WO2022137934A1 - キャリアプレートの研磨方法、キャリアプレートおよび半導体ウェーハの研磨方法 - Google Patents
キャリアプレートの研磨方法、キャリアプレートおよび半導体ウェーハの研磨方法 Download PDFInfo
- Publication number
- WO2022137934A1 WO2022137934A1 PCT/JP2021/042696 JP2021042696W WO2022137934A1 WO 2022137934 A1 WO2022137934 A1 WO 2022137934A1 JP 2021042696 W JP2021042696 W JP 2021042696W WO 2022137934 A1 WO2022137934 A1 WO 2022137934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- carrier plate
- polished
- semiconductor wafer
- plate
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 229
- 239000004065 semiconductor Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000006061 abrasive grain Substances 0.000 claims abstract description 65
- 239000002245 particle Substances 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 239000002002 slurry Substances 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 229910003460 diamond Inorganic materials 0.000 claims description 7
- 239000010432 diamond Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 65
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000007517 polishing process Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007494 plate polishing Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/08—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
- B24B37/245—Pads with fixed abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
Definitions
- the present invention relates to a method for polishing a carrier plate, a method for polishing a carrier plate and a semiconductor wafer.
- semiconductor wafers such as silicon wafers used as substrates for semiconductor devices
- semiconductor wafers are made with a pair of upper and lower plateaus to which polishing pads are attached.
- a double-sided polishing step is performed in which a polishing liquid is supplied while sandwiching and both sides are polished at the same time. At that time, the semiconductor wafer is held in the wafer holding hole of the carrier plate.
- the carrier plate there are those made of metal such as stainless steel and titanium (for example, see Patent Document 1) and those made of resin (for example, see Patent Document 2), but none of them have been manufactured.
- the thickness of the used one is larger than the thickness that can be polished of the semiconductor wafer, or the flatness is low. Therefore, the front and back surfaces of the carrier plate are polished before being arranged in the double-sided polishing apparatus to polish the semiconductor wafer.
- Patent Document 3 uses a double-sided polishing device different from the double-sided polishing device used for double-sided polishing of a wafer before it is arranged in the double-sided polishing device and the double-sided polishing process is performed on the wafer.
- the carrier plate is subjected to two-step double-sided polishing consisting of primary polishing using a slurry containing abrasive grains and secondary polishing using an inorganic alkaline solution containing no abrasive grains, thereby forming a wafer in the double-sided polishing process. It describes how to prevent scratches from occurring.
- the polishing rate is 1/10 or less as compared with the case of polishing a silicon wafer, and it is used for double-sided polishing of a wafer. There is a problem that it takes an enormous amount of time to reach the possible thickness.
- the present invention has been made in view of the above problems, and an object thereof is to efficiently polish the front and back surfaces of a carrier plate that has not been used after manufacturing and is used in a double-sided polishing device for a semiconductor wafer. It is to provide a way to do it.
- the carrier plate is provided with a carrier plate having a wafer holding hole for holding a semiconductor wafer, and an upper surface plate and a lower surface plate which are arranged so as to face each other across the carrier plate and have a polishing pad on the surface.
- the carrier in a double-sided polishing apparatus that simultaneously chemically polishes the front and back surfaces of a semiconductor wafer held in the wafer holding holes by supplying a polishing liquid while relatively rotating the upper surface plate and the lower surface plate. It ’s a method of polishing a plate.
- a polishing pad having an abrasive grain-containing layer in which abrasive grains having a particle size of 2 ⁇ m or more are embedded is used.
- a carrier plate to be polished that has not been used after production is sandwiched between the upper surface plate and the lower surface plate in the double-sided polishing device, and the carrier plate to be polished, the upper surface plate and the lower surface plate are relatively rotated.
- a method for polishing a carrier plate which comprises supplying a polishing liquid to polish both sides of the carrier plate to be polished.
- polishing pad further has an abrasive grain-free layer in which the abrasive grains are not embedded, immediately below the abrasive grain-containing layer. How to polish the carrier plate.
- a carrier plate having a flatness of 2 ⁇ m or less [5] A carrier plate having a flatness of 2 ⁇ m or less.
- a method for polishing a semiconductor wafer which comprises polishing the front and back surfaces of the semiconductor wafer.
- the present invention it is possible to efficiently polish the front and back surfaces of a carrier plate that has not been used after manufacturing and is used in a double-sided polishing device for a semiconductor wafer.
