TWI802234B - Displacement sensor and state monitoring method - Google Patents
Displacement sensor and state monitoring method Download PDFInfo
- Publication number
- TWI802234B TWI802234B TW111102311A TW111102311A TWI802234B TW I802234 B TWI802234 B TW I802234B TW 111102311 A TW111102311 A TW 111102311A TW 111102311 A TW111102311 A TW 111102311A TW I802234 B TWI802234 B TW I802234B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- abnormality
- waveform
- displacement sensor
- received
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
本發明是有關於一種位移感測器以及狀態監視方法。The invention relates to a displacement sensor and a state monitoring method.
先前,作為以非接觸方式測量工件的位移的裝置,使用的是利用光學系統的位移感測器。於此種位移感測器中,有由於該位移感測器的經年劣化、塵埃等異物的附著引起的污漬及周邊環境帶來的影響等而無法適當地測量工件之虞。Conventionally, as a device for measuring the displacement of a workpiece in a non-contact manner, a displacement sensor using an optical system has been used. In such a displacement sensor, there is a possibility that a workpiece cannot be properly measured due to aging deterioration of the displacement sensor, contamination due to adhesion of foreign matter such as dust, and influence of the surrounding environment.
於專利文獻1中,揭示了一種與檢測裝置相關的技術,所述檢測裝置於檢測感測器發生異常之前,檢測該檢測感測器的異常的徵兆。具體而言,專利文獻1所揭示的檢測裝置於每個規定週期獲取工件通過檢測位置時的受光部的受光量,並基於該獲取結果生成受光波形。而且,該檢測裝置藉由對基準波形與受光波形進行比較,判定檢測感測器是否存在異常的徵兆。
[現有技術文獻]
[專利文獻]
專利文獻1:日本專利特開2012-78175號公報Patent Document 1: Japanese Patent Laid-Open No. 2012-78175
[發明所欲解決之課題][Problem to be Solved by the Invention]
然而,於專利文獻1所揭示的檢測裝置中,雖然對檢測感測器是否存在異常的徵兆進行了判定,但是即便於檢測出異常的徵兆的情況下,亦無法區別其主要原因及詳細情況。因此,對於用戶來說,存在無法掌握其後需要具體採取何種對策的問題。However, in the detection device disclosed in
因此,本發明的目的在於提供一種可適當地判定異常類別的位移感測器以及狀態監視方法。 [解決課題之手段] Therefore, an object of the present invention is to provide a displacement sensor and a state monitoring method that can appropriately determine the type of abnormality. [Means to solve the problem]
本發明的一形態的位移感測器包括:投光部,向檢查區域投射光;受光部,接收由檢查區域反射的光,輸出受光波形;記憶部,預先記憶異常類別資訊,所述異常類別資訊將受光波形中所包含的多個特徵資訊與根據所述多個特徵資訊預測的多個異常類別建立了對應;特徵資訊提取部,基於由受光部輸出的受光波形,提取至少兩種以上的特徵資訊;異常類別判定部,基於所提取出的至少兩種以上的特徵資訊,判定預先記憶於記憶部中的異常類別資訊中的多個異常類別中至少一種以上的異常類別;以及輸出部,輸出所判定出的異常類別。此處,所謂受光波形,是就受光部的攝像元件接收到的光而言,針對每個畫素顯示其受光量並生成為波形。A displacement sensor according to an aspect of the present invention includes: a light projecting unit that projects light to the inspection area; a light receiving unit that receives light reflected from the inspection area and outputs a received light waveform; a memory unit that stores abnormality category information in advance, and the abnormality category The information establishes a correspondence between a plurality of feature information contained in the light receiving waveform and a plurality of abnormal categories predicted according to the plurality of feature information; the feature information extraction part extracts at least two or more types of abnormalities based on the light receiving waveform output by the light receiving part feature information; the abnormal category determination unit determines at least one abnormal category among the plurality of abnormal categories in the abnormal category information pre-stored in the memory unit based on at least two or more extracted feature information; and an output unit, The determined abnormality category is output. Here, the light-receiving waveform refers to light received by the imaging element of the light-receiving unit, which displays the light-receiving amount for each pixel and is generated as a waveform.
根據所述形態,特徵資訊提取部基於受光波形提取至少兩個以上的特徵資訊,異常類別判定部基於該特徵資訊,可適當地判定預先記憶於記憶部中的異常類別資訊中的多個異常類別中至少一種以上的異常類別。According to the above aspect, the characteristic information extraction unit extracts at least two or more characteristic information based on the received light waveform, and the abnormality type determination unit can appropriately determine a plurality of abnormality types among the abnormality type information previously stored in the memory unit based on the characteristic information. At least one of the above exception classes in .
於所述形態中,異常類別判定部亦可對所提取出的特徵資訊,使用與基準值的差分量、規定期間內的變化量、及某時間點的受光波形中所包含的資訊中至少一個以上的監視方法來判定異常類別。In the above aspect, the abnormality type determination unit may use at least one of the difference from the reference value, the amount of change within a predetermined period, and the information contained in the light-receiving waveform at a certain time point for the extracted feature information. The above monitoring method is used to determine the abnormal category.
根據所述形態,異常類別判定部使用多種監視方法來判定異常類別,因此可更適當地判定異常類別。According to the above aspect, since the abnormality type determination unit determines the abnormality type using a plurality of monitoring methods, the abnormality type can be determined more appropriately.
於所述形態中,亦可對預先記憶於記憶部中的異常類別資訊中的多個異常類別中能夠根據監視方法判定的異常類別進行分類。In the above-mentioned aspect, among the plurality of abnormality types in the abnormality type information stored in the storage unit in advance, the abnormality types that can be determined according to the monitoring method may be classified.
根據所述形態,於異常類別資訊中,對能夠根據監視方法判定的異常類別進行分類,因此於異常類別的判定中,可根據各異常類別使用適當的監視方法。According to the above aspect, since the abnormality types that can be determined according to the monitoring method are classified in the abnormality type information, an appropriate monitoring method can be used for each abnormality type in determining the abnormality type.
於所述形態中,特徵資訊亦可包含受光量、受光量調整參數、受光波形的寬度值、受光波形的面數、受光波形的總面積、及背景位準中至少兩種以上。In the above form, the characteristic information may also include at least two or more of the received light amount, the light received amount adjustment parameter, the width value of the light received waveform, the number of planes of the light received waveform, the total area of the light received waveform, and the background level.
根據所述形態,就自受光波形提取的特徵資訊而言,包含受光量、受光量調整參數、受光波形的寬度值、受光波形的面數、受光波形的總面積、及背景位準中至少兩種以上,因此基於該些,可更具體地判定異常類別。According to the form, the feature information extracted from the light receiving waveform includes at least two of the received light amount, the light receiving amount adjustment parameter, the width value of the light receiving waveform, the number of planes of the light receiving waveform, the total area of the light receiving waveform, and the background level. There are more than one type, so based on these, the abnormality category can be determined more specifically.
