[go: up one dir, main page]

WO2022206765A1 - 换热器和空调系统 - Google Patents

换热器和空调系统 Download PDF

Info

Publication number
WO2022206765A1
WO2022206765A1 PCT/CN2022/083733 CN2022083733W WO2022206765A1 WO 2022206765 A1 WO2022206765 A1 WO 2022206765A1 CN 2022083733 W CN2022083733 W CN 2022083733W WO 2022206765 A1 WO2022206765 A1 WO 2022206765A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange tube
tube
tubes
width dimension
Prior art date
Application number
PCT/CN2022/083733
Other languages
English (en)
French (fr)
Inventor
赵登基
蒋建龙
高强
张月
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Priority to EP22778947.6A priority Critical patent/EP4317890A4/en
Priority to US18/284,904 priority patent/US20240175636A1/en
Publication of WO2022206765A1 publication Critical patent/WO2022206765A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Definitions

  • the present disclosure relates to the technical field of heat exchangers, and in particular, to a heat exchanger and an air conditioning system having the heat exchanger.
  • the dual-refrigeration system air conditioner adopts two separate refrigerant circuits, and in order to accommodate the two refrigeration system air conditioners, the heat exchanger in the refrigerant circuit is a dual-system heat exchanger.
  • the microchannel heat exchanger in the system is used in two systems, including flat tube groups that work in the two systems respectively, but the two parts of the heat exchange tubes share a part of the fins.
  • the embodiments of the present disclosure provide a heat exchanger, which can increase the heat exchange area of the fins and has better heat exchange performance.
  • the embodiments of the present disclosure also provide an air conditioning system applying the above heat exchanger.
  • a heat exchanger includes: a first assembly including a first tube and a second tube; a second assembly including a third tube and a fourth tube; a plurality of heat exchangers A heat pipe, the heat exchange pipe is a flat pipe, the heat exchange pipe includes a plurality of channels arranged along its length direction, the plurality of channels are arranged at intervals in the width direction of the heat exchange pipe, the heat exchange pipe It includes a first heat exchange tube and a second heat exchange tube, one end of the first heat exchange tube is directly or indirectly connected to the first tube, and the other end of the first heat exchange tube is connected to the third tube Directly or indirectly connected, the first heat exchange tube is connected to the first tube and the third tube; one end of the second heat exchange tube is directly or indirectly connected to the second tube, and the first heat exchange tube is directly or indirectly connected.
  • the other end of the second heat exchange tube is directly or indirectly connected to the fourth tube, the second heat exchange tube communicates with the second tube and the fourth tube, and the first heat exchange tube and the first heat exchange tube
  • Two heat exchange tubes are arranged at intervals in the length direction of the first tube, the first tube is not communicated with the second tube, and the third tube is not communicated with the fourth tube; fins, the The fins include first fins, and in the length direction of the first tubes, the first fins are connected to one of the first heat exchange tubes, and the first fins are connected to one of the second heat exchange tubes.
  • the first heat exchange tube, part of the first fin and the second heat exchange tube are arranged along the length direction of the first tube, and the first fins are multiple
  • the width dimension W1 of the first heat exchange tube is smaller than the width dimension Wf of the first fin
  • the width dimension W2 of the second heat exchange tube is smaller than the width dimension Wf of the first fin
  • the The width dimension Wf of the first fin is smaller than the sum of the width dimension W1 of the first heat exchange tube and the width dimension W2 of the second heat exchange tube
  • the plane perpendicular to the length direction of the first tube is defined as the first plane , the projection of the first heat exchange tube in the first plane and the projection of the second heat exchange tube in the first plane at least partially do not coincide.
  • the heat exchanger according to the embodiment of the present disclosure increases the effective heat exchange area of the fins and has better heat exchange performance.
  • the width directions of the first heat exchange tube and the second heat exchange tube are substantially parallel, and the width dimension W1 of the first heat exchange tube is greater than the width dimension W2 of the second heat exchange tube .
  • the smaller of one third of the width dimension W1 of the first heat exchange tube and one third of the width dimension W2 of the second heat exchange tube is smaller than the first heat exchange tube
  • the smaller value of the width dimension W1 of the first heat exchange tube and the width dimension W2 of the second heat exchange tube is greater than that of the first heat exchange tube in the first plane.
  • the width dimension Ws of the overlapping portion of the projection of , and the projection of the second heat exchange tube in the first plane is greater than that of the first heat exchange tube in the first plane.
  • the projection of one end of the first heat exchange tube in the width direction on the first plane and the end of the first fin located on the same side in the width direction are in the first plane.
  • the minimum distance between the projections in the plane is WK1, which is smaller than the width dimension W2 of the second heat exchange tube.
  • the projection of one end of the second heat exchange tube in the width direction on the first plane and the end of the first fin located on the same side in the width direction are on the first plane.
  • the minimum distance between the projections in the plane is WK2
  • the WK2 is smaller than the width dimension W1 of the first heat exchange tube
  • the width dimension W1 of the first heat exchange tube is greater than or equal to the width of the second heat exchange tube Size W2.
  • the projection of one end of the first heat exchange tube in the width direction is flush with the projection of one end of the first fin in the width direction
  • the first The projection of one end of the second heat exchange tube in the width direction is flush with the projection of the other end of the first fin in the width direction
  • the first heat exchange tube includes a first channel and a second channel, and the flow cross-sectional area of the first channel in the cross section of the first heat exchange tube is larger than that of the other channels in the The flow cross-sectional area on the cross section of the first heat exchange tube, the flow cross section of the second channel on the cross section of the heat exchange tube is smaller than the flow cross section of the other channels on the cross section of the first heat exchange tube area.
  • the second heat exchange tube includes a third channel and a fourth channel, and the flow cross-sectional area of the third channel in the cross section of the second heat exchange tube is larger than that of the other channels in the The cross-sectional area of flow on the cross-section of the second heat exchange tube, the cross-sectional area of flow of the fourth channel on the cross-section of the second heat-exchange tube is smaller than that of the other channels on the cross-section of the second heat-exchange tube Flow cross-sectional area.
  • the heat exchange tubes are microchannel flat tubes.
  • An air conditioning system includes the heat exchanger according to any one of the above embodiments, the air conditioning system includes a first circuit and a second circuit, the first circuit includes a first compressor and a first section flow device, the first circuit communicates with the first and third tubes of the heat exchanger, the second circuit includes a second compressor and a second throttling device, the second circuit communicates with the heat exchanger The second tube and the fourth tube of the heater communicate with each other.
  • FIG. 1 is a schematic perspective view of a heat exchanger according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic perspective view of a heat exchanger according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the arrangement of the first heat exchange tubes, the fins and the second heat exchange tubes of the heat exchanger in FIG. 1 .
  • FIG. 4 is a perspective view of a heat exchange tube of the heat exchanger in FIG. 1 .
  • FIG. 5 is a schematic cross-sectional view of the heat exchange tube in FIG. 4 .
  • FIG. 6 is a schematic diagram of the dislocation arrangement of the first heat exchange tube and the second heat exchange tube in FIG. 1 .
  • FIG. 7 is a schematic diagram 1 of dimension marks in FIG. 6 .
  • FIG. 8 is a second schematic diagram of dimension marks in FIG. 6 .
  • FIG. 9 is a schematic diagram of thermal energy distribution of widened fins in the related art.
  • FIG. 10 is a schematic diagram of the thermal energy distribution of the fins in FIG. 6 .
  • FIG. 11 is a schematic cross-sectional view of a portion of a heat exchanger according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view of a portion of a heat exchanger according to yet another embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an air conditioning system according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a fin according to an embodiment of the present disclosure.
  • 15 is a schematic diagram of a fin according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a fin according to yet another embodiment of the present disclosure.
  • the first heat exchange tube 5 the first channel 51; the second channel 52;
  • first fin 7 first thermal zone 71; second thermal zone 72; third thermal zone 73; fin unit 74;
  • heat exchange tube 8 ; channel 81;
  • a heat exchanger 100 includes a first component, a second component, fins, and a plurality of heat exchange tubes 8 .
  • the first assembly includes a first tube 1 and a second tube 2
  • the second assembly includes a third tube 3 and a fourth tube 4 .
  • the first pipe 1 , the second pipe 2 , the third pipe 3 and the fourth pipe 4 all extend generally in the front-rear direction, and the first pipe 1 and the second pipe 2 are located in the third pipe 3 and below the fourth pipe 4 , wherein the first pipe 1 is located directly below the third pipe 3 , and the second pipe 2 is located directly below the fourth pipe 4 .
  • the heat exchange tube 8 is a microchannel flat tube, and the heat exchange tube 8 includes a plurality of channels 81 arranged along the length direction thereof, and the plurality of channels 81 are arranged at intervals in the width direction of the heat exchange tube 8 .
  • the heat exchange tube 8 is a flat tube
  • the length direction of the heat exchange tube 8 is the up-down direction in FIG. 1
  • a plurality of channels 81 are provided in the heat exchange tube 8 5
  • the plurality of channels 81 all extend along the length direction of the heat exchange tube 8
  • the top ends of the plurality of channels 81 are connected with the corresponding third tube 3 or the fourth tube 4, and the bottom ends of the plurality of channels 81 are all connected with each other.
  • the width direction of the heat exchange tube 8 is the left-right direction in FIG. 1 , and as shown in FIG. 4 , a plurality of channels 81 are arranged at intervals in the left-right direction.
  • the heat exchange tube 8 includes a first heat exchange tube 5 and a second heat exchange tube 6.
  • One end of the first heat exchange tube 5 is directly or indirectly connected to the first tube 1, and the other end of the first heat exchange tube 5 is connected to the third heat exchange tube 5.
  • the tube 3 is directly or indirectly connected, the first heat exchange tube 5 is connected to the first tube 1 and the third tube 3; one end of the second heat exchange tube 6 is directly or indirectly connected to the second tube 2, and the second heat exchange tube 6