- FIG. 6 is a diagram showing the relationship between the position and the thickness of the carrier plate after polishing with respect to Invention Example 6, in which (a) is a measurement point and (b) is the thickness of the carrier plate at each measurement position. It is a figure which shows the GBIR of the silicon wafer which was subjected to the double-sided polishing process using the carrier plate which was polished according to the prior art example and the invention example.
- the method for polishing a carrier plate according to the present invention includes a carrier plate having a wafer holding hole for holding a semiconductor wafer, and an upper platen and a lower platen which are arranged so as to face each other across the carrier plate and have a polishing pad on the surface.
- a double-sided polishing device that simultaneously chemically polishes the front and back surfaces of a silicon wafer held in a wafer holding hole by supplying a polishing liquid while relatively rotating a carrier plate, an upper platen, and a lower platen. This is a method of polishing a carrier plate.
- a polishing pad having an abrasive grain-containing layer in which abrasive grains having a particle size of 2 ⁇ m or more are embedded is used, and a carrier plate to be polished that has not been used after production is used in the double-sided polishing apparatus. It is characterized in that it is sandwiched between the upper surface plate and the lower surface plate, and the polishing liquid is supplied while the carrier plate to be polished, the upper surface plate and the lower surface plate are relatively rotated, and both sides of the carrier plate to be polished are polished. ..
- the carrier plate in the double-sided polishing device is polished to a thickness capable of double-sided polishing of the semiconductor wafer at an unused stage after manufacturing.
- the present inventors polished the carrier plate by the method described in Patent Document 3, it was found that the polishing required an enormous amount of time.
- the present inventors have diligently studied how to polish the carrier plate more efficiently.
- a fixed abrasive grain layer in which fixed abrasive grains are embedded is surfaced as a polishing pad attached to the upper surface plate and the lower surface plate. I came up with the idea of using the polishing pad that I have in.
- the polishing rate may not increase even if the carrier plate is simply polished using a polishing pad having a fixed abrasive grain layer on the surface. Therefore, as a result of further studies by the present inventors, it has been found that the polishing rate is increased by setting the particle size of the fixed abrasive grains to 2 ⁇ m or more, and the present invention has been completed. Each requirement will be described below.
- the carrier plate to be polished is a carrier plate that has not been used after manufacturing, and has a holding hole for holding a semiconductor wafer in a double-sided polishing device.
- the number of holding holes can be an appropriate number of 1 or more.
- the carrier plate to be polished includes a metal portion having a holding hole for holding a semiconductor wafer and an annular resin portion arranged along an inner wall defining the holding hole, or the entire carrier plate is composed of a resin portion.
- the metal portion can be made of a metal such as stainless steel (Steel Special Use Stainless, SUS) or titanium.
- the resin portion can be made of a resin such as epoxy, phenol or polyimide, or a fiber reinforced plastic in which the resin contains reinforced fibers such as glass fiber, carbon fiber and aramid fiber.
- the semiconductor wafer that is held in the holding hole of the carrier plate and polished can be silicon, germanium, gallium arsenide, or the like.
- the diameter of the semiconductor wafer is not particularly limited, and may be 150 mm or more, for example, 150 mm, 200 mm, 300 mm, 450 mm, or the like.
- the semiconductor wafer may be an N-type or P-type wafer to which an appropriate dopant is added.
- the carrier plate to be polished is polished using a double-sided polishing device.
- the polishing pad attached to the upper surface plate and the lower surface plate has an abrasive grain-containing layer in which abrasive grains having a particle size of 2 ⁇ m or more are embedded.
- the particle size of the abrasive grains is set to 2 ⁇ m or more.
- the particle size of the abrasive grains is preferably 3 ⁇ m or more. As a result, the polishing rate can be significantly increased.
- the upper limit of the particle size of the abrasive grains is not limited in terms of the efficiency of polishing the carrier plate, but if the particle size of the abrasive grains exceeds 20 ⁇ m, scratches may be formed on the surface of the carrier plate or the carrier plate may be formed. There is a risk that a large amount of damage will remain at the edges of the wafer and a large number of scratches will occur on the semiconductor wafer to be polished. Therefore, the particle size of the abrasive grains is preferably 20 ⁇ m or less.
- the particle size of the abrasive grains is measured by a laser diffraction / scattering method (JIS Z8825).
- the matrix constituting the base of the abrasive grain-containing layer in which the abrasive grains are embedded can be made of an appropriate material capable of firmly holding the abrasive grains.
- a resin, a ceramic material, or the like can be used.
