WO2023074390A1 - 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 - Google Patents
液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 Download PDFInfo
- Publication number
- WO2023074390A1 WO2023074390A1 PCT/JP2022/038190 JP2022038190W WO2023074390A1 WO 2023074390 A1 WO2023074390 A1 WO 2023074390A1 JP 2022038190 W JP2022038190 W JP 2022038190W WO 2023074390 A1 WO2023074390 A1 WO 2023074390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- aligning agent
- crystal aligning
- carbon atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4042—Imines; Imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present invention relates to liquid crystal aligning agents, liquid crystal aligning films, liquid crystal display elements, and compounds that can be used therefor.
- a liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode for applying an electric field to the liquid crystal layer, an alignment film for controlling the orientation of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) or the like is provided for switching an electric signal supplied to the pixel electrode.
- TFT thin film transistor
- Driving methods for liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method.
- TN Transmission Nematic
- VA Very Alignment
- IPS In-Plane Switching
- FFS Frringe Field Switching
- the liquid crystal alignment film that is most widely used industrially is formed on an electrode substrate, and the surface of a film made of a polymer typified by polyamic acid and/or polyimide imidized thereof is coated with cotton, nylon, or the like. It is produced by rubbing in one direction with a cloth such as polyester.
- the rubbing treatment is a simple, highly productive and industrially useful method.
- a photo-alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known as an alignment treatment method that replaces the rubbing treatment. ing.
- Non-Patent Document 1 a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, and the like have been proposed (see, for example, Non-Patent Document 1 and Patent Document 1).
- a panel vibration test is sometimes performed as a reliability test of liquid crystal display elements for mobile applications such as smartphones and in-vehicle applications such as car navigation systems. In this vibration test, it is required that defects such as bright spots do not occur.
- a method of increasing the mechanical strength of the liquid crystal alignment film can be considered.
- a method for improving the mechanical strength of the liquid crystal alignment film, particularly the film strength there is a method of adding a cross-linking agent to the liquid crystal alignment agent.
- the stability of liquid crystal alignment is also important. If the alignment stability is low, the liquid crystal will not return to its initial state after being driven for a long period of time, causing a decrease in contrast and burn-in (hereinafter referred to as AC afterimage).
- AC afterimage a liquid crystal aligning agent containing a specific polyimide component and a specific hydroxyalkylamide compound has been proposed (see, for example, Patent Document 2).
- liquid crystal aligning agent that can satisfy all of these requirements at a high level is in demand.
- an object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film having high film strength and suppressing AC afterimages, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal alignment film obtained from the liquid crystal alignment agent.
- a liquid crystal aligning agent containing the following (A) component and a compound (B) represented by the following formula (1).
- (A) component a polyimide precursor obtained by polymerizing a tetracarboxylic acid derivative component containing at least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof and a diamine component;
- L 1 is a divalent organic group having 1 to 10 carbon atoms, and a plurality of L 1 may be the same or different. E is included in two hydroxy groups from an organic diol.
- a divalent organic group excluding a hydrogen atom represented by the following formula (EG) includes a divalent organic group.
- n is an integer of 4 or more.
- R represents a hydrogen atom or a methyl group. * represents a bonding position.
- a liquid crystal aligning agent capable of obtaining a liquid crystal aligning film having high film strength and suppressing AC afterimage, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the same are provided.
- the mechanism by which the above effects are obtained by the present invention is not necessarily clear, the following is considered to be one of the reasons. That is, by introducing a specific alkylene glycol chain into the cross-linking agent structure added to the liquid crystal aligning agent, the cross-linking structure of the liquid crystal alignment film to be formed is given appropriate flexibility, so that the above effects can be obtained. It is considered to have been obtained.
- halogen atom includes fluorine atom, chlorine atom, bromine atom, iodine atom and the like.
- Boc represents a tert-butoxycarbonyl group, and "*" represents a binding position.
- the liquid crystal aligning agent of this invention contains the said (A) component.
- the polymer component means a component composed of a polymer, and may be composed of one type of polymer, or may be composed of a plurality of types of polymers.
- the polymer (A) may be of one type or two or more types.
- the polymer (A) contained in the component (A) is a tetracarboxylic acid derivative component containing at least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof, and a diamine component undergoing a polymerization reaction.
- polyimide polymer (A)) selected from the group consisting of a polyimide precursor obtained by A polyimide precursor in the polyimide polymer (A) is obtained by polymerizing a tetracarboxylic acid derivative component and a diamine component.
- the tetracarboxylic acid derivative component includes at least one compound selected from the group consisting of tetracarboxylic dianhydrides and derivatives thereof (hereinafter collectively referred to as tetracarboxylic dianhydride-based compounds).
- examples of the polyimide precursor include polyamic acid and polyamic acid ester.
- tetracarboxylic dianhydride derivatives examples include tetracarboxylic acid dihalides, tetracarboxylic acid dialkyl esters, and tetracarboxylic acid dialkyl ester dihalides.
- the polyimide polymer (A) is a polyamic acid
- the polyimide polymer (A) is, for example, a tetracarboxylic acid derivative component containing tetracarboxylic dianhydride and a diamine component polymerized (polycondensation ) is obtained by the reaction.
- the polyimide in the polyimide polymer (A) is obtained by imidizing the polyamic acid.
- the polyimide-based polymer (A) is a polyamic acid ester, it can be obtained by the method described later, and a polyimide is obtained by imidating the polyamic acid ester.
- tetracarboxylic dianhydride-based compound examples include aromatic tetracarboxylic dianhydrides, acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and derivatives thereof. be done.
- the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
- An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
- the aromatic tetracarboxylic dianhydride or derivative thereof has at least one partial structure selected from the group consisting of a benzene ring structure, a naphthalene ring structure, and an aromatic heterocyclic structure from the viewpoint of enhancing liquid crystal orientation.
- a tetracarboxylic dianhydride or a derivative thereof is preferable.
- An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
- acyclic aliphatic or alicyclic tetracarboxylic dianhydrides are selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure from the viewpoint of enhancing liquid crystal orientation among others.
- a tetracarboxylic dianhydride having at least one partial structure or a derivative thereof is preferred.
- aromatic tetracarboxylic dianhydride acyclic aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is, among others, a tetracarboxylic dianhydride represented by the following formula (2) is preferred.
- R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a an alkynyl group, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or represents a phenyl group, wherein R 5 and R 6 each independently represents a hydrogen atom or a methyl group, and in formulas (xr-1) to (xr-2), j and k is an integer of 0 or 1, and A 1 and A
- Preferred specific examples of the tetracarboxylic dianhydride represented by the above formula (2) include X being the above formulas (x-1) to (x-8), (x-10) to (x-11) , and (xr-1) to (xr-2).
- the above formula (x-1) is preferably selected from the group consisting of the following formulas (x1-1) to (x1-6). (*1 is a bond that bonds to one acid anhydride group, and *2 is a bond that bonds to the other acid anhydride group.)
- Preferred specific examples of the above formulas (xr-1) and (xr-2) include the following formulas (xr-3) to (xr-18). (In the above formula, * is a bond that binds to the acid anhydride group.)
- the amount of the tetracarboxylic dianhydride or derivative thereof represented by the above formula (2) when producing the polyimide polymer (A) is 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component. On the other hand, 5 mol% or more is preferable, 10 mol% or more is more preferable, and 20 mol% or more is still more preferable.
- the diamine component used for producing the polyimide precursor is not particularly limited, a diamine component containing a diamine represented by the following formula (3) is preferable.
- Ar 1 and Ar 1′ each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more A hydrogen atom may be substituted with a monovalent group
- Ar 1 and Ar 1' in the formula (3) each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring.
- One or more hydrogen atoms on the benzene ring, the biphenyl structure, or the naphthalene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom, an alkyl having 1 to 3 carbon atoms, group, an alkenyl group having 2 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a fluoroalkenyl group having 2 to 3 carbon atoms, a fluoroalkoxy group having 1 to 3 carbon atoms, An alkyloxycarbonyl group having 2 to 3 carbon atoms, a cyano group, a nitro group and the like can be mentioned.
- the bonding position between the amino group and L 1 or L 1′ with respect to the benzene ring is preferably 1,4-position or 1,3-position, and 1 , 4-position is more preferred.
- the bonding positions of the amino group and L 1 or L 1′ with respect to the biphenyl structure are preferably 4,4′-positions or 3,3′-positions, more preferably 4,4′-positions.
- the bonding positions of the amino group and L 1 or L 1′ with respect to the naphthalene ring are preferably 1,5-positions or 2,6-positions, more preferably 2,6-positions.
- Preferred specific examples of Ar 1 and Ar 1' include a benzene ring, a biphenyl structure and a naphthalene ring.