  • the other end is directly or indirectly connected to the fourth tube 4, the second heat exchange tube 6 is connected to the second tube 2 and the fourth tube 4, and the first heat exchange tube 5 and the second heat exchange tube 6 are in the first tube 1. They are arranged at intervals in the length direction, the first tube is not communicated with the second tube, and the third tube is not communicated with the fourth tube.
  • each heat exchange tube 8 is a Micro-channel flat tubes, as shown in FIG. 2 , each heat exchange tube 8 is provided with a plurality of channels 81 for the cooling medium to circulate, and the plurality of channels 81 in each heat exchange tube 8 are along the heat exchange tube 8
  • the length direction of the heat exchange tube 8 (up and down direction in FIG. 1 ) extends, and the plurality of channels 81 in each heat exchange tube 8 are arranged at intervals along the width direction of the heat exchange tube 8 (the left and right direction in FIG. 1 and FIG. 2 ).
  • the heat exchange tube 8 can be divided into a first heat exchange tube 5 and a second heat exchange tube 6 according to different shapes, the first heat exchange tube 5 may be a straight tube, and the second heat exchange tube 6 may be Both ends are bent, and the middle is a straight pipe section.
  • “alternate arrangement” should be understood in a broad sense, for example, one or more second heat exchange tubes 6 may be arranged between two adjacent first heat exchange tubes 5; One or more first heat exchange tubes 5 may be arranged between the tubes 6.
  • the plurality of first heat exchange tubes 5 may be divided into a plurality of first heat exchange tube groups, and each first heat exchange tube group may include at least two A plurality of first heat exchange tubes 5, a plurality of second heat exchange tubes 6 may be divided into a plurality of second heat exchange tube groups, each second heat exchange tube group may include at least two second heat exchange tubes 6, the first heat exchange tube
  • the heat pipe groups may be alternately arranged with the second heat exchange pipe groups.
  • the plurality of first heat exchange tubes 5 and the plurality of second heat exchange tubes 6 extend along the up-down direction, the top of each first heat exchange tube 5 is communicated with the third tube 3, and each first heat exchange tube 5
  • the bottom ends of the tubes are all communicated with the first tube 1 , so that the cooling medium can flow along the first tube 1 , the first heat exchange tube 5 , and the third tube 3 .
  • the top end of each second heat exchange tube 6 is communicated with the fourth tube 4
  • the bottom end of each second heat exchange tube 6 is communicated with the second tube 2 , so that the cooling medium can pass along the second tube 2 ,
  • the second heat exchange tube 6 and the third tube 3 flow.
  • the fins include first fins 7. In the length direction of the first tube 1, at least part of the first fins 7 are connected to a first heat exchange tube 5, and at least part of the first fins 7 are connected to a second heat exchange tube 5.
  • the tube 6 is connected, the first heat exchange tube 5, some of the first fins 7 and the second heat exchange tube 6 are arranged along the length direction of the first tube 1, and the number of the first fins 7 is two or more. .
  • the fins include a plurality of first fins 7 , and the plurality of first fins 7 are arranged at intervals along the length direction of the first tube 1 (the front-rear direction in FIG. 1 ), and any A heat exchange tube is provided between two adjacent first fins 7 , and the heat exchange tube 8 may be the first heat exchange tube 5 or the second heat exchange tube 6 .
  • each first fin 7 may be different, for example, the front side of each first fin 7 may be connected to one of the first heat exchange tube 5 and the second heat exchange tube 6, The rear side of each of the first fins 7 may be connected to the other of the first heat exchange tube 5 and the second heat exchange tube 6 .
  • the width dimension W1 of the first heat exchange tubes 5 is smaller than the width dimension Wf of the first fins 7
  • the width dimension W2 of the second heat exchange tubes 6 is smaller than the width dimension Wf of the first fins 7
  • the width dimension of the first fins 7 Wf is smaller than the sum of the width dimension W1 of the first heat exchange tube 5 and the width dimension W2 of the second heat exchange tube 6 .
  • both the width direction of the first heat exchange tube 5 and the width direction of the second heat exchange tube 6 are arranged to extend along the left-right direction.
  • the width dimension of the first heat exchange tube 5 is W1
  • the width dimension of the second heat exchange tube 6 is W2
  • the width dimension of the first fin 7 is Wf
  • the width dimension of the first heat exchange tube 5 is W1 is smaller than the width dimension Wf of the first fin 7
  • the width dimension W2 of the second heat exchange tube 6 is also smaller than the width dimension Wf of the first fin 7, the width dimension W1 of the first heat exchange tube 5 and the second heat exchange tube 6
  • the sum of the width dimensions W2 of the first fins is greater than the width dimension Wf of the first fins 7 .
  • a plane perpendicular to the length direction of the first tube 1 is defined as the first plane, and the projection of the first heat exchange tube 5 in the first plane and the projection of the second heat exchange tube 6 in the first plane at least partially do not overlap.
  • the first plane is a vertical plane perpendicular to the front-rear direction
  • the first heat exchange tube 5 and the second heat exchange tube 6 are projected into the first plane
  • the projection of the first heat exchange tube 5 and the second heat exchange tube The projections of the heat pipes 6 are partially overlapped and overlapped on the first plane, and partially overlapped.
  • the heat transfer of the heat exchange tubes ie flat tubes, to the fins, the farther the distance from the connection between the heat exchange tubes 8 and the fins is.
  • the fins the smaller the contribution to the heat transfer of the heat exchange tube.
  • the fin area limited by the width of the flat tubes and the height of the fins is the heat-affected zone.
  • Increase the width of the fins for example, the width of the fins is larger than the width of the flat tubes, the fins protrude beyond the two flat tubes, the fin area in the heat affected zone does not increase significantly, and the heat transfer performance is not improved. It increases the wind resistance on the air side and affects the heat transfer performance.
  • the first A fin 7 shows a high heat flux density in the area close to the heat exchange tubes on both sides.
  • the first fin 7 between the heat exchange tubes 8 on both sides can be roughly divided into the first heat flux density.
  • the heat flux density of the third thermal zone 73 is higher than the heat flux density of the second thermal zone 72
  • the heat of the second thermal zone 72 is higher than that of the first thermal zone 71, and in the first fin 7 beyond both ends of the heat exchange tube 8, the heat density is relatively small.
  • the distribution and area of the thermal zone do not represent strict location division and area size, but only indicate that there are different trends and laws of heat density distribution.
  • the fins in this application due to the staggered arrangement of the first heat exchange tubes 5 and the second heat exchange tubes 6 in the width direction of the heat exchange tubes, not only increases the heat exchange of the fins on the air side
  • the area of the fins in the heat affected zone of the two heat exchange tubes is significantly increased, which is beneficial to improve the heat exchange between the flat tubes and the fins, thus improving the overall heat exchange performance of the heat exchanger 100 .
  • the first thermal zones 71 on the first fins 7 will be along the It is distributed along the width direction of the first heat exchange tube 5 and the second heat exchange tube 6, that is to say, the first fins 7, the second heat area 72 and the third heat area are covered in the width direction of the first fins 7.
  • 73 are respectively located in the area of the first fin 7 close to the first heat exchange tube 5 and the second heat exchange tube 6, and the part of the first fin 7 beyond the first heat exchange tube 5 or the second heat exchange tube 6, due to the first One side of the fins 7 is connected to the first heat exchange tube 5 or the second heat exchange tube 6 respectively.
  • the width dimension of the first heat exchange tube 5 and the width dimension of the second heat exchange tube 6 are designed to be smaller than the width dimension.
  • the sum of the width dimension of the heat exchange tube 5 and the width dimension of the second heat exchange tube 6 is designed to be larger than the width dimension of the fins, which can increase the width dimension of the fins in the affected area to improve the heat exchange, and at the same time reduce the damage caused by the increase of wind resistance. Influenced by the heat exchange, the heat exchange performance of the heat exchanger 100 is improved.
  • the structure of the present disclosure when the heat exchanger 100 is used as an evaporator in a heat pump unit, in the frosting condition of the heat pump, the structure of the present disclosure, only one side of the fins on the windward side is directly connected to the heat exchange tube 8, and the heat flux density on the windward side is The relative reduction is beneficial to reduce the amount of frost on the windward side.
  • the frost layer can be more evenly distributed in the width direction of the fins, which is helpful to improve the frosting condition. system energy efficiency.
  • the width directions of the first heat exchange tubes 5 and the second heat exchange tubes 6 are substantially parallel, and the width dimension W1 of the first heat exchange tubes 5 is greater than the width dimension W2 of the second heat exchange tubes 6 .
  • the heat exchanger 100 has a windward side and a leeward side during use.
  • the first heat exchange tube 5 with a larger width dimension W1 can be installed on the windward side
  • the The second heat exchange tube 6 with a slightly smaller width dimension W2 is installed on the leeward side, so that the heat exchange tube with higher heat can first come into contact with the airflow, which is beneficial to improve the heat exchange efficiency.
  • the width dimension W2 of the second heat exchange tube 6 may also be larger than the width dimension W1 of the first heat exchange tube 5 .
  • first fins 7 may be fins extending in a wave shape along the length direction of the first heat exchange tube 6.
  • each fin includes a plurality of sinusoidal wave fin units 74, each of which is The fin units 74 are connected end to end. It can be understood that, in other embodiments, the fin unit 74 may also be triangular, trapezoidal, or the like.
  • the first fins 7 can also be horizontally inserted fins or through-tube fins, and the length direction of each fin is parallel to the thickness direction of the first heat exchange tube 5 .
  • the heat exchange tubes 5 and the second heat exchange tubes 6 are inserted into the fins for heat exchange.
  • the width directions of the first heat exchange tube 5 and the second heat exchange tube 6 may not be parallel, and the second heat exchange tube 6 is inserted into the first fin 7 obliquely, and its width The direction is at an angle to the width direction of the first heat exchange tubes 5 .
  • the width of the heat exchange tube can be increased without excessively increasing the width of the first fin 7, and the heat exchange performance on the side of the heat exchange tube can be increased while controlling the increase in wind resistance, which is beneficial to improve the overall performance of the heat exchanger. improvement.
  • the smaller of one third of the width dimension W1 of the first heat exchange tube 5 and one third of the width dimension W2 of the second heat exchange tube 6 is smaller than the first heat exchange tube 5 at The width dimension Ws of the overlapping portion of the projection in the first plane and the projection of the second heat exchange tube 6 in the first plane; the width dimension W1 of the first heat exchange tube 5 and the width dimension W2 of the second heat exchange tube 6 The smaller value of is greater than the width dimension Ws of the overlapping portion of the projection of the first heat exchange tube 5 in the first plane and the projection of the second heat exchange tube 6 in the first plane.
