見て、最外貫通孔31、第1中間貫通孔32および第2中間貫通孔33では、径方向外側に位置する貫通孔30ほど、貫通孔30の延伸方向の寸法が短い。すなわち、最外貫通孔31の第1延伸方向の寸法は第1中間貫通孔32の第2延伸方向の寸法よりも短い。第1中間貫通孔32の第2延伸方向の寸法は第2中間貫通孔33の第3延伸方向の寸法よりも短い。
最内貫通孔34では、第4延伸方向における2つの端部のうち一方の端部がロータコア20の径方向外縁部20bまで延びておらず、最内貫通孔34の第4延伸方向の寸法は第2中間貫通孔33の第3延伸方向の寸法よりも短い。なお、ロータコア20の径方向外縁部20bとは、ロータコア20のうち、径方向においてロータコア20の外周端よりも内側の領域であり、最外貫通孔31、第1中間貫通孔32および第2中間貫通孔33の延伸方向における両端部と、最内貫通孔34の延伸方向における-θ側の端部と、が配置される。
最内貫通孔34では、第4延伸方向における2つの端部のうち一方の端部がロータコア20の径方向外縁部20bまで延びておらず、最内貫通孔34の第4延伸方向の寸法は第2中間貫通孔33の第3延伸方向の寸法よりも短い。なお、ロータコア20の径方向外縁部20bとは、ロータコア20のうち、径方向においてロータコア20の外周端よりも内側の領域であり、最外貫通孔31、第1中間貫通孔32および第2中間貫通孔33の延伸方向における両端部と、最内貫通孔34の延伸方向における-θ側の端部と、が配置される。
最外貫通孔31、第1中間貫通孔32および第2中間貫通孔33の延伸方向における両端部および最内貫通孔34の周方向における-θ側の端部は、ロータコア20の径方向外縁部20bに位置する端部であり、以降、外端部と呼ぶ。
最外貫通孔31、第1中間貫通孔32、第2中間貫通孔33、および最内貫通孔34の-θ側の外端部を第1外端部31a、第1外端部32a、第1外端部33a、および第1外端部34aと符号を付して呼ぶ。最外貫通孔31、第1中間貫通孔32、および第2中間貫通孔33の+θ側の外端部を第2外端部31b、第2外端部32b、第2外端部33bと符号を付して呼ぶ。
以降、貫通孔30のいずれかの第1外端部を指す場合は、単に第1外端部30aと呼び、貫通孔30のいずれかの第2外端部を指す場合は、単に第2外端部30bとも呼ぶ。 第1外端部30aおよび第2外端部30bの径方向の位置は、それぞれ同等の位置となっている。
最外貫通孔31、第1中間貫通孔32、第2中間貫通孔33、および最内貫通孔34の-θ側の外端部を第1外端部31a、第1外端部32a、第1外端部33a、および第1外端部34aと符号を付して呼ぶ。最外貫通孔31、第1中間貫通孔32、および第2中間貫通孔33の+θ側の外端部を第2外端部31b、第2外端部32b、第2外端部33bと符号を付して呼ぶ。
以降、貫通孔30のいずれかの第1外端部を指す場合は、単に第1外端部30aと呼び、貫通孔30のいずれかの第2外端部を指す場合は、単に第2外端部30bとも呼ぶ。 第1外端部30aおよび第2外端部30bの径方向の位置は、それぞれ同等の位置となっている。
磁極中間部Mにおいて、磁極中間部Mの周方向中心IMよりも-θ側に配置された領域を第1領域P1と呼び、磁極中間部Mの周方向中心IMよりも+θ側に配置された領域を第2領域P2と呼ぶ。本実施形態では、磁極中間部Mの周方向中心IMはロータコア20のq軸と一致する位置に設けられている。ただし、磁極中間部Mの周方向中心IMおよびq軸の位置は一致していなくてもよい。
第1領域P1には、第1外端部30aが配置されている。第2領域には、第2外端部30bが配置されている。
第4延伸方向において、最内貫通孔34の第1外端部34aとは反対側の端部である第2端部34mはロータコア20の径方向外縁部20bまで延びていない。すなわち最内貫通孔34は第2外端部を有していない。このように、貫通孔群130において、複数の貫通孔30のうち最も径方向内側に位置する最内貫通孔34は、外端部を1つのみ有する。これにより、ロータコア20において、第2中間貫通孔33および最内貫通孔34よりも径方向内側の領域における磁路MPを好適な形状にしやすくなる。
第1領域P1には、第1外端部30aが配置されている。第2領域には、第2外端部30bが配置されている。
第4延伸方向において、最内貫通孔34の第1外端部34aとは反対側の端部である第2端部34mはロータコア20の径方向外縁部20bまで延びていない。すなわち最内貫通孔34は第2外端部を有していない。このように、貫通孔群130において、複数の貫通孔30のうち最も径方向内側に位置する最内貫通孔34は、外端部を1つのみ有する。これにより、ロータコア20において、第2中間貫通孔33および最内貫通孔34よりも径方向内側の領域における磁路MPを好適な形状にしやすくなる。
本実施形態では、第1領域P1に配置された第1外端部30aの数は4つであり、第2領域P2に配置された第2外端部30bの数は3つである。このように、第2領域P2に配置された第2外端部30bの数は、第1領域P1に配置された第1外端部30aの数よりも少ない。これにより、磁極中間部Mの周方向中心IMを対称軸とした時に、非対称な貫通孔30を配置することができるため、回転電機1の起動時の性能および通常回転時の効率の両方を向上できるよう貫通孔30の形状を好適な形状にすることが可能となる。 第2領域P2に配置された第2外端部30bの数は、第1領域P1に配置された第1外端部30aの数よりも1つ少ない。これにより、回転電機1の起動時の性能を向上できるよう、径方向において最も外側に配置された最外貫通孔31の第2領域P2における形状を好適な形状にすることが可能となる。
本実施形態では、最内貫通孔34の第2端部34mの位置は、磁極中間部Mの周方向中心IMよりも-θ側に配置されている。すなわち、第2端部34mは第1領域P1に配置されている。これにより、中心貫通孔20aと最内貫通孔34との間の寸法を好適に確保できるので、ロータコア20の強度を保つことができる。
