WO2023171221A1 - 環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品 - Google Patents
環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品 Download PDFInfo
- Publication number
- WO2023171221A1 WO2023171221A1 PCT/JP2023/004311 JP2023004311W WO2023171221A1 WO 2023171221 A1 WO2023171221 A1 WO 2023171221A1 JP 2023004311 W JP2023004311 W JP 2023004311W WO 2023171221 A1 WO2023171221 A1 WO 2023171221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclic olefin
- olefin copolymer
- less
- mol
- structural unit
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F232/00—Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0823—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic cyclic olefins
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2420/00—Metallocene catalysts
- C08F2420/04—Cp or analog not bridged to a non-Cp X ancillary anionic donor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
Definitions
- the present invention relates to a cyclic olefin copolymer, a cyclic olefin copolymer composition, a molded article, and an optical component.
- Glass is widely used as a material for optical components because it has high transparency, high refractive index, and extremely low birefringence.
- polymeric materials that are lightweight and have excellent moldability have been used as materials for optical components. Examples of such polymeric materials include polymethyl methacrylate (PMMA) and polycarbonate (PC).
- PMMA is preferable in that it has good transparency and low birefringence, but has the drawbacks of low heat resistance, easy deformation such as warping after molding, and poor shape stability. Further, although PC has better refractive index and heat resistance than PMMA, it has a drawback of high birefringence. If the birefringence of an optical component is high, a large amount of aberration will occur, which will cause an abnormality in the shape of the condensed spot and reduce pickup performance.
- cyclic olefin copolymers are attracting attention as materials with low birefringence, and are used in optical lenses such as imaging lenses, f ⁇ lenses, and pickup lenses.
- cyclic olefin copolymers used in optical lenses for head-mounted displays and the like are required to further reduce the influence of birefringence because light passes through the same lens multiple times due to the design.
- Techniques related to such cyclic olefin copolymers include, for example, inventions described in Patent Documents 1 to 3.
- Patent Document 1 describes a method for manufacturing an optical component, which includes a step of molding an optical component molded body made of resin (A) in a mold, and a heat treatment of the optical component molded body taken out from the mold. a first heat treatment step in which the molded article for optical components is slowly cooled after the first heat treatment step; and a second heat treatment in which the molded article for optical components is further heat treated after the slow cooling step.
- the glass transition temperature of the resin (A) is Tg [°C]
- the heating temperature in the first heat treatment step is T 1 [°C]
- the heating temperature in the second heat treatment step is T 2 [°C].
- °C it is disclosed that a method for manufacturing an optical component that satisfies the relationships of Tg-15 ⁇ T 1 ⁇ Tg-2 and T 2 ⁇ Tg-20 can obtain an optical component with low birefringence. has been done.
- Patent Document 2 states that (a) it consists of an ethylene unit and a norbornene unit, (b) the norbornene unit includes a two-chain site, the stereoregularity of the two-chain site is meso type and racemo type, and meso type 2
- the ratio of chain site/racemo type two chain site is 4 or more
- the retardation film made of an amorphous polyolefin copolymer having a glass transition temperature in the range of 100 to 180 ° C. has high moisture resistance. It is disclosed that it has good dimensional stability and can be incorporated into, for example, a liquid crystal display device and effectively used to improve the display quality of liquid crystals, such as improving viewing angle, improving contrast, and color compensation.
- Patent Document 3 discloses that the compound contains a repeating unit derived from ethylene and a norbornene repeating unit, has a molecular weight distribution Mw/Mn in a range of 3.0 to 1.0, and has a glass transition temperature in a range of 110°C to 175°C. It is disclosed that a retardation film formed by stretching a cyclic olefin copolymer has excellent birefringence, in-plane retardation, and transparency.
- Cyclic olefin copolymers are required to further reduce birefringence while maintaining good moldability in optical parts that require smaller size and thinner profile. According to the studies conducted by the present inventors, it has become clear that in the inventions described in Patent Documents 1 to 3, there is room for improvement in the performance balance between moldability and low birefringence.
- the present invention was made in view of the above circumstances, and provides a cyclic olefin copolymer and a cyclic olefin copolymer composition that can realize a molded article with good moldability and low birefringence, and a cyclic olefin copolymer composition with good moldability.
- the object of the present invention is to provide a molded article and an optical component that are good and have low birefringence.
- the present inventors have made extensive studies to solve the above problems. As a result, by setting the ratio of the structural units derived from the olefin monomers and the structural units derived from the cyclic olefin monomers constituting the cyclic olefin copolymer, and the weight average molecular weight (Mw) to a specific range, the cyclic olefin copolymer
- Mw weight average molecular weight
- the present invention was completed by discovering that it is possible to improve the performance balance between moldability and low birefringence of the composite.
- a cyclic olefin copolymer, a cyclic olefin copolymer composition, a molded article, and an optical component shown below are provided.
- the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is 50,000 or more and 500,000 or less, A cyclic olefin copolymer having a glass transition temperature (Tg) of 150°C or higher.
- R 300 represents a hydrogen atom or a linear or branched hydrocarbon group having 1 to 28 carbon atoms.
- u is 0 or 1
- v is 0 or a positive integer
- w is 0 or 1
- R 61 to R 78 and R a1 and R b1 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group
- R 75 to R 78 may be bonded to each other to form a monocyclic or polycyclic ring, and the monocyclic or polycyclic ring is a double ring.
- Mw weight average molecular weight
- [3] The cyclic olefin copolymer according to [1] or [2], which has a glass transition temperature (Tg) of 165°C or higher.
- Tg glass transition temperature
- [4] The cyclic olefin copolymer according to any one of [1] to [3], which has a molecular weight distribution (Mw/Mn) of 2.20 or more and 2.50 or less.
- Mw/Mn molecular weight distribution
- [5] The cyclic olefin copolymer according to any one of [1] to [4], which has an intrinsic viscosity ⁇ [dl/g] (in decalin at 135°C) of 0.60 dl/g or less.
- a molded article comprising the cyclic olefin copolymer according to any one of [1] to [8], or the cyclic olefin copolymer composition according to [9] or [10].
- An optical component comprising the molded article according to [11].
- the optical component according to [12] which is a lens for a head-mounted display.
- a cyclic olefin copolymer and a cyclic olefin copolymer composition which can realize a molded article having good moldability and low birefringence, and a cyclic olefin copolymer composition having good moldability and low birefringence. It is possible to provide low-cost molded bodies and optical components.
- each monomer constituting the cyclic olefin copolymer of the present invention may be a monomer obtained from fossil raw materials, or may be a monomer obtained from animal or plant raw materials.
- the cyclic olefin copolymer of the present invention comprises a structural unit (A) derived from an olefin monomer represented by the following formula (1), a cyclic olefin monomer represented by the following formula (2), and a cyclic olefin monomer represented by the following formula (3).
- a cyclic olefin copolymer comprising a structural unit (B) derived from at least one cyclic olefin monomer selected from the group consisting of cyclic olefin monomers, wherein the above-mentioned structure in the cyclic olefin copolymer
- the total content of the unit (A) and the structural unit (B) is 100 mol%
- the content of the structural unit (A) is 40 mol% or more and 70 mol% or less
- the structural unit (B) The content of ) is 150°C or higher.
- R 300 represents a hydrogen atom or a linear or branched hydrocarbon group having 1 to 28 carbon atoms.
- u is 0 or 1
- v is 0 or a positive integer
- w is 0 or 1
- R 61 to R 78 and R a1 and R b1 each independently represent hydrogen.
- R 75 to R 78 may be bonded to each other to form a monocyclic ring or a polycyclic ring, and the monocyclic ring or the polycyclic ring is a double bond.
- R 75 and R 76 or R 77 and R 78 may form an alkylidene group.
- x and d are 0 or an integer of 1 or more
- y and z are 0, 1, or 2
- R 81 to R 99 each independently represent a hydrogen atom, a halogen atom, and a carbon atom.
- the cyclic olefin copolymer of the present invention has good moldability and can realize a molded article with low birefringence.
- the reason why such an effect is obtained is presumed to be as follows.
- the birefringence of the cyclic olefin copolymer according to the present invention is considered to depend on the anisotropy of polarizability derived from each primary structure. Therefore, by copolymerizing the monomer composition ratio of the constituent unit (A) with positive birefringence and the constituent unit (B) with negative birefringence in an appropriate ratio, positive and negative birefringence can be achieved within the polymer molecule. It is considered that the cycloolefin-based copolymer with low birefringence, which is unlikely to generate birefringence by canceling out the birefringence, can be obtained.