  • the projection of the first heat exchange tube 5 in the first plane and the projection of the second heat exchange tube 6 in the first plane have overlapping parts, and in the In the left-right direction, the width dimension of the overlapping portion of the projection of the first heat exchange tube 5 and the projection of the second heat exchange tube 6 is Ws.
  • the width dimension W1 of the first heat exchange tube 5 , the width dimension W2 of the second heat exchange tube 6 , and the width dimension Ws of the overlapping portion of the projection of the first heat exchange tube 5 and the projection of the second heat exchange tube 6 are achieved.
  • the quantitative design ensures that the increase in the effective area of the fins has a greater impact on the heat exchange than the reduction in the heat exchange due to the increase in wind resistance.
  • the heat exchange tubes of the overlapping part of the projection can participate in the heat conduction together in the heat affected zone, thus increasing the heat exchange area when the single system is working.
  • the projection of one end of the first heat exchange tube 5 in the width direction in the first plane is the projection of the end of the first fin 7 in the width direction in the first plane
  • the minimum distance between them is WK1 , which is smaller than the width dimension W2 of the second heat exchange tube 6 .
  • the left end of the first heat exchange tube 5 is flush with the left end of the first fin 7 , and the distance between the right end of the first heat exchange tube 5 and the right end of the first fin 7 is WK1 , the distance WK1 is smaller than the width dimension W2 of the second heat exchange tube 6 . Since one side of the fins of the WK1 section is directly connected to the second heat exchange tube 6, increasing the length of the WK1 can effectively improve the heat exchange capacity of the second heat exchange tube 6, but the other side of the fins of the WK1 section is directly connected to the first heat exchange tube 6. Tube 5 is not directly connected and an increase in WK1 results in an increase in wind resistance.
  • the distance WK1 being smaller than the width dimension W2 of the second heat exchange tube 6 is beneficial to balance the relationship between the heat exchange capacity and the wind resistance, especially when the two systems work at the same time, the overall heat exchange performance is improved.
  • the projection of one end of the second heat exchange tube 6 in the width direction in the first plane is the projection of the end of the same side of the first fin 7 in the width direction in the first plane
  • the minimum distance between them is WK2, which is smaller than the width dimension W1 of the first heat exchange tube 5, and the width dimension W1 of the first heat exchange tube 5 is greater than or equal to the width dimension W2 of the second heat exchange tube 6.
  • the right end of the second heat exchange tube 6 is flush with the right end of the first fin 7 , and the distance between the left end of the second heat exchange tube 6 and the left end of the first fin 7 is WK2 , the distance WK2 is smaller than the width dimension W1 of the first heat exchange tube 5 , and the width dimension W1 of the first heat exchange tube 5 is not smaller than the width dimension W2 of the second heat exchange tube 6 .
  • the sum of the flow cross-sectional areas of the plurality of channels 81 in the first heat exchange tube 5 is greater than the sum of the flow cross-sectional areas of the plurality of channels 81 in the second heat exchange tube 6 .
  • the channels 81 are arranged at intervals along the left-right direction, and the sum of the flow cross-sectional areas of the plurality of channels 81 in the first heat exchange tube 5 is greater than the sum of the flow cross-sectional areas of the plurality of channels 81 in the second heat exchange tube 6 . Therefore, when the heat exchanger 100 is installed, the first heat exchange tube 5 can be installed on the windward side. Since the total flow cross-sectional area in the first heat exchange tube 5 is relatively large, the flow rate of the cooling medium in the first heat exchange tube 5 is reduced.
  • the projection of one end of the first heat exchange tube 5 in the width direction is flush with the projection of one end of the first fin 7 in the width direction, and the projection of one end of the second heat exchange tube 6 in the width direction It is flush with the projection of the other end of the first fin 7 in its width direction.
  • the left end of the first heat exchange tube 5 is flush with the left end of the first fin 7
  • the right end of the second heat exchange tube 6 is flush with the right end of the first fin 7 . together.
  • the situation where the left and right ends of the first fins 7 extend beyond the first heat exchange tubes 5 and the second heat exchange tubes 6 can be avoided, which is beneficial to increase the total heat on the first fins 7, and thus is beneficial to improve the heat exchange rate. Thermal efficiency.
  • the first heat exchange tube 5 includes a first channel 51 and a second channel 52, and the flow cross-sectional area of the first channel 51 in the cross section of the first heat exchange tube 5 is larger than that of other channels in the first heat exchange tube 5.
  • the flow cross-sectional area on the cross section of the heat exchange tube 52 is smaller than the flow cross-sectional area of the other channels on the cross section of the first heat exchange tube 5.
  • the second heat exchange tube 6 includes the first heat exchange tube 6.
  • the three channels 61 and the fourth channel 62, the flow cross-sectional area of the third channel 61 on the cross section of the second heat exchange tube 6 is larger than the flow cross-sectional area of the other channels on the cross section of the second heat exchange tube 6, and the fourth channel 62 is in The flow cross-sectional area on the cross section of the second heat exchange tube 6 is smaller than the flow cross section area of the other channels on the cross section of the second heat exchange tube 6 .
  • the channels in the first heat exchange tube 5 include a first channel 51 and a second channel 52 .
  • the flow cross-sectional area of the first channel 51 is larger than the flow cross-sectional area of the second channel 52 , and in the first heat exchange In the tube 5 , the flow cross-sectional area of the first channel 51 is the largest, and the flow cross-sectional area of the second channel 52 is the smallest.
  • the first channel 51 is arranged at the right end of the first heat exchange tube 5
  • the second channel 52 is arranged at the left end of the first heat exchange tube 5
  • the remaining channels in the first heat exchange tube 5 are arranged at the first channel 51 and the second channel 51. between channels 52.
  • the channels in the second heat exchange tube 6 include a third channel 61 and a fourth channel 62.
  • the flow cross-sectional area of the third channel 61 is larger than the flow cross-sectional area of the fourth channel 62, and in the second heat exchange tube 6, the third channel
  • the flow cross-sectional area of the channel 61 is the largest, and the flow cross-sectional area of the fourth channel 62 is the smallest.
  • the third channel 61 is provided at the right end of the second heat exchange tube 6, the fourth channel 62 is provided at the left end of the second heat exchange tube 6, and the remaining channels in the second heat exchange tube 6 are provided at the third channel 61 and the fourth channel 61. between channels 62.
  • the first channel 51 and the third channel 61 may be installed on the windward side, and the second channel 52 and the fourth channel 62 may be installed on the leeward side.
  • the first channel 51 and the third channel 61 are located on the windward side of the heat exchange tube, and have a large heat exchange temperature difference, and when they have a large flow area at the same time, the amount of refrigerant that can pass through is increased, which is beneficial to improve the heat exchange of the heat exchange tube 8. Therefore, the heat exchange capacity of the heat exchanger 100 can be improved.
  • the density of fins near one end of the first fin 7 is different from the density of fins near the other end of the first fin 7 .
  • the density of the first fins 7 may vary in the width direction of the heat exchange tube.
  • the density of the fins on the leeward side is high, and the density of the fins on the windward side is small. Due to the small heat exchange temperature difference on the leeward side, the heat exchange capacity is weak, and the leeward side has a weak heat exchange capacity.
  • the refrigerant in the channel of the side heat exchange tube cannot be fully heat exchanged, and the larger density of the fins on the leeward side can effectively increase the heat exchange area, thereby compensating for the heat exchange effect.
  • the fin density on the windward side is low, and the fin density on the leeward side is high, which is also beneficial to improve the frosting performance of the heat exchanger 100 .
  • the air conditioning system includes a first circuit 200 , a second circuit 300 and a heat exchanger.
  • the heat exchanger may be the heat exchanger 100 described in the above embodiments.
  • a pipe 1 communicates with the third pipe 3
  • the first circuit 200 includes a first compressor 202 and a first throttling device 201
  • the second circuit 300 communicates with the second pipe 2 and the fourth pipe 4 of the heat exchanger 100.
  • the secondary circuit 300 includes a second compressor 302 and a second throttle device 301 .
  • both the first loop 200 and the second loop 300 are closed-loop pipelines, and there are two heat exchangers 100 .
  • the heat exchanger 100 includes a first heat exchange tube and a second heat exchange tube, and the first loop 200 A first compressor 202 and a first throttling device 201 are arranged thereon, the first heat exchange tubes of the two heat exchangers 100 are connected in series on the first circuit 200, and a second compressor is arranged on the second circuit 300 302 and the second throttling device 301 , the second heat exchange tubes of the two heat exchangers 100 are connected in series on the second circuit 300 .
  • the cooling medium When in use, the cooling medium will circulate along the first circuit 200 and the second circuit 300 respectively, wherein in the first circuit 200, the cooling medium flowing out from the first compressor 202 will flow through the first circuit of a heat exchanger 100 in sequence.
  • the heat exchange tube, the first throttling device 201, and the first heat exchange tube of the other heat exchanger 100 are finally returned to the first compressor 202;
  • the cooling medium will sequentially flow through the second heat exchange tube of one heat exchanger 100 , the second throttling device 301 , and the second heat exchange tube of the other heat exchanger 100 , and finally return to the second compressor 302 .
  • the heat exchanger 100 of the air conditioning system increases the effective heat exchange area of the fins and improves the heat exchange performance of the air conditioning system.
  • micro-channel flat tube is a thin-walled porous flat tube-shaped material made of refined aluminum rods, hot extrusion, and surface zinc spraying for anti-corrosion treatment.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • installed installed
  • connected connected
  • fixed a detachable connection
  • it can be a mechanical connection or an electrical connection or can communicate with each other
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • the specific meanings of the above terms in the present disclosure can be understood according to specific situations.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or indirectly through an intermediary between the first and second features touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

