WO2022185743A1 - Displacement sensor, and state monitoring method - Google Patents
Displacement sensor, and state monitoring method Download PDFInfo
- Publication number
- WO2022185743A1 WO2022185743A1 PCT/JP2022/001363 JP2022001363W WO2022185743A1 WO 2022185743 A1 WO2022185743 A1 WO 2022185743A1 JP 2022001363 W JP2022001363 W JP 2022001363W WO 2022185743 A1 WO2022185743 A1 WO 2022185743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality
- received light
- abnormality type
- types
- displacement sensor
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000012544 monitoring process Methods 0.000 title claims abstract description 44
- 230000005856 abnormality Effects 0.000 claims abstract description 225
- 238000007689 inspection Methods 0.000 claims abstract description 26
- 238000000605 extraction Methods 0.000 claims description 14
- 239000000284 extract Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 230000006866 deterioration Effects 0.000 description 12
- 238000011109 contamination Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
Definitions
- the present invention relates to a displacement sensor and a state monitoring method.
- a displacement sensor using an optical system has been used as a non-contact device for measuring the displacement of a workpiece.
- a displacement sensor using an optical system has been used as a non-contact device for measuring the displacement of a workpiece.
- Patent Document 1 discloses a technique related to a detection device that detects signs of an abnormality in a detection sensor before an abnormality occurs in the detection sensor. Specifically, the detection device disclosed in Patent Document 1 acquires the amount of light received by the light receiving unit when the workpiece passes through the detection position at regular intervals, and generates a light reception waveform based on the acquisition result. do. Then, the detection device determines whether or not there is a sign of abnormality in the detection sensor by comparing the reference waveform and the received light waveform.
- an object of the present invention is to provide a displacement sensor and a state monitoring method that can appropriately determine the type of abnormality.
- a displacement sensor includes a light projecting unit that projects light onto an inspection area, a light receiving unit that receives light reflected by the inspection area and outputs a received light waveform, and a plurality of sensors included in the received light waveform.
- a storage unit in which abnormality type information in which the characteristic information and a plurality of abnormality types predicted from the plurality of characteristic information are associated in advance;
- a feature information extraction unit for extracting the above feature information, and at least one or more of a plurality of abnormality types in the abnormality type information pre-stored in the storage unit based on at least two or more extracted feature information.
- an output unit for outputting the determined abnormality type.
- the received light waveform is generated as a waveform indicating the amount of light received by each pixel of the light received by the imaging device of the light receiving unit.
- the characteristic information extraction unit extracts at least two pieces of characteristic information based on the received light waveform
- the abnormality type determination unit detects abnormality type information pre-stored in the storage unit based on the characteristic information. It is possible to appropriately determine at least one type of abnormality among the plurality of types of abnormality in .
- the abnormality type determination unit monitors the feature information to be extracted by at least one of the amount of difference from a reference value, the amount of change in a predetermined period, and the information included in the received light waveform at a certain point in time. may be used to determine the abnormality type.
- the abnormality type determination unit uses a plurality of types of monitoring methods to determine the abnormality type, so that the abnormality type can be determined more appropriately.
- an abnormality type that can be determined according to the monitoring method may be classified.
- the abnormality types that can be determined according to the monitoring method are classified. Therefore, in determining the abnormality type, an appropriate monitoring method can be used according to each abnormality type.
- the feature information may include at least two of the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level.
- the abnormality type can be determined more specifically based on these.
- the abnormality type determination unit determines the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level.
- the type of abnormality may be determined by
- the abnormality type determination unit appropriately combines a plurality of pieces of feature information to determine each abnormality type, so it is possible to more appropriately determine the abnormality type.
- the received light amount, the received light amount adjustment parameter, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and Abnormality types that can be determined may be classified according to a combination of at least two types of background levels.
- the abnormality type information includes a combination of at least two of the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level. Since the types of abnormality that can be determined are classified according to the type of abnormality, it is possible to appropriately combine feature information according to each type of abnormality in determining the type of abnormality.
- an abnormality type that can be determined may be classified according to the presence or absence of a workpiece and a base in the inspection area.
- the work is an object to be measured by the displacement sensor, and the base is a base on which the work is placed.
- the abnormality type can be appropriately determined according to the presence or absence of the work and base in the inspection area.
- the user can directly and specifically grasp what kind of measures should be taken.
- a state monitoring method is a state monitoring method executed by a displacement sensor including a processor, comprising: a light projecting step of projecting light onto an inspection area; a light receiving step of outputting a light receiving waveform; a feature information extracting step of extracting at least two types of feature information based on the light receiving waveform output in the light receiving step; out of the plurality of abnormality types in the abnormality type information stored in advance in the memory, in which the plurality of characteristic information included in the received light waveform and the plurality of abnormality types predicted from the plurality of characteristic information are associated with each other , an abnormality type determination step of determining at least one type of abnormality type, and an output step of outputting the determined abnormality type.
- the feature information extraction step at least two pieces of feature information are extracted based on the received light waveform, and in the abnormality type determination step, based on the feature information, the abnormality type information pre-stored in the memory At least one type of abnormality among the plurality of types of abnormality can be appropriately determined.
- FIG. 1 is a perspective view showing the appearance of a sensor head of a displacement sensor 10 according to an embodiment of the invention
- FIG. It is a block which shows each function which comprises the displacement sensor 10 which concerns on one Embodiment of this invention.
- FIG. 3 is a block diagram showing a control unit 130 involved in abnormality type determination processing and each functional configuration related thereto in the displacement sensor 10 according to one embodiment of the present invention. It is a figure which shows an example of the characteristic information extracted from a light reception waveform. It is a figure which shows an example of the abnormality classification information in which characteristic information and the abnormality classification predicted from the said characteristic information are matched. (a) It is a figure which shows an example which determines sensor contamination.
- FIG. FIG. 10 is a flow chart showing a specific process flow of an abnormality type determination method M100 executed in steps S15 to S18 in FIG. 9;
- FIG. FIG. 6 is a diagram showing an example of an abnormality type that cannot be determined according to the presence or absence of a workpiece and a base in an inspection area among the abnormality types in FIG. 5 ;
- FIG. 10 is a diagram showing an example of abnormality type information in which characteristic information used and predicted abnormality types are associated with each monitoring method;
- FIG. 1 is a perspective view showing the appearance of a sensor head of a displacement sensor 10 according to one embodiment of the invention.
- the displacement sensor 10 includes a sensor head 100 and an auxiliary housing (not shown) called an amplifier unit connected via a cable 11 .
- the light projecting unit 110, the light receiving unit 120, the control unit 130, and the storage unit 140 are incorporated in the sensor head 100 shown in FIG. provided in the department. However, it is not always necessary to separate the sensor head 100 and the amplifier section, and the entire configuration shown in FIG. 2 may be provided in one housing.
- the light receiving unit 120 receives the light reflected by the inspection area and outputs a received light waveform.
- the light receiving unit 120 has a CMOS including a plurality of pixels as the image sensor 121, and further includes a signal processing circuit 122 for processing image signals generated by the image sensor 121 and an A/D converter. It has a circuit 123 .
- the signal processing circuit 122 controls the timing of the operation of the imaging device 121 based on commands from the control unit 130 , takes in an image generated by the imaging device 121 , and outputs the image to the A/D conversion circuit 123 .
- the image analog-to-digital converted by the A/D conversion circuit 123 is input to the control section 130 for measurement processing.
- the control unit 130 is, for example, a CPU, and causes the light projecting unit 110 to emit the laser light L1 based on a program, setting data, and the like stored in the storage unit 140, and receives light in accordance with the emission timing.
- the part 120 is operated to receive the reflected light L2 from the workpiece W. Then, the control unit 130 measures the amount of displacement of the workpiece W through various processes based on the received light waveform output by the light receiving unit 120 .
- the control unit 130 extracts feature information included in the received light waveform, and determines an abnormality type estimated from the extracted feature information. The details of the process of determining the abnormality type in the displacement sensor 10 will be described later.
- the storage unit 140 is, for example, a non-volatile memory such as an EEPROM, and stores programs, setting data for defining various operations controlled by the control unit 130, and an abnormality type used in processing for determining an abnormality type described later. information is stored. It is also set as a buffer function for accumulating data such as the received light waveform output by the light receiving unit 120 and the characteristic information extracted from the received light waveform, which are used in the process of determining the type of abnormality described later.
- EEPROM electrically erasable programmable read-only memory
- the storage unit 140 is, for example, a non-volatile memory such as an EEPROM, and stores programs, setting data for defining various operations controlled by the control unit 130, and an abnormality type used in processing for determining an abnormality type described later. information is stored. It is also set as a buffer function for accumulating data such as the received light waveform output by the light receiving unit 120 and the characteristic information extracted from the received light waveform, which are used in the process of determining
- the display unit 150 is composed of, for example, a liquid crystal display or an organic EL display, and displays the values measured by the control unit 130 described above, the abnormality type described later, countermeasures corresponding to the abnormality type, and other settings related to the displacement sensor 10. and information to be notified to the user, such as status, etc., are displayed.
- the operation unit 160 is composed of buttons, a dial, a touch panel, or the like, and is used, for example, to allow the user to turn on/off the power of the displacement sensor 10, make various settings, switch operation modes, and the like.
- the input/output interface 170 is connected to external devices such as a PC (personal computer) and a PLC (programmable logic controller).
- external devices such as a PC (personal computer) and a PLC (programmable logic controller).
- the same operation as that performed by the operation unit 160 can be performed on the external device.
- the displacement sensor 10 may be operated on the PC, or the measurement results obtained by the displacement sensor 10 may be displayed on the screen of the PC.
- the abnormality type determination processing is, for example, an abnormality that makes it impossible to properly measure the workpiece W or the like due to aged deterioration of the displacement sensor 10, contamination due to the adhesion of foreign matter such as dust, or the influence of the surrounding environment. It is a function to detect symptoms.
- FIG. 3 is a block diagram showing the control unit 130 involved in abnormality type determination processing and each functional configuration related thereto in the displacement sensor 10 according to one embodiment of the present invention.
- the control unit 130 includes a characteristic information extraction unit 131, an abnormality type determination unit 132, and an output unit 133, and determines the abnormality type while referring to the storage unit 140, and displays the result on the display unit. Output to 150.
- the feature information extraction unit 131 extracts at least two types of feature information based on the received light waveform output by the light receiving unit 120 .
- the characteristic information extraction unit 131 extracts a plurality of pieces of characteristic information, which will be described later, based on the received light waveform continuously output by the light receiving unit 120 , and accumulates them in the storage unit 140 .
- FIG. 4 is a diagram showing an example of feature information extracted from the received light waveform.
- the pixel position indicates the position in the base line direction in triangulation with respect to the pixel on the image sensor 121
- the LSB indicates the average value of the amount of received light of the pixel corresponding to the pixel position.
- a background level is extracted.
- the amount of received light is the amount of light received by the light receiving unit 120
- the parameter for adjusting the amount of received light is a received light waveform corresponding to the amount of light received by the light receiving unit 120. Adjustments (for example, gain, exposure time, etc.) necessary for output.
- the width value is, for example, the width (half width) of the received light waveform at 50% of the peak received light amount, and indicates the spread of the received light waveform.
- the number of planes is the received light waveform. is the number of peaks in , indicating the number of light components.
- the total area of the received light waveform is, for example, the total area of the range occupied by the received light waveform shown in FIG.
- the width value is not limited to the width (half width) of the received light waveform at 50% of the peak received light amount. It may be a width value of the received light waveform in % or the like.
- the feature information extraction unit 131 extracts the six feature information items (1) to (6) described above from the received light waveform output by the light receiving unit 120 .
- the abnormality type determination unit 132 determines at least one of a plurality of abnormality types in the abnormality type information pre-stored in the storage unit 140 based on at least two types of feature information extracted by the feature information extraction unit 131.
- the above abnormality types are determined.
- the abnormality type determination unit 132 determines the abnormality type based on the feature information (1) to (6) described above, based on the time-series changes, combinations thereof, and the like.
- the storage unit 140 stores in advance abnormality type information in which a plurality of characteristic information included in the received light waveform and a plurality of abnormality types predicted from the plurality of characteristic information are associated with each other.
- the abnormality type determination unit 132 determines the abnormality type while referring to the abnormality type information stored in the storage unit 140 based on the characteristic information (1) to (6) described above.