第2端部34mの位置は本実施形態の例に限られず、磁極中間部Mの周方向中心IM上に配置されていてもよいし、第2領域P2に配置されていてもよい。中心貫通孔20aと最内貫通孔34との間の寸法に起因するロータコア20の強度、および最内貫通孔34を有する貫通孔群130と当該貫通孔群130の+θ側に配置された他の貫通孔群130との間の磁極部Pの寸法とを考慮し、第2端部34mの位置を適宜変更してもよい。
第2端部34mの位置は本実施形態の例に限られず、磁極中間部Mの周方向中心IM上に配置されていてもよいし、第2領域P2に配置されていてもよい。中心貫通孔20aと最内貫通孔34との間の寸法に起因するロータコア20の強度、および最内貫通孔34を有する貫通孔群130と当該貫通孔群130の+θ側に配置された他の貫通孔群130との間の磁極部Pの寸法とを考慮し、第2端部34mの位置を適宜変更してもよい。
<外端部30a、30bの周方向における配置>
図3に示すように、貫通孔30の外端部30a、30bの周方向の端部と磁極中間部Mの周方向中心IMとの間の周方向角度τ11~τ18、τ21~τ26を以下のように定義し、外端部30a、30bの周方向における配置をより詳しく説明する。なお、図3では、説明のためロータコア20以外の構成の図示を省略している。
周方向角度τ11、τ13、τ15、τ17は、それぞれ、第1外端部31a、32a、33a、34aのうち磁極中間部Mの周方向中心IMに近い側の周方向端と、磁極中間部Mの周方向中心IMとの間の周方向角度である。
周方向角度τ12、τ14、τ16、τ18は、それぞれ、第1外端部31a、32a、33a、34aのうち磁極中間部Mの周方向中心IMから遠い側の周方向端と磁極中間部Mの周方向中心IMとの間の周方向角度である。
周方向角度τ21、τ23、τ25は、それぞれ、第2外端部31b、32b、33bのうち磁極中間部Mの周方向中心IMに近い側の周方向端と、磁極中間部Mの周方向中心IMとの間の周方向角度である。
周方向角度τ22、τ24、τ26は、それぞれ、第2外端部31b、32b、33bのうち磁極中間部Mの周方向中心IMから遠い側の周方向端と磁極中間部Mの周方向中心IMとの間の周方向角度である。
図3に示すように、貫通孔30の外端部30a、30bの周方向の端部と磁極中間部Mの周方向中心IMとの間の周方向角度τ11~τ18、τ21~τ26を以下のように定義し、外端部30a、30bの周方向における配置をより詳しく説明する。なお、図3では、説明のためロータコア20以外の構成の図示を省略している。
周方向角度τ11、τ13、τ15、τ17は、それぞれ、第1外端部31a、32a、33a、34aのうち磁極中間部Mの周方向中心IMに近い側の周方向端と、磁極中間部Mの周方向中心IMとの間の周方向角度である。
周方向角度τ12、τ14、τ16、τ18は、それぞれ、第1外端部31a、32a、33a、34aのうち磁極中間部Mの周方向中心IMから遠い側の周方向端と磁極中間部Mの周方向中心IMとの間の周方向角度である。
周方向角度τ21、τ23、τ25は、それぞれ、第2外端部31b、32b、33bのうち磁極中間部Mの周方向中心IMに近い側の周方向端と、磁極中間部Mの周方向中心IMとの間の周方向角度である。
周方向角度τ22、τ24、τ26は、それぞれ、第2外端部31b、32b、33bのうち磁極中間部Mの周方向中心IMから遠い側の周方向端と磁極中間部Mの周方向中心IMとの間の周方向角度である。
最外貫通孔31において、第2外端部31bは、第1外端部31aよりも周方向の寸法が大きい。すなわち、第2領域P2に配置された第2外端部30bは、第1領域P1に配置された第1外端部30aよりも周方向の寸法が大きい第2外端部30bを少なくとも1つ含む。これにより、磁極中間部Mの周方向中心IMを対称軸とした時に非対称な貫通孔30を配置することができるため、回転電機1の起動時の性能および通常回転時の効率の両方を向上できるよう貫通孔30の形状を好適な形状にすることが可能となる。
また、貫通孔群130において、複数の貫通孔30のうち最も径方向外側に位置する最外貫通孔31は、第1領域P1に位置する外端部である第1外端部31aと、第2領域P2に位置する外端部である第2外端部31bと、を有し、第2外端部31bの周方向の寸法は、第1外端部31aの周方向の寸法よりも大きい。すなわち、τ12-τ11<τ22-τ21を満たす。これにより、第2領域P2に配置された第2外端部31bの周方向幅を大きくして最外貫通孔31の断面積を大きく確保できるので、最外貫通孔31内に配置される導電体40の配置領域も大きくすることができる。したがって、回転電機1の起動時の性能を向上できる。
第1外端部31aのうち磁極中間部Mの周方向中心IMに近い側の周方向端と周方向中心IMとの間の周方向角度τ11は、第2外端部31bのうち周方向中心IMに近い側の周方向端と周方向中心IMとの間の周方向角度τ21に対して±1°となる角度である。すなわち、τ11=τ21±1°を満たす。これにより、最外貫通孔31よりも径方向外側に配置される磁路MPが狭くなりすぎることを抑制できるため、通常回転時における磁束の流れを好適に維持しつつ、起動時のトルクを向上できる。また、ロータコア20において、最外貫通孔31よりも径方向外側に配置される領域を確保できるため、ロータコア20の強度を高めることができる。
第1領域P1および第2領域P2のそれぞれにおいて、外端部30a、30bの周方向両端を含む周方向端は、周方向に間隔を空けて2つ以上設けられており、kを2以上の整数としたとき、第1領域P1に位置する周方向端のうち周方向中心IMに対して(k+2)番目に近い周方向端と周方向中心IMとの間の周方向角度は、第2領域P2に位置する周方向端のうち周方向中心IMに対してk番目に近い周方向端と周方向中心IMとの間の周方向角度に対して±1°となる角度である。すなわち、kがk≧2を満たす整数である場合、τ1(k+2)=τ2k±1°を満たす。
本実施形態においては、k=2のときτ14=τ22±1°、k=3のときτ15=τ23±1°、k=4のときτ16=τ24±1°、k=5のときτ17=τ25±1°、k=6のときτ18=τ26±1°を満たす。