- the alkylene group having 2 to 12 carbon atoms may be linear or branched, but is preferably linear.
- n is an integer of 1 to 12, more preferably an integer of 2 to 12, and still more preferably an integer of 2 to 6. .
- the sum of m1, m2 and n' is an integer of 3-12, preferably an integer of 6-12.
- Each of m1 and m2 is preferably an integer of 1 to 4, more preferably an integer of 2 to 4.
- n′ is preferably an integer of 1-6, more preferably an integer of 2-6, and even more preferably an integer of 2-4.
- the ratio of the diamine represented by formula (3) is preferably 1 mol% or more, more preferably 10 mol% or more, and further preferably 20 mol% or more, relative to 1 mol of the diamine component. preferable.
- the polyimide polymer (A) may contain diamines other than the diamines described above. Examples of other diamines are listed below, but the present invention is not limited to these. In addition to the diamine represented by the above formula (3), when other diamines are used in combination, the amount of the diamine represented by the formula (3) to the diamine component is preferably 90 mol% or less, and 80 mol%. The following are more preferred. Examples of other diamines are listed below, but the present invention is not limited to these. The other diamines may be used singly or in combination of two or more.
- p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-diamino-2,5-dimethoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, secondary amino group and primary
- a semi-aromatic diamine having an amino group preferably 4-(2-(methylamino)ethyl)aniline) (here, the semi-aromatic diamine refers to and the other amino group refers to a diamine not bound to an aromatic ring.), 4-(2-aminoethyl)aniline, 2-(6-amino-2-naphthyl)ethylamine, 2,2
- m and n are each an integer of 0 to 3 (provided that 1 ⁇ m + n ⁇ 4), j is an integer of 0 or 1, and X 1 is - (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O—, —CH 2 O— , —CH 2 —OCO—, —COO—, or —OCO—, wherein R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms, wherein X 2 is -O- or -
- D in -N(D)- of the other diamines described above is a carbamate organic group represented by a benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, Boc, and the like.
- Boc is particularly preferred from the viewpoint that it is efficiently desorbed by heat, is desorbed at a relatively low temperature, and is discharged as a harmless gas when desorbed.
- diamines having thermally-leaving groups include diamines selected from the following formulas (d-1) to (d-7).
- R represents a hydrogen atom or Boc.
- the diamine having the thermally-leaving group is used as the diamine component used in the production of the polyimide precursor, from the viewpoint of suitably obtaining the effect of the present invention, it is preferably 5 to 40 mol per 1 mol of the diamine component. %, more preferably 5 to 35 mol %, even more preferably 5 to 30 mol %.
- the polymer (A) includes the above diamine having a nitrogen atom-containing structure and a semi-aromatic polymer having a secondary amino group and a primary amino group. At least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component containing a diamine selected from the group consisting of group diamines and an imidized product of the polyimide precursor (hereinafter, polyimide-based polymer ( (also referred to as Q)) may be contained.
- polyimide-based polymer (also referred to as Q)
- Examples of the tetracarboxylic acid derivative component for obtaining the polyimide-based polymer (Q) include a tetracarboxylic acid derivative component containing the above-described tetracarboxylic dianhydride-based compound.
- the tetracarboxylic dianhydride represented by the above formula (2) or a derivative thereof is preferable.
- the amount of the tetracarboxylic dianhydride or derivative thereof represented by the above formula (2) is preferably 10 mol% or more, preferably 20 mol%, based on 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component. The above is more preferable.
- a diamine selected from the group consisting of a diamine having a nitrogen atom-containing structure and a semi-aromatic diamine having a secondary amino group and a primary amino group is preferably 5 to 100 mol%, more preferably 10 to 95 mol%, and still more preferably 20 to 80 mol% of the total amount of the diamine component for obtaining the polymer (Q).
- a diamine component for obtaining the polyimide-based polymer (Q) a diamine other than the diamine having the nitrogen atom-containing structure and the semi-aromatic diamine having a secondary amino group and a primary amino group is further contained.
- a preferred specific example of the diamine is a diamine having at least one group selected from the group consisting of a urea bond, an amide bond, a carboxyl group and a hydroxy group in the molecule (hereinafter also referred to as diamine (c). ).
- the amount of diamine (c) used is preferably 1 to 95 mol%, more preferably 5 to 90 mol%, and further 20 to 80 mol%, based on the total amount of the diamine component for obtaining the polymer (Q). preferable.
- the (A) component contained in the liquid crystal aligning agent of the present invention includes the polyimide polymer (Q), the diamine having the nitrogen atom-containing structure, and a semi-aromatic having a secondary amino group and a primary amino group.
- At least one polymer selected from the group consisting of a polyimide precursor obtained using a diamine component that does not contain a group diamine and an imidized product of the polyimide precursor (hereinafter also referred to as a polyimide-based polymer (H)); may be a mixture of As a diamine component for obtaining the polyimide polymer (H), the diamine represented by the above formula (3), 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether , 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 4,4′-bis(4
- the content ratio of the polyimide polymer (Q) and the polyimide polymer (H) is the mass ratio of [polyimide polymer (Q)]/[polyimide polymer (H)], and is 10/90 to 90/ It is preferably 10, more preferably 20/80 to 80/20, even more preferably 30/70 to 70/30.
- (A) component contained in the liquid crystal aligning agent of this invention may contain other polymers other than a polymer (A).
- other polymers include polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly(isobutylene-maleic acid). anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and polymers selected from the group consisting of poly(meth)acrylates.
- poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like.
- Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
- Other polymers may be used singly or in combination of two or more.
- the content of the other polymer is more preferably 0.1 to 90 parts by mass, still more preferably 1 to 90 parts by mass, per 100 parts by mass of component (A) contained in the liquid crystal aligning agent.
- Polyamic acid which is one of polyimide precursors, can be produced by the following method. Specifically, a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride and the diamine component are mixed in the presence of an organic solvent at a temperature of preferably -20 to 150°C, more preferably 0 to 50°C. It can be synthesized by reacting (polycondensation reaction) for 30 minutes to 24 hours, more preferably 1 hour to 12 hours.
- organic solvent used in the above reaction examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone can be mentioned.
- methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or propylene glycol monomethyl ether ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more.
- the reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
- the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
- the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
- the polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while stirring well. Further, a purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Poor solvents include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, and toluene.
- a polyamic acid ester which is one of the polyimide precursors, can be obtained by (1) a method of esterifying the polyamic acid, (2) a method of reacting a tetracarboxylic acid derivative component containing a tetracarboxylic acid diester dichloride with a diamine component, ( 3) It can be produced by a known method such as a method of polycondensing a tetracarboxylic acid derivative component including a tetracarboxylic acid diester with a diamine.
- the above-mentioned polyamic acid and polyamic acid ester may be a terminal-modified polymer obtained by using an appropriate terminal blocking agent together with the tetracarboxylic acid derivative component and the diamine component as described above when producing them. .
- Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 1,3-cyclohexanedicarboxylic anhydride, 3-hydroxy phthalic anhydride, trimellitic anhydride, 3-(3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1 , 3-dione, 4-ethynyl phthalic anhydride and other acid monoanhydrides; di-tert-butyl dicarbonate, dicarbonic acid diester compounds such as diallyl dicarbonate; chlorocarbonyls such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride Compound; aniline, 2-aminophenol, 3-aminophenol
- the proportion of the terminal blocking agent used is preferably 40 mol parts or less, more preferably 30 mol parts or less, with respect to a total of 100 mol parts of the diamine component used. Moreover, the proportion of the terminal blocker used is preferably 0.01 mol or more, more preferably 0.1 mol or more, with respect to a total of 100 mol parts of the diamine component used.
- the polyimide used in the present invention can be produced by imidizing the above polyimide precursor by a known method.
- the ring closure rate (also referred to as imidization rate) of the functional groups of the polyamic acid or polyamic acid ester does not necessarily need to be 100%, and can be arbitrarily adjusted according to the application and purpose.
- the imidization rate of the polyimide in the polymer (A) of the present invention is preferably 20 to 100%, more preferably 50 to 99%, even more preferably 60 to 99%, from the viewpoint of reducing the occurrence rate of display defects.
- thermal imidization is performed by heating the solution of the polyamic acid or polyamic acid ester as it is, or a catalyst (eg, catalyzed imidization by adding a basic catalyst such as pyridine, an acid anhydride such as acetic anhydride).
- a catalyst eg, catalyzed imidization by adding a basic catalyst such as pyridine, an acid anhydride such as acetic anhydride.
- the polyamic acid, polyamic acid ester and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa s when the concentration is 10 to 15% by mass, from the viewpoint of workability. , is not particularly limited.
