[go: up one dir, main page]

WO2023002998A1 - Composite sheet and method for producing composite sheet - Google Patents

Composite sheet and method for producing composite sheet Download PDF

Info

Publication number
WO2023002998A1
WO2023002998A1 PCT/JP2022/028124 JP2022028124W WO2023002998A1 WO 2023002998 A1 WO2023002998 A1 WO 2023002998A1 JP 2022028124 W JP2022028124 W JP 2022028124W WO 2023002998 A1 WO2023002998 A1 WO 2023002998A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
composite sheet
liquid crystal
tetrafluoroethylene
dispersion
Prior art date
Application number
PCT/JP2022/028124
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 光永
渉 笠井
陽美 中満
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280050738.1A priority Critical patent/CN117693547A/en
Priority to JP2023536763A priority patent/JPWO2023002998A1/ja
Publication of WO2023002998A1 publication Critical patent/WO2023002998A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present disclosure relates to a composite sheet and a method for manufacturing the composite sheet.
  • Patent Literature 1 describes a composite sheet comprising a liquid crystal polymer-containing nonwoven fabric on the facing surfaces of a layer containing a liquid crystal polymer and a layer containing a tetrafluoroethylene-based polymer.
  • a tetrafluoroethylene-based polymer has excellent electrical properties and a high coefficient of linear expansion. Therefore, when the laminate of the composite sheet and the base material described in Patent Document 1 is processed at a high temperature, for example, when subjected to a reflow process in the production of a wiring board, the composite sheet thermally expands and the composite sheet and the base material are separated from each other. It was easy to peel off the material.
  • the present disclosure relates to providing a composite sheet having excellent electrical properties and low linear expansion and a method for manufacturing the composite sheet.
  • Means for solving the above problems include the following aspects.
  • the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
  • ⁇ 3> The composite sheet according to ⁇ 1> or ⁇ 2>, wherein the liquid crystal polymer contains a liquid crystalline aromatic polyester.
  • ⁇ 4> The composite sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the tetrafluoroethylene-based polymer has a melting point of 260 to 320°C.
  • ⁇ 5> The composite sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the liquid crystal polymer has a melting point of 230 to 350°C.
  • ⁇ 6> The composite sheet according to any one of ⁇ 1> to ⁇ 5>, wherein the absolute value of the difference between the melting point of the tetrafluoroethylene-based polymer and the melting point of the liquid crystal polymer is 30° C. or less.
  • ⁇ 7> The composite sheet according to any one of ⁇ 1> to ⁇ 6>, further comprising a polymer different from the tetrafluoroethylene-based polymer.
  • ⁇ 8> The composite sheet according to any one of ⁇ 1> to ⁇ 7>, further containing inorganic particles.
  • ⁇ 9> A group comprising at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles, and a polymer different from the tetrafluoroethylene-based polymer and the inorganic particles.
  • ⁇ 10> Contains at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles, and is different from the tetrafluoroethylene-based polymer with respect to the mass of the tetrafluoroethylene-based polymer
  • ⁇ 11> The composite sheet according to any one of ⁇ 1> to ⁇ 10>, which has a thickness of less than 50 ⁇ m.
  • ⁇ 12> A method for producing a composite sheet, comprising thermocompression bonding a sheet containing a heat-meltable tetrafluoroethylene-based polymer having an oxygen-containing polar group and a woven or nonwoven fabric of a liquid crystal polymer to obtain a composite sheet.
  • the sheet is formed from a dispersion containing particles of the tetrafluoroethylene-based polymer.
  • ⁇ 14> A method for producing a composite sheet, comprising impregnating a liquid crystal polymer woven or nonwoven fabric with a dispersion containing particles of a heat-melting tetrafluoroethylene polymer having an oxygen-containing polar group to obtain a composite sheet.
  • the dispersion further contains at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles.
  • a composite sheet having excellent electrical properties and low linear expansion and a method for manufacturing the composite sheet are provided.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • Plural types of particles corresponding to each component in the present disclosure may be included.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term "layer” includes the case where the layer or film is formed in the entire region when the region where the layer or film is present is formed only in a part of the region. case is also included.
  • the term “laminate” indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
  • a "composite sheet” is a sheet comprising a polymer and a woven or non-woven fabric of liquid crystal polymer.
  • the “volume average particle diameter (D50)” is the volume-based cumulative 50% diameter of particles determined by a laser diffraction/scattering method.
  • the particle size distribution is measured by a laser diffraction/scattering method, and the cumulative curve is obtained with the total volume of the group of particles being 100%.
  • the D50 of the particles is determined by dispersing the particles in water and using a laser diffraction/scattering particle size distribution analyzer ( It can be determined by analysis by a laser diffraction/scattering method using an LA-920 measuring instrument (manufactured by Horiba, Ltd.).
  • the “specific surface area” is a value calculated by measuring particles by gas adsorption (constant volume method) BET multipoint method, and is determined using NOVA4200e (manufactured by Quantachrome Instruments).
  • the "melting point of the tetrafluoroethylene-based polymer” is the temperature corresponding to the maximum value of the melting peak of the polymer measured by differential scanning calorimetry (DSC).
  • the “melting point of the liquid crystal polymer” is obtained by heating the liquid crystal polymer film at a rate of 20°C/min using a differential scanning calorimeter to completely melt it, and then heating the melt to 50°C/min. It is the temperature showing the endothermic peak when the material is rapidly cooled to 50°C at a high speed and then heated again at a speed of 20°C/min.
  • melt flow rate means the melt mass flow rate of a polymer as defined in JIS K 7210-1:2014 (ISO1133-1:2011).
  • glass transition point (Tg) is a value measured by analyzing a polymer by dynamic viscoelasticity measurement (DMA).
  • viscosity is determined by measuring the dispersion using a Brookfield viscometer under conditions of 25° C. and 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
  • the “thixotropic ratio” is a value calculated by dividing the viscosity ⁇ 1 of the dispersion measured at a rotation speed of 30 rpm by the viscosity ⁇ 2 measured at a rotation speed of 60 rpm. is. Each viscosity measurement is repeated three times, and the average value of the three measurements is taken.
  • a "polymer” is a compound formed by polymerizing monomers. That is, a "polymer” has multiple monomer-based units.
  • a "unit" in a polymer means an atomic group based on the monomer formed by polymerization of the monomer.
  • the units may be units directly formed by a polymerization reaction, or may be units in which some of said units have been converted to another structure by treatment of the polymer.
  • units based on monomer a are also simply referred to as "monomer a units”.
  • the composite sheet of the present disclosure includes a woven fabric or nonwoven fabric of a heat-melting liquid crystal polymer (hereinafter also simply referred to as "liquid crystal polymer”) and oxygen-containing polar groups impregnated in the woven fabric or nonwoven fabric of the liquid crystal polymer. and a heat-meltable tetrafluoroethylene-based polymer (hereinafter also referred to as “F polymer”).
  • liquid crystal polymer heat-melting liquid crystal polymer
  • F polymer heat-meltable tetrafluoroethylene-based polymer
  • tetrafluoroethylene-based polymers have excellent electrical properties such as low dielectric and low dielectric loss tangent, but also have a large coefficient of linear expansion.
  • Conventional composite sheets using tetrafluoroethylene-based polymers do not have sufficient low linear expansion properties.
  • the tetrafluoroethylene-based polymer is impregnated into the liquid crystal polymer woven fabric or non-woven fabric, and the two are entangled and adhered, and the adhesion at the interface is insufficient.
  • the laminate of the composite sheet and the base material has problems such as thermal expansion during processing at high temperature and separation from the base material.
  • the present inventors conducted extensive studies and found that a composite sheet obtained by impregnating a liquid crystal polymer woven or non-woven fabric with F polymer has excellent electrical properties and low linear expansion properties.
  • the oxygen-containing polar groups in the F polymer interact well with the liquid crystal polymer, thereby improving the adhesion between the F polymer and the liquid crystal polymer, and the linear expansion of the F polymer is greater than that of the liquid crystal polymer. It is considered that the physical properties of both polymers are highly balanced while being well cushioned by the woven fabric or non-woven fabric. It is also believed that the oxygen-containing polar groups in the tetrafluoroethylene-based polymer also improve adhesion to substrates, and these properties are believed to provide a material that is useful, for example, as a low transmission loss material.
  • the composite sheet may contain, in addition to the liquid crystal polymer woven fabric or nonwoven fabric and the F polymer, a polymer different from the F polymer, inorganic particles, various additives, and the like. Each component of the composite sheet will be described below.
  • the composite sheet of the present disclosure contains F polymer, which is a hot-melt tetrafluoroethylene-based polymer having oxygen-containing polar groups.
  • F polymer which is a hot-melt tetrafluoroethylene-based polymer having oxygen-containing polar groups.
  • One type of F polymer may be used, or two or more types may be used.
  • the F polymer may be particulate or non-particulate in the composite sheet, the latter being preferred.
  • the F polymer in the composite sheet is preferably calcined. From the viewpoint of excellent adhesion between the F polymer and the woven fabric or non-woven fabric of the liquid crystal polymer, the F polymer in the composite sheet is preferably a baked product of particles of the F polymer.
  • a tetrafluoroethylene-based polymer is a polymer containing units (hereinafter also referred to as "TFE units”) based on tetrafluoroethylene (hereinafter also referred to as "TFE").
  • TFE units tetrafluoroethylene
  • the content of the TFE units in the tetrafluoroethylene-based polymer is preferably 50 mol % or more, more preferably 90 mol % or more, based on the total units in the polymer, from the viewpoint of suitably exhibiting the properties of the TFE units.
  • the above content may be 99 mol % or less, or 98 mol % or less.
  • the F polymer has oxygen-containing polar groups.
  • the oxygen-containing polar group includes a hydroxyl group-containing group, a carbonyl group-containing group, a phosphono group-containing group, and the like, preferably a hydroxyl group-containing group or a carbonyl group-containing group, more preferably a carbonyl group-containing group.
  • the F polymer may have one or more oxygen-containing polar groups.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH and -C(CF 3 ) 2 OH.
  • a carbonyl group-containing group includes a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC(O)NH 2 ), an acid anhydride residue (-C(O)OC(O)-), an imide Residues (--C(O)NHC(O)--, etc.) and carbonate groups (--OC(O)O--) are preferred, and acid anhydride residues are more preferred.
  • the number of oxygen-containing polar groups in F polymer is preferably 10 to 5,000, more preferably 100 to 3,000 per 1 ⁇ 10 6 carbon atoms in the main chain.
  • the number of oxygen-containing polar groups can be quantified by the composition of the polymer or the method described in WO2020/145133.
  • the oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer, the former being preferred.
  • a tetrafluoroethylene polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., a polymer obtained by plasma treatment or ionizing radiation treatment of a tetrafluoroethylene polymer, etc. is mentioned.
  • NAH 5-norbornene-2,3-dicarboxylic anhydride
  • F polymers are polymers with oxygen-containing polar groups, polytetrafluoroethylene (PTFE), a polymer containing TFE units and ethylene-based units (ETFE), a polymer containing TFE units and propylene-based units, TFE It is preferably a polymer (PFA) containing units and units based on perfluoro(alkyl vinyl ether) (PAVE) (PAVE units), a polymer containing TFE units and units based on hexafluoropropylene (FEP), oxygen-containing polar PFA and FEP having a group are more preferred, and PFA having an oxygen-containing polar group is even more preferred.
  • PFA perfluoro(alkyl vinyl ether)
  • FEP hexafluoropropylene
  • CF2 CFOCF3
  • CF2 CFOCF2CF3
  • These polymers may also contain units based on other comonomers.
  • the F polymer is preferably a polymer having carbonyl group-containing groups comprising TFE units and PAVE units, more preferably comprising units based on monomers having TFE units, PAVE units and carbonyl group-containing groups, TFE units , PAVE units and units based on monomers having a carbonyl group-containing group, with respect to all units, these units in this order 90 to 99 mol%, 0.99 to 9.97 mol%, 0.01 to More preferably, the polymer contains 3 mol %.
  • Specific examples of such F polymers include the polymers described in WO2018/016644.
  • a hot-melt polymer means a polymer for which there exists a temperature at which the melt flow rate is between 1 and 1000 g/10 minutes under the condition of a load of 49N.
  • the melt flow rate of the F polymer is preferably 1 to 30 g/min, more preferably 5 to 30 g/min under a load of 49 N from the viewpoint of impregnating the woven or nonwoven fabric of the liquid crystal polymer with the F polymer satisfactorily.
  • the melting point of the F polymer is preferably 200° C. or higher, more preferably 260° C. or higher.
  • the melting point of the F polymer is preferably 325° C. or lower, more preferably 320° C. or lower, from the viewpoint of satisfactorily impregnating the liquid crystal polymer woven fabric or non-woven fabric with the F polymer.
  • the glass transition point of the F polymer is preferably 50° C. or higher, more preferably 75° C. or higher.
  • the glass transition point of the F polymer is preferably 150° C. or lower, more preferably 125° C.
  • the fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass, from the viewpoint of improving the electrical properties and heat resistance of the composite sheet.
  • fluorine content is calculated
  • the surface tension of the F polymer is preferably 16-26 mN/m.
  • the surface tension can be measured by placing a droplet of a wetting index reagent (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) on a flat plate made of F polymer. Even if the F polymer has a low surface tension, the F polymer has an oxygen-containing polar group, so it tends to have excellent adhesiveness to the woven fabric or non-woven fabric of the liquid crystal polymer.
  • the spherulite radius of the F polymer in the composite sheet is preferably 0.2 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, from the viewpoint of adhesion of the liquid crystal polymer to the woven fabric or nonwoven fabric and substrate.
  • the content of the F polymer relative to the total mass of the composite sheet is preferably 10% by mass or more, more preferably 30% by mass or more. From the viewpoint of low linear expansion, the content is preferably 80% by mass or less, more preferably 60% by mass or less.
  • the content of the F polymer with respect to the total mass excluding the liquid crystal polymer woven fabric or non-woven fabric is preferably 30% by mass or more, more preferably 50% by mass or more, from the viewpoint of electrical properties.
  • the content is preferably 100% by mass or less, more preferably 80% by mass or less.
  • the composite sheets of the present disclosure contain woven or nonwoven fabrics of liquid crystal polymers.
  • a thermotropic liquid crystal polymer is preferable.
  • One type of liquid crystal polymer may be used, or two or more types may be used.
  • the woven fabric or non-woven fabric of liquid crystal polymer may be a woven fabric or non-woven fabric containing liquid crystal polymer, and may contain other materials.
  • the content of the liquid crystal polymer is preferably 50% by mass or more, more preferably 80% by mass or more, based on the total mass of the liquid crystal polymer woven fabric or nonwoven fabric.
  • Liquid crystalline polyester is preferred as the liquid crystalline polymer.
  • the liquid crystalline polyester may be a liquid crystalline polyester amide, a liquid crystalline polyester ether, a liquid crystalline polyester carbonate, or a liquid crystalline polyester imide.
  • the liquid crystalline polyester is preferably a liquid crystalline aromatic polyester, and specifically, a polycondensate of an aromatic dicarboxylic acid and an aromatic diol or an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, an aromatic diol and an aromatic A polycondensate with hydroxycarboxylic acid and the like can be mentioned.
  • aromatic dicarboxylic acids examples include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  • Aromatic diols include 4,4'-dihydroxybiphenyl, bisphenol A and the like.
  • Aromatic hydroxycarboxylic acids include parahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 6-hydroxy-2-naphthoic acid and the like.
  • components such as aliphatic dicarboxylic acids, aliphatic diols, and aliphatic hydroxycarboxylic acids may be used in combination as long as liquid crystallinity is exhibited.
  • Aliphatic diols include ethylene glycol.
  • liquid crystal polymer a liquid crystal aromatic polyester having an aromatic ring content of 55% by mass or more is preferable from the viewpoint of excellent heat resistance.
  • the aromatic ring content of the liquid crystalline aromatic polyester is more preferably 65% by mass or more.
  • the aromatic ring content is preferably 80% by mass or less.
  • Such a liquid crystal polymer has a small degree of conformational freedom and excellent heat resistance, but it is difficult to interact with other polymers.
  • the F polymer since the F polymer has a high affinity with the liquid crystal polymer, it easily adheres well to such a liquid crystal polymer having a high aromatic ring content.
  • the aromatic ring content is obtained from the following formula.
  • the carbon atoms contained in the substituents bonded to the aromatic ring are not included in the carbon atoms forming the aromatic ring.
  • Aromatic ring content (% by mass) 100 x [mass of carbon atoms forming aromatic rings in polymer skeleton (g)/total mass of polymer (g)]
  • the aromatic ring content in a typical unit contained in a liquid crystalline aromatic polyester is as follows, based on the copolymerization ratio (molar ratio) of each unit, the aromatic ring content of the liquid crystalline aromatic polyester Amount can be calculated.
  • 2-hydroxy-6-naphthoic acid 71% 4,4'-dihydroxybiphenyl: 78%
  • Terephthalic acid 54%
  • the liquid crystalline polyester amide includes an aromatic polyester amide obtained by copolymerizing the liquid crystalline aromatic polyester with aminophenol.
  • Specific examples of liquid crystal polymers include liquid crystal polymers described in paragraphs 0032 to 0039 of JP-A-2017-119378.
  • the deflection temperature under load of the liquid crystal polymer is preferably 240° C. or higher, more preferably 270° C. or higher, and even more preferably 300° C. or higher.
  • the deflection temperature under load is preferably 400° C. or less.
  • the composite sheet is preferable because it tends to be excellent in heat resistance.
  • the F polymer has an oxygen-containing polar group, it easily adheres well to a liquid crystal polymer which has a high deflection temperature under load, that is, has a small degree of conformational freedom and hardly interacts with other polymers.
  • the deflection temperature under load is a value measured according to ASTM D648 with a load of 0.46 MPa.
  • the melting point of the liquid crystal polymer is preferably 230° C. or higher, more preferably 280° C. or higher.
  • the melting point of the liquid crystal polymer is preferably 350° C. or lower, more preferably 330° C. or lower.
  • the melting point of the liquid crystal polymer may be adjusted by heat-treating the liquid crystal polymer.
  • a liquid crystal polymer having such a melting point not only has excellent heat resistance on its own, but also tends to increase interaction with the F polymer when exposed to high temperatures, and tends to further improve the low linear expansion property of the composite sheet.
  • the absolute value of the difference between the melting point of the F polymer and the melting point of the liquid crystal polymer is 30°C or less, the interaction between the polar groups of the polymer softened by exposure to high temperatures increases, so this tendency tends to become noticeable.
  • the difference (absolute value) is preferably 25° C. or less, more preferably 20° C. or less.
  • the difference (absolute value) is preferably 0° C. or more.
  • the specific gravity of the liquid crystal polymer nonwoven fabric is preferably 1.0 to 3.0, more preferably 1.5 to 2.0.
  • the average fiber diameter of the liquid crystal polymer nonwoven fabric is preferably 0.01 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the average fiber diameter is obtained by measuring the fiber diameters of 200 fibers by electron microscope observation, and excluding the data of the 10 thinnest and 10 thickest fibers, and obtaining the average value.
  • the basis weight (mass per unit) of the liquid crystal polymer nonwoven fabric is preferably 1 to 300 g/m 2 , more preferably 3 to 30 g/m 2 .
  • the nonwoven fabric of the liquid crystal polymer may be a manufactured one or a ready-made one.
  • the non-woven fabric of liquid crystal polymer can be molded, for example, at a molding temperature of 300-400.degree.
  • Examples of the method for molding the nonwoven fabric of liquid crystal polymer include a spunbond method and a melt blow method, and examples thereof include the molding method described in International Publication No. 2010/098400.
  • Specific examples of liquid crystal polymers include "Vecrus" series (manufactured by Kuraray Kuraflex), "Vectran” series (manufactured by Kuraray), and "UENO LCP” series (manufactured by Ueno Pharmaceutical Co., Ltd.).
  • the woven fabric of liquid crystal polymer can also be regarded as a woven fabric of liquid crystal polymer fibers, and specifically includes a plain weave fabric.
  • the warp density of the liquid crystal polymer plain weave is preferably 2 to 80/cm, more preferably 4 to 60/cm.
  • the weft density of the liquid crystal polymer plain weave is preferably 2 to 80 wefts/cm, more preferably 4 to 60 wefts/cm.
  • the liquid crystal polymer fiber is preferably a fiber obtained by melt-spinning a liquid crystal polymer.
  • the liquid crystal polymer fibers obtained by melt spinning may be further heat-treated in order to improve the strength.
  • the liquid crystal polymer fibers may consist of one kind of liquid crystal polymer or two or more kinds of liquid crystal polymers.
  • the fiber of the liquid crystal polymer may be a core-sheath composite fiber having a core-sheath structure.
  • the liquid crystal polymer may be contained as a core component, may be contained as a sheath component, or may be contained as both a core component and a sheath component.
  • the composite sheet may further contain inorganic particles.
  • inorganic particles are preferably dispersed in the F polymer.
  • the shape of the inorganic particles is preferably spherical, needle-like, fibrous or plate-like, preferably spherical, scale-like or layer-like, more preferably spherical or scale-like.
  • the inorganic particles may be hollow.
  • the spherical inorganic particles are preferably substantially spherical.
  • substantially spherical means that, when the inorganic particles are observed with a scanning electron microscope (SEM), inorganic particles having a minor axis to major axis ratio of 0.7 or more account for 95% or more by number. do.
  • the aspect ratio of non-spherical inorganic particles is preferably 2 or more, more preferably 5 or more.
  • the aspect ratio is preferably 10,000 or less.
  • the material of the inorganic particles is preferably carbon, inorganic nitride or inorganic oxide, and carbon, boron nitride, aluminum nitride, beryllia, silica, wollastonite, talc, cerium oxide, aluminum oxide, magnesium oxide, zinc oxide or oxide. Titanium is more preferred, and boron nitride or silica are even more preferred.
  • D50 of the inorganic particles is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. D50 is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the specific surface area of the inorganic particles is preferably 1-20 m 2 /g.
  • the surfaces of the inorganic particles may be surface-treated with a silane coupling agent.
  • Silane coupling agents include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3- Silane coupling agents with functional groups such as isocyanatopropyltriethoxysilane are preferred.
  • silica particles include the "ADMAFINE” series (manufactured by Admatechs), the “SFP” series (manufactured by Denka), the “E-SPHERES” series (manufactured by Taiheiyo Cement Co., Ltd.), and the “Q” series (Ginet company).
  • zinc oxide particles include the “FINEX” series (manufactured by Sakai Chemical Industry Co., Ltd.).
  • titanium oxide particles include the "Tipake (registered trademark)” series (manufactured by Ishihara Sangyo Co., Ltd.) and the "JMT” series (manufactured by Tayca Corporation).
  • talc particles include "SG” series (manufactured by Nippon Talc Co., Ltd.).
  • steatite particles include the “BST” series (manufactured by Nippon Talc Co., Ltd.).
  • boron nitride particles include “UHP” series (manufactured by Showa Denko KK), and "GP” and “HGP” grades of the "DENKA BORON NITRIDE” series (manufactured by DENKA CORPORATION).
  • the content of the inorganic particles with respect to the total weight of the composite sheet is preferably 5% by mass or more, and 10% by mass or more, from the viewpoint of the strength and low linear expansion of the composite sheet. good too.
  • the content is preferably 40% by mass or less, more preferably 20% by mass or less, from the viewpoint of suitably expressing the properties of polymers including F polymer.
  • the ratio of the mass of the inorganic particles to the mass of the F polymer is preferably 0.1 or more, more preferably 0.2 or more, from the viewpoint of strength and low linear expansion of the composite sheet.
  • the ratio is preferably 1 or less, more preferably 0.6 or less.
  • the composite sheet of the present disclosure may further contain a polymer different from the F polymer (hereinafter also referred to as "different polymer").
  • Different polymers may be thermosets or thermoplastics.
  • One type of different polymer may be used, or two or more types may be used.
  • the different polymers may be included in the woven or non-woven fabric of the liquid crystal polymer or dispersed in the F polymer, the latter being preferred.
  • polymers examples include tetrafluoroethylene-based polymers other than F polymer, polyester resins (liquid crystalline aromatic polyesters, etc.), imide resins, epoxy resins, maleimide resins, urethane resins, polyphenylene ether resins, polyphenylene oxide resins, and polyphenylene sulfide resins. etc.
  • Tetrafluoroethylene-based polymers other than the F polymer include heat-melting PTFE, ETFE, PFA, FEP, and non-heat-melting PTFE that do not have oxygen-containing polar groups. is preferred.
  • the non-heat-fusible PTFE may be contained in the composite sheet as particles or may be non-particulate.
  • the different polymer is preferably an aromatic polymer and a tetrafluoroethylene-based polymer other than the F polymer, and at least selected from the group consisting of aromatic polyimides, aromatic polyamic acids, aromatic polyamideimides, and precursors of aromatic polyamideimides. More preferred are one aromatic imide polymer, as well as non-heat-melting PTFE.
  • aromatic polyimides include "Upia-AT” series (manufactured by Ube Industries, Ltd.), “Neoprim (registered trademark)” series (manufactured by Mitsubishi Gas Chemical Company, Inc.), “Spixeria (registered trademark)” series (manufactured by Somar ), “Q-PILON (registered trademark)” series (manufactured by PI Technical Research Institute), “WINGO” series (manufactured by Wingo Technology), “Tomide (registered trademark)” series (manufactured by T&K TOKA), “KPI- MX” series (manufactured by Kawamura Sangyo Co., Ltd.), and “HPC-1000” and “HPC-2100D” (both manufactured by Showa Denko Materials).