於所述形態中,異常類別判定部亦可根據受光量、受光量調整參數、受光波形的寬度值、受光波形的面數、受光波形的總面積、及背景位準中至少兩種以上的組合來判定異常類別。In the above-mentioned form, the abnormal type determination unit may also be based on a combination of at least two or more of the light receiving amount, the light receiving amount adjustment parameter, the width value of the light receiving waveform, the number of planes of the light receiving waveform, the total area of the light receiving waveform, and the background level To determine the abnormal category.
根據所述形態,異常類別判定部適當地組合多個特徵資訊來判定各異常類別,因此可更適當地判定異常類別。According to the above aspect, since the abnormality type determination unit appropriately combines a plurality of feature information to determine each abnormality type, it is possible to more appropriately determine the abnormality type.
於所述形態中,亦可對預先記憶於記憶部中的異常類別資訊中的多個異常類別中能夠根據受光量、受光量調整參數、受光波形的寬度值、受光波形的面數、受光波形的總面積、及背景位準中至少兩種以上的組合判定的異常類別進行分類。In the above-mentioned form, it is also possible to adjust the parameter, the width value of the light-receiving waveform, the number of planes of the light-receiving waveform, and the number of light-receiving waveforms according to the amount of light received, the light-receiving amount, and the number of planes of the light-receiving waveform among the plurality of abnormality types in the abnormality type information pre-stored in the memory unit. The total area of , and at least two types of abnormalities determined by combination of background levels are classified.
根據所述形態,於異常類別資訊中,對能夠根據受光量、受光量調整參數、受光波形的寬度值、受光波形的面數、受光波形的總面積、及背景位準中至少兩種以上的組合判定的異常類別進行分類,因此於異常類別的判定中,可根據各異常類別適當地組合特徵資訊。According to the above-mentioned form, in the abnormal type information, at least two or more of the abnormality types can be selected according to the amount of light received, the adjustment parameter of the light received amount, the width value of the light received waveform, the number of planes of the light received waveform, the total area of the light received waveform, and the background level. By combining and classifying the determined abnormality types, it is possible to appropriately combine feature information according to each abnormality type in determining the abnormality type.
於所述形態中,亦可對預先記憶於記憶部中的異常類別資訊中的多個異常類別中能夠根據檢查區域中有無工件及底座判定的異常類別進行分類。此外,所謂工件,是位移感測器測量的測量對象物,所謂底座,是用於載置工件的基座。In the above-described aspect, among the plurality of abnormality types stored in the storage unit in advance, the abnormality types that can be determined based on the presence or absence of workpieces and bases in the inspection area may be classified. In addition, the term "work" refers to an object to be measured by the displacement sensor, and the term "pedestal" refers to a pedestal on which the workpiece is placed.
根據所述形態,可根據檢查區域中有無工件及底座,適當地判定異常類別。According to the above aspect, it is possible to appropriately determine the type of abnormality according to the presence or absence of the workpiece and the base in the inspection area.
於所述形態中,輸出部亦可輸出與所判定出的異常類別對應的對策或推定原因。In the above-mentioned aspect, the output unit may output a countermeasure or an estimated cause corresponding to the determined abnormality type.
根據所述形態,用戶可直接且具體地掌握應採取何種對策。According to the above configuration, the user can directly and concretely grasp what kind of countermeasures should be taken.
本發明的一形態的狀態監視方法是由包括處理器的位移感測器執行的狀態監視方法,包括:投光步驟,向檢查區域投射光;受光步驟,接收由檢查區域反射的光,輸出受光波形;特徵資訊提取步驟,基於受光步驟中輸出的受光波形,提取至少兩種以上的特徵資訊;異常類別判定步驟,基於所提取出的至少兩種以上的特徵資訊,判定預先記憶於記憶體中的異常類別資訊中的多個異常類別中至少一種以上的異常類別,所述異常類別資訊將受光波形中所包含的多個特徵資訊與根據所述多個特徵資訊預測的多個異常類別建立了對應;以及輸出步驟,輸出所判定出的異常類別。A state monitoring method according to the present invention is a state monitoring method performed by a displacement sensor including a processor, including: a light projecting step, projecting light to the inspection area; a light receiving step, receiving light reflected by the inspection area, and outputting the received light Waveform; the feature information extraction step, based on the light receiving waveform output in the light receiving step, extracting at least two or more feature information; the abnormal category determination step, based on the extracted at least two or more feature information, judging that it is stored in memory in advance At least one abnormal category among the multiple abnormal categories in the abnormal category information, the abnormal category information establishes a plurality of characteristic information contained in the light receiving waveform and a plurality of abnormal categories predicted according to the plurality of characteristic information Corresponding; and an output step of outputting the determined abnormal category.
根據所述形態,於特徵資訊提取步驟中基於受光波形提取至少兩個以上的特徵資訊,於異常類別判定步驟中基於該特徵資訊,可適當地判定預先記憶於記憶體中的異常類別資訊中的多個異常類別中至少一種以上的異常類別。 [發明的效果] According to the above aspect, in the feature information extraction step, at least two or more feature information are extracted based on the received light waveform, and in the abnormality type determination step, based on the feature information, it is possible to appropriately determine the abnormality type information stored in the memory in advance. At least one or more exception classes among the plurality of exception classes. [Effect of the invention]
根據本發明,可提供一種可適當地判定異常類別的位移感測器以及狀態監視方法。According to the present invention, it is possible to provide a displacement sensor and a state monitoring method capable of appropriately determining the type of abnormality.
以下,參照圖式對本發明的實施方式進行具體說明。此外,以下說明的實施方式僅為列舉用於實施本發明的具體的一例,並非限定性地解釋本發明。另外,為了便於理解說明,有時於各圖式中對同一構成部件儘可能標註同一符號,並省略重覆的說明。Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In addition, the embodiment described below is only a specific example for carrying out the present invention, and the present invention is not limitedly interpreted. In addition, in order to facilitate understanding and description, the same components may be given the same reference numerals as much as possible in each drawing, and overlapping descriptions may be omitted.