- the solution viscosity (mPa s) of the polymer is a polymer having a concentration of 10 to 15 mass% prepared using a good solvent for the polymer (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25° C. for a solution using an E-type rotational viscometer.
- the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, more preferably 2,000. ⁇ 500,000.
- the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. With such a molecular weight range, it is possible to ensure good liquid crystal orientation of the liquid crystal display element.
- the liquid crystal aligning agent of the present invention contains the compound (B) represented by the above formula (1).
- One type of compound (B) may be used, or two or more types may be used.
- the compound (B) itself is also an object of the present invention independently of the liquid crystal aligning agent of the present invention.
- the divalent organic group having 1 to 10 carbon atoms in L 1 in the above formula (1) includes, for example, a divalent hydrocarbon group having 1 to 10 carbon atoms, and a hetero atom between the carbon atoms of the hydrocarbon group.
- divalent heteroatom-containing groups including groups having be done.
- the substituent include halogen atoms; alkoxy groups such as methoxy, ethoxy and propoxy; alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl; alkoxycarbonyloxy such as methoxycarbonyloxy and ethoxycarbonyloxy; Groups: cyano group, nitro group, hydroxy group, etc.
- Groups having a heteroatom include, for example, groups having at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a phosphorus atom and a sulfur atom, and the like, -O-, -NR-(R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.), --CO--, --S--, and combinations thereof. Of these, -O- is preferred.
- divalent hydrocarbon groups include alkanes such as methane, ethane, propane and butane; alkenes such as ethylene, propene, butene and penten; carbon numbers such as alkynes such as ethyne, propyne, butyne and pentyne; Chain hydrocarbons of 1 to 10 carbon atoms, cycloalkanes such as cyclopropane, cyclobutane, cyclopentane and cyclohexane, alicyclic hydrocarbons having 3 to 10 carbon atoms such as cycloalkenes such as cyclopropene, cyclobutene, cyclopentene and cyclohexene, benzene , toluene, xylene, mesitylene, naphthalene, methylnaphthalene, divalent hydrocarbon groups obtained by removing two hydrogen atoms from hydrocarbons such as aromatic hydrocarbons having 6 to 10 carbon atom
- L 1 in the above formula (1) is preferably a divalent hydrocarbon group having 1 to 10 carbon atoms, more preferably a divalent chain hydrocarbon group having 1 to 10 carbon atoms, or a chain hydrocarbon group having 6 to 10 carbon atoms.
- a divalent hydrocarbon group obtained by removing two hydrogen atoms from an aromatic hydrocarbon is preferred.
- the divalent chain hydrocarbon having 1 to 10 carbon atoms is preferably a divalent chain hydrocarbon having 2 to 10 carbon atoms, more preferably a divalent chain hydrocarbon having 2 to 8 carbon atoms.
- E is a divalent organic group obtained by removing hydrogen atoms contained in two hydroxy groups from an organic diol
- the organic diol is a divalent group represented by the above formula (EG).
- the organic diol containing a divalent organic group represented by the above formula (EG) is not particularly limited as long as it contains the above formula (EG) in the molecule, but a diol having hydrogen atoms bonded to both ends of the above formula (EG) a polyester diol obtained by reacting a diol having hydrogen atoms bonded to both ends of the above formula (EG) with a polybasic acid; a diol-derived skeleton having hydrogen atoms bonded to both ends of the above formula (EG) and a carbonate skeleton; Polylactone diol obtained by ring-opening addition reaction of a diol having hydrogen atoms bonded to both ends of the above formula (EG) and lactones such as ⁇ -butyrolactone, ⁇
- the upper limit of n is preferably set so that the upper limit of the weight average molecular weight of the diol is 5,000. is more preferably set to 4,000, and the upper limit of the weight-average molecular weight of the diol is more preferably set to 3,000. From the viewpoint of enhancing liquid crystal orientation, the upper limit of n is preferably 40, more preferably 30, and particularly preferably 20.
- diols containing a divalent organic group represented by formula (EG) include tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, and PEG-300 and PEG-400 (trade names, manufactured by Sanyo Chemical Industries, Ltd.).
- Preferred specific examples of the diol having hydrogen atoms bonded to both ends of the above formula (EG) include pentaethylene glycol, hexaethylene glycol, Sanyo Chemical Industries Co., Ltd. trade names PEG-300, PEG-400, PEG-600, PEG- 1000, product names PEG300 and PEG1000 manufactured by Merck, trade names SINOPOL PEG600 and SINOPOL PEG1000 manufactured by Chunichi Synthetic Chemicals, trade names PEG#300, PEG#400, PEG#600 and PEG manufactured by Lion Specialty Chemicals #1000, Polyethylene Glycol 400, Polyethylene Glycol 600, a product name of Tokyo Chemical Industry Co., Ltd.
- the above-mentioned polyethylene glycol and polypropylene glycol may be those obtained by subjecting ethylene oxide and propylene oxide to an anionic ring-opening polymerization reaction.
- the anionic ring-opening polymerization reaction can be carried out using water, ethylene glycol, propylene glycol, or the like and a catalytic amount of a base (eg, potassium hydroxide).
- a base eg, potassium hydroxide.
- the average molecular weight of the glycol exemplified in the diol containing a divalent organic group represented by (EG) above is the weight average molecular weight obtained based on polystyrene by gel permeation chromatography (GPC).
- the content of the compound (B) contained in the liquid crystal aligning agent of the present invention is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of component (A). parts, more preferably 1 to 10 parts by mass.
- the liquid crystal aligning agent of this invention is used in order to produce a liquid crystal aligning film, and takes the form of a coating liquid from a viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of the present invention, it is preferable that the liquid crystal aligning agent is a coating liquid containing the above-described polymer component and a solvent.
- the content (concentration) of the polymer component contained in the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed. 1 mass % or more is preferable with respect to the whole quantity of a point and a liquid crystal aligning agent, and 10 mass % or less is preferable from the point of the storage stability of a solution.
- the content of the polymer (A) in the liquid crystal aligning agent is preferably 10 parts by mass or more with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. Yes, more preferably 20 parts by mass or more, and still more preferably 50 parts by mass or more.
- the content of the polymer (A) is preferably 10 to 90 parts by mass, preferably 20 to 80 parts by mass, with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. Parts by mass are more preferred.
- the solvent contained in the liquid crystal aligning agent is not particularly limited as long as it uniformly dissolves the polymer component.
- Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide and ⁇ -butyrolactone.
- ⁇ -valerolactone 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl )-2-pyrrolidone, N-(3-methoxypropyl)-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-(4-methoxybutyl)-2-pyrrolidone, N-cyclohexyl-2 -pyrrolidone (these are collectively referred to as "
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
- the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
- the solvent contained in the liquid crystal aligning agent is a mixed solvent in which a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent is used in addition to the above solvent. is preferred. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
- the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
- the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
- diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
- Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone, ⁇ -butyrol
- the liquid crystal aligning agent of the present invention may additionally contain components (hereinafter also referred to as additive components) other than the polymer component and the solvent.
- additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as cross-linking compounds), adhesion between the liquid crystal alignment film and the substrate, and adhesion between the liquid crystal alignment film and the sealing agent. Adhesion aids for increasing the dielectric constant and electrical resistance of the liquid crystal alignment film, dielectrics and conductive substances.
- crosslinkable compound examples include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group.
- crosslinkable compound (c-1) and (c-2) include the following compounds.
- epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane.
- Bisphenol A type epoxy resin bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.
- Polymers and oligomers having an oxazoline group such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
- compounds having a cyclocarbonate group N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds of;
- Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B
- crosslinkable compounds are examples of crosslinkable compounds, and are not limited to these.
- components other than those described above disclosed on pages 53 [0105] to 55 [0116] of WO2015/060357 may be used.
- the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. , more preferably 1 to 15 parts by mass.
- adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilylpropyltriethylenetetramine, N-3-trimethoxysilylpropylprop
- the content of the adhesion aid in the liquid crystal aligning agent is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent, and more It is preferably 0.1 to 20 parts by mass.
- dielectric or conductive substances include monoamines having nitrogen-containing aromatic heterocycles such as 3-picolylamine.
- the content of the dielectric or conductive substance in the liquid crystal aligning agent is 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is preferred, and more preferably 0.1 to 20 parts by mass.
- the liquid crystal aligning film of the present invention is formed using the liquid crystal aligning agent of the present invention.
- the liquid crystal alignment film of the present invention can be used as a horizontal alignment type or vertical alignment type liquid crystal alignment film.
- a liquid crystal alignment film used for a vertical alignment type liquid crystal display element such as a VA method, a PSA (Polymer Sustained Alignment) method, or an SC-PVA (Surface-Controlled Patterned Vertical Alignment) method.