提供了换热器和空调系统。换热器包括第一组件、第二组件、多个换热管和翅片,第一组件包括第一管和第二管,第二组件包括第三管和第四管,换热管包括第一换热管和第二换热管,第一换热管连通第一管和第三管,第二换热管连通第二管和第四管,第一换热管、翅片与第二换热管沿第一管的长度方向上设置,第一换热管的宽度尺寸小于第一翅片的宽度尺寸,第二换热管的宽度尺寸小于第一翅片的宽度尺寸,第一翅片的宽度尺寸小于第一换热管的宽度尺寸和第二换热管宽度尺寸之和,第一换热管在第一平面内的投影与第二换热管在第一平面内的投影至少部分不重合。

Description

换热器和空调系统
相关申请的交叉引用
本申请要求在2021年03月29日在中国提交的中国专利申请号No.202110335619.8的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及换热器技术领域,具体地,涉及一种换热器和具有该换热器的空调系统。
背景技术
相关技术中,双制冷系统空调采用两个单独的制冷剂回路,为适应两个制冷系统空调,制冷剂回路中的换热器为双系统换热器。以微通道换热器为例,系统中的微通道换热器共用于两个系统,包括分别在两个系统中工作的扁管组,但两部分换热管共用一部分翅片。
然而,具有上述结构的双系统换热器在机组中工作时,在某些工况中当两个系统同时工作时,由于两个系统是共用一个换热面,会存在换热性能不足的情况,影响系统效率和使用效果。
发明内容
本公开实施例提出一种换热器,该换热器能够增大翅片的换热面积,并具有较好的换热性能。
本公开实施例还提出一种应用上述换热器的空调系统。
根据本公开实施例的换热器包括:第一组件,所述第一组件包括第一管和第二管;第二组件,所述第二组件包括第三管和第四管;多个换热管,所述换热管为扁管,所述换热管包括沿其长度方向设置的多个通道,所述多个通道在所述换热管宽度方向上间隔设置,所述换热管包括第一换热管和第二换热管,所述第一换热管的一端与所述第一管直接连接或间接连接,所述第一换热管的另一端与所述第三管直接连接或间接连接,所述第一换热管连通所述第一管和所述第三管;所述第二换热管的一端与所述第二管直接连接或间接连接,所述第二换热管的另一端与所述第四管直接连接或间接连接,所述第二换热管连通所述第二管和所述第四管,所述第一换热管和所述第二换热管在所述第一管的长度方向上间隔布置,所述第一管与所述第二管不连通,所述第三管和所述第四管不连通;翅片,所述翅片包括第一翅片,在所述第一管的长度方向上,所述第一翅片与一个所述第一换热管相连,该所述第一翅片与一个所述第二换热管相连,该所述第一换热管、部分该所述第一翅 片与该所述第二换热管沿所述第一管的长度方向上设置,所述第一翅片为多个,所述第一换热管的宽度尺寸W1小于所述第一翅片的宽度尺寸Wf,所述第二换热管的宽度尺寸W2小于所述第一翅片的宽度尺寸Wf,所述第一翅片的宽度尺寸Wf小于所述第一换热管的宽度尺寸W1和所述第二换热管宽度尺寸W2之和;定义与所述第一管长度方向垂直的平面为第一平面,所述第一换热管在所述第一平面内的投影与所述第二换热管在所述第一平面内的投影至少部分不重合。
根据本公开实施例的换热器,增大了翅片的有效换热面积,具有较好的换热性能。
在一些实施例中,所述第一换热管和所述第二换热管的宽度方向大致平行,所述第一换热管的宽度尺寸W1大于所述第二换热管的宽度尺寸W2。
在一些实施例中,所述第一换热管的宽度尺寸W1的三分之一和所述第二换热管的宽度尺寸W2的三分之一中的较小值,小于所述第一换热管在所述第一平面内的投影与所述第二换热管在所述第一平面内的投影的重叠部分的宽度尺寸Ws。
在一些实施例中,所述第一换热管的宽度尺寸W1和所述第二换热管的宽度尺寸W2中的较小值,大于所述第一换热管在所述第一平面内的投影与所述第二换热管在所述第一平面内的投影的重叠部分的宽度尺寸Ws。
在一些实施例中,所述第一换热管在其宽度方向上的一侧端部在第一平面内的投影与所述第一翅片位于所述宽度方向上同一侧端部在第一平面内的投影之间的最小距离为WK1,所述WK1小于所述第二换热管的宽度尺寸W2。
在一些实施例中,所述第二换热管在其宽度方向上的一侧端部在第一平面内的投影与所述第一翅片位于所述宽度方向上同一侧端部在第一平面内的投影之间的最小距离为WK2,所述WK2小于所述第一换热管的宽度尺寸W1,所述第一换热管的宽度尺寸W1大于等于所述第二换热管的宽度尺寸W2。
在一些实施例中,在所述第一平面内,所述第一换热管宽度方向上的一端的投影与所述第一翅片在其宽度方向上的一端的投影平齐,所述第二换热管宽度方向上的一端的投影与所述第一翅片在其宽度方向上的另一端的投影平齐。
在一些实施例中,所述第一换热管包括第一通道和第二通道,所述第一通道在所述第一换热管横截面上的流通截面积大于其他所述通道在所述第一换热管横截面上的流通截面积,所述第二通道在所述换热管横截面上的流通截面积小于其他所述通道在所述第一换热管横截面上的流通截面积。
在一些实施例中,所述第二换热管包括第三通道和第四通道,所述第三通道在所述第二换热管横截面上的流通截面积大于其他所述通道在所述第二换热管横截面上的流通截面积,所述第四通道在所述第二换热管横截面上的流通截面积小于其他所述通道在所述第二 换热管横截面上的流通截面积。
在一些实施例中,所述换热管为微通道扁管。
根据本公开实施例的空调系统包括上述实施例中任一项所述的换热器,所述空调系统包括第一回路和第二回路,所述第一回路包括第一压缩机和第一节流装置,所述第一回路与所述换热器的第一管和第三管连通,所述第二回路包括第二压缩机和第二节流装置,所述第二回路与所述换热器的第二管和第四管连通。
附图说明
图1是根据本公开实施例的换热器的立体示意图。
图2是根据本公开另一实施例的换热器的立体示意图。
图3是图1中换热器的第一换热管、翅片、第二换热管排布示意图。
图4是图1中换热器的换热管立体示意图。
图5是图4中换热管的横截面示意图。
图6是图1中第一换热管和第二换热管错位布置示意图。
图7是图6中尺寸标记示意图一。
图8是图6中尺寸标记示意图二。
图9是相关技术中翅片加宽的热能分布示意图。
图10是图6中翅片的热能分布示意图。
图11是根据本公开另一实施例的部分换热器的截面示意图。
图12是根据本公开又一实施例的部分换热器的截面示意图。
图13是根据本公开实施例的空调系统的示意图。
图14是根据本公开实施例的翅片的示意图。
图15是根据本公开另一实施例的翅片的示意图。
图16是根据本公开又一实施例的翅片的示意图。
附图标记:
换热器100;
第一管1;
第二管2;
第三管3;
第四管4;
第一换热管5;第一通道51;第二通道52;
第二换热管6;第三通道61;第四通道62;
第一翅片7;第一热力区71;第二热力区72;第三热力区73;翅片单元74;
换热管8;通道81;
第一回路200;第一节流装置201;第一压缩机202;
第二回路300;第二节流装置301;第二压缩机302。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1至图10所示,根据本公开实施例的换热器100包括第一组件、第二组件、翅片和多个换热管8。
第一组件包括第一管1和第二管2,第二组件包括第三管3和第四管4。如图1和图2所示,第一管1、第二管2、第三管3、第四管4均大体沿着前后方向延伸,第一管1和第二管2位于第三管3和第四管4的下方,其中第一管1位于第三管3的正下方,第二管2位于第四管4的正下方。