<一實施方式>
[位移感測器的結構]
圖1是表示本發明一實施方式的位移感測器10的感測器頭的外觀的立體圖。位移感測器10包括感測器頭100、以及經由電纜11連接的被稱為放大器部的輔助框體(未圖示)。
<An embodiment>
[Structure of Displacement Sensor]
FIG. 1 is a perspective view showing the appearance of a sensor head of a
如圖1所示,位移感測器10自感測器頭100對載置於底座B的工件W投射雷射光L1,並且接收來自工件W相對於該雷射光L1的反射光L2,藉此基於三角測距的原理來測量工件W的表面的位移量。此外,作為位移量測量的是自感測器頭100至工件W的表面的距離,且可輸出距離作為檢測資料。As shown in FIG. 1 , the
如此,位移感測器10通常是向工件W投射雷射光來測量該工件W表面的位移量的測量裝置,但於本實施方式中,例如,於不存在工件W的情況下,亦可將組裝機器人等設備或周邊環境作為檢查區域,投射雷射光,並接收來自該檢查區域的反射光,藉此進行狀態監視。In this way, the
圖2是表示構成本發明一實施方式的位移感測器10的各功能的框圖。如圖2所示,位移感測器10包括:投光部110、受光部120、控制部130、記憶部140、顯示部150、操作部160以及輸入輸出介面170。此外,投光部110包括發光元件111及投光控制電路112,受光部120包括攝像元件121、訊號處理電路122及類比/數位(analog/digital,A/D)轉換電路123。FIG. 2 is a block diagram showing functions constituting the
此外,例如,投光部110、受光部120、控制部130及記憶部140被併入圖1所示的感測器頭100,顯示部150、操作部160及輸入輸出介面170設置於放大器部。但是,未必需要感測器頭100與放大器部的分離,亦可將圖2所示的結構全部設置於一個框體。In addition, for example, the
投光部110向檢查區域(例如,工件W)投射光。具體而言,投光部110具有雷射二極體(laser diode,LD)作為發光元件111,藉由投光控制電路112來調整該發光元件111的發光強度及發光時間,同時驅動發光元件111來投射光。此外,投光控制電路112基於來自控制部130的指令而運作。The
受光部120接收由檢查區域反射的光,輸出受光波形。更具體而言,受光部120具有包含多個畫素的互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)作為攝像元件121,更包括用於對由該攝像元件121生成的圖像訊號進行處理的訊號處理電路122及A/D轉換電路123。訊號處理電路122基於來自控制部130的指令對攝像元件121的動作的時機進行控制,並且取入攝像元件121所生成的圖像並輸出至A/D轉換電路123。而且,藉由A/D轉換電路123進行了類比-數位轉換的圖像是為了測量處理而被輸入至控制部130。The
控制部130例如是中央處理單元(central processing unit,CPU),且基於保存於記憶部140中的程式及設定資料等,自投光部110射出雷射光L1,並且根據其射出的時機使受光部120運作,而接收來自工件W的反射光L2。而且,控制部130基於由受光部120輸出的受光波形,藉由各種處理來測量工件W的位移量。The
另外,控制部130於基於由受光部120輸出的受光波形來提取該受光波形中所包含的特徵資訊的同時判定根據提取出的特徵資訊推測的異常類別。關於位移感測器10中的判定異常類別的處理的詳細情況,將後述。In addition, the
記憶部140例如是電子可抹除可程式唯讀記憶體(Electrically Erasable Programmable Read Only Memory,EEPROM)等非揮發性記憶體,且記憶有程式、用於定義控制部130所控制的各種動作的設定資料、及判定後述的異常類別的處理中所使用的異常類別資訊等。另外,亦被設定為用於蓄積判定後述的異常類別的處理中所使用的、由受光部120輸出的受光波形及自該受光波形提取的特徵資訊等資料的緩衝器功能。The
顯示部150例如包括液晶顯示器或有機電致發光(electroluminescent,EL)顯示器等,顯示上文所述的控制部130中的測量值、後述的異常類別、與該異常類別對應的對策、及與其他位移感測器10相關的設定及狀態等應通知給用戶的資訊等。The
操作部160包括按鈕、撥號盤或觸控面板等,例如用於使用戶進行位移感測器10的電源的接通斷開、各種設定及動作模式的切換等。The
輸入輸出介面170連接於個人電腦(personal computer,PC)及可程式邏輯控制器(programmable logic controller,PLC)等外部機器。於連接於外部機器的情況下,能夠藉由外部機器進行與操作部160中執行的操作相同的操作。例如亦可於PC上進行對位移感測器10的操作,或於PC的畫面上顯示由位移感測器10獲得的測量結果。The input-
[異常類別的判定處理]
接著,對位移感測器10進行的異常類別的判定處理進行詳細說明。此處,所謂異常類別的判定處理,例如是偵測由於位移感測器10的經年劣化、塵埃等異物的附著引起的污染及周邊環境帶來的影響等而無法適當地測量工件W等的異常或其徵兆的功能。
[Determination processing of abnormal type]
Next, the determination process of the abnormality type performed by the
圖3是表示本發明一實施方式的位移感測器10中,與異常類別的判定處理相關的控制部130及與其相關連的各功能結構的框圖。如圖3所示,控制部130包括特徵資訊提取部131、異常類別判定部132、以及輸出部133,參照記憶部140來判定異常類別並輸出至顯示部150。FIG. 3 is a block diagram showing the configuration of the
特徵資訊提取部131基於由受光部120輸出的受光波形,提取至少兩種以上的特徵資訊。具體而言,特徵資訊提取部131基於由受光部120持續地輸出的受光波形,提取後述的多個特徵資訊,並蓄積於記憶部140中。The feature
圖4是表示自受光波形提取的特徵資訊的一例的圖。於圖中,畫素位置表示攝像元件121上的畫素於三角測距中的基線方向上的位置,LSB表示與畫素位置對應的畫素的受光量的平均值。如圖4所示,自受光波形提取(1)受光量、(2)受光量調整參數、(3)寬度值、(4)面數、(5)受光波形總面積、及(6)背景位準。FIG. 4 is a diagram showing an example of feature information extracted from a light-receiving waveform. In the figure, the pixel position represents the position of the pixel on the
此外,所謂(1)受光量,是受光部120所接收的光的受光量,所謂(2)受光量調整參數,是根據該受光部120接收到的光的受光量而作為受光波形輸出所需的調整(例如,增益及曝光時間等)。所謂(3)寬度值,例如是峰值受光量的50%處的受光波形的寬度(半值寬度),且表示該受光波形的擴展,所謂(4)面數,是受光波形的峰值的數量,且表示光成分的數量。所謂(5)受光波形總面積,例如是圖4所示的受光波形所佔的範圍的總面積,所謂(6)背景位準,表示位移感測器10不投射測量用的光而由受光部120接收的周圍環境光所得的受光量。此外,寬度值並不限定於峰值受光量的50%處的受光波形的寬度(半值寬度),只要表示受光波形的擴展,則例如亦可為峰值受光量的40%或60%等處的受光波形的寬度值。In addition, (1) received light amount refers to the received light amount of light received by the
如此,於本實施方式中,特徵資訊提取部131自由受光部120輸出的受光波形提取上文所述的(1)~(6)此六個特徵資訊。In this way, in this embodiment, the characteristic
異常類別判定部132基於由特徵資訊提取部131提取的至少兩種以上的特徵資訊,判定預先記憶於記憶部140中的異常類別資訊中的多個異常類別中至少一種以上的異常類別。具體而言,異常類別判定部132基於上文所述的(1)~(6)的特徵資訊,根據該些的時間序列變化及該些的組合等來判定異常類別。此處,於記憶部140,預先記憶有將受光波形所包含的多個特徵資訊與根據該多個特徵資訊預測的多個異常類別建立了對應的異常類別資訊。異常類別判定部132基於上文所述的(1)~(6)的特徵資訊,參照記憶於記憶部140中的異常類別資訊來判定異常類別。The abnormal
圖5是表示將特徵資訊與根據該特徵資訊預測的異常類別建立了對應的異常類別資訊的一例的圖。如圖5所示,(a)感測器污染、(b)光源劣化、(c)狹窄部位測量、(d)多重反射、(e)相互干涉、及(f)干擾光此六個異常類別是根據上文所述的(1)受光量、(2)受光量調整參數、(3)寬度值、(4)面數、(5)受光波形總面積、及(6)背景位準的值、時間序列變化及該些的組合來判定。FIG. 5 is a diagram showing an example of abnormality type information in which characteristic information is associated with an abnormality type predicted from the characteristic information. As shown in Figure 5, (a) sensor contamination, (b) light source degradation, (c) narrow part measurement, (d) multiple reflections, (e) mutual interference, and (f) interference light are six abnormal categories It is the value based on (1) light receiving amount, (2) light receiving amount adjustment parameter, (3) width value, (4) surface number, (5) total area of light receiving waveform, and (6) background level as mentioned above , time series changes, and combinations of these.