- the abnormality type determination unit 132 determines the abnormality types (a) to (f) based on the feature information (1) to (6), what monitoring method is used? It is associated with whether it is determined using In the monitoring method, for example, for the feature information (1) to (6) described above, (A) the amount of difference from the reference value, (B) the amount of change in a predetermined period, and (C) the received light waveform at a certain point Methods of monitoring the information contained are included, of which at least one or more monitoring methods are used.
- the amount of difference from the reference value is compared with the initial value of the displacement sensor 10 (for example, the value at the time of shipment from the factory, at the time of purchase, or at the start of work) as a reference value (threshold), and (B) the change in a predetermined period
- the amount is, for example, the amount of change in a short period of several ms to several hundreds of ms is monitored, and (C) the information contained in the received light waveform at a certain time is the information contained in the temporary waveform among the received light waveforms. It detects.
- FIG. 6B is a diagram showing an example of determining (b) light source deterioration.
- the displacement sensor 10 when there is light source deterioration, the displacement sensor 10 is in a state where the amount of received light decreases and the gain, which is the parameter for adjusting the amount of received light, is increased. For example, if the displacement sensor 10 exceeds the reference value (threshold value) range that enables proper measurement of the workpiece compared with the initial reference value (the value detected by teaching when used for the first time), , the abnormality type determination unit 132 determines that the light source has deteriorated.
- the reference value the reference value (threshold value) range that enables proper measurement of the workpiece compared with the initial reference value (the value detected by teaching when used for the first time)
- FIG. 6D is a diagram showing an example of determining (d) multiple reflections.
- a change such as an increase in the number of faces occurs (rapid change for a short time).
- the displacement sensor 10 exceeds the range of the reference value (threshold value) of the parameters (width value, number of surfaces, etc.) extracted from the measured value and the received light waveform that can appropriately measure the workpiece .
- the abnormality type determination unit 132 determines multiple reflection.
- the amount of received light may decrease (the parameter for adjusting the amount of received light increases), and this characteristic information may also be used for determining whether the sensor is dirty.
- FIG. 6F is a diagram showing an example of determining (f) disturbance light.
- the amount of received light, the parameter for adjusting the amount of received light, the width value, the total area of the received light waveform, and the background level change (sudden change in a short time).
- the background level may increase but may also decrease, which differs from (a) sensor contamination discussed above.
- the displacement sensor 10 exceeds the range of the reference value (threshold value) in which appropriate measurement is possible for the workpiece, the abnormality type determination unit 132 determines that it is disturbance light.
- the abnormality type determination unit 132 uses the monitoring methods (A) to (C) for the abnormality types (a) to (f) based on the feature information (1) to (6).
- the abnormality type may include penetration, head tilt, and transparent object detection, etc.
- the feature information may include information on the tilt or the center of gravity of the received light waveform, or other information that can be extracted from the received light waveform.
- Feature information may be included.
- the monitoring method for example, a continuous monitoring method, an intermittent or periodic (long-term and short-term) monitoring method, and the like may be used.
- it is not necessary to apply all of these, including the above-described abnormality type, feature information, and monitoring method and it is possible to appropriately determine the abnormality type according to the abnormality type, accuracy, performance, etc. desired by the user. You can choose.
- the abnormality type determination unit 132 determines the abnormality type.
- FIG. 7 is a diagram showing an example of displaying an abnormality type on the display section 150 provided in the amplifier section. As shown in FIG. 7, the abnormality type "sensor dirt” is displayed. This allows the user to recognize sensor contamination and deal with it.
- the content displayed on the display unit 150 is not limited to the type of abnormality. It is also possible to display countermeasures or presumed causes corresponding to . This allows the user to directly and specifically grasp what countermeasures should be taken.
- step S11 as described with reference to FIG. 1, the displacement sensor 10 projects the laser beam L1 onto the work W and receives the reflected light L2 from the work W with respect to the laser beam L1. , the amount of displacement of the surface of the work W is measured.
- step S13 at least two types of feature information are extracted by the feature information extraction unit 131 in the control unit 130 based on the received light waveform output in step S12. Specific examples are (1) received light amount, (2) received light amount adjustment parameter, (3) width value, (4) number of planes, (5) received light waveform total area, and (6) described with reference to FIG.
- the background level is extracted as feature information.
- step S14 the feature information extracted in step S13 is accumulated in the storage unit 140 by the control unit 130.
- the abnormality type determination unit 132 in the control unit 130 determines the abnormality type based on the feature information accumulated in step S14 while referring to the abnormality type information stored in advance in the memory. .
- the abnormality type information stored in advance in the memory As a specific example, as described with reference to FIG.
- the abnormality type determination unit 132 includes (1) received light amount, (2) received light amount adjustment parameter, (3) width value, (4) number of surfaces, and (5) For the six characteristic information of the total area of the received light waveform and (6) the background level, using three monitoring methods of (A) the reference value difference, (B) a sudden change in a short time, and (C) the received light waveform at a certain point, Six types of abnormalities are determined: (a) sensor contamination, (b) light source deterioration, (c) narrow space measurement, (d) multiple reflection, (e) mutual interference, and (f) ambient light.
- steps S13 to S19 may be executed for each measurement cycle, or may be executed appropriately as necessary.
- FIG. 10 is a flow chart showing a specific process flow of the abnormality type determination method M100 executed in steps S15 to S18 in FIG.
- the abnormality type determination method M100 includes steps S101 to S116, and each step is executed by the processor included in the displacement sensor 10.
- the abnormality type determination unit 132 monitors a short-time sudden change that is a change (increase or decrease) of each feature information and whether or not it is within the range of the reference value (above or below). By doing so, the type of abnormality is determined. Processing in each of these steps will be specifically described.
- the initial reference value is, for example, set based on a value detected by teaching when the displacement sensor 10 is purchased and used for the first time. 2) This is for grasping the amount of change (difference) from when the displacement sensor 10 is used for the first time with respect to the parameter for adjusting the amount of received light.
- the initial reference value is preferably set within a range in which the displacement sensor 10 can appropriately measure the workpiece with respect to the amount of received light and the parameter for adjusting the amount of received light.
- the abnormality type determination unit 132 may be unable to determine (b) the deterioration of the light source. be. In this case, the abnormality type determination unit 132 may determine (b) light source deterioration by using a value preset in the displacement sensor 10 or by setting by the user.
- step S103 the abnormality type determination unit 132 (4) determines whether the number of pages has increased and exceeds the reference value.
- the reference value is, for example, set based on a value detected by teaching at the start of work when the displacement sensor 10 is operated. This is for grasping the amount of change (difference) from the start of work or the like.
- the reference value is preferably set within a range in which the displacement sensor 10 can appropriately measure the workpiece with respect to the feature information (including feature information described later).
- the reference value may be updated for each teaching. If teaching is not performed at the start of work when the displacement sensor 10 is to be operated, a value preset in the displacement sensor 10 may be used, It may be set by the user.
- step S104 Yes in step S103, the abnormality type determination unit 132 (4) determines that the number of surfaces does not decrease and is not within the reference value range (No in step S104), (d) multiple reflection. (Step S105).
- the abnormality type determination unit 132 determines (e) mutual interference if (4) the number of planes repeats rising and falling (Yes at step S106) (step S107).
- step S108 the abnormality type determination unit 132 determines whether (1) the received light amount has decreased and is below the reference value, and (2) the received light amount adjustment parameter has increased and exceeded the reference value. judge.
- the abnormality type determination unit 132 (3) determines that the sensor is dirty (step S110) if the width value has increased (Yes at step S109).
- step S111 the abnormality type determination unit 132 (1) increases the amount of received light and (2) decreases the parameter for adjusting the amount of received light (Yes in step S111). It is determined that the measurement is performed (step S112).
- step S114 the abnormality type determination unit 132 determines whether (5) the total area of the received light waveform has increased and exceeds the reference value, and (6) the background level has increased and exceeded the reference value. judge.
- step S115 the abnormality type determination unit 132 determines whether (5) the total area of the received light waveform has decreased and is below the reference value, and (6) the background level has decreased and is below the reference value. Otherwise (Yes in step S115), it is determined as disturbance light (step S116).
- the feature information extraction unit 131 extracts a plurality of feature information from the received light waveform
- the abnormality type determination unit 132 detects the plurality of feature information. At least one type of abnormality among a plurality of types of abnormality in the abnormality type information pre-stored in the storage unit 140 can be determined based on the feature information. As a result, the abnormality type can be appropriately determined, and the user can take countermeasures corresponding to the abnormality type.
- abnormality types (a) to (f) shown in FIG. 5 are determined, but the types of abnormality that can be determined may differ depending on the state of the inspection area.
- FIG. 11 is a diagram showing an example of an abnormality type that cannot be determined according to the presence or absence of a workpiece and a base in the inspection area, among the abnormality types in FIG.
- the abnormality types (a) to (f) can be appropriately determined when the workpiece exists in the inspection area, but when the workpiece and the base do not exist in the inspection area, (a) sensor contamination, (c) narrow space measurement, and (d) multiple reflection may not be determined appropriately.
- the display unit 150 displays a message stating "If there is no workpiece, appropriate determination may not be possible.” It is also possible to make the user confirm by sending a notice similar to this.
- the type of abnormality to be determined or the conditions for appropriately determining each type of abnormality are displayed on the display unit 150 in advance so that the user can confirm. You can leave it as is.
- the user may input, via the operation unit 160, a time period that satisfies appropriate conditions (for example, in this embodiment, a work and a base exist).
- appropriate conditions for example, in this embodiment, a work and a base exist.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Provided are a displacement sensor and a state monitoring method with which it is possible for an abnormality type to be appropriately determined. A displacement sensor 10 is provided with: a light projecting unit 110 for projecting light onto an inspection region; a light receiving unit 120 for receiving light reflected by the inspection region and outputting a received light waveform; a storage unit 140 for storing, in advance, abnormality type information associating a plurality of items of feature information included in the received light waveform and a plurality of abnormality types predicted from the plurality of items of feature information; a feature information extracting unit 131 for extracting at least two types of feature information on the basis of the received light waveform output by the receiving unit; an abnormality type determining unit 132 for determining at least one abnormality type, from among the plurality of abnormality types in the abnormality type information stored in advance in the storage unit, on the basis of the at least two types of extracted feature information; and an output unit 133 for outputting the determined abnormality type.
Description
本発明は、変位センサ及び状態監視方法に関する。
The present invention relates to a displacement sensor and a state monitoring method.
従来、非接触でワークの変位を計測する装置として、光学系を利用した変位センサが用いられている。このような変位センサでは、当該変位センサの経年劣化、埃等の異物の付着による汚れ及び周辺環境による影響等によって、ワークを適切に計測できなくなってしまうおそれがある。
Conventionally, a displacement sensor using an optical system has been used as a non-contact device for measuring the displacement of a workpiece. With such a displacement sensor, there is a risk that the workpiece cannot be measured properly due to deterioration over time of the displacement sensor, contamination due to adherence of foreign matter such as dust, influence of the surrounding environment, and the like.
特許文献1では、検出センサに異常が発生する前に、当該検出センサの異常の兆候を検出する検出装置に関する技術が開示されている。具体的には、特許文献1に開示されている検出装置は、ワークが検出位置を通過する場合における受光部での受光量を規定周期毎に取得し、当該取得結果に基づいて受光波形を生成する。そして、当該検出装置は、基準波形と受光波形とを比較することによって、検出センサに異常の兆候があるか否かを判定している。
Patent Document 1 discloses a technique related to a detection device that detects signs of an abnormality in a detection sensor before an abnormality occurs in the detection sensor. Specifically, the detection device disclosed in Patent Document 1 acquires the amount of light received by the light receiving unit when the workpiece passes through the detection position at regular intervals, and generates a light reception waveform based on the acquisition result. do. Then, the detection device determines whether or not there is a sign of abnormality in the detection sensor by comparing the reference waveform and the received light waveform.
しかしながら、特許文献1に開示されている検出装置では、検出センサに異常の兆候があるか否かについて判定しているものの、異常の兆候を検出した場合であっても、その要因及び詳細を分別できていない。このため、ユーザにとっては、その後、具体的にどのような対策を講じる必要があるかを把握できないという問題がある。
However, in the detection device disclosed in Patent Document 1, although it is determined whether or not there is a sign of abnormality in the detection sensor, even if a sign of abnormality is detected, the cause and details are classified. I haven't been able to. For this reason, there is a problem that the user cannot grasp what concrete countermeasures need to be taken thereafter.