换热管8为微通道扁管,换热管8包括沿其长度方向设置的多个通道81,多个通道81在换热管8宽度方向上间隔设置。具体地,如图1和图4所示,换热管8为扁管,换热管8的长度方向即为图1中上下方向,在换热管8内设有多个通道81,如图5所示,多个通道81均沿着换热管8的长度方向延伸,且多个通道81的顶端均与对应的第三管3或第四管4连通,多个通道81的底端均与对应的第一管1或第二管2连通。换热管8的宽度方向即为图1中左右方向,如图4所示,多个通道81在左右方向上依次间隔排布。
换热管8包括第一换热管5和第二换热管6,第一换热管5的一端与第一管1直接连接或间接连接,第一换热管5的另一端与第三管3直接连接或间接连接,第一换热管5连通第一管1和第三管3;第二换热管6的一端与第二管2直接连接或间接连接,第二换热管6的另一端与第四管4直接连接或间接连接,第二换热管6连通第二管2和第四管4,第一换热管5和第二换热管6在第一管1的长度方向上间隔布置,第一管与第二管不连通,第三管和第四管不连通。
具体地,如图1所示,换热管8有多个,多个换热管8沿着前后方向(图1中第一管1的长度方向)间隔布置,每个换热管8均为微通道扁管,如图2所示,每个换热管8内均设有多个供冷却介质流通的通道81,每个换热管8内的多个通道81均沿着换热管8的长度方向(图1中上下方向)延伸,且每个换热管8内的多个通道81均沿着换热管8的宽度方向(图1和图2中的左右方向)间隔布置。
在一些实施例中,换热管8按照形状的不同,可以分为第一换热管5和第二换热管6, 第一换热管5可以为直通管,第二换热管6可以两端弯折,中间为直管段。第一换热管5和第二换热管6均设有多个,且多个第一换热管5和多个第二换热管6沿着第一管1的长度方向(图1中前后方向)交替设置。这里需要说明的是,“交替布置”应作广义理解,例如,相邻两个第一换热管5之间可以设置一个或多个第二换热管6;相邻两个第二换热管6之间可以设置一个或多个第一换热管5,此外,多个第一换热管5可以分成多个第一换热管组,每个第一换热管组可以包括至少两个第一换热管5,多个第二换热管6可以分成多个第二换热管组,每个第二换热管组可以包括至少两个第二换热管6,第一换热管组可以与第二换热管组交替设置。多个第一换热管5和多个第二换热管6均沿着上下方向延伸,每个第一换热管5的顶端均与第三管3连通,每个第一换热管5的底端均与第一管1连通,由此,冷却介质可以沿着第一管1、第一换热管5、第三管3流动。每个第二换热管6的顶端均与第四管4连通,每个第二换热管6的底端均与第二管2连通,由此,冷却介质可以沿着第二管2、第二换热管6、第三管3流动。
翅片包括第一翅片7,在第一管1的长度方向上,至少部分第一翅片7与一个第一换热管5相连,至少部分该第一翅片7与一个第二换热管6相连,该第一换热管5、部分该第一翅片7与该第二换热管6沿第一管1的长度方向上设置,第一翅片7为两个或两个以上。
具体地,如图1至图6所示,翅片包括多个第一翅片7,多个第一翅片7沿着第一管1的长度方向(图1中前后方向)间隔布置,任意相邻两个第一翅片7之间均设有一个换热管,换热管8可以为第一换热管5,也可以为第二换热管6。
每个第一翅片7前后两侧的换热管8可以不同,例如,每个第一翅片7的前侧可以与第一换热管5和第二换热管6的一者相连,每个第一翅片7的后侧可以与第一换热管5和第二换热管6的另一者相连。
第一换热管5的宽度尺寸W1小于第一翅片7的宽度尺寸Wf,第二换热管6的宽度尺寸W2小于第一翅片7的宽度尺寸Wf,第一翅片7的宽度尺寸Wf小于第一换热管5的宽度尺寸W1和第二换热管6宽度尺寸W2之和。
如图6和图7所示,第一换热管5的宽度方向和第二换热管6的宽度方向均沿着左右方向延伸布置。在左右方向上,第一换热管5的宽度尺寸为W1,第二换热管6的宽度尺寸为W2,第一翅片7的宽度尺寸为Wf,第一换热管5的宽度尺寸W1小于第一翅片7的宽度尺寸Wf,第二换热管6的宽度尺寸W2也小于第一翅片7的宽度尺寸Wf,第一换热管5的宽度尺寸W1和第二换热管6的宽度尺寸W2之和则大于第一翅片7的宽度尺寸Wf。
定义与第一管1长度方向垂直的平面为第一平面,第一换热管5在第一平面内的投影与第二换热管6在第一平面内的投影至少部分不重合。
具体地,第一平面为与前后方向垂直的竖直平面,将第一换热管5和第二换热管6向 第一平面内做投影,第一换热管5的投影和第二换热管6的投影在第一平面部分叠压重合,部分不重合。
根据本公开实施例的换热器100,如图9和图10中显示了换热管,即扁管,向翅片换热的传热情况,距离换热管8与翅片连接处越远的翅片,对换热管换热的贡献越小。
如图9所示,当翅片两侧的扁管宽度相等,且在扁管宽度方向上平齐时,以扁管宽度和翅片高度为限的翅片区域为热影响区,如果仅仅是加大翅片的宽度,比如翅片宽度大于扁管的宽度,翅片凸出于两扁管之外,热影响区内的翅片面积并没有显著增加,对于换热性能的提高作用并不大,且增加了空气侧的风阻,影响换热性能。
具体地,如图9所示,两个换热管,即扁管,当第一翅片7的宽度大于两侧的换热管8的宽度时,当两个换热管同时工作时,第一翅片7在靠近两侧的换热管的区域显现出较高的热流密度,按照热流密度的大小,两侧换热管8之间的第一翅片7部分大致可以分为第一热力区71、第二热力区72和第三热力区73,其中第一热力区71大体在第一翅片高度的中间位置,第一热力区71的一侧依次分布有第二热力区72和第三热力区73,且第三热力区73的热流密度高于第二热力区72的热流密度,第二热力区72的热量又要高于第一热力区71的热量,而在第一翅片7超出换热管8的两端部分,则热量密度相对较小。此处热力区的分布和面积并不代表严格的位置划分和面积大小,仅表示存在热量密度分布不同的趋势和规律。
在本申请中的翅片,如图10所示,由于第一换热管5和第二换热管6在换热管宽度方向上的交错布置,不仅增加了翅片在空气侧的换热面积,而且在两个换热管的热影响区内的翅片面积有明显增加,有利于提高扁管和翅片之间换热,如此可以提高换热器100整体的换热性能。
具体地,如图10所示,由于第一换热管5和第二换热管6在第一翅片7的宽度方向上错位布置,第一翅片7上的第一热力区71会沿着第一换热管5和第二换热管6的宽度方向分布,也就是说在第一翅片7的宽度方向上布满第一翅片7,第二热力区72和第三热力区73分别位于第一翅片7靠近第一换热管5和第二换热管6的区域,第一翅片7超出第一换热管5或第二换热管6的部分,由于第一翅片7的一侧分别与第一换热管5或者第二换热管6连接,当两个换热管同时工作时,热影响区面积加大,从而提高了换热器100的换热性能。
另外,当翅片的宽度增加时,风阻也会增大,通过将第一换热管5的宽度尺寸和第二换热管6的宽度尺寸设计为均小于翅片的宽度尺寸,将第一换热管5的宽度尺寸和第二换热管6的宽度尺寸之和设计为大于翅片的宽度尺寸,能够增加影响区内翅片宽度尺寸以提高换热量,同时减少因风阻增大对换热量影响,提高了换热器100的换热性能。
此外,当换热器100用于热泵机组作为蒸发器使用时,在热泵结霜工况时,本公开的结构,迎风侧翅片只有一侧与换热管8直接连接,迎风侧的热流密度相对降低,有利于降低迎风侧的结霜量,同时在保证换热器100整体换热能力的情况下,霜层可以更均匀的分布在翅片宽度方向上,有助于提升结霜工况下的系统能效。