- a horizontal alignment type liquid crystal alignment film a liquid crystal alignment film used for a liquid crystal display element such as a TN system, an IPS system, or an FFS system is preferable.
- the liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, a liquid crystal alignment film for a transmission scattering type liquid crystal light control element, or other applications.
- a protective film for a color filter, a gate insulating film for a flexible display, and a substrate material for example, a protective film for a color filter, a gate insulating film for a flexible display, and a substrate material.
- the method for producing a liquid crystal alignment film of the present invention includes, for example, applying the above liquid crystal alignment agent to a substrate, baking the substrate, and irradiating the resulting film with polarized radiation.
- a preferred embodiment of the method for producing a liquid crystal alignment film of the present invention includes, for example, the step of applying the liquid crystal alignment agent to the substrate (step (1)), and the step of baking the applied liquid crystal alignment agent (step (2)). and a method for producing a liquid crystal alignment film, which optionally includes a step (step (3)) of subjecting the film obtained in step (2) to orientation treatment.
- the substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or the like can also be used. In that case, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed, in terms of process simplification.
- an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
- Screen printing, offset printing, flexographic printing, inkjet method, spray method, etc. can be used as methods for applying the liquid crystal aligning agent to the substrate and forming a film.
- the coating method and the film-forming method by the inkjet method can be preferably used.
- a process (2) is a process of baking the liquid crystal aligning agent apply
- the solvent is evaporated by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven, or the thermal imide of the amic acid or amic acid ester in the polymer. It is possible to change
- the drying and baking steps after applying the liquid crystal aligning agent of the present invention can be performed at any desired temperature and time, and may be performed multiple times.
- the temperature for evaporating the solvent of the liquid crystal aligning agent can be, for example, 40 to 180° C.
- the temperature of the heating means may be 40 to 150° C. from the viewpoint of shortening the process.
- the firing time is not particularly limited, it is, for example, 1 to 10 minutes, preferably 1 to 5 minutes.
- the temperature of the heating means is, for example, 150 to 300. C., preferably in the temperature range of 150-250.degree.
- the baking time in the thermal imidization step is not particularly limited, but is, for example, 5 to 40 minutes, preferably 5 to 30 minutes. If the film-like material after baking is too thin, the reliability of the liquid crystal display element may deteriorate.
- Step (3) is a step of subjecting the film obtained in step (2) to orientation treatment. That is, in a vertical alignment type liquid crystal display element such as a VA system or a PSA system (Polymer Sustained Alignment), the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film is subjected to an alignment ability imparting treatment. may be applied.
- a rubbing treatment method may be used, but a photo-alignment treatment method is preferable.
- Examples of the photo-alignment treatment include a method in which the surface of the film is irradiated with radiation polarized in a certain direction and optionally subjected to heat treatment to impart liquid crystal alignment (also referred to as liquid crystal alignment ability).
- radiation ultraviolet light or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm, more preferably 200 to 400 nm are preferred.
- the radiation dose is preferably 1 to 10,000 mJ/cm 2 , more preferably 100 to 5,000 mJ/cm 2 .
- the substrate having the film-like material may be irradiated with heating at 50 to 250° C. in order to improve liquid crystal orientation.
- the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a fixed direction.
- the liquid crystal alignment film irradiated with polarized radiation can be subjected to a contact treatment using a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
- the solvent used in the contact treatment is not particularly limited as long as it dissolves the decomposed product produced from the film-like material by irradiation with radiation.
- Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
- water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate.
- Solvents may be used singly or in combination of two or more.
- the above contact treatment includes immersion treatment and spray treatment (also called spray treatment).
- the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products produced from the film-like material by irradiation with radiation. Among them, immersion treatment for 1 to 30 minutes is more preferable.
- the solvent used in the contact treatment may be at room temperature or heated, but is preferably 10 to 80°C, more preferably 20 to 50°C.
- ultrasonic treatment or the like may be performed as necessary.
- rinsing also called rinsing
- a low-boiling solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone
- baking either one of rinsing and baking may be performed, or both may be performed.
- the firing temperature is preferably 150 to 300°C, more preferably 180 to 250°C, and still more preferably 200 to 230°C.
- the firing time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
- the heat treatment of the radiation-irradiated coating film is preferably carried out at 50 to 300° C. for 1 to 30 minutes, more preferably at 120 to 250° C. for 1 to 30 minutes.
- the liquid crystal display element of the present invention has the liquid crystal alignment film of the present invention.
- the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS type or an FFS type liquid crystal display element from the viewpoint of obtaining high liquid crystal orientation, and is particularly suitable for an FFS type liquid crystal display element. It is useful as a liquid crystal alignment film.
- the liquid crystal display element is produced by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, producing a liquid crystal cell by a known method, and arranging the liquid crystal in the liquid crystal cell. can be done. Specifically, the following two methods are mentioned.
- the first method first, two substrates are arranged facing each other with a gap (cell gap) between them so that the respective liquid crystal alignment films face each other. Next, the peripheries of the two substrates are bonded together using a sealing agent, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is sealed. stop.
- the second method is a technique called the ODF (One Drop Fill) method.
- a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
- the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
- the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
- the liquid crystal composition used is further heated to a temperature at which it assumes an isotropic phase, and then slowly cooled to room temperature, so that the flow orientation at the time of filling the liquid crystal should be removed.
- the coating film is subjected to the rubbing treatment, the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
- the alignment directions are arranged to face each other at a predetermined angle, for example, perpendicular or antiparallel.
- Liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
- the liquid crystal composition is not particularly limited, and is a composition containing at least one liquid crystal compound (liquid crystal molecule) and having a positive dielectric anisotropy (positive liquid crystal composition, also referred to as positive liquid crystal). ) or a liquid crystal composition having a negative dielectric anisotropy (also referred to as a negative liquid crystal composition or a negative liquid crystal) may be used, but a negative liquid crystal composition is preferred.
- the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
- a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group).
- the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
- the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
- Such additives include photopolymerizable monomers such as compounds having a polymerizable group (meth(a)acryloyl group, etc.); optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); Antioxidants; ultraviolet absorbers; dyes; antifoaming agents; polymerization initiators; Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
- MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
- a polarizing plate is installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer.
- the polarizing plate examples include a polarizing plate in which a polarizing film called "H film” in which iodine is absorbed while stretching orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate composed of the H film itself. .
- NMP N-methyl-2-pyrrolidone
- GBL ⁇ -butyrolactone
- BCS butyl cellosolve
- DMSO dimethyl sulfoxide
- (diamine) DA-1 to DA-13 compounds represented by the following formulas (DA-1) to (DA-13), respectively
- CA-1 to CA-5 compounds represented by the following formulas (CA-1) to (CA-5), respectively
- reaction reagent TBACl: tetrabutylammonium chloride
- DMAP 4-dimethylaminopyridine Boc 2 O: di-tert-butyl dicarbonate
- the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25. Measured in °C.
- the imidization rate of polyimide in Synthesis Examples was measured as follows. 30 mg of polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% by mass TMS (tetramethylsilane ) mixture) (0.53 mL) was added and sonicated to completely dissolve. This solution was subjected to proton NMR at 500 MHz using an NMR spectrometer (JNW-ECA500) (manufactured by JEOL Datum Co., Ltd.).
- NMR nuclear magnetic resonance
- Imidation rate (%) (1- ⁇ x/y) x 100
- x is the proton peak integrated value derived from the NH group of the amic acid
- y is the peak integrated value of the reference proton
- ⁇ is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). is the number ratio of reference protons to
- AD-1-1 (5.00 g, 12.7 mmol), TBACl (1.06 g, 3.80 mmol) and DMSO (15 g) were added to the flask and stirred at room temperature (25°C).
- Epichlorohydrin (7.04 g, 76.1 mmol) was added dropwise thereto, and the mixture was heated and stirred at 80° C. for 22 hours.
- Stirring was stopped and ethyl acetate (50 g) and water (15 g) were added followed by heptane (10 g) for dilution.
- the separated organic phase was washed twice with water (30 g) (the organic phase is hereinafter referred to as organic phase 1).
- organic phase 2 Ethyl acetate (40 g) and heptane (10 g) were added to the separated aqueous phase, and the organic phase was separated and extracted (hereinafter referred to as organic phase 2).
- organic phase 2 The mixture of the above organic phases 1 and 2 was concentrated to obtain an AD-1-2 mixture (yield: 7.02 g, partly containing AD-1).
- the resulting AD-1-2 mixture was directly used in the next step.
- AD-1-2 mixture (7.02 g), acetonitrile (42 g) and potassium carbonate (5.26 g, 38.1 mmol) were added to the flask, and the mixture was heated and stirred at 80° C. for 20 hours. Stirring was stopped, the reaction solution was filtered, and the filtrate was concentrated to obtain crude AD-1 (5.44 g).