本実施形態においては、k=2のときτ14=τ22±1°、k=3のときτ15=τ23±1°、k=4のときτ16=τ24±1°、k=5のときτ17=τ25±1°、k=6のときτ18=τ26±1°を満たす。
このように周方向端が配置されるため、周方向中心IMを対称軸として、第1外端部31aおよび第1外端部32aは第2外端部31bに重なる位置に配置される。周方向中心IMを対称軸として、第1外端部33a、34aは、それぞれ、第2外端部32b、33bと線対称に配置されている。
これにより、最外貫通孔31の第2外端部31bの周方向幅を大きくして最外貫通孔31の断面積を大きく確保できるので、最外貫通孔31内に配置される導電体40の配置領域も大きくすることができる。したがって、回転電機1の起動時の性能を向上できる。 また、軸方向に見て、最外貫通孔31では第1領域P1における断面積が第2領域P2よりも小さくなっているが、第1領域P1における第1外端部30aの数は、第2領域P2における第2外端部30bの数よりも多い。このため、軸方向に見て、第1領域P1における貫通孔30の断面積の和と、第2領域P2における貫通孔30の断面積の和との差が過度に大きくならないよう複数の貫通孔30を配置できる。これにより、ロータ10を+θ側および-θ側のいずれの方向に回転を開始させる際にも、性能を向上させることができる。
これにより、最外貫通孔31の第2外端部31bの周方向幅を大きくして最外貫通孔31の断面積を大きく確保できるので、最外貫通孔31内に配置される導電体40の配置領域も大きくすることができる。したがって、回転電機1の起動時の性能を向上できる。 また、軸方向に見て、最外貫通孔31では第1領域P1における断面積が第2領域P2よりも小さくなっているが、第1領域P1における第1外端部30aの数は、第2領域P2における第2外端部30bの数よりも多い。このため、軸方向に見て、第1領域P1における貫通孔30の断面積の和と、第2領域P2における貫通孔30の断面積の和との差が過度に大きくならないよう複数の貫通孔30を配置できる。これにより、ロータ10を+θ側および-θ側のいずれの方向に回転を開始させる際にも、性能を向上させることができる。
<貫通孔30の幅>
貫通孔30の幅とは、軸方向に見て各貫通孔30の延伸方向と直交する方向の寸法である。
軸方向に見て、最外貫通孔31の幅は、第1外端部31aから第2外端部31bに向かうに従って大きくなっている。これにより、最外貫通孔31において第2外端部31b側の周方向幅を大きくして最外貫通孔31の断面積を大きく確保できるので、最外貫通孔31内に配置される導電体40の配置領域も大きくすることができる。したがって、回転電機1の起動時の性能を向上できる。
軸方向に見て、第1中間貫通孔32の幅、第2中間貫通孔33の幅、および第2端部34mを除く最内貫通孔34の幅は、それぞれ、延伸方向において均一になっている。これにより、最外貫通孔31の断面積を大きくした場合でも、最外貫通孔31と第1中間貫通孔32との間の磁路MP、第1中間貫通孔32と第2中間貫通孔33との間の磁路MP、および第2中間貫通孔33と最内貫通孔34との間の磁路MPが、それぞれ、狭くなりすぎることを抑制できる。
なお、第2端部34mでは、第4延伸方向において最内貫通孔34の幅は第2端部34mの先端に向かうにしたがって小さくなっている。これにより、ロータコア20において、中心貫通孔20aと最内貫通孔34との間の寸法を確保することができるので、ロータコア20の機械的な強度を保つことができる。
貫通孔30の幅とは、軸方向に見て各貫通孔30の延伸方向と直交する方向の寸法である。
軸方向に見て、最外貫通孔31の幅は、第1外端部31aから第2外端部31bに向かうに従って大きくなっている。これにより、最外貫通孔31において第2外端部31b側の周方向幅を大きくして最外貫通孔31の断面積を大きく確保できるので、最外貫通孔31内に配置される導電体40の配置領域も大きくすることができる。したがって、回転電機1の起動時の性能を向上できる。
軸方向に見て、第1中間貫通孔32の幅、第2中間貫通孔33の幅、および第2端部34mを除く最内貫通孔34の幅は、それぞれ、延伸方向において均一になっている。これにより、最外貫通孔31の断面積を大きくした場合でも、最外貫通孔31と第1中間貫通孔32との間の磁路MP、第1中間貫通孔32と第2中間貫通孔33との間の磁路MP、および第2中間貫通孔33と最内貫通孔34との間の磁路MPが、それぞれ、狭くなりすぎることを抑制できる。
なお、第2端部34mでは、第4延伸方向において最内貫通孔34の幅は第2端部34mの先端に向かうにしたがって小さくなっている。これにより、ロータコア20において、中心貫通孔20aと最内貫通孔34との間の寸法を確保することができるので、ロータコア20の機械的な強度を保つことができる。
<貫通孔30のブリッジ部30g>
貫通孔群130には、3つ以上の貫通孔30が含まれ、貫通孔群130において、最も径方向外側に位置する貫通孔30と最も径方向内側に位置する貫通孔30とを除く貫通孔30の少なくとも1つには、貫通孔30の径方向内側の第1縁部30e1と径方向外側の第2縁部30e2とを繋ぐブリッジ部30gが設けられている。本実施形態では、図2に示すように、最外貫通孔31および最内貫通孔34にはブリッジ部30gが設けられておらず、第1中間貫通孔32および第2中間貫通孔33において、周方向中心IMと重なる位置にブリッジ部30gがそれぞれ配置されている。これより、ロータコア20の機械的な強度を好適に保つことができる。また、最外貫通孔31内には、導電体40を電気的に分断するブリッジ部30gが配置されていないため、起動時の性能を好適に向上させることができる。
なお、第1中間貫通孔32および第2中間貫通孔33のうち、いずれか一方のみにブリッジ部30gが設けられていてもよい。各貫通孔30に設けられるブリッジ部30gの数は1つに限られず2つ以上であってもよい。また、周方向中心IM以外の位置にブリッジ部30gが配置されていてもよい。