- the resin an epoxy resin, an acrylic resin, or the like can be used. Epoxy resin and acrylic resin can sufficiently hold abrasive grains, and the detailed type does not matter.
- the material of the abrasive grains embedded in the fixed abrasive grain layer arranged on the surface of the polishing pad is not particularly limited as long as it can polish the surface of the carrier plate, but is alumina in terms of high polishing ability. Alternatively, it is preferably diamond.
- the abrasive grains are uniformly dispersed in the fixed abrasive grain layer.
- the carrier plate can be continuously polished with the same quality.
- the thickness of the abrasive grain-containing layer is preferably 0.2 mm or more and 2.5 mm or less.
- the thickness of the abrasive grain-containing layer is 0.2 mm or more, it can be satisfactorily performed without slowing down the polishing speed of the carrier plate.
- the thickness of the abrasive grain-containing layer is 2.5 mm or less, the carrier plate can be finished with good flatness.
- the matrix of the abrasive grain-containing layer is composed of a resin
- it is preferably composed of a non-foaming resin that does not foam. This makes it possible to increase the hardness of the carrier plate.
- the abrasive grain-containing layer preferably has a shore D hardness (JIS K6253) of 40 or more. As a result, it is possible to obtain a carrier plate having a high flatness after polishing without filling the wafer holding holes with a dummy wafer or the like during polishing.
- the polishing pad further has an abrasive grain-free layer in which the abrasive grains are not embedded immediately below the abrasive grain-containing layer.
- the abrasive grain-free layer functions as a cushioning material to effectively absorb the vibration during polishing of the carrier plate, and the flatness of the carrier plate after polishing and the carrier plate after polishing are used for polishing. The flatness of the semiconductor wafer can be improved.
- a resin or ceramic material can be used for the abrasive grain-free layer.
- the resin an epoxy resin, an acrylic resin, or the like can be used. Epoxy resin and acrylic resin can sufficiently hold abrasive grains, and the detailed type does not matter.
- the thickness of the abrasive grain-free layer is preferably 0.2 mm or more and 2.0 mm or less.
- the thickness of the abrasive grain-free layer is 0.2 mm or more, the cushioning property can be satisfactorily given to the abrasive grain-free layer, and the carrier plate can be satisfactorily polished.
- the thickness of the abrasive grain-free layer is 2.0 mm or less, a good polishing rate can be obtained without reducing the amount of work given to the carrier plate by the abrasive grain-containing layer while maintaining the cushioning property.
- the hardness of the abrasive grain-free layer is preferably smaller than the hardness of the abrasive grain-containing layer. This makes it possible to give a good cushioning property to the abrasive grain-free layer, more effectively absorb the vibration during polishing of the carrier plate, and further improve the flatness of the carrier plate.
- the abrasive grain-free layer is integrated with the abrasive grain-containing layer. By integrating both, it is possible to more effectively absorb the vibration during polishing of the carrier plate and further improve the flatness of the carrier plate. This can be done, for example, by heat-sealing the two.
- the polishing liquid used when polishing the carrier plate can be a slurry, water, or an aqueous solution containing a surfactant.
- abrasive grains contained in the slurry silica, alumina, cerium oxide and the like can be used.
- the carrier plate according to the present invention is characterized by having a flatness of 2 ⁇ m or less.
- the carrier plate polishing method according to the present invention can efficiently polish a carrier plate to be polished that has not been used after production.
- the high carrier plate after polishing has a high flatness of 2 ⁇ m or less.
- the flatness of the carrier plate is the outer peripheral edge of the carrier plate from a position 10 mm from the edge of the wafer holding hole on a straight line including the center of the carrier plate and the center of the wafer holding hole when the carrier plate is viewed from above. It means the difference between the maximum value and the minimum value of the measured thickness when the thickness of the carrier plate is measured along the straight line from the position to the position of 30 mm.
- the carrier plate has a metal portion having a holding hole for holding the semiconductor wafer and an annular resin portion arranged along the inner wall defining the holding hole, or the carrier plate is entirely composed of the resin portion. can do.
- the metal portion can be made of a metal such as stainless steel (Steel Special Use Stainless, SUS) or titanium, or a metal having a diamond-like carbon (DLC) coating applied thereto.
- the resin portion can be made of a resin such as epoxy, phenol, or polyimide, and can be further made of a fiber reinforced plastic containing reinforcing fibers such as glass fiber, carbon fiber, and aramid fiber in the resin. can.