進而,當利用異常類別判定部132基於上文所述的(1)~(6)的特徵資訊來判定上文所述的(a)~(f)的異常類別時,關於使用何種監視方法進行判定而建立了對應。監視方法中,例如,就上文所述的(1)~(6)的特徵資訊而言,包括對(A)與基準值的差分量、(B)規定期間內的變化量、及(C)某時間點的受光波形中所包含的資訊進行監視的方法,可使用該些中至少一個以上的監視方法。Furthermore, when the abnormality types (a) to (f) described above are determined based on the characteristic information of (1) to (6) above by using the abnormality
所謂(A)與基準值的差分量,是將位移感測器10的初始值(例如,工廠發貨時、購入時或開始工作時的值)作為基準值(臨限值)進行比較,所謂(B)規定期間內的變化量,是監視例如數ms~數百ms的短期間內的變化量,所謂(C)某時間點的受光波形中所包含的資訊,是偵測受光波形中暫時的波形中所包含的資訊。The difference between (A) and the reference value is to compare the initial value of the displacement sensor 10 (for example, the value at the time of shipment from the factory, at the time of purchase, or at the time of starting operation) as a reference value (threshold value). (B) The amount of change within a specified period is to monitor the amount of change in a short period of several ms to hundreds of ms. The so-called (C) information contained in the light-receiving waveform at a certain point in time is to detect the temporary The information contained in the waveform of the .
以下,示出具體例來對(a)~(f)的異常類別進行詳細說明。Hereinafter, the abnormality types (a) to (f) will be described in detail by showing specific examples.
圖6A是表示判定(a)感測器污染的一例的圖。如圖6A所示,於存在感測器污染的情況下,受光量、受光量調整參數及寬度值發生變化(短時間突變)。進而,作為位移感測器10,於超過能夠對工件進行適當的測量的基準值(臨限值)的範圍的情況下,異常類別判定部132判定為感測器污染。此外,若受光波形中包含雜訊成分,則進而有時受光波形總面積及背景位準發生變化,該些特徵資訊亦可用於感測器污染的判定。FIG. 6A is a diagram showing an example of determination (a) sensor contamination. As shown in FIG. 6A , in the presence of sensor contamination, the amount of light received, the parameter for adjusting the amount of light received, and the width value change (short-time sudden change). Furthermore, when the
圖6B是表示判定(b)光源劣化的一例的圖。如圖6B所示,於存在光源劣化的情況下,作為位移感測器10,成為受光量減少而使作為受光量調整參數的增益增加的狀態。例如,於與位移感測器10的初始基準值(最初使用時藉由示教而檢測出的值)進行比較而超過能夠對工件進行適當的測量的基準值(臨限值)的範圍的情況下,異常類別判定部132判定為光源劣化。FIG. 6B is a diagram showing an example of determination (b) of light source degradation. As shown in FIG. 6B , when there is degradation of the light source, as the
圖6C是表示判定(c)狹窄部位測量的一例的圖。如圖6C所示,於存在狹窄部位測量的情況下,作為位移感測器10,有時成為受光量的狀態變得不穩定而受光波形上下變動,或受光量減少而使作為受光量調整參數的增益增加的狀態。此處,與上文所述的(b)光源劣化的不同點在於,於為狹窄部位測量的情況下,例如,若檢查區域(工件)的狀態發生變化(若偏離狹窄部位位置),則受光量及受光量調整參數復原。換言之,於存在狹窄部位測量的情況下,若受光量及受光量調整參數的變化是暫時的,則異常類別判定部132判定為狹窄部位測量。FIG. 6C is a diagram showing an example of determination (c) stenosis measurement. As shown in FIG. 6C , in the case of measurement of a narrow part, as the
圖6D是表示判定(d)多重反射的一例的圖。如圖6D所示,於存在多重反射的情況下,產生面數增加般的變化(短時間突變)。而且,作為位移感測器10,於超過能夠對工件進行適當的測量的測量值及自受光波形提取的參數(寬度值或面數等)的基準值(臨限值)的範圍的情況下,異常類別判定部132判定為多重反射。進而,有時受光量下降(受光量調整參數上升),該些特徵資訊亦可用於感測器污染的判定。FIG. 6D is a diagram showing an example of determination (d) of multiple reflections. As shown in FIG. 6D , in the presence of multiple reflections, a change (short-term sudden change) like an increase in the number of faces occurs. Furthermore, when the
圖6E是表示判定(e)相互干涉的一例的圖。如圖6E所示,於存在相互干涉的情況下,面數增加,例如,若干涉光週期性閃爍,則峰值波形不發生變化,面數的變化反覆(短時間突變)。於此種情況下,異常類別判定部132判定為相互干涉。進而,有時受光量及受光量調整參數發生變化,背景位準亦發生變化,該些特徵資訊亦可用於相互干涉的判定。FIG. 6E is a diagram showing an example of determination (e) mutual interference. As shown in FIG. 6E , in the presence of mutual interference, the number of planes increases. For example, if the interfering light flickers periodically, the peak waveform does not change, and the number of planes changes repeatedly (short-time sudden change). In this case, the abnormality
圖6F是表示判定(f)干擾光的一例的圖。如圖6F所示,於存在干擾光的情況下,受光量、受光量調整參數、寬度值、受光波形總面積及背景位準產生變化(短時間突變)。特別是,背景位準雖增加但有時減少,於此一點上與上文所述的(a)感測器污染不同。而且,作為位移感測器10,於超過能夠對工件進行適當的測量的基準值(臨限值)的範圍的情況下,異常類別判定部132判定為干擾光。FIG. 6F is a diagram showing an example of determination (f) disturbance light. As shown in FIG. 6F , in the presence of interfering light, the amount of received light, the adjustment parameter of the received light amount, the width value, the total area of the received light waveform, and the background level change (short-term sudden change). In particular, the background level increases but sometimes decreases, which is different from (a) sensor contamination mentioned above in this point. Furthermore, when the
此外,關於異常類別的判定,並不限定於此處說明的條件,例如,只要可於此處說明的條件以外判定異常類別,則亦可使用其他條件進行判定,關於特徵資訊的組合,只要可於此處說明的組合以外判定異常類別,則亦可使用其他組合進行判定。In addition, the determination of the abnormal type is not limited to the conditions described here. For example, as long as the abnormal type can be determined outside the conditions described here, other conditions can also be used for determination. Regarding the combination of feature information, as long as it can If the abnormal type is judged outside of the combinations described here, other combinations can also be used for judgment.