貫通孔群130には、3つ以上の貫通孔30が含まれ、貫通孔群130において、最も径方向外側に位置する貫通孔30と最も径方向内側に位置する貫通孔30とを除く貫通孔30の少なくとも1つには、貫通孔30の径方向内側の第1縁部30e1と径方向外側の第2縁部30e2とを繋ぐブリッジ部30gが設けられている。本実施形態では、図2に示すように、最外貫通孔31および最内貫通孔34にはブリッジ部30gが設けられておらず、第1中間貫通孔32および第2中間貫通孔33において、周方向中心IMと重なる位置にブリッジ部30gがそれぞれ配置されている。これより、ロータコア20の機械的な強度を好適に保つことができる。また、最外貫通孔31内には、導電体40を電気的に分断するブリッジ部30gが配置されていないため、起動時の性能を好適に向上させることができる。
なお、第1中間貫通孔32および第2中間貫通孔33のうち、いずれか一方のみにブリッジ部30gが設けられていてもよい。各貫通孔30に設けられるブリッジ部30gの数は1つに限られず2つ以上であってもよい。また、周方向中心IM以外の位置にブリッジ部30gが配置されていてもよい。
<ロータコア20の特性評価>
以下、貫通孔の形状を異ならせた複数のロータコアにおいて、ロータコアの強度、起動時の性能、および通常回転時における効率を比較した結果を、表1を用いて説明する。なお、表1の実施例1(Example 1)のロータコアは図2に示すロータコア20であり、比較例1(comparative Example 1)のロータコアは図7に示されるロータコア200であり、比較例2(comparative Example 2)のロータコアは図8に示されるロータコア201である。実施例1、比較例1、および比較例2のロータコアの貫通孔には、それぞれ導電体が配置されている。
各ロータコアを+θ方向(CW:clockwise(時計回り方向))または-θ方向(CCW:counter-clockwise(反時計回り方向))に回転させた際の特性を表1に示す。
以下、貫通孔の形状を異ならせた複数のロータコアにおいて、ロータコアの強度、起動時の性能、および通常回転時における効率を比較した結果を、表1を用いて説明する。なお、表1の実施例1(Example 1)のロータコアは図2に示すロータコア20であり、比較例1(comparative Example 1)のロータコアは図7に示されるロータコア200であり、比較例2(comparative Example 2)のロータコアは図8に示されるロータコア201である。実施例1、比較例1、および比較例2のロータコアの貫通孔には、それぞれ導電体が配置されている。
各ロータコアを+θ方向(CW:clockwise(時計回り方向))または-θ方向(CCW:counter-clockwise(反時計回り方向))に回転させた際の特性を表1に示す。
図7に示すロータコア200は、第1貫通孔231と第2貫通孔232と第3貫通孔233と第4貫通孔234とを含む、複数の貫通孔230を有する。貫通孔230は、軸方向に見て互いに同心の円弧状である。径方向内側の貫通孔230の円弧半径ほど、円弧半径が大きい。貫通孔230の幅は、互いに同じである。複数の貫通孔230は磁極中間部Mの周方向中心IMを対称軸として線対称な形状である。
図7では、実施例1のロータコア20の貫通孔30を破線で重ねて示している。図7に示すように、ロータコア200の第1外端部230aのそれぞれの位置は、ロータコア20の第1外端部30aの位置と同じである。
図7に示すように、ロータコア200の第1貫通孔231の第2外端部231bおよび第2貫通孔232の第2外端部232bは、ロータコア20の最外貫通孔31の第2外端部31bに重なる位置に配置されている。ロータコア200の第1貫通孔231の第2外端部231bのうち周方向中心IMに近い側の周方向端は、ロータコア20の最外貫通孔31の第2外端部31bのうち周方向中心IMに近い側の周方向端と同じ位置に配置され、ロータコア200の第2貫通孔232の第2外端部232bのうち周方向中心IMから遠い側の周方向端は、ロータコア20の最外貫通孔31の第2外端部31bのうち周方向中心IMから遠い側の周方向端と同じ位置に配置されている。
ロータコア200の第3貫通孔233の第2外端部233bおよび第4貫通孔234の第2外端部234bは、それぞれロータコア20の第1中間貫通孔32の第2外端部32bおよび第2中間貫通孔33の第2外端部33bと同等の位置に配置されている。
図7に示すように、ロータコア200の第1貫通孔231の第2外端部231bおよび第2貫通孔232の第2外端部232bは、ロータコア20の最外貫通孔31の第2外端部31bに重なる位置に配置されている。ロータコア200の第1貫通孔231の第2外端部231bのうち周方向中心IMに近い側の周方向端は、ロータコア20の最外貫通孔31の第2外端部31bのうち周方向中心IMに近い側の周方向端と同じ位置に配置され、ロータコア200の第2貫通孔232の第2外端部232bのうち周方向中心IMから遠い側の周方向端は、ロータコア20の最外貫通孔31の第2外端部31bのうち周方向中心IMから遠い側の周方向端と同じ位置に配置されている。
ロータコア200の第3貫通孔233の第2外端部233bおよび第4貫通孔234の第2外端部234bは、それぞれロータコア20の第1中間貫通孔32の第2外端部32bおよび第2中間貫通孔33の第2外端部33bと同等の位置に配置されている。
図8に示すロータコア201は、第1貫通孔231の形状がロータコア200とは異なる点を除き同様の形状である。より詳しくは、ロータコア200と比較して、軸方向から見てロータコア201の第1貫通孔231は径方向外側に向かって広がっている。このため、ロータコア200と比較して、ロータコア201の第1貫通孔231の断面積が大きくなっており、第1貫通孔231内に配置される導電体40の配置領域も大きくなっている。
