[go: up one dir, main page]

WO2022234820A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2022234820A1
WO2022234820A1 PCT/JP2022/019330 JP2022019330W WO2022234820A1 WO 2022234820 A1 WO2022234820 A1 WO 2022234820A1 JP 2022019330 W JP2022019330 W JP 2022019330W WO 2022234820 A1 WO2022234820 A1 WO 2022234820A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
bis
diamine
polymer
Prior art date
Application number
PCT/JP2022/019330
Other languages
English (en)
French (fr)
Inventor
翔一朗 中原
新平 新津
崇 仲井
友基 玉井
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202280033268.8A priority Critical patent/CN117280277A/zh
Priority to JP2023518681A priority patent/JPWO2022234820A1/ja
Priority to KR1020237040562A priority patent/KR20240004616A/ko
Publication of WO2022234820A1 publication Critical patent/WO2022234820A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element.
  • a liquid crystal display element is constructed by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as a liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates. That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, is formed on the surfaces of the substrates that sandwich the liquid crystal and is in contact with the liquid crystal, and plays the role of orienting the liquid crystal in a certain direction between the substrates. Furthermore, the liquid crystal alignment film can control the pretilt angle of the liquid crystal.
  • a method of reducing the pretilt angle mainly by selecting a polyimide structure is known (see Patent Documents 1 and 2).
  • liquid crystal display elements In recent years, as the performance of liquid crystal display elements has improved, in addition to applications such as large-screen, high-definition liquid crystal televisions, it is also used in automotive applications such as car navigation systems, meter panels, surveillance cameras, and medical camera monitors. Liquid crystal display elements are used, and due to the demand for viewing angle characteristics, the IPS method and FFS method, which are excellent in viewing angle characteristics among driving methods for liquid crystal molecules, are being studied. (see Patent Document 3). In addition, in the IPS and FFS liquid crystal display elements, static electricity tends to accumulate in the liquid crystal cell, and the accumulated electric charge disturbs the liquid crystal alignment and affects the display as an afterimage. significantly lower.
  • Patent Document 4 discloses a liquid crystal aligning agent containing a polyamic acid or polyimide having a structural unit having an aromatic tetracarboxylic acid residue and a structural unit having an alicyclic tetracarboxylic acid residue. is proposed, and Patent Document 5 proposes a liquid crystal aligning agent containing a polyimide precursor having a diphenylamine skeleton.
  • an object of the present invention is to provide a liquid crystal aligning agent capable of obtaining a liquid crystal display element with a low incidence of display defects (line burn-in) even when a negative liquid crystal is used as the liquid crystal material.
  • Another object of the present invention is to provide a liquid crystal aligning agent that provides a liquid crystal alignment film that has high stability in liquid crystal alignment and can reduce the generated charge in a short time while reducing the absolute value of the accumulated charge.
  • liquid crystal aligning agent having the following composition is optimal for achieving the above object, and completed the present invention.
  • a liquid crystal aligning agent comprising the following polymer (A), polymer (B) and crosslinkable compound (C).
  • R is the same as R in formula (d D ).
  • the polyimide precursor does not have an imide ring structure.
  • two Ars each independently represent a divalent benzene ring, a biphenyl structure, or a naphthalene ring, and any hydrogen atom on the ring may be replaced with a monovalent group.
  • L o is —O—(—Ar′—O—) n — (n is an integer of 0 to 3.
  • Ar′ represents a divalent benzene ring and a biphenyl structure, and any hydrogen atom on the ring is may be substituted with a monovalent group.
  • the plurality of Ar' may be the same or different.
  • -(CH 2 ) n - (n is an integer of 2 to 18 .)
  • Y D represents a divalent organic group having a group “—N(D)—” (D represents a protecting group that is eliminated by heating and replaced with a hydrogen atom) in the molecule.
  • R's each independently represent a hydrogen atom or a monovalent organic group.
  • Y B represents a divalent organic group that satisfies the following conditions (1) and (2).
  • R has the same definition as R in formula (d 0 ) above.
  • Condition (1) a heterocyclic ring containing a nitrogen atom and a secondary or tertiary amino group (provided that the group "-N(D')-"(D' is a protective group that is eliminated by heating and replaced with a hydrogen atom ) does not have a nitrogen atom-containing structure selected from the group consisting of excluding amino groups derived from ).
  • Condition (2) Does not have a side chain group with 6 or more carbon atoms. (a is an integer of 2 to 4, R a is an a-valent organic group, and the a bonding site with N is an aliphatic carbon atom.)
  • Boc represents a tert-butoxycarbonyl group.
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal display element with a low incidence of display defects (line burn-in) even when a negative liquid crystal is used as the liquid crystal material.
  • a liquid crystal alignment film can be obtained in which the stability of the liquid crystal alignment is high and the generated charge can be reduced in a short time while reducing the absolute value of the accumulated charge.
  • a liquid crystal alignment film in which abrasion of the film during alignment treatment is suppressed can be obtained, so a liquid crystal display device with excellent display quality can be obtained.
  • the liquid crystal aligning agent of the present invention is a polyimide precursor which is a reaction product of a diamine component containing a diamine represented by the above formula (d 0 ) and a diamine represented by the above formula (d D ) and a tetracarboxylic acid derivative component. It contains a polyimide polymer (A) obtained by imidizing a polyimide.
  • the high-temperature treatment required for thermal imidization becomes unnecessary.
  • the obtained liquid crystal alignment film has high stability of liquid crystal alignment, and a liquid crystal display element with a low incidence of display defects (line burn-in) can be obtained.
  • the polymer (A) is obtained by imidizing a polyimide precursor obtained from a tetracarboxylic acid derivative component containing a tetracarboxylic dianhydride and a diamine component containing a specific diamine.
  • the imidization rate of polyimide in the polymer (A) is preferably 10 to 100% from the viewpoint of reducing the occurrence rate of display defects.
  • the lower limit of the imidization rate is preferably 10%, more preferably 20%, still more preferably 50%, most preferably 70%, and the upper limit of the imidization rate is preferably 100%, more preferably 99%. 95% is even more preferred. Specific examples of materials used in the production of the polymer (A) and production methods are described in detail below.
  • the diamine component used in the production of the polymer (A), which is a polyimide contained in the liquid crystal aligning agent of the present invention, is a diamine represented by the following formula (d 0 ) and a diamine represented by the following formula (d D ) contains
  • the diamine represented by the following formula (d 0 ) and the diamine represented by the following formula (d D ) may be used singly or in combination of two or more. (The definition of each symbol in the formula is the same as above.)
  • the hydrogen atom on the benzene ring, biphenyl structure, or naphthalene ring of Ar′ contained in Ar and L o in the above formula (d 0 ) is, for example, a halogen atom, a carbon number of 1 to 10 (more preferably a carbon 1 to 5) alkyl group, alkenyl group having 2 to 10 carbon atoms (more preferably 2 to 5 carbon atoms), alkoxy group having 1 to 10 carbon atoms (more preferably 1 to 5 carbon atoms), 1 carbon atom to 10 (more preferably 1 to 5 carbon atoms) fluoroalkyl group, 2 to 10 carbon atoms (more preferably 2 to 5 carbon atoms) fluoroalkenyl group, 1 to 10 carbon atoms (more preferably 1 to 1 carbon atoms) 5) may be substituted with a fluoroalkoxy group, a hydroxy group, an alkyloxycarbonyl group having 1 to 10 carbon atoms (more preferably 1 to 5
  • the diamine represented by the above formula (d 0 ) includes 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and the following formulas (d 0 -1) to (d 0 - 10) compounds represented by 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,8 -bis(3-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, 1 , 10-bis(3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)undecane, 1,11-
  • the diamine represented by the above formula (d D ) is preferably an aromatic diamine having one aromatic ring in the molecule, and any hydrogen on the aromatic ring
  • -NR-(R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms , a phenyl group, or the group “-D”)
  • the aromatic ring include a benzene ring, a naphthalene ring and an anthracene ring, preferably a benzene ring and a naphthalene ring, and more preferably a benzene ring.
  • Any hydrogen atom on the aromatic ring may be a hydroxy group, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a carboxy group, a halogen atom, or a fluorine atom containing 1 to 5 carbon atoms. may be replaced with a monovalent organic group in which a portion of the hydrogen atoms on the alkyl group having 1 to 5 carbon atoms is substituted with a hydroxy group.
  • D in the group "-N(D)-” represents a protective group that is detached by heating and replaced with a hydrogen atom, and is decomposed by heat and detached, and is converted to the group "-NH-".
  • the structure of D which is an organic group that can be eliminated by heat, includes a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, a tertiary butoxycarbonyl group (tert-butoxycarbonyl group), and the like.
  • Typical examples include carbamate-based organic groups, but tertiary butoxy groups are preferred from the viewpoint of efficient thermal desorption, desorption at a relatively low temperature, and emission as a harmless gas when desorbed. Carbonyl groups are particularly preferred.
  • the diamine represented by the above formula (d D ) is preferably a diamine selected from the following formulas (d D -1) to (d D -7).
  • R represents a hydrogen atom or a tert-butoxycarbonyl group.
  • a preferable content of the diamine represented by the above formula (d 0 ) is preferably 50 to 95 mol %, preferably 50 to 90 mol %, based on the total diamine component used in the production of the polymer (A). Mole % is more preferred.
  • the preferred content of the diamine of formula (d D ) is 5 to 50 mol %, preferably 10 to 50 mol %, based on the total amount of the diamine component used in the production of the polymer (A). It is more preferable to have
  • the diamine component used in the production of the polymer (A) contained in the liquid crystal aligning agent of the present invention includes, in addition to the above diamines, various diamines (hereinafter referred to as other diamines 1 Also called.) can be used. Each of the other diamines 1 may be used alone or in combination of two or more.
  • diamines 1 include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl- m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino)ethyl)aniline, 4- (2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3, 3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4
  • m and n are integers of 1 to 3 (provided that 1 ⁇ m + n ⁇ 4), j is an integer of 0 or 1,
  • X 1 is -(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, - represents CH 2 —OCO—, —COO—, or —OCO—
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, a carbon number It represents an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms.
  • X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO- or -OCO-.
  • R 2 represents a fluorine atom-containing alkyl group having 1 to 20 carbon atoms or an alkyl group having 3 to 20 carbon atoms.
  • the amount of the other diamines 1 is It is preferably 5 to 40 mol %, more preferably 10 to 40 mol %.
  • the total content of the diamines of the above formulas (d 0 ) and (d D ) is preferably 95 mol% or less with respect to the total diamine components used in the production of the polymer (A), It is preferably 90 mol % or less.
  • the tetracarboxylic acid derivative component used in the production of the polymer (A) of the present invention is not only tetracarboxylic dianhydride, but also its derivatives such as tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester, tetracarboxylic acid Dialkyl ester dihalides and the like can also be used.
  • the tetracarboxylic acid derivative component one type of tetracarboxylic dianhydride or derivative thereof may be used alone, or two or more types may be used in combination.