- PAA-I polyamic acid solution
- the obtained polyamic acid solution (PAA-I) 100 g was weighed into a 200 mL Erlenmeyer flask containing a stirrer, and Boc 2 O (1.24 g, 5.68 mmol) was added as a terminal blocker, By stirring at 40° C. for 15 hours, a terminal-modified polyamic acid solution (PAA-I-1) was obtained.
- Dispense PAA-I-1 (100 g) into a 200 mL Erlenmeyer flask containing a stirrer, add NMP (66.7 g), acetic anhydride (14.2 g), and pyridine (4.70 g), and stir at room temperature. After stirring for 30 minutes, the mixture was reacted at 60° C. for 4 hours. This reaction solution was poured into methanol (650 g), and the resulting precipitate was filtered off. After washing the precipitate with methanol, it was dried under reduced pressure at a temperature of 80° C. to obtain polyimide powder (imidization rate: 89%).
- the obtained polyamic acid solution (100 g) was weighed into a 200 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, NMP was added so that the solid content concentration was 9% by mass, and acetic anhydride (7 .60 g) and pyridine (1.57 g) were added and stirred at room temperature for 30 minutes, followed by reaction at 55° C. for 3 hours.
- This reaction solution was poured into methanol (428 g), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 60° C. to obtain polyimide powder.
- the imidization rate of this polyimide powder was 66%.
- NMP was added to the obtained polyimide powder so that the solid content concentration was 12% by mass, and dissolved by stirring at 80° C. for 18 hours to obtain a solution of polyimide (SPI-2).
- Example 2 Liquid crystal aligning agents (2) to (6) were obtained by performing the same operation as in Example 1 except that the types and amounts of the polymer solution and solvent used were changed as shown in Table 1 below. Additives AD-1 to AD-3 in Table 1 were each added as an NMP solution containing 10% by mass.
- a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is produced.
- a substrate with electrodes was prepared.
- the substrate was a glass substrate with a size of 35 mm ⁇ 40 mm and a thickness of 0.7 mm.
- An ITO electrode (thickness: 50 nm, electrode width: length: 20 mm, width: 10 mm) having a solid pattern was formed as a first layer on the substrate to form a counter electrode.
- a SiN (silicon nitride) film formed by a CVD (chemical vapor deposition) method was formed as a second layer on the counter electrode of the first layer.
- the film thickness of the SiN film of the second layer was 500 nm, which was a film thickness functioning as an interlayer insulating film.
- a comb-shaped pixel electrode (thickness: 50 nm) formed by patterning an ITO film is arranged as the third layer, and the first pixel and the second pixel are arranged. It formed two pixels. The size of each pixel was 10 mm long and about 5 mm wide.
- the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
- the pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 ⁇ m and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 ⁇ m.
- the pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
- the formation directions of the electrode elements of the pixel electrodes that constitute them are different. That is, when the direction connecting the bent portions of the plurality of electrode elements is taken as a reference, the electrode elements of the pixel electrode are formed so as to form an angle of 80° clockwise in the first region of the pixel, and the electrode elements of the pixel electrode are formed in the second region of the pixel.
- the electrode elements of the pixel electrode are formed so as to form an angle of 80° counterclockwise. That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It was configured in the opposite direction.
- Example 1 and Comparative Examples 1 and 2 a 4 ⁇ m-high columnar shape having an ITO film formed on the substrate with the electrode and the back surface was formed.
- a liquid crystal aligning agent filtered through a filter having a pore size of 1.0 ⁇ m was applied to each glass substrate having spacers by spin coating and dried on a hot plate at 80° C. for 2 minutes. After that, it was baked in a hot air circulating oven at 230° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film having a thickness of 60 nm.
- the surface of the substrate with the liquid crystal alignment film is rubbed with a rayon cloth (YA-20R manufactured by Yoshikawa Kako Co., Ltd.) for alignment treatment (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm, rubbing Direction: 180° with respect to the direction connecting the bent portions of the plurality of electrode elements of the pixel electrode of the third layer.
- the substrate was washed by irradiating ultrasonic waves in pure water for 1 minute, water droplets were removed by an air blow, and dried at 80° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
- the obtained two substrates with the liquid crystal alignment film were used as one set, and a sealing agent (XN-1500T manufactured by Mitsui Chemicals, Inc.) was printed on the substrate while leaving the liquid crystal injection port. They were laminated so that the alignment film surfaces faced each other and the rubbing directions were anti-parallel. After that, a heat treatment was performed at 120° C. for 90 minutes to cure the sealant, thereby producing an empty cell with a cell gap of 4 ⁇ m. A negative type liquid crystal MLC-7026 (manufactured by Merck & Co.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an FFS liquid crystal display device. After that, the obtained liquid crystal display element was heated at 120° C. for 1 hour, left at 23° C. overnight, and then used for evaluation.
- a sealing agent XN-1500T manufactured by Mitsui Chemicals, Inc.
- the coated film surface was subjected to an alignment treatment by irradiating polarized ultraviolet rays at 300 mJ/cm 2 . Baking was performed again at 230° C. for 30 minutes using an IR oven to obtain a substrate with a liquid crystal alignment film.
- the above two substrates are set as a set, and a sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) is printed around the liquid crystal injection port, and another substrate is placed so that the alignment direction facing the liquid crystal alignment film surface is 0. °.
- a heat treatment was performed at 120° C. for 90 minutes to cure the sealant to prepare an empty cell.
- a negative type liquid crystal MLC-7026 manufactured by Merck & Co. was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS driven liquid crystal cell.
- a liquid crystal cell is placed between two polarizing plates whose polarization axes are orthogonal to each other, a backlight is turned on, and the liquid crystal cell is arranged so that the transmitted light intensity in the first region of the pixel is minimized. was adjusted, and then the rotation angle ( ⁇ ) required when the liquid crystal cell was rotated so that the transmitted light intensity in the second region of the pixel was minimized was obtained. It can be said that the smaller the value of this rotation angle, the better the afterimage characteristics due to long-term AC drive. Specifically, when the rotation angle was 0.20 degrees or less, it was evaluated as " ⁇ ", and when it exceeded 0.20 degrees, it was evaluated as "x".
- a liquid crystal aligning agent filtered through a filter with a pore size of 1.0 ⁇ m was applied to the ITO surface of a glass substrate having ITO electrodes on the entire surface by spin coating, and dried on a hot plate at 80° C. for 2 minutes. After that, it was baked in a hot air circulating oven at 230° C. for 30 minutes to obtain a substrate with a liquid crystal alignment film having a thickness of 60 nm.
- This liquid crystal alignment film was subjected to rubbing alignment treatment with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, indentation length: 0.5 mm, number of rubbing: 2 times).
- the haze value of this substrate was measured using a haze meter (trade name: HZ-V3, manufactured by Suga Test Instruments Co., Ltd.). It can be said that the smaller the haze value, the less the film is scraped, that is, the higher the film strength. If the haze value was 0.15 or less, it was evaluated as " ⁇ ”; if it exceeded 0.15 and was 0.25 or less, it was evaluated as " ⁇ ";
- Table 1 below shows the evaluation results of the afterimage evaluation for the FFS-driven liquid crystal cells and the evaluation results of the film hardness test of the liquid crystal alignment film in Examples 1 and 2 and Comparative Examples 1 and 4.