  • the content of different polymers can be adjusted depending on the desired properties to be obtained.
  • the content of the different polymers with respect to the total weight of the composite sheet is preferably 0.1% by mass or more, more preferably 3% by mass or more.
  • the content is preferably 60% by mass or less, more preferably 40% by mass or less.
  • the ratio of the mass of the different polymers to the mass of the F polymer in the composite sheet is preferably 0.005 or more, more preferably 0.05 or more.
  • the ratio is preferably 5 or less, more preferably 4 or less.
  • the non-thermally fusible PTFE content is preferably 10 to 60% by mass, more preferably 20 to 40% by mass, relative to the total mass of the composite sheet.
  • the ratio of the mass of the non-thermally fusible PTFE to the mass of the F polymer in the composite sheet is preferably 0.5-5, more preferably 1-4.
  • the content of the aromatic polymer with respect to the total weight of the composite sheet is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass.
  • the ratio of the mass of the aromatic polymer to the mass of the F polymer in the composite sheet is preferably 0.01-0.2, more preferably 0.05-0.1.
  • the total content of at least one selected from the group consisting of different polymers and inorganic particles is more than 5% by mass, more preferably 15% by mass or more.
  • the content is preferably 50% by mass or less, more preferably 30% by mass or less.
  • the ratio of the total weight of at least one selected from the group consisting of different polymers and inorganic particles to the weight of the F polymer is 0.1 or more is preferable, and 0.3 or more is more preferable.
  • the ratio is preferably 0.7 or less, more preferably 0.5 or less.
  • the composite sheet contains organic particles, a thixotropic agent, an antifoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, Other ingredients such as whitening agents, coloring agents, conductive agents, release agents, surface treatment agents, viscosity modifiers, and flame retardants may also be contained.
  • the composite sheet may contain a component derived from the dispersion described below.
  • the dielectric constant of the composite sheet is preferably 3.0 or less, more preferably 2.5 or less. A dielectric constant of 1.5 or more is preferable.
  • the dielectric loss tangent of the composite sheet is preferably 0.0100 or less, more preferably 0.0010 or less. The dielectric loss tangent is preferably 0.0001 or more. Relative permittivity and dielectric loss tangent are measured at a frequency of 10 GHz by the SPDR (split post dielectric resonance) method.
  • the thickness of the composite sheet is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the thickness of the composite sheet is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the composite sheet may be roll-shaped or sheet-shaped.
  • the composite sheet may be surface-treated.
  • Surface treatment includes corona discharge treatment, discharge treatment such as plasma treatment, plasma graft polymerization treatment, electron beam irradiation, light irradiation treatment such as excimer UV light irradiation, Itro treatment using flame, and wet etching treatment using sodium metal. is mentioned. These surface treatments can introduce polar functional groups such as hydroxyl groups, carbonyl groups, and carboxy groups onto the surface of the composite sheet.
  • the coefficient of linear expansion of the composite sheet is preferably 80 ppm/°C or less, more preferably 30 ppm/°C or less.
  • the lower limit of the coefficient of linear expansion is 5 ppm/°C.
  • the coefficient of linear expansion is measured by the method specified in JIS C 6471:1995. Specifically, it is measured by the method described in Examples.
  • the manufacturing method of the composite sheet is not particularly limited as long as the composite sheet of the present disclosure is obtained.
  • the composite sheet may be produced using a sheet or dispersion liquid containing each component described above, or may be produced by a production method described below.
  • a method for producing a composite sheet in one aspect of the present disclosure is a method for obtaining a composite sheet by thermocompression bonding a sheet containing an F polymer and the sheet and a woven or nonwoven fabric of a liquid crystal polymer.
  • this manufacturing method is also referred to as "thermocompression bonding method”.
  • the sheet containing the F polymer may be a ready-made one or a new one.
  • the thickness of the sheet containing the F polymer is preferably 1-200 ⁇ m.
  • a sheet containing F polymer may be formed from a dispersion containing particles of F polymer.
  • a sheet containing an F polymer can be produced by applying a dispersion containing particles of the F polymer to the surface of a temporary substrate, heating the temporary substrate to which the dispersion has been applied, and It may be formed by a method comprising obtaining a laminate having a material and a layer containing an F polymer, and removing the temporary substrate from the laminate.
  • the same heating method as in the dispersion liquid impregnation method, which will be described later, can be mentioned, and the preferred mode thereof is also the same.
  • the temporary base material include metal foils and resin films, and methods for removing the temporary base material include peeling, etching, and the like.
  • the sheet containing the F polymer may be formed by melt extruding the F polymer.
  • a sheet further containing a different polymer or inorganic particles can be formed by melt-kneading the F polymer with a different polymer or inorganic particles and extruding.
  • Thermocompression bonding is performed by superimposing a sheet containing the F polymer on a liquid crystal polymer woven or nonwoven fabric and passing it between a pair of heated rolls, sandwiching it between a pair of opposing hot plates and applying pressure, or heat It can be performed by crimping by a method of sandwiching between a plate and a roll and applying pressure.
  • the temperature for thermocompression bonding is preferably the melting point of the F polymer or higher, more preferably the melting point +20° C. or higher, from the viewpoint that the liquid crystal polymer woven fabric or non-woven fabric can be easily impregnated with the F polymer.
  • the temperature for thermocompression bonding is preferably 300 to 380.degree.
  • the pressure for thermocompression bonding is preferably 0.2 to 10 MPa. From the viewpoint of obtaining a composite sheet with reduced air bubbles, the thermocompression bonding is preferably performed under reduced pressure.
  • the atmospheric pressure is preferably 10 KPa or less, more preferably 1 KPa or less.
  • a method of making a composite sheet includes impregnating a liquid crystal polymer woven or nonwoven fabric with a dispersion containing particles of F polymer.
  • this production method is also referred to as "dispersion liquid impregnation method".
  • a method for producing a composite sheet by a dispersion impregnation method comprises: impregnating a liquid crystal polymer woven or nonwoven fabric with a dispersion containing F polymer particles; heating the woven or nonwoven fabric of to obtain a composite sheet.
  • the F polymer tends to be impregnated between the fibers of the liquid crystal polymer woven or nonwoven fabric.
  • the adhesion between the woven fabric or non-woven fabric of the liquid crystal polymer and the F polymer tends to increase, which is preferable.
  • Impregnation can be performed by disposing the dispersion liquid on the surface of the liquid crystal polymer woven or non-woven fabric.
  • the impregnation method include a coating method, a droplet discharge method, and an immersion method, preferably a roll coating method, a knife coating method, a bar coating method, a die coating method, a roller immersion method, or a spray method, and more preferably a roller immersion method.
  • the liquid crystal polymer woven fabric or nonwoven fabric impregnated with the dispersion is preferably heated to remove the dispersion medium, and further heated to calcine the F polymer.
  • a composite sheet is obtained in which the woven fabric or non-woven fabric of the liquid crystal polymer is impregnated with the fired F polymer.
  • Heating for removing the dispersion medium is preferably carried out at 100 to 200° C. for 0.1 to 30 minutes. Also, during the heating, air may be blown to facilitate the removal of the liquid dispersion medium by air-drying.
  • Heating for sintering the F polymer is preferably performed at a temperature equal to or higher than the melting point of the F polymer, more preferably at 300 to 400° C. for 0.1 to 30 minutes.
  • Heating devices for each heating include an oven and a ventilation drying oven.
  • the heat source in the device may be a contact heat source (hot air, hot plate, etc.) or a non-contact heat source (infrared radiation, etc.). Further, each heating may be performed under normal pressure or under reduced pressure.
  • the atmosphere in each heating may be either an air atmosphere or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
  • the impregnation and heating of the dispersion may be repeated two or more times.
  • the liquid dispersion is placed on the surface of a liquid crystal polymer woven fabric or nonwoven fabric and heated to remove the liquid dispersion medium and to bake the F polymer to obtain a composite sheet impregnated with the F polymer.
  • the dispersion liquid is placed on the surface of the sheet and heated to remove the liquid dispersion medium and calcine the F polymer to obtain a composite sheet impregnated with the F polymer.
  • the same kind of dispersion liquid may be used, or a different kind of dispersion liquid may be used.
  • the dispersion liquid containing F polymer particles hereinafter also referred to as "F particles" may be used at least once.
  • the dispersion liquid used in the first impregnation is preferably a dispersion liquid containing F particles.
  • the dispersion liquid used in the first impregnation is more preferably a dispersion liquid containing F particles and non-heat-fusible PTFE particles (hereinafter also referred to as "PTFE particles").
  • PTFE particles non-heat-fusible PTFE particles
  • the dispersion used in the final impregnation is preferably a dispersion containing F particles.
  • the surface of the composite sheet tends to be excellent in smoothness and adhesiveness.
  • the dispersion used in the final impregnation is more preferably a dispersion containing F particles and PTFE particles.
  • the surface of the composite sheet not only has excellent smoothness and adhesiveness, but also tends to have higher physical properties of PTFE.
  • the dispersions used in impregnations other than the first and last are preferably dispersions containing PTFE particles. In this case, the composite sheet tends to have high PTFE physical properties such as electrical properties.
  • the composite sheet is preferably a composite sheet obtained by impregnating a woven fabric or non-woven fabric of a liquid crystal polymer with F polymer, non-heat-melting PTFE and F polymer in this order.
  • the composite sheet tends to be excellent in low linear expansion, adhesiveness with other substrates, and electrical properties.
  • a liquid crystal polymer woven or nonwoven fabric is first impregnated with a dispersion containing F particles and heated, then impregnated with a dispersion containing PTFE particles and heated, and finally F particles.
  • a method of impregnating and heating a dispersion containing The first and last dispersions are preferably independently dispersions containing F particles and PTFE particles.
  • the impregnation and heating of the dispersion liquid containing the PTFE particles are carried out a plurality of times.
  • the melting point of the F polymer, the melting point of the liquid crystal polymer, and the absolute value of the difference between the melting point of the F polymer and the melting point of the liquid crystal polymer are preferably within the ranges described above.
  • the interaction between the polar groups of the softened polymer tends to increase, a dense matrix structure of the F polymer and the liquid crystal polymer is formed, and the electrical properties and low linear expansion of the composite sheet are improved. Easier to improve.
  • the composite sheet contains inorganic particles, the supportability of the inorganic particles is likely to be improved.
  • a dispersion liquid containing F particles which may be used for the thermocompression bonding method or the dispersion liquid impregnation method, will be described below.
  • the dispersion liquid is obtained by dispersing the F particles in a liquid dispersion medium.
  • the dispersion may contain inorganic particles, polymers different from the F polymer, and other ingredients described as components of the composite sheet.
  • the different polymers may be dispersed in particles in the dispersion or dissolved in the liquid dispersion medium.
  • the dispersion liquid may contain a surfactant or a silane coupling agent.
  • D50 of the F particles is preferably 0.1 ⁇ m or more, more preferably more than 0.3 ⁇ m, and even more preferably 1 ⁇ m or more. From the viewpoint of dispersion stability, the D50 of the F particles is preferably 25 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • the specific surface area of the F particles is preferably 1 to 25 m 2 /g. One type of F particles may be used, or two or more types may be used.
  • An F particle is a particle comprising an F polymer and may consist of an F polymer.
  • the F particles may contain a polymer other than the F polymer, an inorganic compound, or the like, and may form a core-shell structure in which the F polymer is the core and the shell is the polymer other than the F polymer or the inorganic compound, and the F A core-shell structure may be formed with a polymer as the shell and a polymer different from the F polymer or an inorganic compound as the core.
  • Polymers other than F polymers include aromatic polyesters, polyamideimides, polyimides, and maleimides.
  • Inorganic compounds include silica and boron nitride.
  • the content of F particles relative to the total amount of the dispersion is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of impregnating a sufficient amount of F polymer into the liquid crystal polymer woven or nonwoven fabric.
  • the content of the F particles relative to the total amount of the dispersion liquid is preferably 60% by mass or less, more preferably 40% by mass or less.
  • the liquid dispersion medium is a compound that is liquid at 25°C under atmospheric pressure, and preferably has a boiling point of 50 to 240°C.
  • One liquid dispersion medium may be used, or two or more liquid dispersion mediums may be used. When two or more liquid dispersion media are used, the two or more liquid dispersion media are preferably compatible with each other.
  • the liquid dispersion medium is preferably a compound selected from the group consisting of water, amides, ketones and esters, more preferably water.
  • Amides include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy- N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, and 1,3-dimethyl-2-imidazolidinone.
  • Ketones include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
  • Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, ⁇ -butyrolactone, and ⁇ - Valerolactone.
  • the content of the liquid dispersion medium with respect to the total amount of the dispersion is preferably 40% by mass or more, more preferably 50% by mass or more.
  • the content of the liquid dispersion medium with respect to the total amount of the dispersion liquid is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the dispersion may contain inorganic particles. Details of the inorganic particles are as described above. When the dispersion contains inorganic particles, the content of the inorganic particles is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, relative to the total amount of the dispersion.
  • the dispersion may contain different polymers. Details of the polymers different from the F polymer are given above.
  • the different polymers may be contained as particles in the dispersion or dissolved in the liquid dispersion medium.
  • the content of the different polymers with respect to the total amount of the dispersion is preferably 0.1% by mass or more, more preferably 0.3% by mass or more.
  • the content is preferably 60% by mass or less, more preferably 40% by mass or less.
  • the non-heat-fusible PTFE is preferably included in the dispersion as particles.
  • D50 of the non-heat-fusible PTFE particles is preferably 0.1 to 1 ⁇ m.
  • the content of non-thermally fusible PTFE particles with respect to the total amount of the dispersion is preferably 20 to 60% by mass.
  • the ratio of the mass of the non-thermally fusible PTFE particles to the mass of the F particles in the dispersion is preferably 0.5-5, more preferably 1-3. In this case, it is easy to obtain a composite sheet having excellent electrical properties.
  • the aromatic polymer is preferably dissolved in the liquid dispersion medium and included in the dispersion.
  • the content of the aromatic polymer with respect to the total amount of the dispersion is preferably 0.1 to 30% by mass, preferably 0.3 to 10% by mass. In this case, it is easy to obtain a composite sheet with low linear expansion and excellent adhesion to the substrate.
  • the dispersion preferably contains a surfactant.
  • the surfactant is preferably a nonionic surfactant.
  • the nonionic surfactant is preferably a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant.
  • One type of nonionic surfactant may be used, or two or more types may be used.
  • the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
  • nonionic surfactants include "Futhergent (registered trademark)” series (manufactured by Neos), “Surflon (registered trademark)” series (manufactured by AGC Seimi Chemical Co., Ltd.), and “Megafac (registered trademark)”.
  • the content of the nonionic surfactant in the dispersion is preferably 1 to 15% by mass.
  • the dispersion may further contain a silane coupling agent.
  • the silane coupling agent acts as a binder for the F particles, and the F polymer easily impregnates the woven fabric or non-woven fabric of the liquid crystal polymer satisfactorily.
  • the silane coupling agent include those similar to the silane coupling agent that may be used for the surface treatment of the inorganic particles described above.
  • the content of the silane coupling agent in the dispersion is preferably 1 to 10% by mass.
  • the dispersion may further contain a pH adjuster or pH buffer to adjust the pH.
  • pH adjusters include amines, ammonia, and citric acid.
  • pH buffers include tris(hydroxymethyl)aminomethane, ethylenediaminetetraacetic acid, ammonium bicarbonate, ammonium carbonate, and ammonium acetate.
  • the dispersion may further contain other components described above as components of the composite sheet.
  • the viscosity of the dispersion liquid is preferably 10 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more.
  • the viscosity of the dispersion liquid is preferably 10,000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s or less.
  • the viscosity of the dispersion is a value measured using a Brookfield viscometer under the conditions of 25° C. and 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
  • the thixotropic ratio of the dispersion is preferably 1.0 to 3.0.
  • the pH of the dispersion is preferably 5-10, more preferably 8-10.
  • the dispersion can be produced by mixing F particles and a liquid dispersion medium.
  • the dispersion liquid further contains other components such as inorganic particles and particles of a different polymer
  • the dispersion liquid can be obtained by adding F particles and other components to the liquid dispersion medium at once and mixing them, or adding F particles to the liquid dispersion medium.
  • Mixing equipment includes stirring equipment with blades (Henschel mixer, pressure kneader, Banbury mixer, planetary mixer, etc.), grinding equipment with media (ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill, dispermat, SC mill, spike mill or agitator mill, etc.), dispersing equipment with other mechanisms (microfluidizer, nanomizer, agitzer, ultrasonic homogenizer, dissolver, disper, high-speed impeller, rotation or revolution stirrer and thin film swirl) type high-speed mixer, etc.).
  • the F particles and part of the liquid dispersion medium are kneaded in advance to obtain a kneaded material, and the kneaded material is further added to the remaining liquid dispersion medium to obtain the dispersion liquid.
  • the liquid dispersion medium used for kneading and addition may be the same type of liquid dispersion medium or different types of liquid dispersion mediums.
  • the dispersion further contains other components such as inorganic particles and particles of a polymer different from the F polymer, the other components may be mixed during kneading or added.
  • the kneaded product obtained by kneading may be in the form of a paste (such as a paste having a viscosity of 1000 to 100,000 mPa ⁇ s) or wet powder (a viscosity of 10,000 to 100,000 Pa ⁇ s as measured by a capillograph). s, wet powder, etc.).
  • a paste such as a paste having a viscosity of 1000 to 100,000 mPa ⁇ s
  • wet powder a viscosity of 10,000 to 100,000 Pa ⁇ s as measured by a capillograph.
  • the viscosity measured by a capillary graph is defined by using a capillary with a capillary length of 10 mm and a capillary radius of 1 mm, a furnace body diameter of 9.55 mm, a load cell capacity of 2 t, a temperature of 25 ° C., and a shear rate of 1 s ⁇ It is a value measured as 1 .
  • a planetary mixer is a stirring device having two stirring blades that rotate and revolve with each other.
  • a thin-film swirling high-speed mixer is a stirring device that spreads F particles and a liquid dispersion medium in the form of a thin film on the inner wall surface of a cylindrical stirring tank, swirls them, and mixes them while exerting centrifugal force.
  • the composite sheet may be a laminate laminated with a substrate. Since the composite sheet of the present disclosure has an excellent coefficient of linear expansion, even if the laminate is subjected to high-temperature processing, it is difficult to separate from the substrate.
  • the base material metal substrates (copper, nickel, aluminum, titanium, metal foils of their alloys, etc.), heat-resistant resin films (polyimide, polyamide, polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, Liquid crystalline polyester, heat-resistant resin film such as tetrafluoroethylene polymer), prepreg substrate (precursor of fiber reinforced resin substrate), ceramic substrate (ceramic substrate such as silicon carbide, aluminum nitride, silicon nitride), and glass substrate mentioned.
  • the shape of the substrate examples include planar, curved, and uneven shapes.
  • the shape of the substrate may be any of foil, plate, film, and fibrous.
  • the ten-point average roughness of the substrate surface is preferably 0.01 to 0.05 ⁇ m.
  • the surface of the substrate may be surface-treated with a silane coupling agent or plasma-treated.
  • a method of laminating the composite sheet and the substrate a method of thermocompression bonding can be mentioned.
  • a method of thermocompression bonding the same method as the thermocompression bonding in the above-described thermocompression bonding method can be used.
  • the peel strength between the composite sheet and the substrate in the laminate is preferably 10 to 100 N/cm.
  • the composite sheet of the present disclosure is useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food industrial goods, heat dissipation parts, and the like.
  • electric wire coating materials wires for aircraft, etc.
  • enameled wire coating materials used for motors such as electric vehicles, electrical insulating tapes, insulating tapes for oil drilling, oil transportation hoses, hydrogen tanks, printed circuit boards materials, separation membranes (microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, Furniture, automobile dashboards, home appliance covers, sliding parts (load bearings, yaw bearings, slide shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors , food conveyor belts, etc.), tension ropes
  • the composite sheet of the present disclosure is excellent in electrical properties and low linear expansion properties, and is therefore suitable for applications where such properties are desired.
  • the composite sheet is suitably used as a material such as a copper-clad laminate for printed wiring boards.
  • F particle 1 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order, and 1000 carbonyl groups per 1 ⁇ 10 6 main chain carbon atoms Particles (D50: 2.1 ⁇ m) of hot-melt polymer 1 (melting point: 300 ° C., melt flow rate: 25 g / 10 minutes)
  • F Particle 2 A hot-melt polymer 2 containing 98.5 mol% and 1.5 mol% of TFE units and PPVE units in this order and having no oxygen-containing polar group (melting point: 300°C, melt flow rate: 22 g/10 min) particles (D50: 2.4 ⁇ m)
  • Inorganic particles Inorganic particles 1: spherical silica (D50: 1 ⁇ m) [Woven fabric or non-woven fabric of liquid crystal polymer]
  • Nonwoven fabric 1 “Vecrus” manufactured by Kuraray Kur
  • Woven fabric 1 A liquid crystalline aromatic polyester plain fabric having an aromatic ring content of 60% by mass or more (load deflection temperature: 300°C, specific gravity: 1.42 g/cm 3 , fiber diameter: 7 ⁇ m, thickness: 123 ⁇ m , volume basis weight: 32 cm 3 /m 2 , warp density: 20/cm, weft density: 20/cm)
  • Fabric 2 Fabric of liquid crystalline aromatic polyester (melting point: 320°C) (deflection temperature under load: 350°C, basis weight: 45 g/cm 2 )
  • Fabric 3 Fabric of liquid crystalline aromatic polyester (melting point: 230°C) (basis weight: 41 g/cm 2 )
  • Example 2 Manufacture of composite sheet (Example 1) In a pot, 30 parts by mass of F particles 1, 15 parts by mass of inorganic particles 1, 1 part by mass of a silicone-based surfactant, and 64 parts by mass of water are added, and zirconia balls are added. Then, the pot is rolled at 150 rpm for 1 hour to obtain Dispersion Liquid 1 (viscosity: 200 mPa ⁇ s). After disposing the obtained dispersion liquid 1 on the nonwoven fabric 1 by a roller dipping method, it is passed through a drying oven at 120° C. for 5 minutes to be heated and dried.
  • a drying oven at 120° C. for 5 minutes to be heated and dried.
  • the composite sheet 1 (thickness: 40 ⁇ m) in which the nonwoven fabric 1 is impregnated with the baked F particles 1 is obtained by heating and baking in a far-infrared furnace at 340° C. for 10 minutes.
  • the content of the inorganic particles 1 is 16% by mass, and the mass ratio of the content of the inorganic particles 1 to the content of the polymer 1 is 0.5.
  • a composite sheet 2 (thickness: 140 ⁇ m) in which the woven fabric 1 is impregnated with the baked F particles 1 is obtained in the same manner as in Example 1 except that the nonwoven fabric 1 is changed to the woven fabric 1 .
  • the content of the inorganic particles 1 is 7% by mass, and the mass ratio of the content of the inorganic particles 1 to the content of the polymer 1 is 0.5.
  • Example 3 A composite sheet 3 (thickness: 140 ⁇ m) in which the woven fabric 2 is impregnated with the baked F particles 1 is obtained in the same manner as in Example 1 except that the nonwoven fabric 1 is changed to the woven fabric 2 .
  • the content of the inorganic particles 1 is 7% by mass, and the mass ratio of the content of the inorganic particles 1 to the content of the polymer 1 is 0.5.
  • Example 4 A composite sheet 4 in which the woven fabric 2 was impregnated with the baked product of the F particles 1 in the same manner as in Example 1 except that the inorganic particles 1 were not used in the preparation of the dispersion 1 and the nonwoven fabric 1 was changed to the woven fabric 2. (thickness: 140 ⁇ m).
  • Example 5 A composite sheet 5 in which the woven fabric 3 is impregnated with the fired product of the F particles 1 in the same manner as in Example 1 except that the inorganic particles 1 are not used in the preparation of the dispersion 1 and the nonwoven fabric 1 is changed to the woven fabric 3. (thickness: 140 ⁇ m).
  • Example 6 Comparative example
  • a composite sheet 6 (thickness: 140 ⁇ m) in which the woven fabric 1 is impregnated with the baked product of the F particles 2 is obtained in the same manner as in Example 1 except that the F particles 1 are changed to the F particles 2 .
  • Inorganic particles 1 are peeled off during drying and firing in the production of composite sheet 6 .
  • Relative permittivity is more than 2.2 and 2.4 or less, and dielectric loss tangent is 0.0010 or more and less than 0.0020.
  • Table 1 below summarizes the evaluation results for each composite sheet. As shown in the table below, Composite Sheets 1 to 5 are excellent in electrical properties and low linear expansion properties. In addition, composite sheets 1 to 5 were also evaluated as good in terms of peel strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A composite sheet comprising woven or nonwoven fabric of a liquid-crystal polymer and, infiltrated into the woven or nonwoven fabric of a liquid-crystal polymer, a heat-fusible tetrafluoroethylene-based polymer having an oxygen-containing polar group.