そこで、本発明は、異常種別を適切に判定することができる変位センサ及び状態監視方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a displacement sensor and a state monitoring method that can appropriately determine the type of abnormality.
本発明の一態様に係る変位センサは、検査領域に光を投光する投光部と、検査領域で反射された光を受光し、受光波形を出力する受光部と、受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応付けられた異常種別情報が予め記憶される記憶部と、受光部によって出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する特徴情報抽出部と、抽出された少なくとも2種以上の特徴情報に基づいて、記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する異常種別判定部と、判定された異常種別を出力する出力部と、を備える。ここで、受光波形とは、受光部の撮像素子が受光した光について、画素毎にその受光量を示して波形として生成されるものである。
A displacement sensor according to an aspect of the present invention includes a light projecting unit that projects light onto an inspection area, a light receiving unit that receives light reflected by the inspection area and outputs a received light waveform, and a plurality of sensors included in the received light waveform. a storage unit in which abnormality type information in which the characteristic information and a plurality of abnormality types predicted from the plurality of characteristic information are associated in advance; A feature information extraction unit for extracting the above feature information, and at least one or more of a plurality of abnormality types in the abnormality type information pre-stored in the storage unit based on at least two or more extracted feature information. and an output unit for outputting the determined abnormality type. Here, the received light waveform is generated as a waveform indicating the amount of light received by each pixel of the light received by the imaging device of the light receiving unit.
この態様によれば、特徴情報抽出部が受光波形に基づいて少なくとも2つ以上の特徴情報を抽出し、異常種別判定部が当該特徴情報に基づいて、記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を適切に判定することができる。
According to this aspect, the characteristic information extraction unit extracts at least two pieces of characteristic information based on the received light waveform, and the abnormality type determination unit detects abnormality type information pre-stored in the storage unit based on the characteristic information. It is possible to appropriately determine at least one type of abnormality among the plurality of types of abnormality in .
上記態様において、異常種別判定部は、抽出される特徴情報について、基準値との差分量、所定期間における変化量、及びある時点の受光波形に含まれる情報のうち、少なくとも1つ以上の監視方法を用いて異常種別を判定してもよい。
In the above aspect, the abnormality type determination unit monitors the feature information to be extracted by at least one of the amount of difference from a reference value, the amount of change in a predetermined period, and the information included in the received light waveform at a certain point in time. may be used to determine the abnormality type.
この態様によれば、異常種別判定部は、複数種の監視方法を用いて異常種別を判定するため、より適切に異常種別を判定することができる。
According to this aspect, the abnormality type determination unit uses a plurality of types of monitoring methods to determine the abnormality type, so that the abnormality type can be determined more appropriately.
上記態様において、記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、監視方法に応じて判定可能な異常種別が分類されてもよい。
In the above aspect, among the plurality of abnormality types in the abnormality type information pre-stored in the storage unit, an abnormality type that can be determined according to the monitoring method may be classified.
この態様によれば、異常種別情報では、監視方法に応じて判定可能な異常種別が分類されているため、異常種別の判定において、各異常種別に応じて適切な監視方法を用いることができる。
According to this aspect, in the abnormality type information, the abnormality types that can be determined according to the monitoring method are classified. Therefore, in determining the abnormality type, an appropriate monitoring method can be used according to each abnormality type.
上記態様において、特徴情報は、受光量、受光量調整パラメタ、受光波形の幅値、受光波形の面数、受光波形の総面積、及び背景レベルのうち、少なくとも2種以上が含まれてもよい。
In the above aspect, the feature information may include at least two of the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level. .
この態様によれば、受光波形から抽出される特徴情報について、受光量、受光量調整パラメタ、受光波形の幅値、受光波形の面数、受光波形の総面積、及び背景レベルのうち、少なくとも2種以上が含まれるため、これらに基づいて、より具体的に、異常種別を判定することができる。
According to this aspect, for the feature information extracted from the received light waveform, at least two of the received light amount, the received light amount adjustment parameter, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level. Since more than one type is included, the abnormality type can be determined more specifically based on these.
上記態様において、異常種別判定部は、受光量、受光量調整パラメタ、受光波形の幅値、受光波形の面数、受光波形の総面積、及び背景レベルのうち、少なくとも2種以上の組み合わせに応じて異常種別を判定してもよい。
In the above-described aspect, the abnormality type determination unit determines the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level. The type of abnormality may be determined by
この態様によれば、異常種別判定部は、複数の特徴情報を適切に組み合わせて各異常種別を判定するため、より適切に異常種別を判定することができる。
According to this aspect, the abnormality type determination unit appropriately combines a plurality of pieces of feature information to determine each abnormality type, so it is possible to more appropriately determine the abnormality type.
上記態様において、記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、受光量、受光量調整パラメタ、受光波形の幅値、受光波形の面数、受光波形の総面積、及び背景レベルのうち、少なくとも2種以上の組み合わせに応じて判定可能な異常種別が分類されてもよい。
In the above aspect, among the plurality of abnormality types in the abnormality type information pre-stored in the storage unit, the received light amount, the received light amount adjustment parameter, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and Abnormality types that can be determined may be classified according to a combination of at least two types of background levels.
この態様によれば、異常種別情報では、受光量、受光量調整パラメタ、受光波形の幅値、受光波形の面数、受光波形の総面積、及び背景レベルのうち、少なくとも2種以上の組み合わせに応じて判定可能な異常種別が分類されているため、異常種別の判定において、各異常種別に応じて適切に特徴情報を組み合わせることができる。
According to this aspect, the abnormality type information includes a combination of at least two of the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level. Since the types of abnormality that can be determined are classified according to the type of abnormality, it is possible to appropriately combine feature information according to each type of abnormality in determining the type of abnormality.
上記態様において、記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、検査領域におけるワーク及びベースの有無に応じて判定可能な異常種別が分類されてもよい。なお、ワークとは、変位センサが計測する計測対象物であって、ベースとは、ワークを載置するための基台である。
In the above aspect, among the plurality of abnormality types in the abnormality type information pre-stored in the storage unit, an abnormality type that can be determined may be classified according to the presence or absence of a workpiece and a base in the inspection area. The work is an object to be measured by the displacement sensor, and the base is a base on which the work is placed.
この態様によれば、検査領域におけるワーク及びベースの有無に応じて、適切に異常種別を判定することができる。
According to this aspect, the abnormality type can be appropriately determined according to the presence or absence of the work and base in the inspection area.
上記態様において、出力部は、判定された異常種別に対応する対策もしくは推定原因を出力してもよい。
In the above aspect, the output unit may output countermeasures or presumed causes corresponding to the determined abnormality type.
この態様によれば、ユーザはどのような対策をすべきか直接的かつ具体的に把握することができる。
According to this aspect, the user can directly and specifically grasp what kind of measures should be taken.
本発明の一態様に係る状態監視方法は、プロセッサを含む変位センサにより実行される状態監視方法であって、検査領域に光を投光する投光ステップと、検査領域で反射された光を受光し、受光波形を出力する受光ステップと、受光ステップで出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する特徴情報抽出ステップと、抽出された少なくとも2種以上の特徴情報に基づいて、予めメモリに記憶されている、受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応付けられた異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する異常種別判定ステップと、判定された異常種別を出力する出力ステップと、を含む。
A state monitoring method according to an aspect of the present invention is a state monitoring method executed by a displacement sensor including a processor, comprising: a light projecting step of projecting light onto an inspection area; a light receiving step of outputting a light receiving waveform; a feature information extracting step of extracting at least two types of feature information based on the light receiving waveform output in the light receiving step; out of the plurality of abnormality types in the abnormality type information stored in advance in the memory, in which the plurality of characteristic information included in the received light waveform and the plurality of abnormality types predicted from the plurality of characteristic information are associated with each other , an abnormality type determination step of determining at least one type of abnormality type, and an output step of outputting the determined abnormality type.
この態様によれば、特徴情報抽出ステップで受光波形に基づいて少なくとも2つ以上の特徴情報が抽出し、異常種別判定ステップで当該特徴情報に基づいて、メモリに予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を適切に判定することができる。
According to this aspect, in the feature information extraction step, at least two pieces of feature information are extracted based on the received light waveform, and in the abnormality type determination step, based on the feature information, the abnormality type information pre-stored in the memory At least one type of abnormality among the plurality of types of abnormality can be appropriately determined.
本発明によれば、異常種別を適切に判定することができる変位センサ及び状態監視方法を提供することができる。
According to the present invention, it is possible to provide a displacement sensor and a state monitoring method that can appropriately determine the type of abnormality.
以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施形態は、あくまで、本発明を実施するための具体的な一例を挙げるものであって、本発明を限定的に解釈させるものではない。また、説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する場合がある。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. It should be noted that the embodiments described below are merely specific examples for carrying out the present invention, and are not intended to limit the interpretation of the present invention. Also, in order to facilitate understanding of the description, the same reference numerals are given to the same constituent elements in each drawing as much as possible, and redundant description may be omitted.
<一実施形態>
[変位センサの構成]
図1は、本発明の一実施形態に係る変位センサ10のセンサヘッドの外観を示す斜視図である。変位センサ10は、センサヘッド100と、ケーブル11を介して接続されるアンプ部と呼ばれる補助筐体(図示せず)とを備える。 <One embodiment>
[Configuration of displacement sensor]
FIG. 1 is a perspective view showing the appearance of a sensor head of adisplacement sensor 10 according to one embodiment of the invention. The displacement sensor 10 includes a sensor head 100 and an auxiliary housing (not shown) called an amplifier unit connected via a cable 11 .
[変位センサの構成]
図1は、本発明の一実施形態に係る変位センサ10のセンサヘッドの外観を示す斜視図である。変位センサ10は、センサヘッド100と、ケーブル11を介して接続されるアンプ部と呼ばれる補助筐体(図示せず)とを備える。 <One embodiment>
[Configuration of displacement sensor]
FIG. 1 is a perspective view showing the appearance of a sensor head of a
図1に示されるように、変位センサ10は、ベースBに載置されるワークWに対し、センサヘッド100からレーザ光L1を投光するとともに、当該レーザ光L1に対するワークWからの反射光L2を受光することによって、三角測距の原理に基づきワークWの表面の変位量を計測する。なお、変位量として計測されるのはセンサヘッド100からワークWの表面までの距離であり、検出データとして距離を出力することができる。
As shown in FIG. 1, the displacement sensor 10 emits a laser beam L1 from the sensor head 100 onto the workpiece W placed on the base B, and reflects the laser beam L1 from the workpiece W. is received, the amount of displacement of the surface of the work W is measured based on the principle of triangulation. It should be noted that what is measured as the amount of displacement is the distance from the sensor head 100 to the surface of the workpiece W, and the distance can be output as detection data.
このように、変位センサ10は、通常、レーザ光をワークWに投光して、当該ワークWの表面の変位量を計測する計測装置であるが、本実施形態においては、例えば、ワークWが存在していない場合、組み立てロボット等の設備や周辺環境を検査領域として、レーザ光を投光して、当該検査領域からの反射光を受光することによって、状態監視を行っても構わない。
As described above, the displacement sensor 10 is normally a measuring device that projects a laser beam onto the work W and measures the amount of displacement of the surface of the work W. In the present embodiment, for example, the work W If it does not exist, condition monitoring may be performed by projecting a laser beam and receiving reflected light from the inspection area, using equipment such as an assembly robot and the surrounding environment as the inspection area.
図2は、本発明の一実施形態に係る変位センサ10を構成する各機能を示すブロックである。図2に示されるように、変位センサ10は、投光部110と、受光部120と、制御部130と、記憶部140と、表示部150と、操作部160と、入出力インタフェース170とを備える。なお、投光部110は、発光素子111及び投光制御回路112を含み、受光部120は、撮像素子121、信号処理回路122及びA/D変換回路123を含む。
FIG. 2 is a block showing each function constituting the displacement sensor 10 according to one embodiment of the present invention. As shown in FIG. 2, the displacement sensor 10 includes a light projecting unit 110, a light receiving unit 120, a control unit 130, a storage unit 140, a display unit 150, an operation unit 160, and an input/output interface 170. Prepare. Note that the light projecting unit 110 includes a light emitting element 111 and a light projecting control circuit 112 , and the light receiving unit 120 includes an imaging device 121 , a signal processing circuit 122 and an A/D conversion circuit 123 .