- the carrier plate polished by the above-mentioned method for polishing a carrier plate according to the present invention or the wafer holding hole of the carrier plate according to the present invention is filled with a semiconductor wafer to be polished and double-sided polishing is performed. It is sandwiched between the upper surface plate and the lower surface plate of the device, and the polishing liquid is supplied while the carrier plate, the upper surface plate and the lower surface plate are relatively rotated to polish the front and back surfaces of the semiconductor wafer to be polished. It is a feature.
- a carrier plate having a high flatness can be obtained by the carrier plate polished by the above-mentioned method for polishing a carrier plate according to the present invention or the carrier plate according to the present invention. Then, by arranging such a carrier plate in a double-sided polishing apparatus and performing double-sided polishing of the semiconductor wafer, a semiconductor wafer having high flatness can be obtained.
- the present invention is characterized in that the carrier plate polished by the method for polishing the carrier plate according to the present invention or the carrier plate according to the present invention is arranged in the double-sided polishing apparatus to perform double-sided polishing of the semiconductor wafer.
- the carrier plate polished by the method for polishing the carrier plate according to the present invention or the carrier plate according to the present invention is arranged in the double-sided polishing apparatus to perform double-sided polishing of the semiconductor wafer.
- other conditions can be appropriately selected from conventionally known methods and are not limited.
- the semiconductor wafer to be polished is not particularly limited, but the silicon wafer can be particularly well polished.
- the carrier plate to be polished was polished using a double-sided polishing device.
- This carrier plate was sandwiched between the upper surface plate and the lower surface plate in the double-sided polishing device, and the carrier plate, the upper surface plate, and the lower surface plate were relatively rotated to polish the front and back surfaces of the carrier plate at the same time.
- a urethane polishing pad containing no abrasive grains manufactured by Nitta DuPont was used for the upper surface plate and the lower surface plate, and a slurry containing silica having a particle size of 100 nm was used as the polishing liquid.
- Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate.
- invention Example 1 Similar to Conventional Example 1, the carrier plate to be polished was subjected to a polishing treatment. At that time, pure water was used as the polishing liquid. Further, as the polishing pad, an abrasive grain-containing layer in which alumina having a particle size of 2 ⁇ m was contained in an acrylic resin was used. Other conditions are all the same as in Conventional Example 1. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- Invention Example 2 Similar to Invention Example 1, the carrier plate to be polished was subjected to a polishing treatment. However, the particle size of alumina in the polishing pad was set to 3 ⁇ m. Other conditions are all the same as in Invention Example 1. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- Invention Example 3 Similar to Invention Example 2, the carrier plate to be polished was subjected to a polishing treatment. However, as the polishing liquid, a slurry containing alumina having a particle size of 3 ⁇ m was used. Other conditions are all the same as in Invention Example 1. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- Invention Example 4 Similar to Invention Example 1, the carrier plate to be polished was subjected to a polishing treatment. However, diamond was used as the abrasive grains contained in the abrasive grain-containing layer of the polishing pad. Other conditions are all the same as in Invention Example 1. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- Invention Example 5 Similar to Invention Example 2, the carrier plate to be polished was subjected to a polishing treatment. However, diamond was used as the abrasive grains contained in the abrasive grain-containing layer of the polishing pad. Other conditions are all the same as in Invention Example 2. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- Invention Example 6 Similar to Invention Example 5, the carrier plate to be polished was subjected to a polishing treatment. However, the particle size of diamond contained in the abrasive grain-containing layer of the polishing pad was set to 6 ⁇ m. Other conditions are all the same as in Invention Example 5. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- Invention Example 7 Similar to Invention Example 5, the carrier plate to be polished was subjected to a polishing treatment. However, the particle size of diamond contained in the abrasive grain-containing layer of the polishing pad was set to 9 ⁇ m. Other conditions are all the same as in Invention Example 5. Table 1 shows the polishing conditions and the polishing rate at the time of polishing the carrier plate. However, the polishing rate is shown as a relative value to the polishing rate of Conventional Example 1.
- FIG. 1 shows the relationship between the position and the thickness of the carrier plate after polishing for Invention Example 6, that is, the shape of the carrier plate, where (a) is a measurement point and (b) is a carrier plate at each measurement position. Shows the thickness of.
- the part where there is no thickness data in FIG. 1B is due to the fact that the thickness could not be measured due to the opening (not shown) other than the wafer holding hole provided in the carrier plate. From FIG. 1 (b), it can be seen that the thickness of the carrier plate varied at the measurement position before polishing, whereas the thickness of the carrier plate became uniform after polishing, and the flatness was improved. ..