Description

複合シート及び複合シートの製造方法Composite sheet and method for producing composite sheet
 本開示は、複合シート及び複合シートの製造方法に関する。 The present disclosure relates to a composite sheet and a method for manufacturing the composite sheet.
 近年、情報通信の分野では、高周波通信等の通信技術の発達によりプリント配線基板等に用いる材料の性能向上が要求されている。フッ素ポリマー、特にテトラフルオロエチレン系ポリマーは電気特性の物性に優れ、また耐熱性にも優れるため、プリント配線基板に好適に利用されている。
 特許文献1には、液晶ポリマーを含有する層と、テトラフルオロエチレン系ポリマーを含有する層との対向面に液晶ポリマーの不織布を備える複合シートが記載されている。
2. Description of the Related Art In recent years, in the field of information communication, there has been a demand for improved performance of materials used for printed wiring boards and the like due to the development of communication technology such as high-frequency communication. Fluorine polymers, particularly tetrafluoroethylene-based polymers, are excellent in electrical properties and heat resistance, and are therefore suitably used for printed wiring boards.
Patent Literature 1 describes a composite sheet comprising a liquid crystal polymer-containing nonwoven fabric on the facing surfaces of a layer containing a liquid crystal polymer and a layer containing a tetrafluoroethylene-based polymer.
特開2017-119378号公報JP 2017-119378 A
 テトラフルオロエチレン系ポリマーは、電気特性に優れる一方で線膨張係数が高い。そのため、特許文献1に記載の複合シートと基材との積層体を高温で加工する際、例えば、配線基板の作製におけるリフロー工程に処する際には、複合シートが熱膨張して複合シートと基材とが剥離しやすかった。
 本開示は、電気特性及び低線膨張性に優れる複合シート及び複合シートの製造方法の提供に関する。
A tetrafluoroethylene-based polymer has excellent electrical properties and a high coefficient of linear expansion. Therefore, when the laminate of the composite sheet and the base material described in Patent Document 1 is processed at a high temperature, for example, when subjected to a reflow process in the production of a wiring board, the composite sheet thermally expands and the composite sheet and the base material are separated from each other. It was easy to peel off the material.
The present disclosure relates to providing a composite sheet having excellent electrical properties and low linear expansion and a method for manufacturing the composite sheet.
 上記課題を解決するための手段は、以下の態様を含む。
<1> 熱溶融性の液晶ポリマーの織布又は不織布と、前記液晶ポリマーの織布又は不織布に含浸された、酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーと、を含有する複合シート。
<2> 前記酸素含有極性基が、水酸基含有基又はカルボニル基含有基である、<1>に記載の複合シート。
<3> 前記液晶ポリマーが、液晶性の芳香族ポリエステルを含む、<1>又は<2>に記載の複合シート。
<4> 前記テトラフルオロエチレン系ポリマーの融点が、260~320℃である、<1>~<3>のいずれか1項に記載の複合シート。
<5> 前記液晶ポリマーの融点が、230~350℃である、<1>~<4>のいずれか1項に記載の複合シート。
<6> 前記テトラフルオロエチレン系ポリマーの融点と前記液晶ポリマーの融点の差の絶対値が、30℃以下である、<1>~<5>のいずれか1項に記載の複合シート。
<7> 前記テトラフルオロエチレン系ポリマーとは異なるポリマーをさらに含有する、<1>~<6>のいずれか1項に記載の複合シート。
<8> 無機粒子をさらに含有する、<1>~<7>のいずれか1項に記載の複合シート。
<9> 前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び無機粒子、からなる群より選択される少なくとも1つを含み、前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び前記無機粒子、からなる群より選択される少なくとも1つの合計含有率が、前記複合シートの全質量に対して5質量%超である、<1>~<8>のいずれか1項に記載の複合シート。
<10> 前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び無機粒子、からなる群より選択される少なくとも1つを含み、前記テトラフルオロエチレン系ポリマーの質量に対する、前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び前記無機粒子、からなる群より選択される少なくとも1つの合計質量の比が0.1以上である、<1>~<9>のいずれか1項に記載の複合シート。
<11> 厚さが50μm未満である、<1>~<10>のいずれか1項に記載の複合シート。
<12> 酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーを含有するシートと、液晶ポリマーの織布又は不織布とを熱圧着して、複合シートを得る、複合シートの製造方法。
<13> 前記シートが、前記テトラフルオロエチレン系ポリマーの粒子を含有する分散液から形成される、<12>に記載の製造方法。
<14> 酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーの粒子を含有する分散液を、液晶ポリマーの織布又は不織布に含浸させて、複合シートを得る、複合シートの製造方法。
<15> 前記分散液が、前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び無機粒子、からなる群より選択される少なくとも1つをさらに含有する、<14>に記載の製造方法。
Means for solving the above problems include the following aspects.
<1> Composite containing a heat-melting liquid crystal polymer woven fabric or non-woven fabric and a heat-melting tetrafluoroethylene-based polymer having an oxygen-containing polar group impregnated in the liquid crystal polymer fabric or non-woven fabric sheet.
<2> The composite sheet according to <1>, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
<3> The composite sheet according to <1> or <2>, wherein the liquid crystal polymer contains a liquid crystalline aromatic polyester.
<4> The composite sheet according to any one of <1> to <3>, wherein the tetrafluoroethylene-based polymer has a melting point of 260 to 320°C.
<5> The composite sheet according to any one of <1> to <4>, wherein the liquid crystal polymer has a melting point of 230 to 350°C.
<6> The composite sheet according to any one of <1> to <5>, wherein the absolute value of the difference between the melting point of the tetrafluoroethylene-based polymer and the melting point of the liquid crystal polymer is 30° C. or less.
<7> The composite sheet according to any one of <1> to <6>, further comprising a polymer different from the tetrafluoroethylene-based polymer.
<8> The composite sheet according to any one of <1> to <7>, further containing inorganic particles.
<9> A group comprising at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles, and a polymer different from the tetrafluoroethylene-based polymer and the inorganic particles The composite sheet according to any one of <1> to <8>, wherein the total content of at least one selected from the above is more than 5% by mass with respect to the total mass of the composite sheet.
<10> Contains at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles, and is different from the tetrafluoroethylene-based polymer with respect to the mass of the tetrafluoroethylene-based polymer The composite sheet according to any one of <1> to <9>, wherein the total mass ratio of at least one selected from the group consisting of the polymer and the inorganic particles is 0.1 or more.
<11> The composite sheet according to any one of <1> to <10>, which has a thickness of less than 50 μm.
<12> A method for producing a composite sheet, comprising thermocompression bonding a sheet containing a heat-meltable tetrafluoroethylene-based polymer having an oxygen-containing polar group and a woven or nonwoven fabric of a liquid crystal polymer to obtain a composite sheet.
<13> The manufacturing method according to <12>, wherein the sheet is formed from a dispersion containing particles of the tetrafluoroethylene-based polymer.
<14> A method for producing a composite sheet, comprising impregnating a liquid crystal polymer woven or nonwoven fabric with a dispersion containing particles of a heat-melting tetrafluoroethylene polymer having an oxygen-containing polar group to obtain a composite sheet.
<15> The production method according to <14>, wherein the dispersion further contains at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles.
 本開示によれば、電気特性及び低線膨張性に優れる複合シート及び複合シートの製造方法が提供される。 According to the present disclosure, a composite sheet having excellent electrical properties and low linear expansion and a method for manufacturing the composite sheet are provided.
 以下、本開示の実施形態を実施するための形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。 Hereinafter, the form for implementing the embodiment of the present disclosure will be described in detail. However, the embodiments of the present disclosure are not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the embodiments of the present disclosure.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に記載しない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に記載しない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「複合シート」とはポリマーと液晶ポリマーの織布又は不織布とを含むシートである。
 本開示において「体積平均粒子径(D50)」は、レーザー回折・散乱法によって求められる、粒子の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 粒子のD50は、粒子を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(
堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 本開示において「比表面積」は、ガス吸着(定容法)BET多点法で粒子を測定し算出される値であり、NOVA4200e(Quantachrome Instruments社製)を使用して求められる。
 本開示において「テトラフルオロエチレン系ポリマーの融点」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 本開示において「液晶ポリマーの融点」は、示差走査熱量計を用いて、液晶ポリマーのフィルムを20℃/分の速度で昇温して完全に溶融させた後、溶融物を50℃/分の速度で50℃まで急冷し、再び20℃/分の速度で昇温した際の吸熱ピークを示す温度である。
 本開示において「溶融流れ速度」とは、JIS K 7210-1:2014(ISO1133-1:2011)に規定される、ポリマーのメルトマスフローレートを意味する。
 本開示において「ガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 本開示において「粘度」は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で分散液を測定して求められる。測定を3回繰り返し、3回分の測定値の平均値とする。
 本開示において「チキソ比」とは、分散液の、回転数が30rpmの条件で測定される粘度ηを、回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 本開示において、「ポリマー」は、モノマーが重合してなる化合物である。すなわち、「ポリマー」はモノマーに基づく単位を複数有する。
 本開示においてポリマーにおける「単位」とは、モノマーの重合により形成された前記モノマーに基づく原子団を意味する。単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。以下、モノマーaに基づく単位を、単に「モノマーa単位」とも記す。
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Plural types of particles corresponding to each component in the present disclosure may be included. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, the term "layer" includes the case where the layer or film is formed in the entire region when the region where the layer or film is present is formed only in a part of the region. case is also included.
In the present disclosure, the term "laminate" indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
In the present disclosure, a "composite sheet" is a sheet comprising a polymer and a woven or non-woven fabric of liquid crystal polymer.
In the present disclosure, the “volume average particle diameter (D50)” is the volume-based cumulative 50% diameter of particles determined by a laser diffraction/scattering method. That is, the particle size distribution is measured by a laser diffraction/scattering method, and the cumulative curve is obtained with the total volume of the group of particles being 100%.
The D50 of the particles is determined by dispersing the particles in water and using a laser diffraction/scattering particle size distribution analyzer (
It can be determined by analysis by a laser diffraction/scattering method using an LA-920 measuring instrument (manufactured by Horiba, Ltd.).
In the present disclosure, the “specific surface area” is a value calculated by measuring particles by gas adsorption (constant volume method) BET multipoint method, and is determined using NOVA4200e (manufactured by Quantachrome Instruments).
In the present disclosure, the "melting point of the tetrafluoroethylene-based polymer" is the temperature corresponding to the maximum value of the melting peak of the polymer measured by differential scanning calorimetry (DSC).
In the present disclosure, the "melting point of the liquid crystal polymer" is obtained by heating the liquid crystal polymer film at a rate of 20°C/min using a differential scanning calorimeter to completely melt it, and then heating the melt to 50°C/min. It is the temperature showing the endothermic peak when the material is rapidly cooled to 50°C at a high speed and then heated again at a speed of 20°C/min.
In the present disclosure, "melt flow rate" means the melt mass flow rate of a polymer as defined in JIS K 7210-1:2014 (ISO1133-1:2011).
In the present disclosure, "glass transition point (Tg)" is a value measured by analyzing a polymer by dynamic viscoelasticity measurement (DMA).
In the present disclosure, the “viscosity” is determined by measuring the dispersion using a Brookfield viscometer under conditions of 25° C. and 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
In the present disclosure, the “thixotropic ratio” is a value calculated by dividing the viscosity η 1 of the dispersion measured at a rotation speed of 30 rpm by the viscosity η 2 measured at a rotation speed of 60 rpm. is. Each viscosity measurement is repeated three times, and the average value of the three measurements is taken.
In the present disclosure, a "polymer" is a compound formed by polymerizing monomers. That is, a "polymer" has multiple monomer-based units.
In the present disclosure, a "unit" in a polymer means an atomic group based on the monomer formed by polymerization of the monomer. The units may be units directly formed by a polymerization reaction, or may be units in which some of said units have been converted to another structure by treatment of the polymer. Hereinafter, units based on monomer a are also simply referred to as "monomer a units".
 本開示の複合シートは、熱溶融性の液晶ポリマー(以下、単に「液晶ポリマー」とも記す。)の織布又は不織布と、前記液晶ポリマーの織布又は不織布に含浸された、酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)と、を含有する。本開示の複合シートは、電気特性及び低線膨張性に優れる。 The composite sheet of the present disclosure includes a woven fabric or nonwoven fabric of a heat-melting liquid crystal polymer (hereinafter also simply referred to as "liquid crystal polymer") and oxygen-containing polar groups impregnated in the woven fabric or nonwoven fabric of the liquid crystal polymer. and a heat-meltable tetrafluoroethylene-based polymer (hereinafter also referred to as “F polymer”). The composite sheet of the present disclosure is excellent in electrical properties and low linear expansion.
 一般的に、テトラフルオロエチレン系ポリマーは、低誘電、低誘電正接等の電気特性に優れる一方、線膨張係数が大きい。テトラフルオロエチレン系ポリマーを用いた従来の複合シートでは、低線膨張性が充分ではない。また、従来の複合シートでは、テトラフルオロエチレン系ポリマーが液晶ポリマーの織布又は不織布に含浸され、両者が絡み合って接着されているに過ぎず、その界面の接着性は不充分であった。その結果、複合シートと基材との積層体は、高温で加工する際に熱膨張し、基材と剥離してしまう等の問題があった。
 本発明者らは鋭意検討し、Fポリマーを液晶ポリマーの織布又は不織布に含浸させた複合シートは電気特性及び低線膨張性に優れることを見出した。
In general, tetrafluoroethylene-based polymers have excellent electrical properties such as low dielectric and low dielectric loss tangent, but also have a large coefficient of linear expansion. Conventional composite sheets using tetrafluoroethylene-based polymers do not have sufficient low linear expansion properties. Further, in conventional composite sheets, the tetrafluoroethylene-based polymer is impregnated into the liquid crystal polymer woven fabric or non-woven fabric, and the two are entangled and adhered, and the adhesion at the interface is insufficient. As a result, the laminate of the composite sheet and the base material has problems such as thermal expansion during processing at high temperature and separation from the base material.
The present inventors conducted extensive studies and found that a composite sheet obtained by impregnating a liquid crystal polymer woven or non-woven fabric with F polymer has excellent electrical properties and low linear expansion properties.
 本開示の複合シートでは、Fポリマー中の酸素含有極性基が液晶ポリマーと良好に相互作用することによって、Fポリマーと液晶ポリマーとの接着性が向上し、Fポリマーの線膨張性が液晶ポリマーの織布又は不織布により良好に緩衝されつつ、両者のポリマー物性が高度にバランスして発現していると考えられる。
 また、テトラフルオロエチレン系ポリマー中の酸素含有極性基は、基材への接着も向上させると考えられ、これらの特性により、例えば低伝送損失材料として有用な材料が提供されると考えられる。
 複合シートは、液晶ポリマーの織布又は不織布及びFポリマーに加え、Fポリマーとは異なるポリマー、無機粒子、各種添加剤等を含有してもよい。以下、複合シートの各成分について説明する。
In the composite sheet of the present disclosure, the oxygen-containing polar groups in the F polymer interact well with the liquid crystal polymer, thereby improving the adhesion between the F polymer and the liquid crystal polymer, and the linear expansion of the F polymer is greater than that of the liquid crystal polymer. It is considered that the physical properties of both polymers are highly balanced while being well cushioned by the woven fabric or non-woven fabric.
It is also believed that the oxygen-containing polar groups in the tetrafluoroethylene-based polymer also improve adhesion to substrates, and these properties are believed to provide a material that is useful, for example, as a low transmission loss material.
The composite sheet may contain, in addition to the liquid crystal polymer woven fabric or nonwoven fabric and the F polymer, a polymer different from the F polymer, inorganic particles, various additives, and the like. Each component of the composite sheet will be described below.
 本開示の複合シートは、酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーであるFポリマーを含有する。Fポリマーは1種を用いてもよく、2種以上を用いてもよい。
 Fポリマーは、複合シート中で粒子状であってもよく、非粒子状であってもよく、後者が好ましい。複合シートにおけるFポリマーは、焼成されているのが好ましい。Fポリマーと液晶ポリマーの織布又は不織布とが密着性に優れる観点から、複合シートにおけるFポリマーは、Fポリマーの粒子の焼成物であるのが好ましい。
The composite sheet of the present disclosure contains F polymer, which is a hot-melt tetrafluoroethylene-based polymer having oxygen-containing polar groups. One type of F polymer may be used, or two or more types may be used.
The F polymer may be particulate or non-particulate in the composite sheet, the latter being preferred. The F polymer in the composite sheet is preferably calcined. From the viewpoint of excellent adhesion between the F polymer and the woven fabric or non-woven fabric of the liquid crystal polymer, the F polymer in the composite sheet is preferably a baked product of particles of the F polymer.
 テトラフルオロエチレン系ポリマーは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位(以下、「TFE単位」とも記す。)を含むポリマーである。テトラフルオロエチレン系ポリマー中のTFE単位の含有率は、TFE単位による特性を好適に発現する観点から、ポリマー中の全単位に対して、50モル%以上が好ましく、90モル%以上がより好ましい。上記含有率は、99モル%以下でもよく、98モル%以下でもよい。 A tetrafluoroethylene-based polymer is a polymer containing units (hereinafter also referred to as "TFE units") based on tetrafluoroethylene (hereinafter also referred to as "TFE"). The content of the TFE units in the tetrafluoroethylene-based polymer is preferably 50 mol % or more, more preferably 90 mol % or more, based on the total units in the polymer, from the viewpoint of suitably exhibiting the properties of the TFE units. The above content may be 99 mol % or less, or 98 mol % or less.
 Fポリマーは、酸素含有極性基を有する。酸素含有極性基としては、水酸基含有基、カルボニル基含有基及びホスホノ基含有基等が挙げられ、水酸基含有基又はカルボニル基含有基が好ましく、カルボニル基含有基がより好ましい。Fポリマーの有する酸素含有極性基は1種でも2種以上でもよい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH及び-C(CFOHがより好ましい。
 カルボニル基含有基は、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
The F polymer has oxygen-containing polar groups. The oxygen-containing polar group includes a hydroxyl group-containing group, a carbonyl group-containing group, a phosphono group-containing group, and the like, preferably a hydroxyl group-containing group or a carbonyl group-containing group, more preferably a carbonyl group-containing group. The F polymer may have one or more oxygen-containing polar groups.
The hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, more preferably -CF 2 CH 2 OH and -C(CF 3 ) 2 OH.
A carbonyl group-containing group includes a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC(O)NH 2 ), an acid anhydride residue (-C(O)OC(O)-), an imide Residues (--C(O)NHC(O)--, etc.) and carbonate groups (--OC(O)O--) are preferred, and acid anhydride residues are more preferred.
 Fポリマーにおける酸素含有極性基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましい。なお、酸素含有極性基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
 酸素含有極性基は、Fポリマー中のモノマーに基づく単位に含まれていてもよく、Fポリマーの主鎖の末端基に含まれていてもよく、前者が好ましい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性基を有するテトラフルオロエチレン系ポリマー、テトラフルオロエチレン系ポリマーをプラズマ処理又は電離線処理して得られるポリマーなどが挙げられる。
The number of oxygen-containing polar groups in F polymer is preferably 10 to 5,000, more preferably 100 to 3,000 per 1×10 6 carbon atoms in the main chain. The number of oxygen-containing polar groups can be quantified by the composition of the polymer or the method described in WO2020/145133.
The oxygen-containing polar group may be contained in a unit based on a monomer in the F polymer, or may be contained in a terminal group of the main chain of the F polymer, the former being preferred. As the latter aspect, a tetrafluoroethylene polymer having an oxygen-containing polar group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., a polymer obtained by plasma treatment or ionizing radiation treatment of a tetrafluoroethylene polymer, etc. is mentioned.
 カルボニル基含有基を有するモノマーとしては、無水イタコン酸、無水シトラコン酸及び5-ノルボルネン-2,3-ジカルボン酸無水物(以下、「NAH」とも記す。)が好ましく、液晶ポリマーとの接着性に優れる観点からは、NAHがより好ましい。 As the monomer having a carbonyl group-containing group, itaconic anhydride, citraconic anhydride and 5-norbornene-2,3-dicarboxylic anhydride (hereinafter also referred to as "NAH") are preferable, and adhesiveness to the liquid crystal polymer is improved. From the standpoint of superiority, NAH is more preferable.
 Fポリマーは、酸素含有極性基を有するポリマーであり、ポリテトラフルオロエチレン(PTFE)、TFE単位とエチレンに基づく単位とを含むポリマー(ETFE)、TFE単位とプロピレンに基づく単位とを含むポリマー、TFE単位とペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)とを含むポリマー(PFA)、TFE単位とヘキサフルオロプロピレンに基づく単位とを含むポリマー(FEP)であるのが好ましく、酸素含有極性基を有する、PFA及びFEPがより好ましく、酸素含有極性基を有するPFAがさらに好ましい。PAVE単位としては、CF=CFOCF、CF=CFOCFCF及びCF=CFOCFCFCF(以下、PPVEとも記す。)が好ましく、PPVEがより好ましい。これらのポリマーは、さらに他のコモノマーに基づく単位を含んでいてもよい。 F polymers are polymers with oxygen-containing polar groups, polytetrafluoroethylene (PTFE), a polymer containing TFE units and ethylene-based units (ETFE), a polymer containing TFE units and propylene-based units, TFE It is preferably a polymer (PFA) containing units and units based on perfluoro(alkyl vinyl ether) (PAVE) (PAVE units), a polymer containing TFE units and units based on hexafluoropropylene (FEP), oxygen-containing polar PFA and FEP having a group are more preferred, and PFA having an oxygen-containing polar group is even more preferred. As the PAVE unit, CF2 = CFOCF3 , CF2 = CFOCF2CF3 and CF2 = CFOCF2CF2CF3 ( hereinafter also referred to as PPVE) are preferable, and PPVE is more preferable. These polymers may also contain units based on other comonomers.
 Fポリマーは、TFE単位及びPAVE単位を含む、カルボニル基含有基を有するポリマーであることが好ましく、TFE単位、PAVE単位及びカルボニル基含有基を有するモノマーに基づく単位を含むことがより好ましく、TFE単位、PAVE単位及びカルボニル基含有基を有するモノマーに基づく単位を含み、全単位に対して、これらの単位をこの順に、90~99モル%、0.99~9.97モル%、0.01~3モル%含むポリマーであることがさらに好ましい。かかるFポリマーの具体例としては、国際公開第2018/016644号に記載されるポリマーが挙げられる。 The F polymer is preferably a polymer having carbonyl group-containing groups comprising TFE units and PAVE units, more preferably comprising units based on monomers having TFE units, PAVE units and carbonyl group-containing groups, TFE units , PAVE units and units based on monomers having a carbonyl group-containing group, with respect to all units, these units in this order 90 to 99 mol%, 0.99 to 9.97 mol%, 0.01 to More preferably, the polymer contains 3 mol %. Specific examples of such F polymers include the polymers described in WO2018/016644.
 Fポリマーは熱溶融性である。
 熱溶融性のポリマーとは、荷重49Nの条件下、溶融流れ速度が1~1000g/10分となる温度が存在するポリマーを意味する。
 Fポリマーの溶融流れ速度は、Fポリマーを液晶ポリマーの織布又は不織布に良好に含浸する観点からは、荷重49Nの条件下、1~30g/分が好ましく、5~30g/分がより好ましい。
F polymers are hot meltable.
A hot-melt polymer means a polymer for which there exists a temperature at which the melt flow rate is between 1 and 1000 g/10 minutes under the condition of a load of 49N.
The melt flow rate of the F polymer is preferably 1 to 30 g/min, more preferably 5 to 30 g/min under a load of 49 N from the viewpoint of impregnating the woven or nonwoven fabric of the liquid crystal polymer with the F polymer satisfactorily.
 Fポリマーの融点は、複合シートの耐熱性を向上する観点からは、200℃以上が好ましく、260℃以上がさらに好ましい。Fポリマーの融点は、Fポリマーを液晶ポリマーの織布又は不織布に良好に含浸する観点からは、325℃以下が好ましく、320℃以下がより好ましい。
 Fポリマーのガラス転移点は、複合シートの耐熱性を向上する観点からは、50℃以上が好ましく、75℃以上がより好ましい。Fポリマーのガラス転移点は、液晶ポリマーの織布又は不織布に良好に含浸する観点からは、150℃以下が好ましく、125℃以下がより好ましい。
 Fポリマーのフッ素含有量は、複合シートの電気特性及び耐熱性を向上する観点からは、70質量%以上が好ましく、72~76質量%がより好ましい。なお、フッ素含有量はポリマーの組成から求められる。
From the viewpoint of improving the heat resistance of the composite sheet, the melting point of the F polymer is preferably 200° C. or higher, more preferably 260° C. or higher. The melting point of the F polymer is preferably 325° C. or lower, more preferably 320° C. or lower, from the viewpoint of satisfactorily impregnating the liquid crystal polymer woven fabric or non-woven fabric with the F polymer.
From the viewpoint of improving the heat resistance of the composite sheet, the glass transition point of the F polymer is preferably 50° C. or higher, more preferably 75° C. or higher. The glass transition point of the F polymer is preferably 150° C. or lower, more preferably 125° C. or lower, from the viewpoint of good impregnation into the liquid crystal polymer woven fabric or non-woven fabric.
The fluorine content of the F polymer is preferably 70% by mass or more, more preferably 72 to 76% by mass, from the viewpoint of improving the electrical properties and heat resistance of the composite sheet. In addition, fluorine content is calculated|required from a polymer composition.