  • tetracarboxylic dianhydrides or derivatives thereof include acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides, or these derivatives.
  • tetracarboxylic dianhydrides having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, or these More preferably, it contains a derivative (hereinafter collectively referred to as a tetracarboxylic acid derivative having a specific partial structure), and at least one selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure.
  • a derivative hereinafter collectively referred to as a tetracarboxylic acid derivative having a specific partial structure
  • a tetracarboxylic dianhydride having a partial structure of or a derivative thereof is an aromatic tetracarboxylic dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • the tetracarboxylic acid derivative component that can be used in the synthesis of the polymer (A) preferably includes the following tetracarboxylic dianhydrides or derivatives thereof (hereinafter collectively referred to as specific tetracarboxylic acid derivatives) ).
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracar
  • More preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2- Dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3 ,3
  • the usage ratio of the tetracarboxylic acid derivative having the specific partial structure or the specific tetracarboxylic acid derivative is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total tetracarboxylic acid derivative components used. , more preferably 50 mol % or more.
  • the liquid crystal aligning agent of the present invention has "H-N(R)-YD'-N(R)-H" (YD ' is a group "-N(D ' )-"(D' is , represents a protective group that is eliminated by heating and replaced with a hydrogen atom.).
  • R has the same meaning as R in formula (d D ).
  • the polyimide precursor of the polymer (B) does not have an imide ring structure.
  • the diamine (d D'B ) By adding the diamine (d D'B ) to the diamine component used for producing the polymer (B), the polymer (B ) can be unevenly distributed. Therefore, the effect of improving the film strength possessed by the polymer (B) is increased, and the abrasion of the film during the alignment treatment is suppressed.
  • the diamine component used for producing the polymer (B) includes the diamine represented by the above formula (d B ).
  • the divalent organic group Y B contained in the diamine (d B ) satisfies the conditions (1) and (2) above.
  • the aspect of condition (1) the basicity of the polymer is lowered and the thermal imidization reaction of the polymer (B) is suppressed, so that it is possible to obtain a liquid crystal alignment film with high film strength.
  • the aspect of condition (2) the alignment control force of the liquid crystal is increased in the IPS system and the FFS system, and the alignment stability of the resulting liquid crystal alignment film can be enhanced.
  • a nitrogen atom selected from the group consisting of a heterocyclic ring containing a nitrogen atom and a secondary or tertiary amino group (excluding an amino group derived from the group "-N(D')-")
  • a diamine in which two groups "-NHR" (R has the same definition as R in the above formula (d B )) are bonded to a divalent organic group having a containing structure other A diamine having a specific nitrogen atom-containing structure exemplified for diamine 1 can be mentioned.
  • Examples of the diamine represented by the above formula (d B ) include an aromatic diamine (I) having one benzene ring; a diamine having two benzene rings and having two benzene rings linked by a single bond (II- a); an aromatic diamine in which two benzene rings are linked by a divalent group, wherein the divalent group is an oxygen atom or an organic group having 1 to 3 carbon atoms and is the same as the two benzene rings Aromatic diamines (II-b), which are bonded at the atoms of However, the aromatic diamine (I), the aromatic diamine (II-a) and the aromatic diamine (II-b) are diamines other than the above diamine (d D'B ), and the above conditions (1) and conditions (2) is satisfied.
  • diamine represented by the above formula (d B ) include the diamine represented by the formula (d M ) described later, and the diamine represented by the above formulas (d 0 -1) to (d 0 -10).
  • diamine (d D'B ) examples include the diamines exemplified for the diamine (d D ), including preferred embodiments.
  • the diamine (d D'B ) may be used alone or in combination of two or more.
  • specific examples of D' of the group "-N(D')-” include the structures exemplified for D of the above group "-N(D)-” including preferred embodiments.
  • a preferable content of the diamine of the above formula (d D'B ) is preferably 5 to 40 mol %, preferably 10 to 40 mol %, based on the total diamine component of the diamine component used in the production of the polymer (B). is more preferred.
  • the diamine component used for producing the polymer (B) preferably contains a diamine represented by the following formula (d M ).
  • (L M represents a single bond, —CH 2 —, —CO—, —O—, or —C(CH 3 ) 2 —.
  • L M ′ is a single bond or —(CH 2 ) m — (m is is an integer of 1 to 2.
  • Ar M represents a divalent benzene ring, any hydrogen atom on the ring may be replaced with a monovalent group.
  • a plurality of Ar M are present , the plurality of Ar 2 M may be the same or different, each of the plurality of R independently represents a hydrogen atom or a monovalent organic group, and n is an integer of 0 to 1.
  • a hydrogen atom on the benzene ring of Ar M is a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a fluoroalkyl group having 1 to 5 carbon atoms.
  • a fluoroalkenyl group having 2 to 5 carbon atoms, a fluoroalkoxy group having 1 to 5 carbon atoms, a hydroxy group, an alkyloxycarbonyl group having 1 to 5 carbon atoms, a hydroxy group, a carboxy group, a cyano group, a nitro group, etc. may be
  • diamine represented by the above formula (d M ) include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m -phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 3-aminobenzylamine, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine , 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3 ,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dime
  • the diamine (d M ) may be used alone or in combination of two or more.
  • the preferred content of the diamine of the above formula (d M ) is preferably 60 to 95 mol%, preferably 60 to 90 mol%, of the total diamine component of the diamine component used in the production of the polymer (B). more preferred.
  • a diamine other than the diamine (d D'B ) and the diamine (d M ) (hereinafter also referred to as other diamine 2) may be used.
  • a specific example of the other diamine 2 is a diamine component for obtaining the above polymer (A), which satisfies the above conditions (1) and (2).
  • tetracarboxylic acid derivative component used in the production of the polymer (B) include the same compounds as those exemplified for the polymer (A), including preferred specific examples.
  • the tetracarboxylic acid derivative component used in the production of the polymer (B) is more preferably a tetracarboxylic acid derivative having the specific partial structure or a specific tetracarboxylic acid derivative, and the specific tetracarboxylic acid derivative Most preferably, the more preferred embodiment of is used.
  • the tetracarboxylic acid derivative having the specific partial structure or the specific tetracarboxylic acid derivative is contained in an amount of 10 mol% or more with respect to all the tetracarboxylic acid derivative components used in the production of the polymer (B). is preferred, more preferably 20 mol% or more, and even more preferably 50 mol% or more.
  • the tetracarboxylic acid derivative component used in the production of the polymer (B) is the aromatic Group tetracarboxylic dianhydrides or derivatives thereof are preferably contained, and among these, tetracarboxylic dianhydrides having a benzene ring structure or derivatives thereof are preferred. More preferred are the aromatic tetracarboxylic acid dianhydrides exemplified in the specific tetracarboxylic acid derivatives above, or derivatives thereof.
  • the tetracarboxylic acid derivative component used for producing the polymer (A) and the tetracarboxylic acid derivative component used for producing the polymer (B) may be the same or different.
  • the content ratio of the polymer (A) and the polymer (B) is from 10/90 in terms of the mass ratio of [polymer (A)]/[polymer (B)].
  • 90/10 is preferred, 20/80 to 90/10 is more preferred, and 20/80 to 80/20 is even more preferred.
  • a polyimide precursor such as polyamic acid or polyamic acid ester used for producing the polymer (A) and polymer (B) contained in the liquid crystal aligning agent of the present invention can be synthesized, for example, by the following method.
  • Synthesis of polyamic acid is carried out by reacting a diamine component containing the diamine and a tetracarboxylic acid derivative component containing the tetracarboxylic dianhydride or its derivative in an organic solvent.
  • the ratio of the tetracarboxylic dianhydride and the diamine used in the synthetic reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.5 to 2 per equivalent of the amino group of the diamine.
  • a ratio that provides equivalents is preferred, and a ratio that provides 0.8 to 1.2 equivalents is more preferred.
  • the reaction temperature in the polyamic acid synthesis reaction is preferably -20 to 150°C, more preferably 0 to 100°C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the polyamic acid synthesis reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • organic solvent examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Solvents such as glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
  • a polyimide can be obtained by ring-closing (imidizing) the polyimide precursor.
  • the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature when the polyimide precursor is thermally imidized in the solution is usually 100 to 400° C., preferably 120 to 250° C., and the water generated by the imidization reaction is preferably removed from the system. .
  • Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done.
  • the amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times.
  • Examples of basic catalysts include pyridine and triethylamine.
  • acid anhydrides include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • the imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • a tetracarboxylic acid derivative component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocking agent end-blocking A stop-type polymer may be synthesized.
  • the end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion between the sealant and the alignment film.
  • the terminal of the polyimide precursor or polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, or a group derived from a terminal blocking agent to be described later.
  • An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • Acid anhydrides dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4 -aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n - monoamine compounds such as heptylamine and n-octylamine; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, or having unsaturated bonds such as 2-acryloyloxyethyl isocyanate and 2-methacryloy
  • the proportion of the end blocking agent used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
  • the liquid crystal aligning agent of the present invention contains a polymer (A), a polymer (B), and a crosslinkable compound (C) described below.
  • the liquid crystal aligning agent of the present invention may contain other polymers in addition to the polymer (A) and polymer (B).
  • Other polymer types include polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene or derivatives thereof, poly(styrene-phenylmaleimide) derivatives, poly(meth)acrylates, and the like.
  • Other polymers may be used singly or in combination of two or more.
  • the content of the other polymer is preferably 30 parts by mass or less, more preferably 1 to 25 parts by mass, and further 1 to 20 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. preferable.
  • the liquid crystal alignment agent is used to produce the liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of this invention, it is preferable that it is the form of the coating liquid containing an above-described polymer component and an organic solvent.
  • the organic solvent contained in the coating liquid is not particularly limited as long as the polymer component is uniformly dissolved.
  • Examples include N,N-dimethylformamide, N,N-dimethylacetamide, and N,N-dimethyllacto Amide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, 1 ,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, N-(n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the organic solvent contained in the liquid crystal aligning agent is a mixture of the above solvents and a solvent (also referred to as a poor solvent) that improves the coatability and the surface smoothness of the coating film when applying the liquid crystal aligning agent.
  • a solvent also referred to as a poor solvent
  • the use of solvents is preferred. Specific examples of the poor solvent used in combination are shown below, but are not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal aligning agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal aligning agent coating device, coating conditions, coating environment, and the like.
  • poor solvents examples include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, and diethylene glycol.
  • dimethyl ether diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2- ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1 -(2-butoxyethoxy)-2-propanol, 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate or diisobutyl ketone are preferred.
  • Preferred solvent combinations of a good solvent and a poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2- Pyrrolidone and ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- pyrrolidone and propylene glycol diacetate, N,N-dimethyllactamide and diisobutyl ketone, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N- Methy
  • the liquid crystal aligning agent of the present invention contains the crosslinkable compound (C).