在一些实施例中,第一换热管5和第二换热管6的宽度方向大致平行,第一换热管5的宽度尺寸W1大于第二换热管6的宽度尺寸W2。具体地,如图7和图11所示,换热器100在使用过程中具有迎风侧和背风侧,安装时,可以将宽度尺寸W1较大的第一换热管5安装在迎风侧,将宽度尺寸W2略小的第二换热管6安装在背风侧,由此使得具有较高热量的换热管能够首先与气流接触,有利于提高换热效率。
可以理解的是,在其他一些实施例中,第二换热管6的宽度尺寸W2也可以大于第一换热管5的宽度尺寸W1。
可以理解的是,第一翅片7可以是沿第一换热管6长度方向波浪状延伸的翅片,如图14所示,每条翅片包括多个正弦波形的翅片单元74,各翅片单元74首尾依次连接。可以理解的是,在其他一些实施例中,翅片单元74也可以是三角形、梯形等。
在一些实施例中,如图15所示,第一翅片7也可为横插翅片或者穿管翅片,每条翅片的长度方向与第一换热管5厚度方向平行,第一换热管5和第二换热管6插入翅片中进行换热。
在一些实施例中,如图16所示,第一换热管5和第二换热管6的宽度方向也可以不平行,第二换热管6斜插入第一翅片7中,其宽度方向与第一换热管5的宽度方向成角度。如此可以在不过分加大第一翅片7宽度的情况下,加大换热管的宽度,增加换热管侧的换热性能的同时,控制风阻的增加,有利于提高换热器整体性能的提高。
在一些实施例中,第一换热管5的宽度尺寸W1的三分之一和第二换热管6的宽度尺寸W2的三分之一中的较小值小于第一换热管5在第一平面内的投影与第二换热管6在第一平面内的投影的重叠部分的宽度尺寸Ws;第一换热管5的宽度尺寸W1和第二换热管6的宽度尺寸W2中的较小值大于第一换热管5在第一平面内的投影与第二换热管6在第一平面内的投影的重叠部分的宽度尺寸Ws。
如图7所示,在与前后方向垂直的第一平面内,第一换热管5在第一平面内的投影和第二换热管6在第一平面内的投影具有重合部分,且在左右方向上,第一换热管5的投影和第二换热管6的投影的重叠部分的宽度尺寸为Ws。
取第一换热管5宽度尺寸W1的三分之一和第二换热管6宽度尺寸W2的三分之一的较小值,该较小值小于上述宽度尺寸Ws。
取第一换热管5宽度尺寸W1和第二换热管6宽度尺寸W2的较小值,该较小值大于 上述宽度尺寸Ws。
由此,实现了第一换热管5宽度尺寸W1、第二换热管6宽度尺寸W2、第一换热管5的投影和第二换热管6的投影的重叠部分的宽度尺寸Ws的量化设计,确保了翅片有效面积增加而对换热量影响大于因风阻增大对换热量的减少。另外,当仅单一系统工作的时候,投影重叠部分的换热管在热影响区内可以一起参与传导热量,增大单系统工作时的换热面积。
在一些实施例中,第一换热管5在其宽度方向上的一侧端部在第一平面内的投影与第一翅片7位于宽度方向上同一侧端部在第一平面内的投影之间的最小距离为WK1,WK1小于第二换热管6的宽度尺寸W2。
如图8所示,在左右方向上,第一换热管5的左端与第一翅片7的左端平齐,第一换热管5的右端和第一翅片7的右端的距离为WK1,距离WK1小于第二换热管6的宽度尺寸W2。由于WK1段翅片的一侧与第二换热管6直接连接,增加WK1的长度能够有效提高第二换热管6的换热能力,但WK1段翅片的另一侧与第一换热管5没有直接连接,且WK1的增加会导致风阻的增加。如此,距离WK1小于第二换热管6的宽度尺寸W2有利于平衡换热能力和风阻的关系,特别是在在两个系统同时工作时,提高整体换热性能。另一方面单系统运行时,有利于两个换热管之间形成有效的热传导,提高单系统的换热能力。
在一些实施例中,第二换热管6在其宽度方向上的一侧端部在第一平面内的投影与第一翅片7位于宽度方向上同一侧端部在第一平面内的投影之间的最小距离为WK2,WK2小于第一换热管5的宽度尺寸W1,第一换热管5的宽度尺寸W1大于等于第二换热管6的宽度尺寸W2。
如图8所示,在左右方向上,第二换热管6的右端与第一翅片7的右端平齐,第二换热管6的左端和第一翅片7的左端的距离为WK2,距离WK2小于第一换热管5的宽度尺寸W1,而第一换热管5的宽度尺寸W1又不小于第二换热管6的的宽度尺寸W2。
在一些实施例中,第一换热管5内多个通道81的流通截面积之和大于第二换热管6内多个通道81的流通截面积之和。
第一换热管5和第二换热管6内均设有多个通道81,如图12所示,第一换热管5内的多个通道81和第二换热管6内的多个通道81均沿着左右方向间隔布置,第一换热管5内的多个通道81的流通截面积之和大于第二换热管6内的多个通道81的流通截面积之和。由此,安装换热器100时,可以将第一换热管5安装在迎风侧,由于第一换热管5内总的流通截面积较大,第一换热管5内冷却介质的流量较大,从而使得第一换热管5具有较高的换热性能,经第一换热管5换热后的气流温度有所下降,温度较低的气流会流经第二换热管6处,由于第二换热管6内冷却介质的流量略小,能够充分满足温度下降后的气流的 降温,这样的设计有利于提升换热效率,降低了能耗。
在一些实施例中,第一换热管5宽度方向上的一端的投影与第一翅片7在其宽度方向上的一端的投影平齐,第二换热管6宽度方向上的一端的投影与第一翅片7在其宽度方向上的另一端的投影平齐。
具体地,如图6所示,在左右方向上,第一换热管5的左端与第一翅片7的左端平齐,第二换热管6的右端与第一翅片7的右端平齐。由此,可以避免第一翅片7的左右两端超出第一换热管5和第二换热管6的情况,有利于增大第一翅片7上的总热量,进而有利于提高换热效率。
在一些实施例中,第一换热管5包括第一通道51和第二通道52,第一通道51在第一换热管5横截面上的流通截面积大于其他通道在第一换热管5横截面上的流通截面积,第二通道52在换热管横截面上的流通截面积小于其他通道在第一换热管5横截面上的流通截面积,第二换热管6包括第三通道61和第四通道62,第三通道61在第二换热管6横截面上的流通截面积大于其他通道在第二换热管6横截面上的流通截面积,第四通道62在第二换热管6横截面上的流通截面积小于其他通道在第二换热管6横截面上的流通截面积。
如图11所示,第一换热管5内的通道包括第一通道51和第二通道52,第一通道51的流通截面积大于第二通道52的流通截面积,且在第一换热管5内,第一通道51的流通截面积最大,第二通道52的流通截面积最小。第一通道51设在第一换热管5的右端,第二通道52设在第一换热管5的左端,第一换热管5内剩余的通道则设在第一通道51和第二通道52之间。
第二换热管6内的通道包括第三通道61和第四通道62,第三通道61的流通截面积大于第四通道62的流通截面积,且在第二换热管6内,第三通道61的流通截面积最大,第四通道62的流通截面积最小。第三通道61设在第二换热管6的右端,第四通道62设在第二换热管6的左端,第二换热管6内剩余的通道则设在第三通道61和第四通道62之间。
安装换热器100时,可以将第一通道51和第三通道61安装在迎风侧,将第二通道52和第四通道62安装在背风侧。第一通道51,第三通道61处于换热管的迎风侧,具有较大的换热温差,同时具有大的流通面积时,可通过的制冷剂量增加,有利于提升换热管8的换热能力,由此可以提升换热器100的换热能力。
在一些实施例中,在第一翅片7上,靠近第一翅片7一端的翅片密度与靠近第一翅片7另一端的翅片密度不同。
具体地,第一翅片7的密度在换热管宽度方向上可以发生变化,比如背风侧翅片密度大,迎风侧翅片密度小,由于背风侧换热温差小,换热能力弱,背风侧换热管通道内制冷剂得不到充分换热,背风侧的翅片密度较大能够有效增加换热面积,从而起到补偿换热的 效果。另外,迎风侧的翅片密度小、背风侧的翅片密度大,还有利于提升换热器100的结霜性能。
下面描述根据本公开实施例的空调系统。