なお、例えば、投光部110、受光部120、制御部130及び記憶部140は、図1に示されたセンサヘッド100に組み込まれ、表示部150、操作部160及び入出力インタフェース170は、アンプ部に設けられる。ただし、センサヘッド100とアンプ部との分離は必ずしも必要ではなく、図2に示された構成の全てを1つの筐体に設けるようにしても構わない。
Note that, for example, the light projecting unit 110, the light receiving unit 120, the control unit 130, and the storage unit 140 are incorporated in the sensor head 100 shown in FIG. provided in the department. However, it is not always necessary to separate the sensor head 100 and the amplifier section, and the entire configuration shown in FIG. 2 may be provided in one housing.
投光部110は、検査領域(例えば、ワークW)に光を投光する。具体的には、投光部110は、発光素子111としてレーザダイオード(LD)を有し、投光制御回路112によって当該発光素子111の発光強度及び発光時間が調整されながら、発光素子111が駆動して光を投光する。なお、投光制御回路112は、制御部130からの指令に基づいて動作する。
The light projecting unit 110 projects light onto the inspection area (for example, the workpiece W). Specifically, the light projection unit 110 has a laser diode (LD) as the light emitting element 111, and the light emitting element 111 is driven while the light emission intensity and light emission time of the light emitting element 111 are adjusted by the light projection control circuit 112. to emit light. It should be noted that the light projection control circuit 112 operates based on commands from the control section 130 .
受光部120は、検査領域で反射された光を受光し、受光波形を出力する。具体的には、受光部120は、撮像素子121として複数の画素を含むCMOSを有し、さらに、当該撮像素子121により生成される画像信号を処理するための信号処理回路122及びA/D変換回路123を有する。信号処理回路122は、制御部130からの指令に基づいて、撮像素子121の動作のタイミングを制御するとともに、撮像素子121が生成した画像を取り込んでA/D変換回路123に出力する。そして、A/D変換回路123によってアナログ-デジタル変換された画像は、計測処理のために制御部130に入力される。
The light receiving unit 120 receives the light reflected by the inspection area and outputs a received light waveform. Specifically, the light receiving unit 120 has a CMOS including a plurality of pixels as the image sensor 121, and further includes a signal processing circuit 122 for processing image signals generated by the image sensor 121 and an A/D converter. It has a circuit 123 . The signal processing circuit 122 controls the timing of the operation of the imaging device 121 based on commands from the control unit 130 , takes in an image generated by the imaging device 121 , and outputs the image to the A/D conversion circuit 123 . The image analog-to-digital converted by the A/D conversion circuit 123 is input to the control section 130 for measurement processing.
制御部130は、例えば、CPUであって、記憶部140に格納されているプログラム及び設定データ等に基づいて、投光部110からレーザ光L1を出射させるとともに、その出射のタイミングに合わせて受光部120を動作させて、ワークWからの反射光L2を受光させる。そして、制御部130は、受光部120によって出力される受光波形に基づいて、種々の処理によってワークWの変位量を計測する。
The control unit 130 is, for example, a CPU, and causes the light projecting unit 110 to emit the laser light L1 based on a program, setting data, and the like stored in the storage unit 140, and receives light in accordance with the emission timing. The part 120 is operated to receive the reflected light L2 from the workpiece W. Then, the control unit 130 measures the amount of displacement of the workpiece W through various processes based on the received light waveform output by the light receiving unit 120 .
また、制御部130は、受光部120によって出力される受光波形に基づいて、当該受光波形に含まれる特徴情報を抽出しつつ、抽出された特徴情報から推測される異常種別を判定する。変位センサ10における異常種別を判定する処理の詳細については、後述する。
Also, based on the received light waveform output by the light receiving unit 120, the control unit 130 extracts feature information included in the received light waveform, and determines an abnormality type estimated from the extracted feature information. The details of the process of determining the abnormality type in the displacement sensor 10 will be described later.
記憶部140は、例えば、EEPROM等の不揮発性メモリであって、プログラム、制御部130が制御する種々の動作を定義するための設定データ、及び後述する異常種別を判定する処理について用いられる異常種別情報等が記憶されている。また、後述する異常種別を判定する処理に用いられる、受光部120によって出力される受光波形及び当該受光波形から抽出される特徴情報等のデータを蓄積するためのバッファ機能としても設定される。
The storage unit 140 is, for example, a non-volatile memory such as an EEPROM, and stores programs, setting data for defining various operations controlled by the control unit 130, and an abnormality type used in processing for determining an abnormality type described later. information is stored. It is also set as a buffer function for accumulating data such as the received light waveform output by the light receiving unit 120 and the characteristic information extracted from the received light waveform, which are used in the process of determining the type of abnormality described later.
表示部150は、例えば、液晶ディスプレイ又は有機ELディスプレイ等で構成されており、上述した制御部130での計測値、後述する異常種別、当該異常種別に対応する対策、及びその他変位センサ10に関する設定及び状態等、ユーザに通知すべき情報等が表示される。
The display unit 150 is composed of, for example, a liquid crystal display or an organic EL display, and displays the values measured by the control unit 130 described above, the abnormality type described later, countermeasures corresponding to the abnormality type, and other settings related to the displacement sensor 10. and information to be notified to the user, such as status, etc., are displayed.
操作部160は、ボタン、ダイヤル又はタッチパネル等で構成されており、例えば、変位センサ10の電源のオンオフ、種々の設定及び動作モードの切り替え等をユーザにさせるためのものである。
The operation unit 160 is composed of buttons, a dial, a touch panel, or the like, and is used, for example, to allow the user to turn on/off the power of the displacement sensor 10, make various settings, switch operation modes, and the like.
入出力インタフェース170は、PC(personal computer)及びPLC(programmable logic controller)等の外部機器に接続される。外部機器に接続された場合には、操作部160において実行される操作と同様の操作を外部機器で行うことが可能となる。例えば、PC上で変位センサ10に対する操作を行なったり、変位センサ10で得られた計測結果をPCの画面に表示したりしても構わない。
The input/output interface 170 is connected to external devices such as a PC (personal computer) and a PLC (programmable logic controller). When connected to an external device, the same operation as that performed by the operation unit 160 can be performed on the external device. For example, the displacement sensor 10 may be operated on the PC, or the measurement results obtained by the displacement sensor 10 may be displayed on the screen of the PC.
[異常種別の判定処理]
次に、変位センサ10が行う異常種別の判定処理について、詳しく説明する。ここで、異常種別の判定処理とは、例えば、変位センサ10の経年劣化、埃等の異物の付着による汚れ及び周辺環境による影響等によって、ワークW等を適切に計測できなくなってしまう異常又はその兆候を検知する機能である。 [Abnormality type determination processing]
Next, the abnormality type determination processing performed by thedisplacement sensor 10 will be described in detail. Here, the abnormality type determination processing is, for example, an abnormality that makes it impossible to properly measure the workpiece W or the like due to aged deterioration of the displacement sensor 10, contamination due to the adhesion of foreign matter such as dust, or the influence of the surrounding environment. It is a function to detect symptoms.
次に、変位センサ10が行う異常種別の判定処理について、詳しく説明する。ここで、異常種別の判定処理とは、例えば、変位センサ10の経年劣化、埃等の異物の付着による汚れ及び周辺環境による影響等によって、ワークW等を適切に計測できなくなってしまう異常又はその兆候を検知する機能である。 [Abnormality type determination processing]
Next, the abnormality type determination processing performed by the
図3は、本発明の一実施形態に係る変位センサ10において、異常種別の判定処理に関わる制御部130及びそれに関連する各機能構成を示すブロック図である。図3に示されるように、制御部130は、特徴情報抽出部131と、異常種別判定部132と、出力部133とを備え、記憶部140を参照しながら、異常種別を判定して表示部150に出力する。
FIG. 3 is a block diagram showing the control unit 130 involved in abnormality type determination processing and each functional configuration related thereto in the displacement sensor 10 according to one embodiment of the present invention. As shown in FIG. 3, the control unit 130 includes a characteristic information extraction unit 131, an abnormality type determination unit 132, and an output unit 133, and determines the abnormality type while referring to the storage unit 140, and displays the result on the display unit. Output to 150.
特徴情報抽出部131は、受光部120によって出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する。具体的には、特徴情報抽出部131は、受光部120によって継続的に出力される受光波形に基づいて、後述する複数の特徴情報を抽出し、記憶部140に蓄積する。
The feature information extraction unit 131 extracts at least two types of feature information based on the received light waveform output by the light receiving unit 120 . Specifically, the characteristic information extraction unit 131 extracts a plurality of pieces of characteristic information, which will be described later, based on the received light waveform continuously output by the light receiving unit 120 , and accumulates them in the storage unit 140 .
図4は、受光波形から抽出される特徴情報の一例を示す図である。図中、画素位置は、撮像素子121上の画素に関して三角測距における基線方向の位置を示しており、LSBは画素位置に対応する画素の受光量の平均値を示している。図4に示されるように、受光波形から、(1)受光量、(2)受光量調整パラメタ、(3)幅値、(4)面数、(5)受光波形総面積、及び(6)背景レベルが抽出される。
FIG. 4 is a diagram showing an example of feature information extracted from the received light waveform. In the figure, the pixel position indicates the position in the base line direction in triangulation with respect to the pixel on the image sensor 121, and the LSB indicates the average value of the amount of received light of the pixel corresponding to the pixel position. As shown in FIG. 4, from the received light waveform, (1) received light amount, (2) received light amount adjustment parameter, (3) width value, (4) number of surfaces, (5) received light waveform total area, and (6) A background level is extracted.
なお、(1)受光量とは、受光部120が受光する光の受光量であり、(2)受光量調整パラメタとは、当該受光部120が受光した光の受光量に応じて受光波形として出力するために必要な調整(例えば、ゲイン及び露光時間等)である。(3)幅値とは、例えば、ピーク受光量の50%における受光波形の幅(半値幅)であって、当該受光波形の広がりを示すものであり、(4)面数とは、受光波形のピークの数であって、光成分の数を示すものである。(5)受光波形総面積とは、例えば、図4に示される受光波形で占める範囲の総面積であり、(6)背景レベルとは、変位センサ10が計測用の光を投光せずに受光部120によって受光される周囲環境光による受光量を示すものである。なお、幅値は、ピーク受光量の50%における受光波形の幅(半値幅)に限定されるものではなく、受光波形の広がりを示すものであれば、例えば、ピーク受光量の40%や60%等における受光波形の幅値であっても構わない。
Note that (1) the amount of received light is the amount of light received by the light receiving unit 120, and (2) the parameter for adjusting the amount of received light is a received light waveform corresponding to the amount of light received by the light receiving unit 120. Adjustments (for example, gain, exposure time, etc.) necessary for output. (3) The width value is, for example, the width (half width) of the received light waveform at 50% of the peak received light amount, and indicates the spread of the received light waveform. (4) The number of planes is the received light waveform. is the number of peaks in , indicating the number of light components. (5) The total area of the received light waveform is, for example, the total area of the range occupied by the received light waveform shown in FIG. It indicates the amount of ambient light received by the light receiving unit 120 . The width value is not limited to the width (half width) of the received light waveform at 50% of the peak received light amount. It may be a width value of the received light waveform in % or the like.
このように、本実施形態では、特徴情報抽出部131は、受光部120によって出力される受光波形から、上述した(1)~(6)の6つの特徴情報を抽出する。
Thus, in the present embodiment, the feature information extraction unit 131 extracts the six feature information items (1) to (6) described above from the received light waveform output by the light receiving unit 120 .