另外,此處,異常類別判定部132基於(1)~(6)的特徵資訊,使用(A)~(C)的監視方法對(a)~(f)的異常類別進行判定,但並不限定於該些。例如,作為異常類別,亦可包含滲透、頭傾斜及透明體檢測等,作為特徵資訊,可包含與受光波形的傾斜或重心等相關的資訊,亦可包含其他能夠自受光波形提取的特徵資訊。進而,關於監視方法,例如亦可使用持續地監視的方法、及間歇地或週期性(長期及短期)地監視的方法等。另外,包含所述異常類別、特徵資訊及監視方法在內,亦可不需要全部應用該些,亦可根據用戶所期望的異常類別、精度及性能等適宜選擇,以便可適當地判定異常類別。In addition, here, the abnormality
如上所述,藉由異常類別判定部132來判定異常類別。As described above, the abnormality type is determined by the abnormality
輸出部133輸出由異常類別判定部132判定出的異常類別。例如,輸出部133可將該異常類別以於顯示部150上顯示的方式輸出,亦可以通知給作為外部機器而連接的PC或PLC的方式輸出。The
圖7是表示在設置於放大器部的顯示部150上顯示異常類別的一例的圖。如圖7所示,顯示了異常類別「感測器污染」。藉此,用戶可識別感測器污染並進行應對。FIG. 7 is a diagram showing an example of abnormality categories displayed on the
此外,作為顯示於顯示部150的內容,並不限定於異常類別,例如亦可顯示「請確認感測器的污染。」或「請更換光源。」等與異常類別對應的對策或推定原因。藉此,用戶可直接且具體地掌握應採取何種對策。In addition, the content displayed on the
圖8是表示與異常類別建立了對應的錯誤代碼及對策的一例的圖。例如,將如圖8所示般的對應表預先記憶於記憶部140中,輸出部133可根據由異常類別判定部132判定出的異常類別,參照該對應表,輸出異常類別、錯誤代碼及應對策略中的任一個或多個。FIG. 8 is a diagram showing an example of error codes and countermeasures associated with abnormality types. For example, a correspondence table as shown in FIG. 8 is pre-stored in the
另外,於顯示部150中的顯示畫面小的情況等下,若顯示與異常類別建立了對應的錯誤代碼,則作為用戶,例如藉由參照預先準備的、將錯誤代碼與異常類別及應對策略等建立了對應的表,掌握根據所顯示的錯誤代碼應採取何種對策即可。In addition, when the display screen of the
進而,亦可根據定期地點檢位移感測器10的情況、及實際測量工件W的情況等的狀況,切換輸出部133所輸出的內容及顯示部150所顯示的內容。例如,於判定出於測量工件W的運用時影響測量結果般的異常類別的情況下,輸出部133輸出警告(Warning)訊號,並且將測量結果置換為不定值或錯誤,進而亦可將該意旨顯示於顯示部150。另外,於需要異常類別的詳細資訊的情況下,亦可基於蓄積於記憶部140中的受光波形或特徵資訊的資料,顯示連續的時間序列資料及波形等。Furthermore, the content output by the
[狀態監視方法]
接著,說明對包含異常類別判定在內的位移感測器10及其周邊環境下的狀態進行監視的狀態監視方法。
[Status monitoring method]
Next, a state monitoring method for monitoring the state of the
圖9是表示在位移感測器10測量工件W的同時對包含異常類別判定在內的位移感測器10及其周邊環境下的狀態進行監視的狀態監視方法M10的處理流程的流程圖。如圖9所示,狀態監視方法M10包括步驟S11~步驟S19,各步驟由位移感測器10中所包含的處理器執行。FIG. 9 is a flowchart showing a process flow of a state monitoring method M10 for monitoring the state of the
於步驟S11中,如使用圖1所說明般,位移感測器10對工件W投射雷射光L1,並且接收來自工件W相對於該雷射光L1的反射光L2,藉此測量工件W的表面的位移量。In step S11, as described using FIG. 1 , the
於步驟S12中,藉由受光部120接收由工件W(檢查區域)反射的光,輸出受光波形。In step S12 , the light reflected by the workpiece W (inspection region) is received by the
於步驟S13中,藉由控制部130中的特徵資訊提取部131基於步驟S12中輸出的受光波形,提取至少兩種以上的特徵資訊。作為具體例,提取使用圖4說明的(1)受光量、(2)受光量調整參數、(3)寬度值、(4)面數、(5)受光波形總面積、及(6)背景位準作為特徵資訊。In step S13 , the feature
於步驟S14中,藉由控制部130,將步驟S13中提取出的特徵資訊蓄積於記憶部140中。In step S14 , the feature information extracted in step S13 is stored in the
於步驟S15~步驟S18中,藉由控制部130中的異常類別判定部132基於步驟S14中蓄積的特徵資訊,參照預先記憶於記憶體中的異常類別資訊來判定異常類別。作為具體例,如使用圖5所說明般,異常類別判定部132就(1)受光量、(2)受光量調整參數、(3)寬度值、(4)面數、(5)受光波形總面積、及(6)背景位準此六個特徵資訊而言,使用(A)基準值差分、(B)短時間突變、及(C)某時間點的受光波形此三個監視方法,判定(a)感測器污染、(b)光源劣化、(c)狹窄部位測量、(d)多重反射、(e)相互干涉、及(f)干擾光此六個異常類別。In step S15 to step S18, the abnormality category is judged by the abnormality
於步驟S19中,藉由控制部130中的輸出部133輸出步驟S15~步驟S18中判定出的異常類別。作為具體例,於顯示部150上顯示異常類別。In step S19 , the abnormality types determined in steps S15 to S18 are output by the
此外,步驟S13~步驟S19中的與異常類別判定相關的一系列處理可於每個測量週期執行,除此以外亦可視需要適宜執行。In addition, a series of processes related to the determination of the abnormality type in step S13 to step S19 may be executed in each measurement cycle, or may be appropriately executed as needed.