  • the crosslinking reaction with the epoxy crosslinking agent proceeds during baking, so that the thermal imidization reaction, that is, the thermal imidization reaction of the imide precursor contained in the polymer (B) component is suppressed. Therefore, the resulting liquid crystal alignment film has a reduced imidized structure, so that a liquid crystal alignment film capable of reducing the generated charge in a short time while reducing the absolute value of the accumulated charge can be obtained.
  • the content of the crosslinkable compound (C) in the liquid crystal aligning agent of the present invention is preferably 0.5 to 20 parts by mass, more preferably 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is 1 to 15 parts by mass.
  • Specific examples of the crosslinkable compound (C) include N,N,N',N'-tetraglycidyl-1,2-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,3-diamino Cyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-2-methyl-4 -aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohe
  • the liquid crystal aligning agent of the present invention may additionally contain components (hereinafter also referred to as additive components) other than the polymers (A) and (B) and the crosslinkable compound (C).
  • additive components include an adhesion aid for enhancing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, and the strength of the liquid crystal alignment film other than the crosslinkable compound (C).
  • other cross-linking compounds dielectric or conductive substances for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film, imidization accelerators, and the like.
  • a crosslinkable compound (C1) which is a compound having an oxiranyl group other than the crosslinkable compound (C); At least one crosslinkable compound selected from the group consisting of a crosslinkable compound (C2) which is a compound having at least one substituent selected from; and a crosslinkable compound (C3) which is a compound having a polymerizable unsaturated group compound.
  • crosslinkable compound (C1) examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and neopentyl glycol diglycidyl ether.
  • 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, jER828 Mitsubishi Chemical bisphenol A type epoxy resins such as JER807 (manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resins such as JER807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (Mitsubishi Chemical Corporation) (manufactured by Nippon Kayaku Co., Ltd.), phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), and (o, m, p-) cresol novolacs such as EOCN-
  • triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celoxide 2021P (manufactured by Daicel Chemical Industries, Ltd.), N,N,N',N'-tetraglycidyl-1, 4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4- aminophenoxy)phenyl]propane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, tetrakis(glycidyloxymethyl)methane, paragraph [0037] of JP-A-10-338880 and compounds described in International Publication No.
  • crosslinkable compounds (C2) and (C3) include compounds having two or more two or more oxetanyl groups described in paragraphs [0170] to [0175] of WO 2011/132751; AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B -870N, B-874N, compounds having a blocked isocyanate group such as B-882N (manufactured by Mitsui Chemicals, Inc.); 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl- 2-oxazoline), 2,2′-bis(5-methyl-2-oxazoline), 1,2,4-tris-(2-oxazolinyl-2)-benzene, oxazolines such as Epocross (manufactured
  • crosslinkable compounds are examples of crosslinkable compounds, and are not limited to these. Examples thereof include components other than those described above disclosed on pages 53 [0105] to 55 [0116] of WO2015/060357. In addition, two or more types of crosslinkable compounds may be combined.
  • the content of the crosslinkable compounds (C1) to (C3) in the liquid crystal aligning agent of the present invention is 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. It is preferably 1 to 15 parts by mass, more preferably 1 to 15 parts by mass.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, vinyl trimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It ranges from 0.5 to 15% by mass, more preferably from 1 to 10% by mass.
  • a particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when the spinner method is used, the solid content concentration is particularly preferably in the range of 1.5 to 4.5% by mass.
  • the printing method it is particularly preferable to set the solid content concentration in the range of 3 to 9% by mass, thereby setting the solution viscosity in the range of 12 to 50 mPa ⁇ s.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used for a horizontal alignment type or vertical alignment type (VA type) liquid crystal alignment film. membrane.
  • VA type vertical alignment type
  • the liquid crystal display element of the present invention comprises the liquid crystal alignment film.
  • the liquid crystal display device of the present invention can be manufactured, for example, by a method including the following steps (1) to (3). (1) Step of applying a liquid crystal aligning agent onto a substrate On one surface of a substrate provided with a patterned transparent conductive film, the liquid crystal aligning agent of the present invention is applied, for example, by a roll coater method, a spin coat method, a printing method, or an inkjet method.
  • the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate
  • an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • a substrate provided with electrodes made of a transparent conductive film or a metal film patterned in a comb shape and a counter substrate provided with no electrodes are used.
  • preheating is preferably carried out first for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • the prebaking temperature is preferably 30 to 200°C, more preferably 40 to 150°C, and particularly preferably 40 to 100°C.
  • the pre-baking time is preferably 0.25-10 minutes, more preferably 0.5-5 minutes.
  • a heating (post-baking) step is further carried out.
  • the post-bake temperature is preferably 80-200°C, more preferably 120-180°C.
  • the post-bake time is preferably 5-200 minutes, more preferably 10-100 minutes.
  • the thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film formed in the above step (1) or (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
  • ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used as the radiation to irradiate the coating film.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, the irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof. When non-polarized radiation is applied, the direction of irradiation is oblique.
  • the following two methods are mentioned.
  • the first method first, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other.
  • the peripheral portions of the two substrates are bonded together using a sealing agent, and the liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealing agent to contact the film surface, and then the injection hole is opened. Seal.
  • the second method is a method called ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • the two substrates are arranged opposite to each other so that the rubbing directions of the respective coating films are at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealant for example, an epoxy resin or the like containing a curing agent and aluminum oxide spheres as spacers can be used.
  • the liquid crystal composition is not particularly limited, and may be a composition containing at least one liquid crystal compound (liquid crystal molecule) exhibiting a nematic phase (hereinafter also referred to as a nematic liquid crystal), or a liquid crystal exhibiting a smectic phase.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structures or terphenyl structures linked by alkyl groups).
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
  • negative liquid crystal include MLC-6608, MLC-6609, MLC-6610, MLC-7026 and MLC-7026-100 manufactured by Merck.
  • MLC-3023 manufactured by Merck & Co., Ltd. can be mentioned.
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell as necessary.
  • a polarizing plate to be attached to the outer surface of the liquid crystal cell for example, a polarizing film called "H film” in which iodine is absorbed while stretching orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films.
  • a polarizing plate made of the film itself can be mentioned.
  • the liquid crystal alignment film of the present invention can be applied to various uses other than the liquid crystal alignment film for the above uses. It can also be used for a liquid crystal alignment film for a transmission scattering type liquid crystal light control device. Furthermore, applications other than liquid crystal alignment films, such as protective films (e.g. protective films for color filters), spacer films, interlayer insulating films, antireflection films, wiring coating films, antistatic films, motor insulating films (flexible It can also be used for a gate insulating film of a display).
  • protective films e.g. protective films for color filters
  • spacer films e.g. protective films for color filters
  • interlayer insulating films e.g. antireflection films
  • wiring coating films e.g. antistatic films
  • motor insulating films flexible It can also be used for a gate insulating film of a display.
  • the liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS butyl cellosolve (ethylene glycol monobutyl ether)
  • ⁇ Measurement of imidization rate Put 20 mg of polyimide powder in an NMR sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixture) (0 .53 mL) was added and sonicated until completely dissolved. This solution was subjected to proton NMR at 500 MHz using an NMR spectrometer (JNW-ECA500) (manufactured by JEOL Datum Co., Ltd.). For the imidization rate, a proton derived from a structure that does not change before and after imidization is determined as a reference proton.
  • JNW-ECA500 NMR spectrometer
  • Imidation rate (%) (1- ⁇ x/y) x 100
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). is the number ratio of reference protons to
  • A-1) was obtained.
  • 80.0 g of the polyamic acid solution (PAA-A-1) obtained above was placed in a 300 mL Erlenmeyer flask containing a stirrer, 70.0 g of NMP, 6.97 g of acetic anhydride, and 1 of pyridine. 80 g was added, stirred at room temperature for 30 minutes, and then reacted at 55° C. for 3 hours. This reaction solution was poured into 560 g of methanol, and the obtained precipitate was filtered off. After washing the precipitate with methanol, it was dried under reduced pressure at a temperature of 60° C.
  • polyimide powder The imidization rate of this polyimide was 75%. 9.00 g of this polyimide powder was taken into a 300 mL Erlenmeyer flask containing a stirrer, 36.0 g of NMP was added, and the solution was stirred at 50° C. for 20 hours to dissolve the solid content at a concentration of 20% by mass. A solution of polyimide (PI-A-1) was obtained. Table 1 shows the types and amounts of diamines and tetracarboxylic acid derivatives used in preparing the polyimide (PI-A-1) solution obtained in Synthesis Example 1, the presence or absence of E-1, and the imidization rate. show.
  • PAA-A-2 a polyamic acid solution
  • PAA-A-2 a polyamic acid solution
  • 100 g of the obtained polyamic acid solution was placed in a 200 mL Erlenmeyer flask equipped with a stirrer, 1.24 g (5.68 mmol) of E-1 was added, and the mixture was stirred at 40° C. for 15 hours.
  • a solution of polyamic acid (PAA-A-3) was obtained.
  • 100 g of the above (PAA-A-3) solution was placed in a 200 mL Erlenmeyer flask equipped with a stirrer, 66.7 g of NMP, 14.2 g of acetic anhydride, and 4.70 g of pyridine were added and stirred at room temperature for 30 minutes.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • the substrate was a glass substrate with a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • An ITO electrode having a solid pattern is formed as the first layer on the substrate to constitute the counter electrode, and the second layer is formed on the first layer counter electrode by the CVD method.
  • a thin SiN (silicon nitride) film was formed.
  • the SiN film of the second layer has a film thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film is arranged as a third layer, and two pixels of a first pixel and a second pixel are formed.
  • the size of each pixel was 10 mm long and about 5 mm wide.
  • the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb shape in which a plurality of electrode elements each having a width of 3 ⁇ m and having a central portion bent at an internal angle of 160° are arranged in parallel with an interval of 6 ⁇ m.
  • the pixel had a first region and a second region bounded by a line connecting bent portions of a plurality of electrode elements.
  • the formation directions of the electrode elements of the pixel electrodes that constitute them are different. That is, when the direction connecting the bent portions of the plurality of electrode elements is taken as a reference, the electrode elements of the pixel electrode are formed so as to form an angle of 80° clockwise in the first region of the pixel, and the electrode elements of the pixel electrode are formed in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed so as to form an angle of 80° counterclockwise. That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It was configured in the opposite direction.
  • liquid crystal aligning agents (1) to (9) were each filtered through a filter with a pore size of 1.0 ⁇ m, and then applied to the prepared substrate with electrodes by spin coating. After drying on a hot plate at 80° C. for 5 minutes, baking was performed in an IR oven at 150° C. for 20 minutes to obtain a polyimide film with a film thickness of 60 nm.
  • This polyimide film is subjected to rubbing alignment treatment with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 30 mm/sec, indentation length: 0.3 mm, rubbing direction: the above-mentioned plurality of pixel electrodes of the third layer).