- Invention Example 8 Similar to Invention Example 6, the carrier plate to be polished was subjected to a polishing treatment. However, an abrasive grain-free layer (made of urethane resin, thickness 0.3 mm) was arranged directly below the abrasive grain-containing layer of the polishing pad. Other conditions are all the same as in Invention Example 5. Table 2 shows the polishing conditions and the flatness of the carrier plate.
- Invention Example 9 Similar to Invention Example 8, the carrier plate to be polished was subjected to a polishing treatment. However, the thickness of the abrasive grain-free layer was set to 0.6 mm. Other conditions are all the same as in Invention Example 5. Table 2 shows the polishing conditions and the flatness of the carrier plate.
- Invention Example 10 Similar to Invention Example 8, the carrier plate to be polished was subjected to a polishing treatment. However, the thickness of the abrasive grain-free layer was set to 1.0 mm. Other conditions are all the same as in Invention Example 5. Table 2 shows the polishing conditions and the flatness of the carrier plate.
- FIG. 2 shows the GBIR (Global flatness Back Ideal Range) of a silicon wafer after the carrier plates according to Conventional Example 1 and Invention Example 7 are arranged in a double-sided polishing apparatus and 25 silicon wafers having a diameter of 300 mm are double-sided polished. ing. From FIG. 2, it can be seen that a silicon wafer having a higher flatness than the conventional one can be obtained by performing double-side polishing of the silicon wafer using the carrier plate polished according to the present invention.
- GBIR Global flatness Back Ideal Range
- the present invention it is useful in the semiconductor wafer manufacturing industry because it is possible to efficiently polish the front and back surfaces of an unused carrier plate used in a double-sided polishing device for a semiconductor wafer.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
[1]半導体ウェーハを保持するウェーハ保持孔を備えるキャリアプレートと、前記キャリアプレートを挟んで対向して配置され、表面に研磨パッドが設けられた上定盤および下定盤とを備え、前記キャリアプレート、前記上定盤および前記下定盤を相対的に回転させつつ研磨液を供給することにより、前記ウェーハ保持孔に保持された半導体ウェーハの表裏面を同時に化学機械研磨する両面研磨装置における、前記キャリアプレートを研磨する方法であって、
前記両面研磨装置における前記研磨パッドとして、粒径2μm以上の砥粒が埋め込まれた砥粒含有層を表面に有する研磨パッドを用い、
製造後未使用の研磨対象のキャリアプレートを前記両面研磨装置における前記上定盤と前記下定盤とで挟み、前記研磨対象のキャリアプレート、前記上定盤および前記下定盤を相対的に回転させつつ研磨液を供給して前記研磨対象のキャリアプレートの両面を研磨することを特徴とするキャリアプレートの研磨方法。
以下、図面を参照して、本発明の実施形態について説明する。本発明によるキャリアプレートの研磨方法は、半導体ウェーハを保持するウェーハ保持孔を備えるキャリアプレートと、キャリアプレートを挟んで対向して配置され、表面に研磨パッドが設けられた上定盤および下定盤とを備え、キャリアプレート、上定盤および下定盤を相対的に回転させつつ研磨液を供給することにより、ウェーハ保持孔に保持されたシリコンウェーハの表裏面を同時に化学機械研磨する両面研磨装置における、キャリアプレートを研磨する方法である。ここで、両面研磨装置における研磨パッドとして、粒径2μm以上の砥粒が埋め込まれた砥粒含有層を表面に有する研磨パッドを用い、製造後未使用の研磨対象のキャリアプレートを両面研磨装置における上定盤と下定盤とで挟み、研磨対象のキャリアプレート、上定盤および下定盤を相対的に回転させつつ研磨液を供給して研磨対象のキャリアプレートの両面を研磨することを特徴とする。
本発明によるキャリアプレートは、平坦度が2μm以下であることを特徴とする。
本発明による半導体ウェーハの研磨方法は、上述した本発明によるキャリアプレートの研磨方法によって研磨されたキャリアプレート、または本発明によるキャリアプレートのウェーハ保持孔に、研磨対象の半導体ウェーハを充填して両面研磨装置の上定盤と下定盤との間に挟み、キャリアプレート、上定盤および下定盤を相対的に回転させつつ研磨液を供給して、研磨対象の半導体ウェーハの表裏面を研磨することを特徴とする。