異常種別判定部132は、特徴情報抽出部131によって抽出された少なくとも2種以上の特徴情報に基づいて、記憶部140に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する。具体的には、異常種別判定部132は、上述した(1)~(6)の特徴情報に基づいて、これらの時系列変化及びこれらの組み合わせ等によって、異常種別を判定する。ここで、記憶部140には、受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応付けられた異常種別情報が予め記憶されている。異常種別判定部132は、上述した(1)~(6)の特徴情報に基づいて、記憶部140に記憶されている異常種別情報を参照しつつ、異常種別を判定する。
The abnormality type determination unit 132 determines at least one of a plurality of abnormality types in the abnormality type information pre-stored in the storage unit 140 based on at least two types of feature information extracted by the feature information extraction unit 131. The above abnormality types are determined. Specifically, the abnormality type determination unit 132 determines the abnormality type based on the feature information (1) to (6) described above, based on the time-series changes, combinations thereof, and the like. Here, the storage unit 140 stores in advance abnormality type information in which a plurality of characteristic information included in the received light waveform and a plurality of abnormality types predicted from the plurality of characteristic information are associated with each other. The abnormality type determination unit 132 determines the abnormality type while referring to the abnormality type information stored in the storage unit 140 based on the characteristic information (1) to (6) described above.
図5は、特徴情報と当該特徴情報から予測される異常種別とが対応付けられた異常種別情報の一例を示す図である。図5に示されるように、(a)センサ汚れ、(b)光源劣化、(c)狭所計測、(d)多重反射、(e)相互干渉、及び(f)外乱光の6つの異常種別が、上述した(1)受光量、(2)受光量調整パラメタ、(3)幅値、(4)面数、(5)受光波形総面積、及び(6)背景レベルの値、時系列変化及びこれらの組み合わせに応じて、判定される。
FIG. 5 is a diagram showing an example of abnormality type information in which feature information and an abnormality type predicted from the feature information are associated with each other. As shown in FIG. 5, there are six types of abnormalities: (a) sensor contamination, (b) light source deterioration, (c) narrow space measurement, (d) multiple reflection, (e) mutual interference, and (f) ambient light. is the above-mentioned (1) received light amount, (2) received light amount adjustment parameter, (3) width value, (4) number of planes, (5) received light waveform total area, and (6) background level value, time series change and a combination thereof.
さらに、異常種別判定部132によって、上述した(1)~(6)の特徴情報に基づいて、上述した(a)~(f)の異常種別が判定される際に、どのような監視方法を用いて判定されるかについて、対応付けられている。監視方法には、例えば、上述した(1)~(6)の特徴情報について、(A)基準値との差分量、(B)所定期間における変化量、及び(C)ある時点の受光波形に含まれる情報を監視する方法が含まれ、これらのうち、少なくとも1つ以上の監視方法が用いられる。
Furthermore, when the abnormality type determination unit 132 determines the abnormality types (a) to (f) based on the feature information (1) to (6), what monitoring method is used? It is associated with whether it is determined using In the monitoring method, for example, for the feature information (1) to (6) described above, (A) the amount of difference from the reference value, (B) the amount of change in a predetermined period, and (C) the received light waveform at a certain point Methods of monitoring the information contained are included, of which at least one or more monitoring methods are used.
(A)基準値との差分量とは、変位センサ10の初期値(例えば、工場出荷時、購入時又は始業時の値)を基準値(閾値)として比較し、(B)所定期間における変化量とは、例えば、数ms~数百msの短期間における変化量を監視し、(C)ある時点の受光波形に含まれる情報とは、受光波形のうち一時的な波形に含まれる情報を検知するものである。
(A) The amount of difference from the reference value is compared with the initial value of the displacement sensor 10 (for example, the value at the time of shipment from the factory, at the time of purchase, or at the start of work) as a reference value (threshold), and (B) the change in a predetermined period The amount is, for example, the amount of change in a short period of several ms to several hundreds of ms is monitored, and (C) the information contained in the received light waveform at a certain time is the information contained in the temporary waveform among the received light waveforms. It detects.
以下、(a)~(f)の異常種別について、具体例を示しながら詳しく説明する。
Below, the abnormality types (a) to (f) will be described in detail with specific examples.
図6Aは、(a)センサ汚れを判定する一例を示す図である。図6Aに示されるように、センサ汚れがある場合には、受光量、受光量調整パラメタ及び幅値が変化する(短時間急変)。さらに、変位センサ10として、ワークに対して適切な計測が可能である基準値(閾値)の範囲を超えた場合には、異常種別判定部132は、センサ汚れと判定する。なお、受光波形においてノイズ成分が含まれていれば、さらに、受光波形総面積及び背景レベルが変化する場合があり、これらの特徴情報もセンサ汚れの判定に用いても構わない。
FIG. 6A is a diagram showing an example of determining (a) sensor contamination. As shown in FIG. 6A, when the sensor is dirty, the amount of received light, the parameter for adjusting the amount of received light, and the width value change (rapidly change in a short time). Further, when the displacement sensor 10 exceeds the range of the reference value (threshold value) in which appropriate measurement is possible for the workpiece, the abnormality type determination unit 132 determines that the sensor is dirty. If noise components are included in the received light waveform, the total area of the received light waveform and the background level may change, and the characteristic information of these may also be used for the determination of sensor contamination.
図6Bは、(b)光源劣化を判定する一例を示す図である。図6Bに示されるように、光源劣化がある場合には、変位センサ10として、受光量が減少して受光量調整パラメタであるゲインを増加させる状態となる。例えば、変位センサ10の初期基準値(最初に使用する際にティーチングにより検出した値)と比較して、ワークに対して適切な計測が可能である基準値(閾値)の範囲を超えた場合には、異常種別判定部132は、光源劣化と判定する。
FIG. 6B is a diagram showing an example of determining (b) light source deterioration. As shown in FIG. 6B, when there is light source deterioration, the displacement sensor 10 is in a state where the amount of received light decreases and the gain, which is the parameter for adjusting the amount of received light, is increased. For example, if the displacement sensor 10 exceeds the reference value (threshold value) range that enables proper measurement of the workpiece compared with the initial reference value (the value detected by teaching when used for the first time), , the abnormality type determination unit 132 determines that the light source has deteriorated.
図6Cは、(c)狭所計測を判定する一例を示す図である。図6Cに示されるように、狭所計測がある場合には、変位センサ10として、受光量の状態が不安定になって受光波形が上下に変動したり、受光量が減少して受光量調整パラメタであるゲインを増加させる状態となる場合がある。ここで、上述した(b)光源劣化との違いは、狭所計測の場合は、例えば、検査領域(ワーク)の状態が変わると(狭所位置を外れると)、受光量及び受光量調整パラメタは元に戻る点である。換言すれば、狭所計測がある場合、受光量及び受光量調整パラメタの変化が一時的なものであれば、異常種別判定部132は、狭所計測と判定する。
FIG. 6C is a diagram showing an example of determining narrow space measurement (c). As shown in FIG. 6C, when there is narrow space measurement, the displacement sensor 10 becomes unstable and the received light waveform fluctuates up and down. It may become a state to increase the gain which is a parameter. Here, the difference from the above-described (b) light source deterioration is that, in the case of narrow space measurement, for example, when the state of the inspection area (workpiece) changes (when the narrow space position is deviated), the amount of received light and the amount of received light adjustment parameter is the point to return to. In other words, when there is narrow-space measurement, if the change in the amount of received light and the parameter for adjusting the amount of received light is temporary, the abnormality type determination unit 132 determines narrow-space measurement.
図6Dは、(d)多重反射を判定する一例を示す図である。図6Dに示されるように、多重反射がある場合には、面数が増加するような変化が生じる(短時間急変)。そして、変位センサ10として、ワークに対して適切な計測が可能である計測値及び受光波形から抽出されるパラメタ(幅値や面数等)の基準値(閾値)の範囲を超えた場合には、異常種別判定部132は、多重反射と判定する。さらに、受光量が低下(受光量調整パラメタが上昇)する場合があり、これらの特徴情報もセンサ汚れの判定に用いても構わない。
FIG. 6D is a diagram showing an example of determining (d) multiple reflections. As shown in FIG. 6D, when there is multiple reflection, a change such as an increase in the number of faces occurs (rapid change for a short time). Then, when the displacement sensor 10 exceeds the range of the reference value (threshold value) of the parameters (width value, number of surfaces, etc.) extracted from the measured value and the received light waveform that can appropriately measure the workpiece , the abnormality type determination unit 132 determines multiple reflection. Furthermore, the amount of received light may decrease (the parameter for adjusting the amount of received light increases), and this characteristic information may also be used for determining whether the sensor is dirty.
図6Eは、(e)相互干渉を判定する一例を示す図である。図6Eに示されるように、相互干渉がある場合には、面数が増加し、例えば、干渉光が周期的に点滅すれば、ピーク波形は変化せずに、面数の変化が繰り返される(短時間急変)。このような場合には、異常種別判定部132は、相互干渉と判定する。さらに、受光量及び受光量調整パラメタが変化し、背景レベルも変化する場合があり、これらの特徴情報も相互干渉の判定に用いても構わない。
FIG. 6E is a diagram showing an example of determining (e) mutual interference. As shown in FIG. 6E, when there is mutual interference, the number of surfaces increases. sudden change in a short time). In such a case, the abnormality type determination unit 132 determines mutual interference. Furthermore, the amount of light received and the parameter for adjusting the amount of light received may change, and the background level may also change, and the feature information of these may also be used for determining mutual interference.
図6Fは、(f)外乱光を判定する一例を示す図である。図6Fに示されるように、外乱光がある場合には、受光量、受光量調整パラメタ、幅値、受光波形総面積及び背景レベルに変化が生じる(短時間急変)。特に、背景レベルは、増加するが減少する場合もあり、この点において上述した(a)センサ汚れとは異なる。そして、変位センサ10として、ワークに対して適切な計測が可能である基準値(閾値)の範囲を超えた場合には、異常種別判定部132は、外乱光と判定する。
FIG. 6F is a diagram showing an example of determining (f) disturbance light. As shown in FIG. 6F, when there is ambient light, the amount of received light, the parameter for adjusting the amount of received light, the width value, the total area of the received light waveform, and the background level change (sudden change in a short time). In particular, the background level may increase but may also decrease, which differs from (a) sensor contamination discussed above. Then, when the displacement sensor 10 exceeds the range of the reference value (threshold value) in which appropriate measurement is possible for the workpiece, the abnormality type determination unit 132 determines that it is disturbance light.
なお、異常種別の判定については、ここで説明した条件に限定されるものではなく、例えば、ここで説明した条件以外で異常種別を判定できるのであれば、他の条件を用いて判定しても構わないし、特徴情報の組み合わせについても、ここで説明した組み合わせ以外で異常種別を判定できるのであれば、他の組み合わせを用いて判定しても構わない。
The determination of the abnormality type is not limited to the conditions described here. For example, if the abnormality type can be determined under conditions other than those described here, other conditions may be used for determination. It does not matter, and other combinations of feature information may be used for determination as long as the abnormality type can be determined using combinations other than the combinations described here.
また、ここでは、異常種別判定部132は、(a)~(f)の異常種別について、(1)~(6)の特徴情報に基づいて、(A)~(C)の監視方法を用いて判定しているが、これらに限定されるものではない。例えば、異常種別として、染み込み、ヘッド傾き及び透明体検出等が含められても構わないし、特徴情報として、受光波形の傾き又は重心等に関する情報を含めても構わないし、その他受光波形から抽出可能な特徴情報を含めても構わない。さらに、監視方法について、例えば、継続的に監視する方法、及び間欠的又は周期的(長期及び短期)に監視する方法等を用いるようにしても構わない。また、上述した異常種別、特徴情報及び監視方法を含めて、これら全てを適用する必要もなく、ユーザの所望する異常種別、精度及び性能等に応じて、適切に異常種別が判定できるように適宜選択しても構わない。
Further, here, the abnormality type determination unit 132 uses the monitoring methods (A) to (C) for the abnormality types (a) to (f) based on the feature information (1) to (6). However, it is not limited to these. For example, the abnormality type may include penetration, head tilt, and transparent object detection, etc., and the feature information may include information on the tilt or the center of gravity of the received light waveform, or other information that can be extracted from the received light waveform. Feature information may be included. Furthermore, as for the monitoring method, for example, a continuous monitoring method, an intermittent or periodic (long-term and short-term) monitoring method, and the like may be used. In addition, it is not necessary to apply all of these, including the above-described abnormality type, feature information, and monitoring method, and it is possible to appropriately determine the abnormality type according to the abnormality type, accuracy, performance, etc. desired by the user. You can choose.
上述のように、異常種別判定部132によって異常種別が判定される。
As described above, the abnormality type determination unit 132 determines the abnormality type.