  • ultrasonic waves were applied in pure water for 1 minute for cleaning, and water droplets were removed by air blow. Then, it dried at 80 degreeC for 15 minutes, and obtained the board
  • a glass substrate having columnar spacers with a height of 4 ⁇ m and having an ITO electrode formed on the back surface as a counter substrate was also treated in the same manner as described above to obtain a substrate with a liquid crystal alignment film subjected to alignment treatment. rice field.
  • a substrate with electrodes (a glass substrate with a size of 30 mm in width ⁇ 40 mm in length and a thickness of 1.1 mm, a glass A rectangular ITO electrode having a width of 10 mm, a length of 40 mm, and a thickness of 35 nm was formed on the substrate) by spin coating. After drying on a hot plate at 50° C. for 5 minutes, baking was performed in an IR oven at 150° C. for 20 minutes to form a coating film having a thickness of 60 nm to obtain a substrate with a liquid crystal alignment film.
  • This liquid crystal alignment film was subjected to rubbing alignment treatment with a rayon cloth (YA-20R manufactured by Yoshikawa Kako) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm).
  • the substrate was cleaned by irradiating ultrasonic waves for 1 minute inside, water droplets were removed by an air blow, and dried at 80° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • a spacer of 4 ⁇ m was sprayed on the surface of one of the liquid crystal alignment films, and then a sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) was printed thereon.
  • heat treatment is performed at 150° C. for 60 minutes to harden the sealant to prepare an empty cell.
  • a negative type liquid crystal MLC-7026-100 manufactured by Merck & Co. was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain a liquid crystal cell. After that, the obtained liquid crystal cell was heated at 120° C. for 1 hour and allowed to stand at 23° C. overnight to obtain a liquid crystal cell for voltage holding ratio measurement.
  • the liquid crystal cell was placed between two polarizing plates arranged so that the polarizing axes were perpendicular to each other, and the backlight was turned on with no voltage applied so that the brightness of the transmitted light was minimized.
  • the arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel was the darkest to the angle at which the first region was the darkest was calculated as the angle ⁇ .
  • the angle ⁇ was similarly calculated by comparing the second region and the first region.
  • the stability of the liquid crystal alignment was defined as "good" when the angle ⁇ was less than 0.4°, and was defined as “poor” when the angle ⁇ was 0.4° or more. Table 4 shows the evaluation results.
  • a liquid crystal cell fabricated in the same manner as described above (Fabrication of FFS liquid crystal display element) was placed between two polarizing plates arranged so that their polarization axes were orthogonal to each other, and opposed to the pixel electrode.
  • the LED backlight is irradiated from below the two polarizing plates with the electrode shorted and at the same potential, and the brightness of the LED backlight transmitted light measured on the two polarizing plates is the minimum.
  • the angle of the liquid crystal cell was adjusted so that Next, a VT curve (voltage-transmittance curve) was measured while an AC voltage having a frequency of 60 Hz was applied to the liquid crystal cell, and the AC voltage at which the relative transmittance was 23% was calculated as the driving voltage.
  • the liquid crystal cell was driven by applying an AC voltage with a frequency of 60 Hz, which gave a relative transmittance of 23%, and at the same time, a DC voltage of 1 V was applied to drive the liquid crystal cell for 120 minutes. After that, the application of only the DC voltage was stopped, and the device was driven with only the AC voltage for another 15 minutes.
  • VT curve voltage-transmittance curve
  • the liquid crystal cell was driven for 60 minutes by applying an AC voltage with a frequency of 60 Hz at which the relative transmittance was 100%.
  • an AC voltage having a relative transmittance of 23% was applied, and an applied voltage capable of minimizing display flicker was measured while sweeping the DC voltage.
  • the absolute value of the applied voltage that can minimize this display flicker was defined as the amount of charge accumulation, and when this value exceeded 100 mV, it was defined as “bad", and when it was 100 mV or less, it was defined as "good”.
  • the afterimage evaluation according to the method described above was performed under temperature conditions in which the temperature of the liquid crystal cell was 40°C. Table 4 shows the evaluation results.
  • Liquid crystal aligning agents (1) to (9) were each applied to an ITO substrate by spin coating. After drying on a hot plate at 60° C. for 1 minute and 30 seconds, baking was performed in an IR oven at 150° C. for 20 minutes to form a coating film with a thickness of 100 nm. After that, the liquid crystal alignment film is rubbed twice with a rayon cloth (Yoshikawa Kako YA-20R) (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, pushing length: 0.5 mm) twice. When the surface of the film was observed with a confocal laser microscope, the film surface was evaluated as "bad” if there were scratches, and as "good” if there were no scratches. Table 4 shows the evaluation results.
  • Table 4 below shows the evaluation results of the liquid crystal display elements using the liquid crystal aligning agents of Examples 1 to 4 and Comparative Examples 1 to 5 as described above.
  • the liquid crystal aligning agent of the present invention is useful for forming liquid crystal alignment films in a wide range of liquid crystal display devices such as IPS drive system and FFS drive system.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶材料としてネガ型液晶を用いた場合でも表示不良(線焼き付き)の発生率が低い液晶表示素子が得られる液晶配向剤を提供する。 重合体(A)、重合体(B)及び架橋性化合物(C)を含有する液晶配向剤。 重合体(A):式(d)で表されるジアミン及び式(d)で表されるジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。 重合体(B):「H-N(R)-YD'-N(R)-H」(YD'は、分子内に基「-N(D')-」(D'は、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。Rは式(d)のRと同義である。)で表されるジアミン(dD'B)と下記式(d)で表されるジアミン(但し、ジアミン(dD'B)を除く。)で構成されるジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体。但し、該ポリイミド前駆体はイミド環構造を有しない。 架橋性化合物(C):式(E)で表されるエポキシ系化合物。(式(d)中、2つのArは、それぞれ独立して2価のベンゼン環、ビフェニル構造、又はナフタレン環を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。 Lは-O-(-Ar'-O-)-(nは0~3の整数である。Ar'は2価のベンゼン環、ビフェニル構造を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。)、-(CH-(nは2~18の整数である。)、又は該-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。 式(d)中、Yは、分子内に基「-N(D)-」(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。 式(d)及び式(d)中、複数のRは、それぞれ独立して水素原子又は1価の有機基を表す。) (Yは、以下の条件(1)及び(2)を満たす2価の有機基を表す。Rは前記式(d)のRと同義である。) 条件(1):窒素原子を含む複素環及び第二級以上のアミノ基(但し、基「-N(D')-」(D'は、加熱によって脱離して水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。)からなる群から選ばれる窒素原子含有構造を有しない。 条件(2):分子内に炭素数6以上の側鎖基を有しない。(aは2~4の整数であり、Rはa価の有機基であり、a個のNとの結合部位は脂肪族炭素原子である。)

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。更には、液晶配向膜によって、液晶のプレチルト角を制御することができる。主にポリイミドの構造を選択することでプレチルト角を低くする方法(特許文献1、2参照)などが知られている。
 近年、液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビなどの用途に加えて、車載用、例えば、カーナビゲーションシステムやメーターパネル、監視用カメラや医療用カメラのモニターなどに液晶表示素子が用いられており、視野角特性の需要から液晶分子の駆動方式の中でも視野角特性に優れるIPS方式、FFS方式が検討されており、ラビング配向膜でもポリイミド系液晶配向膜が提案されている(特許文献3参照)。
 また、IPS方式、FFS方式の液晶表示素子では、静電気が液晶セル内に蓄積されやすく、これらの蓄積された電荷が液晶配向の乱れや残像として表示に影響を与え、液晶表示素子の表示品位を著しく低下させる。そのため、発生した電荷を短時間で低減でき、且つ、蓄積電荷の絶対値を低減する液晶配向膜が求められている。これらの課題解決にあたり、特許文献4には、芳香族テトラカルボン酸残基を有する構造単位と、脂環式テトラカルボン酸残基を有する構造単位とを有するポリアミック酸又はポリイミドを含有する液晶配向剤が提案され、特許文献5には、ジフェニルアミン骨格を有するポリイミド前駆体を含有する液晶配向剤が提案されている。
 加えて、近年では意匠性を高める観点から、PETフィルムやポリカーボネートフィルムを基材として用いたフレキシブル液晶素子が検討されており、液晶配向膜を形成する際の基板の焼成温度が200℃未満である低温焼成プロセスに適した液晶配向膜材料が提案されている(特許文献6参照)。
特開平9-188761号公報 特開平10-123532号公報 国際公開2019-082975号公報 国際公開02-033481号公報 国際公開2014-010402号公報 国際公開2018-124167号公報
 IPS駆動方式やFFS駆動方式などの横電界方式の液晶表示素子においては、従来ポジ型液晶が用いられていたが、ネガ型液晶を用いることで、電極上部での透過損失を小さくし、コントラストを向上させることが可能であるため、ネガ型液晶を適用した液晶表示素子が最近検討されている。
 しかし、本願発明者が検討した結果、液晶材料としてネガ型液晶を用いると、表示不良(線焼き付き)の発生率が高く、表示品位に優れた液晶表示素子を得ることができなくなることが分かった。
