[go: up one dir, main page]

WO2022153916A1 - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
WO2022153916A1
WO2022153916A1 PCT/JP2022/000206 JP2022000206W WO2022153916A1 WO 2022153916 A1 WO2022153916 A1 WO 2022153916A1 JP 2022000206 W JP2022000206 W JP 2022000206W WO 2022153916 A1 WO2022153916 A1 WO 2022153916A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
turn
transformer
layer
layer wiring
Prior art date
Application number
PCT/JP2022/000206
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 今井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022153916A1 publication Critical patent/WO2022153916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils

Definitions

  • This disclosure relates to a transformer.
  • a primary winding is formed by connecting a lower coil of one turn and an upper coil of one turn with a via hole in a multilayer substrate.
  • the transformer is provided with a one-turn coil, which is a secondary winding, between the lower coil and the upper coil. Further, in the transformer, since the lower coil and the upper coil are connected in parallel, the primary winding is equivalently set to 0.5 turn and the secondary winding is set to 1 turn. Therefore, if it is desired to obtain a high impedance in the transformer described in Patent Document 1, it is necessary to increase the winding size, so that the size cannot be reduced.
  • the purpose is to provide a transformer that is compact and can obtain high inductance.
  • the transformer according to one aspect of the present invention includes a first wiring provided on the first surface of the first layer, a second wiring provided on the second surface of the second layer, the first layer and the first layer.
  • a third wiring provided on the third surface of the third layer provided between the two layers is provided, and the first wiring and the second wiring are electrically connected by a via conductor, and the first wiring is provided.
  • the three wirings are wound more than one turn on the third surface, and the first wiring and the second wiring are provided so as to be electromagnetically coupled to the third wiring.
  • FIG. 1 is a schematic perspective view showing an example of the configuration of the transformer 100.
  • the transformer 100 performs impedance matching by impedance conversion by, for example, two wires coupled in an electromagnetic field, and converts a differential signal and a single-ended signal to each other.
  • the transformer 100 is formed of, for example, a multilayer substrate.
  • the terms “primary” and “secondary” may be used in the description of the transformer 100, but the transformer 100 also includes a configuration in which "primary” and “secondary” are interchanged.
  • the transformer 100 includes, for example, at least the outermost layer (hereinafter referred to as the upper layer 110), a layer adjacent to the upper layer 110 (hereinafter referred to as the middle layer 130), and a layer adjacent to the upper layer 110 in the middle layer 130 (hereinafter referred to as the upper layer 110).
  • the transformer 100 includes, for example, wiring formed on the surface of the upper layer 110 (hereinafter referred to as “upper layer wiring 111”) and wiring formed on the surface of the lower layer 120 (hereinafter referred to as “upper layer wiring 111”) in the multilayer substrate.
  • “Lower layer wiring 121” wiring formed on the surface of the middle layer 130 (hereinafter referred to as “middle layer wiring 131”), via conductors 140 and 150, and connection wiring 160. As shown in FIG. 1, it is desirable that the center C of the upper layer wiring 111, the lower layer wiring 121, and the middle layer wiring 131 is coaxial.
  • the via conductor 140 penetrates, for example, the upper layer 110.
  • the via conductor 140 electrically connects, for example, the upper layer wiring 111 and the connection wiring 160.
  • the via conductor 150 penetrates, for example, the middle layer 130.
  • the via conductor 150 electrically connects, for example, the connection wiring 160 and the lower layer wiring 121.
  • the connection wiring 160 electrically connects the end portion 141 of the via conductor 140 and the end portion 151 of the via conductor 150, for example, on the surface of the middle layer 130. That is, the upper layer wiring 111 and the lower layer wiring 121 are connected in series.
  • the secondary winding is formed by the upper layer wiring 111, the via conductors 140 and 150, the connection wiring 160, and the lower layer wiring 121.
  • the middle layer wiring 131 will be referred to as a primary winding
  • the upper layer wiring 111, via conductors 140 and 150, the connection wiring 160, and the lower layer wiring 121 will be described as secondary windings.
  • the middle layer wiring 131 is provided between the upper layer wiring 111 and the lower layer wiring 121 so that the upper layer wiring 111 and the lower layer wiring 121 are electromagnetically coupled. Further, the middle layer wiring 131 is wound around the surface of the middle layer 130 more than one turn (one turn), for example.
  • the inductance can be increased, so that the characteristics of the transformer 100 can be improved. Further, it is desirable that the total number of turns of the upper layer wiring 111 and the lower layer wiring 121 is more than one turn. As a result, the coupling coefficient can be increased while increasing the inductance, so that the characteristics of the transformer 100 can be improved.
  • the signal current flows through the middle layer wiring 131, which is the primary winding, in the direction of the solid arrow shown in FIG.
  • the induced current flows through the upper layer wiring 111 and the lower layer wiring 121 in the direction of the broken line arrow shown in FIG.
  • FIG. 2A is a diagram for explaining an example of the definition of a turn.
  • FIG. 2B is a graph showing the relationship between the route length and the Euclidean distance.
  • the definition of "turn” is similarly applied to the upper layer wiring 111 and the lower layer wiring 121.
  • an XY Cartesian coordinate system is defined with the origin O at the outer peripheral end of the middle layer wiring 131.
  • the middle layer wiring 131 passes from the origin O through an arbitrary path to reach the end point E on the inner peripheral side.
  • the path length from the origin O to an arbitrary point P of the middle layer wiring 131 is represented by L.
  • the Euclidean distance between the origin O and the point P is represented by D.
  • the Euclidean distance D shows the first maximum value at the point P2 of the middle layer wiring 131.
  • the Euclidean distance D shows the minimum value at the point P4, the Euclidean distance D shows the second maximum value at the point P6, and reaches the end point E.
  • a set of a maximum value and a minimum value appearing after the maximum value may be defined as the number of turns.
  • the number of maximum values may be defined as 0.5 turn in terms of the number of turns. That is, in FIG. 2A, since the middle layer wiring 131 has one set of the first maximum value and the minimum value and further has the second maximum value, it has 1.5 turns (1 turn + 0.5 turns). ) More than that.
  • first turn wiring 131a the wiring of the middle layer wiring 131 on the first turn from the outside
  • second turn wiring 131b the wiring on the second turn from the outside starting from the broken line shown in FIG. 2A
  • the number obtained by dividing the total angle of the middle layer wiring 131 by 360 degrees may be defined as the number of turns. That is, in FIG. 2A, the direction of the middle layer wiring 131 is changed by 90 degrees at each of the points P1 to P6. Therefore, the middle-rise wiring 131 of the present embodiment has more turns than 1.5 turns because the direction is changed by 540 degrees.
  • FIG. 3A is a diagram showing an example of the upper layer wiring 111 viewed in a plan view.
  • FIG. 3B is a diagram showing an example of the lower layer wiring 121 viewed in a plan view.
  • FIG. 3C is a diagram showing an example of the middle layer wiring 131 viewed in a plan view.
  • the "planar view” refers to a state when viewed from the direction (Z direction) in which the layers on the multilayer substrate are laminated.
  • one end of the upper layer wiring 111 is connected to an external circuit (not shown), and the other end is connected to the via conductor 140.
  • the upper layer wiring 111 is formed on the surface of the upper layer 110 so as not to intersect the middle layer wiring 131 in a plan view, for example. It is desirable that the upper layer wiring 111 is provided so as to overlap the first turn wiring 131a or the second turn wiring 131b in a plan view, for example. As a result, the coupling coefficient between the wirings of each layer can be increased. Further, the upper layer wiring 111 may be provided between the first turn wiring 131a and the second turn wiring 131b in a plan view, for example.
  • the upper layer wiring 111 and the first turn wiring 131a and the second turn wiring 131b are evenly coupled to each other, so that the characteristics of the transformer 100 can be improved.
  • the shape of the upper layer wiring 111 in a plan view is not particularly limited.
  • one end of the lower layer wiring 121 is connected to an external circuit (not shown), and the other end is connected to the via conductor 150.
  • the lower layer wiring 121 is formed on the surface of the lower layer 120 so as not to intersect the middle layer wiring 131 in a plan view, for example. It is desirable that the lower layer wiring 121 is provided so as to overlap the first turn wiring 131a or the second turn wiring 131b in a plan view, for example. As a result, the coupling coefficient between the wirings of each layer can be increased. Further, the lower layer wiring 121 may be provided between the first turn wiring 131a and the second turn wiring 131b in a plan view, for example. As a result, the lower layer wiring 121 and the first turn wiring 131a and the second turn wiring 131b are evenly coupled, so that the characteristics of the transformer 100 can be improved.
  • the shape of the lower layer wiring 121 in a plan view is not particularly limited.
  • one end of the middle layer wiring 131 is connected to an external circuit (not shown) and the other end is connected to a via conductor (not shown).
  • the middle layer wiring 131 is wound more than one turn.
  • the middle layer wiring 131 may be wound more than one turn, and the number of turns is not limited.
  • the middle layer wiring 131 is provided at a position facing the first turn wiring 131a on the first turn from the outside and the first turn wiring 131a on the second turn from the outside, and a current flows in the same direction as the first turn wiring 131a. Includes a second turn wiring 131b formed to flow.
  • a connection wiring 160 is provided between at least a part of the first turn wiring 131a and at least a part of the second turn wiring 131b.
  • the connection wiring 160 electrically connects the end portion 141 of the via conductor 140 and the end portion 151 of the via conductor 150. That is, the connection wiring 160 is a part of the secondary winding and is electromagnetically coupled to the middle layer wiring 131.
  • the connection wiring 160 is close to the first turn wiring 131a and the second turn wiring 131b which are a part of the primary winding, the coupling coefficient between the primary winding and the secondary winding can be increased.
  • the shape of the middle layer wiring 131 in a plan view is not particularly limited.
  • FIG. 4A is a diagram showing an example in which the upper layer wiring 1110 of the transformer 1000 according to the comparative example is viewed in a plan view.
  • FIG. 4B is a diagram showing an example in which the lower layer wiring 1210 of the transformer 1000 according to the comparative example is viewed in a plan view.
  • FIG. 4C is a diagram showing an example in which the middle layer wiring 1310 of the transformer 1000 according to the comparative example is viewed in a plan view.
  • the transformer 1000 according to the comparative example is for explaining the effectiveness of the connection wiring 160 of the transformer 100, and the transformer 1000 is not excluded from the present embodiment. That is, the transformer 100 may be configured like the transformer 1000.
  • the transformer 1000 included in the present embodiment since the first turn wiring 1310a and the second turn wiring 1310b are close to each other, good characteristics can be obtained when each of them is regarded as a single inductor.
  • the upper layer wiring 1110 and the lower layer wiring 1210 are formed on the surface of each layer so as not to intersect with the middle layer wiring 1310 in a plan view.
  • the connection wiring 1600 is provided inside the second turn wiring 1310b.
  • the upper layer wiring 1110 and the lower layer wiring 1210 need to bend the end portion 1111 and the end portion 1211 90 degrees on each layer in order to connect to the connection wiring 1600 through the via conductors 1400 and 1500.
  • the end portion 1111 and the end portion 1211 intersect with a part of the middle layer wiring 1310.
  • the coupling coefficient of the transformer 1000 is lowered.
  • the connection wiring 1600 is provided outside the second turn wiring 1310b, the end portion 1111 and the end portion 1211 intersect with a part of the middle layer wiring 1310, so that the coupling coefficient of the transformer 1000 is lowered.
  • the transformer 100 since the connection wiring 160 is formed between the first turn wiring 131a and the second turn wiring 131b, the upper layer wiring 111 and the lower layer wiring 121 and the middle layer No intersection occurs with the wiring 131. Therefore, the transformer 100 can have a higher coupling coefficient than the transformer 1000 according to the comparative example, so that the characteristics can be improved.