- the liquid crystal aligning film obtained from the liquid crystal aligning agent of the present invention can be suitably used for various liquid crystal display elements, typified by liquid crystal display elements of the IPS drive system and the FFS drive system. These display elements are not limited to liquid crystal displays intended for display, and are also useful in light control windows and optical shutters for controlling the transmission and blocking of light.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Liquid Crystal (AREA)
Abstract
Description
また、IPS方式やFFS方式においては、液晶配向の安定性も重要となる。配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラストの低下や焼き付き(以下、AC残像と称する。)の原因となる。
これらの課題を解決する手段として、特定のポリイミド成分と特定のヒドロキシアルキルアミド化合物を含有する液晶配向剤が提案されている(例えば、特許文献2参照)。
下記の(A)成分と下記式(1)で表される化合物(B)とを含有する液晶配向剤。
(A)成分:テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる重合体(A)を含有する、重合体成分。
本発明によって上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。即ち、液晶配向剤中へ添加する架橋剤構造中に、特定のアルキレングリコール鎖が導入されることで、形成される液晶配向膜の架橋構造に適度な柔軟性が与えられるため、上記の効果が得られたと考えられる。
以下の説明において、「ハロゲン原子」として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。「Boc」は、tert-ブトキシカルボニル基を表し、「*」は結合位置を表す。
本発明の液晶配向剤は、上記(A)成分を含む。なお、重合体成分とは、重合体からなる成分を意味し、一種類の重合体で構成されていてもよく、複数種類の重合体で構成されていてもよい。また、重合体(A)は、1種であってもよく、2種以上であってもよい。
上記(A)成分に含有される重合体(A)は、テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる重合体(以下、ポリイミド系重合体(A)ともいう。)である。
ポリイミド系重合体(A)におけるポリイミド前駆体は、テトラカルボン酸誘導体成分とジアミン成分を重合反応させることにより得られる。
テトラカルボン酸誘導体成分は、テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物(以下、これらを総称して、テトラカルボン酸二無水物系化合物ともいう。)を含む。
上記ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステルが挙げられる。上記テトラカルボン酸二無水物の誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
上記ポリイミド系重合体(A)が、ポリアミック酸である場合、ポリイミド系重合体(A)は、例えば、テトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分と、ジアミン成分とを重合(重縮合)反応させることにより得られる。また、上記ポリイミド系重合体(A)におけるポリイミドは、上記ポリアミック酸をイミド化することにより得られる。さらに、上記ポリイミド系重合体(A)が、ポリアミック酸エステルである場合、後述する方法により得ることができ、該ポリアミック酸エステルをイミド化することによりポリイミドが得られる。
上記テトラカルボン酸二無水物系化合物は、例えば、芳香族テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
ポリイミド前駆体の製造に用いられるジアミン成分は特に限定されないが、下記式(3)で表されるジアミンを含むジアミン成分が好ましい。
Ar1及びAr1’の好ましい具体例としては、ベンゼン環、ビフェニル構造、ナフタレン環が挙げられる。
炭素数2~12のアルキレン基は、直鎖状であってもよいし、分岐状であってもよいが、直鎖状であることが好ましい。
Aの好ましい具体例としては、炭素数2~6の直鎖状アルキレン基が挙げられる。
2価の有機基に挿入される-O-、-C(=O)-O-、及び-O-C(=O)-は、それぞれ1つであってもよいし、複数であってもよい。
-(CH2)n-、
-O-(CH2)n-、
-O-(CH2)n-O-、
-C(=O)-(CH2)n-C(=O)-、
-O-C(=O)-(CH2)n-O-、
-O-C(=O)-(CH2)n-O-C(=O)-、
-O-C(=O)-(CH2)n-C(=O)-O-、
-C(=O)-O-(CH2)n-O-C(=O)-、
-(CH2)m1-O-(CH2)n’-O-(CH2)m2-、
-(CH2)m1-O-C(=O)-(CH2)n’-C(=O)-O-(CH2)m2-、 -(CH2)m1-C(=O)-O-(CH2)n’-O-C(=O)-(CH2)m2-
m1、m2及びn’の合計は、3~12の整数であり、好ましくは6~12の整数である。m1、及びm2は、それぞれ、1~4の整数が好ましく、2~4の整数がより好ましい。n’は、1~6の整数が好ましく、2~6の整数がより好ましく、2~4の整数がより一層好ましい。
上記ポリイミド系重合体(Q)を得るためのテトラカルボン酸誘導体成分として、例えば、上記したテトラカルボン酸二無水物系化合物を含むテトラカルボン酸誘導体成分が挙げられる。中でも上記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体が好ましい。上記式(2)で表されるテトラカルボン酸二無水物若しくはその誘導体の使用量は、ジアミン成分と反応させる全テトラカルボン酸誘導体成分1モルに対して、10モル%以上が好ましく、20モル%以上がより好ましい。
上記ポリイミド系重合体(Q)を得るためのジアミン成分として、上記窒素原子含有構造を有するジアミン、及び第二級アミノ基と第一級アミノ基を有する半芳香族ジアミンからなる群から選ばれるジアミンの使用量は、重合体(Q)を得るためのジアミン成分の全量に対して、5~100モル%が好ましく、10~95モル%がより好ましく、20~80モル%が更に好ましい。
上記ポリイミド系重合体(Q)を得るためのジアミン成分として、上記窒素原子含有構造を有するジアミン、及び第二級アミノ基と第一級アミノ基を有する半芳香族ジアミン以外のジアミンをさらに含有してもよく、該ジアミンの好ましい具体例として、分子内にウレア結合、アミド結合、カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の基を有するジアミン(以下、ジアミン(c)ともいう。)が挙げられる。ジアミン(c)の使用量は、重合体(Q)を得るためのジアミン成分の全量に対して、1~95モル%が好ましく、5~90モル%がより好ましく、20~80モル%が更に好ましい。
その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる(A)成分100質量部に対して、0.1~90質量部がより好ましく、1~90質量部が更に好ましい。
ポリイミド前駆体の一つであるポリアミック酸は、以下の方法により製造できる。具体的には、テトラカルボン酸二無水物を含むテトラカルボン酸誘導体成分と上記ジアミン成分とを有機溶媒の存在下で、好ましくは-20~150℃、より好ましくは0~50℃において、好ましくは30分~24時間、より好ましくは1時間~12時間反応(重縮合反応)させることによって合成できる。
上記の反応に用いる有機溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又はプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる。これらは2種以上を混合して用いてもよい。
末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、1,2-シクロヘキサンジカルボン酸無水物、1,3-シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物等が挙げられる。
末端封止剤の使用割合は、使用するジアミン成分の計100モル部に対して、40モル部以下とすることが好ましく、30モル部以下とすることがより好ましい。また、末端封止剤の使用割合は、使用するジアミン成分の計100モル部に対して、0.01モル部以上とすることが好ましく、0.1モル部以上とすることがより好ましい。
本発明に用いられるポリイミドは、上記のポリイミド前駆体を既知の方法によりイミド化することにより製造できる。
ポリイミドにおいては、ポリアミック酸又はポリアミック酸エステルが有する官能基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。本発明の重合体(A)におけるポリイミドのイミド化率は、表示不良の発生率を低くする観点から20~100%が好ましく、50~99%がより好ましく、60~99%が更に好ましい。
本発明に用いられるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10~15質量%の溶液としたときに、例えば10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましいが、特に限定されない。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
本発明の液晶配向剤は、上記式(1)で表される化合物(B)を含む。化合物(B)は1種類でも、2種類以上を用いてもよい。なお、本発明の液晶配向剤と独立して、化合物(B)それ自体も本発明の対象である。
該置換基としては、例えばハロゲン原子;メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;メトキシカルボニルオキシ基、エトキシカルボニルオキシ基等のアルコキシカルボニルオキシ基;シアノ基、ニトロ基、ヒドロキシ基等が挙げられるが、なかでもハロゲン原子が、本発明の効果を好適に得られる点で好ましい。
ヘテロ原子を有する基としては、例えば、酸素原子、窒素原子、ケイ素原子、リン原子及びイオウ原子からなる群より選ばれる少なくとも1種を有する基等が挙げられ、-O-、-NR-(Rは、水素原子又は炭素数1~6のアルキル基を表す。)、-CO-、-S-及びこれらを組み合わせた基等が挙げられる。なかでも、-O-が好ましい。
2価の炭化水素基の具体例としては、例えば、メタン、エタン、プロパン、ブタン等のアルカン;エチレン、プロペン、ブテン、ペンテン等のアルケン;エチン、プロピン、ブチン、ペンチン等のアルキン等の炭素数1~10の鎖状炭化水素、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン等のシクロアルカン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン等のシクロアルケン等の炭素数3~10の脂環式炭化水素、ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、メチルナフタレン、ジメチルナフタレン等のアレーン等の炭素数6~10の芳香族炭化水素等の炭化水素から、2個の水素原子を除いた2価の炭化水素基等が挙げられる。
炭素数1~10の2価の鎖状炭化水素は、好ましくは炭素数2~10の2価の鎖状炭化水素、より好ましくは炭素数2~8の2価の鎖状炭化水素が好ましい。
上記式(EG)の両端に水素原子が結合したジオールにおいて、nの上限値は、そのジオールの重量平均分子量の上限が5,000となるように設定されることが好ましく、ジオールの重量平均分子量の上限が4,000となるように設定されることがより好ましく、ジオールの重量平均分子量の上限が3,000となるように設定されることが更に好ましい。液晶配向性を高める観点から、nの上限値は、40が好ましく、30がより好ましく、20が特に好ましい。
なお、上記(EG)で表される2価の有機基を含むジオールにおいて例示されるグリコールの平均分子量とは、ゲル浸透クロマトグラフィー(GPC)によるポリスチレンを基準として得られる重量平均分子量である。
本発明の液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても上記した重合体成分と、溶媒とを含有する塗布液であることが好ましい。
本発明の液晶配向剤に含有される重合体成分の含有量(濃度)は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から、液晶配向剤の全体量に対して、1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。
液晶配向剤中の重合体(A)の含有割合は、本開示の効果を好適に得る観点から、液晶配向剤に含まれる重合体の合計100質量部に対して、好ましくは10質量部以上であり、より好ましくは20質量部以上であり、更に好ましくは50質量部以上である。液晶配向剤がその他の重合体を含む場合の重合体(A)の含有割合は、液晶配向剤中に含まれる重合体成分100質量部に対して、10~90質量部が好ましく、20~80質量部がより好ましい。