出力部133は、異常種別判定部132によって判定された異常種別を出力する。例えば、出力部133は、当該異常種別を表示部150に表示するように出力しても構わないし、外部機器として接続されるPC又はPLCに通知するように出力しても構わない。
The output unit 133 outputs the abnormality type determined by the abnormality type determining unit 132. For example, the output unit 133 may output to display the abnormality type on the display unit 150, or may output to notify a PC or PLC connected as an external device.
図7は、アンプ部に設けられた表示部150に異常種別が表示される一例を示す図である。図7に示されるように、異常種別「センサ汚れ」が表示されている。これにより、ユーザは、センサ汚れを認識して対応することができる。
FIG. 7 is a diagram showing an example of displaying an abnormality type on the display section 150 provided in the amplifier section. As shown in FIG. 7, the abnormality type "sensor dirt" is displayed. This allows the user to recognize sensor contamination and deal with it.
なお、表示部150に表示される内容としては、異常種別に限定されるものではなく、例えば、「センサの汚れを確認してください。」又は「光源を交換してください。」等、異常種別に対応する対策もしくは推定原因を表示するようにしても構わない。これにより、ユーザはどのような対策をすべきか直接的かつ具体的に把握することができる。
Note that the content displayed on the display unit 150 is not limited to the type of abnormality. It is also possible to display countermeasures or presumed causes corresponding to . This allows the user to directly and specifically grasp what countermeasures should be taken.
図8は、異常種別に対応付けられたエラーコード及び対策の一例を示す図である。例えば、図8に示されるような対応表を記憶部140に予め記憶し、出力部133は、異常種別判定部132によって判定された異常種別に応じて、当該対応表を参照し、異常種別、エラーコード及び対応策のいずれか、又は複数を出力するようにしても構わない。
FIG. 8 is a diagram showing an example of error codes associated with anomaly types and countermeasures. For example, a correspondence table as shown in FIG. Either one or more of the error code and countermeasures may be output.
また、表示部150における表示画面が小さい場合等には、異常種別に対応付けられたエラーコードを表示するようにすれば、ユーザとしては、例えば、予め準備された、エラーコードと異常種別及び対応策等とが対応付けられたテーブルを参照することによって、表示されたエラーコードに応じてどのような対策をすべきかを把握すればよい。
In addition, when the display screen of the display unit 150 is small, an error code associated with an abnormality type is displayed. By referring to the table in which countermeasures and the like are associated with each other, it is possible to grasp what kind of countermeasures should be taken according to the displayed error code.
さらに、変位センサ10を定期的に点検する場合、及び実際にワークWを計測している場合等の状況に応じて、出力部133が出力する内容及び表示部150が表示する内容を切り替えるようにしても構わない。例えば、ワークWを計測している運用時において計測結果に影響するような異常種別が判定された場合には、出力部133は、Warning信号を出力するとともに、計測結果を不定値又はエラーに置き換えるようにし、さらに、その旨を表示部150に表示しても構わない。また、異常種別の詳細な情報が必要な場合には、記憶部140に蓄積された受光波形又は特徴情報のデータに基づいて、連続的な時系列データ及び波形等を表示するようにしても構わない。
Further, the content output by the output unit 133 and the content displayed by the display unit 150 are switched depending on the situation such as when the displacement sensor 10 is periodically inspected or when the workpiece W is actually measured. I don't mind. For example, when an abnormality type that affects the measurement result is determined during operation while measuring the workpiece W, the output unit 133 outputs a warning signal and replaces the measurement result with an indefinite value or an error. In addition, a message to that effect may be displayed on the display unit 150 . Further, when detailed information on the type of abnormality is required, continuous time-series data, waveforms, etc. may be displayed based on the received light waveforms or characteristic information data accumulated in the storage unit 140. do not have.
[状態監視方法]
次に、異常種別判定を含む変位センサ10及びその周辺環境における状態を監視する状態監視方法について、説明する。 [Status monitoring method]
Next, a state monitoring method for monitoring the state of thedisplacement sensor 10 and its surrounding environment including abnormality type determination will be described.
次に、異常種別判定を含む変位センサ10及びその周辺環境における状態を監視する状態監視方法について、説明する。 [Status monitoring method]
Next, a state monitoring method for monitoring the state of the
図9は、変位センサ10がワークWを計測しつつ、異常種別判定を含む変位センサ10及びその周辺環境における状態を監視する状態監視方法M10の処理の流れを示すフローチャートである。図9に示されるように、状態監視方法M10は、ステップS11~S19を含み、各ステップは、変位センサ10に含まれるプロセッサによって実行される。
FIG. 9 is a flow chart showing the process flow of a state monitoring method M10 for monitoring the state of the displacement sensor 10 and its surrounding environment, including abnormality type determination, while the displacement sensor 10 measures the workpiece W. As shown in FIG. 9, the condition monitoring method M10 includes steps S11 to S19, each step being executed by a processor included in the displacement sensor 10. FIG.
ステップS11では、図1を用いて説明したように、変位センサ10は、ワークWに対し、レーザ光L1を投光するとともに、当該レーザ光L1に対するワークWからの反射光L2を受光することによって、ワークWの表面の変位量を計測する。
In step S11, as described with reference to FIG. 1, the displacement sensor 10 projects the laser beam L1 onto the work W and receives the reflected light L2 from the work W with respect to the laser beam L1. , the amount of displacement of the surface of the work W is measured.
ステップS12では、受光部120によってワークW(検査領域)で反射された光が受光され、受光波形が出力される。
In step S12, light reflected by the workpiece W (inspection area) is received by the light receiving unit 120, and a received light waveform is output.
ステップS13では、制御部130における特徴情報抽出部131によって、ステップS12で出力される受光波形に基づいて、少なくとも2種以上の特徴情報が抽出される。具体例としては、図4を用いて説明した(1)受光量、(2)受光量調整パラメタ、(3)幅値、(4)面数、(5)受光波形総面積、及び(6)背景レベルが特徴情報として抽出される。
In step S13, at least two types of feature information are extracted by the feature information extraction unit 131 in the control unit 130 based on the received light waveform output in step S12. Specific examples are (1) received light amount, (2) received light amount adjustment parameter, (3) width value, (4) number of planes, (5) received light waveform total area, and (6) described with reference to FIG. The background level is extracted as feature information.
ステップS14では、制御部130によって、ステップS13で抽出された特徴情報が記憶部140に蓄積される。
In step S14, the feature information extracted in step S13 is accumulated in the storage unit 140 by the control unit 130.
ステップS15~S18では、制御部130における異常種別判定部132によって、ステップS14で蓄積された特徴情報に基づいて、予めメモリに記憶されている異常種別情報を参照しながら、異常種別が判定される。具体例として、異常種別判定部132は、図5を用いて説明したように、(1)受光量、(2)受光量調整パラメタ、(3)幅値、(4)面数、(5)受光波形総面積、及び(6)背景レベルの6つの特徴情報について、(A)基準値差分、(B)短時間急変、及び(C)ある時点の受光波形の3つの監視方法を用いて、(a)センサ汚れ、(b)光源劣化、(c)狭所計測、(d)多重反射、(e)相互干渉、及び(f)外乱光の6つの異常種別を判定する。
In steps S15 to S18, the abnormality type determination unit 132 in the control unit 130 determines the abnormality type based on the feature information accumulated in step S14 while referring to the abnormality type information stored in advance in the memory. . As a specific example, as described with reference to FIG. 5, the abnormality type determination unit 132 includes (1) received light amount, (2) received light amount adjustment parameter, (3) width value, (4) number of surfaces, and (5) For the six characteristic information of the total area of the received light waveform and (6) the background level, using three monitoring methods of (A) the reference value difference, (B) a sudden change in a short time, and (C) the received light waveform at a certain point, Six types of abnormalities are determined: (a) sensor contamination, (b) light source deterioration, (c) narrow space measurement, (d) multiple reflection, (e) mutual interference, and (f) ambient light.
ステップS19では、制御部130における出力部133によって、ステップS15~S18で判定された異常種別が出力される。具体例としては、表示部150に異常種別が表示される。
In step S19, the output unit 133 in the control unit 130 outputs the abnormality type determined in steps S15 to S18. As a specific example, an abnormality type is displayed on the display unit 150 .
なお、ステップS13~S19における異常種別判定に関する一連の処理は、計測周期毎に実行されても構わないし、その他必要に応じて適宜実行されても構わない。
It should be noted that the series of processes related to the abnormality type determination in steps S13 to S19 may be executed for each measurement cycle, or may be executed appropriately as necessary.
図10は、図9におけるステップS15~S18で実行される異常種別判定方法M100の具体的な処理の流れを示すフローチャートである。図10に示されるように、異常種別判定方法M100は、ステップS101~S116を含み、各ステップは、変位センサ10に含まれるプロセッサによって実行される。
FIG. 10 is a flow chart showing a specific process flow of the abnormality type determination method M100 executed in steps S15 to S18 in FIG. As shown in FIG. 10, the abnormality type determination method M100 includes steps S101 to S116, and each step is executed by the processor included in the displacement sensor 10. FIG.
ここでは、異常種別判定部132は、各ステップにおける処理として、各特徴情報の変化(上昇又は下降)である短時間急変、及び基準値の範囲内であるか否か(上回り又は下回り)を監視することによって異常種別を判定している。これらの各ステップにおける処理ついて具体的に説明する。
Here, as processing in each step, the abnormality type determination unit 132 monitors a short-time sudden change that is a change (increase or decrease) of each feature information and whether or not it is within the range of the reference value (above or below). By doing so, the type of abnormality is determined. Processing in each of these steps will be specifically described.
ステップS101では、異常種別判定部132は、(1)受光量が初期基準値を下回り、(2)受光量調整パラメタが初期基準値を上回っていれば(ステップS101のYes)、(b)光源劣化と判定する(ステップS102)。
In step S101, if (1) the received light amount is below the initial reference value and (2) the received light amount adjustment parameter is above the initial reference value (Yes in step S101), (b) the light source Deterioration is determined (step S102).
ここで、初期基準値とは、例えば、変位センサ10を購入して最初に使用する際にティーチングにより検出した値に基づいて設定されるものであり、換言すれば、(1)受光量及び(2)受光量調整パラメタについて、変位センサ10を最初に使用する時からの変化量(差分)を把握するためのものである。初期基準値は、受光量及び受光量調整パラメタに関して、変位センサ10がワークを適切に計測できる範囲で設定されるとよい。
Here, the initial reference value is, for example, set based on a value detected by teaching when the displacement sensor 10 is purchased and used for the first time. 2) This is for grasping the amount of change (difference) from when the displacement sensor 10 is used for the first time with respect to the parameter for adjusting the amount of received light. The initial reference value is preferably set within a range in which the displacement sensor 10 can appropriately measure the workpiece with respect to the amount of received light and the parameter for adjusting the amount of received light.
なお、仮に、変位センサ10を購入して最初に使用する際にティーチングを行わず初期基準値が設定されていない場合には、異常種別判定部132は、(b)光源劣化を判定できない場合がある。この場合、変位センサ10に予め設定されている値を用いたり、ユーザが設定したりすることによって、異常種別判定部132は、(b)光源劣化を判定するようにしても構わない。
If the initial reference value is not set without teaching when the displacement sensor 10 is purchased and used for the first time, the abnormality type determination unit 132 may be unable to determine (b) the deterioration of the light source. be. In this case, the abnormality type determination unit 132 may determine (b) light source deterioration by using a value preset in the displacement sensor 10 or by setting by the user.
ステップS103では(ステップS101のNo)、異常種別判定部132は、(4)面数が上昇し、かつ基準値を上回っているかを判定する。
In step S103 (No in step S101), the abnormality type determination unit 132 (4) determines whether the number of pages has increased and exceeds the reference value.
ここで、基準値とは、例えば、変位センサ10を稼働させる始業時等にティーチングにより検出した値に基づいて設定されるものであり、換言すれば、当該特徴情報について、変位センサ10を稼働させる始業時等からの変化量(差分)を把握するためのものである。基準値は、当該特徴情報(以降に説明する特徴情報も含む)に関して、変位センサ10がワークを適切に計測できる範囲で設定されるとよい。なお、基準値は、ティーチング毎に更新されても構わないし、仮に、変位センサ10を稼働させる始業時等にティーチングを行わない場合には、変位センサ10に予め設定されている値を用いたり、ユーザが設定したりしても構わない。
Here, the reference value is, for example, set based on a value detected by teaching at the start of work when the displacement sensor 10 is operated. This is for grasping the amount of change (difference) from the start of work or the like. The reference value is preferably set within a range in which the displacement sensor 10 can appropriately measure the workpiece with respect to the feature information (including feature information described later). The reference value may be updated for each teaching. If teaching is not performed at the start of work when the displacement sensor 10 is to be operated, a value preset in the displacement sensor 10 may be used, It may be set by the user.