 Fポリマーの表面張力は、16~26mN/mが好ましい。表面張力は、Fポリマーで作製された平板上に、濡れ指数試薬(富士フイルム和光純薬社製)の液滴を載置して測定できる。表面張力の低いFポリマーであっても、Fポリマーは酸素含有極性基を有するため、液晶ポリマーの織布又は不織布との接着性に優れやすい。
 複合シートにおけるFポリマーの球晶半径は、液晶ポリマーの織布又は不織布及び基材への接着性の観点からは、0.2~10μmが好ましく、0.5~5μmがより好ましい。
The surface tension of the F polymer is preferably 16-26 mN/m. The surface tension can be measured by placing a droplet of a wetting index reagent (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) on a flat plate made of F polymer. Even if the F polymer has a low surface tension, the F polymer has an oxygen-containing polar group, so it tends to have excellent adhesiveness to the woven fabric or non-woven fabric of the liquid crystal polymer.
The spherulite radius of the F polymer in the composite sheet is preferably 0.2 to 10 μm, more preferably 0.5 to 5 μm, from the viewpoint of adhesion of the liquid crystal polymer to the woven fabric or nonwoven fabric and substrate.
 複合シートの全質量に対するFポリマーの含有率は、電気特性の観点からは、10質量%以上が好ましく、30質量%以上がより好ましい。前記含有率は、低線膨張性の観点からは、80質量%以下が好ましく、60質量%以下がより好ましい。
 複合シートのうち、液晶ポリマーの織布又は不織布を除く合計質量に対するFポリマーの含有率は、電気特性の観点からは、30質量%以上が好ましく、50質量%以上がより好ましい。前記含有率は、100質量%以下が好ましく、80質量%以下がより好ましい。
From the viewpoint of electrical properties, the content of the F polymer relative to the total mass of the composite sheet is preferably 10% by mass or more, more preferably 30% by mass or more. From the viewpoint of low linear expansion, the content is preferably 80% by mass or less, more preferably 60% by mass or less.
In the composite sheet, the content of the F polymer with respect to the total mass excluding the liquid crystal polymer woven fabric or non-woven fabric is preferably 30% by mass or more, more preferably 50% by mass or more, from the viewpoint of electrical properties. The content is preferably 100% by mass or less, more preferably 80% by mass or less.
 本開示の複合シートは液晶ポリマーの織布又は不織布を含有する。液晶ポリマーとしては、サーモトロピック型の液晶ポリマーが好ましい。液晶ポリマーは1種を用いてもよく、2種類以上を用いてもよい。
 液晶ポリマーの織布又は不織布は、液晶ポリマーを含有する織布又は不織布であればよく、他の材料を含有してもよい。液晶ポリマーの織布又は不織布の全質量に対する液晶ポリマーの含有率は、50質量%以上が好ましく、80質量%以上がより好ましい。
The composite sheets of the present disclosure contain woven or nonwoven fabrics of liquid crystal polymers. As the liquid crystal polymer, a thermotropic liquid crystal polymer is preferable. One type of liquid crystal polymer may be used, or two or more types may be used.
The woven fabric or non-woven fabric of liquid crystal polymer may be a woven fabric or non-woven fabric containing liquid crystal polymer, and may contain other materials. The content of the liquid crystal polymer is preferably 50% by mass or more, more preferably 80% by mass or more, based on the total mass of the liquid crystal polymer woven fabric or nonwoven fabric.
 液晶ポリマーとしては、液晶ポリエステルが好ましい。液晶ポリエステルは、液晶ポリエステルアミド、液晶ポリエステルエーテル、液晶ポリエステルカーボネート、液晶ポリエステルイミドであってもよい。
 液晶ポリエステルとしては、液晶性の芳香族ポリエステルが好ましく、具体的には、芳香族ジカルボン酸と、芳香族ジオール又は芳香族ヒドロキシカルボン酸の重縮合体、芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸との重縮合体等が挙げられる。
Liquid crystalline polyester is preferred as the liquid crystalline polymer. The liquid crystalline polyester may be a liquid crystalline polyester amide, a liquid crystalline polyester ether, a liquid crystalline polyester carbonate, or a liquid crystalline polyester imide.
The liquid crystalline polyester is preferably a liquid crystalline aromatic polyester, and specifically, a polycondensate of an aromatic dicarboxylic acid and an aromatic diol or an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, an aromatic diol and an aromatic A polycondensate with hydroxycarboxylic acid and the like can be mentioned.
 芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸等が挙げられる。
 芳香族ジオールとしては4,4’-ジヒドロキシビフェニル、ビスフェノールA等が挙げられる。
 芳香族ヒドロキシカルボン酸としては、パラヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸等が挙げられる。
 液晶性を発現する限り、これらの芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシカルボン酸の他に、脂肪族ジカルボン酸、脂肪族ジオール、脂肪族ヒドロキシカルボン酸等の成分を併用してもよい。脂肪族ジオールとしてはエチレングリコールが挙げられる。
Examples of aromatic dicarboxylic acids include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
Aromatic diols include 4,4'-dihydroxybiphenyl, bisphenol A and the like.
Aromatic hydroxycarboxylic acids include parahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 6-hydroxy-2-naphthoic acid and the like.
In addition to these aromatic dicarboxylic acids, aromatic diols, and aromatic hydroxycarboxylic acids, components such as aliphatic dicarboxylic acids, aliphatic diols, and aliphatic hydroxycarboxylic acids may be used in combination as long as liquid crystallinity is exhibited. . Aliphatic diols include ethylene glycol.
 なかでも、液晶ポリマーとしては、耐熱性に優れる観点から、芳香環含有量が55質量%以上である液晶芳香族ポリエステルが好ましい。液晶芳香族ポリエステルの芳香環含有量は、65質量%以上がより好ましい。芳香環含有量は、80質量%以下が好ましい。かかる液晶ポリマーは、コンホメーションの自由度が小さく耐熱性に優れる反面、他のポリマーと相互作用し難い。しかし本開示においては、Fポリマーは液晶ポリマーとの親和性が高いため、かかる芳香環含有量が高い液晶ポリマーとも良好に接着しやすい。 Among them, as the liquid crystal polymer, a liquid crystal aromatic polyester having an aromatic ring content of 55% by mass or more is preferable from the viewpoint of excellent heat resistance. The aromatic ring content of the liquid crystalline aromatic polyester is more preferably 65% by mass or more. The aromatic ring content is preferably 80% by mass or less. Such a liquid crystal polymer has a small degree of conformational freedom and excellent heat resistance, but it is difficult to interact with other polymers. However, in the present disclosure, since the F polymer has a high affinity with the liquid crystal polymer, it easily adheres well to such a liquid crystal polymer having a high aromatic ring content.
 本開示において、芳香環含有量は下式より求められる。なお、芳香環に結合した置換基に含まれる炭素原子は、芳香環を形成する炭素原子には含めない。
 芳香環含有量(質量%)=100×[ポリマー骨格中の芳香環を形成する炭素原子の質量(g)/ポリマーの総質量(g)]
 例えば、液晶性の芳香族ポリエステルに含まれる典型的な単位における芳香環含有量は以下の通りであり、各単位の共重合比(モル比)に基づいて液晶性の芳香族ポリエステルの芳香環含有量を算出可能である。
 2-ヒドロキシ-6-ナフトエ酸:71%
 4,4’-ジヒドロキシビフェニル:78%
 テレフタル酸:54%
 2,6-ナフタレンジカルボン酸:66%
In the present disclosure, the aromatic ring content is obtained from the following formula. The carbon atoms contained in the substituents bonded to the aromatic ring are not included in the carbon atoms forming the aromatic ring.
Aromatic ring content (% by mass) = 100 x [mass of carbon atoms forming aromatic rings in polymer skeleton (g)/total mass of polymer (g)]
For example, the aromatic ring content in a typical unit contained in a liquid crystalline aromatic polyester is as follows, based on the copolymerization ratio (molar ratio) of each unit, the aromatic ring content of the liquid crystalline aromatic polyester Amount can be calculated.
2-hydroxy-6-naphthoic acid: 71%
4,4'-dihydroxybiphenyl: 78%
Terephthalic acid: 54%
2,6-naphthalenedicarboxylic acid: 66%
 液晶ポリエステルアミドとしては、前記液晶性の芳香族ポリエステルにアミノフェノールを共重合させた芳香族ポリエステルアミドが挙げられる。
 液晶ポリマーとしては、具体的には、特開2017-119378号公報の0032~0039段落に記載の液晶ポリマーが挙げられる。
The liquid crystalline polyester amide includes an aromatic polyester amide obtained by copolymerizing the liquid crystalline aromatic polyester with aminophenol.
Specific examples of liquid crystal polymers include liquid crystal polymers described in paragraphs 0032 to 0039 of JP-A-2017-119378.
 液晶ポリマーの荷重たわみ温度は、240℃以上が好ましく、270℃以上がより好ましく、300℃以上がさらに好ましい。荷重たわみ温度は、400℃以下が好ましい。この場合、複合シートが耐熱性に優れやすく好ましい。また、Fポリマーは酸素含有極性基を有するため、荷重たわみ温度の高い、すなわちコンホメーションの自由度が小さく他のポリマーと相互作用し難い液晶ポリマーとも良好に接着しやすい。
 なお、荷重たわみ温度は、ASTMD648に従い、荷重を0.46MPaとして測定される値である。
The deflection temperature under load of the liquid crystal polymer is preferably 240° C. or higher, more preferably 270° C. or higher, and even more preferably 300° C. or higher. The deflection temperature under load is preferably 400° C. or less. In this case, the composite sheet is preferable because it tends to be excellent in heat resistance. In addition, since the F polymer has an oxygen-containing polar group, it easily adheres well to a liquid crystal polymer which has a high deflection temperature under load, that is, has a small degree of conformational freedom and hardly interacts with other polymers.
The deflection temperature under load is a value measured according to ASTM D648 with a load of 0.46 MPa.
 液晶ポリマーの融点は、230℃以上が好ましく、280℃以上がより好ましい。液晶ポリマーの融点は、350℃以下が好ましく、330℃以下がより好ましい。液晶ポリマーの融点は、液晶ポリマーを加熱処理して調整してもよい。
 かかる融点を有する液晶ポリマーは、それ単独の耐熱性に優れるだけでなく、高温曝露下において、Fポリマーとの相互作用が高まりやすく、複合シートの低線膨張性がさらに向上しやすい。
The melting point of the liquid crystal polymer is preferably 230° C. or higher, more preferably 280° C. or higher. The melting point of the liquid crystal polymer is preferably 350° C. or lower, more preferably 330° C. or lower. The melting point of the liquid crystal polymer may be adjusted by heat-treating the liquid crystal polymer.
A liquid crystal polymer having such a melting point not only has excellent heat resistance on its own, but also tends to increase interaction with the F polymer when exposed to high temperatures, and tends to further improve the low linear expansion property of the composite sheet.
 特に、Fポリマーの融点と液晶ポリマーの融点の差の絶対値が、30℃以下である場合、高温曝露により軟化したポリマーの極性基同士の相互作用が高まるため、かかる傾向が顕著になりやすい。前記差(絶対値)は、25℃以下が好ましく、20℃以下がさらに好ましい。前記差(絶対値)は、0℃以上が好ましい。 In particular, when the absolute value of the difference between the melting point of the F polymer and the melting point of the liquid crystal polymer is 30°C or less, the interaction between the polar groups of the polymer softened by exposure to high temperatures increases, so this tendency tends to become noticeable. The difference (absolute value) is preferably 25° C. or less, more preferably 20° C. or less. The difference (absolute value) is preferably 0° C. or more.
 液晶ポリマーの不織布の比重は、1.0~3.0が好ましく、1.5~2.0がより好ましい。
 液晶ポリマーの不織布の平均繊維径は、0.01~20μmが好ましく、3~10μmがより好ましい。平均繊維径は、電子顕微鏡観察により、繊維200本の繊維径を測定し、最も細い10本及び最も太い10本のデータを除いた平均値として求める。
 液晶ポリマーの不織布の目付量(単位当たりの質量)は、1~300g/mが好ましく、3~30g/mがより好ましい。
The specific gravity of the liquid crystal polymer nonwoven fabric is preferably 1.0 to 3.0, more preferably 1.5 to 2.0.
The average fiber diameter of the liquid crystal polymer nonwoven fabric is preferably 0.01 to 20 μm, more preferably 3 to 10 μm. The average fiber diameter is obtained by measuring the fiber diameters of 200 fibers by electron microscope observation, and excluding the data of the 10 thinnest and 10 thickest fibers, and obtaining the average value.
The basis weight (mass per unit) of the liquid crystal polymer nonwoven fabric is preferably 1 to 300 g/m 2 , more preferably 3 to 30 g/m 2 .
 液晶ポリマーの不織布は、作製したものであってもよく、既成のものであってもよい。
 液晶ポリマーの不織布の成形は、例えば、成形温度300~400℃で行える。
 液晶ポリマーの不織布の成形方法としては、スパンボンド法、メルトブロー法が挙げられ、例えば国際公開第2010/098400号に記載の成形方法が挙げられる。
 液晶ポリマーの具体例としては、「べクルス」シリーズ(クラレクラフレックス社製)、「ベクトラン」シリーズ(クラレ社製)、「UENO LCP」シリーズ(上野製薬株式会社製)が挙げられる。
The nonwoven fabric of the liquid crystal polymer may be a manufactured one or a ready-made one.
The non-woven fabric of liquid crystal polymer can be molded, for example, at a molding temperature of 300-400.degree.
Examples of the method for molding the nonwoven fabric of liquid crystal polymer include a spunbond method and a melt blow method, and examples thereof include the molding method described in International Publication No. 2010/098400.
Specific examples of liquid crystal polymers include "Vecrus" series (manufactured by Kuraray Kuraflex), "Vectran" series (manufactured by Kuraray), and "UENO LCP" series (manufactured by Ueno Pharmaceutical Co., Ltd.).
 液晶ポリマーの織布は、液晶ポリマー繊維の織物ともみなせ、具体的には平織物が挙げられる。
 液晶ポリマーの平織物の経糸密度は、2~80本/cmが好ましく、4~60本/cmがより好ましい。
 液晶ポリマーの平織物の緯糸密度は、2~80本/cmが好ましく、4~60本/cmがより好ましい。
 液晶ポリマーの繊維は、液晶ポリマーを溶融紡糸して得られる繊維が好ましい。溶融紡糸により得られる液晶ポリマーの繊維は、強度を向上するために、さらに熱処理されていてもよい。
 液晶ポリマーの繊維は、1種類の液晶ポリマーからなってもよく、2種以上の液晶ポリマーからなってもよい。
 液晶ポリマーの繊維は、芯鞘構造を有する芯鞘複合繊維であってもよい。この場合、液晶ポリマーは、芯成分として含まれていてもよく、鞘成分として含まれてもよく、芯成分及び鞘成分として含まれていてもよい。
The woven fabric of liquid crystal polymer can also be regarded as a woven fabric of liquid crystal polymer fibers, and specifically includes a plain weave fabric.
The warp density of the liquid crystal polymer plain weave is preferably 2 to 80/cm, more preferably 4 to 60/cm.
The weft density of the liquid crystal polymer plain weave is preferably 2 to 80 wefts/cm, more preferably 4 to 60 wefts/cm.
The liquid crystal polymer fiber is preferably a fiber obtained by melt-spinning a liquid crystal polymer. The liquid crystal polymer fibers obtained by melt spinning may be further heat-treated in order to improve the strength.
The liquid crystal polymer fibers may consist of one kind of liquid crystal polymer or two or more kinds of liquid crystal polymers.
The fiber of the liquid crystal polymer may be a core-sheath composite fiber having a core-sheath structure. In this case, the liquid crystal polymer may be contained as a core component, may be contained as a sheath component, or may be contained as both a core component and a sheath component.
 複合シートは、無機粒子をさらに含有してもよい。無機粒子は1種を用いてもよく、2種以上を用いてもよい。複合シートにおいて、無機粒子はFポリマー中に分散しているのが好ましい。
 無機粒子の形状は、球状、針状、繊維状又は板状が好ましく、球状、鱗片状又は層状が好ましく、球状又は鱗片状がさらに好ましい。無機粒子は中空状であってもよい。
 球状である無機粒子は、略真球状であることが好ましい。略真球状とは、走査型電子顕微鏡(SEM)によって無機粒子を観察した際に、長径に対する短径の比が0.7以上である無機粒子の占める割合が95個数%以上であることを意味する。
 非球状である無機粒子のアスペクト比は、2以上が好ましく、5以上が好ましい。アスペクト比は、10,000以下が好ましい。
The composite sheet may further contain inorganic particles. One type of inorganic particles may be used, or two or more types may be used. In the composite sheet, inorganic particles are preferably dispersed in the F polymer.
The shape of the inorganic particles is preferably spherical, needle-like, fibrous or plate-like, preferably spherical, scale-like or layer-like, more preferably spherical or scale-like. The inorganic particles may be hollow.
The spherical inorganic particles are preferably substantially spherical. The term “substantially spherical” means that, when the inorganic particles are observed with a scanning electron microscope (SEM), inorganic particles having a minor axis to major axis ratio of 0.7 or more account for 95% or more by number. do.
The aspect ratio of non-spherical inorganic particles is preferably 2 or more, more preferably 5 or more. The aspect ratio is preferably 10,000 or less.
 無機粒子の材質としては、炭素、無機窒化物又は無機酸化物が好ましく、炭素、窒化ホウ素、窒化アルミニウム、ベリリア、シリカ、ウォラストナイト、タルク、酸化セリウム、酸化アルミニウム、酸化マグネシウム、酸化亜鉛又は酸化チタンがより好ましく、窒化ホウ素又はシリカがさらに好ましい。 The material of the inorganic particles is preferably carbon, inorganic nitride or inorganic oxide, and carbon, boron nitride, aluminum nitride, beryllia, silica, wollastonite, talc, cerium oxide, aluminum oxide, magnesium oxide, zinc oxide or oxide. Titanium is more preferred, and boron nitride or silica are even more preferred.
 無機粒子のD50は、20μm以下が好ましく、10μm以下がより好ましい。D50は、0.01μm以上が好ましく、0.1μm以上がより好ましい。
 無機粒子の比表面積は、1~20m/gが好ましい。
D50 of the inorganic particles is preferably 20 μm or less, more preferably 10 μm or less. D50 is preferably 0.01 μm or more, more preferably 0.1 μm or more.
The specific surface area of the inorganic particles is preferably 1-20 m 2 /g.
 無機粒子の表面は、シランカップリング剤で表面処理されていてもよい。
 シランカップリング剤としては、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等の官能基を有するシランカップリング剤が好ましい。
The surfaces of the inorganic particles may be surface-treated with a silane coupling agent.
Silane coupling agents include 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3- Silane coupling agents with functional groups such as isocyanatopropyltriethoxysilane are preferred.
 シリカ粒子の具体例としては、「アドマファイン」シリーズ(アドマテックス社製)、「SFP」シリーズ(デンカ社製)、「E-SPHERES」シリーズ(太平洋セメント社製)、及び「Q」シリーズ(Ginet社製)が挙げられる。
 酸化亜鉛粒子の具体例としては、「FINEX」シリーズ(堺化学工業株式会社製)が挙げられる。
 酸化チタン粒子の具体例としては、「タイペーク(登録商標)」シリーズ(石原産業社製)及び「JMT」シリーズ(テイカ社製)が挙げられる。
 タルク粒子の具体例としては、「SG」シリーズ(日本タルク社製)が挙げられる。
 ステアタイト粒子の具体例としては、「BST」シリーズ(日本タルク社製)が挙げられる。
 窒化ホウ素粒子の具体例としては、「UHP」シリーズ(昭和電工社製)、及び「デンカボロンナイトライド」シリーズの「GP」、「HGP」グレード(デンカ社製)が挙げられる。
Specific examples of silica particles include the "ADMAFINE" series (manufactured by Admatechs), the "SFP" series (manufactured by Denka), the "E-SPHERES" series (manufactured by Taiheiyo Cement Co., Ltd.), and the "Q" series (Ginet company).
Specific examples of zinc oxide particles include the "FINEX" series (manufactured by Sakai Chemical Industry Co., Ltd.).
Specific examples of titanium oxide particles include the "Tipake (registered trademark)" series (manufactured by Ishihara Sangyo Co., Ltd.) and the "JMT" series (manufactured by Tayca Corporation).
Specific examples of talc particles include "SG" series (manufactured by Nippon Talc Co., Ltd.).
Specific examples of steatite particles include the "BST" series (manufactured by Nippon Talc Co., Ltd.).
Specific examples of boron nitride particles include "UHP" series (manufactured by Showa Denko KK), and "GP" and "HGP" grades of the "DENKA BORON NITRIDE" series (manufactured by DENKA CORPORATION).
 複合シートが無機粒子を含む場合、複合シートの全質量に対する無機粒子の含有率は、複合シートの強度及び低線膨張性の観点からは、5質量%以上が好ましく、10質量%以上であってもよい。前記含有率は、Fポリマーを含むポリマーの特性を好適に発現する観点からは、40質量%以下が好ましく、20質量%以下がより好ましい。
 複合シートにおける、Fポリマーの質量に対する無機粒子の質量の比は、複合シートの強度及び低線膨張性の観点からは、0.1以上が好ましく、0.2以上がより好ましい。前記比は、1以下が好ましく、0.6以下がより好ましい。
When the composite sheet contains inorganic particles, the content of the inorganic particles with respect to the total weight of the composite sheet is preferably 5% by mass or more, and 10% by mass or more, from the viewpoint of the strength and low linear expansion of the composite sheet. good too. The content is preferably 40% by mass or less, more preferably 20% by mass or less, from the viewpoint of suitably expressing the properties of polymers including F polymer.
In the composite sheet, the ratio of the mass of the inorganic particles to the mass of the F polymer is preferably 0.1 or more, more preferably 0.2 or more, from the viewpoint of strength and low linear expansion of the composite sheet. The ratio is preferably 1 or less, more preferably 0.6 or less.
 本開示の複合シートは、Fポリマーとは異なるポリマー(以下、「異なるポリマー」とも記す。)をさらに含有してもよい。
 異なるポリマーは、熱硬化性であってもよく、熱可塑性であってもよい。異なるポリマーは1種を用いてもよく、2種以上を用いてもよい。
 異なるポリマーは、液晶ポリマーの織布又は不織布に含まれていてもよく、Fポリマー中に分散して含まれていてもよく、後者が好ましい。
The composite sheet of the present disclosure may further contain a polymer different from the F polymer (hereinafter also referred to as "different polymer").
Different polymers may be thermosets or thermoplastics. One type of different polymer may be used, or two or more types may be used.
The different polymers may be included in the woven or non-woven fabric of the liquid crystal polymer or dispersed in the F polymer, the latter being preferred.
 異なるポリマーとしては、Fポリマー以外のテトラフルオロエチレン系ポリマー、ポリエステル樹脂(液晶性の芳香族ポリエステル等)、イミド樹脂、エポキシ樹脂、マレイミド樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンサルファイド樹脂等が挙げられる。 Examples of different polymers include tetrafluoroethylene-based polymers other than F polymer, polyester resins (liquid crystalline aromatic polyesters, etc.), imide resins, epoxy resins, maleimide resins, urethane resins, polyphenylene ether resins, polyphenylene oxide resins, and polyphenylene sulfide resins. etc.
 Fポリマー以外のテトラフルオロエチレン系ポリマーとしては、酸素含有極性基を有しない熱溶融性の、PTFE、ETFE、PFA、FEP、及び、非熱溶融性のPTFEが挙げられ、非熱溶融性のPTFEが好ましい。非熱溶融性PTFEは、粒子として複合シートに含まれていてもよく、非粒子状であってもよい。 Tetrafluoroethylene-based polymers other than the F polymer include heat-melting PTFE, ETFE, PFA, FEP, and non-heat-melting PTFE that do not have oxygen-containing polar groups. is preferred. The non-heat-fusible PTFE may be contained in the composite sheet as particles or may be non-particulate.
 異なるポリマーとしては、芳香族ポリマー及びFポリマー以外のテトラフルオロエチレン系ポリマーが好ましく、芳香族ポリイミド、芳香族ポリアミック酸、芳香族ポリアミド
イミド及び芳香族ポリアミドイミドの前駆体からなる群より選択される少なくとも1種の芳香族イミドポリマー、並びに非熱溶融性のPTFEがより好ましい。
The different polymer is preferably an aromatic polymer and a tetrafluoroethylene-based polymer other than the F polymer, and at least selected from the group consisting of aromatic polyimides, aromatic polyamic acids, aromatic polyamideimides, and precursors of aromatic polyamideimides. More preferred are one aromatic imide polymer, as well as non-heat-melting PTFE.
 芳香族ポリイミドの具体例としては、「ユピア-AT」シリーズ(宇部興産社製)、「ネオプリム(登録商標)」シリーズ(三菱ガス化学社製)、「スピクセリア(登録商標)」シリーズ(ソマール社製)、「Q-PILON(登録商標)」シリーズ(ピーアイ技術研究所製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド(登録商標)」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、並びに「HPC-1000」及び「HPC-2100D」(いずれも昭和電工マテリアルズ社製)が挙げられる。 Specific examples of aromatic polyimides include "Upia-AT" series (manufactured by Ube Industries, Ltd.), "Neoprim (registered trademark)" series (manufactured by Mitsubishi Gas Chemical Company, Inc.), "Spixeria (registered trademark)" series (manufactured by Somar ), "Q-PILON (registered trademark)" series (manufactured by PI Technical Research Institute), "WINGO" series (manufactured by Wingo Technology), "Tomide (registered trademark)" series (manufactured by T&K TOKA), "KPI- MX" series (manufactured by Kawamura Sangyo Co., Ltd.), and "HPC-1000" and "HPC-2100D" (both manufactured by Showa Denko Materials).
 異なるポリマーの含有率は、得られる所望の特性に応じて調節できる。
 複合シートが異なるポリマーを含む場合、複合シートの全質量に対する異なるポリマーの含有率は、0.1質量%以上が好ましく、3質量%以上がより好ましい。前記含有率は、60質量%以下が好ましく、40質量%以下がより好ましい。
 複合シートにおける、Fポリマーの質量に対する異なるポリマーの質量の比は、0.005以上が好ましく、0.05以上がより好ましい。前記比は、5以下が好ましく、4以下がより好ましい。
The content of different polymers can be adjusted depending on the desired properties to be obtained.
When the composite sheet contains different polymers, the content of the different polymers with respect to the total weight of the composite sheet is preferably 0.1% by mass or more, more preferably 3% by mass or more. The content is preferably 60% by mass or less, more preferably 40% by mass or less.
The ratio of the mass of the different polymers to the mass of the F polymer in the composite sheet is preferably 0.005 or more, more preferably 0.05 or more. The ratio is preferably 5 or less, more preferably 4 or less.
 複合シートが異なるポリマーとして非熱溶融性のPTFEを含む場合、複合シートの全質量に対する非熱溶融性のPTFEの含有率は、10~60質量%が好ましく、20~40質量%がより好ましい。
 複合シートにおける、Fポリマーの質量に対する非熱溶融性のPTFEの質量の比は、0.5~5が好ましく、1~4がより好ましい。
 非熱溶融性のPTFEの含有率がかかる範囲である場合、複合シートが電気特性に優れやすい。
When the composite sheet contains non-thermally fusible PTFE as a different polymer, the non-thermally fusible PTFE content is preferably 10 to 60% by mass, more preferably 20 to 40% by mass, relative to the total mass of the composite sheet.
The ratio of the mass of the non-thermally fusible PTFE to the mass of the F polymer in the composite sheet is preferably 0.5-5, more preferably 1-4.
When the content of non-thermally fusible PTFE is within such a range, the composite sheet tends to have excellent electrical properties.
 複合シートが異なるポリマーとして芳香族ポリマーを含む場合、複合シートの全質量に対する芳香族ポリマーの含有率は、0.1~20質量%が好ましく、1~10質量%がより好ましい。
 複合シートにおける、Fポリマーの質量に対する芳香族ポリマーの質量の比は、0.01~0.2が好ましく、0.05~0.1がより好ましい。
 芳香族ポリマーの含有率がかかる範囲である場合、複合シートが低線膨張性や接着性に優れやすい。
When the composite sheet contains an aromatic polymer as a different polymer, the content of the aromatic polymer with respect to the total weight of the composite sheet is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass.
The ratio of the mass of the aromatic polymer to the mass of the F polymer in the composite sheet is preferably 0.01-0.2, more preferably 0.05-0.1.
When the content of the aromatic polymer is in such a range, the composite sheet tends to be excellent in low linear expansion and adhesiveness.
 複合シートが異なるポリマー及び無機粒子からなる群より選択される少なくとも1つを含有する場合、異なるポリマー及び無機粒子からなる群より選択される少なくとも1つの合計含有率は、複合シートの全質量に対して5質量%超が好ましく、15質量%以上がより好ましい。前記含有率は、50質量%以下が好ましく、30質量%以下がより好ましい。 When the composite sheet contains at least one selected from the group consisting of different polymers and inorganic particles, the total content of at least one selected from the group consisting of different polymers and inorganic particles is more than 5% by mass, more preferably 15% by mass or more. The content is preferably 50% by mass or less, more preferably 30% by mass or less.