表1に示す「structural rigidity」の欄には、ロータコアの機械的な強度を評価した結果が示されている。径方向において最も外側に配置された第1貫通孔の断面積が比較例2よりも小さい比較例1では、強度は非常に良好であった。これは、比較例1では、ロータコア200において第1貫通孔231の径方向外側の寸法が確保されているためであると考えられる。実施例1および比較例2の強度は比較例1にはやや劣るものの、良好な結果であった。実施例1のロータコア20は、ロータコア20の製造プロセスおよびロータ回転時にロータコア20の変形が起こりにくい構造であることがわかる。
表1に示す「starting load capacity」の欄には、ロータコアの回転を開始させる際に必要な負荷容量を評価した結果が示されている。
比較例1では結果が不良であった。これは、比較例1では径方向において最も外側に配置された第1貫通孔231の断面積が比較例2および実施例1よりも小さく、ロータコア200の径方向外周縁部に配置された導電体40の配置領域が狭いためであると考えられる。このため、比較例1では、起動時にローレンツ力によるトルクを好適に得られなかった。
比較例1よりも導電体40の配置領域が広い比較例2では、良好な結果であった。比較例1に対して比較例2のように径方向において最も外側の第1貫通孔231を径方向外側に広げることで導電体40の配置領域を増やし、起動時の性能をある程度改善できることが示されているが、その効果は限定的であった。
比較例1では結果が不良であった。これは、比較例1では径方向において最も外側に配置された第1貫通孔231の断面積が比較例2および実施例1よりも小さく、ロータコア200の径方向外周縁部に配置された導電体40の配置領域が狭いためであると考えられる。このため、比較例1では、起動時にローレンツ力によるトルクを好適に得られなかった。
比較例1よりも導電体40の配置領域が広い比較例2では、良好な結果であった。比較例1に対して比較例2のように径方向において最も外側の第1貫通孔231を径方向外側に広げることで導電体40の配置領域を増やし、起動時の性能をある程度改善できることが示されているが、その効果は限定的であった。
実施例1の起動時の性能は、比較例2と比べても非常に良好な結果であった。実施例1では、周方向中心IMを対称軸とした時に非対称な形状の貫通孔30を有し、導電体40の配置された位置および配置領域の面積が最適化されたため、比較例2と比較してもより起動時のローレンツ力を好適に得ることができたためと考えられる。
表1に示す「performance at rated condition」の欄には、ロータコアの回転速度が定格速度となる通常回転時における効率を評価した結果が示されている。
実施例1、比較例1、および比較例2では、いずれにおいてもフラックスバリアとなる貫通孔が配置されているため、ロータコアの磁気的な異方性により生じるリラクタンストルクにより通常回転時で良好に回転することがわかる。
実施例1、比較例1、および比較例2では、いずれにおいてもフラックスバリアとなる貫通孔が配置されているため、ロータコアの磁気的な異方性により生じるリラクタンストルクにより通常回転時で良好に回転することがわかる。
以上の結果から、実施例1のロータコア20では強度と通常回転時における回転の効率とを好適に確保しつつ、起動時の性能を良好に向上させることが可能であることがわかる。
なお、表1では、実施例1のロータコア20の反時計回り方向の評価結果のみを示しているが、時計回りにおけるいずれの項目の評価結果も時計回りにおける評価結果と同様に良好な結果であった。ただし、実施例1のロータコア20は磁極中間部Mの周方向中心IMに対して貫通孔30の形状が非対称であるため、時計回りと反時計回りとの起動時の性能を比較した場合、時計回りに回転を開始させる方がより性能を高めることが可能であった。
以上説明したように、本実施形態のロータコア20は、中心軸線J回りに回転可能なロータコア20であって、周方向に間隔を空けて配置された複数の磁極部Pと、周方向に隣り合う磁極部P同士の間にそれぞれ位置する複数の磁極中間部Mと、を備え、複数の磁極中間部Mのそれぞれは、径方向に間隔を空けて配置された複数の貫通孔30を含む貫通孔群130を有し、各貫通孔30は、ロータコア20の径方向外縁部20bに位置する外端部30a、30bを有し、複数の磁極中間部Mのそれぞれにおいて、磁極中間部Mの周方向中心IMを挟んで配置された第1領域P1と第2領域P2とには、それぞれ外端部30a、30bが配置され、第2領域P2に配置された第2外端部30bの数は、第1領域P1に配置された第1外端部30aの数よりも少ない。
これにより、第2領域P2に配置された第2外端部30bの1つの周方向幅を大きくして貫通孔30を大きくし、貫通孔30内に配置される導電体40の配置領域を大きくすることができる。さらに、軸方向から見て、貫通孔30の断面積を大きくした場合であっても、貫通孔30同士の間の磁路MPが狭くなり過ぎることを抑制でき、当該磁路MPに好適に磁束を流すことができる。したがって、通常回転時における磁束の流れを好適に維持しつつ、起動時のトルクを向上できる。さらに、貫通孔30近傍におけるロータコア20の寸法を好適に確保できるため、ロータコア20の強度を向上させることができる。また、ロータ10が中心軸線J周りに回転し、ステータ3に対する磁路MPの周方向の位置が移動する際にトルクリップルが生じる場合があるが、各磁路MPの幅を好適に確保できるため、トルクリップルを低減することができる。
また、本実施形態のロータ10は、上述のロータコア20と、貫通孔30内に位置する導電体40と、を備える。導電体40で生じるローレンツ力により、ロータ10の起動時のトルクを向上できる。
また、本実施形態の回転電機1は、上述のロータ10と、ロータ10の径方向外側に位置するステータ3と、を備える。
これにより、ロータ10の強度と通常回転時における回転の効率とを好適に確保しつつ、起動時の性能を良好に向上させた回転電機1を得ることが可能となる。
これにより、ロータ10の強度と通常回転時における回転の効率とを好適に確保しつつ、起動時の性能を良好に向上させた回転電機1を得ることが可能となる。
本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成を採用することもできる。