ステップS104では(ステップS103のYes)、異常種別判定部132は、(4)面数が下降せず、かつ基準値範囲内でなければ(ステップS104のNo)、(d)多重反射と判定する(ステップS105)。
In step S104 (Yes in step S103), the abnormality type determination unit 132 (4) determines that the number of surfaces does not decrease and is not within the reference value range (No in step S104), (d) multiple reflection. (Step S105).
ステップS106では(ステップS104のYes)、異常種別判定部132は、(4)面数が上昇下降の繰り返しであれば(ステップS106のYes)、(e)相互干渉と判定する(ステップS107)。
At step S106 (Yes at step S104), the abnormality type determination unit 132 determines (e) mutual interference if (4) the number of planes repeats rising and falling (Yes at step S106) (step S107).
ステップS108では(ステップS103のNo)、異常種別判定部132は、(1)受光量が下降し、かつ基準値を下回り、(2)受光量調整パラメタが上昇し、かつ基準値を上回っているかを判定する。
In step S108 (No in step S103), the abnormality type determination unit 132 determines whether (1) the received light amount has decreased and is below the reference value, and (2) the received light amount adjustment parameter has increased and exceeded the reference value. judge.
ステップS109では(ステップS108のYes)、異常種別判定部132は、(3)幅値が上昇していれば(ステップS109のYes)、(a)センサ汚れと判定する(ステップS110)。
At step S109 (Yes at step S108), the abnormality type determination unit 132 (3) determines that the sensor is dirty (step S110) if the width value has increased (Yes at step S109).
ステップS111では(ステップS109のNo)、異常種別判定部132は、(1)受光量が上昇し、(2)受光量調整パラメタが下降していれば(ステップS111のYes)、(c)狭所計測と判定する(ステップS112)。
In step S111 (No in step S109), the abnormality type determination unit 132 (1) increases the amount of received light and (2) decreases the parameter for adjusting the amount of received light (Yes in step S111). It is determined that the measurement is performed (step S112).
ステップS113では(ステップS108のNo)、異常種別判定部132は、(1)受光量が上昇し、かつ基準値を上回り、(2)受光量調整パラメタが下降し、かつ基準値を下回っているかを判定する。
In step S113 (No in step S108), the abnormality type determination unit 132 determines whether (1) the received light amount has increased and exceeded the reference value, and (2) the received light amount adjustment parameter has decreased and fallen below the reference value. judge.
ステップS114では(ステップS113のYes)、異常種別判定部132は、(5)受光波形総面積が上昇し、かつ基準値を上回り、(6)背景レベルが上昇し、かつ基準値を上回っているかを判定する。
In step S114 (Yes in step S113), the abnormality type determination unit 132 determines whether (5) the total area of the received light waveform has increased and exceeds the reference value, and (6) the background level has increased and exceeded the reference value. judge.
ステップS115では(ステップS114のYes)、異常種別判定部132は、(5)受光波形総面積が下降し、かつ基準値を下回り、(6)背景レベルが下降し、かつ基準値を下回っていれば(ステップS115のYes)、外乱光と判定する(ステップS116)。
In step S115 (Yes in step S114), the abnormality type determination unit 132 determines whether (5) the total area of the received light waveform has decreased and is below the reference value, and (6) the background level has decreased and is below the reference value. Otherwise (Yes in step S115), it is determined as disturbance light (step S116).
このように、異常種別判定部132は、(a)センサ汚れ、(b)光源劣化、(c)狭所計測、(d)多重反射、(e)相互干渉、及び(f)外乱光の6つの異常種別を判定している。
In this way, the abnormality type determination unit 132 determines six types of (a) sensor contamination, (b) light source deterioration, (c) narrow place measurement, (d) multiple reflection, (e) mutual interference, and (f) disturbance light. It judges two types of anomalies.
以上のように、本発明の一実施形態に係る変位センサ10及び状態監視方法M10によれば、特徴情報抽出部131が受光波形から複数の特徴情報を抽出し、異常種別判定部132が当該複数の特徴情報に基づいて、記憶部140に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定することができる。その結果、異常種別を適切に判定することができ、ユーザは当該異常種別に対応する対策を取ることができる。
As described above, according to the displacement sensor 10 and the state monitoring method M10 according to the embodiment of the present invention, the feature information extraction unit 131 extracts a plurality of feature information from the received light waveform, and the abnormality type determination unit 132 detects the plurality of feature information. At least one type of abnormality among a plurality of types of abnormality in the abnormality type information pre-stored in the storage unit 140 can be determined based on the feature information. As a result, the abnormality type can be appropriately determined, and the user can take countermeasures corresponding to the abnormality type.
なお、本実施形態では、図5に示した(a)~(f)の異常種別について判定することを説明したが、検査領域の状態に応じて、判定できる異常種別が異なる場合がある。
It should be noted that, in the present embodiment, it has been described that the abnormality types (a) to (f) shown in FIG. 5 are determined, but the types of abnormality that can be determined may differ depending on the state of the inspection area.
図11は、図5における異常種別のうち、検査領域にワーク及びベースの有無に応じて判定が不可能となる異常種別の一例を示す図である。図11に示されるように、(a)~(f)の異常種別について、検査領域にワークが存在する場合には、適切に判定できるが、検査領域にワーク及びベースが存在しない場合には、(a)センサ汚れ、(c)狭所計測、及び(d)多重反射について、適切に判定できない場合がある。
FIG. 11 is a diagram showing an example of an abnormality type that cannot be determined according to the presence or absence of a workpiece and a base in the inspection area, among the abnormality types in FIG. As shown in FIG. 11, the abnormality types (a) to (f) can be appropriately determined when the workpiece exists in the inspection area, but when the workpiece and the base do not exist in the inspection area, (a) sensor contamination, (c) narrow space measurement, and (d) multiple reflection may not be determined appropriately.
このように、検査領域の条件に応じて、適切に判定できる異常種別と、適切に判定できない場合がある異常種別とがあるため、例えば、これらの情報を予め記憶部140に記憶される異常種別情報に含まれるようにしておいても構わない。
As described above, depending on the conditions of the inspection area, there are abnormality types that can be appropriately determined and abnormality types that cannot be determined appropriately. It may be included in the information.
これにより、例えば、異常種別判定部132によって、(c)狭所計測と判定された場合、表示部150に「ワークが存在しない場合、適切な判定ができていない場合がある」とメッセージを表示したり、それに類する通知をしたりすることにより、ユーザに確認させるようにしても構わない。また、ユーザが所望する異常種別を適切に判定できるように、判定する異常種別又は異常種別毎に適切に判定できる条件を、予め、表示部150に表示する等して、ユーザに確認させるようにしておいても構わない。
As a result, for example, when the abnormality type determination unit 132 determines that (c) narrow space measurement is performed, the display unit 150 displays a message stating "If there is no workpiece, appropriate determination may not be possible." It is also possible to make the user confirm by sending a notice similar to this. In addition, in order to appropriately determine the type of abnormality desired by the user, the type of abnormality to be determined or the conditions for appropriately determining each type of abnormality are displayed on the display unit 150 in advance so that the user can confirm. You can leave it as is.
さらには、適切な条件(例えば、本実施形態ではワーク及びベースが存在する)を満たしている時間帯を、ユーザが操作部160を介して入力しても構わない。これにより、当該時間帯に判定される異常種別は、適切に判定された結果であることが分かる。
Furthermore, the user may input, via the operation unit 160, a time period that satisfies appropriate conditions (for example, in this embodiment, a work and a base exist). As a result, it can be seen that the abnormality type determined in the relevant time period is the result of an appropriate determination.
また、本実施形態では、記憶部140に記憶される異常種別情報として、図5に示されたように異常種別毎に、異常種別判定に用いられる特徴情報及び監視方法が対応付けられたテーブルを一例として挙げたが、これに限定されるものではない。例えば、監視方法毎に特徴情報及び異常種別が対応付けられたテーブルであっても構わない。
Further, in this embodiment, as the abnormality type information stored in the storage unit 140, a table in which characteristic information used for abnormality type determination and a monitoring method are associated with each abnormality type as shown in FIG. Although it is mentioned as an example, it is not limited to this. For example, a table in which feature information and an abnormality type are associated with each monitoring method may be used.
図12は、監視方法毎に、用いられる特徴情報及び予測される異常種別が対応付けられた異常種別情報の一例を示す図である。図12に示されるように、(A)~(C)の監視方法において、(1)~(6)の特徴情報のうち、いずれを監視した場合、(a)~(f)の異常種別を判定できるかについて把握することができる。ここでは、監視方法と特徴情報との組み合わせによって異常種別が一意に判定できる場合と、さらに、これらの複数の組み合わせによって異常種別が判定できる場合とがある。
FIG. 12 is a diagram showing an example of abnormality type information in which feature information used and predicted abnormality types are associated with each monitoring method. As shown in FIG. 12, in the monitoring methods (A) to (C), when any one of the feature information (1) to (6) is monitored, the abnormality types (a) to (f) are detected. It is possible to grasp whether it is possible to judge. Here, there are cases where the abnormality type can be uniquely determined by combining the monitoring method and the feature information, and cases where the abnormality type can be determined by combining a plurality of these.
なお、監視方法として基準値差分が用いられる場合には、予め基準値が設定されている必要があるが、短時間急変及びある時点の受光波形が用いられる場合には、記憶部140に蓄積されたデータとの比較及び変化等によって判定することができるため、予め基準値が設定されていなくても異常種別が判定できる場合がある。
When the reference value difference is used as the monitoring method, the reference value must be set in advance. Since the determination can be made by comparison with the data obtained, the change, etc., there are cases where the abnormality type can be determined even if the reference value is not set in advance.
このように、記憶部140に記憶される異常種別情報として、どのような形式で異常種別情報を採用するかについては、変位センサ10の種類、ユーザの所望する異常種別、及び異常種別判定部132における具体的な判定処理手順等に応じて採用すればよい。また、記憶部140に、複数の形式の異常種別情報を記憶しておいても構わないし、図5及び図12に示された異常種別情報以外の形式で異常種別情報を記憶しておいても構わない。
As described above, the type of the displacement sensor 10, the user's desired abnormality type, and the abnormality type determination unit 132 may be adopted in accordance with the specific determination processing procedure in . In addition, the storage unit 140 may store the abnormality type information in a plurality of formats, or may store the abnormality type information in a format other than the abnormality type information shown in FIGS. I do not care.
以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
The embodiments described above are for facilitating understanding of the present invention, and are not for limiting interpretation of the present invention. Each element included in the embodiment and its arrangement, materials, conditions, shape, size, etc. are not limited to those illustrated and can be changed as appropriate. Also, it is possible to partially replace or combine the configurations shown in different embodiments.
[附記]
検査領域に光を投光する投光部(110)と、
前記検査領域で反射された光を受光し、受光波形を出力する受光部(120)と、
受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応づけられた異常種別情報が予め記憶される記憶部(140)と、
前記受光部によって出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する特徴情報抽出部(131)と、
前記抽出された少なくとも2種以上の特徴情報に基づいて、前記記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する異常種別判定部(132)と、
前記判定された異常種別を出力する出力部(133)と、
を備える、変位センサ(10)。 [Appendix]
a light projecting unit (110) for projecting light onto an inspection area;
a light receiving unit (120) for receiving light reflected by the inspection area and outputting a received light waveform;
a storage unit (140) storing in advance abnormality type information in which a plurality of characteristic information included in the received light waveform and a plurality of abnormality types predicted from the plurality of characteristic information are associated;
a feature information extraction unit (131) for extracting at least two types of feature information based on the received light waveform output by the light receiving unit;
Based on the extracted at least two types of feature information, an abnormality type determination unit ( 132) and
an output unit (133) that outputs the determined abnormality type;
a displacement sensor (10).