- the cyclic olefin copolymer according to the present invention can provide a molded article with good moldability and low birefringence.
- the olefin monomer which is one of the copolymerization raw materials for the cyclic olefin copolymer according to the present invention, is one that undergoes addition polymerization to form the structural unit (A), and is an olefin monomer represented by the formula (1).
- A structural unit
- A an olefin monomer represented by the formula (1).
- R 300 represents a hydrogen atom or a linear or branched hydrocarbon group having 1 to 28 carbon atoms.
- the olefin monomer represented by the formula (1) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, and 3-ethyl.
- -1-pentene 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3 -Ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and the like.
- at least one selected from the group consisting of ethylene and propylene is preferred, and ethylene is more preferred.
- the content of the structural unit (A) in the cyclic olefin copolymer according to the present invention is based on the total content of the structural unit (A) and the structural unit (B) in the cyclic olefin copolymer as 100 mol%.
- the content is 40 mol% or more, preferably 45 mol% or more, more preferably 50 mol% or more, even more preferably 54 mol% or more, and the same From this viewpoint, the content is 70 mol% or less, preferably 65 mol% or less, more preferably 62 mol% or less, even more preferably 60 mol% or less, even more preferably 58 mol% or less.
- the content of the structural unit (A) derived from the olefin monomer represented by the formula (1) can be measured by 13 C-NMR.
- the cyclic olefin monomer which is one of the copolymerization raw materials for the cyclic olefin copolymer according to the present invention, is one that undergoes addition polymerization to form the above-mentioned structural unit (B), and is a cyclic olefin monomer represented by the above formula (2).
- Examples include olefin monomers and cyclic olefin monomers represented by the above formula (3).
- u is 0 or 1, preferably 0.
- v is 0 or a positive integer, preferably an integer of 0 or more and 2 or less, more preferably 0 or 1, and even more preferably 1.
- w is 0 or 1, preferably 1.
- R 61 to R 78 and R a1 and R b1 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group, preferably selected from the group consisting of a hydrogen atom and a hydrocarbon group, and more preferably is a hydrogen atom.
- hydrocarbon group examples include an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 15 carbon atoms, or an aromatic group having 6 to 20 carbon atoms.
- hydrocarbon groups preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
- R 75 to R 78 may be combined with each other to form a monocyclic ring or a polycyclic ring, and the monocyclic ring or the polycyclic ring may have a double bond, and R 75 and R 76 , Alternatively, R 77 and R 78 may form an alkylidene group.
- x and d are 0 or an integer greater than or equal to 1, preferably 0 or 1, and more preferably 1.
- y and z are 0, 1 or 2, preferably 0 or 1, more preferably 0.
- R 81 to R 99 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group, preferably selected from the group consisting of a hydrogen atom and a hydrocarbon group, and more preferably a hydrogen atom.
- the hydrocarbon group include an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 15 carbon atoms, or an aromatic group having 6 to 20 carbon atoms.
- Examples include hydrocarbon groups, preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
- the carbon atom to which R 89 and R 90 are bonded and the carbon atom to which R 93 is bonded or the carbon atom to which R 91 is bonded may be directly or via an alkylene group having 1 to 3 carbon atoms.
- R 95 and R 92 or R 95 and R 99 may be bonded to each other to form a monocyclic or polycyclic aromatic ring.
- cyclic olefin monomer represented by formula (2) or formula (3) include the compounds described in paragraphs 0037 to 0063 of International Publication No. 2006/118261.
- the cyclic olefin monomer represented by the formula (2) is preferred.
- the cyclic olefin monomer represented by the formula (2) is preferably tetracyclo[4.4.0.1 2,5 . 1 7,10 ]-3-dodecene (also referred to herein as "tetracyclododecene"), bicyclo[2.2.1]-2-heptene (also referred to herein as "norbornene”). ), and derivatives thereof, more preferably at least one selected from the group consisting of tetracyclododecene and norbornene, and still more preferably tetracyclododecene.
- the content of the structural unit (B) in the cyclic olefin copolymer according to the present invention is based on the total content of the structural unit (A) and the structural unit (B) in the cyclic olefin copolymer as 100 mol%.
- 30 mol% or more preferably 35 mol% or more, more preferably 38 mol% or more, still more preferably 40 mol% or more, even more preferably It is 42 mol% or more, and from the same viewpoint, it is 60 mol% or less, preferably 55 mol% or less, more preferably 50 mol% or less, and even more preferably 46 mol% or less.
- the content of the structural unit (B) derived from the cyclic olefin monomer represented by the above formula (2) or (3) can be measured by 13 C-NMR.
- Examples of the copolymerization type of the cyclic olefin copolymer according to the present invention include random copolymers, block copolymers, and the like.
- the cyclic olefin copolymer according to the present invention is a copolymer type of the cyclic olefin copolymer according to the present invention from the viewpoint of further improving the balance of performance such as moldability, low birefringence, transparency, and refractive index. is preferably a random copolymer.
- the cyclic olefin copolymer according to the present invention includes ethylene and tetracyclo [4.4.0.1 2, 5 . At least one selected from the group consisting of a random copolymer with 1 7,10 ]-3-dodecene and a random copolymer of ethylene and bicyclo[2.2.1]-2-heptene is preferable, and ethylene and tetracyclo [4.4.0.1 2,5 . A random copolymer with 1 7,10 ]-3-dodecene is more preferred.
- the total content of structural units (A) and structural units (B) in the cyclic olefin copolymer according to the present invention is based on the total content of all structural units in the cyclic olefin copolymer as 100 mol%. From the viewpoint of further improving the performance balance between moldability and low birefringence, preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, even more preferably 97 mol% or more, More preferably, it is 98 mol% or more, still more preferably 99 mol% or more, and from the same point of view, preferably 100 mol% or less.
- the cyclic olefin copolymer according to the present invention may be used alone or in combination of two or more.
- the cyclic olefin copolymer according to the present invention is disclosed, for example, in JP-A-60-168708, JP-A-61-120816, JP-A-61-115912, JP-A-61-115916, JP 61-271308, JP 61-272216, JP 62-252406, JP 62-252407, JP 2018-145349, International Public Relations 2015/122415 , JP-A No. 2007-063409, JP-A No. 2-173112, etc., by selecting appropriate conditions.
- the cyclic olefin copolymer according to the present invention can be prepared using a predetermined catalyst. It is preferable to produce a copolymer based on the above.
- the catalyst include half metallocene titanium compounds, half metallocene zirconium compounds, half metallocene hafnium compounds, metallocene titanium compounds, metallocene zirconium compounds, and metallocene hafnium compounds.
- half metallocene titanium compounds having at least one of a cyclopentadienyl group and a pyrazolate group half metallocene zirconium compounds having at least one of a cyclopentadienyl group and a pyrazolate group, and cyclopentadienyl groups. selected from the group consisting of a half metallocene hafnium compound having at least one of a dienyl group and a pyrazolate group, a metallocene titanium compound having fluorene, a metallocene zirconium compound having fluorene, and a metallocene hafnium compound having fluorene.
- One or more types are preferred.
- These catalysts can be produced, for example, by appropriately selecting conditions according to the methods described in JP-A No. 2018-150273 and JP-A No. 2019-172954.
- the glass transition temperature (Tg) of the cyclic olefin copolymer according to the present invention is 150°C or higher, preferably 155°C or higher, more preferably 155°C or higher, from the viewpoint of improving the performance balance of moldability, low birefringence, and heat resistance. is 160°C or higher, more preferably 165°C or higher, even more preferably 170°C or higher, even more preferably 175°C or higher, even more preferably 180°C or higher, and from the same point of view, preferably 250°C or lower, more preferably 230°C or higher. °C or lower, more preferably 200°C or lower, still more preferably 190°C or lower.
- the glass transition temperature (Tg) of the cyclic olefin copolymer according to the present invention can be measured using a differential scanning calorimeter (DSC). Specific measurement conditions include, for example, using DSC-7020 manufactured by Hitachi High-Tech Science Co., Ltd., the temperature was raised from room temperature to 250 °C at a rate of 10 °C/min in a nitrogen atmosphere, and then held for 5 minutes. The temperature was then lowered to ⁇ 20° C. at a rate of 10° C./min and held for 5 minutes. Then, the glass transition temperature (Tg) of the cyclic olefin copolymer can be determined from the endothermic curve when the temperature is raised to 300°C at a rate of 10°C/min.