図2に示す例では、磁極中間部Mにおいて、磁極中間部Mの周方向中心IMよりも-θ側に第1領域P1が配置され、磁極中間部Mの周方向中心IMよりも+θ側に第1領域P1に配置された第1外端部30aの数よりも少ない数の第2外端部30bを有する第2領域P2が配置されていたが、この例に限られない。
例えば、磁極中間部Mの周方向中心IMよりも+θ側に第1領域P1が配置され、磁極中間部Mの周方向中心IMよりも-θ側に第1領域P1に配置された第1外端部30aの数よりも少ない数の第2外端部30bを有する第2領域P2が配置されてもよい。
例えば、磁極中間部Mの周方向中心IMよりも+θ側に第1領域P1が配置され、磁極中間部Mの周方向中心IMよりも-θ側に第1領域P1に配置された第1外端部30aの数よりも少ない数の第2外端部30bを有する第2領域P2が配置されてもよい。
また、図4に示すように、周方向に隣り合う2つの貫通孔群130はd軸を対称軸として鏡像対称であってもよい。図4に示すロータコア20の部分拡大図には、貫通孔群130Aと、貫通孔群130Aの-θ側に配置された貫通孔群130Bと、を含む2つの貫通孔群130が示されている。貫通孔群130Aおよび貫通孔群130Bは、当該2つの貫通孔群130A、130Bの間のd軸に対して鏡像対称である。
すなわち、貫通孔群130Aでは、磁極中間部Mの周方向中心IMに対して-θ側が第1領域P1となり、+θ側が第2領域P2となる。貫通孔群130Bでは、磁極中間部Mの周方向中心IMに対して+θ側が第1領域P1となり、-θ側が第2領域P2となる。 これにより、ロータコア20を時計回りおよび反時計回りのいずれの方向に回転を開始させる場合においても、起動時の性能を高めることができる。
すなわち、貫通孔群130Aでは、磁極中間部Mの周方向中心IMに対して-θ側が第1領域P1となり、+θ側が第2領域P2となる。貫通孔群130Bでは、磁極中間部Mの周方向中心IMに対して+θ側が第1領域P1となり、-θ側が第2領域P2となる。 これにより、ロータコア20を時計回りおよび反時計回りのいずれの方向に回転を開始させる場合においても、起動時の性能を高めることができる。
また、各貫通孔群130が有する貫通孔30の数は、4つに限られず、少なくとも最外貫通孔と最内貫通孔との2つの貫通孔30を有していればよい。例えば、各貫通孔群130が有する貫通孔30の数は、2つ、3つ、または4つ以上であってもよい。
例えば、図4に示すロータコア20では、各貫通孔群130の有する貫通孔30の数は、2つであり、中間貫通孔は配置されていない。
例えば、図4に示すロータコア20では、各貫通孔群130の有する貫通孔30の数は、2つであり、中間貫通孔は配置されていない。
また、ロータコア20の磁極部Pの数は4極に限られず、4極よりも少なくてもよいし、4極より多くてもよい。ロータ10の磁極部Pの数は、例えば、2極、6極、または8極であってもよい。
図5に、6極構造のロータ10を示す。6組の貫通孔群130はロータ10の周方向に沿って等間隔に並べられている。周方向で隣り合う貫通孔群130同士の間に、磁極部Pが設けられるため、図5に示すロータ10では6極の磁極部Pが設けられている。
図5に、6極構造のロータ10を示す。6組の貫通孔群130はロータ10の周方向に沿って等間隔に並べられている。周方向で隣り合う貫通孔群130同士の間に、磁極部Pが設けられるため、図5に示すロータ10では6極の磁極部Pが設けられている。
また、図6に示すように、貫通孔30にブリッジ部30gが設けられていなくてもよい。図6のロータコア20では、図2に示すロータコア20と比較して、第1中間貫通孔32および第2中間貫通孔33にブリッジ部30gが設けられていない。
例えば、導電体40がブリッジ部30gにより電気的に分断された場合、ロータ10の回転を開始させる際に発生するローレンツ力が好適に得られない場合がある。ブリッジ部30gを設けないことで、起動時に生じるローレンツ力をより好適に得ることが可能になる。
例えば、導電体40がブリッジ部30gにより電気的に分断された場合、ロータ10の回転を開始させる際に発生するローレンツ力が好適に得られない場合がある。ブリッジ部30gを設けないことで、起動時に生じるローレンツ力をより好適に得ることが可能になる。
また、図2に示されるロータコア20では、複数の貫通孔30の形状は、軸方向に見て径方向内側に凸となる円弧状となっているが、この例に限られず、軸方向に見て円径方向内側に凸となる折れ線状となっていてもよい。また、1組の貫通孔群130において、円弧状の貫通孔30と折れ線状の貫通孔30との両方が含まれていてもよい。
また、ロータ10は、貫通孔30内に位置するマグネットを備えていてもよい。例えば、少なくとも1つの貫通孔30内の、磁極中間部Mの周方向中心IMに重なる位置に、フェライト磁石が設けられていてもよい。または、少なくとも1つの貫通孔30内の外端部30a、30b側に、それぞれフェライト磁石が設けられていてもよい。マグネットの種類は、特に限定されず、マグネットは、ネオジム磁石であってもよい。
この場合、マグネットの磁力により、ロータ10のトルクを向上させることができる。 マグネットは、貫通孔30内に配置され、配置された後に溶融した導電体40が貫通孔30内に充填されることで貫通孔30の内側が導電体40およびマグネットにより塞がれていてもよい。
この場合、マグネットの磁力により、ロータ10のトルクを向上させることができる。 マグネットは、貫通孔30内に配置され、配置された後に溶融した導電体40が貫通孔30内に充填されることで貫通孔30の内側が導電体40およびマグネットにより塞がれていてもよい。
また、貫通孔30は、ロータコア20を軸方向に貫通しなくてもよい。貫通孔30は、ロータコア20の軸方向の端面に開口していてもよい。
貫通孔30は、磁束の流れを抑制できるならば、特に限定されない。上述した実施形態において貫通孔30内に導電体40を配置した構成としたが、貫通孔30内は空隙部としてもよい。また、当該空隙部に樹脂等の非磁性体が埋め込まれることで、貫通孔30が構成されてもよい。