圖10是表示圖9中的步驟S15~步驟S18中執行的異常類別判定方法M100的具體處理流程的流程圖。如圖10所示,異常類別判定方法M100包括步驟S101~步驟S116,各步驟由位移感測器10中所包括的處理器執行。FIG. 10 is a flowchart showing a specific processing flow of the abnormality type determination method M100 executed in steps S15 to S18 in FIG. 9 . As shown in FIG. 10 , the abnormal type determination method M100 includes steps S101 to S116 , and each step is executed by a processor included in the
此處,作為各步驟中的處理,異常類別判定部132藉由對是否各特徵資訊的變化(上升或下降)即短時間突變、及為基準值的範圍內(超出或低於)進行監視來判定異常類別。對該些步驟中的處理進行具體說明。Here, as processing in each step, the abnormality
於步驟S101中,若(1)受光量低於初始基準值、(2)受光量調整參數超出初始基準值(步驟S101的是(Yes)),則異常類別判定部132判定為(b)光源劣化(步驟S102)。In step S101, if (1) the received light amount is lower than the initial reference value, or (2) the light received amount adjustment parameter exceeds the initial reference value (Yes (Yes) in step S101), the abnormality
此處,所謂初始基準值,例如是基於購入位移感測器10並最初使用時藉由示教而檢測出的值來設定,換言之,關於(1)受光量及(2)受光量調整參數,用於掌握自最初使用位移感測器10時起的變化量(差分)。關於受光量及受光量調整參數,初始基準值可設定於位移感測器10可適當地測量工件的範圍內。Here, the so-called initial reference value is set based on, for example, the value detected by teaching when the
此外,假設於購入位移感測器10並最初使用時不進行示教而未設定初始基準值的情況下,異常類別判定部132有時無法判定(b)光源劣化。於此情況下,藉由使用預先設定於位移感測器10的值,或用戶進行設定,異常類別判定部132亦可判定(b)光源劣化。Also, if the
於步驟S103中(步驟S101的否(No)),異常類別判定部132判定是否(4)面數上升且超出基準值。In step S103 (No (No) in step S101 ), the abnormality
此處,所謂基準值,例如是基於在使位移感測器10運轉的開始工作時等藉由示教而檢測出的值來設定,換言之,關於該特徵資訊,用於掌握自使位移感測器10運轉的開始工作時等起的變化量(差分)。關於該特徵資訊(亦包含以下說明的特徵資訊),基準值可設定於位移感測器10可適當地測量工件的範圍內。此外,基準值亦可於每次示教時更新,假設於使位移感測器10運轉的開始工作時等不進行示教的情況下,亦可使用預先設定於位移感測器10的值,或用戶進行設定。Here, the reference value is set based on, for example, a value detected by teaching when the
於步驟S104中(步驟S103的是),若(4)面數不下降且不於基準值範圍內(步驟S104的否),則異常類別判定部132判定為(d)多重反射(步驟S105)。In step S104 (Yes in step S103 ), if (4) the face count does not decrease and is not within the reference value range (No in step S104 ), the abnormality
於步驟S106中(步驟S104的是),若(4)面數反覆上升下降(步驟S106的是),則異常類別判定部132判定為(e)相互干涉(步驟S107)。In step S106 (YES in step S104 ), if (4) the face count repeatedly increases and decreases (YES in step S106 ), the abnormality
於步驟S108中(步驟S103的否),異常類別判定部132判定是否(1)受光量下降且低於基準值、(2)受光量調整參數上升且超出基準值。In step S108 (No in step S103 ), the abnormality
於步驟S109中(步驟S108的是),若(3)寬度值上升(步驟S109的是),則異常類別判定部132判定為(a)感測器污染(步驟S110)。In step S109 (YES in step S108 ), if (3) the width value increases (YES in step S109 ), the abnormality
於步驟S111中(步驟S109的否),若(1)受光量上升、(2)受光量調整參數下降(步驟S111的是),則異常類別判定部132判定為(c)狹窄部位測量(步驟S112)。In step S111 (No in step S109 ), if (1) the received light amount increases, and (2) the light received amount adjustment parameter decreases (Yes in step S111 ), the abnormality
於步驟S113中(步驟S108的否),異常類別判定部132判定是否(1)受光量上升且超出基準值、(2)受光量調整參數下降且低於基準值。In step S113 (No in step S108 ), the abnormality
於步驟S114中(步驟S113的是),異常類別判定部132判定是否(5)受光波形總面積上升且超出基準值、(6)背景位準上升且超出基準值。In step S114 (YES in step S113 ), the abnormality
於步驟S115中(步驟S114的是),若(5)受光波形總面積下降且低於基準值、(6)背景位準下降且低於基準值(步驟S115的是),則異常類別判定部132判定為干擾光(步驟S116)In step S115 (Yes in step S114), if (5) the total area of the light-receiving waveform decreases and is lower than the reference value, (6) the background level decreases and is lower than the reference value (Yes in step S115), the abnormal
如此,異常類別判定部132判定(a)感測器污染、(b)光源劣化、(c)狹窄部位測量、(d)多重反射、(e)相互干涉、及(f)干擾光此六個異常類別。In this way, the abnormality
如以上所述,根據本發明的一實施方式的位移感測器10以及狀態監視方法M10,特徵資訊提取部131自受光波形提取多個特徵資訊,異常類別判定部132基於該多個特徵資訊,可判定自預先記憶於記憶部140中的異常類別資訊中的多個異常類別中至少一種以上的異常類別。其結果,可適當地判定異常類別,從而用戶可採取與該異常類別對應的對策。As described above, according to the
此外,於本實施方式中,說明了對圖5所示的(a)~(f)的異常類別進行判定的情況,但根據檢查區域的狀態,有時可判定的異常類別不同。In addition, in this embodiment, a case was described in which the abnormality types shown in (a) to (f) in FIG. 5 are determined, but the abnormality types that can be determined may differ depending on the state of the inspection area.