- DSC differential scanning calorimeter
- the intrinsic viscosity ⁇ [dl/g] (in decalin at 135°C) of the cyclic olefin copolymer according to the present invention is preferably 0.20 dl/g from the viewpoint of further improving the performance balance between moldability and low birefringence.
- the intrinsic viscosity ⁇ [dl/g] of the cyclic olefin copolymer according to the present invention can be measured according to ASTM J1601, and specifically, by the method described in Examples.
- the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the cyclic olefin copolymer according to the present invention is 50, 000 or more, preferably 70,000 or more, more preferably 80,000 or more, even more preferably 90,000 or more, still more preferably 100,000 or more, still more preferably 110,000 or more, and from the same point of view, 500,000 or more. ,000 or less, preferably 300,000 or less, more preferably 200,000 or less, even more preferably 150,000 or less, still more preferably 130,000 or less, still more preferably 120,000 or less.
- the Mw of the cyclic olefin copolymer is 150,000 or less, fish eyes are less likely to form during film molding, and fluidity becomes better during injection molding, so it can be suitably used for thin injection molding. Furthermore, birefringence is further suppressed, making it more suitable for optical applications, which is more preferable.
- the weight average molecular weight (Mw) of the cyclic olefin copolymer according to the present invention can be measured by the method described in Examples.
- the molecular weight distribution (Mw/Mn) of the cyclic olefin copolymer according to the present invention is preferably 2.20 or more, more preferably 2.25, from the viewpoint of further improving the performance balance between moldability and low birefringence. Above, it is more preferably 2.30 or more, still more preferably 2.35 or more, and from the same viewpoint, preferably 2.50 or less.
- the number average molecular weight (Mn) of the cyclic olefin copolymer according to the present invention can be measured by the method described in the Examples.
- the birefringence of the press-formed body is preferably 10 nm or less, more preferably 8 nm or less, even more preferably 5 nm or less, still more preferably 3.5 nm or less, still more preferably 3 nm or less, The thickness is more preferably 1 nm or less, and even more preferably 0.5 nm or less.
- the birefringence of an injection molded article is defined as the average value (nm) of the phase difference between 20 and 35 mm from the gate direction, which is measured at a measurement wavelength of 650 nm using, for example, a KOBRA CCD manufactured by Oji Scientific Instruments. It is.
- a 0.1 mm thick press-molded body made of a cyclic olefin copolymer can be produced by, for example, sandwiching the cyclic olefin copolymer between super heat-resistant polyimide films and using a 0.1 mm spacer. It is obtained by vacuum press molding a copolymer under conditions of 260° C., 10 MPa, and 3 minutes.
- the conditions for uniaxial stretching may be, for example, a stretching temperature of Tg of the cyclic olefin copolymer + 5° C., a stretching speed of 3%/min, and 1.5 times stretching in the uniaxial direction.
- the cyclic olefin copolymer composition according to the present invention contains the above-described cyclic olefin copolymer according to the present invention, and optionally contains other components other than the cyclic olefin copolymer according to the present invention. include.
- a case where the cyclic olefin copolymer composition according to the present invention contains only a cyclic olefin copolymer is also referred to as a cyclic olefin copolymer composition.
- the content of the cyclic olefin copolymer according to the present invention in the cyclic olefin copolymer composition according to the present invention is determined from the viewpoint of further improving the performance balance of moldability and low birefringence.
- the entire olefin copolymer composition is 100% by mass, preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, even more preferably is 95% by mass or more, more preferably 98% by mass or more.
- Other components include, for example, resins other than the cyclic olefin copolymer according to the present invention, hydrophilic agents, light stabilizers, heat stabilizers, antioxidants, metal deactivators, hydrochloric acid absorbers, antistatic agents, Examples include flame retardants, slip agents, anti-blocking agents, antifogging agents, lubricants, natural oils, synthetic oils, waxes, organic or inorganic fillers, secondary antioxidants, mold release agents, and the like. Other components can be blended within a range that does not impair the purpose of the present invention, and their blending ratios are appropriate.
- the cyclic olefin copolymer composition according to the present invention can be prepared by melt-kneading the cyclic olefin copolymer composition according to the present invention and other components using a known kneading device such as an extruder and a Banbury mixer; A method of dissolving the cyclic olefin copolymer according to the present invention and other components in a common solvent and then evaporating the solvent; adding a solution of the cyclic olefin copolymer according to the present invention and other components to a poor solvent; It can be obtained by a method such as a method of precipitating it.
- the molded article according to the present invention is a molded article containing the aforementioned cyclic olefin copolymer according to the present invention or the cyclic olefin copolymer composition according to the present invention. Since the molded article according to the present invention contains the cyclic olefin copolymer according to the present invention, it has a good balance of heat resistance, optical performance (transparency, haze, etc.), chemical resistance, low moisture absorption, etc. , the performance balance between moldability and low birefringence is improved.
- the molded article according to the present invention contains the cyclic olefin copolymer according to the present invention, it has excellent optical properties such as low birefringence. Therefore, it can be suitably used as an optical component in an optical system that requires highly accurate identification of images.
- Optical parts are parts used in optical equipment, etc., and specifically include various sensor lenses, pickup lenses, projector lenses, prisms, f-theta lenses, imaging lenses, camera lenses, light guide plates, and head mounts. Examples include display lenses, and from the viewpoint of the effects of the present invention, it can be particularly suitably used in f ⁇ lenses, imaging lenses, sensor lenses, prisms, light guide plates, head-mounted display lenses, and the like.
- the content of the cyclic olefin copolymer according to the present invention in the molded article according to the present invention is determined from the viewpoint of further improving the performance balance of moldability and low birefringence. %, preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, even more preferably 90% by mass or more, still more preferably 95% by mass or more, even more preferably 98% by mass. That's all.
- the method of molding the cyclic olefin copolymer according to the present invention or the cyclic olefin copolymer composition according to the present invention to obtain a molded product is not particularly limited, and known methods can be used. .
- examples include extrusion molding, injection molding, compression molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, powder slush molding, calendar molding, foam molding, etc. is applicable.
- injection molding and extrusion molding are preferred from the viewpoint of moldability and productivity, and injection molding is more preferred.
- the molding conditions are appropriately selected depending on the purpose of use or the molding method, but for example, the resin temperature in injection molding is, for example, 150°C to 400°C, preferably 200°C to 350°C, more preferably 230°C to 330°C. Appropriately selected within the range.
- Glass transition temperature (Tg) The glass transition temperature (Tg) of the cyclic olefin copolymer was measured in a nitrogen atmosphere using DSC-7020 manufactured by Hitachi High-Tech Science. The temperature of the cyclic olefin copolymer was raised from room temperature to 250°C at a heating rate of 10°C/min and then held for 5 minutes. Next, the temperature was lowered to -20°C at a cooling rate of 10°C/min and held for 5 minutes. Then, the glass transition temperature (Tg) of the cyclic olefin copolymer was determined from the endothermic curve when the temperature was raised to 300°C at a heating rate of 10°C/min.
- Weight average molecular weight (Mw), molecular weight distribution (Mw/Mn) The weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyclic olefin copolymer were determined by gel permeation chromatography (GPC). It was calculated from the molecular weight distribution curve obtained by "Alliance GPC 2000" gel permeation chromatograph (high temperature size exclusion chromatograph) manufactured by Waters, and the operating conditions are as follows.
- the stretched film was removed and immersed in ice water for 3 minutes to obtain a film for birefringence measurement.
- the obtained film for measuring birefringence was observed, and the moldability of the cyclic olefin copolymer was evaluated based on the following criteria.
- C Cracks are visually observed.
- D Cracks are visually observed and more than 70% do not maintain the film shape.
- Example 1 In a glass reactor with an internal volume of 2.0 L that was sufficiently purged with nitrogen, 900 mL of a mixed solution of cyclohexane/hexane mixed at a ratio of 9/1 and tetracyclo[4.4.0.1 2,5 . 1 7,10 ]-3-dodecene (hereinafter also simply referred to as "tetracyclododecene”. Mw: 160.2 (g/mol)) was charged, and 150 liters/hr of ethylene and 0 hydrogen were charged. The liquid and gas phases were saturated at .24 liters/hr. 0.9 mmol of MMAO (modified methylaluminoxane) was added.