 また、IPS方式、FFS方式の液晶セルは、液晶配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラスト低下や残像の原因となるため、液晶配向の安定性が重要である。加えて、最近の高輝度の液晶表示素子では、バックライトの輝度が高くなり蓄積電荷による残像の視認性も高くなっているため、従来に増して、蓄積電荷の絶対値を低減しつつ、発生した電荷を短時間で低減できる液晶配向膜が必要である。
 一方、上記の表示不良や低温焼成プロセスに対応するため、特許文献6に記載されるようにポリイミドに第三級アミン構造を有するエポキシ系化合物を添加した液晶配向剤を検討したところ、配向処理時にポリイミド膜の削れが発生しやすいことが分かり、従来技術でこれらすべての課題を解決することが困難となっていた。
 本発明の目的は、上記事情に鑑み、液晶材料としてネガ型液晶を用いた場合でも表示不良(線焼き付き)の発生率が低い液晶表示素子が得られる液晶配向剤を提供することにある。また、液晶配向の安定性が高く、蓄積電荷の絶対値を低減しつつ、発生した電荷を短時間で低減できる液晶配向膜が得られる液晶配向剤を提供することにある。さらに、200℃以下の低温焼成プロセスにおいて、配向処理時の膜の削れが抑制された液晶配向膜が得られる液晶配向剤を提供することにある。
 発明者らは、上記目的達成の為種々検討を重ねた結果、下記構成による液晶配向剤が上記目的達成に最適であることを見出し、本発明を完成させた。
 かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
 下記の重合体(A)、重合体(B)及び架橋性化合物(C)を含有することを特徴とする液晶配向剤。
 重合体(A):下記式(d)で表されるジアミン及び下記式(d)で表されるジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。
 重合体(B):「H-N(R)-YD’-N(R)-H」(YD’は、分子内に基「-N(D’)-」(D’は、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。Rは式(d)のRと同義である。)で表されるジアミン(dD’B)と下記式(d)で表されるジアミン(但し、ジアミン(dD’B)を除く。)で構成されるジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体。但し、該ポリイミド前駆体はイミド環構造を有しない。
 架橋性化合物(C):下記式(E)で表されるエポキシ系化合物。
Figure JPOXMLDOC01-appb-C000007
(式(d)中、2つのArは、それぞれ独立して2価のベンゼン環、ビフェニル構造、又はナフタレン環を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。
 Lは-O-(-Ar’-O-)-(nは0~3の整数である。Ar’は2価のベンゼン環、ビフェニル構造を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。Ar’が複数ある場合、複数個のAr’は同一でも異なってもよい。)、-(CH-(nは2~18の整数である。)、又は該-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。
 式(d)中、Yは、分子内に基「-N(D)-」(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。
 式(d)及び式(d)中、複数のRは、それぞれ独立して水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000008
(Yは、以下の条件(1)及び(2)を満たす2価の有機基を表す。Rは上記式(d)のRと同義である。)
 条件(1):窒素原子を含む複素環及び第二級又は第三級のアミノ基(但し、基「-N(D’)-」(D’は加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。)からなる群から選ばれる窒素原子含有構造を有しない。
 条件(2):炭素数6以上の側鎖基を有しない。
Figure JPOXMLDOC01-appb-C000009
(aは2~4の整数であり、Rはa価の有機基であり、a個のNとの結合部位は脂肪族炭素原子である。)
 なお、本明細書において、Bocは、tert-ブトキシカルボニル基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。本明細書でいうイミド化率とは、テトラカルボン酸二無水物またはその誘導体由来のイミド基とカルボキシ基(またはその誘導体)との合計量に占めるイミド基の割合のことである。
 本発明の液晶配向剤を用いることで、液晶材料としてネガ型液晶を用いた場合でも表示不良(線焼き付き)の発生率が低い液晶表示素子が得られる。また、液晶配向の安定性が高く、蓄積電荷の絶対値を低減しつつ、発生した電荷を短時間で低減できる液晶配向膜が得られる。さらに、200℃以下の低温焼成プロセスにおいて、配向処理時の膜の削れが抑制された液晶配向膜が得られるため、表示品位に優れた液晶表示素子が得られる。
<重合体(A)>
 本発明の液晶配向剤は、上記式(d)で表されるジアミン及び上記式(d)で表されるジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体をイミド化して得られる、ポリイミドである重合体(A)を含有する。上記の態様とすることで、熱イミド化に必要な高温処理が不要となる。また、特定のジアミン成分を含有するため、得られる液晶配向膜は、液晶配向の安定性が高く、また、表示不良(線焼き付き)の発生率が低い液晶表示素子が得られる。
 上記重合体(A)は、テトラカルボン酸二無水物を含有するテトラカルボン酸誘導体成分と特定のジアミンを含有するジアミン成分から得られるポリイミド前駆体をイミド化することにより得られる。重合体(A)におけるポリイミドのイミド化率は、表示不良の発生率を低くする観点から10~100%が好ましい。また、イミド化率の下限値は10%が好ましく、20%がより好ましく、50%が更に好ましく、70%が最も好ましく、イミド化率の上限値は100%が好ましく、99%がより好ましく、95%がさらに好ましい。以下に、重合体(A)の製造に用いられる材料の具体例及び製造方法を詳述する。
 本発明の液晶配向剤に含有されるポリイミドである重合体(A)の製造に用いられるジアミン成分は、下記式(d)で表されるジアミン及び下記式(d)で表されるジアミンを含有する。下記式(d)で表されるジアミン及び下記式(d)で表されるジアミンは、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000010
(式中の各記号の定義は、上記と同様である。)
 上記式(d)中のAr、及びLに含まれるAr’が有するベンゼン環、ビフェニル構造、又はナフタレン環上の水素原子は、例えば、ハロゲン原子、炭素数1~10(より好ましくは炭素数1~5)のアルキル基、炭素数2~10(より好ましくは炭素数2~5)のアルケニル基、炭素数1~10(より好ましくは炭素数1~5)のアルコキシ基、炭素数1~10(より好ましくは炭素数1~5)のフルオロアルキル基、炭素数2~10(より好ましくは炭素数2~5)のフルオロアルケニル基、炭素数1~10(より好ましくは炭素数1~5)のフルオロアルコキシ基、ヒドロキシ基、炭素数1~10(より好ましくは炭素数1~5)のアルキルオキシカルボニル基、シアノ基、ニトロ基等で置換されていてもよい。
 上記式(d)で表されるジアミンは、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、下記式(d-1)~(d-10)で表される化合物、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、及び6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミンからなる群から選択される少なくとも1種のジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(d)で表されるジアミンは、本発明の効果を好適に得る観点から、好ましくは、分子内に芳香環を一つ有する芳香族ジアミンであって、芳香環上の任意の水素原子の少なくとも一つが基「-N(D)-」を有する1価の基で置き換えられた芳香族ジアミン(dn1)、又は分子内に芳香環を2つ有する芳香族ジアミンであって、該2つの芳香環が、単結合、-CH-、-C(CH-、-O-、-C(=O)-、-O-C(=O)-、-NR-C(=O)-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)、-NR-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)、炭素数2~20のアルキレン基、及び該アルキレン基の任意の-CH-が-O-、-Si(CH-、-C(=O)-、-O-C(=O)-、-NR-C(=O)-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)、若しくは-NR-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)で置き換えられた2価の基、からなる群から選ばれる2価の基(L)で連結される芳香族ジアミンであって、(i)芳香環上の任意の水素原子が「-N(D)-」を有する1価の基で置き換えられる、又は(ii)上記2価の基(L)が基「-N(D)-」を有する、の少なくとも一つの条件を満たす芳香族ジアミン(dn2)が挙げられる。上記芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環が挙げられ、ベンゼン環及びナフタレン環が好ましく、ベンゼン環がより好ましい。また、上記芳香環上の任意の水素原子は、ヒドロキシ基、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、カルボキシ基、ハロゲン原子、フッ素原子を含有する炭素数1~5の1価の有機基、上記炭素数1~5のアルキル基上の水素原子の一部がヒドロキシ基で置換された1価の有機基で置き換えられても良い。
 基「-N(D)-」中のDは、加熱によって脱離して水素原子に置き換わる保護基を表し、熱で分解して脱離することにより、基「-NH-」に変換される有機基であれば特に限定はされない。熱で脱離し得る有機基であるDの構造としては、ベンジルオキシカルボニル基や9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、第三級ブトキシカルボニル基(tert-ブトキシカルボニル基)などに代表されるカルバメート系の有機基が挙げられるが、熱による脱離の効率が良く、比較的低い温度で脱離し、脱離した際に無害な気体として排出されるという観点では、第三級ブトキシカルボニル基が特に好ましい。
 上記式(d)で表されるジアミンは、下記式(d-1)~(d-7)から選ばれるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(d-2)、式(d-6)及び式(d-7)中、Rは水素原子又はtert-ブトキシカルボニル基を表す。)
 上記式(d)で表されるジアミンの好ましい含有量は、重合体(A)の製造に用いられる前記ジアミン成分の全成分に対して50~95モル%であることが好ましく、50~90モル%であることがより好ましい。
 上記式(d)のジアミンの好ましい含有量は、重合体(A)の製造に用いられる前記ジアミン成分の全成分に対して5~50モル%であることが好ましく、10~50モル%であることがより好ましい。
 本発明の液晶配向剤に含有される重合体(A)の製造に用いられるジアミン成分は、上記のジアミンに加え、求められる液晶配向剤の特性に応じ、種々のジアミン(以下、その他のジアミン1ともいう。)を用いることが出来る。上記その他のジアミン1は、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 その他のジアミン1としては、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、2-(6-アミノナフチル)エチルアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン;1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、若しくは下記式(z-1)~式(z-13)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子を含む複素環、第二級又は第三級のアミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(但し、基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。以下、特定の窒素原子含有構造ともいう。)を有するジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン;下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン等の非環式脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン;国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等、が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式(V-1)中、m、nは1~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
 式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、炭素数1~20のフッ素原子含有アルキル基、炭素数3~20のアルキル基を表す。
 上記式中、m、n、X、Rが2つ存在する場合、それぞれ独立して上記定義を有する。)
 上記式(d)及び(d)のジアミンに加えてその他のジアミン1を使用する場合、上記その他のジアミン1の使用量は、重合体(A)の製造に使用される全ジアミン成分に対して、好ましくは5~40モル%であり、より好ましくは10~40モル%である。また、上記式(d)及び(d)のジアミンの含有量の合計は、重合体(A)の製造に使用される全ジアミン成分に対して、95モル%以下であることが好ましく、90モル%以下であることが好ましい。
<テトラカルボン酸誘導体>
 本発明の重合体(A)の製造に用いられるテトラカルボン酸誘導体成分は、テトラカルボン酸二無水物だけでなく、その誘導体である、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル、テトラカルボン酸ジアルキルエステルジハライド等も用いることができる。前記テトラカルボン酸誘導体成分は、一種のテトラカルボン酸二無水物又はその誘導体を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記テトラカルボン酸二無水物又はその誘導体の具体例としては、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。中でも、本発明の効果を好適に得る観点から、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体(以下、これらを総称して特定の部分構造を有するテトラカルボン酸誘導体ともいう。)を含むことがより好ましく、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことが更に好ましい。
 なお、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。
 非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 上記重合体(A)の合成に用いることのできるテトラカルボン酸誘導体成分としては、好ましくは、以下のテトラカルボン酸二無水物又はその誘導体(以下、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレン)ビス(フタル酸)二無水物、又は4,4’-メチレンジ(1,4-フェニレン)ビス(フタル酸)二無水物等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。
 上記特定のテトラカルボン酸誘導体のより好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、またはこれらの誘導体である。
 上記特定の部分構造を有するテトラカルボン酸誘導体又は特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸誘導体成分に対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。
<重合体(B)>
 本発明の液晶配向剤は、「H-N(R)-YD’-N(R)-H」(YD’は、分子内に基「-N(D’)-」(D’は、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。Rは式(d)のRと同義である。)で表されるジアミン(dD’B)と上記式(d)で表されるジアミン(但し、ジアミン(dD’B)を除く。)で構成されるジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体である重合体(B)を含有する。但し、上記重合体(B)は、該ポリイミド前駆体はイミド環構造を有しない。
 重合体(B)の製造に用いるジアミン成分に、上記ジアミン(dD’B)を含有させることで、液晶配向膜とした際に、重合体(A)に由来するポリイミド層に重合体(B)を偏在させることが可能となる。したがって、重合体(B)が有する膜強度の改善効果が高まり、配向処理時の膜の削れが抑制される。
 また、重合体(B)の製造に用いるジアミン成分は、上記式(d)で表されるジアミンを含む。ここで、ジアミン(d)に含まれる2価の有機基Yは、上記条件(1)及び条件(2)を満たす。
 条件(1)の態様とすることで、重合体の塩基性度が低下し、重合体(B)の熱イミド化反応が抑制されるため、膜強度の高い液晶配向膜を得ることが可能となる。また、条件(2)の態様とすることで、IPS方式、FFS方式において液晶の配向規制力が高くなり、得られる液晶配向膜の配向安定性を高めることが可能となる。