 複合シートが異なるポリマー及び無機粒子からなる群より選択される少なくとも1つを含有する場合、Fポリマーの質量に対する、異なるポリマー及び無機粒子からなる群より選択される少なくとも1つの合計質量の比は、0.1以上が好ましく、0.3以上がより好ましい。前記比は、0.7以下が好ましく、0.5以下がより好ましい。 When the composite sheet contains at least one selected from the group consisting of different polymers and inorganic particles, the ratio of the total weight of at least one selected from the group consisting of different polymers and inorganic particles to the weight of the F polymer is 0.1 or more is preferable, and 0.3 or more is more preferable. The ratio is preferably 0.7 or less, more preferably 0.5 or less.
 複合シートは、上述の成分の他、有機粒子、チキソ性付与剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電材、離型剤、表面処理剤、粘度調節剤、難燃剤等の他の成分を含有してもよい。また、複合シートは、後述の分散液に由来する成分を含有してもよい。 In addition to the above components, the composite sheet contains organic particles, a thixotropic agent, an antifoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, Other ingredients such as whitening agents, coloring agents, conductive agents, release agents, surface treatment agents, viscosity modifiers, and flame retardants may also be contained. Moreover, the composite sheet may contain a component derived from the dispersion described below.
 複合シートの比誘電率は、3.0以下が好ましく、2.5以下がより好ましい。比誘電率は1.5以上が好ましい。
 複合シートの誘電正接は、0.0100以下が好ましく、0.0010以下がより好ましい。誘電正接は、0.0001以上が好ましい。
 比誘電率及び誘電正接は、SPDR(スプリットポスト誘電体共振)法により周波数10GHzで測定される。
The dielectric constant of the composite sheet is preferably 3.0 or less, more preferably 2.5 or less. A dielectric constant of 1.5 or more is preferable.
The dielectric loss tangent of the composite sheet is preferably 0.0100 or less, more preferably 0.0010 or less. The dielectric loss tangent is preferably 0.0001 or more.
Relative permittivity and dielectric loss tangent are measured at a frequency of 10 GHz by the SPDR (split post dielectric resonance) method.
 複合シートの厚さは、5μm以上が好ましく、10μm以上がより好ましい。複合シートの厚さは、200μm以下が好ましく、100μm以下がより好ましい。
 複合シートはロール状であってもよく、枚葉状であってもよい。
The thickness of the composite sheet is preferably 5 μm or more, more preferably 10 μm or more. The thickness of the composite sheet is preferably 200 μm or less, more preferably 100 μm or less.
The composite sheet may be roll-shaped or sheet-shaped.
 複合シートは、表面処理されてもよい。表面処理としては、コロナ放電処理、プラズマ処理等の放電処理、プラズマグラフト重合処理、電子線照射、エキシマUV光照射等の光線照射処理、火炎を使用したイトロ処理、金属ナトリウムを用いた湿式エッチング処理が挙げられる。これらの表面処理により、複合シートの表面には、ヒドロキシ基、カルボニル基、カルボキシ基等の極性官能基を導入できる。 The composite sheet may be surface-treated. Surface treatment includes corona discharge treatment, discharge treatment such as plasma treatment, plasma graft polymerization treatment, electron beam irradiation, light irradiation treatment such as excimer UV light irradiation, Itro treatment using flame, and wet etching treatment using sodium metal. is mentioned. These surface treatments can introduce polar functional groups such as hydroxyl groups, carbonyl groups, and carboxy groups onto the surface of the composite sheet.
 複合シートの線膨張係数は、80ppm/℃以下が好ましく、30ppm/℃以下がより好ましい。線膨張係数の下限は、5ppm/℃である。線膨張係数は、JIS C 6471:1995に規定される方法で測定される。具体的には、実施例に記載の方法により測定される。 The coefficient of linear expansion of the composite sheet is preferably 80 ppm/°C or less, more preferably 30 ppm/°C or less. The lower limit of the coefficient of linear expansion is 5 ppm/°C. The coefficient of linear expansion is measured by the method specified in JIS C 6471:1995. Specifically, it is measured by the method described in Examples.
 複合シートの製造方法は、本開示の複合シートが得られれば特に制限されない。複合シートは、上述した各成分を含有するシートや分散液を用いて製造されたものでもよく、後述する製造方法により製造されたものでもよい。 The manufacturing method of the composite sheet is not particularly limited as long as the composite sheet of the present disclosure is obtained. The composite sheet may be produced using a sheet or dispersion liquid containing each component described above, or may be produced by a production method described below.
 本開示の一態様における複合シートの製造方法は、Fポリマーを含有するシートと、前記シートと液晶ポリマーの織布又は不織布とを熱圧着して、複合シートを得る方法である。以下、本製造方法を「熱圧着法」とも記す。 A method for producing a composite sheet in one aspect of the present disclosure is a method for obtaining a composite sheet by thermocompression bonding a sheet containing an F polymer and the sheet and a woven or nonwoven fabric of a liquid crystal polymer. Hereinafter, this manufacturing method is also referred to as "thermocompression bonding method".
 熱圧着法を用いる場合、Fポリマーを含有するシートは、既成のものを用いてもよく、新たに作製してもよい。
 Fポリマーを含有するシートの厚さは、1~200μmが好ましい。
 Fポリマーを含有するシートは、Fポリマーの粒子を含有する分散液から形成されてもよい。例えば、Fポリマーを含有するシートは、Fポリマーの粒子を含有する分散液を、仮基材の表面に付与すること、前記分散液が付与された前記仮基材を加熱して、前記仮基材と、Fポリマーを含有する層と、を有する積層体を得ることと、前記積層体から前記仮基材を除去することと、を含む方法により形成してもよい。
When the thermocompression bonding method is used, the sheet containing the F polymer may be a ready-made one or a new one.
The thickness of the sheet containing the F polymer is preferably 1-200 μm.
A sheet containing F polymer may be formed from a dispersion containing particles of F polymer. For example, a sheet containing an F polymer can be produced by applying a dispersion containing particles of the F polymer to the surface of a temporary substrate, heating the temporary substrate to which the dispersion has been applied, and It may be formed by a method comprising obtaining a laminate having a material and a layer containing an F polymer, and removing the temporary substrate from the laminate.
 前記分散液が付与された前記仮基材を加熱する方法としては、後述の、分散液含浸法における加熱の方法と同様の方法が挙げられ、その好適な態様も同様である。
 仮基材としては、金属箔、樹脂フィルム等が挙げられ、仮基材を除去する方法としては、剥離、エッチング等が挙げられる。
As a method for heating the temporary base material to which the dispersion liquid has been applied, the same heating method as in the dispersion liquid impregnation method, which will be described later, can be mentioned, and the preferred mode thereof is also the same.
Examples of the temporary base material include metal foils and resin films, and methods for removing the temporary base material include peeling, etching, and the like.
 Fポリマーを含有するシートは、Fポリマーを溶融押出して形成されてもよい。異なるポリマーや無機粒子をさらに含むシートは、Fポリマーと、異なるポリマーや無機粒子とを溶融混練し、押出成形すれば形成できる。 The sheet containing the F polymer may be formed by melt extruding the F polymer. A sheet further containing a different polymer or inorganic particles can be formed by melt-kneading the F polymer with a different polymer or inorganic particles and extruding.
 熱圧着は、Fポリマーを含有するシートを液晶ポリマーの織布又は不織布と重ね合わせて、加熱された一対のロール間を通過させる方法、対向する一対の熱板で挟み圧力をかける方法、又は熱板とロールで挟み圧力をかける方法により圧着することで行える。熱圧着の温度は、Fポリマーの、液晶ポリマーの織布又は不織布への含浸が良好に行いやすい観点からは、Fポリマーの融点以上が好ましく、融点+20℃以上がより好ましい。熱圧着の温度は、300~380℃が好ましい。
 熱圧着の圧力は0.2~10MPaが好ましい。
 気泡の低減された複合シートを得る観点から、熱圧着は減圧下で行うことが好ましい。減圧下で熱圧着を行う場合、雰囲気の圧力は10KPa以下が好ましく、1KPa以下がより好ましい。
Thermocompression bonding is performed by superimposing a sheet containing the F polymer on a liquid crystal polymer woven or nonwoven fabric and passing it between a pair of heated rolls, sandwiching it between a pair of opposing hot plates and applying pressure, or heat It can be performed by crimping by a method of sandwiching between a plate and a roll and applying pressure. The temperature for thermocompression bonding is preferably the melting point of the F polymer or higher, more preferably the melting point +20° C. or higher, from the viewpoint that the liquid crystal polymer woven fabric or non-woven fabric can be easily impregnated with the F polymer. The temperature for thermocompression bonding is preferably 300 to 380.degree.
The pressure for thermocompression bonding is preferably 0.2 to 10 MPa.
From the viewpoint of obtaining a composite sheet with reduced air bubbles, the thermocompression bonding is preferably performed under reduced pressure. When thermocompression bonding is performed under reduced pressure, the atmospheric pressure is preferably 10 KPa or less, more preferably 1 KPa or less.
 本開示のさらなる一態様における複合シートの製造方法は、Fポリマーの粒子を含有する分散液を、液晶ポリマーの織布又は不織布に含浸させることを含む。以下、本製造方法を「分散液含浸法」とも記す。一態様において、分散液含浸法による複合シートの製造方法は、Fポリマーの粒子を含有する分散液を、液晶ポリマーの織布又は不織布に含浸させることと、前記分散液を含浸させた前記液晶ポリマーの織布又は不織布を加熱して、複合シートを得ることと、を含んでもよい。
 分散液含浸法により複合シートを製造する場合、Fポリマーが、液晶ポリマーの織布又は不織布の繊維間に含浸されやすい。その結果、液晶ポリマーの織布又は不織布とFポリマーの密着性が高まりやすく好ましい。
In a further aspect of the present disclosure, a method of making a composite sheet includes impregnating a liquid crystal polymer woven or nonwoven fabric with a dispersion containing particles of F polymer. Hereinafter, this production method is also referred to as "dispersion liquid impregnation method". In one embodiment, a method for producing a composite sheet by a dispersion impregnation method comprises: impregnating a liquid crystal polymer woven or nonwoven fabric with a dispersion containing F polymer particles; heating the woven or nonwoven fabric of to obtain a composite sheet.
When the composite sheet is produced by the dispersion impregnation method, the F polymer tends to be impregnated between the fibers of the liquid crystal polymer woven or nonwoven fabric. As a result, the adhesion between the woven fabric or non-woven fabric of the liquid crystal polymer and the F polymer tends to increase, which is preferable.
 含浸は、分散液を液晶ポリマーの織布又は不織布の表面に配置して行える。含浸の方法としては、塗布法、液滴吐出法、浸漬法が挙げられ、ロールコート法、ナイフコート法、バーコート法、ダイコート法、ローラー浸漬法又はスプレー法が好ましく、ローラー浸漬法がより好ましい。 Impregnation can be performed by disposing the dispersion liquid on the surface of the liquid crystal polymer woven or non-woven fabric. Examples of the impregnation method include a coating method, a droplet discharge method, and an immersion method, preferably a roll coating method, a knife coating method, a bar coating method, a die coating method, a roller immersion method, or a spray method, and more preferably a roller immersion method. .
 分散液を含浸させた液晶ポリマーの織布又は不織布は、加熱して分散媒を除去し、さらに加熱してFポリマーを焼成するのが好ましい。この場合、Fポリマーの焼成物が液晶ポリマーの織布又は不織布に含浸した複合シートが得られる。
 分散媒の除去のための加熱は、100~200℃にて、0.1~30分間で行うのが好ましい。また、加熱に際しては、空気を吹き付け、風乾によって液状分散媒の除去を促してもよい。
 Fポリマーを焼成するための加熱は、Fポリマーの融点温度以上の温度にて行うことが好ましく、300~400℃にて、0.1~30分間で行うことがより好ましい。
 それぞれの加熱における加熱装置としては、オーブン、通風乾燥炉等が挙げられる。装置における熱源は、接触式の熱源(熱風、熱板等)であってもよく、非接触式の熱源(赤外線等)であってもよい。
 また、それぞれの加熱は、常圧下で行ってもよく、減圧下で行ってもよい。
 また、それぞれの加熱における雰囲気は、空気雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)雰囲気のいずれであってもよい。
The liquid crystal polymer woven fabric or nonwoven fabric impregnated with the dispersion is preferably heated to remove the dispersion medium, and further heated to calcine the F polymer. In this case, a composite sheet is obtained in which the woven fabric or non-woven fabric of the liquid crystal polymer is impregnated with the fired F polymer.
Heating for removing the dispersion medium is preferably carried out at 100 to 200° C. for 0.1 to 30 minutes. Also, during the heating, air may be blown to facilitate the removal of the liquid dispersion medium by air-drying.
Heating for sintering the F polymer is preferably performed at a temperature equal to or higher than the melting point of the F polymer, more preferably at 300 to 400° C. for 0.1 to 30 minutes.
Heating devices for each heating include an oven and a ventilation drying oven. The heat source in the device may be a contact heat source (hot air, hot plate, etc.) or a non-contact heat source (infrared radiation, etc.).
Further, each heating may be performed under normal pressure or under reduced pressure.
Moreover, the atmosphere in each heating may be either an air atmosphere or an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
 分散液の含浸及び加熱は、2回以上繰り返してもよい。例えば、液晶ポリマーの織布又は不織布の表面に分散液を配置し加熱して液状分散媒の除去とFポリマーの焼成をし、Fポリマーが含浸した複合シートを得る。続いて上記シートの表面に分散液を配置し加熱して、液状分散媒の除去とFポリマーの焼成をし、さらにFポリマーが含浸した複合シートを得てもよい。分散液の含浸及び加熱を繰り返す場合は、分散液の含浸及び加熱を、2~8回繰り返すのが好ましい。
 分散液の含浸及び加熱を繰り返す場合、分散液は、同種の分散液を用いてもよく、異種の分散液を用いてもよい。また、分散液の含浸及び加熱を繰り返す場合には、Fポリマーの粒子(以下、「F粒子」とも記す。)を含む分散液を少なくとも1度用いればよい。
The impregnation and heating of the dispersion may be repeated two or more times. For example, the liquid dispersion is placed on the surface of a liquid crystal polymer woven fabric or nonwoven fabric and heated to remove the liquid dispersion medium and to bake the F polymer to obtain a composite sheet impregnated with the F polymer. Subsequently, the dispersion liquid is placed on the surface of the sheet and heated to remove the liquid dispersion medium and calcine the F polymer to obtain a composite sheet impregnated with the F polymer. When the impregnation and heating of the dispersion liquid are repeated, it is preferable to repeat the impregnation and heating of the dispersion liquid 2 to 8 times.
When the impregnation and heating of the dispersion liquid are repeated, the same kind of dispersion liquid may be used, or a different kind of dispersion liquid may be used. When the impregnation and heating of the dispersion liquid are repeated, the dispersion liquid containing F polymer particles (hereinafter also referred to as "F particles") may be used at least once.
 分散液の含浸及び加熱を繰り返す場合、最初の含浸で用いる分散液は、F粒子を含む分散液が好ましい。この場合、以降の分散液に含まれる、F粒子等の成分が、液晶ポリマーの織布又は不織布により保持されやすい。また、初回の含浸で用いる分散液は、F粒子と非熱溶融性PTFEの粒子(以下、「PTFE粒子」とも記す。)を含む分散液がより好ましい。この場合、以降の分散液に含まれる、F粒子等の成分が、液晶ポリマーの織布又は不織布にさらに保持されやすい。
 最後の含浸で用いる分散液は、F粒子を含む分散液が好ましい。この場合、複合シートの表面が平滑性と接着性に優れやすい。また、最後の含浸で用いる分散液は、F粒子とPTFE粒子を含む分散液がより好ましい。この場合、複合シートの表面が、平滑性と接着性に優れるだけでなく、PTFE物性をより高度に具備しやすい。
 最初と最後以外の含浸で用いる分散液は、PTFE粒子を含む分散液が好ましい。この場合、複合シートが電気特性等のPTFE物性を高度に具備しやすい。
When the impregnation and heating of the dispersion liquid are repeated, the dispersion liquid used in the first impregnation is preferably a dispersion liquid containing F particles. In this case, components such as F particles contained in the subsequent dispersion liquid are likely to be retained by the liquid crystal polymer woven fabric or non-woven fabric. Further, the dispersion liquid used in the first impregnation is more preferably a dispersion liquid containing F particles and non-heat-fusible PTFE particles (hereinafter also referred to as "PTFE particles"). In this case, components such as F particles contained in the subsequent dispersion are more likely to be retained in the woven fabric or non-woven fabric of the liquid crystal polymer.
The dispersion used in the final impregnation is preferably a dispersion containing F particles. In this case, the surface of the composite sheet tends to be excellent in smoothness and adhesiveness. Further, the dispersion used in the final impregnation is more preferably a dispersion containing F particles and PTFE particles. In this case, the surface of the composite sheet not only has excellent smoothness and adhesiveness, but also tends to have higher physical properties of PTFE.
The dispersions used in impregnations other than the first and last are preferably dispersions containing PTFE particles. In this case, the composite sheet tends to have high PTFE physical properties such as electrical properties.
 複合シートは、液晶ポリマーの織布又は不織布に、Fポリマーと非熱溶融性PTFEとFポリマーとが、この順に含浸した複合シートであるのが好ましい。この場合、複合シートが、低線膨張性、他の基材との接着性及び電気特性に優れやすい。
 かかる複合シートの製造方法としては、液晶ポリマーの織布又は不織布に、最初にF粒子を含む分散液を含浸し加熱し、つぎにPTFE粒子を含む分散液を含浸し加熱し、最後にF粒子を含む分散液を含浸し加熱する方法が挙げられる。最初に使用する分散液と最後に使用する分散液は、それぞれ独立に、F粒子とPTFE粒子を含む分散液であるのが好ましい。また、PTFE粒子を含む分散液の含浸と加熱は、複数回実施するのが好ましい。
The composite sheet is preferably a composite sheet obtained by impregnating a woven fabric or non-woven fabric of a liquid crystal polymer with F polymer, non-heat-melting PTFE and F polymer in this order. In this case, the composite sheet tends to be excellent in low linear expansion, adhesiveness with other substrates, and electrical properties.
As a method for producing such a composite sheet, a liquid crystal polymer woven or nonwoven fabric is first impregnated with a dispersion containing F particles and heated, then impregnated with a dispersion containing PTFE particles and heated, and finally F particles. A method of impregnating and heating a dispersion containing The first and last dispersions are preferably independently dispersions containing F particles and PTFE particles. Moreover, it is preferable that the impregnation and heating of the dispersion liquid containing the PTFE particles are carried out a plurality of times.
 上述した熱圧着法又は分散液含浸法において、Fポリマーの融点、液晶ポリマーの融点、及び、Fポリマーの融点と液晶ポリマーの融点の差の絶対値は、上述した範囲であるのが好ましい。この場合、両者の方法における加熱時において、軟化したポリマーの極性基同士の相互作用が高まりやすく、Fポリマーと液晶ポリマーの緻密なマトリックス構造が形成され、複合シートの電気特性と低線膨張性が一層向上しやすい。また、複合シートが無機粒子を含有する場合、無機粒子の担持性が向上しやすい。
 以下、熱圧着法又は分散液含浸法に用いてもよい、F粒子を含む分散液について説明する。
In the thermocompression bonding method or the dispersion liquid impregnation method described above, the melting point of the F polymer, the melting point of the liquid crystal polymer, and the absolute value of the difference between the melting point of the F polymer and the melting point of the liquid crystal polymer are preferably within the ranges described above. In this case, during heating in both methods, the interaction between the polar groups of the softened polymer tends to increase, a dense matrix structure of the F polymer and the liquid crystal polymer is formed, and the electrical properties and low linear expansion of the composite sheet are improved. Easier to improve. In addition, when the composite sheet contains inorganic particles, the supportability of the inorganic particles is likely to be improved.
A dispersion liquid containing F particles, which may be used for the thermocompression bonding method or the dispersion liquid impregnation method, will be described below.
 分散液は、F粒子が液状分散媒に分散されたものである。分散液は、複合シートの成分として説明した、無機粒子、Fポリマーとは異なるポリマー、及び他の成分を含有してもよい。分散液が異なるポリマーを含有する場合、異なるポリマーは分散液中で粒子状に分散していてもよく、液状分散媒に溶解していてもよい。また、分散液は、界面活性剤やシランカップリング剤を含有してもよい。 The dispersion liquid is obtained by dispersing the F particles in a liquid dispersion medium. The dispersion may contain inorganic particles, polymers different from the F polymer, and other ingredients described as components of the composite sheet. When the dispersion contains different polymers, the different polymers may be dispersed in particles in the dispersion or dissolved in the liquid dispersion medium. Moreover, the dispersion liquid may contain a surfactant or a silane coupling agent.
 F粒子のD50は、分散安定性の観点からは、0.1μm以上が好ましく、0.3μm超がより好ましく、1μm以上がさらに好ましい。F粒子のD50は、分散安定性の観点からは、25μm以下が好ましく、10μm以下がより好ましく、8μm以下がさらに好ましい。
 F粒子の比表面積は、1~25m/gが好ましい。
 F粒子は、1種を用いてもよく、2種以上を用いてもよい。
From the viewpoint of dispersion stability, D50 of the F particles is preferably 0.1 μm or more, more preferably more than 0.3 μm, and even more preferably 1 μm or more. From the viewpoint of dispersion stability, the D50 of the F particles is preferably 25 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less.
The specific surface area of the F particles is preferably 1 to 25 m 2 /g.
One type of F particles may be used, or two or more types may be used.
 F粒子は、Fポリマーを含む粒子であり、Fポリマーからなってもよい。
 F粒子は、Fポリマー以外のポリマー、無機化合物等を含んでいてもよく、FポリマーをコアとしFポリマー以外のポリマー又は無機化合物をシェルとするコア-シェル構造を形成していてもよく、FポリマーをシェルとしFポリマーとは異なるポリマー又は無機化合物をコアとするコア-シェル構造を形成していてもよい。
 Fポリマー以外のポリマーとしては、芳香族ポリエステル、ポリアミドイミド、ポリイミド、及びマレイミドが挙げられる。
 無機化合物としては、シリカ、及び窒化ホウ素が挙げられる。
An F particle is a particle comprising an F polymer and may consist of an F polymer.
The F particles may contain a polymer other than the F polymer, an inorganic compound, or the like, and may form a core-shell structure in which the F polymer is the core and the shell is the polymer other than the F polymer or the inorganic compound, and the F A core-shell structure may be formed with a polymer as the shell and a polymer different from the F polymer or an inorganic compound as the core.
Polymers other than F polymers include aromatic polyesters, polyamideimides, polyimides, and maleimides.
Inorganic compounds include silica and boron nitride.
 分散液の全量に対するF粒子の含有率は、充分量のFポリマーを液晶ポリマーの織布又は不織布に含浸する観点からは、10質量%以上が好ましく、20質量%以上がより好ましい。分散液の全量に対するF粒子の含有率は、分散媒の分散安定性の観点からは、60質量%以下が好ましく、40質量%以下がさらに好ましい。 The content of F particles relative to the total amount of the dispersion is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of impregnating a sufficient amount of F polymer into the liquid crystal polymer woven or nonwoven fabric. From the viewpoint of the dispersion stability of the dispersion medium, the content of the F particles relative to the total amount of the dispersion liquid is preferably 60% by mass or less, more preferably 40% by mass or less.
 液状分散媒は、大気圧下、25℃にて液体である化合物であり、沸点が50~240℃である化合物が好ましい。液状分散媒は1種を用いてもよく、2種以上を用いてもよい。2種以上の液状分散媒を用いる場合、2種以上の液状分散媒は、互いに相溶することが好ましい。 The liquid dispersion medium is a compound that is liquid at 25°C under atmospheric pressure, and preferably has a boiling point of 50 to 240°C. One liquid dispersion medium may be used, or two or more liquid dispersion mediums may be used. When two or more liquid dispersion media are used, the two or more liquid dispersion media are preferably compatible with each other.
 液状分散媒は、水、アミド、ケトン及びエステルからなる群から選ばれる化合物が好ましく、水がより好ましい。
 アミドとしては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルホルムアミド、ヘキサメチルホスホリックトリアミド、及び1,3-ジメチル-2-イミダゾリジノンが挙げられる。
 ケトンとしては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、メチルn-ペンチルケトン、メチルイソペンチルケトン、2-へプタノン、シクロペンタノン、シクロヘキサノン、及びシクロヘプタノンが挙げられる。
 エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、γ-ブチロラクトン、及びγ-バレロラクトンが挙げられる。
The liquid dispersion medium is preferably a compound selected from the group consisting of water, amides, ketones and esters, more preferably water.
Amides include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylpropanamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy- N,N-dimethylpropanamide, N,N-diethylformamide, hexamethylphosphoric triamide, and 1,3-dimethyl-2-imidazolidinone.
Ketones include acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, cyclopentanone, cyclohexanone, and cycloheptanone.
Esters include methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate, ethyl 3-ethoxypropionate, γ-butyrolactone, and γ - Valerolactone.
 分散液の全量に対する液状分散媒の含有率は、40質量%以上が好ましく、50質量%以上がより好ましい。分散液の全量に対する液状分散媒の含有率は、90質量%以下が好ましく、80質量%以下がより好ましい。 The content of the liquid dispersion medium with respect to the total amount of the dispersion is preferably 40% by mass or more, more preferably 50% by mass or more. The content of the liquid dispersion medium with respect to the total amount of the dispersion liquid is preferably 90% by mass or less, more preferably 80% by mass or less.
 分散液は、無機粒子を含有してもよい。無機粒子の詳細は前述の通りである。
 分散液が無機粒子を含有する場合、分散液の全量に対する無機粒子の含有率は、10~40質量%が好ましく、10~30質量%がより好ましい。
The dispersion may contain inorganic particles. Details of the inorganic particles are as described above.
When the dispersion contains inorganic particles, the content of the inorganic particles is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, relative to the total amount of the dispersion.
 分散液は、異なるポリマーを含有してもよい。Fポリマーとは異なるポリマーの詳細は前述の通りである。異なるポリマーは、分散液中で粒子として含まれていてもよく、液状分散媒に溶解して含まれていてもよい。
 分散液が異なるポリマーを含有する場合、分散液の全量に対する異なるポリマーの含有率は、0.1質量%以上が好ましく、0.3質量%以上がより好ましい。前記含有率は、60質量%以下が好ましく、40質量%以下がより好ましい。
The dispersion may contain different polymers. Details of the polymers different from the F polymer are given above. The different polymers may be contained as particles in the dispersion or dissolved in the liquid dispersion medium.
When the dispersion contains different polymers, the content of the different polymers with respect to the total amount of the dispersion is preferably 0.1% by mass or more, more preferably 0.3% by mass or more. The content is preferably 60% by mass or less, more preferably 40% by mass or less.
 異なるポリマーが非熱溶融性PTFEである場合、非熱溶融性PTFEは、粒子として分散液に含まれるのが好ましい。非熱溶融性PTFEの粒子のD50は、0.1~1μmが好ましい。
 分散液の全量に対する非熱溶融性PTFEの粒子の含有率は、20~60質量%が好ましい。
 分散液における、F粒子の質量に対する非熱溶融性PTFEの粒子の質量の比は、0.5~5が好ましく、1~3がより好ましい。この場合、電気特性に優れた複合シートを得やすい。
If the different polymer is non-heat-fusible PTFE, the non-heat-fusible PTFE is preferably included in the dispersion as particles. D50 of the non-heat-fusible PTFE particles is preferably 0.1 to 1 μm.
The content of non-thermally fusible PTFE particles with respect to the total amount of the dispersion is preferably 20 to 60% by mass.