- MMAO modified methylaluminoxane
- titanium compound (1) 3,5-bismethylethyl-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride (hereinafter referred to as titanium compound (1). Synthesized with reference to JP-A-2018-150273). In addition, 0.012 mmol of triphenylcarbenium tetrakis(pentafluorophenyl)borate (hereinafter referred to as borate compound (1). Synthesized with reference to JP 2018-150273A) was added to start the polymerization reaction.
- the polymerization activity was 4.38 kg/mmol/hr, and the obtained ethylene/tetracyclododecene copolymer (constituent unit (A): ethylene 56 mol%, constituent unit (B): tetracyclododecene 44 mol%) %), the intrinsic viscosity [ ⁇ ] was 0.47 (dl/g), Mw was 119,000 (g/mol), and Mw/Mn was 2.48.
- the glass transition temperature measured by differential scanning calorimeter (DSC) was 186°C, and the formability of the film for measuring birefringence was good (formability of film: A). Birefringence was 0.2 nm. The results are shown in Table 1.
- Example 2 A glass reactor with an internal volume of 500 mL that was sufficiently purged with nitrogen was charged with 300 mL of a cyclohexane/hexane (9/1) mixed solution and 3.6 g of tetracyclododecene, and 90 liters/hr of ethylene and 0.24 liters of hydrogen were charged. /hr to saturate the liquid and gas phases. 0.3 mmol of MMAO was added. 0.001 mmol of titanium compound (1) and 0.004 mmol of borate compound (1) were added to initiate polymerization.
- Ethylene 90 liters/hr and hydrogen 0.24 liters/hr were continuously supplied, and polymerization was carried out at 50° C. for 10 minutes under normal pressure. Thereafter, the polymerization was stopped by adding a small amount of isobutanol. After the polymerization was completed, the reactant was added to 1.2 liters of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 1.33 g of ethylene/tetracyclododecene copolymer.
- the polymerization activity was 7.97 kg/mmol/hr, and the obtained ethylene/tetracyclododecene copolymer (constituent unit (A): ethylene 59 mol%, constituent unit (B): tetracyclododecene 41 mol%) ) was 0.46 (dl/g), Mw was 104,000 (g/mol), and Mw/Mn was 2.37.
- the glass transition point temperature determined by DSC measurement was 168° C., and the formability of the film for measuring birefringence was good (formability of film: A). Birefringence was 3.1 nm. The results are shown in Table 1.
- Example 3 Into a glass reactor with an internal volume of 500 mL that was sufficiently purged with nitrogen, 300 mL of a mixed solution of cyclohexane/hexane at a ratio of 9/1 and 2.7 g of tetracyclododecene were charged, and ethylene was heated at 90 liters/hr. The liquid and gas phases were saturated with 0.24 liters/hr of hydrogen. 0.3 mmol of MMAO (modified methylaluminoxane) was added. Subsequently, 0.001 mmol of titanium compound (1) and 0.004 mmol of borate compound were added to start the polymerization reaction.
- MMAO modified methylaluminoxane
- the polymerization activity was 1.8 kg/mmol ⁇ hr, and the obtained ethylene/tetracyclododecene copolymer (constituent unit (A): 63 mol% ethylene, structural unit (B): 37 mol% tetracyclododecene) %), the intrinsic viscosity [ ⁇ ] was 0.53 (dl/g), the Mw was 114,000 (g/mol), and the Mw/Mn was 2.43.
- the glass transition temperature by DSC measurement was 150° C., and the formability of the film for measuring birefringence was good (formability of film: A). Birefringence was 7.7 nm.
- Table 1 The results are shown in Table 1.
- Comparative example 1 300 mL of a cyclohexane/hexane (9/1) mixed solution and 32.4 g of tetracyclododecene were charged into a glass reactor with an internal volume of 500 mL, which was sufficiently purged with nitrogen, and the mixture was charged with 90 liters/hr of ethylene and 0.24 liters of hydrogen. /hr to saturate the liquid and gas phases. 0.3 mmol of MMAO was added. Add 0.00012 mmol of 3,5-bis(t-butyl)-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride (hereinafter referred to as titanium compound (2)), and add 0.004 mmol of borate compound (1). was added to start polymerization.
- titanium compound (2) 3,5-bis(t-butyl)-1-pyrazolate-t-butylcyclopentadienyl titanium dichloride
- Ethylene 90 liters/hr and hydrogen 0.24 liters/hr were continuously supplied, and polymerization was carried out at 50° C. for 10 minutes under normal pressure. Thereafter, the polymerization was stopped by adding a small amount of isobutanol. After the polymerization was completed, the reactant was added to 1.2 liters of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 1.54 g of ethylene/tetracyclododecene copolymer.
- the polymerization activity was 79.36 kg/mmol/hr, and the obtained ethylene/tetracyclododecene copolymer (constituent unit (A): ethylene 56 mol%, constituent unit (B): tetracyclododecene 44 mol%) ) was 0.17 (dl/g), Mw was 26,100 (g/mol), and Mw/Mn was 2.10.
- the glass transition point temperature determined by DSC measurement was 182° C., and the formability of the film for measuring birefringence was poor (formability of the film: D). Birefringence cannot be measured.
- Table 1 The results are shown in Table 1.
- Comparative example 2 300 mL of a cyclohexane/hexane (9/1) mixed solution and 8.4 g of tetracyclododecene were charged into a glass reactor with an internal volume of 500 mL that was sufficiently purged with nitrogen, and the liquid phase and gas phase were heated at 51 liters/hr of ethylene. saturated. 0.3 mmol of MMAO was added. 0.000125 mmol of titanium compound (2) was added, and 0.004 mmol of borate compound (1) was added to start polymerization.
- Ethylene was continuously supplied at 51 liters/hr, and polymerization was carried out at 50° C. for 10 minutes under normal pressure. Thereafter, the polymerization was stopped by adding a small amount of isobutanol. After the polymerization was completed, the reactant was added to 1.2 liters of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 0.84 g of ethylene/tetracyclododecene copolymer.
- the polymerization activity was 40.37 kg/mmol/hr, and the obtained ethylene/tetracyclododecene copolymer (constituent unit (A): 64 mol% ethylene, structural unit (B): 36 mol% tetracyclododecene) ) was 3.15 (dl/g), Mw was 1,290,000 (g/mol), and Mw/Mn was 2.54.
- the glass transition point temperature determined by DSC measurement was 156° C., and the formability of the film for birefringence measurement was normal (formability of film: B). Birefringence was 18.3 nm. The results are shown in Table 1.
- Comparative example 3 300 mL of a cyclohexane/hexane (9/1) mixed solution and 5.3 g of tetracyclododecene were charged into a glass reactor with an internal volume of 500 mL that was sufficiently purged with nitrogen, and the liquid and gas phases were heated at 51 liters/hr of ethylene. saturated. 0.3 mmol of MMAO was added. 0.000125 mmol of titanium compound (2) was added, and 0.004 mmol of borate compound (1) was added to start polymerization.
- Ethylene was continuously supplied at 51 liters/hr, and polymerization was carried out at 50° C. for 10 minutes under normal pressure. Thereafter, the polymerization was stopped by adding a small amount of isobutanol. After the polymerization was completed, the reactant was added to 1.2 liters of acetone/methanol (3/1) mixed solvent containing a small amount of hydrochloric acid to precipitate a polymer. After washing with the same solvent, it was dried under reduced pressure at 130° C. for 10 hours to obtain 0.68 g of ethylene/tetracyclododecene copolymer.
- the polymerization activity was 32.98 kg/mmol/hr, and the obtained ethylene/tetracyclododecene copolymer (constituent unit (A): 67 mol% ethylene, structural unit (B): 33 mol% tetracyclododecene) ) was 4.80 (dl/g), Mw was 3,520,000 (g/mol), and Mw/Mn was 2.77.