  • the distance between the connection wiring 1600 and the first turn wiring 1310a is larger than the distance between the connection wiring 1600 and the second turn wiring 1310b. That is, in the transformer 1000, an imbalance occurs between the coupling coefficient between the connecting wiring 1600 and the first turn wiring 1310a and the coupling coefficient between the connecting wiring 1600 and the second turn wiring 1310b. In other words, in the transformer 1000, there is a possibility that the first turn wiring 1310a cannot be effectively used as wiring for mutual inductance. As a result, the characteristics of the transformer 1000 deteriorate.
  • the connection wiring 160 is formed between the first turn wiring 131a and the second turn wiring 131b. Therefore, the distance between the connection wiring 160 and the first turn wiring 131a is substantially equal to the distance between the connection wiring 160 and the second turn wiring 131b. That is, in the transformer 100, the coupling coefficient between the connection wiring 160 and the first turn wiring 131a and the coupling coefficient between the connection wiring 160 and the second turn wiring 131b are in equilibrium. This improves the characteristics of the transformer 1000.
  • connection wiring 160 may not be provided in the middle layer 130.
  • the via conductor 140 is provided so as to pass between the first turn wiring 131a and the second turn wiring 131b on the middle layer 130, for example.
  • the upper layer wiring 111 and the lower layer wiring 121 and the middle layer wiring 131 do not intersect with each other, and the coupling coefficient can be increased, so that the characteristics of the transformer 100 can be improved.
  • FIG. 5A is a diagram showing an example in which the upper layer wiring 211 of the first modification is viewed in a plan view.
  • FIG. 5B is a diagram showing an example in which the lower layer wiring 221 of the first modification is viewed in a plan view.
  • FIG. 5C is a diagram showing an example in which the middle layer wiring 231 of the first modification is viewed in a plan view.
  • the via conductors 240 and 250 are connected to the connection wiring 260 in a region other than between the first turn wiring 221a and the second turn wiring 221b. Then, the connection wiring 260 is formed between the first turn wiring 221a and the second turn wiring 221b.
  • the upper layer wiring 211 is wound, for example, 0.75 turns.
  • the lower layer wiring 221 is wound around, for example, 0.5 turns.
  • the connection wiring 260 is provided between, for example, the first turn wiring 221a and the second turn wiring 221b, and is wound around 0.75 turns. That is, in the transformer 200, for example, the secondary winding formed by the upper layer wiring 211, the lower layer wiring 221 and the connection wiring 260 is formed in two turns.
  • the shape of the transformer 200 can be enlarged by the connection wiring 260 of the middle layer 230. It is possible to increase the coupling coefficient while obtaining a high inductance. Furthermore, the transformer 200 can freely provide the connection wiring 260 between the first turn wiring 221a and the second turn wiring 221b according to, for example, the arrangement state of the electronic components on the surface of each layer. Therefore, the degree of freedom in design can be increased.
  • FIG. 6 is a perspective view showing an example of a state in which the layers of the second modification are stacked.
  • FIG. 7A is a diagram showing an example in which the upper layer wiring 311 of the second modification is viewed in a plan view.
  • FIG. 7B is a diagram showing an example in which the lower layer wiring 321 of the second modification is viewed in a plan view.
  • FIG. 7C is a diagram showing an example in which the middle layer wiring 331 of the second modification is viewed in a plan view.
  • FIG. 7C a mode in which the connecting wiring 160 of the transformer 100 is not provided will be described.
  • the transformer 300 according to the second modification for example, in a plan view, at least one of a part of the first turn wiring 321a and a part of the second turn wiring 321b facing the first turn wiring 321a.
  • the upper layer wiring 311 and the lower layer wiring 321 are provided so as to cover the portion.
  • one end of the upper layer wiring 311 is connected to an external circuit (not shown), and the other end is connected to the via conductor 340.
  • the upper layer wiring 311 has, for example, at least a part having a line width W.
  • one end of the lower layer wiring 321 is connected to an external circuit (not shown), and the other end is connected to the via conductor 340. Therefore, the lower layer wiring 321 is electrically connected in series with the upper layer 310 through the via conductor 340.
  • the lower layer wiring 321 has, for example, at least a part having a line width W. This makes it possible to prevent the inductance from becoming too large. As shown in FIG.
  • the middle layer wiring 331 is orthogonal to the extending direction of the first turn wiring 313a and the second turn wiring 313b in the portion where the first turn wiring 313a and the second turn wiring 313b face each other, for example.
  • the line width in the direction is formed to be smaller than the line width W. As a result, the coupling coefficient between the primary winding and the secondary winding can be increased.
  • the upper layer wiring 311 and the lower layer wiring 321 are described so as to cover at least a part of the first turn wiring 331a and the second turn wiring 331b, but the present invention is not limited to this.
  • at least a part of the upper layer wiring 311 and the lower layer wiring 321 may be provided so as to cover at least a part of the first turn wiring 321a and the second turn wiring 321b.
  • FIG. 8 is a diagram showing an example of a cross section of the transformer 100 of a 6-layer multilayer substrate. Note that FIG. 8 shows a mode in which the connecting wiring 160 is omitted and the via conductor 150 penetrates between the first turn wiring 121a and the second turn wiring 121b. Further, in FIG. 8, only the elements related to the transformer 100 are displayed, and for example, via conductors, wirings, electronic elements, and the like other than the elements are omitted.
  • the insulating film Is1 is formed on a semiconductor substrate by a chemical vapor deposition method, a sputtering method, a spin coating method, or the like.
  • the insulating film Is1 is, for example, SiO2, SiN, SiON, etc., and is for protecting various electronic elements and the like.
  • the insulating films Is2, Is3, the lower layer 120, the middle layer 130, and the upper layer 110, which will be described later, are the same as the insulating film Is1.
  • the ground 170 is formed on the insulating film Is1 by, for example, a metal vapor deposition method, a sputtering method, a plating method, or the like.
  • the insulating films Is2, Is3 and the lower layer 120 are formed in the same manner as the insulating film Is1.
  • the lower layer wiring 121 is formed on the lower layer 120 by, for example, a metal vapor deposition method, a sputtering method, a plating method, or the like.
  • the middle layer 130 is formed, and the middle layer wiring 131 (here, the first turn wiring 131a and the second turn wiring 131b) is formed on the middle layer 130.
  • the connection wiring 160 may be formed on the middle layer 130.
  • the upper layer 110 is formed.
  • via holes are formed in the upper layer 110 by, for example, a ly etching technique using a fluorine-based gas, a bromine-based gas, an iodine-based gas, or the like. Then, a conductor is embedded in the via hole to form the via conductor 140. Next, the upper layer wiring 111 is formed. As a result, the transformer 100 can be manufactured. As described above, when the ground 170 is provided in the lowest layer, that is, when an insulating film is provided between the ground 170 and the lower layer 120, the ground 170 and the lower layer wiring 121 (and the upper layer wiring 111) are provided.
  • the transformer 100 is generated symmetrically with the lower layer 120 as the center.
  • the transformer 100 has been described so that the upper layer wiring 111 is formed in the uppermost layer, but the present invention is not limited to this.
  • the upper layer wiring 111 does not have to be, for example, the uppermost layer.
  • the transformer 100 has been described so that the ground 170 is formed in the lowest layer, but the present invention is not limited to this.
  • the ground 170 may be formed in a layer below the lower layer 120, for example.
  • the transformers 100, 200, and 300 include an upper layer wiring 111 (first wiring) provided on the surface (first surface) of the upper layer 110 (first layer) and a lower layer 120 (first layer).
  • the middle layer wiring 131 (third wiring) provided on the surface (third surface) of the third layer) is provided, and the upper layer wiring 111 (first wiring) and the second wiring are electrically connected by via conductors 140 and 150.
  • the middle layer wiring 131 (third wiring) is wound more than one turn on the surface (third surface) of the middle layer wiring 131 (third wiring), and the upper layer wiring 111 (first wiring) and The lower layer wiring 121 (second wiring) is provided so as to be electromagnetically coupled to the middle layer wiring 131 (third wiring).
  • the transformer 100 can have a large inductance, so that the characteristics are improved.
  • the middle layer wiring 131 is the first turn wiring 131a (first part) on the first turn from the outside and the second turn from the outside.
  • the second turn wiring 131b (second part) is provided at a position facing the first turn wiring 131a (first part) and is formed so that a current flows in the same direction as the first turn wiring 131a (first part).
  • the via conductors 140 and 150 are placed between the first turn wiring 131a (first part) and the second turn wiring 131b (second part) on the surface (third surface) of the middle layer 130. It is provided to pass through.
  • the transformer 100 can increase the coupling coefficient by suppressing the intersection of the upper layer wiring 111 and the lower layer wiring 121 with the middle layer wiring 131, so that the characteristics can be improved.
  • the middle layer wiring 131 is the first turn wiring 131a (first part) on the first turn from the outside and the second turn from the outside.
  • the second turn wiring 131b (second part) is provided at a position facing the first turn wiring 131a (first part) and is provided so that a current flows in the same direction as the first turn wiring 131a (first part).
  • the via conductors 140 and 150 include the via conductor 140 (first via conductor) formed between the surface (first surface) of the upper layer 110 and the surface (third surface) of the middle layer 130, and the lower layer.
  • connection wiring 160 that electrically connects the via conductor 140 (first via conductor) and the via conductor 150 (second via conductor) provided between at least a part of the second turn wiring 131b (second portion). Further prepare. As a result, the connection wiring 160, which is a part of the secondary winding, is close to the first turn wiring 131a and the second turn wiring 131b, which are a part of the primary winding. The coupling coefficient of can be increased.
  • the end portion 241 of the via conductor 240 is the first turn wiring 231a (third surface) on the surface (third surface) of the middle layer 230.
  • the end portion 251 of the via conductor 250 is provided in a region not between the first part) and the second turn wiring 231b (second part), and the end portion 251 of the via conductor 250 (second via conductor) is the second turn wiring 131b (second part).
  • the connection wiring 160 is provided in a region not between the first turn wiring 131a (first portion) and the second turn wiring 131b (second portion), and the connection wiring 160 is provided on the surface (third surface) of the middle layer 130.
  • the transformer 300 at least a part of the upper layer wiring 311 (first wiring) and the lower layer wiring 321 (second wiring) is viewed from the outside in a plan view. It is provided at a position facing the middle layer wiring 331 (third wiring) portion of the first turn and the middle layer wiring 331 (third wiring) portion of the first turn on the second turn from the outside, and the first turn wiring 331a ( It is provided so as to cover at least a part of a predetermined portion of the middle layer wiring 331 (third wiring) formed so that a current flows in the same direction as the first portion). As a result, the coupling coefficient between the primary winding and the secondary winding can be increased.
  • the upper layer wiring 111 (first wiring) is wound on the surface (first surface) of the upper layer 110 in the number of first turns, and the lower layer wiring 121. (Second wiring) is wound on the surface (second surface) of the lower layer 120 in the second turn number, and the upper layer wiring 111 (first wiring) and the lower layer wiring 121 (second wiring) have the first turn number. And, the number of the second turns and the total are wound so as to be more than one turn. As a result, the coupling coefficient can be increased, so that the characteristics of the transformer 100 can be improved.
  • the transformer 100 is at least between the ground 170 (ground layer), the ground 170, and the upper layer 110 (first layer) and the lower layer 120 (second layer). Insulation films Is2 and Is3 (fourth layer) including one insulator layer are further provided. As a result, the parasitic capacitance between the ground 170 and the lower layer wiring 121 (and the upper layer wiring 111) can be suppressed.
  • the upper layer wiring 111 (first wiring) and the lower layer wiring 121 (second wiring) are electrically connected in series by via conductors 140 and 150. To. Thereby, the inductance can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