圖11是表示圖5中的異常類別中無法根據檢查區域中有無工件及底座判定的異常類別的一例的圖。如圖11所示,關於(a)~(f)的異常類別,於檢查區域中存在工件的情況下,可適當地判定,但於檢查區域中不存在工件及底座的情況下,關於(a)感測器污染、(c)狹窄部位測量、及(d)多重反射,有時無法適當地判定。11 is a diagram showing an example of an abnormality category that cannot be determined based on the presence or absence of a workpiece and a base in an inspection area, among the abnormality categories in FIG. 5 . As shown in Fig. 11, regarding the abnormality types (a) to (f), it can be properly judged when there is a workpiece in the inspection area, but when there are no workpieces and bases in the inspection area, regarding (a ) sensor contamination, (c) stenosis measurement, and (d) multiple reflections, sometimes cannot be properly judged.
如此,根據檢查區域的條件,存在可適當地判定的異常類別以及有時無法適當地判定的異常類別,因此例如亦可將該些資訊包含於預先記憶於記憶部140中的異常類別資訊中。In this way, depending on the conditions of the inspection area, there are abnormality types that can be appropriately determined and abnormal types that cannot be appropriately determined. Therefore, such information may be included in the abnormality type information stored in the
藉此,例如,於由異常類別判定部132判定為(c)狹窄部位測量的情況下,藉由在顯示部150上顯示消息為「於不存在工件的情況下,有時無法進行適當的判定」,或進行與其類似的通知,亦可使用戶進行確認。另外,亦可預先於顯示部150上顯示判定的異常類別或可針對每個異常類別適當地判定的條件等,而使用戶進行確認,以便可適當地判定用戶所期望的異常類別。In this way, for example, in the case where the abnormality
進而,用戶亦可經由操作部160輸入滿足適當的條件(例如,於本實施方式中存在工件及底座)的時間段。藉此可知,於該時間段判定的異常類別為適當地判定出的結果。Furthermore, the user can also input a time zone that satisfies an appropriate condition (for example, the existence of a workpiece and a base in the present embodiment) through the
另外,於本實施方式中,作為記憶於記憶部140中的異常類別資訊,列舉了如圖5所示般針對每個異常類別將異常類別判定中所使用的特徵資訊及監視方法建立了對應的表作為一例,但並不限定於此。例如,亦可為針對每個監視方法將特徵資訊及異常類別建立了對應的表。In addition, in this embodiment, as the abnormality type information stored in the
圖12是表示針對每個監視方法,將所使用的特徵資訊及所預測的異常類別建立了對應的異常類別資訊的一例的圖。如圖12所示,於(A)~(C)的監視方法中,可掌握當監視(1)~(6)的特徵資訊中的哪一個時可判定(a)~(f)的異常類別。此處,存在藉由監視方法與特徵資訊的組合可唯一地判定異常類別的情況,進而藉由該些的多個組合可判定異常類別的情況。FIG. 12 is a diagram showing an example of abnormality type information in which used feature information and predicted abnormality types are associated with each monitoring method. As shown in Fig. 12, in the monitoring methods (A) to (C), it is possible to grasp which of the characteristic information of (1) to (6) is monitored and to determine the abnormality type of (a) to (f) . Here, there are cases where the abnormality type can be uniquely determined by a combination of the monitoring method and characteristic information, and further abnormality types can be determined by a plurality of combinations of these.
此外,作為監視方法於使用基準值差分的情況下,需要預先設定有基準值,於使用短時間突變及某時間點的受光波形的情況下,可藉由與蓄積於記憶部140中的資料的比較及變化等來進行判定,因此即便未預先設定有基準值,有時亦可判定異常類別。In addition, in the case of using the reference value difference as a monitoring method, it is necessary to set a reference value in advance. Therefore, even if the reference value is not set in advance, it may be possible to determine the type of abnormality.
如此,關於以何種形式採用異常類別資訊作為記憶於記憶部140中的異常類別資訊,根據位移感測器10的種類、用戶所期望的異常類別、及異常類別判定部132中的具體的判定處理順序等進行採用即可。另外,可於記憶部140中記憶多種形式的異常類別資訊,亦可以圖5及圖12所示的異常類別資訊以外的形式記憶異常類別資訊。In this way, the form in which the abnormality type information is used as the abnormality type information stored in the
以上說明的實施方式用於便於理解本發明,並非用於限制地解釋本發明。實施方式所包括的各部件以及其配置、材料、條件、形狀及尺寸等並不限於例示者,可適宜變更。另外,能夠部分地置換或組合不同的實施方式中所示的結構彼此。The embodiments described above are for facilitating the understanding of the present invention, and are not intended to limit the interpretation of the present invention. Each member included in the embodiment, its arrangement, material, condition, shape, size, etc. are not limited to the illustrated ones, and can be appropriately changed. In addition, the configurations shown in different embodiments can be partially substituted or combined.
[附記] 一種位移感測器(10),包括: 投光部(110),向檢查區域投射光; 受光部(120),接收由所述檢查區域反射的光,輸出受光波形; 記憶部(140),預先記憶將受光波形中所包含的多個特徵資訊與根據該多個特徵資訊預測的多個異常類別建立了對應的異常類別資訊; 特徵資訊提取部(131),基於由所述受光部輸出的受光波形,提取至少兩種以上的特徵資訊; 異常類別判定部(132),基於所述提取出的至少兩種以上的特徵資訊,判定預先記憶於所述記憶部中的異常類別資訊中的多個異常類別中至少一種以上的異常類別;以及 輸出部(133),輸出所述判定出的異常類別。 [Note] A displacement sensor (10), comprising: a light projecting part (110), projecting light to the inspection area; a light receiving unit (120), receiving the light reflected by the inspection area, and outputting a light receiving waveform; The memory unit (140) pre-memorizes abnormal category information corresponding to a plurality of characteristic information contained in the light receiving waveform and a plurality of abnormal categories predicted according to the plurality of characteristic information; A feature information extraction unit (131), extracting at least two or more types of feature information based on the light receiving waveform output by the light receiving unit; An abnormal category determination unit (132), based on the extracted at least two or more types of feature information, determines at least one abnormal category among the plurality of abnormal categories in the abnormal category information pre-stored in the memory unit; and An output unit (133) outputs the determined abnormality type.