- the glass transition point temperature determined by DSC measurement was 138° C., and the formability of the film for measuring birefringence was normal (formability of film: B). Birefringence was 33.0 nm. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
しかし、ガラスは成形性に劣り、軽量化が困難という欠点を有することより、最近では軽量で成形性に優れる高分子材料が光学部品用の材料として用いられるようになっている。このような高分子材料としては、例えばポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)等が挙げられる。
また、PCは屈折率及び耐熱性はPMMAよりも優れているが、複屈折が高いという欠点を有している。光学部品では複屈折が高いと収差が大きく発生するので、集光スポット形状に異常をきたし、ピックアップ性能が低下してしまう。
このような環状オレフィン系共重合体に関する技術としては、例えば、特許文献1~3に記載の発明がある。
本発明者らの検討によると、特許文献1~3に記載の発明では、成形性及び低複屈折性の性能バランスについて改善の余地があることが明らかになった。
本発明によれば、以下に示す環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品が提供される。
下記式(1)で示されるオレフィンモノマーから導かれる構成単位(A)と、
下記式(2)で示される環状オレフィンモノマー及び下記式(3)で示される環状オレフィンモノマーからなる群より選択される少なくとも一種の環状オレフィンモノマーから導かれる構成単位(B)と、
を含む環状オレフィン系共重合体であって、
前記環状オレフィン系共重合体中の前記構成単位(A)及び前記構成単位(B)の合計含有量を100モル%としたとき、前記構成単位(A)の含有量が40モル%以上70モル%以下であり、前記構成単位(B)の含有量が30モル%以上60モル%以下であり、
ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が50,000以上500,000以下であり、
ガラス転移温度(Tg)が150℃以上である環状オレフィン系共重合体。
[2]
前記重量平均分子量(Mw)が50,000以上150,000以下であり、
前記ガラス転移温度(Tg)が150℃以上190℃以下である、[1]に記載の環状オレフィン系共重合体。
[3]
ガラス転移温度(Tg)が165℃以上である、[1]又は[2]に記載の環状オレフィン系共重合体。
[4]
分子量分布(Mw/Mn)が2.20以上2.50以下である、[1]~[3]のいずれかに記載の環状オレフィン系共重合体。
[5]
極限粘度η[dl/g](135℃デカリン中)が0.60dl/g以下である、[1]~[4]のいずれかに記載の環状オレフィン系共重合体。
[6]
前記構成単位(B)を構成する前記環状オレフィンモノマーが、テトラシクロドデセン、ノルボルネン及びこれらの誘導体からなる群より選択される少なくとも一種の環状オレフィンモノマーを含む、[1]~[5]のいずれかに記載の環状オレフィン系共重合体。
[7]
前記構成単位(A)を構成する前記オレフィンモノマーがエチレンを含む、[1]~[6]のいずれかに記載の環状オレフィン系共重合体。
[8]
前記環状オレフィン系共重合体からなる厚さ0.1mmのプレス成形体を作製し、次いで、前記プレス成形体を一軸延伸したとき、一軸延伸した前記プレス成形体の複屈折が10nm以下である、[1]~[7]のいずれかに記載の環状オレフィン系共重合体。
[9]
[1]~[8]のいずれかに記載の環状オレフィン系共重合体を含む環状オレフィン系共重合体組成物。
[10]
光学部品に使用可能な、[1]~[8]のいずれかに記載の環状オレフィン系共重合体又は[9]に記載の環状オレフィン系共重合体組成物。
[11]
[1]~[8]のいずれかに記載の環状オレフィン系共重合体、又は、[9]又は[10]に記載の環状オレフィン系共重合体組成物を含む成形体。
[12]
[11]に記載の成形体を含む光学部品。
[13]
ヘッドマウントディスプレイ用レンズである、[12]に記載の光学部品。
[14]
[12]に記載の光学部品のヘッドマウントディスプレイ用レンズのための使用。
また、本発明の環状オレフィン系共重合体を構成する各モノマーは、化石原料から得られるモノマーであってもよく、動植物系原料から得られるモノマーであってもよい。
本発明の環状オレフィン系共重合体は、下記式(1)で示されるオレフィンモノマーから導かれる構成単位(A)と、下記式(2)で示される環状オレフィンモノマー及び下記式(3)で示される環状オレフィンモノマーからなる群より選択される少なくとも一種の環状オレフィンモノマーから導かれる構成単位(B)と、を含む環状オレフィン系共重合体であって、前記環状オレフィン系共重合体中の前記構成単位(A)及び前記構成単位(B)の合計含有量を100モル%としたとき、前記構成単位(A)の含有量が40モル%以上70モル%以下であり、前記構成単位(B)の含有量が30モル%以上60モル%以下であり、ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が50,000以上500,000以下であり、ガラス転移温度(Tg)が150℃以上である。
本発明に係る環状オレフィン系共重合体の複屈折は、それぞれの一次構造に由来する分極率の異方性に依存すると考えられる。そのため、複屈折が正の構成単位(A)及び複屈折が負の構成単位(B)のモノマーの組成比を適切な比率で共重合することで、ポリマー分子内で複屈折性の正と負が相殺され複屈折が生じにくい低複屈折の環状オレフィン系共重合体を得ることができると考えられる。
一方で、上記構成単位(B)の含有量が多くなると、環状オレフィン系共重合体のガラス転移温度Tgが高くなり、成形性が低下する傾向にある。そのため、本発明に係る環状オレフィン系共重合体の重量平均分子量(Mw)を適切な範囲にすることで、成形性の低下を抑制することができる。
以上の理由から、本発明に係る環状オレフィン系共重合体によれば、成形性が良好であり、複屈折が低い成形体を得ることができると考えられる。
前記式(1)で示されるオレフィンモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、及び1-エイコセン等からなる群から選択される少なくとも一種が挙げられる。これらの中でも、より優れた耐熱性、機械的特性及び光学特性を有する光学部品を得る観点から、好ましくはエチレン及びプロピレンからなる群から選択される少なくとも一種であり、より好ましくはエチレンである。
前記式(1)で示されるオレフィンモノマー由来の構成単位(A)の含有量は、13C-NMRによって測定することができる。
vは0又は正の整数、好ましくは0以上2以下の整数、より好ましくは0又は1、更に好ましくは1である。
wは0又は1、好ましくは1である。
R61~R78並びにRa1及びRb1は、それぞれ独立に水素原子、ハロゲン原子、及び炭化水素基からなる群より選択され、好ましくは水素原子及び炭化水素基からなる群より選択され、より好ましくは水素原子である。炭化水素基としては、例えば、炭素原子数1~20のアルキル基、炭素原子数1~20のハロゲン化アルキル基、炭素原子数3~15のシクロアルキル基又は炭素原子数6~20の芳香族炭化水素基等が挙げられ、炭素原子数1以上4以下のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が更に好ましい。
R75~R78は互いに結合して単環又は多環を形成していてもよく、前記単環又は前記多環が二重結合を有していてもよく、R75とR76とで、又はR77とR78とでアルキリデン基を形成していてもよい。
y及びzは0、1又は2、好ましくは0又は1、より好ましくは0である。
R81~R99は、それぞれ独立に水素原子、ハロゲン原子、及び炭化水素基からなる群より選択され、好ましくは水素原子及び炭化水素基からなる群より選択され、より好ましくは水素原子である。炭化水素基としては、例えば、炭素原子数1~20のアルキル基、炭素原子数1~20のハロゲン化アルキル基、炭素原子数3~15のシクロアルキル基又は炭素原子数6~20の芳香族炭化水素基等が挙げられ、炭素原子数1以上4以下のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が更に好ましい。
R89及びR90が結合している炭素原子と、R93が結合している炭素原子又はR91が結合している炭素原子とは、直接あるいは炭素原子数1以上3以下のアルキレン基を介して結合していてもよく、y=z=0のとき、R95とR92又はR95とR99とは互いに結合して単環又は多環の芳香族環を形成していてもよい。
前記式(2)で表される環状オレフィンモノマーとしては、成形性及び低複屈折性の性能バランスをより向上させる観点から、好ましくは、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(本明細書では、「テトラシクロドデセン」とも呼ぶ。)、ビシクロ[2.2.1]-2-ヘプテン(本明細書では、「ノルボルネン」とも呼ぶ。)、及びこれらの誘導体からなる群より選択される少なくとも一種であり、より好ましくは、テトラシクロドデセン及びノルボルネンからなる群より選択される少なくとも一種であり、更に好ましくはテトラシクロドデセンである。
前記式(2)又は(3)で示される環状オレフィンモノマー由来の構成単位(B)の含有量は、13C-NMRによって測定することができる。
触媒としては、例えば、ハーフメタロセン系のチタン化合物、ハーフメタロセン系のジルコニウム化合物、ハーフメタロセン系のハフニウム化合物、メタロセン系のチタン化合物、メタロセン系のジルコニウム化合物、及びメタロセン系のハフニウム化合物等が挙げられる。
これらの中でも、シクロペンタジエニル基及びピラゾレート基のいずれか少なくとも一方を有するハーフメタロセン系のチタン化合物、シクロペンタジエニル基及びピラゾレート基のいずれか少なくとも一方を有するハーフメタロセン系のジルコニウム化合物、シクロペンタジエニル基及びピラゾレート基のいずれか少なくとも一方を有するハーフメタロセン系のハフニウム化合物、フルオレンを有するメタロセン系チタン化合物、フルオレンを有するメタロセン系ジルコニウム化合物、及びフルオレンを有するメタロセン系ハフニウム化合物からなる群から選択される一種または二種以上が好ましい。