上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。エポキシ基を有する化合物として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号に記載の化合物等;
オキセタニル基を有する化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ジ[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
オキサゾリン構造を有する化合物として、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)等の化合物、エポクロス(商品名、株式会社日本触媒製)のようなオキサゾリン基を有するポリマーやオリゴマー、日本特開2007-286597号公報の段落[0115]に記載の化合物等;
シクロカーボネート基を有する化合物として、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’,-ジ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載の化合物等;
ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;
ヒドロキシ基及び/又はアルコキシ基を有する化合物として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、WO2015/072554号や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、WO2010/074269号に記載の化合物等;
重合性不飽和基を有する架橋性化合物として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。
密着助剤を使用する場合は、液晶配向剤における密着助剤の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
誘電体または導電物質としては、例えば3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンなどが挙げられる。
誘電体または導電物質を使用する場合は、液晶配向剤における誘電体または導電物質の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
本発明の液晶配向膜は、上記本発明の液晶配向剤を用いて形成される。本発明の液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることができる。垂直配向型の液晶配向膜として、中でも、VA方式、PSA(Polymer Sustained Alignment)方式、又はSC-PVA(Surface-Controlled Patterned Vertical Alignment)方式等の垂直配向型の液晶表示素子に用いる液晶配向膜が好ましい。水平配向型の液晶配向膜として、中でも、TN方式、IPS方式、又はFFS方式等の液晶表示素子に用いる液晶配向膜が好ましい。また、本発明の液晶配向剤は、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜、或いはこれら以外の用途、例えばカラーフィルタの保護膜、フレキシブルディスプレイのゲート絶縁膜、基板材料にも用いることができる。
本発明の液晶配向膜の製造方法の好ましい態様としては、例えば、上記の液晶配向剤を基板に塗布する工程(工程(1))、塗布した液晶配向剤を焼成する工程(工程(2))、場合により、工程(2)で得られた膜に配向処理する工程(工程(3))を含む液晶配向膜の製造方法が挙げられる。
本発明に用いられる液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO(Indium Tin Oxide)電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。液晶配向剤を基板上に塗布した後、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、重合体中のアミック酸又はアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の溶媒を蒸発させる温度は、加熱手段の温度として、例えば40~180℃で行うことができるが、プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、例えば1~10分であり、好ましくは1~5分である。溶媒を蒸発させる工程に加えて、重合体中のアミック酸又はアミック酸エステルの熱イミド化の工程を行う場合には、上記溶媒を蒸発させる工程の後、加熱手段の温度として、例えば150~300℃、好ましくは150~250℃の温度範囲で更に焼成する工程ができる。熱イミド化の工程における焼成時間としては特に限定されないが、例えば5~40分であり、好ましくは5~30分である。
焼成後の膜状物は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、VA方式又はPSA方式(Polymer Sustained Alignment)等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法でもよいが、光配向処理法が好適である。光配向処理法としては、上記膜状物の表面に、一定方向に偏光された放射線を照射し、場合により加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、溶媒を用いて、これらと接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
上記の放射線を照射した塗膜に対する加熱処理は、50~300℃で1~30分とすることが好ましく、120~250℃で1~30分とすることがより好ましい。
本発明の液晶表示素子は、本発明の液晶配向膜を有する。
本発明の液晶配向膜は、高い液晶配向性が得られる観点から、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セル内に液晶を配することにより、製造することができる。具体的には以下の2つの方法が挙げられる。
なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。光配向処理を行った場合も同様に、配向方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、重合性基(メタ(ア)クリロイル基、等)を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
DMSO:ジメチルスルホキシド
TBACl:テトラブチルアンモニウムクロリド
DMAP:4-ジメチルアミノピリジン
Boc2O:二炭酸ジ-tert-ブチル
合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末30mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン1個に対する基準プロトンの個数割合である。
化合物(B)に該当するAD-1は文献等未公開の新規化合物であり、以下に合成法を詳述する。
装置:BRUKER社製 ADVANCE III-500MHz
測定溶媒:重水素化ジメチルスルホキシド(DMSO-d6)
基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for 1H)
1H-NMR(500MHz)in DMSO-d6:δ(ppm)=12.20(br,2H),4.12(t,4H),3.59(t,4H),3.53(s,8H),2.51(t,4H),2.47(t,4H).
1H-NMR(500MHz)in DMSO-d6:δ(ppm)=4.38(d,J=2.5Hz,1H),4.35(d,J=2.5Hz,1H),4.14-4.12(m,4H),3.85-3.82(m,2H),3.60(t,4H),3.53(s,8H),3.19-3.17(m,2H),2.78(t,2H),2.63-2.58(m,10H).
(合成例2)
撹拌装置及び窒素導入管付きの200mLのナスフラスコに、DA-1(8.04g、40.2mmol)、DA-2(4.36g、10.9mmol)、及びDA-3(12.2g、21.9mmol)を量り取り、NMP(98.4g)を加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1(9.40g、47.4mmol)を添加し、さらにNMP(37.6g)を加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-2(4.65g、23.7mmol)及びNMP(18.6g)を添加し、窒素雰囲気下23℃で2時間撹拌することで、ポリアミック酸溶液(PAA-I、粘度:1250mPa・s)を得た。
撹拌子の入った200mL三角フラスコに得られた上記ポリアミック酸溶液(PAA-I)(100g)を量り取り、末端封止剤であるBoc2O(1.24g、5.68mmol)を添加し、40℃で15時間撹拌することで、末端修飾されたポリアミック酸溶液(PAA-I-1)を得た。
撹拌子の入った200mL三角フラスコに、PAA-I-1(100g)を分取し、NMP(66.7g)、無水酢酸(14.2g)、及びピリジン(4.70g)を加え、室温で30分間撹拌した後、60℃で4時間反応させた。この反応溶液をメタノール(650g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:89%)を得た。
さらに、撹拌子の入った100mL三角フラスコに、このポリイミドの粉末を9.60g分取し、NMP(70.4g)を加えて、70℃にて24時間撹拌して溶解させ、ポリイミド(SPI-1)の溶液を得た。
撹拌装置及び窒素導入管付きの50mLのナスフラスコに、DA-4(2.70g、18.0mmol)を量り取り、NMP(15.3g)を加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3(2.25g、9.00mmol)を添加し、さらにNMP(12.8g)を加え、窒素雰囲気下50℃で6時間撹拌した。さらに、CA-4(2.52g、8.55mmol)及びNMP(14.3g)を加え、窒素雰囲気下50℃で3時間撹拌することで、ポリアミック酸(PAA-1)の溶液(粘度:330mPa・s)を得た。
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-9(0.865g、8.00mmol)、DA-10(3.84g、12.0mmol)、DA-11(2.93g、12.0mmol)、DA-12(2.73g、8.00mmol)及びNMP(119g)を加えて、窒素を送りながら室温で1時間撹拌した。その後、CA-5(8.65g、38.6mmol)及びNMP(17.9g)を加えて、40℃で18時間撹拌することで、ポリアミック酸の溶液(粘度:405mPa・s)を得た。
撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、得られた上記ポリアミック酸の溶液(100g)を量り取り、NMPを固形分濃度が9質量%となるように加え、無水酢酸(7.60g)及びピリジン(1.57g)を加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液をメタノール(428g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミド粉末のイミド化率は66%であった。
得られた上記ポリイミド粉末に、固形分濃度が12質量%となるようにNMPを加え、80℃で18時間撹拌し溶解させ、ポリイミド(SPI-2)の溶液を得た。
撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-6(1.59g、7.98mmol)、DA-8(0.790g、2.65mmol)、DA-13(1.12g、2.66mmol)及びNMP(47.8g)を加えて、窒素を送りながら室温で1時間撹拌した。その後、CA-4(3.73g、12.7mmol)及びNMP(5.30g)を加えて、70℃で12時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-2)の溶液(粘度:390mPa・s)を得た。
(実施例1)
撹拌子の入った50mL三角フラスコに、合成例2で得られたポリイミド(SPI-1)の溶液(2.00g)及び、合成例3で得られたポリアミック酸(PAA-1)の溶液(3.73g)を量り取り、NMP(0.83g)、GBL(8.40g)及びBCS(4.00g)を加え、さらにAD-1の10質量%NMP溶液(0.24g)を加え、室温で2時間撹拌することで、液晶配向剤(1)を得た。
使用するポリマー溶液及び溶媒の種類及び量を下記表1に示すように変更した以外は実施例1と同様の操作を行うことで、液晶配向剤(2)~(6)を得た。なお、表1中の添加剤AD-1~AD-3は、それぞれ10質量%を含むNMP溶液として添加した。
フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
始めに、電極付きの基板を準備した。基板は、35mm×40mmの大きさで、厚さが0.7mmのガラス基板であった。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極(厚さ:50nm 電極幅:縦20mm 横10mm)が形成されていた。第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する膜厚であった。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極(厚さ:50nm)が配置され、第1画素及び第2画素の2つの画素を形成していた。各画素のサイズは、縦10mmで横約5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