根据本公开实施例的空调系统包括第一回路200、第二回路300和换热器,换热器可以为上述实施例中描述的换热器100,第一回路200与换热器100的第一管1和第三管3连通,第一回路200包括第一压缩机202和第一节流装置201,第二回路300与换热器100的第二管2和第四管4连通,第二回路300包括第二压缩机302和第二节流装置301。
如图13所示,第一回路200和第二回路300均为闭环管路,换热器100有两个,换热器100包括第一换热管和第二换热管,第一回路200上设有第一压缩机202和第一节流装置201,两个换热器100的各第一换热管均串接在第一回路200上,第二回路300上设有第二压缩机302和第二节流装置301,两个换热器100的各第二换热管均串接在第二回路300上。
使用时,冷却介质会分别沿着第一回路200和第二回路300循环,其中在第一回路200中,从第一压缩机202流出的冷却介质会依次流经一个换热器100的第一换热管、第一节流装置201、另一个换热器100的第一换热管,最后再回流至第一压缩机202内;在第二回路300中,从第二压缩机302流出的冷却介质会依次流经一个换热器100的第二换热管、第二节流装置301、另一个换热器100的第二换热管,最后再回流至第二压缩机302内。
根据本公开实施例的空调系统,空调系统的换热器100增大了翅片的有效换热面积,提高了空调系统的换热性能。
如本文所用“微通道扁管”是采用精炼铝棒、通过热挤压、经表面喷锌防腐处理而制成的薄壁多孔扁形管状材料。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体地限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械 连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种换热器,包括:
    第一组件,所述第一组件包括第一管和第二管;
    第二组件,所述第二组件包括第三管和第四管;
    多个换热管,所述换热管为扁管,所述换热管包括沿其长度方向设置的多个通道,所述多个通道在所述换热管宽度方向上间隔设置,所述换热管包括第一换热管和第二换热管,所述第一换热管的一端与所述第一管直接连接或间接连接,所述第一换热管的另一端与所述第三管直接连接或间接连接,所述第一换热管连通所述第一管和所述第三管;所述第二换热管的一端与所述第二管直接连接或间接连接,所述第二换热管的另一端与所述第四管直接连接或间接连接,所述第二换热管连通所述第二管和所述第四管,所述第一换热管和所述第二换热管在所述第一管的长度方向上间隔布置,所述第一管与所述第二管不连通,所述第三管和所述第四管不连通;
    翅片,所述翅片包括第一翅片,在所述第一管的长度方向上,所述第一翅片与一个所述第一换热管相连,该所述第一翅片与一个所述第二换热管相连,该所述第一换热管、部分该所述第一翅片与该所述第二换热管沿所述第一管的长度方向上设置,所述第一翅片为多个,
    所述第一换热管的宽度尺寸W1小于所述第一翅片的宽度尺寸Wf,所述第二换热管的宽度尺寸W2小于所述第一翅片的宽度尺寸Wf,所述第一翅片的宽度尺寸Wf小于所述第一换热管的宽度尺寸W1和所述第二换热管宽度尺寸W2之和;
    定义与所述第一管长度方向垂直的平面为第一平面,所述第一换热管在所述第一平面内的投影与所述第二换热管在所述第一平面内的投影至少部分不重合。
  2. 根据权利要求1所述的换热器,其中所述第一换热管和所述第二换热管的宽度方向大致平行,所述第一换热管的宽度尺寸W1大于所述第二换热管的宽度尺寸W2。
  3. 根据权利要求1或2所述的换热器,其中所述第一换热管的宽度尺寸W1的三分之一和所述第二换热管的宽度尺寸W2的三分之一中的较小值,小于所述第一换热管在所述第一平面内的投影与所述第二换热管在所述第一平面内的投影的重叠部分的宽度尺寸Ws。
  4. 根据权利要求1至3中任一项所述的换热器,其中所述第一换热管的宽度尺寸W1和所述第二换热管的宽度尺寸W2中的较小值,大于所述第一换热管在所述第一平面内的投影与所述第二换热管在所述第一平面内的投影的重叠部分的宽度尺寸Ws。
  5. 根据权利要求1至4中任一项所述的换热器,其中所述第一换热管在其宽度方向上的一侧端部在第一平面内的投影与所述第一翅片位于所述宽度方向上同一侧端部在第一平 面内的投影之间的最小距离为WK1,所述WK1小于所述第二换热管的宽度尺寸W2。
  6. 根据权利要求1至5任一项所述的换热器,其中所述第二换热管在其宽度方向上的一侧端部在第一平面内的投影与所述第一翅片位于所述宽度方向上同一侧端部在第一平面内的投影之间的最小距离为WK2,所述WK2小于所述第一换热管的宽度尺寸W1,所述第一换热管的宽度尺寸W1大于等于所述第二换热管的宽度尺寸W2。
  7. 根据权利要求1至6中任一项所述的换热器,其中在所述第一平面内,所述第一换热管宽度方向上的一端的投影与所述第一翅片在其宽度方向上的一端的投影平齐,所述第二换热管宽度方向上的一端的投影与所述第一翅片在其宽度方向上的另一端的投影平齐。
  8. 根据权利要求1至7中任一项所述的换热器,其中所述第一换热管包括第一通道和第二通道,所述第一通道在所述第一换热管横截面上的流通截面积大于其他所述通道在所述第一换热管横截面上的流通截面积,所述第二通道在所述换热管横截面上的流通截面积小于其他所述通道在所述第一换热管横截面上的流通截面积。
  9. 根据权利要求8所述的换热器,其中所述第二换热管包括第三通道和第四通道,所述第三通道在所述第二换热管横截面上的流通截面积大于其他所述通道在所述第二换热管横截面上的流通截面积,所述第四通道在所述第二换热管横截面上的流通截面积小于其他所述通道在所述第二换热管横截面上的流通截面积。
  10. 根据权利要求1至9中任一项所述的换热器,其中所述换热管为微通道扁管。
  11. 一种空调系统,包括权利要求1至10中任一项所述的换热器,所述空调系统包括第一回路和第二回路,所述第一回路包括第一压缩机和第一节流装置,所述第一回路与所述换热器的第一管和第三管连通,所述第二回路包括第二压缩机和第二节流装置,所述第二回路与所述换热器的第二管和第四管连通。
PCT/CN2022/083733 2021-03-29 2022-03-29 换热器和空调系统 WO2022206765A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22778947.6A EP4317890A4 (en) 2021-03-29 2022-03-29 HEAT EXCHANGER AND AIR CONDITIONING SYSTEM
US18/284,904 US20240175636A1 (en) 2021-03-29 2022-03-29 Heat exchanger and air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110335619.8A CN114322105B (zh) 2021-03-29 2021-03-29 换热器和空调系统
CN202110335619.8 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022206765A1 true WO2022206765A1 (zh) 2022-10-06