両面研磨装置を用いて研磨対象のキャリアプレートに対して研磨処理を施した。研磨対象のキャリアプレートとしては、図1(a)に示すように、直径500mm、保持孔の直径300mmであり、ガラスエポキシ樹脂製の製造後未使用のキャリアプレートを用意した。このキャリアプレートを両面研磨装置における上定盤と下定盤とで挟み、キャリアプレート、上定盤、下定盤とを相対的に回転させてキャリアプレートの表裏面を同時に研磨した。その際、上定盤および下定盤には、ニッタ・デュポン製の砥粒を含まないウレタン製研磨パッドを使用し、研磨液としては、粒径100nmのシリカを含むスラリーを用いた。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。
従来例1と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。その際、研磨液としては、粒径300nmのシリカを含むスラリーを用いた。その他の条件は、従来例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
従来例1と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。その際、研磨液としては、粒径300nmのシリカを含むスラリーを用いた。また、研磨パッドは、粒径300nmのシリカをアクリル系樹脂に含有させた砥粒含有層を用いた。その他の条件は、従来例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
従来例1と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。その際、研磨液としては、粒径3μmのアルミナを含むスラリーを用いた。その他の条件は、従来例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
従来例1と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。その際、研磨液としては、純水を用いた。また、研磨パッドとしては、粒径2μmのアルミナをアクリル系樹脂に含有させた砥粒含有層を用いた。その他の条件は、従来例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
発明例1と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨パッドにおけるアルミナの粒径を3μmとした。その他の条件は、発明例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
発明例2と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨液として、粒径3μmのアルミナを含むスラリーを用いた。その他の条件は、発明例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
発明例1と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨パッドの砥粒含有層に含有させる砥粒としてダイヤモンドを用いた。その他の条件は、発明例1と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
発明例2と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨パッドの砥粒含有層に含有させる砥粒としてダイヤモンドを用いた。その他の条件は、発明例2と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
発明例5と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨パッドの砥粒含有層に含有させるダイヤモンドの粒径を6μmとした。その他の条件は、発明例5と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
発明例5と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨パッドの砥粒含有層に含有させるダイヤモンドの粒径を9μmとした。その他の条件は、発明例5と全て同じである。研磨条件およびキャリアプレートの研磨時の研磨レートを表1に示す。ただし、研磨レートは、従来例1の研磨レートに対する相対値が示されている。
表1から、研磨パッドが砥粒が埋め込まれた砥粒含有層を有し、砥粒の粒径が2μm以上である発明例1~7については、シリカを含む研磨液を用いて研磨を行った従来例1の研磨レートの2倍以上であることが分かる。特に、砥粒の粒径が3μm以上である発明例2、3、5~7については、従来例1に対して研磨レートが10倍以上、砥粒がアルミナで構成されている場合には40倍以上であり、研磨レートが大きく増大している。さらに、発明例5~7の比較から、砥粒の粒径が大きいほど研磨レートが大きくなることが分かる。
従来例1と同様にキャリアプレートを研磨した。ただし、研磨装置として研削装置を用いて行った。その他の条件は従来例1と全て同じである。研磨条件およびキャリアプレートの平坦度を表2に示す。
発明例6と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、研磨パッドの砥粒含有層の直下に、砥粒非含有層(ウレタン樹脂製、厚み0.3mm)を配置した。その他の条件は、発明例5と全て同じである。研磨条件およびキャリアプレートの平坦度を表2に示す。
発明例8と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、砥粒非含有層の厚みを0.6mmとした。その他の条件は、発明例5と全て同じである。研磨条件およびキャリアプレートの平坦度を表2に示す。
発明例8と同様に、研磨対象のキャリアプレートに対して研磨処理を施した。ただし、砥粒非含有層の厚みを1.0mmとした。その他の条件は、発明例5と全て同じである。研磨条件およびキャリアプレートの平坦度を表2に示す。
表1から、研磨パッドが砥粒非含有層を有していない発明例6については、研磨後のキャリアプレートの平坦度は、比較例1および従来例5と同程度であることが分かる。これに対して、研磨パッドが砥粒非含有層を有している発明例8~10については、研磨後のキャリアプレートの平坦度が極めて高いことが分かる。
Claims (7)
- 半導体ウェーハを保持するウェーハ保持孔を備えるキャリアプレートと、前記キャリアプレートを挟んで対向して配置され、表面に研磨パッドが設けられた上定盤および下定盤とを備え、前記キャリアプレート、前記上定盤および前記下定盤を相対的に回転させつつ研磨液を供給することにより、前記ウェーハ保持孔に保持された半導体ウェーハの表裏面を同時に化学機械研磨する両面研磨装置における、前記キャリアプレートを研磨する方法であって、