 ここで、窒素原子を含む複素環及び第二級又は第三級のアミノ基(但し、基「-N(D’)-」に由来するアミノ基を除く。)からなる群から選ばれる窒素原子含有構造を有する2価の有機基に、基「-NHR」(Rは上記式(d)におけるRと同義である。)が2つ結合したジアミンとして、上記重合体(A)のその他のジアミン1で例示した特定の窒素原子含有構造を有するジアミンが挙げられる。
 上記式(d)で表されるジアミンとしては、ベンゼン環を一つ有する芳香族ジアミン(I);ベンゼン環を2つ有し、2つのベンゼン環が単結合で連結されるジアミン(II-a);2つのベンゼン環が2価の基で連結される芳香族ジアミンであって、該2価の基は、酸素原子又は炭素数1~3の有機基であり、2つのベンゼン環と同一の原子で結合する、芳香族ジアミン(II-b)が好ましい。但し、芳香族ジアミン(I)、芳香族ジアミン(II-a)及び芳香族ジアミン(II-b)は、上記ジアミン(dD’B)以外のジアミンであって、上記条件(1)及び条件(2)を満たす。
 上記式(d)で表されるジアミンのより好ましい具体例としては、後述する式(d)で表されるジアミン、上記式(d-1)~(d-10)で表される化合物、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、及び6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、上記光配向性基を有するジアミン、上記アミド結合を有するジアミン、上記ウレア結合を有するジアミン、又は1,4-ビス(4-アミノベンジル)ベンゼンなどが挙げられる。
 上記ジアミン(dD’B)の具体例としては、好ましい態様を含めて上記ジアミン(d)で例示したジアミンが挙げられる。上記ジアミン(dD’B)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 また、基「-N(D’)-」のD’の具体例は、好ましい態様を含めて上記基「-N(D)-」のDで例示した構造が挙げられる。
 上記式(dD’B)のジアミンの好ましい含有量は、重合体(B)の製造に用いるジアミン成分の全ジアミン成分に対して5~40モル%であることが好ましく、10~40モル%がより好ましい。
 重合体(B)の製造に用いるジアミン成分は、本発明の効果を好適に得る観点から、下記式(d)で表されるジアミンを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000016
(Lは単結合、-CH-、-CO-、-O-、又は-C(CH-を表す。L’は、単結合又は-(CH-(mは1~2の整数である。)を表す。Arは、2価のベンゼン環を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。Arが複数存在する場合、複数のArは同一でも異なってもよい。複数のRはそれぞれ独立して水素原子又は1価の有機基を表す。nは0~1の整数である。)
 Arのベンゼン環上の水素原子は、ハロゲン原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数1~5のアルコキシ基、炭素数1~5のフルオロアルキル基、炭素数2~5のフルオロアルケニル基、炭素数1~5のフルオロアルコキシ基、ヒドロキシ基、炭素数1~5のアルキルオキシカルボニル基、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基等で置換されていてもよい。
 上記式(d)で表されるジアミンの好ましい具体例として、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、3-アミノベンジルアミン、4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、2-(6-アミノナフチル)エチルアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、その他のジアミン1で記載された上記カルボキシ基を有するジアミンが挙げられる。中でも、p-フェニレンジアミン、m-フェニレンジアミン、3-アミノベンジルアミン、4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルエーテル、がより好ましい。
 上記ジアミン(d)は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記式(d)のジアミンの好ましい含有量は、重合体(B)の製造に用いるジアミン成分の全ジアミン成分の60~95モル%であることが好ましく、60~90モル%であることがより好ましい。
 重合体(B)の製造に用いるジアミン成分としては、上記ジアミン(dD’B)及びジアミン(d)以外のジアミン(以下、その他のジアミン2ともいう)を用いてもよい。その他のジアミン2の具体的な例としては、上記重合体(A)を得るためのジアミン成分であって、上記条件(1)及び(2)を満たすジアミンである。
 上記重合体(B)の製造に用いられるテトラカルボン酸誘導体成分の具体例は、好ましい具体例を含めて、重合体(A)で例示した化合物と同様の化合物が挙げられる。重合体(B)の製造に用いられるテトラカルボン酸誘導体成分は、より好ましくは、上記特定の部分構造を有するテトラカルボン酸誘導体又は特定のテトラカルボン酸誘導体がさらに好ましく、上記特定のテトラカルボン酸誘導体のより好ましい具体例を用いることが最も好ましい。また、上記特定の部分構造を有するテトラカルボン酸誘導体又は特定のテトラカルボン酸誘導体を、重合体(B)の製造に使用される全テトラカルボン酸誘導体成分に対して、10モル%以上含有することが好ましく、20モル%以上含有することがより好ましく、50モル%以上含有することがさらに好ましい。
 また、蓄積電荷の絶対値を低減しつつ、発生した電荷を短時間で低減できる液晶配向膜が得られる観点から、上記重合体(B)の製造に用いられるテトラカルボン酸誘導体成分は、上記芳香族テトラカルボン酸二無水物又はその誘導体を含有することが好ましく、中でも、ベンゼン環構造を有するテトラカルボン酸二無水物又はその誘導体が好ましい。より好ましくは、上記特定のテトラカルボン酸誘導体で例示した芳香族テトラカルボン酸二無水物又はその誘導体である。
 重合体(A)の製造に用いられるテトラカルボン酸誘導体成分と、重合体(B)の製造に用いられるテトラカルボン酸誘導体成分とは、同一であっても良く、異なっていても良い。
 本発明の効果を好適に得る観点から、重合体(A)と重合体(B)の含有割合は、[重合体(A)]/[重合体(B)]の質量比で10/90~90/10が好ましく、20/80~90/10がより好ましく、20/80~80/20がさらに好ましい。
<重合体(A)、重合体(B)の製造方法>
 本発明の液晶配向剤に含有される重合体(A)及び重合体(B)の製造に用いられるポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体は、例えば、下記の方法で合成出来る。
(ポリアミック酸の合成)
 ポリアミック酸の合成は、上記ジアミンを含むジアミン成分と、上記テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸誘導体成分とを有機溶媒中で反応させることにより行われる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.5~2当量となる割合が好ましく、さらに好ましくは0.8~1.2当量となる割合である。通常の重縮合反応と同様に、このテトラカルボン酸二無水物の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
 ポリアミック酸の合成反応における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。
 ポリアミック酸の合成反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
 上記有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルなどの溶媒を用いることができる。
(ポリアミック酸エステルの合成)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(ポリイミドの合成)
 上記ポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、通常100~400℃であり、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミンなどを挙げることができる。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。
<末端封止剤>
 本発明におけるポリイミド前駆体やポリイミドを合成するに際して、テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸誘導体成分、及び上記ジアミンを含むジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を合成することとしてもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と配向膜の密着性の向上という効果を有する。
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、又は、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどを挙げることができる。
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
<液晶配向剤>
 本発明の液晶配向剤は、重合体(A)及び重合体(B)並びに後述の架橋性化合物(C)を含有する。本発明の液晶配向剤は、重合体(A)及び重合体(B)に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、30質量部以下が好ましく、1~25質量部がより好ましく、1~20質量部が更に好ましい。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても、上記した重合体成分と有機溶媒とを含有する塗布液の形態であることが好ましい。
 上記塗布液に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されず、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)などが挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、30~80質量%が特に好ましい。
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 貧溶媒としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などが挙げられる。
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセテート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセテート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルとジアセトンアルコールシクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテル、テトラメチル尿素と4-ヒドロキシ-4-メチル-2-ペンタノン、テトラメチル尿素とプロピレングリコールジアセテート、N,N-ジメチルプロピオンアミドとプロピレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノブチルエーテル、テトラメチル尿素とシクロヘキサノンとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテルアセテート、N,N-ジメチルプロピオンアミドとエチレングリコールモノブチルエーテル、テトラメチル尿素とプロピレングリコールモノメチルエーテル、N,N-ジメチルプロピオンアミドとシクロヘキサノンとジエチレングリコールジエチルエーテル、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテル、N,N-ジエチルホルムアミドと4-ヒドロキシ-4-メチル-2-ペンタノン、N,N-ジエチルホルムアミドとプロピレングリコールモノメチルエーテルなどを挙げることができる。
<架橋性化合物(C)>
 本発明の液晶配向剤は、上記架橋性化合物(C)を含有する。上記の態様とすることで、焼成時にエポキシ架橋剤との架橋反応が進行するため、熱イミド化反応、即ち重合体(B)成分に含まれるイミド前駆体の熱イミド化反応が抑制される。そのため、得られる液晶配向膜は、イミド化した構造が減少するため、蓄積電荷の絶対値を低減しつつ、発生した電荷を短時間で低減できる液晶配向膜が得られる。
 本発明の液晶配向剤における、架橋性化合物(C)の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、より好ましくは1~15質量部である。
 上記架橋性化合物(C)の具体例として、N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼン、下記式(E-1)~(E-5)で表される化合物などを挙げることができる。架橋性化合物(C)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000017
 本発明の液晶配向剤は、重合体(A)、(B)及び架橋性化合物(C)以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。このような添加剤成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、架橋性化合物(C)以外の液晶配向膜の強度を高めるための化合物(以下、その他の架橋性化合物ともいう。)、液晶配向膜の誘電率や電気抵抗を調整するための誘電体又は導電物質、イミド化促進剤などが挙げられる。
 上記したその他の架橋性化合物として、架橋性化合物(C)以外のオキシラニル基を有する化合物である架橋性化合物(C1);オキセタニル基、ブロックイソシアネート基、オキサゾリン基、シクロカーボネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する化合物である架橋性化合物(C2);並びに重合性不飽和基を有する化合物である架橋性化合物(C3)からなる群から選ばれる少なくとも1種の架橋性化合物が挙げられる。
 上記架橋性化合物(C1)の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、jER828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、jER807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレート、セロキサイド2021P(ダイセル化学工業社製)などの脂環式エポキシ樹脂、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、テトラキス(グリシジルオキシメチル)メタンの他、特開平10-338880号公報の段落[0037]に記載の化合物や、国際公開第2017/170483号に記載の化合物などが挙げられる。
 上記架橋性化合物(C2)及び(C3)の具体例としては、国際公開2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を2つ以上有する化合物;コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)等のブロックイソシアネート基を有する化合物;2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(5-メチル-2-オキサゾリン)、1,2,4-トリス-(2-オキサゾリニル-2)-ベンゼン、エポクロス(日本触媒社製)のようなオキサゾリン基を有する化合物;国際公開2011/155577号公報の段落[0025]~[0030]、[0032]に記載のシクロカーボネート基を有する化合物;n,n,n’,n’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのヒドロキシ基やアルコキシ基を有する化合物;グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール 1,3-ジグリセロラート ジ(メタ)アクリレート、ペンタエリストール トリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートが挙げられる。
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、国際公開第2015/060357号の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上を組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物(C1)~(C3)の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、より好ましくは1~15質量部である。
 上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等の官能性シラン化合物が挙げられる。官能性シラン化合物を使用する場合、その含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは0.5~15質量%、より好ましくは1~10質量%の範囲である。
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンナー法による場合、固形分濃度は1.5~4.5質量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。