本発明が適用される回転電機の用途は、特に限定されない。回転電機は、例えば、車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。以上、本明細書において説明した構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
1…回転電機、3…ステータ、10…ロータ、20…ロータコア、20b…ロータコアの径方向外縁部、30…貫通孔、30a…第1外端部(外端部)、30b…第2外端部(外端部)、30e1…第1縁部、30e2…第2縁部、30g…ブリッジ部、31…最外貫通孔、34…最内貫通孔、40…導電体、130…貫通孔群、IM…磁極中間部の周方向中心、J…中心軸線、M…磁極中間部、P…磁極部、P1…第1領域、P2…第2領域
Claims (12)
- 中心軸線回りに回転可能なロータコアであって、
周方向に間隔を空けて配置された複数の磁極部と、
周方向に隣り合う前記磁極部同士の間にそれぞれ位置する複数の磁極中間部と、
を備え、
前記複数の磁極中間部のそれぞれは、径方向に間隔を空けて配置された複数の貫通孔を含む貫通孔群を有し、
各前記貫通孔は、前記ロータコアの径方向外縁部に位置する外端部を有し、
前記複数の磁極中間部のそれぞれにおいて、前記磁極中間部の周方向中心を挟んで配置された第1領域と第2領域とには、それぞれ前記外端部が配置され、
前記第2領域に配置された前記外端部の数は、前記第1領域に配置された前記外端部の数よりも少ない、ロータコア。 - 前記第2領域に配置された前記外端部は、前記第1領域に配置された前記外端部よりも周方向の寸法が大きい前記外端部を少なくとも1つ含む、請求項1に記載のロータコア。
- 前記貫通孔群において、前記複数の貫通孔のうち最も径方向外側に位置する最外貫通孔は、前記第1領域に位置する前記外端部である第1外端部と、前記第2領域に位置する前記外端部である第2外端部と、を有し、
前記第2外端部の周方向の寸法は、前記第1外端部の周方向の寸法よりも大きい、請求項2に記載のロータコア。 - 軸方向に見て、前記最外貫通孔の幅は、前記第1外端部から前記第2外端部に向かうに従って大きくなっている、請求項3に記載のロータコア。
- 前記第1外端部のうち前記周方向中心に近い側の周方向端と前記周方向中心との間の周方向角度は、前記第2外端部のうち前記周方向中心に近い側の周方向端と前記周方向中心との間の周方向角度に対して±1°となる角度である、請求項3または4に記載のロータコア。
- 前記第1領域および前記第2領域のそれぞれにおいて、前記外端部の周方向両端を含む周方向端は、周方向に間隔を空けて2つ以上設けられており、
kを2以上の整数としたとき、前記第1領域に位置する前記周方向端のうち前記周方向中心に対して(k+2)番目に近い前記周方向端と前記周方向中心との間の周方向角度は、前記第2領域に位置する前記周方向端のうち前記周方向中心に対してk番目に近い前記周方向端と前記周方向中心との間の周方向角度に対して±1°となる角度である、請求項3から5のいずれか一項に記載のロータコア。 - 前記第2領域に配置された前記外端部の数は、前記第1領域に配置された前記外端部の数よりも1つ少ない、請求項1から6のいずれか一項に記載のロータコア。
- 前記貫通孔群において、前記複数の貫通孔のうち最も径方向内側に位置する最内貫通孔は、前記外端部を1つのみ有する、請求項7に記載のロータコア。
- 前記貫通孔群には、3つ以上の前記貫通孔が含まれ、
前記貫通孔群において、最も径方向外側に位置する前記貫通孔と最も径方向内側に位置する前記貫通孔とを除く前記貫通孔の少なくとも1つには、前記貫通孔の径方向内側の第1縁部と径方向外側の第2縁部とを繋ぐブリッジ部が設けられている、請求項1から8のいずれか一項に記載のロータコア。 - 請求項1から9のいずれか一項に記載のロータコアと、
前記貫通孔内に位置する導電体と、
を備える、ロータ。 - 前記貫通孔内に位置するマグネットを備える、請求項10に記載のロータ。
- 請求項10または11に記載のロータと、
前記ロータの径方向外側に位置するステータと、
を備える、回転電機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380025940.3A CN118830167A (zh) | 2022-03-08 | 2023-03-02 | 转子铁芯、转子以及旋转电机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022035304A JP2023130805A (ja) | 2022-03-08 | 2022-03-08 | ロータコア、ロータおよび回転電機 |
JP2022-035304 | 2022-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171530A1 true WO2023171530A1 (ja) | 2023-09-14 |
Family
ID=87935285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/007827 WO2023171530A1 (ja) | 2022-03-08 | 2023-03-02 | ロータコア、ロータおよび回転電機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023130805A (ja) |
CN (1) | CN118830167A (ja) |
WO (1) | WO2023171530A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006149031A (ja) * | 2004-11-17 | 2006-06-08 | Toyota Motor Corp | 車両駆動システムおよびそれを備える車両 |
WO2014115436A1 (ja) * | 2013-01-24 | 2014-07-31 | 三菱電機株式会社 | 永久磁石式回転電機 |