The present invention comprises: a first wiring provided on a first surface of a first layer; a second wiring provided on a second surface of a second layer; and a third wiring provided on a third surface of a third layer provided between the first layer and the second layer. The first wiring and the second wiring are electrically connected with each other via a via conductor. The third wiring is wound by more than one turn on the third surface. The first wiring and the second wiring are provided so as to be electromagnetically coupled to the third wiring.

Description

変成器Transformer
 本開示は、変成器に関する。 This disclosure relates to a transformer.
 近年、電子機器はいっそうの小型化や薄型化が求められている。この電子機器には電子部品が集積されている。電子部品の集積では、変成器などの磁気素子を集積化することが重要である。すなわち、電子機器では変成器の小型化が重要である。 In recent years, electronic devices have been required to be further miniaturized and thinned. Electronic components are integrated in this electronic device. In the integration of electronic components, it is important to integrate magnetic elements such as transformers. That is, in electronic devices, it is important to reduce the size of the transformer.
特開2012-134354号公報Japanese Unexamined Patent Publication No. 2012-134354
 特許文献1に記載のトランスは、多層基板において、1ターンの下側コイルと1ターンの上側コイルとがビアホールで接続されることで、一次側巻線が形成されている。当該トランスは、下側のコイルと上側のコイルとの間に、二次側巻線である1ターンのコイルが設けられている。また、当該トランスは、下側コイルと上側コイルとを並列接続しているため、等価的に一次側巻線を0.5ターンとし、二次側巻線を1ターンにしている。したがって、特許文献1に記載のトランスにおいて高いインピーダンスを得たい場合は、巻線を大きくする必要があるため、小型化ができなかった。 In the transformer described in Patent Document 1, a primary winding is formed by connecting a lower coil of one turn and an upper coil of one turn with a via hole in a multilayer substrate. The transformer is provided with a one-turn coil, which is a secondary winding, between the lower coil and the upper coil. Further, in the transformer, since the lower coil and the upper coil are connected in parallel, the primary winding is equivalently set to 0.5 turn and the secondary winding is set to 1 turn. Therefore, if it is desired to obtain a high impedance in the transformer described in Patent Document 1, it is necessary to increase the winding size, so that the size cannot be reduced.
 そこで、小型で高いインダクタンスが得られる変成器を提供することを目的とする。 Therefore, the purpose is to provide a transformer that is compact and can obtain high inductance.
 本発明の一側面に係る変成器は、第1層の第1面上に設けられる第1配線と、第2層の第2面上に設けられる第2配線と、前記第1層と前記第2層との間に設けられる第3層の第3面上に設けられる第3配線と、を備え、前記第1配線と前記第2配線とは、ビア導体で電気的に接続され、前記第3配線は、前記第3面上において1ターンよりも多く巻き回され、前記第1配線および前記第2配線は、前記第3配線と電磁気的に結合するように設けられる。 The transformer according to one aspect of the present invention includes a first wiring provided on the first surface of the first layer, a second wiring provided on the second surface of the second layer, the first layer and the first layer. A third wiring provided on the third surface of the third layer provided between the two layers is provided, and the first wiring and the second wiring are electrically connected by a via conductor, and the first wiring is provided. The three wirings are wound more than one turn on the third surface, and the first wiring and the second wiring are provided so as to be electromagnetically coupled to the third wiring.
 本開示によれば、小型で高いインダクタンスが得られる変成器を提供することができる。 According to the present disclosure, it is possible to provide a transformer that is compact and can obtain a high inductance.
変成器の構成の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the structure of a transformer. ターンの定義の一例を説明するための図である。It is a figure for demonstrating an example of the definition of a turn. 経路長とユークリッド距離との関係を示すグラフである。It is a graph which shows the relationship between the path length and the Euclidean distance. 上層配線を平面視した一例を示す図である。It is a figure which shows an example which viewed the upper layer wiring in a plan view. 下層配線を平面視した一例を示す図である。It is a figure which shows an example which viewed the lower layer wiring in a plan view. 中層配線を平面視した一例を示す図である。It is a figure which shows an example which viewed the middle layer wiring in a plan view. 比較例に係る変成器の上層配線を平面視した一例を示す図である。It is a figure which shows an example which looked at the upper layer wiring of the transformer which concerns on a comparative example in a plan view. 比較例に係る変成器の下層配線を平面視した一例を示す図である。It is a figure which shows an example which looked at the lower layer wiring of the transformer which concerns on a comparative example in a plan view. 比較例に係る変成器の中層配線を平面視した一例を示す図である。It is a figure which shows an example which looked at the middle layer wiring of the transformer which concerns on a comparative example in a plan view. 第1変形例の上層配線を平面視した一例を示す図である。It is a figure which shows an example which made the upper layer wiring of the 1st modification into a plan view. 第1変形例の下層配線を平面視した一例を示す図である。It is a figure which shows an example which made the lower layer wiring of the 1st modification into a plan view. 第1変形例の中層配線を平面視した一例を示す図である。It is a figure which shows an example which made the middle layer wiring of the 1st modification into a plan view. 第2変形例の各層を重ねた状態の一例を示す斜視図である。It is a perspective view which shows an example of the state in which each layer of the 2nd modification is overlapped. 第2変形例の上層配線を平面視した一例を示す図である。It is a figure which shows an example which made the upper layer wiring of the 2nd modification into a plan view. 第2変形例の下層配線を平面視した一例を示す図である。It is a figure which shows an example which made the lower layer wiring of the 2nd modification into a plan view. 第2変形例の中層配線を平面視した一例を示す図である。It is a figure which shows an example which made the middle layer wiring of the 2nd modification into a plan view. 6層の多層基板の変成器の断面の一例を示す図である。It is a figure which shows an example of the cross section of the transformer of a 6-layer multilayer substrate.
 以下、各図を参照しながら本開示の各実施形態について説明する。 Hereinafter, each embodiment of the present disclosure will be described with reference to each figure.
===構成===
 図1を参照して、変成器100の構成について説明する。図1は、変成器100の構成の一例を示す概略斜視図である。
=== Composition ===
The configuration of the transformer 100 will be described with reference to FIG. FIG. 1 is a schematic perspective view showing an example of the configuration of the transformer 100.
 変成器100は、例えば、電磁界的に結合した二つの配線によってインピーダンス変換によるインピーダンス整合を行うことや、差動信号とシングルエンド信号とを相互に変換する。変成器100は、例えば多層基板で形成されている。以下、便宜上、変成器100の説明において「一次」及び「二次」の文言が用いることもあるが、その変成器100には「一次」及び「二次」を入れ替えた構成も含むものとする。 The transformer 100 performs impedance matching by impedance conversion by, for example, two wires coupled in an electromagnetic field, and converts a differential signal and a single-ended signal to each other. The transformer 100 is formed of, for example, a multilayer substrate. Hereinafter, for convenience, the terms "primary" and "secondary" may be used in the description of the transformer 100, but the transformer 100 also includes a configuration in which "primary" and "secondary" are interchanged.
 変成器100は、例えば、少なくとも、最も外側の層(以下、上層110という)と、上層110に隣接する層(以下、中層130という)と、中層130における上層110と反対側で隣接する層(以下、下層120という)とを含んで構成されているものとする。 図1に示すように、変成器100は、例えば、多層基板における、上層110の表面に形成される配線(以下、「上層配線111」という)と、下層120の表面に形成される配線(以下、「下層配線121」という)と、中層130の表面に形成される配線(以下、「中層配線131」という)と、ビア導体140,150と、接続配線160とを含む。なお、図1に示すように、上層配線111、下層配線121、及び中層配線131の中心Cは同軸上にあることが望ましい。 The transformer 100 includes, for example, at least the outermost layer (hereinafter referred to as the upper layer 110), a layer adjacent to the upper layer 110 (hereinafter referred to as the middle layer 130), and a layer adjacent to the upper layer 110 in the middle layer 130 (hereinafter referred to as the upper layer 110). Hereinafter, it is assumed that it is configured to include the lower layer 120). As shown in FIG. 1, the transformer 100 includes, for example, wiring formed on the surface of the upper layer 110 (hereinafter referred to as “upper layer wiring 111”) and wiring formed on the surface of the lower layer 120 (hereinafter referred to as “upper layer wiring 111”) in the multilayer substrate. , "Lower layer wiring 121"), wiring formed on the surface of the middle layer 130 (hereinafter referred to as "middle layer wiring 131"), via conductors 140 and 150, and connection wiring 160. As shown in FIG. 1, it is desirable that the center C of the upper layer wiring 111, the lower layer wiring 121, and the middle layer wiring 131 is coaxial.
 まず、変成器100の各構成要素における電気的関係について説明する。ビア導体140は、例えば上層110を貫通する。ビア導体140は、例えば上層配線111と接続配線160を電気的に接続する。ビア導体150は、例えば中層130を貫通する。ビア導体150は、例えば接続配線160と下層配線121を電気的に接続する。接続配線160は、例えば、中層130の表面上で、ビア導体140の端部141とビア導体150の端部151を電気的に接続する。すなわち、上層配線111と下層配線121とは直列に接続される。よって、変成器100は、一次巻線を中層配線131とすると、二次巻線が、上層配線111、ビア導体140,150、接続配線160、及び下層配線121で形成される。以下、便宜上、中層配線131を一次巻線とし、上層配線111、ビア導体140,150、接続配線160、及び下層配線121を二次巻線として説明する。中層配線131は、上層配線111と下層配線121とが電磁気的に結合するように、上層配線111と下層配線121との間に設けられる。また、中層配線131は、例えば、中層130の表面上で1ターン(1周)よりも多く巻き回される。これにより、インダクタンスを大きくできるため、変成器100の特性を向上できる。また、上層配線111と下層配線121との合計のターン数は、1ターンよりも多く巻き回されていることが望ましい。これにより、インダクタンスを大きくしつつ、結合係数を高くできるため、変成器100の特性を向上できる。 First, the electrical relationship in each component of the transformer 100 will be described. The via conductor 140 penetrates, for example, the upper layer 110. The via conductor 140 electrically connects, for example, the upper layer wiring 111 and the connection wiring 160. The via conductor 150 penetrates, for example, the middle layer 130. The via conductor 150 electrically connects, for example, the connection wiring 160 and the lower layer wiring 121. The connection wiring 160 electrically connects the end portion 141 of the via conductor 140 and the end portion 151 of the via conductor 150, for example, on the surface of the middle layer 130. That is, the upper layer wiring 111 and the lower layer wiring 121 are connected in series. Therefore, in the transformer 100, assuming that the primary winding is the middle layer wiring 131, the secondary winding is formed by the upper layer wiring 111, the via conductors 140 and 150, the connection wiring 160, and the lower layer wiring 121. Hereinafter, for convenience, the middle layer wiring 131 will be referred to as a primary winding, and the upper layer wiring 111, via conductors 140 and 150, the connection wiring 160, and the lower layer wiring 121 will be described as secondary windings. The middle layer wiring 131 is provided between the upper layer wiring 111 and the lower layer wiring 121 so that the upper layer wiring 111 and the lower layer wiring 121 are electromagnetically coupled. Further, the middle layer wiring 131 is wound around the surface of the middle layer 130 more than one turn (one turn), for example. As a result, the inductance can be increased, so that the characteristics of the transformer 100 can be improved. Further, it is desirable that the total number of turns of the upper layer wiring 111 and the lower layer wiring 121 is more than one turn. As a result, the coupling coefficient can be increased while increasing the inductance, so that the characteristics of the transformer 100 can be improved.
 ここで、図1を参照して、変成器100の動作の概要について説明する。まず、信号電流が一次巻線である中層配線131に図1に示す実線の矢印の方向に流れる。このときに、中層配線131に流れる信号電流によって、誘起電流が上層配線111および下層配線121に図1に示す破線の矢印の方向に流れる。 Here, the outline of the operation of the transformer 100 will be described with reference to FIG. First, the signal current flows through the middle layer wiring 131, which is the primary winding, in the direction of the solid arrow shown in FIG. At this time, due to the signal current flowing through the middle layer wiring 131, the induced current flows through the upper layer wiring 111 and the lower layer wiring 121 in the direction of the broken line arrow shown in FIG.
 次に、図2A、図2Bを参照して、中層配線131における、「ターン」の定義の一例について説明する。図2Aは、ターンの定義の一例を説明するための図である。図2Bは、経路長とユークリッド距離との関係を示すグラフである。なお、「ターン」の定義については、上層配線111及び下層配線121においても同様に適用される。 Next, an example of the definition of "turn" in the middle layer wiring 131 will be described with reference to FIGS. 2A and 2B. FIG. 2A is a diagram for explaining an example of the definition of a turn. FIG. 2B is a graph showing the relationship between the route length and the Euclidean distance. The definition of "turn" is similarly applied to the upper layer wiring 111 and the lower layer wiring 121.