これらの触媒は、例えば、特開2018-150273号公報、特開2019-172954号公報等の方法に従い適宜条件を選択することにより製造することができる。
本発明に係る環状オレフィン系共重合体の極限粘度η[dl/g]は、ASTM J1601に準じて測定することができ、具体的には、実施例に記載の方法により測定できる。
特に、環状オレフィン系共重合体のMwが150,000以下であると、フィルム成形時にフィッシュアイができにくく、射出成型時に流動性がより良好になるので薄型射出成型に好適に用いることができる。さらに、複屈折がより抑えられるので光学用途への展開により適するため、より好ましい。
本発明に係る環状オレフィン系共重合体の重量平均分子量(Mw)は、具体的には、実施例に記載の方法により測定することができる。
本発明に係る環状オレフィン系共重合体の数平均分子量(Mn)は、具体的には、実施例に記載の方法により測定することができる。
本明細書において、射出成形体の複屈折は、例えば、王子計測機器社製のKOBRA CCDを用いて、測定波長650nmで測定される、ゲート方向から20~35mmの位相差の平均値(nm)である。
また、環状オレフィン系共重合体からなる厚さ0.1mmのプレス成形体は、例えば、環状オレフィン系共重合体を、超耐熱性ポリイミドフィルムに挟み込み、0.1mmスペーサーを用いて、環状オレフィン系共重合体を260℃、10MPa、3分間の条件で真空プレス成形して得られるものである。また、一軸延伸の条件は、例えば、環状オレフィン系共重合体のTg+5℃の延伸温度、3%/minの延伸速度の条件で、一軸方向に1.5倍延伸の条件を採用できる。
本発明に係る環状オレフィン系共重合体組成物は、前述した本発明に係る環状オレフィン系共重合体を含み、必要に応じて、本発明に係る環状オレフィン系共重合体以外のその他の成分を含む。本明細書において、本発明に係る環状オレフィン系共重合体組成物が環状オレフィン系共重合体のみしか含まない場合も環状オレフィン系共重合体組成物と呼ぶ。
本発明に係る成形体は、前述した本発明に係る環状オレフィン系共重合体又は本発明に係る環状オレフィン系共重合体組成物を含む成形体である。
本発明に係る成形体は、本発明に係る環状オレフィン系共重合体を含むため、耐熱性、光学性能(透明性やヘイズ等)、耐薬品性及び低吸湿性等のバランスが良好であるとともに、成形性及び低複屈折性の性能バランスが向上している。
光学部品とは光学系機器等に使用される部品であり、具体的には、各種センサー用レンズ、ピックアップレンズ、プロジェクタ用レンズ、プリズム、fθレンズ、撮像用レンズ、カメラレンズ、導光板、ヘッドマウントディスプレイ用レンズ等が挙げられ、本発明に係る効果の観点から、fθレンズ、撮像レンズ、センサー用レンズ、プリズム、導光板、又はヘッドマウントディスプレイ用レンズ等にとりわけ好適に用いることができる。
また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
エチレン及びテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンの含有量は、ブルカーバイオスピン社製AVANCE IIIcryo-500型核磁気共鳴装置を用い、下記条件で測定することにより行った。
溶媒:重テトラクロロエタン
サンプル濃度:10w/v%
パルス繰り返し時間:12秒
積算回数:256回
測定温度:120℃
上記のような条件で測定した13C-NMRスペクトルにより、エチレン及びテトラシクロドデセンの含有量をそれぞれ定量した。
移動粘度計(離合社製、タイプVNR053U型)を用い、環状オレフィン系共重合体の0.25~0.30gを25mlのデカリンに溶解させたものを試料とした。ASTM J1601に準じ135℃にて環状オレフィン系共重合体の比粘度を測定し、これと濃度との比を濃度0に外挿して環状オレフィン系共重合体の極限粘度[η]を求めた。
日立ハイテクサイエンス社製、DSC-7020を用いて窒素雰囲気下で環状オレフィン系共重合体のガラス転移温度(Tg)を測定した。環状オレフィン系共重合体を常温から10℃/分の昇温速度で250℃まで昇温した後に5分保持した。次いで、10℃/分の降温速度で-20℃まで降温した後に、5分保持した。そして、10℃/分の昇温速度で300℃まで昇温する際の吸熱曲線から環状オレフィン系共重合体のガラス転移温度(Tg)を求めた。
環状オレフィン系共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により求めた。Waters社製「Alliance GPC 2000」ゲル浸透クロマトグラフ(高温サイズ排除クロマトグラフ)により得られる分子量分布曲線から計算したものであり、操作条件は、下記の通りである。
<使用装置及び条件>
測定装置:ゲル浸透クロマトグラフ allianceGPC2000型(Waters社)
解析ソフト:クロマトグラフィデータシステム Empower(商標、Waters社)
カラム:TSKgel GMH6-HT×2 + TSKgel GMH6-HT×2(内径7.5mm×長さ30cm、東ソー社)
移動相:o-ジクロロベンゼン〔=ОDCB〕(和光純薬社製、特級試薬)
検出器:示差屈折計(装置内蔵)
カラム温度:140℃
流速:1.0mL/min
注入量:400μL
サンプリング時間間隔:1秒
試料濃度:0.15%(w/v)
分子量較正 単分散ポリスチレン(東ソー社)/分子量495から分子量2060万
実施例及び比較例で得られた環状オレフィン系共重合体を、超耐熱性ポリイミドフィルム(商品名:ユーピレックス、宇部興産社製)に挟み込み、0.1mmスペーサーを用いて、260℃、10MPa、3分間の条件で真空プレス成形した。次いで、得られたフィルムをAG-X-P(島率製作所)を用いて、環状オレフィン系共重合体のTg+5℃の延伸温度、3%/minの延伸速度の条件で、一軸方向に1.5倍延伸した。延伸後のフィルムは取り外し氷水に3分間浸し、複屈折測定用フィルムを得た。
次いで、得られた複屈折測定用フィルムを観察し、以下の基準で環状オレフィン系共重合体の成形性を評価した。
A:目視でクラックが観察されず、80%以上がフィルム形状を維持している
B:目視でクラックが観察されるが、70%以上がフィルム形状を維持している
C:目視でクラックが観察され、30%超70%未満がフィルム形状を維持してない
D:目視でクラックが観察され、70%以上がフィルム形状を維持してない
上記で得られた80mm×15mm×厚み0.08mmの複屈折測定用フィルムについて、王子計測機器社製のKOBRA CCDを用いて、測定波長650nmで、ゲート方向から20~35mmの位相差の平均値(nm)を複屈折として求めた。
充分に窒素置換した内容積2.0Lのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液900mLと、テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(以下、単に「テトラシクロドデセン」とも記載する。Mw:160.2(g/mol))16.2gを装入し、エチレン150リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。MMAO(修飾メチルアルミノキサン)を0.9mmol添加した。引き続き、3,5-ビスメチルエチル―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリド(以下、チタン化合物(1)と称する。特開2018-150273号公報を参照に合成。)を0.003mmol加え、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(以下、ボレート化合物(1)と称する。特開2018-150273号公報を参照に合成。)を0.012mmol加え、重合反応を開始した。
充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとテトラシクロドデセン3.6gを装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。MMAOを0.3mmol添加した。チタン化合物(1)を0.001mmol加え、ボレート化合物(1)0.004mmolを加え重合を開始した。
充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサンを9/1の割合で混合した混合溶液300mLと、テトラシクロドデセン2.7gを装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。MMAO(修飾メチルアルミノキサン)を0.3mmol添加した。引き続き、チタン化合物(1)を0.001mmol加え、ボレート化合物を0.004mmol加え、重合反応を開始した。
充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとテトラシクロドデセン32.4gを装入し、エチレン90リットル/hr、水素0.24リットル/hrで液相及び気相を飽和させた。MMAOを0.3mmol添加した。3,5-ビス(t-ブチル)―1-ピラゾレート-t-ブチルシクロペンタジエニルチタニウムジクロリド(以下、チタン化合物(2)と称する。)を0.00012mmol加え、ボレート化合物(1)0.004mmolを加え重合を開始した。
充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとテトラシクロドデセン8.4gを装入し、エチレン51リットル/hrで液相及び気相を飽和させた。MMAOを0.3mmol添加した。チタン化合物(2)を0.000125mmol加え、ボレート化合物(1)0.004mmolを加え重合を開始した。
充分に窒素置換した内容積500mLのガラス製反応器に、シクロヘキサン/ヘキサン(9/1)混合溶液300mLとテトラシクロドデセン5.3gを装入し、エチレン51リットル/hrで液相及び気相を飽和させた。MMAOを0.3mmol添加した。チタン化合物(2)を0.000125mmol加え、ボレート化合物(1)0.004mmolを加え重合を開始した。
Claims (14)
- 下記式(1)で示されるオレフィンモノマーから導かれる構成単位(A)と、
下記式(2)で示される環状オレフィンモノマー及び下記式(3)で示される環状オレフィンモノマーからなる群より選択される少なくとも一種の環状オレフィンモノマーから導かれる構成単位(B)と、
を含む環状オレフィン系共重合体であって、