検査領域に光を投光する投光部(110)と、
前記検査領域で反射された光を受光し、受光波形を出力する受光部(120)と、
受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応づけられた異常種別情報が予め記憶される記憶部(140)と、
前記受光部によって出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する特徴情報抽出部(131)と、
前記抽出された少なくとも2種以上の特徴情報に基づいて、前記記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する異常種別判定部(132)と、
前記判定された異常種別を出力する出力部(133)と、
を備える、変位センサ(10)。 [Appendix]
a light projecting unit (110) for projecting light onto an inspection area;
a light receiving unit (120) for receiving light reflected by the inspection area and outputting a received light waveform;
a storage unit (140) storing in advance abnormality type information in which a plurality of characteristic information included in the received light waveform and a plurality of abnormality types predicted from the plurality of characteristic information are associated;
a feature information extraction unit (131) for extracting at least two types of feature information based on the received light waveform output by the light receiving unit;
Based on the extracted at least two types of feature information, an abnormality type determination unit ( 132) and
an output unit (133) that outputs the determined abnormality type;
a displacement sensor (10).
10…変位センサ、11…ケーブル、100…センサヘッド、110…投光部、111…発光素子、112…投光制御回路、120…受光部、121…撮像素子、122…信号処理回路、123…A/D変換回路、130…制御部、131…特徴情報抽出部、132…異常種別判定部、133…出力部、140…記憶部、150…表示部、160…操作部、170…入出力インタフェース、L1…レーザ光、L2…反射光、B…ベース、W…ワーク、M10…状態監視方法、S11~S19…状態監視方法M10の各ステップ、M100…異常種別判定方法、S101~S116…異常種別判定方法M100の各ステップ
DESCRIPTION OF SYMBOLS 10... Displacement sensor 11... Cable 100... Sensor head 110... Light projecting part 111... Light emitting element 112... Light emitting control circuit 120... Light receiving part 121... Imaging element 122... Signal processing circuit 123... A/D conversion circuit 130 control unit 131 feature information extraction unit 132 abnormality type determination unit 133 output unit 140 storage unit 150 display unit 160 operation unit 170 input/output interface , L1... laser beam, L2... reflected light, B... base, W... workpiece, M10... condition monitoring method, S11 to S19... each step of condition monitoring method M10, M100... abnormality type determination method, S101 to S116... abnormality type Each step of the determination method M100
Claims (9)
- 検査領域に光を投光する投光部と、
前記検査領域で反射された光を受光し、受光波形を出力する受光部と、
受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応付けられた異常種別情報が予め記憶される記憶部と、
前記受光部によって出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する特徴情報抽出部と、
前記抽出された少なくとも2種以上の特徴情報に基づいて、前記記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する異常種別判定部と、
前記判定された異常種別を出力する出力部と、
を備える、変位センサ。 a light projecting unit that projects light onto an inspection area;
a light receiving unit that receives the light reflected by the inspection area and outputs a received light waveform;
a storage unit pre-stored with abnormality type information in which a plurality of characteristic information included in the received light waveform and a plurality of abnormality types predicted from the plurality of characteristic information are associated with each other;
a feature information extraction unit that extracts at least two types of feature information based on the received light waveform output by the light receiving unit;
an abnormality type determination unit that determines at least one type of abnormality among a plurality of types of abnormality in the abnormality type information pre-stored in the storage unit, based on the extracted at least two types of characteristic information; ,
an output unit that outputs the determined abnormality type;
A displacement sensor. - 前記異常種別判定部は、前記抽出される特徴情報について、基準値との差分量、所定期間における変化量、及びある時点の受光波形に含まれる情報のうち、少なくとも1つ以上の監視方法を用いて異常種別を判定する、
請求項1に記載の変位センサ。 The abnormality type determination unit uses at least one monitoring method for the extracted feature information from among the amount of difference from a reference value, the amount of change in a predetermined period, and information included in a received light waveform at a certain point in time. to determine the type of anomaly,
The displacement sensor according to claim 1. - 前記記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、前記監視方法に応じて判定可能な異常種別が分類されている、
請求項2に記載の変位センサ。 Among a plurality of abnormality types in the abnormality type information stored in advance in the storage unit, an abnormality type that can be determined according to the monitoring method is classified.
3. The displacement sensor according to claim 2. - 前記特徴情報は、受光量、受光量調整パラメタ、受光波形の幅値、受光波形の面数、受光波形の総面積、及び背景レベルのうち、少なくとも2種以上が含まれる、
請求項1から3のいずれか一項に記載の変位センサ。 The feature information includes at least two of the amount of received light, the parameter for adjusting the amount of received light, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level.
A displacement sensor according to any one of claims 1 to 3. - 前記異常種別判定部は、前記受光量、前記受光量調整パラメタ、前記受光波形の幅値、前記受光波形の面数、前記受光波形の総面積、及び前記背景レベルのうち、少なくとも2種以上の組み合わせに応じて異常種別を判定する、
請求項4に記載の変位センサ。 The abnormality type determination unit selects at least two of the received light amount, the received light amount adjustment parameter, the width value of the received light waveform, the number of surfaces of the received light waveform, the total area of the received light waveform, and the background level. Determine the type of abnormality according to the combination,
5. The displacement sensor according to claim 4. - 前記記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、前記受光量、前記受光量調整パラメタ、前記受光波形の幅値、前記受光波形の面数、前記受光波形の総面積、及び前記背景レベルのうち、少なくとも2種以上の組み合わせに応じて判定可能な異常種別が分類されている、
請求項5に記載の変位センサ。 Among the plurality of abnormality types in the abnormality type information stored in advance in the storage unit, the received light amount, the received light amount adjustment parameter, the width value of the received light waveform, the number of surfaces of the received light waveform, and the total area of the received light waveform , and of the background levels, at least two types of abnormality types that can be determined are classified according to the combination,
The displacement sensor according to claim 5. - 前記記憶部に予め記憶されている異常種別情報における複数の異常種別のうち、前記検査領域におけるワーク及びベースの有無に応じて判定可能な異常種別が分類されている、
請求項1から6のいずれか一項に記載の変位センサ。 Among a plurality of abnormality types in the abnormality type information stored in advance in the storage unit, an abnormality type that can be determined according to the presence or absence of a work and a base in the inspection area is classified.
A displacement sensor according to any one of claims 1 to 6. - 前記出力部は、前記判定された異常種別に対応する対策もしくは推定原因を出力する、
請求項1から7のいずれか一項に記載の変位センサ。 The output unit outputs countermeasures or presumed causes corresponding to the determined abnormality type,
A displacement sensor according to any one of claims 1 to 7. - プロセッサを含む変位センサにより実行される状態監視方法であって、
検査領域に光を投光する投光ステップと、
前記検査領域で反射された光を受光し、受光波形を出力する受光ステップと、
前記受光ステップで出力される受光波形に基づいて、少なくとも2種以上の特徴情報を抽出する特徴情報抽出ステップと、
前記抽出された少なくとも2種以上の特徴情報に基づいて、予めメモリに記憶されている、受光波形に含まれる複数の特徴情報と当該複数の特徴情報から予測される複数の異常種別とが対応付けられた異常種別情報における複数の異常種別のうち、少なくとも1種以上の異常種別を判定する異常種別判定ステップと、
前記判定された異常種別を出力する出力ステップと、
を含む、状態監視方法。 A condition monitoring method performed by a displacement sensor including a processor, comprising:
a light projection step for projecting light onto an inspection area;
a light receiving step of receiving the light reflected by the inspection area and outputting a received light waveform;
a feature information extraction step of extracting at least two types of feature information based on the received light waveform output in the light receiving step;
Based on the extracted at least two types of feature information, a plurality of feature information included in the received light waveform stored in advance in a memory and a plurality of abnormality types predicted from the plurality of feature information are associated with each other. an abnormality type determination step of determining at least one type of abnormality among a plurality of types of abnormality in the obtained abnormality type information;
an output step of outputting the determined abnormality type;
A method of condition monitoring, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280016918.8A CN116888428A (en) | 2021-03-01 | 2022-01-17 | Displacement sensor and status monitoring method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021031509A JP7662997B2 (en) | 2021-03-01 | 2021-03-01 | Displacement sensor and condition monitoring method |
JP2021-031509 | 2021-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022185743A1 true WO2022185743A1 (en) | 2022-09-09 |
Family
ID=83155313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/001363 WO2022185743A1 (en) | 2021-03-01 | 2022-01-17 | Displacement sensor, and state monitoring method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7662997B2 (en) |
CN (1) | CN116888428A (en) |
TW (1) | TWI802234B (en) |
WO (1) | WO2022185743A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10307021A (en) * | 1997-05-06 | 1998-11-17 | Toshiba Corp | Range finder |
WO2001057471A1 (en) * | 2000-01-31 | 2001-08-09 | Omron Corporation | Visual displacement sensor |
JP2006038487A (en) * | 2004-07-22 | 2006-02-09 | Mitsutoyo Corp | Optical measuring instrument |
JP2012078175A (en) * | 2010-09-30 | 2012-04-19 | Panasonic Electric Works Sunx Co Ltd | Detection device, control device, detection method of abnormal indication and program for detection of abnormal indication |
JP2019090836A (en) * | 2019-03-05 | 2019-06-13 | オムロン株式会社 | Optical measurement device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4940800B2 (en) * | 2006-07-12 | 2012-05-30 | オムロン株式会社 | Displacement sensor |
-
2021
- 2021-03-01 JP JP2021031509A patent/JP7662997B2/en active Active
-
2022
- 2022-01-17 WO PCT/JP2022/001363 patent/WO2022185743A1/en active Application Filing
- 2022-01-17 CN CN202280016918.8A patent/CN116888428A/en active Pending
- 2022-01-20 TW TW111102311A patent/TWI802234B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10307021A (en) * | 1997-05-06 | 1998-11-17 | Toshiba Corp | Range finder |
WO2001057471A1 (en) * | 2000-01-31 | 2001-08-09 | Omron Corporation | Visual displacement sensor |
JP2006038487A (en) * | 2004-07-22 | 2006-02-09 | Mitsutoyo Corp | Optical measuring instrument |
JP2012078175A (en) * | 2010-09-30 | 2012-04-19 | Panasonic Electric Works Sunx Co Ltd | Detection device, control device, detection method of abnormal indication and program for detection of abnormal indication |
JP2019090836A (en) * | 2019-03-05 | 2019-06-13 | オムロン株式会社 | Optical measurement device |
Also Published As
Publication number | Publication date |
---|---|
TW202235823A (en) | 2022-09-16 |
JP7662997B2 (en) | 2025-04-16 |
TWI802234B (en) | 2023-05-11 |
JP2022132827A (en) | 2022-09-13 |
CN116888428A (en) | 2023-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9354717B2 (en) | Optical navigation device | |
KR900008632B1 (en) | Optical media monitoring device | |
JP2008033532A (en) | Method and apparatus for detecting abnormality in equipment provided with movable part | |
JP2000121440A (en) | Color identifying apparatus | |
WO2022185743A1 (en) | Displacement sensor, and state monitoring method | |
KR20210059828A (en) | Apparatus of integrated interconnection and equipment management system having the same | |
US9182315B2 (en) | Lens module testing device | |
US20200232914A1 (en) | Substance detection device and substance detection method | |
JP4648665B2 (en) | Optical displacement meter | |
JP4231994B2 (en) | Differential value type sensor | |
US20230314575A1 (en) | Sensor unit, control method, and non-transitory computer readable medium storing program | |
JP5139049B2 (en) | Photoelectric sensor | |
JP4721727B2 (en) | Photoelectric sensor | |
JP2010122127A (en) | Optical displacement sensor system, console, controller and program | |
US20120126100A1 (en) | Photoelectric Switch | |
JP2017150859A (en) | Setting assistance device for optical safety sensor, setting assistance program, optical safety system, and optical safety sensor | |
KR20230159657A (en) | Abnormal motion detection system for smart factory using artificial intelligence and using the same | |
JP4546401B2 (en) | Radiation detector | |
JP2010176611A (en) | Smoke sensor and method of detecting smoke | |
WO2021140969A1 (en) | Laser output control method, and laser processing device | |
JP5167220B2 (en) | Optical sensor device | |
JP4321890B2 (en) | Color detection device | |
US20180073898A1 (en) | Photoelectric encoder | |
JP4812018B2 (en) | smoke detector | |
JP3945756B2 (en) | Fire detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22762802 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280016918.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22762802 Country of ref document: EP Kind code of ref document: A1 |