 図2Aでは、中層配線131の外周側の端部を原点OとするXY直交座標系を定義する。中層配線131は、原点Oから任意の経路を通過して内周側の終点Eに至る。図2Aでは、原点Oから中層配線131の任意の点Pまでの経路長をLで表す。また、図2Aでは、原点Oと点Pとのユークリッド距離をDで表す。図2Bに示すように、中層配線131の点P2において、ユークリッド距離Dが1つ目の極大値を示す。そして、点P4においてユークリッド距離Dが極小値を示し、点P6においてユークリッド距離Dが2つ目の極大値を示し、終点Eに至る。本実施形態では、一例として、極大値と、当該極大値の次に現れる極小値との一組の個を、ターン数と定義してもよい。また、極大値と極小値の一組が出現しない場合、極大値の個数をターン数で0.5ターンと定義してもよい。すなわち、図2Aでは、中層配線131が、1つ目の極大値と極小値の組を一つ有し、さらに2つ目の極大値を有するため、1.5ターン(1ターン+0.5ターン)よりも多く巻き回されている。以下、便宜上、中層配線131における、外側から1ターン目の配線を「第1ターン配線131a」といい、図2Aで示す破線から始まる外側から2ターン目の配線を「第2ターン配線131b」という。なお、一例として、中層配線131が方向を変えた総角度を360度で除した数を、ターン数と定義してもよい。すなわち、図2Aでは、中層配線131は、点P1~点P6のそれぞれにおいて方向を90度変えている。よって、本実施形態の中層配線131は、方向を540度変えているため、1.5ターンよりも多くのターンを有する。 In FIG. 2A, an XY Cartesian coordinate system is defined with the origin O at the outer peripheral end of the middle layer wiring 131. The middle layer wiring 131 passes from the origin O through an arbitrary path to reach the end point E on the inner peripheral side. In FIG. 2A, the path length from the origin O to an arbitrary point P of the middle layer wiring 131 is represented by L. Further, in FIG. 2A, the Euclidean distance between the origin O and the point P is represented by D. As shown in FIG. 2B, the Euclidean distance D shows the first maximum value at the point P2 of the middle layer wiring 131. Then, the Euclidean distance D shows the minimum value at the point P4, the Euclidean distance D shows the second maximum value at the point P6, and reaches the end point E. In the present embodiment, as an example, a set of a maximum value and a minimum value appearing after the maximum value may be defined as the number of turns. Further, when a set of a maximum value and a minimum value does not appear, the number of maximum values may be defined as 0.5 turn in terms of the number of turns. That is, in FIG. 2A, since the middle layer wiring 131 has one set of the first maximum value and the minimum value and further has the second maximum value, it has 1.5 turns (1 turn + 0.5 turns). ) More than that. Hereinafter, for convenience, the wiring of the middle layer wiring 131 on the first turn from the outside is referred to as "first turn wiring 131a", and the wiring on the second turn from the outside starting from the broken line shown in FIG. 2A is referred to as "second turn wiring 131b". .. As an example, the number obtained by dividing the total angle of the middle layer wiring 131 by 360 degrees may be defined as the number of turns. That is, in FIG. 2A, the direction of the middle layer wiring 131 is changed by 90 degrees at each of the points P1 to P6. Therefore, the middle-rise wiring 131 of the present embodiment has more turns than 1.5 turns because the direction is changed by 540 degrees.
 次に、図3A~図3Cを参照して、変成器100の各構成要素の形状および配置について説明する。図3Aは、上層配線111を平面視した一例を示す図である。図3Bは、下層配線121を平面視した一例を示す図である。図3Cは、中層配線131を平面視した一例を示す図である。なお、「平面視」とは、多層基板における層が積層される方向(Z方向)から見たときの状態をいう。 Next, the shape and arrangement of each component of the transformer 100 will be described with reference to FIGS. 3A to 3C. FIG. 3A is a diagram showing an example of the upper layer wiring 111 viewed in a plan view. FIG. 3B is a diagram showing an example of the lower layer wiring 121 viewed in a plan view. FIG. 3C is a diagram showing an example of the middle layer wiring 131 viewed in a plan view. The "planar view" refers to a state when viewed from the direction (Z direction) in which the layers on the multilayer substrate are laminated.
 図3Aに示すように、上層配線111は、例えば、一端が外部回路(不図示)に接続され、他端がビア導体140に接続される。上層配線111は、例えば、平面視で中層配線131と交差しないよう、上層110の表面に形成される。上層配線111は、例えば、第1ターン配線131aまたは第2ターン配線131bと平面視で重なるよう設けられることが望ましい。これにより、各層の配線間の結合係数を高くできる。また、上層配線111は、例えば、平面視において、第1ターン配線131aと第2ターン配線131bとの間に設けられていてもよい。これにより、上層配線111と、第1ターン配線131aおよび第2ターン配線131bとが均等に結合するため、変成器100の特性を向上できる。なお、平面視における上層配線111の形状は特に限定されない。 As shown in FIG. 3A, for example, one end of the upper layer wiring 111 is connected to an external circuit (not shown), and the other end is connected to the via conductor 140. The upper layer wiring 111 is formed on the surface of the upper layer 110 so as not to intersect the middle layer wiring 131 in a plan view, for example. It is desirable that the upper layer wiring 111 is provided so as to overlap the first turn wiring 131a or the second turn wiring 131b in a plan view, for example. As a result, the coupling coefficient between the wirings of each layer can be increased. Further, the upper layer wiring 111 may be provided between the first turn wiring 131a and the second turn wiring 131b in a plan view, for example. As a result, the upper layer wiring 111 and the first turn wiring 131a and the second turn wiring 131b are evenly coupled to each other, so that the characteristics of the transformer 100 can be improved. The shape of the upper layer wiring 111 in a plan view is not particularly limited.
 図3Bに示すように、下層配線121は、例えば、一端が外部回路(不図示)に接続され、他端がビア導体150に接続される。下層配線121は、例えば、平面視で中層配線131と交差しないよう、下層120の表面に形成される。下層配線121は、例えば、第1ターン配線131aまたは第2ターン配線131bと、平面視で重なるよう設けられることが望ましい。これにより、各層の配線間の結合係数を高くできる。また、下層配線121は、例えば、平面視において、第1ターン配線131aと第2ターン配線131bとの間に設けられていてもよい。これにより、下層配線121と、第1ターン配線131aおよび第2ターン配線131bとが均等に結合するため、変成器100の特性を向上できる。なお、平面視における下層配線121の形状は特に限定されない。 As shown in FIG. 3B, for example, one end of the lower layer wiring 121 is connected to an external circuit (not shown), and the other end is connected to the via conductor 150. The lower layer wiring 121 is formed on the surface of the lower layer 120 so as not to intersect the middle layer wiring 131 in a plan view, for example. It is desirable that the lower layer wiring 121 is provided so as to overlap the first turn wiring 131a or the second turn wiring 131b in a plan view, for example. As a result, the coupling coefficient between the wirings of each layer can be increased. Further, the lower layer wiring 121 may be provided between the first turn wiring 131a and the second turn wiring 131b in a plan view, for example. As a result, the lower layer wiring 121 and the first turn wiring 131a and the second turn wiring 131b are evenly coupled, so that the characteristics of the transformer 100 can be improved. The shape of the lower layer wiring 121 in a plan view is not particularly limited.
 図3Cに示すように、中層配線131は、例えば、一端が外部回路(不図示)に接続され、他端がビア導体(不図示)に接続される。中層配線131は、1ターンよりも多く巻き回される。なお、中層配線131は、1ターンよりも多く巻き回されていればよく、そのターンの数は限定されない。中層配線131は、例えば、外側から1ターン目の第1ターン配線131aと、外側から2ターン目で第1ターン配線131aと対向する位置に設けられ、第1ターン配線131aと同一方向に電流が流れるように形成される第2ターン配線131bとを含む。中層配線131は、例えば、第1ターン配線131aの少なくとも一部と第2ターン配線131bの少なくとも一部との間に、接続配線160が設けられる。ここで、接続配線160は、ビア導体140の端部141と、ビア導体150の端部151とを電気的に接続する。すなわち、接続配線160は、二次巻線の一部であり、中層配線131と電磁気的に結合する。これにより、接続配線160は、一次巻線の一部である第1ターン配線131aおよび第2ターン配線131bと近接するため、一次巻線と二次巻線との結合係数を高めることができる。なお、平面視における中層配線131の形状は特に限定されない。 As shown in FIG. 3C, for example, one end of the middle layer wiring 131 is connected to an external circuit (not shown) and the other end is connected to a via conductor (not shown). The middle layer wiring 131 is wound more than one turn. The middle layer wiring 131 may be wound more than one turn, and the number of turns is not limited. The middle layer wiring 131 is provided at a position facing the first turn wiring 131a on the first turn from the outside and the first turn wiring 131a on the second turn from the outside, and a current flows in the same direction as the first turn wiring 131a. Includes a second turn wiring 131b formed to flow. In the middle layer wiring 131, for example, a connection wiring 160 is provided between at least a part of the first turn wiring 131a and at least a part of the second turn wiring 131b. Here, the connection wiring 160 electrically connects the end portion 141 of the via conductor 140 and the end portion 151 of the via conductor 150. That is, the connection wiring 160 is a part of the secondary winding and is electromagnetically coupled to the middle layer wiring 131. As a result, since the connection wiring 160 is close to the first turn wiring 131a and the second turn wiring 131b which are a part of the primary winding, the coupling coefficient between the primary winding and the secondary winding can be increased. The shape of the middle layer wiring 131 in a plan view is not particularly limited.
 次に、図4A~図4Cを参照して、接続配線160を、第1ターン配線131aと第2ターン配線131bとの間に配置することの有効性について、より詳細に説明する。図4Aは、比較例に係る変成器1000の上層配線1110を平面視した一例を示す図である。図4Bは、比較例に係る変成器1000の下層配線1210を平面視した一例を示す図である。図4Cは、比較例に係る変成器1000の中層配線1310を平面視した一例を示す図である。なお、比較例に係る変成器1000は、変成器100の接続配線160の有効性を説明するためのものあって、変成器1000が本実施形態から排除されるものではない。すなわち、変成器100は変成器1000のように構成されていてもよい。なお、本実施形態に含まれる変成器1000は、第1ターン配線1310aと第2ターン配線1310bとが近接しているため、それぞれを単独のインダクタとしてみると、良好な特性が得られる。 Next, with reference to FIGS. 4A to 4C, the effectiveness of arranging the connection wiring 160 between the first turn wiring 131a and the second turn wiring 131b will be described in more detail. FIG. 4A is a diagram showing an example in which the upper layer wiring 1110 of the transformer 1000 according to the comparative example is viewed in a plan view. FIG. 4B is a diagram showing an example in which the lower layer wiring 1210 of the transformer 1000 according to the comparative example is viewed in a plan view. FIG. 4C is a diagram showing an example in which the middle layer wiring 1310 of the transformer 1000 according to the comparative example is viewed in a plan view. The transformer 1000 according to the comparative example is for explaining the effectiveness of the connection wiring 160 of the transformer 100, and the transformer 1000 is not excluded from the present embodiment. That is, the transformer 100 may be configured like the transformer 1000. In the transformer 1000 included in the present embodiment, since the first turn wiring 1310a and the second turn wiring 1310b are close to each other, good characteristics can be obtained when each of them is regarded as a single inductor.
 図4A、図4Bに示すように、変成器1000では、上層配線1110および下層配線1210が、平面視で中層配線1310と交差しないよう各層の表面に形成される。そして、図4Cに示すように、接続配線1600は、第2ターン配線1310bの内側に設けられている。この場合、上層配線1110および下層配線1210は、ビア導体1400,1500を通じて、接続配線1600と接続するために、その端部1111および端部1211を、各層上で90度曲げる必要がある。そうすると、当該端部1111および端部1211は中層配線1310の一部と交差する。これにより、変成器1000の結合係数が低くなる。なお、接続配線1600が第2ターン配線1310bの外側に設けられる場合も、当該端部1111および端部1211が中層配線1310の一部と交差するため、変成器1000の結合係数を低める。 As shown in FIGS. 4A and 4B, in the transformer 1000, the upper layer wiring 1110 and the lower layer wiring 1210 are formed on the surface of each layer so as not to intersect with the middle layer wiring 1310 in a plan view. Then, as shown in FIG. 4C, the connection wiring 1600 is provided inside the second turn wiring 1310b. In this case, the upper layer wiring 1110 and the lower layer wiring 1210 need to bend the end portion 1111 and the end portion 1211 90 degrees on each layer in order to connect to the connection wiring 1600 through the via conductors 1400 and 1500. Then, the end portion 1111 and the end portion 1211 intersect with a part of the middle layer wiring 1310. As a result, the coupling coefficient of the transformer 1000 is lowered. Even when the connection wiring 1600 is provided outside the second turn wiring 1310b, the end portion 1111 and the end portion 1211 intersect with a part of the middle layer wiring 1310, so that the coupling coefficient of the transformer 1000 is lowered.
 これに対し、図3Cに示すように、変成器100では、接続配線160が第1ターン配線131aと第2ターン配線131bとの間に形成されるため、上層配線111および下層配線121と、中層配線131とに交差が生じない。よって、変成器100は、比較例に係る変成器1000と比較して結合係数を高くできるため、特性を向上できる。 On the other hand, as shown in FIG. 3C, in the transformer 100, since the connection wiring 160 is formed between the first turn wiring 131a and the second turn wiring 131b, the upper layer wiring 111 and the lower layer wiring 121 and the middle layer No intersection occurs with the wiring 131. Therefore, the transformer 100 can have a higher coupling coefficient than the transformer 1000 according to the comparative example, so that the characteristics can be improved.