CN206807162U (zh) * | 2017-06-14 | 2017-12-26 | 珠海格力节能环保制冷技术研究中心有限公司 | 电机的不对称转子结构及同步磁阻电机 |
DE102016211841A1 (de) * | 2016-06-30 | 2018-01-04 | Universität der Bundeswehr München | Rotor, Verfahren zum Herstellen eines Rotors, Reluktanzmaschine und Arbeitsmaschine |
US20180233971A1 (en) * | 2015-08-05 | 2018-08-16 | Abb Schweiz Ag | Rotor for electric machine, and manufacturing method of rotor |
-
2022
- 2022-03-08 JP JP2022035304A patent/JP2023130805A/ja active Pending
-
2023
- 2023-03-02 WO PCT/JP2023/007827 patent/WO2023171530A1/ja active Application Filing
- 2023-03-02 CN CN202380025940.3A patent/CN118830167A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006149031A (ja) * | 2004-11-17 | 2006-06-08 | Toyota Motor Corp | 車両駆動システムおよびそれを備える車両 |
WO2014115436A1 (ja) * | 2013-01-24 | 2014-07-31 | 三菱電機株式会社 | 永久磁石式回転電機 |
US20180233971A1 (en) * | 2015-08-05 | 2018-08-16 | Abb Schweiz Ag | Rotor for electric machine, and manufacturing method of rotor |
DE102016211841A1 (de) * | 2016-06-30 | 2018-01-04 | Universität der Bundeswehr München | Rotor, Verfahren zum Herstellen eines Rotors, Reluktanzmaschine und Arbeitsmaschine |
CN206807162U (zh) * | 2017-06-14 | 2017-12-26 | 珠海格力节能环保制冷技术研究中心有限公司 | 电机的不对称转子结构及同步磁阻电机 |
Also Published As
Publication number | Publication date |
---|---|
JP2023130805A (ja) | 2023-09-21 |
CN118830167A (zh) | 2024-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9893577B2 (en) | Motor including permanent magnet rotor with flux barrier | |
JP4900132B2 (ja) | 回転子及び回転電機 | |
JP4623129B2 (ja) | 回転電機の固定子及び回転電機 | |
CN109906545B (zh) | 同步磁阻型旋转电机 | |
JP4098939B2 (ja) | リラクタンスモータ | |
CN109217506B (zh) | 转子和电动机 | |
WO2023189909A1 (ja) | ロータおよび回転電機 | |
US20250175042A1 (en) | Rotor and rotary electric machine | |
US20230179043A1 (en) | Rotor and rotating electrical machine using same | |
WO2023171530A1 (ja) | ロータコア、ロータおよび回転電機 | |
JP2018108006A (ja) | 回転子およびリラクタンス回転電機 | |
JP2020102984A (ja) | 3相モータの電機子構造 | |
JP4479097B2 (ja) | リラクタンスモータ | |
CN217335220U (zh) | 旋转电机 | |
JP2023147770A (ja) | ロータおよび回転電機 | |
US20240364156A1 (en) | Rotor and motor | |
JP7124247B1 (ja) | 回転電機の回転子 | |
JP6127893B2 (ja) | 回転電機用ロータ | |
JP7632471B2 (ja) | 回転電機 | |
JP2023148333A (ja) | ロータおよび回転電機 | |
JP2020058132A (ja) | かご形誘導回転電機の回転子製造装置 | |
JP7651724B2 (ja) | 回転電機の回転子 | |
WO2022054302A1 (ja) | 回転電機 | |
JP2023148145A (ja) | ロータおよび回転電機 | |
JP2024005784A (ja) | 回転子およびその回転子を備えたモータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23766706 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380025940.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23766706 Country of ref document: EP Kind code of ref document: A1 |