前記両面研磨装置における前記研磨パッドとして、粒径2μm以上の砥粒が埋め込まれた砥粒含有層を表面に有する研磨パッドを用い、
製造後未使用の研磨対象のキャリアプレートを前記両面研磨装置における前記上定盤と前記下定盤とで挟み、前記研磨対象のキャリアプレート、前記上定盤および前記下定盤を相対的に回転させつつ研磨液を供給して前記研磨対象のキャリアプレートの両面を研磨することを特徴とするキャリアプレートの研磨方法。 - 前記砥粒の材料は、アルミナまたはダイヤモンドである、請求項1に記載のキャリアプレートの研磨方法。
- 研磨液は、スラリー、水または界面活性剤入り水溶液である、請求項1または2に記載のキャリアプレートの研磨方法。
- 前記研磨パッドは、前記砥粒含有層の直下に、前記砥粒が埋め込まれていない砥粒非含有層をさらに有する、請求項1~3のいずれか一項に記載のキャリアプレートの研磨方法。
- 平坦度が2μm以下であることを特徴とするキャリアプレート。
- 請求項1~4のいずれか一項に記載のキャリアプレートの研磨方法によって研磨されたキャリアプレートまたは請求項5に記載のキャリアプレートのウェーハ保持孔に研磨対象の半導体ウェーハを充填して両面研磨装置の上定盤と下定盤との間に挟み、前記キャリアプレート、前記上定盤および前記下定盤を相対的に回転させつつ研磨液を供給して、前記研磨対象の半導体ウェーハの表裏面を研磨することを特徴とする半導体ウェーハの研磨方法。
- 前記半導体ウェーハはシリコンウェーハである、請求項6に記載の半導体ウェーハの研磨方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021006666.8T DE112021006666T5 (de) | 2020-12-24 | 2021-11-19 | Verfahren zum polieren einer trägerplatte, trägerplatte und verfahren zum polieren eines halbleiterwafers |
CN202180086344.7A CN116648775A (zh) | 2020-12-24 | 2021-11-19 | 载板的研磨方法、载板及半导体晶片的研磨方法 |
KR1020237020997A KR102730786B1 (ko) | 2020-12-24 | 2021-11-19 | 캐리어 플레이트의 연마 방법, 캐리어 플레이트 및 반도체 웨이퍼의 연마 방법 |
US18/259,100 US20240055262A1 (en) | 2020-12-24 | 2021-11-19 | Method of polishing carrier plate, carrier plate, and method of polishing semiconductor wafer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020214814A JP7435436B2 (ja) | 2020-12-24 | 2020-12-24 | キャリアプレートの研磨方法 |
JP2020-214814 | 2020-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137934A1 true WO2022137934A1 (ja) | 2022-06-30 |
Family
ID=82159070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/042696 WO2022137934A1 (ja) | 2020-12-24 | 2021-11-19 | キャリアプレートの研磨方法、キャリアプレートおよび半導体ウェーハの研磨方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240055262A1 (ja) |
JP (1) | JP7435436B2 (ja) |
KR (1) | KR102730786B1 (ja) |
CN (1) | CN116648775A (ja) |
DE (1) | DE112021006666T5 (ja) |
TW (1) | TWI811855B (ja) |
WO (1) | WO2022137934A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016198864A (ja) * | 2015-04-13 | 2016-12-01 | 信越半導体株式会社 | 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法 |
WO2017159213A1 (ja) * | 2016-03-18 | 2017-09-21 | 信越半導体株式会社 | 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法 |
JP2020529332A (ja) * | 2017-08-04 | 2020-10-08 | スリーエム イノベイティブ プロパティズ カンパニー | 平坦性が向上された微細複製研磨表面 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5648623U (ja) | 1979-09-18 | 1981-04-30 | ||
US6746311B1 (en) * | 2000-01-24 | 2004-06-08 | 3M Innovative Properties Company | Polishing pad with release layer |
JP3991598B2 (ja) | 2001-02-26 | 2007-10-17 | 株式会社Sumco | ウエーハ研磨方法 |
TW581716B (en) * | 2001-06-29 | 2004-04-01 | Applied Materials Inc | Material for use in carrier and polishing pads |
JP4698178B2 (ja) * | 2004-07-13 | 2011-06-08 | スピードファム株式会社 | 被研磨物保持用キャリア |
US7494519B2 (en) * | 2005-07-28 | 2009-02-24 | 3M Innovative Properties Company | Abrasive agglomerate polishing method |
JP5648623B2 (ja) | 2011-12-01 | 2015-01-07 | 信越半導体株式会社 | 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法 |
JP6056793B2 (ja) * | 2014-03-14 | 2017-01-11 | 信越半導体株式会社 | 両面研磨装置用キャリアの製造方法及び両面研磨方法 |