The ratio of the mass of the non-thermally fusible PTFE particles to the mass of the F particles in the dispersion is preferably 0.5-5, more preferably 1-3. In this case, it is easy to obtain a composite sheet having excellent electrical properties.
 異なるポリマーが芳香族ポリマーである場合、芳香族ポリマーは、液状分散媒に溶解して分散液に含まれるのが好ましい。
 分散液の全量に対する芳香族ポリマーの含有率は、0.1~30質量%が好ましく、0.3~10質量%が好ましい。
 この場合、低線膨張性と基材との接着性に優れた複合シートを得やすい。
When the different polymer is an aromatic polymer, the aromatic polymer is preferably dissolved in the liquid dispersion medium and included in the dispersion.
The content of the aromatic polymer with respect to the total amount of the dispersion is preferably 0.1 to 30% by mass, preferably 0.3 to 10% by mass.
In this case, it is easy to obtain a composite sheet with low linear expansion and excellent adhesion to the substrate.
 分散液は、界面活性剤を含有するのが好ましい。界面活性剤は、ノニオン性界面活性剤が好ましい。
 ノニオン性界面活性剤としては、グリコール系界面活性剤、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。ノニオン性界面活性剤は、1種を用いてもよく、2種以上を用いてもよい。2種のノニオン性界面活性剤を用いる場合のノニオン性界面活性剤は、シリコーン系界面活性剤とグリコール系界面活性剤とであることが好ましい。
The dispersion preferably contains a surfactant. The surfactant is preferably a nonionic surfactant.
The nonionic surfactant is preferably a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant, and more preferably a silicone-based surfactant. One type of nonionic surfactant may be used, or two or more types may be used. When using two types of nonionic surfactants, the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
 ノニオン性界面活性剤の具体例としては、「フタージェント(登録商標)」シリーズ(ネオス社製)、「サーフロン(登録商標)」シリーズ(AGCセイミケミカル社製)、「メガファック(登録商標)」シリーズ(DIC社製)、「ユニダイン(登録商標)」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業社製)、及び「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等)が挙げられる。 Specific examples of nonionic surfactants include "Futhergent (registered trademark)" series (manufactured by Neos), "Surflon (registered trademark)" series (manufactured by AGC Seimi Chemical Co., Ltd.), and "Megafac (registered trademark)". series (manufactured by DIC), "Unidyne (registered trademark)" series (manufactured by Daikin Industries, Ltd.), "BYK-347", "BYK-349", "BYK-378", "BYK-3450", "BYK-3451 ”, “BYK-3455”, “BYK-3456” (manufactured by BYK-Chemie Japan), “KF-6011”, “KF-6043” (manufactured by Shin-Etsu Chemical Co., Ltd.), and “Tergitol” series (manufactured by Dow Chemical , "Tergitol TMN-100X", etc.).
 分散液がノニオン性界面活性剤を含有する場合、分散液中のノニオン性界面活性剤の含有率は、1~15質量%が好ましい。 When the dispersion contains a nonionic surfactant, the content of the nonionic surfactant in the dispersion is preferably 1 to 15% by mass.
 分散液は、シランカップリング剤をさらに含んでもよい。この場合、シランカップリング剤がF粒子の結着剤として作用し、Fポリマーが液晶ポリマーの織布又は不織布に良好に含浸されやすい。
 シランカップリング剤としては、上述の無機粒子の表面処理に用いてもよいシランカップリング剤と同様のものが挙げられる。
 分散液がシランカップリング剤を含有する場合、分散液中のシランカップリング剤の含有率は、1~10質量%が好ましい。
The dispersion may further contain a silane coupling agent. In this case, the silane coupling agent acts as a binder for the F particles, and the F polymer easily impregnates the woven fabric or non-woven fabric of the liquid crystal polymer satisfactorily.
Examples of the silane coupling agent include those similar to the silane coupling agent that may be used for the surface treatment of the inorganic particles described above.
When the dispersion contains a silane coupling agent, the content of the silane coupling agent in the dispersion is preferably 1 to 10% by mass.
 分散液は、pHを調整するために、さらにpH調整剤又はpH緩衝剤を含有してもよい。pH調整剤としては、アミン、アンモニア、及びクエン酸が挙げられる。pH緩衝剤としては、トリス(ヒドロキシメチル)アミノメタン、エチレンジアミン四酢酸、炭酸水素アンモニウム、炭酸アンモニウム、及び酢酸アンモニウムが挙げられる。
 分散液は、複合シートの成分として上述した他の成分をさらに含有してもよい。
The dispersion may further contain a pH adjuster or pH buffer to adjust the pH. pH adjusters include amines, ammonia, and citric acid. pH buffers include tris(hydroxymethyl)aminomethane, ethylenediaminetetraacetic acid, ammonium bicarbonate, ammonium carbonate, and ammonium acetate.
The dispersion may further contain other components described above as components of the composite sheet.
 分散液の粘度は、10mPa・s以上が好ましく、100mPa・s以上がより好ましい。分散液の粘度は、10,000mPa・s以下が好ましく、3000mPa・s以下がより好ましい。
 分散液の粘度は、B型粘度計を用いて、25℃で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 分散液のチキソ比は、1.0~3.0が好ましい。
 分散液のpHは、5~10が好ましく、8~10がより好ましい。
The viscosity of the dispersion liquid is preferably 10 mPa·s or more, more preferably 100 mPa·s or more. The viscosity of the dispersion liquid is preferably 10,000 mPa·s or less, more preferably 3000 mPa·s or less.
The viscosity of the dispersion is a value measured using a Brookfield viscometer under the conditions of 25° C. and 30 rpm. The measurement is repeated 3 times, and the average value of the 3 measurements is taken.
The thixotropic ratio of the dispersion is preferably 1.0 to 3.0.
The pH of the dispersion is preferably 5-10, more preferably 8-10.
 分散液は、F粒子と液状分散媒とを混合して製造できる。
 分散液が、さらに無機粒子、異なるポリマーの粒子等の他の成分を含有する場合、分散液は、液状分散媒にF粒子と他の成分を一括添加して混合する方法、液状分散媒にF粒子と他の成分を順次添加して混合する方法、F粒子と液状分散媒、他の成分と液状分散媒をそれぞれ予め混合してから混合する方法、又はF粒子と他の成分とを混合してから液状分
散媒と混合する方法で製造することが好ましい。これらの混合は、バッチ式で行ってもよく、連続式で行ってもよい。
The dispersion can be produced by mixing F particles and a liquid dispersion medium.
When the dispersion liquid further contains other components such as inorganic particles and particles of a different polymer, the dispersion liquid can be obtained by adding F particles and other components to the liquid dispersion medium at once and mixing them, or adding F particles to the liquid dispersion medium. A method of sequentially adding and mixing the particles and other components, a method of premixing the F particles and the liquid dispersion medium and the other components and the liquid dispersion medium and then mixing them, or a method of mixing the F particles and the other components. It is preferable to manufacture by a method of mixing with a liquid dispersion medium. Mixing of these may be performed in a batch system or in a continuous system.
 混合装置としては、ブレードを備えた撹拌装置(ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー等)、メディアを備えた粉砕装置(ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル又はアジテーターミル等)、他の機構を備えた分散装置(マイクロフルイダイザー、ナノマイザー、アルティマイザー、超音波ホモジナイザー、デゾルバー、ディスパー、高速インペラー、自転公転撹拌機及び薄膜旋回型高速ミキサー等)が挙げられる。 Mixing equipment includes stirring equipment with blades (Henschel mixer, pressure kneader, Banbury mixer, planetary mixer, etc.), grinding equipment with media (ball mill, attritor, basket mill, sand mill, sand grinder, dyno mill, dispermat, SC mill, spike mill or agitator mill, etc.), dispersing equipment with other mechanisms (microfluidizer, nanomizer, ultimizer, ultrasonic homogenizer, dissolver, disper, high-speed impeller, rotation or revolution stirrer and thin film swirl) type high-speed mixer, etc.).
 分散液の好適な製造方法としては、F粒子と液状分散媒の一部とを予め混練して混練物を得て、さらに前記混練物を残余の液状分散媒に添加して分散液を得る製造方法が挙げられる。混練と添加に際して使用する液状分散媒は、同種の液状分散媒であってもよく、異種の液状分散媒であってもよい。分散液が、さらに無機粒子、Fポリマーとは異なるポリマーの粒子等の他の成分を含有する場合、他の成分は、混練に際して混合してもよく、添加に際して混合してもよい。 As a suitable method for producing the dispersion liquid, the F particles and part of the liquid dispersion medium are kneaded in advance to obtain a kneaded material, and the kneaded material is further added to the remaining liquid dispersion medium to obtain the dispersion liquid. method. The liquid dispersion medium used for kneading and addition may be the same type of liquid dispersion medium or different types of liquid dispersion mediums. When the dispersion further contains other components such as inorganic particles and particles of a polymer different from the F polymer, the other components may be mixed during kneading or added.
 混練による得られる混練物は、ペースト状(粘度が1000~100,000mPa・sであるペースト等)であってもよく、ウェットパウダー状(キャピログラフにより測定される粘度が10,000~100,000Pa・sであるウェットパウダー等)であってもよい。 The kneaded product obtained by kneading may be in the form of a paste (such as a paste having a viscosity of 1000 to 100,000 mPa·s) or wet powder (a viscosity of 10,000 to 100,000 Pa·s as measured by a capillograph). s, wet powder, etc.).
 なお、キャピログラフにより測定される粘度とは、キャピラリー長が10mm、キャピラリー半径が1mmのキャピラリーを用いて、炉体径を9.55mm、ロードセル容量を2tとし、温度を25℃、剪断速度を1s-1として測定される値である。 The viscosity measured by a capillary graph is defined by using a capillary with a capillary length of 10 mm and a capillary radius of 1 mm, a furnace body diameter of 9.55 mm, a load cell capacity of 2 t, a temperature of 25 ° C., and a shear rate of 1 s It is a value measured as 1 .
 混練における混合は、プラネタリーミキサーにて行うことが好ましい。プラネタリーミキサーは、互いに自転と公転を行う2軸の撹拌羽根を有する撹拌装置である。 Mixing in kneading is preferably performed with a planetary mixer. A planetary mixer is a stirring device having two stirring blades that rotate and revolve with each other.
 添加における混合は、薄膜旋回型高速ミキサーにて行うことが好ましい。薄膜旋回型高速ミキサーは、円筒形の撹拌槽の内壁面に、F粒子と液状分散媒とを薄膜状に展開し旋回させて、遠心力を作用させながら混合する撹拌装置である。 Mixing in the addition is preferably performed with a thin-film swirling high-speed mixer. A thin-film swirling high-speed mixer is a stirring device that spreads F particles and a liquid dispersion medium in the form of a thin film on the inner wall surface of a cylindrical stirring tank, swirls them, and mixes them while exerting centrifugal force.
 複合シートは、基材と積層した積層体としてもよい。本開示の複合シートは線膨張係数に優れるため、積層体を高温の加工に処しても、基材と剥離しにくい。
 基材としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の金属箔等)、耐熱性樹脂フィルム(ポリイミド、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、テトラフルオロエチレン系ポリマー等の耐熱性樹脂フィルム)、プリプレグ基板(繊維強化樹脂基板の前駆体)、セラミックス基板(炭化ケイ素、窒化アルミニウム、窒化ケイ素等のセラミックス基板)、及びガラス基板が挙げられる。
The composite sheet may be a laminate laminated with a substrate. Since the composite sheet of the present disclosure has an excellent coefficient of linear expansion, even if the laminate is subjected to high-temperature processing, it is difficult to separate from the substrate.
As the base material, metal substrates (copper, nickel, aluminum, titanium, metal foils of their alloys, etc.), heat-resistant resin films (polyimide, polyamide, polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, Liquid crystalline polyester, heat-resistant resin film such as tetrafluoroethylene polymer), prepreg substrate (precursor of fiber reinforced resin substrate), ceramic substrate (ceramic substrate such as silicon carbide, aluminum nitride, silicon nitride), and glass substrate mentioned.
 基材の形状としては、平面状、曲面状、及び凹凸状が挙げられる。また、基材の形状は、箔状、板状、膜状、及び繊維状のいずれであってもよい。
 基材の表面の十点平均粗さは、0.01~0.05μmが好ましい。
 基材の表面は、シランカップリング剤により表面処理されていてもよく、プラズマ処理されていてもよい。
 複合シートと基材とを積層する方法としては、熱圧着する方法が挙げられる。熱圧着の方法としては、上述の熱圧着法における熱圧着と同様の方法が挙げられる。
 積層体における複合シートと基材との剥離強度は、10~100N/cmが好ましい。
Examples of the shape of the substrate include planar, curved, and uneven shapes. Moreover, the shape of the substrate may be any of foil, plate, film, and fibrous.
The ten-point average roughness of the substrate surface is preferably 0.01 to 0.05 μm.
The surface of the substrate may be surface-treated with a silane coupling agent or plasma-treated.
As a method of laminating the composite sheet and the substrate, a method of thermocompression bonding can be mentioned. As a method of thermocompression bonding, the same method as the thermocompression bonding in the above-described thermocompression bonding method can be used.
The peel strength between the composite sheet and the substrate in the laminate is preferably 10 to 100 N/cm.
 本開示の複合シートの用途は特に制限されない。本開示の複合シートは、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、放熱部品等として有用である。
 具体的には、電線被覆材(航空機用電線等)、電気自動車等のモーター等に使用されるエナメル線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、石油輸送ホース、水素タンク、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、ヨー軸受、すべり軸、バルブ、ベアリング、ブッシュ、シール、スラストワッシャ、ウェアリング、ピストン、スライドスイッチ、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、テンションロープ、ウェアパッド、ウェアストリップ、チューブランプ、試験ソケット、ウェハーガイド、遠心ポンプの摩耗部品、薬品及び水供給ポンプ、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ラケットのガット、ダイス、便器、コンテナ被覆材、パワーデバイス、トランジスタ、サイリスタ、整流器、トランス、パワーMOS FET、CPU、放熱フィン、金属放熱板、風車や風力発電設備や航空機等のブレード、パソコンやディスプレイの筐体、電子デバイス材料、自動車の内外装、低酸素下で加熱処理する加工機や真空オーブン、プラズマ処理装置などのシール材、スパッタや各種ドライエッチング装置等の処理ユニット内の放熱部品、電磁波シールド等として有用である。
Applications of the composite sheet of the present disclosure are not particularly limited. The composite sheet of the present disclosure is useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sporting goods, food industrial goods, heat dissipation parts, and the like.
Specifically, electric wire coating materials (wires for aircraft, etc.), enameled wire coating materials used for motors such as electric vehicles, electrical insulating tapes, insulating tapes for oil drilling, oil transportation hoses, hydrogen tanks, printed circuit boards materials, separation membranes (microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), electrode binders (for lithium secondary batteries, fuel cells, etc.), copy rolls, Furniture, automobile dashboards, home appliance covers, sliding parts (load bearings, yaw bearings, slide shafts, valves, bearings, bushes, seals, thrust washers, wear rings, pistons, slide switches, gears, cams, belt conveyors , food conveyor belts, etc.), tension ropes, wear pads, wear strips, tube ramps, test sockets, wafer guides, wear parts for centrifugal pumps, chemical and water supply pumps, tools (shovels, files, awls, saws, etc.), Boilers, hoppers, pipes, ovens, baking molds, chutes, racket guts, dies, toilet bowls, container coverings, power devices, transistors, thyristors, rectifiers, transformers, power MOS FETs, CPUs, heat radiating fins, metal heat radiating plates, wind turbines , blades for wind power generation equipment and aircraft, housings for personal computers and displays, electronic device materials, interior and exterior materials for automobiles, processing machines and vacuum ovens that perform heat treatment under low oxygen conditions, sealing materials for plasma processing equipment, etc. Spatter and various other materials It is useful as a heat radiation component in a processing unit such as a dry etching device, an electromagnetic wave shield, and the like.
 本開示の複合シートは、電気特性及び低線膨張性に優れることから、かかる特性が望まれる用途に好適に用いられる。例えば、複合シートは、プリント配線基板の銅張積層板等の材料に好適に用いられる。 The composite sheet of the present disclosure is excellent in electrical properties and low linear expansion properties, and is therefore suitable for applications where such properties are desired. For example, the composite sheet is suitably used as a material such as a copper-clad laminate for printed wiring boards.
 以下、実施例によって本開示の実施形態を詳細に説明するが、本開示の実施形態はこれらに限定されない。 The embodiments of the present disclosure will be described in detail below by way of examples, but the embodiments of the present disclosure are not limited to these.
1.分散液の各成分の準備
[F粒子]
 F粒子1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含み、カルボニル基を主鎖炭素数1×10個あたり1000個有する熱溶融性のポリマー1(融点:300℃、溶融流れ速度:25g/10分)の粒子(D50:2.1μm)
 F粒子2:TFE単位及びPPVE単位を、この順に98.5モル%、1.5モル%含む、酸素含有極性基を有さない熱溶融性のポリマー2(融点:300℃、溶融流れ速度:22g/10分)の粒子(D50:2.4μm)
[無機粒子]
 無機粒子1:球状シリカ(D50:1μm)
[液晶ポリマーの織布又は不織布]
 不織布1:クラレクラフレックス社製「べクルス」(目付:9g/m
 織布1:芳香環含有量が60質量%以上である液晶性の芳香族ポリエステルの平織物(荷重たわみ温度:300℃、比重:1.42g/cm、繊維径:7μm、厚さ:123μm、体積目付け:32cm/m、経糸密度:20本/cm、緯糸密度:20本/cm)
 織布2:液晶性の芳香族ポリエステル(融点:320℃)の織物(荷重たわみ温度350℃、目付:45g/cm
 織布3:液晶性の芳香族ポリエステル(融点:230℃)の織物(目付:41g/cm
1. Preparation of each component of the dispersion liquid [F particles]
F particle 1: 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order, and 1000 carbonyl groups per 1×10 6 main chain carbon atoms Particles (D50: 2.1 μm) of hot-melt polymer 1 (melting point: 300 ° C., melt flow rate: 25 g / 10 minutes)
F Particle 2: A hot-melt polymer 2 containing 98.5 mol% and 1.5 mol% of TFE units and PPVE units in this order and having no oxygen-containing polar group (melting point: 300°C, melt flow rate: 22 g/10 min) particles (D50: 2.4 μm)
[Inorganic particles]
Inorganic particles 1: spherical silica (D50: 1 μm)
[Woven fabric or non-woven fabric of liquid crystal polymer]
Nonwoven fabric 1: “Vecrus” manufactured by Kuraray Kuraflex Co., Ltd. (basis weight: 9 g/m 2 )
Woven fabric 1: A liquid crystalline aromatic polyester plain fabric having an aromatic ring content of 60% by mass or more (load deflection temperature: 300°C, specific gravity: 1.42 g/cm 3 , fiber diameter: 7 µm, thickness: 123 µm , volume basis weight: 32 cm 3 /m 2 , warp density: 20/cm, weft density: 20/cm)
Fabric 2: Fabric of liquid crystalline aromatic polyester (melting point: 320°C) (deflection temperature under load: 350°C, basis weight: 45 g/cm 2 )
Fabric 3: Fabric of liquid crystalline aromatic polyester (melting point: 230°C) (basis weight: 41 g/cm 2 )
2.複合シートの製造
(例1)
 ポットに、30質量部のF粒子1、15質量部の無機粒子1、1質量部のシリコーン系界面活性剤及び64質量部の水を投入し、ジルコニアボールを投入する。その後、150rpmにて1時間、ポットを転がして、分散液1(粘度:200mPa・s)を得る。得られた分散液1を、ローラー浸漬法により不織布1に配置した後、120℃にて5分間乾燥炉に通し、加熱し乾燥する。その後、遠赤外線炉で340℃にて10分間加熱し焼成して、不織布1に、F粒子1の焼成物が含浸した複合シート1(厚さ:40μm)を得る。複合シート1において、無機粒子1の含有率は16質量%であり、前記ポリマー1の含有量に対する無機粒子1の含有量の質量比は0.5である。
(例2)
 不織布1を織布1に変更する以外は例1と同様にして、織布1に、F粒子1の焼成物が含浸した複合シート2(厚さ:140μm)を得る。複合シート2において、無機粒子1の含有率は7質量%であり、前記ポリマー1の含有量に対する無機粒子1の含有量の質量比は0.5である。
(例3)
 不織布1を織布2に変更する以外は例1と同様にして、織布2に、F粒子1の焼成物が含浸した複合シート3(厚さ:140μm)を得る。複合シート3において、無機粒子1の含有率は7質量%であり、前記ポリマー1の含有量に対する無機粒子1の含有量の質量比は0.5である。
(例4)
 分散液1の調製において無機粒子1を使用せず、更に不織布1を織布2に変更する以外は例1と同様にして、織布2に、F粒子1の焼成物が含浸した複合シート4(厚さ:140μm)を得る。
(例5)
 分散液1の調製において無機粒子1を使用せず、更に不織布1を織布3に変更する以外は例1と同様にして、織布3に、F粒子1の焼成物が含浸した複合シート5(厚さ:140μm)を得る。
(例6:比較例)
 F粒子1をF粒子2に変更する以外は例1と同様にして、織布1に、F粒子2の焼成物が含浸した複合シート6(厚さ:140μm)を得る。複合シート6の製造における乾燥及び焼成において、無機粒子1が剥落している。
2. Manufacture of composite sheet (Example 1)
In a pot, 30 parts by mass of F particles 1, 15 parts by mass of inorganic particles 1, 1 part by mass of a silicone-based surfactant, and 64 parts by mass of water are added, and zirconia balls are added. Then, the pot is rolled at 150 rpm for 1 hour to obtain Dispersion Liquid 1 (viscosity: 200 mPa·s). After disposing the obtained dispersion liquid 1 on the nonwoven fabric 1 by a roller dipping method, it is passed through a drying oven at 120° C. for 5 minutes to be heated and dried. After that, the composite sheet 1 (thickness: 40 μm) in which the nonwoven fabric 1 is impregnated with the baked F particles 1 is obtained by heating and baking in a far-infrared furnace at 340° C. for 10 minutes. In the composite sheet 1, the content of the inorganic particles 1 is 16% by mass, and the mass ratio of the content of the inorganic particles 1 to the content of the polymer 1 is 0.5.
(Example 2)
A composite sheet 2 (thickness: 140 μm) in which the woven fabric 1 is impregnated with the baked F particles 1 is obtained in the same manner as in Example 1 except that the nonwoven fabric 1 is changed to the woven fabric 1 . In the composite sheet 2, the content of the inorganic particles 1 is 7% by mass, and the mass ratio of the content of the inorganic particles 1 to the content of the polymer 1 is 0.5.
(Example 3)
A composite sheet 3 (thickness: 140 μm) in which the woven fabric 2 is impregnated with the baked F particles 1 is obtained in the same manner as in Example 1 except that the nonwoven fabric 1 is changed to the woven fabric 2 . In the composite sheet 3, the content of the inorganic particles 1 is 7% by mass, and the mass ratio of the content of the inorganic particles 1 to the content of the polymer 1 is 0.5.
(Example 4)
A composite sheet 4 in which the woven fabric 2 was impregnated with the baked product of the F particles 1 in the same manner as in Example 1 except that the inorganic particles 1 were not used in the preparation of the dispersion 1 and the nonwoven fabric 1 was changed to the woven fabric 2. (thickness: 140 μm).
(Example 5)
A composite sheet 5 in which the woven fabric 3 is impregnated with the fired product of the F particles 1 in the same manner as in Example 1 except that the inorganic particles 1 are not used in the preparation of the dispersion 1 and the nonwoven fabric 1 is changed to the woven fabric 3. (thickness: 140 μm).
(Example 6: Comparative example)
A composite sheet 6 (thickness: 140 μm) in which the woven fabric 1 is impregnated with the baked product of the F particles 2 is obtained in the same manner as in Example 1 except that the F particles 1 are changed to the F particles 2 . Inorganic particles 1 are peeled off during drying and firing in the production of composite sheet 6 .
3.複合シートの評価 
3-1.剥離強度
 得られた複合シートのそれぞれと銅箔とを熱圧着して貼合して銅張積層体をそれぞれ作製し、銅張積層体から長さが100mm、幅が10mmの矩形状の試験片を切り出す。試験片の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から試験片に対して90°で、銅箔と複合シートとを剥離させる。剥離させた時の最大荷重を剥離強度(N/cm)とし、以下の評価基準によって評価する。
 [評価基準]
 A:12N/cm以上である。
 B:12N/cm未満である。
3-2.線膨張係数
 得られた複合シートのそれぞれについて、180mm角の四角い試験片を切り出し、JIS C 6471:1995に規定される測定方法にしたがって、25℃以上260℃以下の範囲における、試験片の線膨張係数を測定し、以下の評価基準によって評価する。
 AA:20ppm/℃以下
 A:20ppm/℃超30ppm/℃以下
 B:30ppm/℃超40ppm/℃以下
 C:40ppm/℃超
3. Composite sheet evaluation
3-1. Peel strength Each of the obtained composite sheets and a copper foil are thermally compressed and laminated to prepare a copper-clad laminate, and a rectangular test piece having a length of 100 mm and a width of 10 mm is obtained from the copper-clad laminate. cut out. A position 50 mm from one end in the length direction of the test piece is fixed, and the copper foil and the composite sheet are peeled off from one end in the length direction at a pulling speed of 50 mm/min at 90° to the test piece. The maximum load at the time of peeling is taken as the peel strength (N/cm), and evaluation is made according to the following evaluation criteria.
[Evaluation criteria]
A: 12 N/cm or more.
B: Less than 12 N/cm.
3-2. Linear expansion coefficient For each of the obtained composite sheets, a 180 mm square square test piece was cut out, and the linear expansion of the test piece was measured in the range of 25 ° C. or higher and 260 ° C. or lower according to the measurement method specified in JIS C 6471: 1995. The modulus is measured and evaluated according to the following criteria.
AA: 20 ppm/°C or less A: More than 20 ppm/°C and less than 30 ppm/°C B: More than 30 ppm/°C and less than 40 ppm/°C C: More than 40 ppm/°C
 3-3.電気特性
 得られた複合シートのそれぞれについて、長さ10cm、幅5cmの試料を切り出し、SPDR(スプリットポスト誘電体共振)法にて、比誘電率と誘電正接(測定周波数:10GHz)を測定し、以下の評価基準によって評価する。
  [評価基準]
 A:比誘電率が2.2以下、かつ、誘電正接が0.0010未満である。
 B:比誘電率が2.2以下、かつ、誘電正接が0.0010以上0.0020未満であるか、比誘電率が2.2超2.4以下、かつ、誘電正接が0.0010未満である。
 C:比誘電率が2.2超2.4以下、かつ、誘電正接が0.0010以上0.0020未満である。
 下表1に、それぞれの複合シートにおける評価結果をまとめて示す。下表に示される通り、複合シート1~5は電気特性及び低線膨張性に優れる。また複合シート1~5では剥離強度の評価も良好であった。
3-3. Electrical properties For each of the obtained composite sheets, a sample with a length of 10 cm and a width of 5 cm was cut, and the relative permittivity and dielectric loss tangent (measurement frequency: 10 GHz) were measured by the SPDR (split post dielectric resonance) method, Evaluation is made according to the following evaluation criteria.
[Evaluation criteria]
A: The dielectric constant is 2.2 or less and the dielectric loss tangent is less than 0.0010.
B: Relative permittivity is 2.2 or less and dielectric loss tangent is 0.0010 or more and less than 0.0020, or relative permittivity is more than 2.2 and 2.4 or less and dielectric loss tangent is less than 0.0010 is.
C: Relative permittivity is more than 2.2 and 2.4 or less, and dielectric loss tangent is 0.0010 or more and less than 0.0020.
Table 1 below summarizes the evaluation results for each composite sheet. As shown in the table below, Composite Sheets 1 to 5 are excellent in electrical properties and low linear expansion properties. In addition, composite sheets 1 to 5 were also evaluated as good in terms of peel strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 日本国特許出願第2021-119739号及び第2021-172596号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosures of Japanese Patent Application Nos. 2021-119739 and 2021-172596 are incorporated herein by reference in their entireties.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (15)