<液晶配向膜・液晶表示素子>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型(VA型)の液晶配向膜に用いることができるが、中でもIPS方式又はFFS方式等の水平配向型の液晶表示素子に好適な液晶配向膜である。本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明の液晶表示素子は、例えば以下の工程(1)~(3)を含む方法により製造することができる。
(1)液晶配向剤を基板上に塗布する工程
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS方式又はFFS方式の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
(2)塗膜を焼成する工程
 液晶配向剤塗布後、塗布した液晶配向剤の液垂れ防止等の目的で、好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分である。そして、さらに加熱(ポストベーク)工程が実施されることが好ましい。このポストベーク温度は好ましくは80~200℃であり、より好ましくは120~180℃である。ポストベーク時間は好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
 上記工程(1)又は(2)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板表面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
(3)液晶セルを作製する工程
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部を、シール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、ネマチック相を呈する液晶組成物(以下、ネマチック液晶ともいう。)、スメクチック相を呈する液晶組成物、及びスメクチック液晶組成物を挙げることができ、その中でもネマチック液晶が好ましい。また、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例えば、トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物)を含んでもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに含有してもよい。このような添加物は、重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019、又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-7026、又はMLC-7026-100などが挙げられる。
また、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外側表面に貼り合わされる偏光板としては、例えば、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
 本発明の液晶配向膜は、上記用途の液晶配向膜以外に、種々の用途に適用することができ、例えば、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用としての液晶配向膜に用いることもできる。さらには、液晶配向膜以外の用途、例えば、保護膜(例:カラーフィルタ用の保護膜)、スペーサー膜、層間絶縁膜、反射防止膜、配線被覆膜、帯電防止フィルム、電動機絶縁膜(フレキシブルディスプレイのゲート絶縁膜)にも用いることができる。
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
(ジアミン)
Figure JPOXMLDOC01-appb-C000018
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000019
(架橋性化合物)
Figure JPOXMLDOC01-appb-C000020
(密着助剤)
Figure JPOXMLDOC01-appb-C000021
(末端封止剤)
Figure JPOXMLDOC01-appb-C000022
(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 BCS:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d,0.05%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[重合体の合成]
<合成例1>
 撹拌装置及び窒素導入管付きの300mLの四つ口フラスコに、DA-2を8.60g(35.2mmol)、DA-4を5.34g(9.59mmol)、及びDA-3を7.65g(19.1mmol)量り取り、NMPを固形分濃度が12質量%となるように加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を9.32g(41.6mmol)添加し、さらにNMPを固形分濃度が15質量%となるように加え、窒素雰囲気下40℃で3時間撹拌した。さらに、CA-2を2.82g(14.3mmol)添加し、さらにNMPを固形分濃度が15質量%となるように加え、窒素雰囲気下23℃で4時間撹拌し、ポリアミック酸溶液(PAA-A-1)を得た。
 撹拌子の入った300mL三角フラスコに、上記で得られたポリアミック酸溶液(PAA-A-1)を80.0g分取し、NMPを70.0g、無水酢酸を6.97g、及びピリジンを1.80g加え、室温で30分間撹拌した後、55℃で3時間反応させた。この反応溶液を560gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度60℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミドのイミド化率は、75%であった。
 撹拌子の入った300mL三角フラスコに、このポリイミドの粉末を9.00g分取し、NMPを36.0g加えて、50℃にて20時間撹拌して溶解させ、固形分濃度が20質量%のポリイミド(PI-A-1)の溶液を得た。
 合成例1で得られたポリイミド(PI-A-1)の溶液を作製する際に使用したジアミン及びテトラカルボン酸誘導体の種類及び使用量、E-1の有無、並びにイミド化率を表1に示す。
<合成例2>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、DA-1を8.04g(40.2mmol)、DA-3を4.36g(10.9mmol)、及びDA-4を12.2g(21.9mmol)量り取り、NMPを98.4g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を9.40g(47.4mmol)添加し、さらにNMPを37.6g加え、窒素雰囲気下50℃で2時間撹拌した。さらに、CA-2を4.65g(23.7mmol)添加し、さらにNMPを18.6g加え、窒素雰囲気下23℃で2時間撹拌し、ポリアミック酸の溶液(PAA-A-2)を得た。
 撹拌子の入った200mL三角フラスコに得られた上記ポリアミック酸の溶液を100g分取し、E-1を1.24g(5.68mmol)添加し、40℃で15時間撹拌し、末端封止されたポリアミック酸(PAA-A-3)の溶液を得た。
 撹拌子の入った200mL三角フラスコに、上記(PAA-A-3)の溶液を100g分取し、NMPを66.7g、無水酢酸を14.2g、ピリジンを4.70g加え、室温で30分間撹拌した後、60℃で4時間反応させた。この反応溶液を650gのメタノール中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度80℃で減圧乾燥し、ポリイミドの粉末(イミド化率:89%)を得た。
 さらに、撹拌子の入った100mL三角フラスコに、このポリイミドの粉末を9.60g分取し、NMPを70.4g加えて、70℃にて24時間撹拌して溶解させ、固形分濃度が12質量%のポリイミド(PI-A-2)の溶液を得た。
 合成例2で得られたポリイミド(PI-A-2)の溶液を作製する際に使用したジアミン及びテトラカルボン酸誘導体の種類及び使用量、E-1の有無、並びにイミド化率を表1に示す。
<合成例3>
 撹拌装置及び窒素導入管付きの1Lの四つ口フラスコに、DA-3を38.26g(96.0mmol)、及びDA-8を44.41g(224.0mmol)を量り取り、固形分濃度が12質量%となるように、NMPを606.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を48.32g(246.4mmol)とNMPを166.1g加え、窒素雰囲気下水冷下で2時間撹拌した。さらに、CA-4を18.83g(64.0mmol)添加し、さらにNMPを76.6g加え、窒素雰囲気下50℃で15時間撹拌し、固形分濃度が15質量%となるポリアミック酸(PAA-B-1)の溶液を得た。
<合成例4~7>
 下記表2に示す、ジアミン及びテトラカルボン酸誘導体を使用し、それぞれ、合成例3と同じ有機溶媒を使用して、合成例3と同様の手順で実施することにより、下記表2に示すポリアミック酸(PAA-B-2)~(PAA-B-5)の溶液を得た。
<合成例8>
 撹拌装置及び窒素導入管付きの1Lの四つ口フラスコに、DA-8を39.65g(200.0mmol)、及びDA-5を42.66g(200.0mmol)を量りとり、固形分濃度が12%質量となるように、NMPを603.6g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を74.52g(380.0mmol)とNMPを285.1g加え、窒素雰囲気下水冷下で4時間撹拌し、固形分濃度が15質量%となるポリアミック酸(PAA-B-6)の溶液を得た。
 合成例8で得られたポリアミック酸(PAA-B-6)の溶液を作製する際に使用したジアミン及びテトラカルボン酸誘導体の種類及び使用量を表2に示す。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
[液晶配向剤の調製]
 <実施例1~4、比較例1~5>
 200mLの三角フラスコに、合成例1~8で得られたポリアミック酸及びポリイミドの溶液を、それぞれ下記表3に示される量を秤取した。撹拌しながら、NMP、GBL、10質量%架橋性化合物含有NMP溶液、1質量%密着助剤含有GBL溶液、BCSの順に加え、室温で2時間撹拌することにより、液晶配向剤(1)~(9)を得た。
Figure JPOXMLDOC01-appb-T000025
[FFS方式の液晶表示素子の作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板であった。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成され、第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜は、層間絶縁膜として機能する膜厚が500nmのものを用いた。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されていた。各画素のサイズは、縦10mmで横約5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有していた。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっていた。すなわち、上記複数の電極要素の屈曲部を結ぶ方向を基準とした場合、画素の第1領域では画素電極の電極要素が時計回りに80°の角度をなすように形成され、画素の第2領域では画素電極の電極要素が反時計回りに80°の角度をなすように形成されていた。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されていた。
 次に、液晶配向剤(1)~(9)をそれぞれ孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、150℃のIR式オーブンで20分間焼成を行い、膜厚60nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング配向処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:第3層目の画素電極の上記複数の電極要素の屈曲部を結ぶ方向に対して180°の方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。また、対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様に処理して、配向処理が施された液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、片方の基板上に液晶注入口を残した形でシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、150℃で60分間の加熱処理を行い、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。
[電圧保持率測定用液晶セルの作成]
 液晶配向剤(1)~(9)をそれぞれ1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板であって、ガラス基板上には幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極が形成されていた。)に、スピンコート塗布にて塗布した。50℃のホットプレート上で5分間乾燥させた後、150℃のIR式オーブンで20分間焼成を行い、膜厚60nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布(吉川化工製YA-20R)でラビング配向処理(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:30mm/sec、押し込み長:0.3mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
 上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤(三井化学社製 XN-1500T)を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、150℃で60分間の加熱処理を行い、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、ネガ型液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置し、電圧保持率測定用液晶セルを得た。
[評価]
1.長期交流駆動による配向安定性評価
 上記FFS方式の液晶表示素子の作製にて作製した液晶セルを使用した。
 この液晶セルを用い、表面温度が50℃の高輝度バックライト(光源:LED、輝度:20000cd/m)の上で、±10Vの交流電圧を周波数60Hzで168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。
 液晶配向の安定性は、この角度Δが0.4°未満の場合は「良好」とし、角度Δが0.4°以上の場合は「不良」と定義して評価した。評価結果を表4に示す。
2.蓄積電荷の緩和時間測定
 上記(FFS方式の液晶表示素子の作製)と同様にして作製した液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。次に、この液晶セルに周波数60Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 残像評価では、相対透過率が23%となる周波数60Hzの交流電圧を印加して液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、120分間駆動させた。その後、直流電圧の印加のみを停止し、交流電圧のみでさらに15分間駆動した。
 直流電圧の印加を停止した時点から10分間が経過するまでに、相対透過率が25%以下に緩和した場合に、「良好」とし、相対透過率が25%以下に低下するまでに10分間以上を要した場合には、「不良」と定義して評価した。
 なお、上述した方法に従う残像評価は、液晶セルの温度が40℃の状態の温度条件下で行った。評価結果を、表4に示す。
3.交流駆動による電荷の蓄積量評価
 上記(FFS方式の液晶表示素子の作製)と同様にして作製した液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。次に、この液晶セルに周波数60Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 残像評価では、相対透過率が100%となる周波数60Hzの交流電圧を印加して液晶セルを駆動60分間駆動させた。その後、相対透過率が23%であった交流電圧を印加し、DC電圧を掃引させながら、表示ちらつきを最少化できる印加電圧を計測した。この表示ちらつきを最小化できる印加電圧の絶対値を電荷蓄積量とし、この値が100mVを超える場合は、「不良」とし、100mV以下の場合は「良好」と定義して評価した。
 なお、上述した方法に従う残像評価は、液晶セルの温度が40℃の状態の温度条件下で行った。評価結果を表4に示す。
4.バックライト下での電圧保持率の安定性評価
 上述の電圧保持率測定用液晶セルに60℃の温度下で1Vの電圧を60μsec印加し、167msec後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として算出した。これを初期の電圧保持率とする。
 次いでバックライト耐性試験として、この液晶セルを、表面温度が50℃の高輝度バックライト(光源:LED、輝度:20000cd/m)の照射下で168時間放置した。この液晶セルの電圧保持率を上記と同様に測定した。これを耐性試験後の電圧保持率とする。
 電圧保持率のバックライト耐性は、初期値から耐性試験後の値をひいた値が、5%未満であれば「良好」とし、5%以上であれば「不良」として評価を行った。評価結果を、表4に示す。
5.ラビング耐性の評価
 液晶配向剤(1)~(9)をそれぞれITO基板にスピンコート塗布にて塗布した。60℃のホットプレート上で1分30秒間乾燥させた後、150℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。その後、この液晶配向膜をレーヨン布(吉川化工製YA-20R)で2度ラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.5mm)を2回連続して行い、膜の表面を共焦点レーザー顕微鏡で観察した際に傷があるものは「不良」とし、傷が無いものは「良好」と定義して評価を行った。評価結果を、表4に示す。