 また、図4Cに示すように、変成器1000では、接続配線1600と第1ターン配線1310aとの距離が、接続配線1600と第2ターン配線1310bとの距離よりも大きい。すなわち、変成器1000では、接続配線1600と第1ターン配線1310aとの間の結合係数と、接続配線1600と第2ターン配線1310bとの間の結合係数とに不均衡が生じる。換言すると、変成器1000では、第1ターン配線1310aを相互インダクタンスのための配線として有効に利用できない虞がある。これにより、変成器1000の特性が劣化する。 Further, as shown in FIG. 4C, in the transformer 1000, the distance between the connection wiring 1600 and the first turn wiring 1310a is larger than the distance between the connection wiring 1600 and the second turn wiring 1310b. That is, in the transformer 1000, an imbalance occurs between the coupling coefficient between the connecting wiring 1600 and the first turn wiring 1310a and the coupling coefficient between the connecting wiring 1600 and the second turn wiring 1310b. In other words, in the transformer 1000, there is a possibility that the first turn wiring 1310a cannot be effectively used as wiring for mutual inductance. As a result, the characteristics of the transformer 1000 deteriorate.
 これに対し、図3Cに示すように、変成器100では、接続配線160が第1ターン配線131aと第2ターン配線131bとの間に形成されている。このため、接続配線160と第1ターン配線131aとの距離が、接続配線160と第2ターン配線131bとの距離と略等しくなる。すなわち、変成器100では、接続配線160と第1ターン配線131aとの間の結合係数と、接続配線160と第2ターン配線131bとの間の結合係数とが均衡する。これにより、変成器1000の特性が向上する。 On the other hand, as shown in FIG. 3C, in the transformer 100, the connection wiring 160 is formed between the first turn wiring 131a and the second turn wiring 131b. Therefore, the distance between the connection wiring 160 and the first turn wiring 131a is substantially equal to the distance between the connection wiring 160 and the second turn wiring 131b. That is, in the transformer 100, the coupling coefficient between the connection wiring 160 and the first turn wiring 131a and the coupling coefficient between the connection wiring 160 and the second turn wiring 131b are in equilibrium. This improves the characteristics of the transformer 1000.
 なお、上記において、中層130に接続配線160が設けられていなくてもよい。この場合、ビア導体140は、例えば、中層130上における第1ターン配線131aと第2ターン配線131bとの間を通過するように設けられる。これにより、上層配線111および下層配線121と、中層配線131とに交差が生じず、結合係数を高められるため、変成器100の特性を向上できる。 In the above, the connection wiring 160 may not be provided in the middle layer 130. In this case, the via conductor 140 is provided so as to pass between the first turn wiring 131a and the second turn wiring 131b on the middle layer 130, for example. As a result, the upper layer wiring 111 and the lower layer wiring 121 and the middle layer wiring 131 do not intersect with each other, and the coupling coefficient can be increased, so that the characteristics of the transformer 100 can be improved.
<<第1の変形例>>
 図5A~図5Cを参照して、第1の変形例に係る変成器200について説明する。図5Aは、第1変形例の上層配線211を平面視した一例を示す図である。図5Bは、第1変形例の下層配線221を平面視した一例を示す図である。図5Cは、第1変形例の中層配線231を平面視した一例を示す図である。
<< First variant >>
The transformer 200 according to the first modification will be described with reference to FIGS. 5A to 5C. FIG. 5A is a diagram showing an example in which the upper layer wiring 211 of the first modification is viewed in a plan view. FIG. 5B is a diagram showing an example in which the lower layer wiring 221 of the first modification is viewed in a plan view. FIG. 5C is a diagram showing an example in which the middle layer wiring 231 of the first modification is viewed in a plan view.
 第1の変形例に係る変成器200では、例えば、ビア導体240,250が、第1ターン配線221aと第2ターン配線221bとの間ではない領域において、接続配線260と接続される。そして、接続配線260は、第1ターン配線221aと第2ターン配線221bとの間に形成される。 In the transformer 200 according to the first modification, for example, the via conductors 240 and 250 are connected to the connection wiring 260 in a region other than between the first turn wiring 221a and the second turn wiring 221b. Then, the connection wiring 260 is formed between the first turn wiring 221a and the second turn wiring 221b.
 具体的には、図5Aに示すように、上層配線211は、例えば0.75ターン巻き回されている。図5Bに示すように、下層配線221は、例えば0.5ターン巻き回されている。図5Cに示すように、接続配線260は、例えば、第1ターン配線221aと第2ターン配線221bとの間に設けられ、0.75ターン巻き回されている。すなわち、変成器200では、例えば、上層配線211、下層配線221、及び接続配線260で形成される二次巻線が2ターンで形成される。これにより、第1変形例に係る変成器200は、各層の表面上において上層配線211および下層配線221の延長を確保できない場合でも、中層230の接続配線260によって、変成器200の形状を大きくせずに、高いインダクタンスを得つつ結合係数を高めることができる。さらに言うと、変成器200は、例えば、各層の表面上の電子部品などの配置状態に応じて、第1ターン配線221aと第2ターン配線221bとの間に接続配線260を自由に設けることができるため、設計の自由度を高めることができる。 Specifically, as shown in FIG. 5A, the upper layer wiring 211 is wound, for example, 0.75 turns. As shown in FIG. 5B, the lower layer wiring 221 is wound around, for example, 0.5 turns. As shown in FIG. 5C, the connection wiring 260 is provided between, for example, the first turn wiring 221a and the second turn wiring 221b, and is wound around 0.75 turns. That is, in the transformer 200, for example, the secondary winding formed by the upper layer wiring 211, the lower layer wiring 221 and the connection wiring 260 is formed in two turns. As a result, even if the transformer 200 according to the first modification cannot secure the extension of the upper layer wiring 211 and the lower layer wiring 221 on the surface of each layer, the shape of the transformer 200 can be enlarged by the connection wiring 260 of the middle layer 230. It is possible to increase the coupling coefficient while obtaining a high inductance. Furthermore, the transformer 200 can freely provide the connection wiring 260 between the first turn wiring 221a and the second turn wiring 221b according to, for example, the arrangement state of the electronic components on the surface of each layer. Therefore, the degree of freedom in design can be increased.
<<第2の変形例>>
 図6、図7A~図7Cを参照して、第2の変形例に係る変成器300について説明する。図6は、第2変形例の各層を重ねた状態の一例を示す斜視図である。図7Aは、第2変形例の上層配線311を平面視した一例を示す図である。図7Bは、第2変形例の下層配線321を平面視した一例を示す図である。図7Cは、第2変形例の中層配線331を平面視した一例を示す図である。なお、第2の変形例においては、図7Cに示すように、変成器100の接続配線160が設けられていない態様につき説明する。
<< Second variant >>
The transformer 300 according to the second modification will be described with reference to FIGS. 6 and 7A to 7C. FIG. 6 is a perspective view showing an example of a state in which the layers of the second modification are stacked. FIG. 7A is a diagram showing an example in which the upper layer wiring 311 of the second modification is viewed in a plan view. FIG. 7B is a diagram showing an example in which the lower layer wiring 321 of the second modification is viewed in a plan view. FIG. 7C is a diagram showing an example in which the middle layer wiring 331 of the second modification is viewed in a plan view. In the second modification, as shown in FIG. 7C, a mode in which the connecting wiring 160 of the transformer 100 is not provided will be described.
 図6に示すように、第2の変形例に係る変成器300は、例えば、平面視において、第1ターン配線321aの一部と、それと対向する第2ターン配線321bの一部との少なくとも一部を覆うように、上層配線311および下層配線321が設けられている。 As shown in FIG. 6, in the transformer 300 according to the second modification, for example, in a plan view, at least one of a part of the first turn wiring 321a and a part of the second turn wiring 321b facing the first turn wiring 321a. The upper layer wiring 311 and the lower layer wiring 321 are provided so as to cover the portion.
 図7Aに示すように、上層配線311は、例えば、一端が外部回路(不図示)に接続され、他端がビア導体340に接続される。上層配線311は、例えば少なくとも一部が線幅Wを有する。図7Bに示すように、下層配線321は、例えば、一端が外部回路(不図示)に接続され、他端がビア導体340に接続される。よって、下層配線321は、ビア導体340を通じて上層310と電気的に直列に接続される。下層配線321は、例えば少なくとも一部が線幅Wを有する。これにより、インダクタンスが大きくなりすぎることを防止できる。図7Cに示すように、中層配線331は、例えば、第1ターン配線313aと第2ターン配線313bとが対向する部分の、第1ターン配線313aおよび第2ターン配線313bの延長する方向と直交する方向の線幅が、線幅Wよりも小さくなるように形成される。これにより、一次巻線と二次巻線との結合係数を高めることができる。 As shown in FIG. 7A, for example, one end of the upper layer wiring 311 is connected to an external circuit (not shown), and the other end is connected to the via conductor 340. The upper layer wiring 311 has, for example, at least a part having a line width W. As shown in FIG. 7B, for example, one end of the lower layer wiring 321 is connected to an external circuit (not shown), and the other end is connected to the via conductor 340. Therefore, the lower layer wiring 321 is electrically connected in series with the upper layer 310 through the via conductor 340. The lower layer wiring 321 has, for example, at least a part having a line width W. This makes it possible to prevent the inductance from becoming too large. As shown in FIG. 7C, the middle layer wiring 331 is orthogonal to the extending direction of the first turn wiring 313a and the second turn wiring 313b in the portion where the first turn wiring 313a and the second turn wiring 313b face each other, for example. The line width in the direction is formed to be smaller than the line width W. As a result, the coupling coefficient between the primary winding and the secondary winding can be increased.
 なお、上記において、上層配線311および下層配線321は、第1ターン配線331aおよび第2ターン配線331bの少なくとも一部を覆うように説明したが、これに限定されない。例えば、上層配線311および下層配線321の少なくともいずれかの一部が、第1ターン配線321aおよび第2ターン配線321bの少なくとも一部を覆うように設けられていればよい。 In the above description, the upper layer wiring 311 and the lower layer wiring 321 are described so as to cover at least a part of the first turn wiring 331a and the second turn wiring 331b, but the present invention is not limited to this. For example, at least a part of the upper layer wiring 311 and the lower layer wiring 321 may be provided so as to cover at least a part of the first turn wiring 321a and the second turn wiring 321b.
===製造方法===
 図8を参照して、変成器100の製造方法の一例について説明する。図8は、6層の多層基板の変成器100の断面の一例を示す図である。なお、図8では、接続配線160を省略してビア導体150が第1ターン配線121aと第2ターン配線121bとの間を貫通する態様を示す。また、図8では、変成器100に関する要素のみ表示するものとし、例えば当該要素以外のビア導体、配線、及び電子素子などを省略する。
=== Manufacturing method ===
An example of a method for manufacturing the transformer 100 will be described with reference to FIG. FIG. 8 is a diagram showing an example of a cross section of the transformer 100 of a 6-layer multilayer substrate. Note that FIG. 8 shows a mode in which the connecting wiring 160 is omitted and the via conductor 150 penetrates between the first turn wiring 121a and the second turn wiring 121b. Further, in FIG. 8, only the elements related to the transformer 100 are displayed, and for example, via conductors, wirings, electronic elements, and the like other than the elements are omitted.
 まず、例えば半導体基板の上に、化学気相堆積法、スパッタリング法、スピンコート法などによって絶縁膜Is1を形成する。絶縁膜Is1は、例えば、SiO2、SiN、SiONなどであり、各種電子素子などを保護するためのものである。なお、例えば、後述する絶縁膜Is2,Is3,下層120、中層130、及び上層110も、絶縁膜Is1と同様のものである。次に、絶縁膜Is1上に、例えば、金属蒸着法、スパッタリング法、めっき法などによってグランド170を形成する。次に、絶縁膜Is2,Is3および下層120を、絶縁膜Is1と同様の方法で形成する。次に、下層120上に、例えば、金属蒸着法、スパッタリング法、めっき法などによって、下層配線121を形成する。次に、中層130を形成して、当該中層130上に中層配線131(ここでは、第1ターン配線131aおよび第2ターン配線131b)を形成する。なお、このときに中層130上に接続配線160を形成してもよい。次に、上層110を形成する。次に、例えば、フッ素系ガス、臭素系ガス、ヨウ素系ガスなどを用いるライエッチング技術によって、上層110にビアホールを形成する。そして、当該ビアホールに導体を埋め込んでビア導体140を形成する。次に、上層配線111を形成する。これにより、変成器100を製造することができる。上記のように、グランド170が最も下の層に設けられている場合、すなわちグランド170と下層120との間に絶縁膜が設けられている場合、グランド170と下層配線121(及び上層配線111)との間の距離が確保できるため、グランド170と下層配線121(及び上層配線111)との間の寄生容量を抑制できる。なお、例えば絶縁膜Is1が設けられていなくてもよく、この場合、変成器100は下層120を中心として対称的に生成される。 First, the insulating film Is1 is formed on a semiconductor substrate by a chemical vapor deposition method, a sputtering method, a spin coating method, or the like. The insulating film Is1 is, for example, SiO2, SiN, SiON, etc., and is for protecting various electronic elements and the like. For example, the insulating films Is2, Is3, the lower layer 120, the middle layer 130, and the upper layer 110, which will be described later, are the same as the insulating film Is1. Next, the ground 170 is formed on the insulating film Is1 by, for example, a metal vapor deposition method, a sputtering method, a plating method, or the like. Next, the insulating films Is2, Is3 and the lower layer 120 are formed in the same manner as the insulating film Is1. Next, the lower layer wiring 121 is formed on the lower layer 120 by, for example, a metal vapor deposition method, a sputtering method, a plating method, or the like. Next, the middle layer 130 is formed, and the middle layer wiring 131 (here, the first turn wiring 131a and the second turn wiring 131b) is formed on the middle layer 130. At this time, the connection wiring 160 may be formed on the middle layer 130. Next, the upper layer 110 is formed. Next, via holes are formed in the upper layer 110 by, for example, a ly etching technique using a fluorine-based gas, a bromine-based gas, an iodine-based gas, or the like. Then, a conductor is embedded in the via hole to form the via conductor 140. Next, the upper layer wiring 111 is formed. As a result, the transformer 100 can be manufactured. As described above, when the ground 170 is provided in the lowest layer, that is, when an insulating film is provided between the ground 170 and the lower layer 120, the ground 170 and the lower layer wiring 121 (and the upper layer wiring 111) are provided. Since the distance between the ground 170 and the lower layer wiring 121 (and the upper layer wiring 111) can be secured, the parasitic capacitance between the ground 170 and the lower layer wiring 121 (and the upper layer wiring 111) can be suppressed. For example, the insulating film Is1 may not be provided. In this case, the transformer 100 is generated symmetrically with the lower layer 120 as the center.