ラビング配向処理液晶セルと同様の電極付き基板及びスペーサーを有するガラス基板を用いた。実施例2及び比較例3~4で得られた液晶配向剤(4)~(6)をそれぞれ孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板、およびガラス基板に、スピンコートにて塗布した。80℃のホットプレート上で2分間乾燥させた後、IR式オーブンを用いて230℃、30分間焼成を行い、厚み100nmの塗膜を形成させた。この塗膜面に偏光紫外線を300mJ/cm2となるように照射して配向処理を施した。再度IR式オーブンを用いて230℃、30分間焼成を行って、液晶配向膜付き基板を得た。上記2枚の基板を一組とし、液晶注入口を残して周囲にシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板を、液晶配向膜面が向き合う配向方向が0°になるようにして張り合わせた。その後、120℃で90分間の加熱処理を行い、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
上記で作成したFFS駆動液晶セルに対し、60℃の恒温環境下、周波数60Hzで±5.8Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
上記の処理を行った液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度Δθとして算出した。
具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度(Δθ)を求めた。長期交流駆動による残像特性は、この回転角度の値が小さいほど良好であると言える。具体的には、回転角度が0.20度以下の場合は「〇」、0.20度を超える場合には「×」として評価した。
全面にITO電極が付いたガラス基板のITO面に、孔径1.0μmのフィルターで濾過した液晶配向剤をスピンコート塗布にて塗布し、80℃のホットプレート上で2分間乾燥させた。その後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚60nmの液晶配向膜付き基板を得た。この液晶配向膜を、レーヨン布でラビング配向処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.5mm、ラビング回数:2回)した。本基板をヘーズメーター(スガ試験機社製、商品名:HZ-V3)を用いてヘーズ値の測定を行った。ヘーズ値が小さいほど、膜が削れていない、すなわち膜強度が高いと言える。ヘーズ値が0.15以下であれば「〇」、0.15を超えて0.25以下であれば「△」、0.25を超える場合には「×」として評価を行った。
Claims (15)
- 下記の(A)成分と下記式(1)で表される化合物(B)とを含有する液晶配向剤。
(A)成分:テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる重合体(A)を含有する、重合体成分。
- 前記L1が、炭素数1~10の2価の炭化水素基である、請求項1に記載の液晶配向剤。
- 前記Eが、前記式(EG)の両端に水素原子が結合したジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基である、請求項1又は2に記載の液晶配向剤。
- 前記Eが、重量平均分子量の上限が5,000である有機ジオールから2つのヒドロキシ基中に含まれる水素原子を除いた2価の有機基である、請求項1~3のいずれか一項に記載の液晶配向剤。
- 前記テトラカルボン酸誘導体成分が、下記式(2)で表されるテトラカルボン酸二無水物を含む、請求項1~5のいずれか一項に記載の液晶配向剤。
- 前記ジアミン成分が、下記式(3)で表されるジアミンを含む、請求項1~7のいずれか一項に記載の液晶配向剤。
- 前記化合物(B)の含有量は、前記(A)成分100質量部に対して、0.1~30質量部である、請求項1~8のいずれか一項に記載の液晶配向剤。
- 請求項1~9のいずれか一項に記載の液晶配向剤を基板に塗布し、焼成し、必要に応じて、得られる膜に偏光された放射線を照射すること、を含む、液晶配向膜の製造方法。
- 前記焼成における焼成温度が150~250℃である、請求項10に記載の液晶配向膜の製造方法。
- 請求項1~9のいずれか一項に記載の液晶配向剤から形成されてなる液晶配向膜。
- 請求項12に記載の液晶配向膜を具備する液晶表示素子。
- IPS駆動方式又はFFS駆動方式である請求項13に記載の液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247015940A KR20240090441A (ko) | 2021-10-27 | 2022-10-13 | 액정 배향제, 액정 배향막, 액정 표시 소자, 및 화합물 |
JP2023556309A JPWO2023074390A1 (ja) | 2021-10-27 | 2022-10-13 | |
CN202280086164.3A CN118451362A (zh) | 2021-10-27 | 2022-10-13 | 液晶取向剂、液晶取向膜、液晶显示元件以及化合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-175589 | 2021-10-27 | ||
JP2021175589 | 2021-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074390A1 true WO2023074390A1 (ja) | 2023-05-04 |
Family
ID=86158014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038190 WO2023074390A1 (ja) | 2021-10-27 | 2022-10-13 | 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2023074390A1 (ja) |
KR (1) | KR20240090441A (ja) |
CN (1) | CN118451362A (ja) |
TW (1) | TW202328292A (ja) |
WO (1) | WO2023074390A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3651098A (en) * | 1968-01-29 | 1972-03-21 | Ciba Ltd | Polyglycidyl esters |
JPH11181282A (ja) * | 1997-12-25 | 1999-07-06 | Sumitomo Bakelite Co Ltd | 樹脂組成物 |
JP2005275360A (ja) * | 2004-02-24 | 2005-10-06 | Jsr Corp | 液晶配向剤 |
JP2014056236A (ja) * | 2012-08-10 | 2014-03-27 | Jsr Corp | 液晶配向剤 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3893659B2 (ja) | 1996-03-05 | 2007-03-14 | 日産化学工業株式会社 | 液晶配向処理方法 |
CN109952531B (zh) | 2016-11-18 | 2022-12-27 | 日产化学株式会社 | 液晶取向剂、液晶取向膜、和液晶表示元件 |
-
2022
- 2022-10-13 KR KR1020247015940A patent/KR20240090441A/ko active Pending
- 2022-10-13 CN CN202280086164.3A patent/CN118451362A/zh active Pending
- 2022-10-13 JP JP2023556309A patent/JPWO2023074390A1/ja active Pending
- 2022-10-13 WO PCT/JP2022/038190 patent/WO2023074390A1/ja active Application Filing
- 2022-10-20 TW TW111139744A patent/TW202328292A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3651098A (en) * | 1968-01-29 | 1972-03-21 | Ciba Ltd | Polyglycidyl esters |
JPH11181282A (ja) * | 1997-12-25 | 1999-07-06 | Sumitomo Bakelite Co Ltd | 樹脂組成物 |
JP2005275360A (ja) * | 2004-02-24 | 2005-10-06 | Jsr Corp | 液晶配向剤 |
JP2014056236A (ja) * | 2012-08-10 | 2014-03-27 | Jsr Corp | 液晶配向剤 |
Also Published As
Publication number | Publication date |
---|---|
TW202328292A (zh) | 2023-07-16 |
JPWO2023074390A1 (ja) | 2023-05-04 |
CN118451362A (zh) | 2024-08-06 |
KR20240090441A (ko) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022176680A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
TW202321428A (zh) | 液晶配向劑、液晶配向膜、以及液晶顯示元件 | |
WO2023032753A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
WO2023068085A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 | |
WO2023286735A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子 | |
WO2022270287A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2023286733A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子 | |
JP7613467B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
KR20250009419A (ko) | 신규한 디아민 화합물, 그 디아민을 사용하여 얻어지는 중합체, 액정 배향제, 액정 배향막, 및 액정 표시 소자 | |
WO2022234820A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2023074390A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物 | |
TWI874664B (zh) | 液晶配向劑、液晶配向膜、以及液晶顯示元件 | |
WO2024154728A1 (ja) | 液晶表示素子及びその製造方法 | |
WO2024142964A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2022220199A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2022190896A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2023008203A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体 | |
WO2024166693A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体 | |
WO2023068084A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体 | |
KR20240150452A (ko) | 액정 배향제, 액정 배향막, 및 액정 표시 소자 | |
WO2023074570A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2024204521A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子並びにその製造方法 | |
KR20250006072A (ko) | 액정 배향제, 액정 배향막 및 액정 표시 소자 | |
WO2022250007A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子、ジアミン及び重合体 | |
TW202436598A (zh) | 液晶配向劑、液晶配向膜及液晶顯示元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886719 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023556309 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247015940 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280086164.3 Country of ref document: CN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22886719 Country of ref document: EP Kind code of ref document: A1 |