10:位移感測器 11:電纜 100:感測器頭 110:投光部 111:發光元件 112:投光控制電路 120:受光部 121:攝像元件 122:訊號處理電路 123:A/D轉換電路 130:控制部 131:特徵資訊提取部 132:異常類別判定部 133:輸出部 140:記憶部 150:顯示部 160:操作部 170:輸入輸出介面 L1:雷射光 L2:反射光 B:底座 M10:狀態監視方法 M100:異常類別判定方法 S11~S19:狀態監視方法M10的各步驟 S101~S116:異常類別判定方法M100的各步驟 W:工件 10: Displacement sensor 11: cable 100: sensor head 110: Projector 111: Light emitting element 112: Light projection control circuit 120: Light receiving part 121: Camera element 122: Signal processing circuit 123: A/D conversion circuit 130: Control Department 131: Feature Information Extraction Department 132: Abnormal Category Judgment Department 133: output unit 140: memory department 150: display part 160: Operation Department 170: Input and output interface L1: laser light L2: reflected light B: base M10: Status Monitoring Method M100: Abnormal Category Judgment Method S11~S19: Each step of the state monitoring method M10 S101-S116: Each step of the abnormality category determination method M100 W: Workpiece
圖1是表示本發明一實施方式的位移感測器10的感測器頭的外觀的立體圖。
圖2是表示構成本發明一實施方式的位移感測器10的各功能的框圖。
圖3是表示本發明一實施方式的位移感測器10中,與異常類別的判定處理相關的控制部130及與其相關連的各功能結構的框圖。
圖4是表示自受光波形提取的特徵資訊的一例的圖。
圖5是表示將特徵資訊與根據該特徵資訊預測的異常類別建立了對應的異常類別資訊的一例的圖。
圖6A是表示判定(a)感測器污染的一例的圖。
圖6B是表示判定(b)光源劣化的一例的圖。
圖6C是表示判定(c)狹窄部位測量的一例的圖。
圖6D是表示判定(d)多重反射的一例的圖。
圖6E是表示判定(e)相互干涉的一例的圖。
圖6F是表示判定(f)干擾光的一例的圖。
圖7是表示在設置於放大器部的顯示部上顯示異常類別的一例的圖。
圖8是表示與異常類別建立了對應的錯誤代碼及對策的一例的圖。
圖9是表示在位移感測器10測量工件W的同時對包含異常類別判定在內的位移感測器10及其周邊環境下的狀態進行監視的狀態監視方法M10的處理流程的流程圖。
圖10是表示圖9中的步驟S15~步驟S18中執行的異常類別判定方法M100的具體處理流程的流程圖。
圖11是表示圖5中的異常類別中無法根據檢查區域中有無工件及底座判定的異常類別的一例的圖。
圖12是表示針對每個監視方法,將所使用的特徵資訊及所預測的異常類別建立了對應的異常類別資訊的一例的圖。
FIG. 1 is a perspective view showing the appearance of a sensor head of a
10:位移感測器 10: Displacement sensor
110:投光部 110: Projector
111:發光元件 111: Light emitting element
112:投光控制電路 112: Light projection control circuit
120:受光部 120: Light receiving part
121:攝像元件 121: Camera element
122:訊號處理電路 122: Signal processing circuit
123:A/D轉換電路 123: A/D conversion circuit
130:控制部 130: Control Department
140:記憶部 140: memory department
150:顯示部 150: display part
160:操作部 160: Operation Department
170:輸入輸出介面 170: Input and output interface
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021031509A JP2022132827A (en) | 2021-03-01 | 2021-03-01 | Displacement sensor and condition monitoring method |
JP2021-031509 | 2021-03-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202235823A TW202235823A (en) | 2022-09-16 |
TWI802234B true TWI802234B (en) | 2023-05-11 |
Family
ID=83155313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111102311A TWI802234B (en) | 2021-03-01 | 2022-01-20 | Displacement sensor and state monitoring method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022132827A (en) |
CN (1) | CN116888428A (en) |
TW (1) | TWI802234B (en) |
WO (1) | WO2022185743A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006038487A (en) * | 2004-07-22 | 2006-02-09 | Mitsutoyo Corp | Optical measuring instrument |
TW200813395A (en) * | 2006-07-12 | 2008-03-16 | Omron Tateisi Electronics Co | Displacement sensor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3417796B2 (en) * | 1997-05-06 | 2003-06-16 | 株式会社東芝 | Rangefinder |
US6724491B2 (en) * | 2000-01-31 | 2004-04-20 | Omron Corporation | Visual displacement sensor |
JP2012078175A (en) * | 2010-09-30 | 2012-04-19 | Panasonic Electric Works Sunx Co Ltd | Detection device, control device, detection method of abnormal indication and program for detection of abnormal indication |
JP6766911B2 (en) * | 2019-03-05 | 2020-10-14 | オムロン株式会社 | Optical measuring device |
-
2021
- 2021-03-01 JP JP2021031509A patent/JP2022132827A/en active Pending
-
2022
- 2022-01-17 CN CN202280016918.8A patent/CN116888428A/en active Pending
- 2022-01-17 WO PCT/JP2022/001363 patent/WO2022185743A1/en active Application Filing
- 2022-01-20 TW TW111102311A patent/TWI802234B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006038487A (en) * | 2004-07-22 | 2006-02-09 | Mitsutoyo Corp | Optical measuring instrument |
TW200813395A (en) * | 2006-07-12 | 2008-03-16 | Omron Tateisi Electronics Co | Displacement sensor |
Also Published As
Publication number | Publication date |
---|---|
WO2022185743A1 (en) | 2022-09-09 |
CN116888428A (en) | 2023-10-13 |
JP2022132827A (en) | 2022-09-13 |
TW202235823A (en) | 2022-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9292113B2 (en) | Driving circuit with fault detection and optical input device having the same | |
US11336831B2 (en) | Image processing device, control method, and program storage medium | |
US7860612B2 (en) | Controlling machine actions based on luminance of environmental light and distance from user | |
JP2008033532A (en) | Method and apparatus for detecting abnormality in equipment provided with movable part | |
JP2018523832A (en) | Device and method for checking chain condition | |
JP4250085B2 (en) | Method for testing functional reliability of image sensor and apparatus having image sensor | |
TWI802234B (en) | Displacement sensor and state monitoring method | |
US10469816B2 (en) | Projection system and monitoring method thereof and display system and monitoring method thereof | |
JP2012083282A (en) | Illumination system for inspection device | |
US20140320851A1 (en) | Lens module testing device | |
JP5139049B2 (en) | Photoelectric sensor | |
US20200326237A1 (en) | Optical measuring device, malfunction determination system, malfunction determination method, and a non-transitory recording medium storing malfunction determination program | |
WO2013118304A1 (en) | Inspection device, inspection method, and recording medium | |
JP4712175B2 (en) | Reference measurement method | |
JP4321890B2 (en) | Color detection device | |
KR101037724B1 (en) | Wafer Damage Prevention System and Method | |
JP4103111B2 (en) | Photoelectric sensor device | |
JP2010122127A (en) | Optical displacement sensor system, console, controller and program | |
US20220390604A1 (en) | Tof apparatus, tof system, installation status notification method | |
US20180220053A1 (en) | Processing device, processing method, system, and article manufacturing method | |
JP2021076671A (en) | Projection device, installation state detection method, and installation state detection program | |
JP5167220B2 (en) | Optical sensor device | |
KR20030009889A (en) | Rivet correct position sensing device of auto riveter | |
JP7552445B2 (en) | Information processing device | |
JP7518655B2 (en) | Photoelectric Sensor |