 なお、上記において、変成器100は、最も上の層に上層配線111が形成されるように説明したが、これに限定されない。例えば、上層配線111は、例えば最も上の層でなくてもよい。また、上記において、変成器100は、最も下の層にグランド170が形成されるように説明したが、これに限定されない。例えば、グランド170は、例えば下層120よりも下の層に形成されていればよい。 In the above, the transformer 100 has been described so that the upper layer wiring 111 is formed in the uppermost layer, but the present invention is not limited to this. For example, the upper layer wiring 111 does not have to be, for example, the uppermost layer. Further, in the above, the transformer 100 has been described so that the ground 170 is formed in the lowest layer, but the present invention is not limited to this. For example, the ground 170 may be formed in a layer below the lower layer 120, for example.
===まとめ===
 本開示の例示的な実施形態に係る変成器100,200,300は、上層110(第1層)の表面(第1面)上に設けられる上層配線111(第1配線)と、下層120(第2層)の表面(第2面)上に設けられる下層配線121(第2配線)と、上層110(第1層)と下層120(第2層)との間に設けられる中層130(第3層)の表面(第3面)上に設けられる中層配線131(第3配線)と、を備え、上層配線111(第1配線)と前記第2配線とは、ビア導体140,150で電気的に接続され、中層配線131(第3配線)は、中層配線131(第3配線)の表面(第3面)上において1ターンよりも多く巻き回され、上層配線111(第1配線)および下層配線121(第2配線)は、中層配線131(第3配線)と電磁気的に結合するように設けられる。これにより、変成器100は、インダクタンスを大きくできるため、特性が向上する。
=== Summary ===
The transformers 100, 200, and 300 according to the exemplary embodiment of the present disclosure include an upper layer wiring 111 (first wiring) provided on the surface (first surface) of the upper layer 110 (first layer) and a lower layer 120 (first layer). The lower layer wiring 121 (second wiring) provided on the surface (second surface) of the second layer) and the middle layer 130 (second layer) provided between the upper layer 110 (first layer) and the lower layer 120 (second layer). The middle layer wiring 131 (third wiring) provided on the surface (third surface) of the third layer) is provided, and the upper layer wiring 111 (first wiring) and the second wiring are electrically connected by via conductors 140 and 150. The middle layer wiring 131 (third wiring) is wound more than one turn on the surface (third surface) of the middle layer wiring 131 (third wiring), and the upper layer wiring 111 (first wiring) and The lower layer wiring 121 (second wiring) is provided so as to be electromagnetically coupled to the middle layer wiring 131 (third wiring). As a result, the transformer 100 can have a large inductance, so that the characteristics are improved.
 また、本開示の例示的な実施形態に係る変成器100において、中層配線131(第3配線)は、外側から1ターン目の第1ターン配線131a(第1部分)と、外側から2ターン目で第1ターン配線131a(第1部分)と対向する位置に設けられ、第1ターン配線131a(第1部分)と同一方向に電流が流れるように形成される第2ターン配線131b(第2部分)と、を含み、ビア導体140,150は、中層130の表面(第3面)上における、第1ターン配線131a(第1部分)と第2ターン配線131b(第2部分)との間を通過するように設けられる。これにより、変成器100は、上層配線111および下層配線121と、中層配線131との交差を抑制することで結合係数を高くできるため、特性を向上できる。 Further, in the transformer 100 according to the exemplary embodiment of the present disclosure, the middle layer wiring 131 (third wiring) is the first turn wiring 131a (first part) on the first turn from the outside and the second turn from the outside. The second turn wiring 131b (second part) is provided at a position facing the first turn wiring 131a (first part) and is formed so that a current flows in the same direction as the first turn wiring 131a (first part). ), And the via conductors 140 and 150 are placed between the first turn wiring 131a (first part) and the second turn wiring 131b (second part) on the surface (third surface) of the middle layer 130. It is provided to pass through. As a result, the transformer 100 can increase the coupling coefficient by suppressing the intersection of the upper layer wiring 111 and the lower layer wiring 121 with the middle layer wiring 131, so that the characteristics can be improved.
 また、本開示の例示的な実施形態に係る変成器100において、中層配線131(第3配線)は、外側から1ターン目の第1ターン配線131a(第1部分)と、外側から2ターン目で第1ターン配線131a(第1部分)と対向する位置に設けられ、第1ターン配線131a(第1部分)と同一方向に電流が流れるように設けられる第2ターン配線131b(第2部分)と、を含み、ビア導体140,150は、上層110の表面(第1面)と中層130の表面(第3面)との間に形成されるビア導体140(第1ビア導体)と、下層120の表面(第2面)と中層130の表面(第3面)との間に形成されるビア導体150(第2ビア導体)と、を含み、中層130の表面(第3面)上において、第1ターン配線131a(第1部分)および第2ターン配線131b(第2部分)の少なくとも一部と電磁気的に結合するように、第1ターン配線131a(第1部分)の少なくとも一部と第2ターン配線131b(第2部分)の少なくとも一部との間に設けられる、ビア導体140(第1ビア導体)とビア導体150(第2ビア導体)とを電気的に接続する接続配線160をさらに備える。これにより、二次巻線の一部である接続配線160が、一次巻線の一部である第1ターン配線131aおよび第2ターン配線131bと近接するため、一次巻線と二次巻線との結合係数を高めることができる。 Further, in the transformer 100 according to the exemplary embodiment of the present disclosure, the middle layer wiring 131 (third wiring) is the first turn wiring 131a (first part) on the first turn from the outside and the second turn from the outside. The second turn wiring 131b (second part) is provided at a position facing the first turn wiring 131a (first part) and is provided so that a current flows in the same direction as the first turn wiring 131a (first part). The via conductors 140 and 150 include the via conductor 140 (first via conductor) formed between the surface (first surface) of the upper layer 110 and the surface (third surface) of the middle layer 130, and the lower layer. On the surface (third surface) of the middle layer 130, including the via conductor 150 (second via conductor) formed between the surface of the 120 (second surface) and the surface (third surface) of the middle layer 130. , With at least a part of the first turn wiring 131a (first part) so as to be electromagnetically coupled to at least a part of the first turn wiring 131a (first part) and the second turn wiring 131b (second part). A connection wiring 160 that electrically connects the via conductor 140 (first via conductor) and the via conductor 150 (second via conductor) provided between at least a part of the second turn wiring 131b (second portion). Further prepare. As a result, the connection wiring 160, which is a part of the secondary winding, is close to the first turn wiring 131a and the second turn wiring 131b, which are a part of the primary winding. The coupling coefficient of can be increased.
 また、本開示の例示的な実施形態に係る変成器200において、ビア導体240(第1ビア導体)の端部241は、中層230の表面(第3面)上における、第1ターン配線231a(第1部分)と第2ターン配線231b(第2部分)との間ではない領域に設けられ、ビア導体250(第2ビア導体)の端部251は、第2ターン配線131b(第2部分)上における、第1ターン配線131a(第1部分)と第2ターン配線131b(第2部分)との間ではない領域に設けられ、接続配線160は、中層130の表面(第3面)上において、第1ターン配線131a(第1部分)と第2ターン配線131b(第2部分)との間に設けられる。これにより、変成器200は、上層配線211および下層配線221の延長を確保できない場合でも、中層230の接続配線260によって、変成器200の形状を大きくせずに、高いインダクタンスを得つつ結合係数を高めることができる。 Further, in the transformer 200 according to the exemplary embodiment of the present disclosure, the end portion 241 of the via conductor 240 (first via conductor) is the first turn wiring 231a (third surface) on the surface (third surface) of the middle layer 230. The end portion 251 of the via conductor 250 (second via conductor) is provided in a region not between the first part) and the second turn wiring 231b (second part), and the end portion 251 of the via conductor 250 (second via conductor) is the second turn wiring 131b (second part). Above, the connection wiring 160 is provided in a region not between the first turn wiring 131a (first portion) and the second turn wiring 131b (second portion), and the connection wiring 160 is provided on the surface (third surface) of the middle layer 130. , Is provided between the first turn wiring 131a (first portion) and the second turn wiring 131b (second portion). As a result, even if the transformer 200 cannot secure the extension of the upper layer wiring 211 and the lower layer wiring 221 by the connection wiring 260 of the middle layer 230, the coupling coefficient can be obtained while obtaining a high inductance without increasing the shape of the transformer 200. Can be enhanced.
 また、本開示の例示的な実施形態に係る変成器300において、上層配線311(第1配線)および下層配線321(第2配線)のうち少なくともいずれかの一部は、平面視において、外側から1ターン目の中層配線331(第3配線)の部分と、外側から2ターン目で1ターン目の中層配線331(第3配線)の部分と対向する位置に設けられ、第1ターン配線331a(第1部分)と同一方向に電流が流れるように形成される中層配線331(第3配線)の所定の部分と、の少なくとも一部を覆うように設けられる。これにより、一次巻線と二次巻線との結合係数を高めることができる。 Further, in the transformer 300 according to the exemplary embodiment of the present disclosure, at least a part of the upper layer wiring 311 (first wiring) and the lower layer wiring 321 (second wiring) is viewed from the outside in a plan view. It is provided at a position facing the middle layer wiring 331 (third wiring) portion of the first turn and the middle layer wiring 331 (third wiring) portion of the first turn on the second turn from the outside, and the first turn wiring 331a ( It is provided so as to cover at least a part of a predetermined portion of the middle layer wiring 331 (third wiring) formed so that a current flows in the same direction as the first portion). As a result, the coupling coefficient between the primary winding and the secondary winding can be increased.
 また、本開示の例示的な実施形態に係る変成器100において、上層配線111(第1配線)は、上層110の表面(第1面)上において第1ターン数で巻き回され、下層配線121(第2配線)は、下層120の表面(第2面)上において第2ターン数で巻き回され、上層配線111(第1配線)および下層配線121(第2配線)は、第1ターン数と、第2ターン数と、の合計が1ターンよりも多くなるように巻き回されて設けられる。これにより、結合係数を高くできるため、変成器100の特性を向上できる。 Further, in the transformer 100 according to the exemplary embodiment of the present disclosure, the upper layer wiring 111 (first wiring) is wound on the surface (first surface) of the upper layer 110 in the number of first turns, and the lower layer wiring 121. (Second wiring) is wound on the surface (second surface) of the lower layer 120 in the second turn number, and the upper layer wiring 111 (first wiring) and the lower layer wiring 121 (second wiring) have the first turn number. And, the number of the second turns and the total are wound so as to be more than one turn. As a result, the coupling coefficient can be increased, so that the characteristics of the transformer 100 can be improved.
 また、本開示の例示的な実施形態に係る変成器100は、グランド170(グランド層)と、グランド170と、上層110(第1層)および下層120(第2層)と、の間に少なくとも一つの絶縁体層を含む絶縁膜Is2,Is3(第4層)と、をさらに備える。これにより、グランド170と下層配線121(及び上層配線111)との間の寄生容量を抑制できる。 Further, the transformer 100 according to the exemplary embodiment of the present disclosure is at least between the ground 170 (ground layer), the ground 170, and the upper layer 110 (first layer) and the lower layer 120 (second layer). Insulation films Is2 and Is3 (fourth layer) including one insulator layer are further provided. As a result, the parasitic capacitance between the ground 170 and the lower layer wiring 121 (and the upper layer wiring 111) can be suppressed.
 また、本開示の例示的な実施形態に係る変成器100は、上層配線111(第1配線)と下層配線121(第2配線)とは、ビア導体140,150で電気的に直列に接続される。これにより、インダクタンスを高めることができる。 Further, in the transformer 100 according to the exemplary embodiment of the present disclosure, the upper layer wiring 111 (first wiring) and the lower layer wiring 121 (second wiring) are electrically connected in series by via conductors 140 and 150. To. Thereby, the inductance can be increased.
 以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更または改良され得るとともに、本開示にはその等価物も含まれる。すなわち、実施形態に当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。実施形態が備える素子及びその配置などは、例示したものに限定されるわけではなく適宜変更することができる。 The embodiments described above are for facilitating the understanding of the present disclosure, and are not for limiting and interpreting the present disclosure. The present disclosure may be modified or improved without departing from its intent, and the present disclosure also includes its equivalents. That is, those skilled in the art with appropriate design changes to the embodiments are also included in the scope of the present disclosure as long as they have the features of the present disclosure. The elements included in the embodiment and their arrangements are not limited to those illustrated, and can be appropriately changed.
 100,200,300…変成器、110,210,310…上層、120,220,320…下層、130,230,330…中層、111,211,311…上層配線、121,221,321…下層配線、131,231,331…中層配線、140,150240,250,340…ビア導体、160,260…接続配線。 100,200,300 ... Transformer, 110,210,310 ... Upper layer, 120,220,320 ... Lower layer, 130,230,330 ... Middle layer, 111,211,311 ... Upper layer wiring, 121,221,321 ... Lower layer wiring , 131,231,331 ... Middle layer wiring, 140, 150240, 250, 340 ... Via conductor, 160, 260 ... Connection wiring.