 上記実施例1~4及び比較例1~5の各液晶配向剤を使用する液晶表示素子について、上記の通り実施した評価結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000026
 本発明の液晶配向剤は、IPS駆動方式やFFS駆動方式などの広範な液晶表示素子における液晶配向膜の形成に有用である。
 なお、2021年5月6日に出願された日本特許出願2021-078636号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下記の重合体(A)、重合体(B)及び架橋性化合物(C)を含有することを特徴とする液晶配向剤。
      重合体(A):下記式(d)で表されるジアミン及び下記式(d)で表されるジアミンを含有するジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。
      重合体(B):「H-N(R)-YD’-N(R)-H」(YD’は、分子内に基「-N(D’)-」(D’は、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。Rは式(d)のRと同義である。)で表されるジアミン(dD’B)と下記式(d)で表されるジアミン(但し、ジアミン(dD’B)を除く。)で構成されるジアミン成分とテトラカルボン酸誘導体成分との反応物であるポリイミド前駆体。但し、該ポリイミド前駆体はイミド環構造を有しない。
      架橋性化合物(C):下記式(E)で表されるエポキシ系化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(d)中、2つのArは、それぞれ独立して2価のベンゼン環、ビフェニル構造、又はナフタレン環を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。
     Lは-O-(-Ar’-O-)-(nは0~3の整数である。Ar’は2価のベンゼン環、ビフェニル構造を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。Ar’が複数ある場合、複数個のAr’は同一でも異なってもよい。)、-(CH-(nは2~18の整数である。)、又は該-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。
     式(d)中、Yは、分子内に基「-N(D)-」(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。
     式(d)及び式(d)中、複数のRは、それぞれ独立して水素原子又は1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (Yは、以下の条件(1)及び(2)を満たす2価の有機基を表す。Rは前記式(d)のRと同義である。)
     条件(1):窒素原子を含む複素環及び第二級又は第三級のアミノ基(但し、基「-N(D’)-」(D’は、加熱によって脱離して水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。)からなる群から選ばれる窒素原子含有構造を有しない。
     条件(2):炭素数6以上の側鎖基を有しない。
    Figure JPOXMLDOC01-appb-C000003
    (aは2~4の整数であり、Rはa価の有機基であり、a個のNとの結合部位は脂肪族炭素原子である。)
  2.  前記重合体(A)におけるポリイミドのイミド化率が10~100%である、請求項1に記載の液晶配向剤。
  3.  前記重合体(B)において、前記ジアミン成分が下記式(d)で表されるジアミンを含む、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (Lは単結合、-CH-、-CO-、-O-、又は-C(CH-を表す。L’は、単結合又は-(CH-(mは1~2の整数である。)を表す。Arは、2価のベンゼン環を表し、前記環上の任意の水素原子は1価の基で置き換えられてもよい。Arが複数存在する場合、複数のArは同一でも異なってもよい。複数のRはそれぞれ独立して水素原子又は1価の有機基を表す。nは0~1の整数である。)
  4.  前記式(d)で表されるジアミンの含有量が、重合体(A)の製造に用いられる前記ジアミン成分の全成分に対して50~95モル%である、請求項1~3のいずれか1項に記載の液晶配向剤。
  5.  前記式(d)で表されるジアミンの含有量が、重合体(A)の製造に用いられる前記ジアミン成分の全成分に対して5~50モル%である、請求項1~4のいずれか1項に記載の液晶配向剤。
  6.  重合体(A)の製造に用いられる前記テトラカルボン酸誘導体成分が、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体を含有する、請求項1~5のいずれか一項に記載の液晶配向剤。
  7.  重合体(A)の製造に用いられる前記テトラカルボン酸誘導体成分が、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含有する、請求項6に記載の液晶配向剤。
  8.  前記式(d)で表されるジアミンが、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、下記式(d-1)~(d-10)で表される化合物、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、及び6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミンからなる群から選択される少なくとも1種のジアミンである、請求項1~7のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
  9.  前記式(d)で表されるジアミンが、分子内に芳香環を一つ有する芳香族ジアミンであって、芳香環上の任意の水素原子の少なくとも一つが基「-N(D)-」を有する1価の基で置き換えられた芳香族ジアミン(dn1)、又は分子内に芳香環を2つ有する芳香族ジアミンであって、該2つの芳香環が、単結合、-CH-、-C(CH-、-O-、-C(=O)-、-O-C(=O)-、-NR-C(=O)-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)、-NR-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)、炭素数2~20のアルキレン基、及び該アルキレン基の任意の-CH-が-O-、-Si(CH-、-C(=O)-、-O-C(=O)-、-NR-C(=O)-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)、若しくは-NR-(Rは水素原子、炭素数1~5のアルキル基、フェニル基、又は基「-D」を表す。)で置き換えられた2価の基、からなる群から選ばれる2価の基(L)で連結される芳香族ジアミンであって、(i)芳香環上の任意の水素原子が「-N(D)-」を有する1価の基で置き換えられる、又は(ii)上記2価の基(L)が基「-N(D)-」を有する、の少なくとも一つの条件を満たす芳香族ジアミン(dn2)である、請求項1~8のいずれか1項に記載の液晶配向剤。
  10.  前記重合体(A)と前記重合体(B)の含有割合は、[重合体(A)]/[重合体(B)]の質量比で10/90~90/10である、請求項1~9のいずれか1項に記載の液晶配向剤。
  11.  前記架橋性化合物(C)が、N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼン、及び下記式(E-1)~(E-5)で表される化合物からなる群から選択される少なくとも1種である、請求項1~10のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
  12.  架橋性化合物(C)以外の架橋性化合物及び/又は密着助剤をさらに含有する、請求項1~11のいずれか一項に記載の液晶配向剤。
  13.  請求項1~12のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。
  14.  水平配向型である、請求項13に記載の液晶配向膜。
  15.  請求項13又は14に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2022/019330 2021-05-06 2022-04-28 液晶配向剤、液晶配向膜及び液晶表示素子 WO2022234820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280033268.8A CN117280277A (zh) 2021-05-06 2022-04-28 液晶取向剂、液晶取向膜以及液晶显示元件
JP2023518681A JPWO2022234820A1 (ja) 2021-05-06 2022-04-28
KR1020237040562A KR20240004616A (ko) 2021-05-06 2022-04-28 액정 배향제, 액정 배향막 및 액정 표시 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078636 2021-05-06
JP2021078636 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234820A1 true WO2022234820A1 (ja) 2022-11-10

Family

ID=83932746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019330 WO2022234820A1 (ja) 2021-05-06 2022-04-28 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JPWO2022234820A1 (ja)
KR (1) KR20240004616A (ja)
CN (1) CN117280277A (ja)
TW (1) TW202311504A (ja)
WO (1) WO2022234820A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117866199B (zh) * 2024-03-11 2024-05-28 烟台三月科技有限责任公司 一种液晶取向剂、液晶取向膜及其液晶显示元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065646A1 (ja) * 2017-09-26 2019-04-04 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2020158818A1 (ja) * 2019-01-30 2020-08-06 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2020175561A1 (ja) * 2019-02-27 2020-09-03 日産化学株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731404A (en) 1995-11-01 1998-03-24 E. I. Du Pont De Nemours And Company Polyimide film from pyromellitic dianhydride and a bis(4-aminophenoxy) aromatic compound as an alignment layer for liquid crystal displays
JP3169062B2 (ja) 1996-07-11 2001-05-21 日産化学工業株式会社 液晶セル用配向処理剤
TW556029B (en) 2000-10-16 2003-10-01 Nissan Chemical Ind Ltd Aligning agent for liquid crystal for in-plane switching, liquid-crystal alignment film, and liquid-crystal display element
WO2014010402A1 (ja) 2012-07-11 2014-01-16 日産化学工業株式会社 ポリアミック酸エステルを含有する液晶配向剤、液晶配向膜、及び液晶表示素子
WO2018124167A1 (ja) 2016-12-28 2018-07-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2019082975A1 (ja) 2017-10-26 2019-05-02 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065646A1 (ja) * 2017-09-26 2019-04-04 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2020158818A1 (ja) * 2019-01-30 2020-08-06 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2020175561A1 (ja) * 2019-02-27 2020-09-03 日産化学株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子

Also Published As

Publication number Publication date
KR20240004616A (ko) 2024-01-11
CN117280277A (zh) 2023-12-22
TW202311504A (zh) 2023-03-16
JPWO2022234820A1 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023013622A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022234820A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022270287A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023032753A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023286733A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
WO2023286735A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
WO2023219112A1 (ja) 新規なジアミン化合物、該ジアミンを用いて得られる重合体、液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023068085A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、及び化合物
WO2023008071A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7505643B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7497782B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7351435B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7315106B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2024122359A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022190896A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2025079517A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023074392A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023210532A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2025079518A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022250007A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、ジアミン及び重合体
WO2025079519A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2025079520A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023074569A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023008203A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518681

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280033268.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237040562

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798925

Country of ref document: EP

Kind code of ref document: A1