前記環状オレフィン系共重合体中の前記構成単位(A)及び前記構成単位(B)の合計含有量を100モル%としたとき、前記構成単位(A)の含有量が40モル%以上70モル%以下であり、前記構成単位(B)の含有量が30モル%以上60モル%以下であり、
ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が50,000以上500,000以下であり、
ガラス転移温度(Tg)が150℃以上である環状オレフィン系共重合体。
- 前記重量平均分子量(Mw)が50,000以上150,000以下であり、
前記ガラス転移温度(Tg)が150℃以上190℃以下である、請求項1に記載の環状オレフィン系共重合体。 - 前記ガラス転移温度(Tg)が165℃以上である、請求項1又は2に記載の環状オレフィン系共重合体。
- 分子量分布(Mw/Mn)が2.20以上2.50以下である、請求項1~3のいずれかに記載の環状オレフィン系共重合体。
- 極限粘度η[dl/g](135℃デカリン中)が0.60dl/g以下である、請求項1~4のいずれかに記載の環状オレフィン系共重合体。
- 前記構成単位(B)を構成する前記環状オレフィンモノマーが、テトラシクロドデセン、ノルボルネン及びこれらの誘導体からなる群より選択される少なくとも一種の環状オレフィンモノマーを含む、請求項1~5のいずれかに記載の環状オレフィン系共重合体。
- 前記構成単位(A)を構成する前記オレフィンモノマーがエチレンを含む、請求項1~6のいずれかに記載の環状オレフィン系共重合体。
- 前記環状オレフィン系共重合体からなる厚さ0.1mmのプレス成形体を作製し、次いで、前記プレス成形体を一軸延伸したとき、一軸延伸した前記プレス成形体の複屈折が10nm以下である、請求項1~7のいずれかに記載の環状オレフィン系共重合体。
- 請求項1~8のいずれかに記載の環状オレフィン系共重合体を含む環状オレフィン系共重合体組成物。
- 光学部品に使用可能な、請求項1~8のいずれかに記載の環状オレフィン系共重合体又は請求項9に記載の環状オレフィン系共重合体組成物。
- 請求項1~8のいずれかに記載の環状オレフィン系共重合体、又は、請求項9又は10に記載の環状オレフィン系共重合体組成物を含む成形体。
- 請求項11に記載の成形体を含む光学部品。
- ヘッドマウントディスプレイ用レンズである、請求項12に記載の光学部品。
- 請求項12に記載の光学部品のヘッドマウントディスプレイ用レンズのための使用。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247025138A KR20240119172A (ko) | 2022-03-11 | 2023-02-09 | 환상 올레핀계 공중합체, 환상 올레핀계 공중합체 조성물, 성형체 및 광학 부품 |
JP2024505966A JPWO2023171221A1 (ja) | 2022-03-11 | 2023-02-09 | |
EP23766401.6A EP4491643A1 (en) | 2022-03-11 | 2023-02-09 | Cyclic olefin copolymer, cyclic olefin copolymer composition, molded body and optical component |
US18/845,220 US20250188210A1 (en) | 2022-03-11 | 2023-02-09 | Cyclic olefin copolymer, cyclic olefin copolymer composition, molded body, and optical component |
CN202380020300.3A CN118660917A (zh) | 2022-03-11 | 2023-02-09 | 环状烯烃系共聚物、环状烯烃系共聚物组合物、成型体和光学部件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-037968 | 2022-03-11 | ||
JP2022037968 | 2022-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171221A1 true WO2023171221A1 (ja) | 2023-09-14 |
Family
ID=87936686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/004311 WO2023171221A1 (ja) | 2022-03-11 | 2023-02-09 | 環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20250188210A1 (ja) |
EP (1) | EP4491643A1 (ja) |
JP (1) | JPWO2023171221A1 (ja) |
KR (1) | KR20240119172A (ja) |
CN (1) | CN118660917A (ja) |
TW (1) | TW202337939A (ja) |
WO (1) | WO2023171221A1 (ja) |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60168708A (ja) | 1984-02-03 | 1985-09-02 | Mitsui Petrochem Ind Ltd | 新規ランダム共重合体およびその製法 |
JPS61115912A (ja) | 1984-11-12 | 1986-06-03 | Mitsui Petrochem Ind Ltd | 新規ランダム多元共重合体 |
JPS61115916A (ja) | 1984-11-12 | 1986-06-03 | Mitsui Petrochem Ind Ltd | 新重合体 |
JPS61120816A (ja) | 1984-11-19 | 1986-06-07 | Mitsui Petrochem Ind Ltd | 新規な付加共重合体 |
JPS61271308A (ja) | 1985-05-24 | 1986-12-01 | Mitsui Petrochem Ind Ltd | 非晶性環状オレフインランダム共重合体の製法 |
JPS61272216A (ja) | 1985-05-28 | 1986-12-02 | Mitsui Petrochem Ind Ltd | 環状オレフインランダム共重合体の製法 |
JPS62252406A (ja) | 1986-04-26 | 1987-11-04 | Mitsui Petrochem Ind Ltd | 環状オレフイン系ランダム共重合体 |
JPS62252407A (ja) | 1986-04-26 | 1987-11-04 | Mitsui Petrochem Ind Ltd | 環状オレフイン系ランダム共重合体 |
JPH02173112A (ja) | 1988-12-27 | 1990-07-04 | Mitsui Petrochem Ind Ltd | 環状オレフィン系共重合体の製造方法 |
WO2006030797A1 (ja) | 2004-09-15 | 2006-03-23 | Teijin Limited | 位相差フィルム |
WO2006118261A1 (ja) | 2005-04-28 | 2006-11-09 | Mitsui Chemicals, Inc. | α-オレフィン・環状オレフィン・ポリエン共重合体およびその製造方法 |
JP2007063409A (ja) | 2005-08-31 | 2007-03-15 | Asahi Kasei Chemicals Corp | 環状オレフィン系共重合体の製造方法 |
JP2007119660A (ja) * | 2005-10-31 | 2007-05-17 | Nippon Zeon Co Ltd | 環状オレフィン付加共重合体、その製造方法、及び成形用材料 |
WO2015122415A1 (ja) | 2014-02-13 | 2015-08-20 | 三井化学株式会社 | エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法 |
JP2017058487A (ja) | 2015-09-16 | 2017-03-23 | 三井化学株式会社 | 位相差フィルム |
JP2018145425A (ja) * | 2017-03-06 | 2018-09-20 | ポリプラスチックス株式会社 | 環状オレフィン樹脂組成物、その製造方法、及び成形品 |
JP2018145349A (ja) | 2017-03-08 | 2018-09-20 | 三井化学株式会社 | 光学レンズおよび光学レンズ系 |
JP2018150273A (ja) | 2017-03-13 | 2018-09-27 | 三井化学株式会社 | 遷移金属化合物、オレフィン重合用触媒、およびオレフィン重合体の製造方法 |
JP2019133157A (ja) * | 2018-01-31 | 2019-08-08 | 三井化学株式会社 | 光学部品 |
JP2019172954A (ja) | 2018-03-26 | 2019-10-10 | 三井化学株式会社 | オレフィン重合用触媒、遷移金属化合物、オレフィン重合体の製造方法、および環状オレフィン共重合体 |
JP2020185742A (ja) | 2019-05-16 | 2020-11-19 | 三井化学株式会社 | 光学部品の製造方法 |
WO2021149400A1 (ja) * | 2020-01-22 | 2021-07-29 | 三井化学株式会社 | 光学部品 |
JP2021147577A (ja) * | 2020-03-23 | 2021-09-27 | 三井化学株式会社 | 共重合体及びその用途 |
JP2022037968A (ja) | 2020-08-26 | 2022-03-10 | 株式会社ゼンリン | 端末、データ構造、およびプログラム |
WO2023276873A1 (ja) * | 2021-06-28 | 2023-01-05 | 三井化学株式会社 | 環状オレフィン重合体、環状オレフィン重合体組成物および成形体 |
-
2023
- 2023-02-09 JP JP2024505966A patent/JPWO2023171221A1/ja active Pending
- 2023-02-09 KR KR1020247025138A patent/KR20240119172A/ko active Pending