  1.  熱溶融性の液晶ポリマーの織布又は不織布と、前記液晶ポリマーの織布又は不織布に含浸された、酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーと、を含有する複合シート。 A composite sheet containing a heat-melting liquid crystal polymer woven or non-woven fabric and a heat-melting tetrafluoroethylene-based polymer having an oxygen-containing polar group impregnated in the liquid crystal polymer woven or non-woven fabric.
  2.  前記酸素含有極性基が、水酸基含有基又はカルボニル基含有基である、請求項1に記載の複合シート。 The composite sheet according to claim 1, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
  3.  前記液晶ポリマーが、液晶性の芳香族ポリエステルを含む、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the liquid crystal polymer contains a liquid crystalline aromatic polyester.
  4.  前記テトラフルオロエチレン系ポリマーの融点が、260~320℃である、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the tetrafluoroethylene-based polymer has a melting point of 260 to 320°C.
  5.  前記液晶ポリマーの融点が、230~350℃である、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the liquid crystal polymer has a melting point of 230 to 350°C.
  6.  前記テトラフルオロエチレン系ポリマーの融点と前記液晶ポリマーの融点の差の絶対値が、30℃以下である、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the absolute value of the difference between the melting point of the tetrafluoroethylene-based polymer and the melting point of the liquid crystal polymer is 30°C or less.
  7.  前記テトラフルオロエチレン系ポリマーとは異なるポリマーをさらに含有する、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, further comprising a polymer different from the tetrafluoroethylene-based polymer.
  8.  無機粒子をさらに含有する、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, further containing inorganic particles.
  9.  前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び無機粒子、からなる群より選択される少なくとも1つを含み、前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び前記無機粒子、からなる群より選択される少なくとも1つの合計含有率が、前記複合シートの全質量に対して5質量%超である、請求項1又は2に記載の複合シート。 At least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles, and is selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and the inorganic particles 3. The composite sheet according to claim 1 or 2, wherein the total content of at least one of said composite sheets is greater than 5% by weight relative to the total weight of said composite sheet.
  10.  前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び無機粒子、からなる群より選択される少なくとも1つを含み、前記テトラフルオロエチレン系ポリマーの質量に対する、前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び前記無機粒子、からなる群より選択される少なくとも1つの合計質量の比が0.1以上である、請求項1又は2に記載の複合シート。 a polymer different from the tetrafluoroethylene-based polymer, and at least one selected from the group consisting of inorganic particles, a polymer different from the tetrafluoroethylene-based polymer relative to the mass of the tetrafluoroethylene-based polymer, 3. The composite sheet according to claim 1, wherein the total mass ratio of at least one selected from the group consisting of inorganic particles is 0.1 or more.
  11.  厚さが50μm未満である、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, having a thickness of less than 50 µm.
  12.  酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーを含有するシートと、液晶ポリマーの織布又は不織布とを熱圧着して、複合シートを得る、複合シートの製造方法。 A method for producing a composite sheet, in which a sheet containing a heat-melting tetrafluoroethylene polymer having an oxygen-containing polar group is thermocompressed with a woven or nonwoven fabric of a liquid crystal polymer to obtain a composite sheet.
  13.  前記シートが、前記テトラフルオロエチレン系ポリマーの粒子を含有する分散液から形成される、請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein the sheet is formed from a dispersion containing particles of the tetrafluoroethylene-based polymer.
  14.  酸素含有極性基を有する熱溶融性のテトラフルオロエチレン系ポリマーの粒子を含有する分散液を、液晶ポリマーの織布又は不織布に含浸させて、複合シートを得る、複合シートの製造方法。 A method for producing a composite sheet, comprising impregnating a woven or nonwoven fabric of a liquid crystal polymer with a dispersion containing particles of a heat-melting tetrafluoroethylene-based polymer having an oxygen-containing polar group to obtain a composite sheet.
  15.  前記分散液が、前記テトラフルオロエチレン系ポリマーとは異なるポリマー、及び無機粒子、からなる群より選択される少なくとも1つをさらに含有する、請求項14に記載の製造方法。 The production method according to claim 14, wherein the dispersion further contains at least one selected from the group consisting of a polymer different from the tetrafluoroethylene-based polymer and inorganic particles.
PCT/JP2022/028124 2021-07-20 2022-07-19 Composite sheet and method for producing composite sheet WO2023002998A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280050738.1A CN117693547A (en) 2021-07-20 2022-07-19 Composite sheets and methods of manufacturing composite sheets
JP2023536763A JPWO2023002998A1 (en) 2021-07-20 2022-07-19