Family

ID=81044311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083733 WO2022206765A1 (zh) 2021-03-29 2022-03-29 换热器和空调系统

Country Status (4)

Country Link
US (1) US20240175636A1 (zh)
EP (1) EP4317890A4 (zh)
CN (1) CN114322105B (zh)
WO (1) WO2022206765A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118274640A (zh) * 2022-12-31 2024-07-02 杭州三花微通道换热器有限公司 一种换热装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682188A (ja) * 1992-09-02 1994-03-22 Nippondenso Co Ltd 熱交換器
JP2007232246A (ja) * 2006-02-28 2007-09-13 Denso Corp 熱交換器
CN101464102A (zh) * 2009-01-16 2009-06-24 河北科技大学 一种具有较高换热效率的管壳式换热器
CN212362502U (zh) * 2020-04-30 2021-01-15 杭州三花微通道换热器有限公司 换热器
CN212457512U (zh) * 2020-05-31 2021-02-02 杭州三花微通道换热器有限公司 换热组件和换热系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154987A (ja) * 1988-12-06 1990-06-14 Matsushita Refrig Co Ltd フィン付熱交換器
JP2009145010A (ja) * 2007-12-17 2009-07-02 Hitachi Appliances Inc 空気調和機用フィンレス熱交換器
US20090154091A1 (en) * 2007-12-17 2009-06-18 Yatskov Alexander I Cooling systems and heat exchangers for cooling computer components
CN101738008A (zh) * 2009-11-30 2010-06-16 江苏康泰热交换设备工程有限公司 一种利于冷凝水排出的热交换器
CN102192672A (zh) * 2010-03-16 2011-09-21 乐金电子(天津)电器有限公司 扁管换热器结构及其装配方法
JP5617935B2 (ja) * 2011-01-21 2014-11-05 ダイキン工業株式会社 熱交換器および空気調和機
JP2014029221A (ja) * 2012-07-31 2014-02-13 Hitachi Appliances Inc 空気調和機
JP5853948B2 (ja) * 2012-12-27 2016-02-09 株式会社デンソー 熱交換器
WO2017104050A1 (ja) * 2015-12-17 2017-06-22 三菱電機株式会社 熱交換器および冷凍サイクル装置
US20190249925A1 (en) * 2016-09-21 2019-08-15 Air-Radiators Pty Ltd Heat exchanger and components and methods therefor
US20180299171A1 (en) * 2017-04-17 2018-10-18 Lennox Industries Inc. Multistage, Microchannel Condensers with Displaced Manifolds for Use in HVAC Systems
US11047625B2 (en) * 2018-05-30 2021-06-29 Johnson Controls Technology Company Interlaced heat exchanger
CN118935814A (zh) * 2018-12-14 2024-11-12 丹佛斯有限公司 换热器和空调系统
CN210128532U (zh) * 2019-05-31 2020-03-06 杭州三花微通道换热器有限公司 多制冷系统空调机组
CN210689278U (zh) * 2019-09-29 2020-06-05 杭州三花微通道换热器有限公司 多通道换热器和空调制冷系统
US11940232B2 (en) * 2021-04-06 2024-03-26 General Electric Company Heat exchangers including partial height fins having at least partially free terminal edges

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682188A (ja) * 1992-09-02 1994-03-22 Nippondenso Co Ltd 熱交換器
JP2007232246A (ja) * 2006-02-28 2007-09-13 Denso Corp 熱交換器
CN101464102A (zh) * 2009-01-16 2009-06-24 河北科技大学 一种具有较高换热效率的管壳式换热器
CN212362502U (zh) * 2020-04-30 2021-01-15 杭州三花微通道换热器有限公司 换热器
CN212457512U (zh) * 2020-05-31 2021-02-02 杭州三花微通道换热器有限公司 换热组件和换热系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317890A4 *

Also Published As

Publication number Publication date
EP4317890A1 (en) 2024-02-07
CN114322105B (zh) 2023-07-25
US20240175636A1 (en) 2024-05-30
EP4317890A4 (en) 2025-04-02
CN114322105A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
EP3279598B1 (en) Heat exchanger and air conditioner
US12117248B2 (en) Microchannel flat tube and microchannel heat exchanger
KR20150014826A (ko) 열교환기 및 그 코르게이트 핀
JP5716499B2 (ja) 熱交換器及び空気調和機
KR900006245B1 (ko) 열교환기
US20120103582A1 (en) Heat exchanger and micro-channel tube thereof
CN211855020U (zh) 换热管和具有其的换热器
WO2022206765A1 (zh) 换热器和空调系统
CN112066598A (zh) 换热器及空调设备
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
WO2018040035A1 (zh) 微通道换热器及风冷冰箱
WO2022220159A1 (ja) 熱交換器
CN212457513U (zh) 换热器、空调器
CN210688819U (zh) 换热器和具有其的空调器
WO2018040034A1 (zh) 微通道换热器及风冷冰箱
JP7006376B2 (ja) 熱交換器
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
JP2012154520A (ja) 熱交換器用チューブ及び熱交換器
CN218410097U (zh) 一种空调
EP4300026B1 (en) Heat exchange fin, heat exchanger, and heat pump system
CN204063690U (zh) 汽车空调蒸发器
CN218672402U (zh) 换热器和具有其的空调器
TWI809718B (zh) 熱交換器及冷凍循環裝置
JP7226364B2 (ja) 熱交換器
WO2022121848A1 (zh) 换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284904

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022778947

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022778947

Country of ref document: EP

Effective date: 20231030