- 2023-02-09 CN CN202380020300.3A patent/CN118660917A/zh active Pending
- 2023-02-09 EP EP23766401.6A patent/EP4491643A1/en active Pending
- 2023-02-09 US US18/845,220 patent/US20250188210A1/en active Pending
- 2023-02-09 WO PCT/JP2023/004311 patent/WO2023171221A1/ja active Application Filing
- 2023-02-15 TW TW112105357A patent/TW202337939A/zh unknown
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60168708A (ja) | 1984-02-03 | 1985-09-02 | Mitsui Petrochem Ind Ltd | 新規ランダム共重合体およびその製法 |
JPS61115912A (ja) | 1984-11-12 | 1986-06-03 | Mitsui Petrochem Ind Ltd | 新規ランダム多元共重合体 |
JPS61115916A (ja) | 1984-11-12 | 1986-06-03 | Mitsui Petrochem Ind Ltd | 新重合体 |
JPS61120816A (ja) | 1984-11-19 | 1986-06-07 | Mitsui Petrochem Ind Ltd | 新規な付加共重合体 |
JPS61271308A (ja) | 1985-05-24 | 1986-12-01 | Mitsui Petrochem Ind Ltd | 非晶性環状オレフインランダム共重合体の製法 |
JPS61272216A (ja) | 1985-05-28 | 1986-12-02 | Mitsui Petrochem Ind Ltd | 環状オレフインランダム共重合体の製法 |
JPS62252406A (ja) | 1986-04-26 | 1987-11-04 | Mitsui Petrochem Ind Ltd | 環状オレフイン系ランダム共重合体 |
JPS62252407A (ja) | 1986-04-26 | 1987-11-04 | Mitsui Petrochem Ind Ltd | 環状オレフイン系ランダム共重合体 |
JPH02173112A (ja) | 1988-12-27 | 1990-07-04 | Mitsui Petrochem Ind Ltd | 環状オレフィン系共重合体の製造方法 |
WO2006030797A1 (ja) | 2004-09-15 | 2006-03-23 | Teijin Limited | 位相差フィルム |
WO2006118261A1 (ja) | 2005-04-28 | 2006-11-09 | Mitsui Chemicals, Inc. | α-オレフィン・環状オレフィン・ポリエン共重合体およびその製造方法 |
JP2007063409A (ja) | 2005-08-31 | 2007-03-15 | Asahi Kasei Chemicals Corp | 環状オレフィン系共重合体の製造方法 |
JP2007119660A (ja) * | 2005-10-31 | 2007-05-17 | Nippon Zeon Co Ltd | 環状オレフィン付加共重合体、その製造方法、及び成形用材料 |
WO2015122415A1 (ja) | 2014-02-13 | 2015-08-20 | 三井化学株式会社 | エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法 |
JP2017058487A (ja) | 2015-09-16 | 2017-03-23 | 三井化学株式会社 | 位相差フィルム |
JP2018145425A (ja) * | 2017-03-06 | 2018-09-20 | ポリプラスチックス株式会社 | 環状オレフィン樹脂組成物、その製造方法、及び成形品 |
JP2018145349A (ja) | 2017-03-08 | 2018-09-20 | 三井化学株式会社 | 光学レンズおよび光学レンズ系 |
JP2018150273A (ja) | 2017-03-13 | 2018-09-27 | 三井化学株式会社 | 遷移金属化合物、オレフィン重合用触媒、およびオレフィン重合体の製造方法 |
JP2019133157A (ja) * | 2018-01-31 | 2019-08-08 | 三井化学株式会社 | 光学部品 |
JP2019172954A (ja) | 2018-03-26 | 2019-10-10 | 三井化学株式会社 | オレフィン重合用触媒、遷移金属化合物、オレフィン重合体の製造方法、および環状オレフィン共重合体 |
JP2020185742A (ja) | 2019-05-16 | 2020-11-19 | 三井化学株式会社 | 光学部品の製造方法 |
WO2021149400A1 (ja) * | 2020-01-22 | 2021-07-29 | 三井化学株式会社 | 光学部品 |
JP2021147577A (ja) * | 2020-03-23 | 2021-09-27 | 三井化学株式会社 | 共重合体及びその用途 |
JP2022037968A (ja) | 2020-08-26 | 2022-03-10 | 株式会社ゼンリン | 端末、データ構造、およびプログラム |
WO2023276873A1 (ja) * | 2021-06-28 | 2023-01-05 | 三井化学株式会社 | 環状オレフィン重合体、環状オレフィン重合体組成物および成形体 |
Also Published As
Publication number | Publication date |
---|---|
KR20240119172A (ko) | 2024-08-06 |
TW202337939A (zh) | 2023-10-01 |
US20250188210A1 (en) | 2025-06-12 |
CN118660917A (zh) | 2024-09-17 |
JPWO2023171221A1 (ja) | 2023-09-14 |
EP4491643A1 (en) | 2025-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101354361B1 (ko) | 적층 편광 필름, 위상차 필름, 및 액정 표시 장치 | |
JP4493660B2 (ja) | 位相差フィルム | |
KR101245446B1 (ko) | 열가소성 수지 조성물, 광학 필름 및 연신 필름 | |
TW200904891A (en) | Cycloolefin polymer composition and purpose thereof and cycloolefin polymer | |
CN108139529A (zh) | 相位差膜及其制造方法 | |
US20090018296A1 (en) | Norbornene Addition Copolymer and Moldings | |
JP4843943B2 (ja) | 熱可塑性樹脂組成物、光学フィルムおよび位相差フィルム | |
CN107708965A (zh) | 长条膜及其制造方法 | |
JP5391514B2 (ja) | 環状オレフィン系共重合体およびその製造方法ならびに用途 | |
WO2023171221A1 (ja) | 環状オレフィン系共重合体、環状オレフィン系共重合体組成物、成形体及び光学部品 | |
JP2007119660A (ja) | 環状オレフィン付加共重合体、その製造方法、及び成形用材料 | |
JP2007010863A (ja) | 位相差フィルム及びその製造方法 | |
JPWO2008108199A1 (ja) | 位相差フィルム、その製造方法および偏光板 | |
JP7451570B2 (ja) | 光学部品 | |
JP4712455B2 (ja) | 光学用フィルム | |
TWI854973B (zh) | 光學透鏡 | |
JP2006052326A (ja) | 脂環式構造重合体および該重合体を含む樹脂組成物並びにこれを用いた光学材料 | |
KR20070111460A (ko) | 열가소성 수지 조성물 및 이를 포함하는 광학 필름 | |
JP2006083266A (ja) | 光学用フィルム | |
JP2018165357A (ja) | 光学部品 | |
JP5494718B2 (ja) | 環状オレフィン系共重合体およびその用途 | |
JP7233158B2 (ja) | N-(置換フェニル)マレイミド系共重合体及びそれを用いた位相差フィルム | |
JP2021080418A (ja) | 光学材料用樹脂組成物、光学フィルム及び画像表示装置 | |
JP2010126545A (ja) | 環状オレフィン付加共重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23766401 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024505966 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20247025138 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380020300.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417062846 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18845220 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023766401 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023766401 Country of ref document: EP Effective date: 20241011 |
|
WWP | Wipo information: published in national office |
Ref document number: 18845220 Country of ref document: US |