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021119739 2021-07-20
JP2021-119739 2021-07-20
JP2021-172596 2021-10-21
JP2021172596 2021-10-21

Publications (1)

Publication Number Publication Date
WO2023002998A1 true WO2023002998A1 (en) 2023-01-26

Family

ID=84980237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028124 WO2023002998A1 (en) 2021-07-20 2022-07-19 Composite sheet and method for producing composite sheet

Country Status (3)

Country Link
JP (1) JPWO2023002998A1 (en)
TW (1) TW202313346A (en)
WO (1) WO2023002998A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200534A (en) * 2001-10-24 2003-07-15 Du Pont Mitsui Fluorochem Co Ltd Fluororesin laminate and method for manufacture thereof
JP2005056787A (en) * 2003-08-07 2005-03-03 Japan Gore Tex Inc Solid polymer electrolyte membrane and fuel cell
JP2006182886A (en) * 2004-12-27 2006-07-13 Du Pont Mitsui Fluorochem Co Ltd Fluorine resin-containing laminate
JP2006190627A (en) * 2005-01-07 2006-07-20 Asahi Kasei Chemicals Corp Polymer solid electrolyte membrane with reinforcing material
JP2007118528A (en) * 2005-10-31 2007-05-17 Nippon Pillar Packing Co Ltd Substrate material for printed board and printed board
JP2010027519A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Polymer electrolyte membrane, method of manufacturing polymer electrolyte membrane and polymer electrolyte fuel cell
JP2017119378A (en) * 2015-12-28 2017-07-06 住友電工ファインポリマー株式会社 Laminate, substrate for printed wiring board, and method for manufacturing laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200534A (en) * 2001-10-24 2003-07-15 Du Pont Mitsui Fluorochem Co Ltd Fluororesin laminate and method for manufacture thereof
JP2005056787A (en) * 2003-08-07 2005-03-03 Japan Gore Tex Inc Solid polymer electrolyte membrane and fuel cell
JP2006182886A (en) * 2004-12-27 2006-07-13 Du Pont Mitsui Fluorochem Co Ltd Fluorine resin-containing laminate
JP2006190627A (en) * 2005-01-07 2006-07-20 Asahi Kasei Chemicals Corp Polymer solid electrolyte membrane with reinforcing material
JP2007118528A (en) * 2005-10-31 2007-05-17 Nippon Pillar Packing Co Ltd Substrate material for printed board and printed board
JP2010027519A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Polymer electrolyte membrane, method of manufacturing polymer electrolyte membrane and polymer electrolyte fuel cell
JP2017119378A (en) * 2015-12-28 2017-07-06 住友電工ファインポリマー株式会社 Laminate, substrate for printed wiring board, and method for manufacturing laminate

Also Published As

Publication number Publication date
TW202313346A (en) 2023-04-01
JPWO2023002998A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP7571723B2 (en) Dispersions and moldings
KR20220101640A (en) Method for manufacturing non-aqueous dispersion, laminate and molded article
JP2023028091A (en) Composition and method for producing laminate
KR20230126703A (en) Aqueous dispersion and its preparation method
WO2022050253A1 (en) Powder dispersion and production method for composite
WO2023276946A1 (en) Composition
JP7468520B2 (en) Liquid Composition
CN115803390A (en) Powder composition and composite particles
WO2023002999A1 (en) Method for producing composite sheet, and composite sheet
JP7635621B2 (en) Method for producing modified dispersion and dispersion
WO2023002998A1 (en) Composite sheet and method for producing composite sheet
WO2023013569A1 (en) Sheet manufacturing method, laminate sheet manufacturing method and sheet
WO2023017811A1 (en) Aqueous dispersion and method for producing laminate
WO2022163533A1 (en) Method for producing composite substrate, and composite substrate
JP2022163538A (en) Dispersion liquid and laminate
WO2021132055A1 (en) Dispersion liquid
CN117693547A (en) Composite sheets and methods of manufacturing composite sheets
JP7635620B2 (en) Aqueous dispersion and method for producing laminate
WO2022259992A1 (en) Sheet
JP2023053792A (en) Production method of laminate
KR20240157629A (en) Composition
JP2023127849A (en) Method of producing polymer-layered substrate containing tetrafluoroethylene polymer
JP2023019614A (en) Composition and method for producing laminate having layer formed from composition
JP2025016014A (en) Method for manufacturing molded article and adhesive molded article
JP2023172879A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536763

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280050738.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22845931

Country of ref document: EP

Kind code of ref document: A1