Claims (8)

  1.  第1層の第1面上に設けられる第1配線と、
     第2層の第2面上に設けられる第2配線と、
     前記第1層と前記第2層との間に設けられる第3層の第3面上に設けられる第3配線と、
     を備え、
     前記第1配線と前記第2配線とは、ビア導体で電気的に接続され、
     前記第3配線は、前記第3面上において1ターンよりも多く巻き回され、
     前記第1配線および前記第2配線は、前記第3配線と電磁気的に結合するように設けられる、
     変成器。
    The first wiring provided on the first surface of the first layer and
    The second wiring provided on the second surface of the second layer and
    A third wiring provided on the third surface of the third layer provided between the first layer and the second layer, and
    With
    The first wiring and the second wiring are electrically connected by a via conductor.
    The third wire is wound on the third surface more than one turn.
    The first wiring and the second wiring are provided so as to be electromagnetically coupled to the third wiring.
    Transformer.
  2.  前記第3配線は、外側から1ターン目の第1部分と、外側から2ターン目で前記第1部分と対向する位置に設けられ、前記第1部分と同一方向に電流が流れるように形成される第2部分と、を含み、
     前記ビア導体は、前記第3面上において、前記第1部分と前記第2部分との間を通過するように設けられる、
     請求項1に記載の変成器。
    The third wiring is provided at a position facing the first portion on the first turn from the outside and the first portion on the second turn from the outside, and is formed so that a current flows in the same direction as the first portion. Including the second part
    The via conductor is provided on the third surface so as to pass between the first portion and the second portion.
    The transformer according to claim 1.
  3.  前記第3配線は、外側から1ターン目の第1部分と、外側から2ターン目で前記第1部分と対向する位置に設けられ、前記第1部分と同一方向に電流が流れるように設けられる第2部分と、を含み、
     前記ビア導体は、前記第1面と前記第3面との間に形成される第1ビア導体と、前記第2面と前記第3面との間に形成される第2ビア導体と、を含み、
     前記第3面上において、前記第1部分および前記第2部分の少なくとも一部と電磁気的に結合するように、前記第1部分の少なくとも一部と前記第2部分の少なくとも一部との間に設けられる、前記第1ビア導体と前記第2ビア導体とを電気的に接続する接続配線をさらに備える、
     請求項1に記載の変成器。
    The third wiring is provided at a position facing the first portion on the first turn from the outside and the first portion on the second turn from the outside, and is provided so that a current flows in the same direction as the first portion. Including the second part,
    The via conductor includes a first via conductor formed between the first surface and the third surface, and a second via conductor formed between the second surface and the third surface. Including
    On the third surface, between at least a part of the first part and at least a part of the second part so as to be electromagnetically coupled to at least a part of the first part and the second part. Further provided, a connection wiring for electrically connecting the first via conductor and the second via conductor is provided.
    The transformer according to claim 1.
  4.  前記第1ビア導体の端部は、前記第3面上における、前記第1部分と前記第2部分との間ではない領域に設けられ、
     前記第2ビア導体の端部は、前記第3面上における、前記第1部分と前記第2部分との間ではない領域に設けられ、
     前記接続配線は、前記第3面上において、前記第1部分と前記第2部分との間に設けられる、
     請求項3に記載の変成器。
    The end portion of the first via conductor is provided on the third surface in a region not between the first portion and the second portion.
    The end portion of the second via conductor is provided on the third surface in a region not between the first portion and the second portion.
    The connection wiring is provided between the first portion and the second portion on the third surface.
    The transformer according to claim 3.
  5.  前記第1配線および前記第2配線のうち少なくともいずれかの一部は、平面視において、外側から1ターン目の前記第3配線の部分と、外側から2ターン目で前記1ターン目の第3配線の部分と対向する位置に設けられ、前記1ターン目の第3配線の部分と同一方向に電流が流れるように形成される前記第3配線の所定の部分と、の少なくとも一部を覆うように設けられる、
     請求項1から請求項4のいずれか一項に記載の変成器。
    At least a part of the first wiring and the second wiring is a portion of the third wiring on the first turn from the outside and a third on the first turn on the second turn from the outside in a plan view. It covers at least a part of a predetermined part of the third wiring which is provided at a position facing the wiring part and is formed so that a current flows in the same direction as the third wiring part of the first turn. Provided in
    The transformer according to any one of claims 1 to 4.
  6.  前記第1配線は、前記第1面上において第1ターン数で巻き回され、
     前記第2配線は、前記第2面上において第2ターン数で巻き回され、
     前記第1配線および前記第2配線は、前記第1ターン数と、前記第2ターン数と、の合計が1ターンよりも多くなるように巻き回される、
     請求項1から請求項5のいずれか一項に記載の変成器。
    The first wiring is wound on the first surface in the first number of turns.
    The second wiring is wound on the second surface in the second number of turns.
    The first wiring and the second wiring are wound so that the total of the number of the first turns and the number of the second turns is more than one turn.
    The transformer according to any one of claims 1 to 5.
  7.  グランド層と、
     前記グランド層と、前記第1層および前記第2層と、の間に少なくとも一つの絶縁体層を含む第4層と、
     をさらに備える請求項1から請求項6のいずれか一項に記載の変成器。
    With the ground layer
    A fourth layer including at least one insulator layer between the ground layer and the first layer and the second layer.
    The transformer according to any one of claims 1 to 6, further comprising.
  8.  前記第1配線と前記第2配線とは、前記ビア導体で電気的に直列に接続される、
     請求項1から請求項7のいずれか一項に記載の変成器。
    The first wiring and the second wiring are electrically connected in series by the via conductor.
    The transformer according to any one of claims 1 to 7.
PCT/JP2022/000206 2021-01-13 2022-01-06 Transformer WO2022153916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-003321 2021-01-13
JP2021003321 2021-01-13