US9499721B2 (en) * | 2014-06-25 | 2016-11-22 | Cabot Microelectronics Corporation | Colloidal silica chemical-mechanical polishing composition |
JP6424809B2 (ja) | 2015-12-11 | 2018-11-21 | 信越半導体株式会社 | ウェーハの両面研磨方法 |
-
2020
- 2020-12-24 JP JP2020214814A patent/JP7435436B2/ja active Active
-
2021
- 2021-11-19 DE DE112021006666.8T patent/DE112021006666T5/de active Pending
- 2021-11-19 US US18/259,100 patent/US20240055262A1/en active Pending
- 2021-11-19 CN CN202180086344.7A patent/CN116648775A/zh active Pending
- 2021-11-19 KR KR1020237020997A patent/KR102730786B1/ko active Active
- 2021-11-19 TW TW110143138A patent/TWI811855B/zh active
- 2021-11-19 WO PCT/JP2021/042696 patent/WO2022137934A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016198864A (ja) * | 2015-04-13 | 2016-12-01 | 信越半導体株式会社 | 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法 |
WO2017159213A1 (ja) * | 2016-03-18 | 2017-09-21 | 信越半導体株式会社 | 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法 |
JP2020529332A (ja) * | 2017-08-04 | 2020-10-08 | スリーエム イノベイティブ プロパティズ カンパニー | 平坦性が向上された微細複製研磨表面 |
Also Published As
Publication number | Publication date |
---|---|
US20240055262A1 (en) | 2024-02-15 |
JP2022100692A (ja) | 2022-07-06 |
KR20230110337A (ko) | 2023-07-21 |
JP7435436B2 (ja) | 2024-02-21 |
KR102730786B1 (ko) | 2024-11-14 |
CN116648775A (zh) | 2023-08-25 |
TWI811855B (zh) | 2023-08-11 |
TW202230499A (zh) | 2022-08-01 |
DE112021006666T5 (de) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10189142B2 (en) | Method for polishing a semiconductor wafer | |
JP3925580B2 (ja) | ウェーハ加工装置および加工方法 | |
KR101139054B1 (ko) | 반도체 웨이퍼의 양면 폴리싱 가공 방법 | |
CN101528416B (zh) | 研磨头及研磨装置 | |
KR100818683B1 (ko) | 경면 면취 웨이퍼, 경면 면취용 연마 클로스 및 경면 면취연마장치 및 방법 | |
US6764392B2 (en) | Wafer polishing method and wafer polishing device | |
JPH09270401A (ja) | 半導体ウェーハの研磨方法 | |
US7695347B2 (en) | Method and pad for polishing wafer | |
TW201724240A (zh) | 半導體晶圓之加工方法 | |
KR20140056046A (ko) | 각형 금형용 기판 | |
TWI705489B (zh) | 雙面研磨方法及雙面研磨裝置 | |
JP2010257561A (ja) | 磁気ディスク用基板の製造方法 | |
WO2022137934A1 (ja) | キャリアプレートの研磨方法、キャリアプレートおよび半導体ウェーハの研磨方法 | |
JP2005224892A (ja) | 研磨方法 | |
JP2005205542A (ja) | サファイア研磨用砥石およびサファイア研磨方法 | |
JP5007527B2 (ja) | ウェーハ製造方法 | |
WO2021193970A1 (ja) | キャリア及び基板の製造方法 | |
JP4681970B2 (ja) | 研磨パッドおよび研磨機 | |
JPH11138422A (ja) | 半導体基板の加工方法 | |
WO2000024548A1 (fr) | Dispositif de polissage et procede de fabrication de semi-conducteurs au moyen dudit dispositif | |
JP2007149884A (ja) | 半導体ウェーハの研磨方法 | |
JP2005288552A (ja) | 研磨工具およびそれを用いた研磨方法 | |
JP7038342B2 (ja) | 研磨部材 | |
KR20230165236A (ko) | 웨이퍼 가공 방법 및 웨이퍼 | |
JP2000153458A (ja) | 両面加工機における砥石定盤の面出し方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21910087 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180086344.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20237020997 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18259100 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112021006666 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21910087 Country of ref document: EP Kind code of ref document: A1 |