Publications (1)

Publication Number Publication Date
WO2022153916A1 true WO2022153916A1 (en) 2022-07-21

Family

ID=82446269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000206 WO2022153916A1 (en) 2021-01-13 2022-01-06 Transformer

Country Status (1)

Country Link
WO (1) WO2022153916A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393646U (en) * 1976-12-29 1978-07-31
JPH06151186A (en) * 1992-11-02 1994-05-31 Murata Mfg Co Ltd Coil
JP2003272929A (en) * 2002-03-18 2003-09-26 Tdk Corp Plane transformer, multilayer substrate, and switching power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393646U (en) * 1976-12-29 1978-07-31
JPH06151186A (en) * 1992-11-02 1994-05-31 Murata Mfg Co Ltd Coil
JP2003272929A (en) * 2002-03-18 2003-09-26 Tdk Corp Plane transformer, multilayer substrate, and switching power supply device

Similar Documents

Publication Publication Date Title
US8054155B2 (en) Two layer transformer
JP5503028B2 (en) Multilayer double inductor structure
US8253523B2 (en) Spiral inductor device
TWI648754B (en) Interleaved transformer and method of making the same
US20230207612A1 (en) Multilayer-type on-chip inductor structure
US20080012678A1 (en) Symmetrical inductor
CN110970202A (en) Inductance component and method for manufacturing inductance component
US8198965B2 (en) Grounding of magnetic cores
TW201907592A (en) Inductors with through-substrate via cores
CN101202277A (en) Symmetrical inductance element
US11367773B2 (en) On-chip inductor structure
JP5357136B2 (en) Transformer
JP4770809B2 (en) Common mode choke coil and manufacturing method thereof
WO2022153916A1 (en) Transformer
US9583555B2 (en) Semiconductor device having inductor
CN101256877A (en) Inductive structure
JP2009021325A (en) Winding type common mode choke coil
US10103217B2 (en) Semiconductor device having inductor
JP2010272625A (en) Spiral inductor
JP2010114283A (en) Spiral inductor
US20220238436A1 (en) Multilayer-type on-chip inductor structure
CN100578696C (en) Inductance structure
TW200917290A (en) Symmetrical inductor device
CN113161482B (en) Integrated Inductor
TWI868264B (en) Antenna for module substrate and module substrate using the antenna for module substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP