WO2022137704A1 - Power module and power conversion device - Google Patents
Power module and power conversion device Download PDFInfo
- Publication number
- WO2022137704A1 WO2022137704A1 PCT/JP2021/036018 JP2021036018W WO2022137704A1 WO 2022137704 A1 WO2022137704 A1 WO 2022137704A1 JP 2021036018 W JP2021036018 W JP 2021036018W WO 2022137704 A1 WO2022137704 A1 WO 2022137704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor plate
- power module
- power
- region
- semiconductor element
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 18
- 239000004020 conductor Substances 0.000 claims abstract description 147
- 239000004065 semiconductor Substances 0.000 claims abstract description 55
- 238000007789 sealing Methods 0.000 claims abstract description 25
- 238000012546 transfer Methods 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims description 27
- 238000003892 spreading Methods 0.000 claims description 2
- 230000007480 spreading Effects 0.000 claims description 2
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 230000017525 heat dissipation Effects 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000003990 capacitor Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000011900 installation process Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0601—Structure
- H01L2224/0603—Bonding areas having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/40137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/71—Means for bonding not being attached to, or not being formed on, the surface to be connected
- H01L2224/72—Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73221—Strap and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a power module and a power conversion device.
- Power conversion devices that use switching of power semiconductor elements are widely used for consumer, in-vehicle, railway, substation equipment, etc. because of their high conversion efficiency. Since this power semiconductor element generates heat when energized, high heat dissipation is required. For example, for in-vehicle use, a highly efficient device using water cooling is adopted in order to reduce the size and weight.
- a conductor plate is joined to the power semiconductor element, and the conductor plate and the sheet member are sealed with a sealing member such as an insulating resin by a transfer mold. Then, the conductor plate and the sheet member are joined by using the pressure at the time of injecting the sealing member.
- a sealing member such as an insulating resin
- Patent Document 1 an insulating sheet is placed in the cavity of the mold mold, an electronic component is placed on the insulating sheet, and the mold resin is injected into the cavity while removing air from the air vent portion of the mold mold. Discloses a technique for sealing an insulating sheet and an electronic component with a resin.
- the power module according to the present invention transfers a power semiconductor element bonded to one surface of a conductor plate, a sheet member including an insulating layer bonded to the other surface of the conductor plate, and the conductor plate and the sheet member.
- a power module including a sealing member to be sealed by a mold, wherein the conductor plate has a first region to which the power semiconductor element is bonded on one surface thereof, and the sealing member on one surface thereof. It is divided into a second region in contact with the second region, and a low-rigidity portion having a lower rigidity than the other portions is formed in the second region.
- the conductor plate and the sheet member can be brought into close contact with each other, and a device having excellent heat dissipation can be provided.
- (A)-(c) is a plan view of a conductor plate. It is YY line sectional drawing of the electric circuit body in the modification. It is a semi-transmissive plan view of a power module. It is a circuit diagram of a power module. It is a circuit diagram of a power conversion device using a power module. It is an external perspective view of a power conversion device. It is sectional drawing of the XV-XV line of a power conversion apparatus.
- FIG. 1 is a plan view of the electric circuit body 400
- FIG. 2 is a sectional view taken along line XX shown in FIG. 1 of the electric circuit body 400.
- FIG. 3 is a sectional view taken along line YY shown in FIG. 1 of the electric circuit body 400.
- the electric circuit body 400 includes three power modules 300 and a cooling member 340.
- the power module 300 has a function of converting a direct current and an alternating current by using a power semiconductor element, and generates heat when energized. Therefore, the structure is such that the refrigerant flows through the cooling member 340 to cool the cooling member.
- water or an antifreeze solution in which ethylene glycol is mixed with water is used as the refrigerant.
- the cooling member 340 may have a structure in which pin-shaped fins are erected on the base plate of the cooling member 340.
- the cooling member 340 is preferably made of aluminum, which has high thermal conductivity and is lightweight.
- the cooling member 340 is manufactured by extrusion molding, forging, brazing, or the like.
- the power module 300 is provided with a positive electrode side terminal 315B and a negative electrode side terminal 319B connected to a capacitor module 500 (see FIG. 14 described later) of a DC circuit on one side.
- a power terminal through which a large current flows such as an AC side terminal 320B connected to the motor generators 192 and 194 of the AC circuit (see FIG. 15 described later)
- the other side is provided with a signal terminal used for controlling a power module 300 such as a lower arm gate signal terminal 325L, a mirror emitter signal terminal 325M, a Kelvin emitter signal terminal 325K, and an upper arm gate signal terminal 325U.
- an active element 155 and a diode 156 are provided as a first power semiconductor element forming an upper arm circuit.
- the semiconductor material constituting the active element 155 for example, Si, SiC, GaN, GaO, C or the like can be used.
- the diode 156 may be omitted.
- the collector side of the active element 155 and the cathode side of the diode 156 are bonded to the second conductor plate 431.
- a first conductor plate 430 is bonded to the emitter side of the active element 155 and the anode side of the diode 156. Solder may be used for these joinings, or sintered metal may be used.
- the first conductor plate 430 and the second conductor plate 431 are not particularly limited as long as they are materials having high electrical conductivity and thermal conductivity, but copper-based or aluminum-based materials are preferable. These may be used alone, or may be plated with Ni, Ag, or the like in order to improve the bondability with solder or sintered metal.
- a cooling member 340 is brought into close contact with the first conductor plate 430 via a first sheet member 440 and a heat conductive member 453.
- the first sheet member 440 is configured by laminating the first resin insulating layer 442 and the metal foil 444, and the metal foil 444 side is in close contact with the heat conductive member 453.
- a cooling member 340 is brought into close contact with the second conductor plate 431 via a second sheet member 441 and a heat conductive member 453.
- the second sheet member 441 is configured by laminating the second resin insulating layer 443 and the metal foil 444, and the metal foil 444 side is in close contact with the heat conductive member 453.
- an active element 157 and a diode 158 are provided as the second power semiconductor element forming the lower arm circuit.
- the diode 158 is arranged behind the active element 157 in the X-axis direction.
- the collector side of the active element 157 and the cathode side of the diode 158 are bonded to the fourth conductor plate 433.
- a third conductor plate 432 is bonded to the emitter side of the active element 157 and the anode side of the diode 158.
- the first conductor plate 430, the second conductor plate 431, the third conductor plate 432, and the fourth conductor plate 433 have a role of energizing a current, as well as a first power semiconductor element 155, 156. It plays a role as a heat transfer member that transfers heat generated by the second power semiconductor element 157 and 158 to the cooling member 340. Since the potentials of the conductor plates 430, 431, 432, 433 and the cooling member 340 are different, as shown in FIG. 2, the first resin insulation is provided between the conductor plates 430, 431, 432, 433 and the cooling member 340. Through the first sheet member 440 having the layer 442 and via the second sheet member 441 having the second resin insulating layer 443.
- a heat conductive member 453 is provided between the sheet members 440 and 441 and the cooling member 340 in order to reduce the contact thermal resistance.
- the first power semiconductor element 155, 156 and the second power semiconductor element 157, 158 may be simply referred to as a power semiconductor element 159.
- the heat conductive member 453 is not particularly limited as long as it is a material having high thermal conductivity, but it is preferable to use a high heat conductive material such as a metal, ceramics, or carbon-based material in combination with a resin material. This is because the resin material fills the space between the heat conductive member 453 and the cooling member 340 and between the heat conductive member 453 and the sheet members 440 and 441 to reduce the contact thermal resistance.
- the first power semiconductor element 155, 156, the second power semiconductor element 157, 158, each conductor plate 430, 431, 432, 433, and each sheet member 440, 441 are sealed by a sealing member 360 by transfer mold molding.
- the first resin insulating layer 442 and the second resin insulating layer 443 of the sheet members 440 and 441 are not particularly limited as long as they have adhesiveness to the conductor plates 430, 431, 432, and 433, but are in the form of powder.
- An epoxy resin-based resin insulating layer in which an inorganic filler is dispersed is desirable. This is because the adhesiveness and the heat dissipation are well-balanced.
- the sheet members 440 and 441 may be a single resin insulating layer, but it is desirable to provide the metal foil 444 on the side in contact with the heat conductive member 453.
- the contact surface between the sheet members 440 and 441 and the mold may be a release sheet or a mold.
- a metal foil 444 is provided. Since the release sheet has poor thermal conductivity, a step of peeling off after transfer molding is required, but in the case of metal foil 444, it is possible to transfer by selecting a copper-based or aluminum-based metal with high thermal conductivity. It can be used without peeling after molding.
- transfer molding including the sheet members 440 and 441 the end portions of the sheet members 440 and 441 are covered with the sealing member 360, which has the effect of improving the reliability of the product.
- the conductor plates 430, 431, 432, and 433 are preferably made of a material having high electric conductivity and high thermal conductivity, and are preferably a metal-based material such as copper or aluminum, or a metal-based material and high thermal conductivity diamond, carbon, ceramic, or the like. It is also possible to use the composite material of. Although the details of the conductor plates 430, 431, 432, and 433 will be described later, the conductor plate 430 is divided into a first region to which the power semiconductor element 159 is bonded to one surface and a second region to which the power semiconductor element 159 is bonded to the one surface. , A low-rigidity portion 460 (see FIG. 2) having a lower rigidity than the other portions is formed in the second region. The low-rigidity portion 460 forms a concave portion by press working, or a thin plate thickness by cutting by machining or laser machining.
- FIG. 4 is a cross-sectional perspective view of the power module 300 in the XX line shown in FIG. 1, showing a state in which the cooling member 340 is removed from the electric circuit body 400.
- the end portion of the first sheet member 440 is covered with the sealing member 360.
- the first sheet member 440 that overlaps the surface of the first conductor plate 430 is a heat dissipation surface.
- the cooling member 340 is brought into close contact with the heat radiating surface of the first sheet member 440 to ensure the close contact with the cooling member 340 so that the heat radiating property is not impaired.
- FIGS. 5 (a) to 5 (c), FIGS. 6 (d) to (f), and FIGS. 7 (g) to 7 (i) are cross-sectional views showing a method of manufacturing the electric circuit body 400.
- the left side of each figure shows a cross-sectional view of one power module on the XX line shown in FIG. 1, and the right side shows a cross-sectional view of one power module on the YY line shown in FIG.
- FIG. 5A is a diagram showing a solder connection process and a wire bonding process.
- the collector side of the active element 155 which is the first power semiconductor element, and the cathode side of the diode 156 are connected to the second conductor plate 431, and the gate electrode of the active element 155 is connected by wire bonding.
- the emitter side of the active element 155 and the anode side of the diode 156 are connected to the first conductor plate 430.
- the collector side of the active element 157 which is the second power semiconductor element, and the cathode side of the diode 158 are connected to the fourth conductor plate 433, and the gate electrode of the active element 157 is connected by wire bonding.
- the emitter side of the active element 157 and the anode side of the diode 158 are connected to the third conductor plate 432. In this way, the circuit body 310 is formed.
- the conductor plates 430, 431, 432, and 433 are provided with a low rigidity portion 460. Further, the conductor plates 430, 431, 432, and 433 may be warped, and may be inclined after solder connection due to variations in solder thickness and the like.
- FIG. 5B is a diagram showing a mold installation process.
- the transfer mold device 601 vacuum sucks the spring 602 and the seat members 440 and 441 into the mold.
- the vacuum degassing mechanism for vacuum-adsorbing the sheet members 440 and 441 to the mold is not shown.
- the sheet members 440 and 441 aligned in advance using a jig are held by vacuum suction in a mold heated to a constant temperature of 175 ° C.
- the circuit body 310 preheated to 175 ° C. is installed in the mold in a state separated from the seat members 440 and 441.
- FIG. 5 (c) is a diagram showing a pressurizing process. From the state where the sheet members 440 and 441 and the circuit body 310 are separated from each other, the upper and lower molds are brought close to each other, and only the packings installed around the upper and lower molds (not shown) are brought into contact with each other. Next, the inside of the mold cavity is evacuated. When the vacuum exhaust is completed so that the pressure drops below the predetermined pressure, the upper and lower molds are pressurized and completely tightened so as to further crush the packing. At this time, the seat members 440 and 441 come into contact with the circuit body 310.
- the sheet members 440 and 441 and the conductor plates 430, 431, 432 and 433 are subjected to the pressure of the spring 602. In close contact.
- FIG. 6 (d) to 6 (f) are views showing an injection step of injecting the sealing member 360 by the transfer mold.
- the sealing member 360 is injected into the mold through an injection port (not shown).
- the molding pressure due to the injection of the sealing member 360 is evenly applied to the inside of the mold as hydrostatic pressure.
- the conductor plates 430 and 431 are formed by the molding pressure.
- the second region of 432 and 433 is pressed against the seat members 440 and 441.
- the conductor plates 430, 431, 432, and 433 can be brought into close contact with the sheet members 440 and 441 up to the ends. If the low-rigidity portion 460 is not formed in the second region of the conductor plates 430, 431, 432, and 433, and if the second region of the conductor plates 430, 431, 432, and 433 has a warp or inclination, the second region.
- the bending rigidity of the conductor plate 430, 431, 432, and 433 remains high, and the conductor plates 430, 431, 432, and 433 cannot be pressed against the sheet members 440 and 441 due to the bending reaction force of the conductor plates 430, 431, 432, and 433.
- the low rigidity portion 460 since the low rigidity portion 460 is provided, the bending reaction force of the conductor plates 430, 431, 432, and 433 is reduced, and the conductor plates 430, 431, 432, 433 and the sheet members 440 and 441 are combined. Adhesion can be improved.
- FIG. 7 (g) is a diagram showing a curing process.
- the power module 300 sealed by the sealing member 360 is taken out from the transfer mold device 601, cooled at room temperature, and cured for 2 hours or more.
- FIG. 7 (h) is a diagram showing an installation process of the cooling member 340.
- the cooling member 340 is pressed against both sides of the power module 300 via the heat conductive member 453.
- the cooling member 340 is brought into close contact with the first sheet member 440 and the second sheet member 441 via the heat conductive member 453.
- FIG. 7 (i) is a diagram showing an electric circuit body 400 manufactured by the above steps.
- the cooling members 340 are installed on both sides of the power module 300 to manufacture the electric circuit body 400.
- 8 (a) and 8 (b) are views showing the details of the transfer mold.
- the adhesion between the conductor plates 430, 431, 432, 433 and the sheet members 440, 441 will be described.
- a cross-sectional view of one power module on the YY line shown in FIG. 1 will be described as an example.
- FIG. 8A shows a state in which the mold is closed and pressure 461 is applied by the spring 602.
- the conductor plates 430, 431, 432, and 433 are divided into a first region D1 to which the power semiconductor element 159 is bonded to one surface and a second region D2 to which the sealing member 360 is in contact with the one surface.
- the first region D1 of the conductor plates 430, 431, 432, and 433 is joined to the power semiconductor element 159 at the upper surface of the convex portion formed toward the power semiconductor element 159. Pressure is applied to the first region D1 by the spring 602.
- the pressurized outer line p extends at an angle of 45 ° from the bottom end portion d, but it does not necessarily have to be 45 °.
- the low-rigidity portion 460 is formed outside the pressurized outer line p. Therefore, even when the pressure 461 due to the spring 602 is applied, it is possible to reduce the excessive pressure applied to the low-rigidity portion 460.
- FIG. 8A a region 462 in which the pressure applied to the conductor plates 430, 431, 432, and 433 due to the pressure of the spring 602 is high is shown by adding vertical ruled lines to the sheet members 440 and 441. Further, the region 463 in which the pressure applied to the conductor plates 430, 431, 432, and 433 due to the pressure by the spring 602 is low is not provided with a vertical ruled line. Since the adhesion between the conductor plates 430, 431, 432, 433 and the sheet members 440 and 441 requires the surface pressure required to develop the adhesive force, even if the conductor plates are adhered in the region 462, they may be peeled off in the region 463. ..
- FIG. 8B shows a state in which the sealing member 360 is injected from the injection port 603. Since the sealing member 360 becomes liquid once, the molding pressure is applied to the entire sealing member 360 as hydrostatic pressure. This pressure is also applied to the second region D2 of the conductor plates 430, 431, 432 and 433. Since the low rigidity portion 460 is provided in the second region D2, the bending reaction force of the conductor plates 430, 431, 432, and 433 is reduced. Therefore, the conductor plates 430, 431, 432, and 433 are pressed against the seat members 440 and 441 by the pressure 464.
- the surface pressure can be improved in the region 463 where the pressure due to the pressure of the spring 602 is low, and the adhesion between the conductor plates 430, 431, 432, 433 and the seat members 440, 441 can be improved.
- FIG. 9 (a) is model A of the conductor plates 430, 431, 432, 433,
- FIG. 9 (b) is model B of the conductor plates 430, 431, 432, 433, and
- FIG. 9 (c) is each. It is a graph which shows the analysis result of a model.
- the model A has a recess in the conductor plate 430, 431, 432, and 433 as a low-rigidity portion 460
- the model B has a thin plate thickness as a low-rigidity portion 460.
- the conductor plates 430, 431, 432, and 433 have a plate thickness of T0
- the low-rigidity portion 460 has a plate thickness of T1 (T0> T1).
- the length L of the conductor plates 430, 431, 432, and 433 in the low-rigidity region is four times or more longer than the length O of the conductor plates 430, 431, 432, and 433 in the non-rigidized region.
- the left end of the conductor plates 430, 431, 432, and 433 are fixed, and pressure P is applied from above.
- the horizontal axis of FIG. 9C is the thickness ratio, which is the value obtained by dividing the plate thickness T1 of the low-rigidity portion by the plate thickness T0 of the non-rigidized portion, and the vertical axis is the deformation rate, which is low rigidity.
- a value obtained by dividing the amount of deformation of the right end portion when the portion 460 is provided by the amount of deformation of the right end portion when the low-rigidity portion 460 is not provided is shown.
- the deformation rate increases exponentially by reducing the rigidity as compared with the thickness ratio 1 which has not been reduced.
- FIG. 10 is a cross-sectional view of one power module on the YY line shown in FIG.
- the low-rigidity portion 460 and the heat dissipation path of the conductor plates 430, 431, 432, and 433 will be described.
- the conductor plates 430, 431, 432, and 433 have a first region D1 to which the power semiconductor element 159 is bonded to one surface, and a sealing member on the one surface. It is divided into the contacting second region D2.
- the heat of the power semiconductor element 159 is applied to the conductor plates 430, 431, 432, and 433 from the bottom end d of the convex portion of the conductor plate 430, 431, 432, and 433 toward the sheet members 440 and 441 at an angle of 45 ° inside the conductor plates 430, 431, 432, and 433. spread. After that, the heat of the power semiconductor element 159 is transferred to the cooling member 340 via the sheet members 440 and 441 and the heat conductive member 453.
- the angle of about 45 degrees with respect to the plate thickness of the conductor plates 430, 431, 432, and 433, that is, the pressurized outer wire p is the main heat conduction path, so that a recess or the like is formed inside the pressurized outer wire p.
- the heat dissipation property is significantly reduced. Therefore, when the low-rigidity portion 460 is provided, it is desirable to provide it outside the pressurized outer line p.
- the low-rigidity portion 460 may be provided only on one of the first conductor plate 430 and the second conductor plate 431, and one of the third conductor plate 432 and the fourth conductor plate 433, respectively.
- At least one of them may be provided. It is desirable to provide the second conductor plate (upper arm circuit collector side) 431 and the fourth conductor plate (lower arm circuit collector side) 433, that is, the conductor plates 431 and 433 connected to the collector electrode of the power semiconductor element 159. The reason is that a large current flows through the collector electrode of the power semiconductor element 159 and the temperature becomes high, so that the adhesion between the conductor plates 431 and 433 connected to the collector electrode and the sheet members 440 and 441 is further improved to improve heat dissipation. This is because it needs to be improved.
- 11 (a), 11 (b), and 11 (c) are plan views of the second conductor plate (upper arm circuit collector side) 431.
- 11 (a) shows a plan view of the present embodiment
- FIG. 11 (b) shows a modified example 1
- FIG. 11 (c) shows a modified example 2.
- the plan view shows the surface to which the power semiconductor elements 155 and 156 are joined.
- a low-rigidity portion 460 is provided at a position surrounding the power semiconductor element 155 and 156 on the conductor plate 431. Therefore, it is possible to improve the adhesion between the conductor plate 431 and the sheet members 440 and 441 around the power semiconductor element 155 and 156. Further, since the conductor plate 431 is wide, there is an effect of excellent heat dissipation.
- the length of the conductor plate 431 in the X direction was reduced so that the conductor plate 431 fits inside the pressurized outer line p.
- the low-rigidity portion 460 is provided only in the Y-axis direction with respect to the power semiconductor elements 155 and 156. Machining cost can be reduced by omitting the low-rigidity portion 460.
- the length of the conductor plate 431 in the X direction is reduced so that the conductor plate 431 fits inside the pressurized outer line p, and the low-rigidity portion 460 is intermittently provided. It is provided. Specifically, low-rigidity portions 460 such as recesses are arranged along the X direction of the conductor plate 431 at predetermined intervals. By omitting the low-rigidity portion 460, the processing cost can be reduced, and since the low-rigidity portion 460 is provided intermittently, heat easily spreads to the conductor plate 431 and the heat dissipation is excellent.
- FIG. 12 is a cross-sectional view of one power module on the YY line shown in FIG. 1, and shows a modified example of the conductor plate 431.
- the model B shown in FIG. 9B is applied as the low-rigidity portion 460 of the first conductor plate (upper arm circuit emitter side) 430.
- the cross-sectional area of the conductor plate 430 is smaller than that in model A, but there is an effect that the conductor plate 430 can be easily manufactured by press working.
- the model A having a large cross-sectional area of the conductor plate 430 is excellent.
- the conductor plates 430, 431, 432, and 433 are warped, and even if the conductor plates are tilted after the solder connection, the conductor plates 430, 431, 432, and 433 are used in the transfer molding process.
- the warp and inclination of the solder can be corrected, and the sheet members 440 and 441 and the conductor plates 430, 431, 432 and 433 can be adhered to the ends, which has an effect of excellent insulation and heat dissipation.
- FIG. 13 is a semi-transmissive plan view of the power module 300 in this embodiment.
- FIG. 14 is a circuit diagram of the power module 300 in this embodiment.
- the positive electrode side terminal 315B outputs from the collector side of the upper arm circuit and is connected to the positive electrode side of the battery or the capacitor.
- the upper arm gate signal terminal 325U outputs from the gate and emitter sense of the active element 155 of the upper arm circuit.
- the negative electrode side terminal 319B outputs from the emitter side of the lower arm circuit, and is connected to the negative electrode side of the battery or the capacitor, or GND.
- the lower arm gate signal terminal 325L outputs from the gate and emitter sense of the active element 157 of the lower arm circuit.
- the AC side terminal 320B outputs from the collector side of the lower arm circuit and is connected to the motor. When grounding to the neutral point, the lower arm circuit is connected to the negative electrode side of the capacitor instead of GND.
- first conductor plate (upper arm circuit emitter side) 430 and the second conductor plate (upper arm circuit collector side) 431 are arranged above and below the active element 155 and the diode 156 of the first power semiconductor element (upper arm circuit).
- a third conductor plate (lower arm circuit emitter side) 432 and a fourth conductor plate (lower arm circuit collector side) 433 are arranged above and below the active element 157 and the diode 158 of the second power semiconductor element (lower arm circuit).
- the low-rigidity portion 460 formed on each conductor plate 430, 431, 432, and 433 is not shown.
- the power module 300 of this embodiment has a 2in1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module.
- a structure in which a plurality of upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the power module 300 can be reduced to reduce the size.
- FIG. 15 is a circuit diagram of a power conversion device 200 using the electric circuit body 400.
- the power conversion device 200 includes inverter circuits 140 and 142, an inverter circuit 43 for auxiliary equipment, and a capacitor module 500.
- the inverter circuits 140 and 142 are composed of an electric circuit body 400 (not shown) including a plurality of power modules 300, and a three-phase bridge circuit is formed by connecting them.
- the power modules 300 are further connected in parallel, and these parallel connections are made corresponding to each phase of the three-phase inverter circuit to cope with the increase in the current capacity.
- the increase in current capacity can be coped with by connecting the active elements 155, 157 and the diodes 156, 158, which are power semiconductor elements built in the power module 300, in parallel.
- the inverter circuit 140 and the inverter circuit 142 have the same basic circuit configuration, and the control method and operation are also basically the same. Since the outline of the circuit-like operation of the inverter circuit 140 and the like is well known, detailed description thereof will be omitted here.
- the upper arm circuit includes an active element 155 for the upper arm and a diode 156 for the upper arm as a power semiconductor element for switching
- the lower arm circuit is a lower power semiconductor element for switching. It includes an active element 157 for the arm and a diode 158 for the lower arm.
- the active elements 155 and 157 receive a drive signal output from one or the other of the two driver circuits constituting the driver circuit 174 and perform switching operation to convert the DC power supplied from the battery 136 into three-phase AC power. ..
- the active element 155 for the upper arm and the active element 157 for the lower arm include a collector electrode, an emitter electrode, and a gate electrode.
- the diode 156 for the upper arm and the diode 158 for the lower arm include two electrodes, a cathode electrode and an anode electrode. As shown in FIG. 13, the cathode electrode of the diode 156 and 158 is electrically connected to the collector electrode of the active element 155 and 157, and the anode electrode is electrically connected to the emitter electrode of the active element 155 and 157. As a result, the current flow from the emitter electrode of the active element 155 for the upper arm and the active element 157 for the lower arm to the collector electrode is in the forward direction.
- a MOSFET metal oxide semiconductor type field effect transistor
- the diode 156 for the upper arm and the diode 158 for the lower arm are unnecessary.
- the positive electrode side terminal 315B and the negative electrode side terminal 319B of each of the upper and lower arm series circuits are connected to the DC terminals 362A and 362B for connecting the capacitors of the capacitor module 500, respectively.
- AC power is generated at the connection between the upper arm circuit and the lower arm circuit, respectively, and the connection between the upper arm circuit and the lower arm circuit of each upper / lower arm series circuit is connected to the AC side terminal 320B of each power module 300.
- the AC side terminal 320B of each power module 300 of each phase is connected to the AC output terminal of the power converter 200, and the generated AC power is supplied to the stator winding of the motor generator 192 or 194.
- the control circuit 172 is for controlling the switching timing of the active element 155 for the upper arm and the active element 157 of the lower arm based on the input information from the control device or the sensor (for example, the current sensor 180) on the vehicle side. Generate a timing signal.
- the driver circuit 174 generates a drive signal for switching the active element 155 for the upper arm and the active element 157 for the lower arm based on the timing signal output from the control circuit 172.
- 181 and 182, 188 are connectors.
- the upper / lower arm series circuit includes a temperature sensor (not shown), and the temperature information of the upper / lower arm series circuit is input to the control circuit 172. Further, voltage information on the DC positive electrode side of the upper / lower arm series circuit is input to the control circuit 172.
- the control circuit 172 performs overtemperature detection and overvoltage detection based on the information, and when overtemperature or overvoltage is detected, switching of all the active elements 155 for the upper arm and the active element 157 for the lower arm. Stop the operation and protect the upper / lower arm series circuit from overtemperature or overvoltage.
- FIG. 16 is an external perspective view of the power conversion device 200 shown in FIG. 15, and FIG. 17 is a cross-sectional perspective view of the power conversion device 200 shown in FIG. 16 taken along the line XV-XV.
- the power conversion device 200 is composed of a lower case 11 and an upper case 10, and includes a housing 12 formed in a substantially rectangular parallelepiped shape.
- An electric circuit body 400, a capacitor module 500, and the like are housed inside the housing 12.
- the electric circuit body 400 has a cooling flow path, and a cooling water inflow pipe 13 and a cooling water outflow pipe 14 communicating with the cooling flow path project from one side surface of the housing 12.
- the lower case 11 is opened on the upper side (Z direction), and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11.
- the upper case 10 and the lower case 11 are formed of an aluminum alloy or the like, and are sealed and fixed to the outside.
- the upper case 10 and the lower case 11 may be integrated and configured. Since the housing 12 has a simple rectangular parallelepiped shape, it can be easily attached to a vehicle or the like, and productivity is also improved.
- a connector 17 is attached to one side surface of the housing 12 in the longitudinal direction, and an AC terminal 18 is connected to this connector 17. Further, a connector 21 is provided on the surface from which the cooling water inflow pipe 13 and the cooling water outflow pipe 14 are led out.
- the electric circuit body 400 is housed in the housing 12.
- a control circuit 172 and a driver circuit 174 are arranged above the electric circuit body 400, and a capacitor module 500 is housed on the DC terminal side of the electric circuit body 400.
- the AC side terminal 320B of the electric circuit body 400 penetrates the current sensor 180 and is joined to the bus bar.
- the positive electrode side terminal 315B and the negative electrode side terminal 319B which are the DC terminals of the electric circuit body 400, are joined to the positive and negative electrode terminals (DC terminals 362A and 362B in FIG. 13) of the capacitor module 500, respectively.
- the power module 300 includes a power semiconductor element 159 bonded to one surface of the conductor plates 430, 431, 432, and 433, and an insulating layer bonded to the other surface of the conductor plates 430, 431, 432, and 433.
- the sheet members 440 and 441 are provided with a sealing member 360 for sealing the conductor plates 430 and 431, 432, 433 and the sheet members 440 and 441 by a transfer mold, and the conductor plates 430, 431, 432 and 433 are provided.
- a low-rigidity portion 460 having low rigidity is provided in the second region D2, which is divided into a first region D1 to which the power semiconductor element 159 is bonded to one surface and a second region D2 in contact with the sealing member 360 on one surface. Formed. As a result, even when the conductor plate is not flat, the conductor plate and the sheet member can be brought into close contact with each other, and a device having excellent heat dissipation can be provided.
- the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.
- circuit body 315B ... -Positive side terminal, 319B ... Negative side terminal, 320B ... AC side terminal, 325 ... Signal terminal, 325K ... Kelvin emitter signal terminal, 325L ... Lower arm gate signal terminal, 325M ... -Mirror emitter signal terminal, 325U ... upper arm gate signal terminal, 340 ... cooling member, 360 ... sealing member, 400 ... electric circuit body, 430 ... first conductor plate (upper arm) Circuit emitter side), 431 ... 2nd conductor plate (upper arm circuit collector side), 432 ... 3rd conductor plate (lower arm circuit emitter side), 433 ... 4th conductor plate (lower arm circuit collector side) Side), 440 ...
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Inverter Devices (AREA)
Abstract
This power module comprises a power semiconductor element joined to one surface of a conductor plate, a sheet member that includes an insulating layer joined to the other surface of the conductor plate, and a sealing member that seals the conductor plate and the sheet member using a transfer mold, wherein the conductor plate is divided into a first region in which the power semiconductor element is joined to the one surface, and a second region that is in contact with the seal member on the one surface, and a low-rigidity part, which has low rigidity, is formed in the second region.
Description
本発明は、パワーモジュールおよび電力変換装置に関する。
The present invention relates to a power module and a power conversion device.
パワー半導体素子のスイッチングを用いた電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。このパワー半導体素子は通電により発熱するため、高い放熱性が求められる。例えば、車載用においては、小型、軽量化のため水冷を用いた高効率な装置が採用されている。
Power conversion devices that use switching of power semiconductor elements are widely used for consumer, in-vehicle, railway, substation equipment, etc. because of their high conversion efficiency. Since this power semiconductor element generates heat when energized, high heat dissipation is required. For example, for in-vehicle use, a highly efficient device using water cooling is adopted in order to reduce the size and weight.
パワー半導体素子には導体板が接合され、さらに、導体板とシート部材とをトランスファーモールドにより絶縁樹脂などの封止部材を封止している。そして、封止部材の注入時の圧力を用いて導体板とシート部材を接合させている。
A conductor plate is joined to the power semiconductor element, and the conductor plate and the sheet member are sealed with a sealing member such as an insulating resin by a transfer mold. Then, the conductor plate and the sheet member are joined by using the pressure at the time of injecting the sealing member.
特許文献1には、モールド金型のキャビティ内に絶縁シートを載置し、その上に電子部品を載置し、モールド金型のエアベント部から空気を抜きつつ、キャビティ内にモールド樹脂を注入して絶縁シート及び電子部品を樹脂封止する技術が開示されている。
In Patent Document 1, an insulating sheet is placed in the cavity of the mold mold, an electronic component is placed on the insulating sheet, and the mold resin is injected into the cavity while removing air from the air vent portion of the mold mold. Discloses a technique for sealing an insulating sheet and an electronic component with a resin.
特許文献1の技術では、導体板が平坦ではなく反りや傾斜などがある場合に、トランスファーモールドによる圧力が加わっても、導体板とシート部材との密着性が損なわれ、放熱性が低下する。
In the technique of Patent Document 1, when the conductor plate is not flat and has warpage or inclination, even if pressure is applied by the transfer mold, the adhesion between the conductor plate and the sheet member is impaired, and the heat dissipation is lowered.
本発明によるパワーモジュールは、導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記導体板と前記シート部材とをトランスファーモールドにより封止する封止部材と、を備えたパワーモジュールであって、前記導体板は、前記一方面に前記パワー半導体素子が接合される第1領域と、前記一方面に前記封止部材と接する第2領域と、に区分され、前記第2領域に他の部分よりも剛性が低い低剛性部を形成した。
The power module according to the present invention transfers a power semiconductor element bonded to one surface of a conductor plate, a sheet member including an insulating layer bonded to the other surface of the conductor plate, and the conductor plate and the sheet member. A power module including a sealing member to be sealed by a mold, wherein the conductor plate has a first region to which the power semiconductor element is bonded on one surface thereof, and the sealing member on one surface thereof. It is divided into a second region in contact with the second region, and a low-rigidity portion having a lower rigidity than the other portions is formed in the second region.
本発明によれば、導体板が平坦ではない場合であっても、導体板とシート部材とを密着することができ、放熱性に優れた装置を提供できる。
According to the present invention, even when the conductor plate is not flat, the conductor plate and the sheet member can be brought into close contact with each other, and a device having excellent heat dissipation can be provided.
以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for the sake of clarification of the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
If there are multiple components with the same or similar functions, the same code may be described with different subscripts. However, if it is not necessary to distinguish between these plurality of components, the subscripts may be omitted for explanation.
図1は、電気回路体400の平面図、図2は、電気回路体400の図1に示すX-X線断面図である。図3は、電気回路体400の図1に示すY-Y線断面図である。
図1に示すように、電気回路体400は、3個のパワーモジュール300と冷却部材340よりなる。パワーモジュール300は、パワー半導体素子を用い直流電流と交流電流とを変換する機能があり、通電により発熱する。このため、冷却部材340の中に冷媒を流通して冷却する構造としている。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いる。なお、冷却部材340は、ピン状のフィンが冷却部材340のベース板に立設された構成であってもよい。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。冷却部材340は、押し出し成型や、鍛造、ろう付け等で作製する。 FIG. 1 is a plan view of theelectric circuit body 400, and FIG. 2 is a sectional view taken along line XX shown in FIG. 1 of the electric circuit body 400. FIG. 3 is a sectional view taken along line YY shown in FIG. 1 of the electric circuit body 400.
As shown in FIG. 1, theelectric circuit body 400 includes three power modules 300 and a cooling member 340. The power module 300 has a function of converting a direct current and an alternating current by using a power semiconductor element, and generates heat when energized. Therefore, the structure is such that the refrigerant flows through the cooling member 340 to cool the cooling member. As the refrigerant, water or an antifreeze solution in which ethylene glycol is mixed with water is used. The cooling member 340 may have a structure in which pin-shaped fins are erected on the base plate of the cooling member 340. The cooling member 340 is preferably made of aluminum, which has high thermal conductivity and is lightweight. The cooling member 340 is manufactured by extrusion molding, forging, brazing, or the like.
図1に示すように、電気回路体400は、3個のパワーモジュール300と冷却部材340よりなる。パワーモジュール300は、パワー半導体素子を用い直流電流と交流電流とを変換する機能があり、通電により発熱する。このため、冷却部材340の中に冷媒を流通して冷却する構造としている。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いる。なお、冷却部材340は、ピン状のフィンが冷却部材340のベース板に立設された構成であってもよい。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。冷却部材340は、押し出し成型や、鍛造、ろう付け等で作製する。 FIG. 1 is a plan view of the
As shown in FIG. 1, the
パワーモジュール300は、一方側に、直流回路のコンデンサモジュール500(後述の図14参照)に連結する正極側端子315Bおよび負極側端子319Bを備えている。正極側端子315Bおよび負極側端子319Bの他方側には、交流回路のモータジェネレータ192、194(後述の図15参照)に連結する交流側端子320B等の大電流が流れるパワー端子を備えている。また、他方側には、下アームゲート信号端子325L、ミラーエミッタ信号端子325M、ケルビンエミッタ信号端子325K、上アームゲート信号端子325U等のパワーモジュール300の制御に用いる信号端子等を備えている。
The power module 300 is provided with a positive electrode side terminal 315B and a negative electrode side terminal 319B connected to a capacitor module 500 (see FIG. 14 described later) of a DC circuit on one side. On the other side of the positive electrode side terminal 315B and the negative electrode side terminal 319B, a power terminal through which a large current flows, such as an AC side terminal 320B connected to the motor generators 192 and 194 of the AC circuit (see FIG. 15 described later), is provided. Further, the other side is provided with a signal terminal used for controlling a power module 300 such as a lower arm gate signal terminal 325L, a mirror emitter signal terminal 325M, a Kelvin emitter signal terminal 325K, and an upper arm gate signal terminal 325U.
図2に示すように、上アーム回路を形成する第1パワー半導体素子として、能動素子155、ダイオード156を備える。能動素子155を構成する半導体材料としては、例えばSi、SiC、GaN、GaO、C等を用いることができる。能動素子155のボディダイオードを用いる場合は、ダイオード156を省略してもよい。能動素子155のコレクタ側およびダイオード156のカソード側は、第2導体板431に接合されている。能動素子155のエミッタ側およびダイオード156のアノード側には第1導体板430が接合されている。これらの接合には、はんだを用いてもよいし、焼結金属を用いてもよい。また、第1導体板430、第2導体板431は、電気伝導性と熱伝導率が高い材料であれば特に限定されないが、銅系又はアルミ系材料が望ましい。これらは、単独で用いてもよいが、はんだや、焼結金属との接合性を高めるためNiやAg等のめっきを施してもよい。
As shown in FIG. 2, an active element 155 and a diode 156 are provided as a first power semiconductor element forming an upper arm circuit. As the semiconductor material constituting the active element 155, for example, Si, SiC, GaN, GaO, C or the like can be used. When the body diode of the active element 155 is used, the diode 156 may be omitted. The collector side of the active element 155 and the cathode side of the diode 156 are bonded to the second conductor plate 431. A first conductor plate 430 is bonded to the emitter side of the active element 155 and the anode side of the diode 156. Solder may be used for these joinings, or sintered metal may be used. The first conductor plate 430 and the second conductor plate 431 are not particularly limited as long as they are materials having high electrical conductivity and thermal conductivity, but copper-based or aluminum-based materials are preferable. These may be used alone, or may be plated with Ni, Ag, or the like in order to improve the bondability with solder or sintered metal.
第1導体板430には、第1シート部材440、さらに熱伝導部材453を介して冷却部材340が密着される。第1シート部材440は、第1樹脂絶縁層442と金属箔444とを積層して構成され、金属箔444側が熱伝導部材453に密着される。
A cooling member 340 is brought into close contact with the first conductor plate 430 via a first sheet member 440 and a heat conductive member 453. The first sheet member 440 is configured by laminating the first resin insulating layer 442 and the metal foil 444, and the metal foil 444 side is in close contact with the heat conductive member 453.
第2導体板431には、第2シート部材441、さらに熱伝導部材453を介して冷却部材340が密着される。第2シート部材441は、第2樹脂絶縁層443と金属箔444とを積層して構成され、金属箔444側が熱伝導部材453に密着される。
A cooling member 340 is brought into close contact with the second conductor plate 431 via a second sheet member 441 and a heat conductive member 453. The second sheet member 441 is configured by laminating the second resin insulating layer 443 and the metal foil 444, and the metal foil 444 side is in close contact with the heat conductive member 453.
図3に示すように、下アーム回路を形成する第2パワー半導体素子として、能動素子157、ダイオード158(後述の図13、図14参照)を備える。なお、図3において、ダイオード158はX軸方向で能動素子157の奥側に配置されている。能動素子157のコレクタ側およびダイオード158のカソード側は、第4導体板433に接合されている。能動素子157のエミッタ側およびダイオード158のアノード側には第3導体板432が接合されている。
As shown in FIG. 3, as the second power semiconductor element forming the lower arm circuit, an active element 157 and a diode 158 (see FIGS. 13 and 14 described later) are provided. In FIG. 3, the diode 158 is arranged behind the active element 157 in the X-axis direction. The collector side of the active element 157 and the cathode side of the diode 158 are bonded to the fourth conductor plate 433. A third conductor plate 432 is bonded to the emitter side of the active element 157 and the anode side of the diode 158.
図3に示すように、第1導体板430、第2導体板431、第3導体板432、第4導体板433は、電流を通電する役割の他に、第1パワー半導体素子155、156、第2パワー半導体素子157、158が発する熱を冷却部材340に伝熱する伝熱部材としての役割を果たしている。各導体板430、431、432、433と冷却部材340とは電位が異なるため、図2に示すように、各導体板430、431、432、433と冷却部材340との間に第1樹脂絶縁層442を有する第1シート部材440を介し、第2樹脂絶縁層443を有する第2シート部材441を介する。各シート部材440、441と冷却部材340との間には、接触熱抵抗を低減するため熱伝導部材453を有する。なお、第1パワー半導体素子155、156、第2パワー半導体素子157、158を単にパワー半導体素子159と称する場合がある。
As shown in FIG. 3, the first conductor plate 430, the second conductor plate 431, the third conductor plate 432, and the fourth conductor plate 433 have a role of energizing a current, as well as a first power semiconductor element 155, 156. It plays a role as a heat transfer member that transfers heat generated by the second power semiconductor element 157 and 158 to the cooling member 340. Since the potentials of the conductor plates 430, 431, 432, 433 and the cooling member 340 are different, as shown in FIG. 2, the first resin insulation is provided between the conductor plates 430, 431, 432, 433 and the cooling member 340. Through the first sheet member 440 having the layer 442 and via the second sheet member 441 having the second resin insulating layer 443. A heat conductive member 453 is provided between the sheet members 440 and 441 and the cooling member 340 in order to reduce the contact thermal resistance. The first power semiconductor element 155, 156 and the second power semiconductor element 157, 158 may be simply referred to as a power semiconductor element 159.
熱伝導部材453は、熱伝導率が高い材料であれば特に限定されないが、金属、セラミックス、炭素系材料等の高熱伝導材料を樹脂材料と組み合わせて用いることが好ましい。これは、熱伝導部材453と冷却部材340との間、熱伝導部材453と各シート部材440、441との間を樹脂材料が補填し、接触熱抵抗が低減するためである。
The heat conductive member 453 is not particularly limited as long as it is a material having high thermal conductivity, but it is preferable to use a high heat conductive material such as a metal, ceramics, or carbon-based material in combination with a resin material. This is because the resin material fills the space between the heat conductive member 453 and the cooling member 340 and between the heat conductive member 453 and the sheet members 440 and 441 to reduce the contact thermal resistance.
第1パワー半導体素子155、156、第2パワー半導体素子157、158、各導体板430、431、432、433、各シート部材440、441は、トランスファーモールド成型により封止部材360で封止されている。各シート部材440、441の第1樹脂絶縁層442、第2樹脂絶縁層443は、各導体板430、431、432、433との接着性を有するものであれば特に限定されないが、粉末状の無機充填剤を分散したエポキシ樹脂系樹脂絶縁層が望ましい。これは、接着性と放熱性のバランスが良いためである。各シート部材440、441は、樹脂絶縁層単体でもよいが、熱伝導部材453と接する側に金属箔444を設けることが望ましい。トランスファーモールド成型工程において、各シート部材440、441を金型に搭載する際、金型への接着を防ぐため、各シート部材440、441と金型との接触面には、離型シート又は、金属箔444を設ける。離型シートは、熱伝導率が悪いためトランスファーモールド後に剥離する工程が必要となるが、金属箔444の場合は、銅系や、アルミ系の熱伝導率の高い金属を選択することで、トランスファーモールド後に剥離することなく使用することができる。各シート部材440、441を含めてトランスファーモールドする事で、各シート部材440、441の端部が封止部材360で被覆されることで製品の信頼性が向上する効果がある。
The first power semiconductor element 155, 156, the second power semiconductor element 157, 158, each conductor plate 430, 431, 432, 433, and each sheet member 440, 441 are sealed by a sealing member 360 by transfer mold molding. There is. The first resin insulating layer 442 and the second resin insulating layer 443 of the sheet members 440 and 441 are not particularly limited as long as they have adhesiveness to the conductor plates 430, 431, 432, and 433, but are in the form of powder. An epoxy resin-based resin insulating layer in which an inorganic filler is dispersed is desirable. This is because the adhesiveness and the heat dissipation are well-balanced. The sheet members 440 and 441 may be a single resin insulating layer, but it is desirable to provide the metal foil 444 on the side in contact with the heat conductive member 453. In the transfer mold molding process, when the sheet members 440 and 441 are mounted on the mold, in order to prevent adhesion to the mold, the contact surface between the sheet members 440 and 441 and the mold may be a release sheet or a mold. A metal foil 444 is provided. Since the release sheet has poor thermal conductivity, a step of peeling off after transfer molding is required, but in the case of metal foil 444, it is possible to transfer by selecting a copper-based or aluminum-based metal with high thermal conductivity. It can be used without peeling after molding. By transfer molding including the sheet members 440 and 441, the end portions of the sheet members 440 and 441 are covered with the sealing member 360, which has the effect of improving the reliability of the product.
導体板430、431、432、433は、電気伝導性が高く、熱伝導率が高い材料が望ましく、銅やアルミ等の金属系材料や、金属系材料と高熱伝導率のダイヤモンド、カーボンやセラミック等の複合材料等を用いることもできる。導体板430、431、432、433は、詳細は後述するが、一方面にパワー半導体素子159が接合される第1領域と、当該一方面に封止部材と接する第2領域と、に区分され、第2領域に他の部分よりも剛性が低い低剛性部460(図2参照)を形成する。低剛性部460は、プレス加工により凹部を、または機械加工やレーザ加工による切削により板厚を薄く形成する。
The conductor plates 430, 431, 432, and 433 are preferably made of a material having high electric conductivity and high thermal conductivity, and are preferably a metal-based material such as copper or aluminum, or a metal-based material and high thermal conductivity diamond, carbon, ceramic, or the like. It is also possible to use the composite material of. Although the details of the conductor plates 430, 431, 432, and 433 will be described later, the conductor plate 430 is divided into a first region to which the power semiconductor element 159 is bonded to one surface and a second region to which the power semiconductor element 159 is bonded to the one surface. , A low-rigidity portion 460 (see FIG. 2) having a lower rigidity than the other portions is formed in the second region. The low-rigidity portion 460 forms a concave portion by press working, or a thin plate thickness by cutting by machining or laser machining.
図4は、図1に示すX-X線におけるパワーモジュール300の断面斜視図であり、電気回路体400から冷却部材340を取り除いた状態を示す。図4に示すように、第1シート部材440の端部は、封止部材360によって覆われている。第1導体板430の表面と重なる第1シート部材440は放熱面である。第1シート部材440の放熱面上に冷却部材340を密着して、冷却部材340との間の密着性を確保し、放熱性が損なわれないようにする。
FIG. 4 is a cross-sectional perspective view of the power module 300 in the XX line shown in FIG. 1, showing a state in which the cooling member 340 is removed from the electric circuit body 400. As shown in FIG. 4, the end portion of the first sheet member 440 is covered with the sealing member 360. The first sheet member 440 that overlaps the surface of the first conductor plate 430 is a heat dissipation surface. The cooling member 340 is brought into close contact with the heat radiating surface of the first sheet member 440 to ensure the close contact with the cooling member 340 so that the heat radiating property is not impaired.
図5(a)~(c)、図6(d)~(f)、図7(g)~(i)は、電気回路体400の製造方法を示す断面図である。各図の左側に図1に示すX-X線における1パワーモジュール分の断面図を、右側に図1に示すY-Y線における1パワーモジュール分の断面図を示す。
5 (a) to 5 (c), FIGS. 6 (d) to (f), and FIGS. 7 (g) to 7 (i) are cross-sectional views showing a method of manufacturing the electric circuit body 400. The left side of each figure shows a cross-sectional view of one power module on the XX line shown in FIG. 1, and the right side shows a cross-sectional view of one power module on the YY line shown in FIG.
図5(a)は、はんだ接続工程及びワイヤボンディング工程を示す図である。第2導体板431に、第1パワー半導体素子である能動素子155のコレクタ側およびダイオード156のカソード側を接続し、能動素子155のゲート電極をワイヤボンディングで接続する。第1導体板430に能動素子155のエミッタ側およびダイオード156のアノード側を接続する。同様に、第4導体板433に、第2パワー半導体素子である能動素子157のコレクタ側およびダイオード158のカソード側を接続し、能動素子157のゲート電極をワイヤボンディングで接続する。第3導体板432に能動素子157のエミッタ側およびダイオード158のアノード側を接続する。このようにして、回路体310を形成する。
FIG. 5A is a diagram showing a solder connection process and a wire bonding process. The collector side of the active element 155, which is the first power semiconductor element, and the cathode side of the diode 156 are connected to the second conductor plate 431, and the gate electrode of the active element 155 is connected by wire bonding. The emitter side of the active element 155 and the anode side of the diode 156 are connected to the first conductor plate 430. Similarly, the collector side of the active element 157, which is the second power semiconductor element, and the cathode side of the diode 158 are connected to the fourth conductor plate 433, and the gate electrode of the active element 157 is connected by wire bonding. The emitter side of the active element 157 and the anode side of the diode 158 are connected to the third conductor plate 432. In this way, the circuit body 310 is formed.
導体板430、431、432、433は、低剛性部460を備える。また、導体板430、431、432、433には、反りがあってもよく、また、はんだ厚さのばらつきになどにより、はんだ接続後に傾斜が生じる場合がある。
The conductor plates 430, 431, 432, and 433 are provided with a low rigidity portion 460. Further, the conductor plates 430, 431, 432, and 433 may be warped, and may be inclined after solder connection due to variations in solder thickness and the like.
図5(b)は、金型設置工程を示す図である。トランスファーモールド装置601は、スプリング602とシート部材440、441を金型に真空吸着する。シート部材440、441を金型に真空吸着するための真空脱気機構等は図示省略している。予め175℃の恒温状態に加熱した金型内に、治具を用い位置合わせしたシート部材440、441を真空吸着にて保持する。そこに、あらかじめ175℃に予熱した回路体310をシート部材440、441から離間した状態の金型内に設置する。
FIG. 5B is a diagram showing a mold installation process. The transfer mold device 601 vacuum sucks the spring 602 and the seat members 440 and 441 into the mold. The vacuum degassing mechanism for vacuum-adsorbing the sheet members 440 and 441 to the mold is not shown. The sheet members 440 and 441 aligned in advance using a jig are held by vacuum suction in a mold heated to a constant temperature of 175 ° C. There, the circuit body 310 preheated to 175 ° C. is installed in the mold in a state separated from the seat members 440 and 441.
図5(c)は、加圧工程を示す図である。シート部材440、441と回路体310とが離間した状態から、上下の金型を近接し、図示していない上下金型の周囲に設置したパッキンのみ接触させる。次に、金型のキャビティ内を真空排気する。所定の気圧以下になるよう真空排気が完了すると、パッキンを更に押しつぶすように、上下の金型を加圧し完全に締め付ける。この時、シート部材440、441と回路体310は接触する。
FIG. 5 (c) is a diagram showing a pressurizing process. From the state where the sheet members 440 and 441 and the circuit body 310 are separated from each other, the upper and lower molds are brought close to each other, and only the packings installed around the upper and lower molds (not shown) are brought into contact with each other. Next, the inside of the mold cavity is evacuated. When the vacuum exhaust is completed so that the pressure drops below the predetermined pressure, the upper and lower molds are pressurized and completely tightened so as to further crush the packing. At this time, the seat members 440 and 441 come into contact with the circuit body 310.
導体板430、431、432、433のパワー半導体素子159が接合される第1領域に反りや傾斜がある場合、スプリング602による圧力でシート部材440、441と導体板430、431、432、433は密着する。一方、導体板430、431、432、433の封止部材と接する第2領域に反りや傾斜がある場合、スプリング602による圧力が及ばず、導体板430、431、432、433とシート部材440、441の密着性が不足し、導体板430、431、432、433とシート部材440、441との間に隙間が発生する可能性がある。しかし、本実施形態では、以下に説明するようにして導体板430、431、432、433とシート部材440、441との密着性を高めることが可能になる。
When the first region to which the power semiconductor elements 159 of the conductor plates 430, 431, 432 and 433 are joined has a warp or inclination, the sheet members 440 and 441 and the conductor plates 430, 431, 432 and 433 are subjected to the pressure of the spring 602. In close contact. On the other hand, when the second region in contact with the sealing member of the conductor plates 430, 431, 432, and 433 has a warp or an inclination, the pressure by the spring 602 does not reach, and the conductor plates 430, 431, 432, 433 and the sheet member 440, The adhesion of the 441 may be insufficient, and a gap may be generated between the conductor plates 430, 431, 432, 433 and the sheet members 440, 441. However, in the present embodiment, it is possible to improve the adhesion between the conductor plates 430, 431, 432, 433 and the sheet members 440, 441 as described below.
図6(d)~図6(f)は、トランスファーモールドにより封止部材360を注入する注入工程を示す図である。図6(d)に示すように、図示省略した注入口より封止部材360を金型内に注入する。図6(e)の矢印で示すように、封止部材360の注入による成型圧力は静水圧として、金型内部に均等に加わる。この時、図6(f)の矢印で示すように、導体板430、431、432、433の第2領域には低剛性部460が形成されているので、成型圧力により、導体板430、431、432、433の第2領域がシート部材440、441に押し付けられる。これにより、導体板430、431、432、433に反りや傾斜があっても導体板430、431、432、433の端部までシート部材440、441と密着させることができる。導体板430、431、432、433の第2領域に低剛性部460を形成していない場合は、導体板430、431、432、433の第2領域に反りや傾斜があれば、第2領域の曲げ剛性が高いままとなり、導体板430、431、432、433の曲げ反力により、導体板430、431、432、433をシート部材440、441に押し付けることができない。しかし、本実施形態では、低剛性部460を設けているため、導体板430、431、432、433の曲げ反力が低減し、導体板430、431、432、433とシート部材440、441との密着性を向上できる。
6 (d) to 6 (f) are views showing an injection step of injecting the sealing member 360 by the transfer mold. As shown in FIG. 6D, the sealing member 360 is injected into the mold through an injection port (not shown). As shown by the arrow in FIG. 6 (e), the molding pressure due to the injection of the sealing member 360 is evenly applied to the inside of the mold as hydrostatic pressure. At this time, as shown by the arrow in FIG. 6 (f), since the low rigidity portion 460 is formed in the second region of the conductor plates 430, 431, 432, and 433, the conductor plates 430 and 431 are formed by the molding pressure. The second region of 432 and 433 is pressed against the seat members 440 and 441. As a result, even if the conductor plates 430, 431, 432, and 433 are warped or inclined, the conductor plates 430, 431, 432, and 433 can be brought into close contact with the sheet members 440 and 441 up to the ends. If the low-rigidity portion 460 is not formed in the second region of the conductor plates 430, 431, 432, and 433, and if the second region of the conductor plates 430, 431, 432, and 433 has a warp or inclination, the second region. The bending rigidity of the conductor plate 430, 431, 432, and 433 remains high, and the conductor plates 430, 431, 432, and 433 cannot be pressed against the sheet members 440 and 441 due to the bending reaction force of the conductor plates 430, 431, 432, and 433. However, in the present embodiment, since the low rigidity portion 460 is provided, the bending reaction force of the conductor plates 430, 431, 432, and 433 is reduced, and the conductor plates 430, 431, 432, 433 and the sheet members 440 and 441 are combined. Adhesion can be improved.
図7(g)は、硬化工程を示す図である。トランスファーモールド装置601から封止部材360で封止したパワーモジュール300を取り出し、常温で冷却し、2時間以上の硬化を行う。
FIG. 7 (g) is a diagram showing a curing process. The power module 300 sealed by the sealing member 360 is taken out from the transfer mold device 601, cooled at room temperature, and cured for 2 hours or more.
図7(h)は、冷却部材340の設置工程を示す図である。パワーモジュール300の両面に熱伝導部材453を介して冷却部材340を押し当てる。これにより、冷却部材340は、熱伝導部材453を介して第1シート部材440、第2シート部材441に密着される。
FIG. 7 (h) is a diagram showing an installation process of the cooling member 340. The cooling member 340 is pressed against both sides of the power module 300 via the heat conductive member 453. As a result, the cooling member 340 is brought into close contact with the first sheet member 440 and the second sheet member 441 via the heat conductive member 453.
図7(i)は、以上の工程により製造された電気回路体400を示す図である。このようにして、パワーモジュール300の両面に冷却部材340が設置されて電気回路体400が製造される。
FIG. 7 (i) is a diagram showing an electric circuit body 400 manufactured by the above steps. In this way, the cooling members 340 are installed on both sides of the power module 300 to manufacture the electric circuit body 400.
図8(a)、図8(b)は、トランスファーモールドの詳細を示す図である。これらの図を参照して、導体板430、431、432、433とシート部材440、441との密着について説明する。いずれも、図1に示すY-Y線における1パワーモジュール分の断面図を例に説明する。
8 (a) and 8 (b) are views showing the details of the transfer mold. With reference to these figures, the adhesion between the conductor plates 430, 431, 432, 433 and the sheet members 440, 441 will be described. In each case, a cross-sectional view of one power module on the YY line shown in FIG. 1 will be described as an example.
図8(a)は、金型を閉じてスプリング602により圧力461が加わっている状態である。導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、当該一方面に封止部材360と接する第2領域D2に区分される。導体板430、431、432、433の第1領域D1は、パワー半導体素子159に向けて形成された凸部の上面でパワー半導体素子159と接合している。第1領域D1には、スプリング602による圧力が加わる。この圧力は、導体板430、431、432、433の凸部の底面端部dからシート部材440、441へ向けて導体板430、431、432、433内を45°の角度で広がる。以降、導体板430、431、432、433の凸部の底面端部からシート部材440、441へ向けて導体板430、431、432、433内を広がる圧力の外郭線を加圧外郭線pと称する。本実施形態では、加圧外郭線pは、底面端部dから45°の角度で広がる例を示すが、必ずしも45°でなくてもよい。低剛性部460は、加圧外郭線pより外側に形成される。したがって、スプリング602による圧力461が加わった場合でも、低剛性部460に過度な圧力が掛かることを低減できる。
FIG. 8A shows a state in which the mold is closed and pressure 461 is applied by the spring 602. The conductor plates 430, 431, 432, and 433 are divided into a first region D1 to which the power semiconductor element 159 is bonded to one surface and a second region D2 to which the sealing member 360 is in contact with the one surface. The first region D1 of the conductor plates 430, 431, 432, and 433 is joined to the power semiconductor element 159 at the upper surface of the convex portion formed toward the power semiconductor element 159. Pressure is applied to the first region D1 by the spring 602. This pressure spreads in the conductor plates 430, 431, 432, and 433 at an angle of 45 ° from the bottom end d of the convex portion of the conductor plates 430, 431, 432, and 433 toward the sheet members 440 and 441. After that, the outer line of the pressure spreading in the conductor plates 430, 431, 432, and 433 from the bottom end of the convex portion of the conductor plates 430, 431, 432, and 433 toward the sheet members 440 and 441 is referred to as the pressurized outer line p. Refer to. In the present embodiment, the pressurized outer line p extends at an angle of 45 ° from the bottom end portion d, but it does not necessarily have to be 45 °. The low-rigidity portion 460 is formed outside the pressurized outer line p. Therefore, even when the pressure 461 due to the spring 602 is applied, it is possible to reduce the excessive pressure applied to the low-rigidity portion 460.
図8(a)では、スプリング602による圧力により、導体板430、431、432、433にかかる圧力が高い領域462を、シート部材440、441に縦罫線を付して示す。また、スプリング602による圧力により、導体板430、431、432、433にかかる圧力が低い領域463は縦罫線を付していない。導体板430、431、432、433とシート部材440、441の接着には接着力の発現に必要な面圧が必要となるため、領域462で接着しても、領域463では剥離する場合が生じる。
In FIG. 8A, a region 462 in which the pressure applied to the conductor plates 430, 431, 432, and 433 due to the pressure of the spring 602 is high is shown by adding vertical ruled lines to the sheet members 440 and 441. Further, the region 463 in which the pressure applied to the conductor plates 430, 431, 432, and 433 due to the pressure by the spring 602 is low is not provided with a vertical ruled line. Since the adhesion between the conductor plates 430, 431, 432, 433 and the sheet members 440 and 441 requires the surface pressure required to develop the adhesive force, even if the conductor plates are adhered in the region 462, they may be peeled off in the region 463. ..
図8(b)は、封止部材360を注入口603より注入している状態である。封止部材360は一旦液状になるため、成型圧力が静水圧として封止部材360全体に加わる。この圧力が導体板430、431、432、433の第2領域D2にも加わる。第2領域D2には、低剛性部460を設けているため、導体板430、431、432、433の曲げ反力が低減している。したがって、圧力464により導体板430、431、432、433はシート部材440、441に押し付けられる。これにより、スプリング602の圧力による圧力が低い領域463も面圧を向上でき、導体板430、431、432、433とシート部材440、441との密着性を向上できる。
FIG. 8B shows a state in which the sealing member 360 is injected from the injection port 603. Since the sealing member 360 becomes liquid once, the molding pressure is applied to the entire sealing member 360 as hydrostatic pressure. This pressure is also applied to the second region D2 of the conductor plates 430, 431, 432 and 433. Since the low rigidity portion 460 is provided in the second region D2, the bending reaction force of the conductor plates 430, 431, 432, and 433 is reduced. Therefore, the conductor plates 430, 431, 432, and 433 are pressed against the seat members 440 and 441 by the pressure 464. As a result, the surface pressure can be improved in the region 463 where the pressure due to the pressure of the spring 602 is low, and the adhesion between the conductor plates 430, 431, 432, 433 and the seat members 440, 441 can be improved.
図9(a)は、導体板430、431、432、433のモデルAを、図9(b)は、導体板430、431、432、433のモデルBを、図9(c)は、各モデルの解析結果を示すグラフである。
モデルAは、導体板430、431、432、433に低剛性部460として凹部を、モデルBは、低剛性部460として板厚を薄くしたものである。いずれも、導体板430、431、432、433は、板厚T0であり、低剛性部460は、板厚T1(T0>T1)である。また、低剛性化した領域の導体板430、431、432、433の長さLは、低剛性化していない領域の導体板430、431、432、433の長さOより4倍以上長い。導体板430、431、432、433の左端部を固定し、上方より圧力Pを加える。 9 (a) is model A of the conductor plates 430, 431, 432, 433, FIG. 9 (b) is model B of the conductor plates 430, 431, 432, 433, and FIG. 9 (c) is each. It is a graph which shows the analysis result of a model.
The model A has a recess in the conductor plate 430, 431, 432, and 433 as a low-rigidity portion 460, and the model B has a thin plate thickness as a low-rigidity portion 460. In each case, the conductor plates 430, 431, 432, and 433 have a plate thickness of T0, and the low-rigidity portion 460 has a plate thickness of T1 (T0> T1). Further, the length L of the conductor plates 430, 431, 432, and 433 in the low-rigidity region is four times or more longer than the length O of the conductor plates 430, 431, 432, and 433 in the non-rigidized region. The left end of the conductor plates 430, 431, 432, and 433 are fixed, and pressure P is applied from above.
モデルAは、導体板430、431、432、433に低剛性部460として凹部を、モデルBは、低剛性部460として板厚を薄くしたものである。いずれも、導体板430、431、432、433は、板厚T0であり、低剛性部460は、板厚T1(T0>T1)である。また、低剛性化した領域の導体板430、431、432、433の長さLは、低剛性化していない領域の導体板430、431、432、433の長さOより4倍以上長い。導体板430、431、432、433の左端部を固定し、上方より圧力Pを加える。 9 (a) is model A of the
The model A has a recess in the
図9(c)の横軸は厚さ比であり、低剛性化した部分の板厚T1を低剛性化していない部分の板厚T0で除した値、縦軸は変形率であり、低剛性部460を設けたときの右端部の変形量を、低剛性部460を設けなかった場合の右端部の変形量で除した値を示す。図9(c)に示すように、モデルA、モデルBともに、低剛性化していない厚さ比1に比べ、低剛性化することで変形率は指数関数的に増加する。これは、導体板430、431、432、433の曲げ剛性が低剛性化により大幅に低下することを示している。このように導体板430、431、432、433の曲げ剛性を低下することで、導体板430、431、432、433の反力が低下する。このため、前述のように、封止部材360の成型圧力により導体板430、431、432、433はシート部材440、441に押し付けられ、導体板430、431、432、433とシート部材440、441と密着時の面圧を向上できる。このように密着時の面圧を向上することで、430、431、432、433とシート部材440、441を接着し絶縁性を向上することができる。
The horizontal axis of FIG. 9C is the thickness ratio, which is the value obtained by dividing the plate thickness T1 of the low-rigidity portion by the plate thickness T0 of the non-rigidized portion, and the vertical axis is the deformation rate, which is low rigidity. A value obtained by dividing the amount of deformation of the right end portion when the portion 460 is provided by the amount of deformation of the right end portion when the low-rigidity portion 460 is not provided is shown. As shown in FIG. 9 (c), in both the model A and the model B, the deformation rate increases exponentially by reducing the rigidity as compared with the thickness ratio 1 which has not been reduced. This indicates that the bending rigidity of the conductor plates 430, 431, 432, and 433 is significantly reduced by lowering the rigidity. By reducing the bending rigidity of the conductor plates 430, 431, 432, and 433 in this way, the reaction force of the conductor plates 430, 431, 432, and 433 is reduced. Therefore, as described above, the conductor plates 430, 431, 432, and 433 are pressed against the sheet members 440 and 441 by the molding pressure of the sealing member 360, and the conductor plates 430, 431, 432, and 433 and the sheet members 440 and 441 are pressed against each other. The surface pressure at the time of close contact can be improved. By improving the surface pressure at the time of close contact in this way, the 430, 431, 432, 433 and the sheet members 440, 441 can be adhered to each other to improve the insulating property.
図10は、図1に示すY-Y線における1パワーモジュール分の断面図である。
図10を用いて、導体板430、431、432、433の低剛性部460と放熱経路を説明する。図8(a)を参照して説明したように、導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、当該一方面に封止部材と接する第2領域D2に区分される。パワー半導体素子159の熱は、導体板430、431、432、433の凸部の底面端部dからシート部材440、441へ向けて導体板430、431、432、433内を45°の角度で広がる。その後、パワー半導体素子159の熱は、シート部材440、441及び熱伝導部材453を介して冷却部材340に伝わる。このように、導体板430、431、432、433の板厚に対しおよそ45度の角度、すなわち加圧外郭線pが、主たる熱伝導経路となるため、加圧外郭線pより内側に凹部などの低剛性部460があると放熱性が著しく低下する。このため、低剛性部460を設ける場合は、加圧外郭線pの外側に設けることが望ましい。なお、低剛性部460は、第1導体板430と第2導体板431の一方、および、第3導体板432と第4導体板433の一方にのみそれぞれ設けても良く、その場合は、少なくとも第2導体板(上アーム回路コレクタ側)431、第4導体板(下アーム回路コレクタ側)433、すなわち、パワー半導体素子159のコレクタ電極に接続される導体板431、433に設けるのが望ましい。その理由は、パワー半導体素子159のコレクタ電極に大電流が流れて高温となるため、コレクタ電極に接続される導体板431、433とシート部材440、441との密着性をより高めて放熱性を向上させる必要があるからである。 FIG. 10 is a cross-sectional view of one power module on the YY line shown in FIG.
With reference to FIG. 10, the low-rigidity portion 460 and the heat dissipation path of the conductor plates 430, 431, 432, and 433 will be described. As described with reference to FIG. 8A, the conductor plates 430, 431, 432, and 433 have a first region D1 to which the power semiconductor element 159 is bonded to one surface, and a sealing member on the one surface. It is divided into the contacting second region D2. The heat of the power semiconductor element 159 is applied to the conductor plates 430, 431, 432, and 433 from the bottom end d of the convex portion of the conductor plate 430, 431, 432, and 433 toward the sheet members 440 and 441 at an angle of 45 ° inside the conductor plates 430, 431, 432, and 433. spread. After that, the heat of the power semiconductor element 159 is transferred to the cooling member 340 via the sheet members 440 and 441 and the heat conductive member 453. In this way, the angle of about 45 degrees with respect to the plate thickness of the conductor plates 430, 431, 432, and 433, that is, the pressurized outer wire p is the main heat conduction path, so that a recess or the like is formed inside the pressurized outer wire p. If there is a low-rigidity portion 460, the heat dissipation property is significantly reduced. Therefore, when the low-rigidity portion 460 is provided, it is desirable to provide it outside the pressurized outer line p. The low-rigidity portion 460 may be provided only on one of the first conductor plate 430 and the second conductor plate 431, and one of the third conductor plate 432 and the fourth conductor plate 433, respectively. In that case, at least one of them may be provided. It is desirable to provide the second conductor plate (upper arm circuit collector side) 431 and the fourth conductor plate (lower arm circuit collector side) 433, that is, the conductor plates 431 and 433 connected to the collector electrode of the power semiconductor element 159. The reason is that a large current flows through the collector electrode of the power semiconductor element 159 and the temperature becomes high, so that the adhesion between the conductor plates 431 and 433 connected to the collector electrode and the sheet members 440 and 441 is further improved to improve heat dissipation. This is because it needs to be improved.
図10を用いて、導体板430、431、432、433の低剛性部460と放熱経路を説明する。図8(a)を参照して説明したように、導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、当該一方面に封止部材と接する第2領域D2に区分される。パワー半導体素子159の熱は、導体板430、431、432、433の凸部の底面端部dからシート部材440、441へ向けて導体板430、431、432、433内を45°の角度で広がる。その後、パワー半導体素子159の熱は、シート部材440、441及び熱伝導部材453を介して冷却部材340に伝わる。このように、導体板430、431、432、433の板厚に対しおよそ45度の角度、すなわち加圧外郭線pが、主たる熱伝導経路となるため、加圧外郭線pより内側に凹部などの低剛性部460があると放熱性が著しく低下する。このため、低剛性部460を設ける場合は、加圧外郭線pの外側に設けることが望ましい。なお、低剛性部460は、第1導体板430と第2導体板431の一方、および、第3導体板432と第4導体板433の一方にのみそれぞれ設けても良く、その場合は、少なくとも第2導体板(上アーム回路コレクタ側)431、第4導体板(下アーム回路コレクタ側)433、すなわち、パワー半導体素子159のコレクタ電極に接続される導体板431、433に設けるのが望ましい。その理由は、パワー半導体素子159のコレクタ電極に大電流が流れて高温となるため、コレクタ電極に接続される導体板431、433とシート部材440、441との密着性をより高めて放熱性を向上させる必要があるからである。 FIG. 10 is a cross-sectional view of one power module on the YY line shown in FIG.
With reference to FIG. 10, the low-
図11(a)、図11(b)、図11(c)は、第2導体板(上アーム回路コレクタ側)431の平面図である。図11(a)は、本実施形態の平面図を、図11(b)は、変形例1を、図11(c)は、変形例2を示す。各図において、平面図はパワー半導体素子155、156が接合される面を示す。
11 (a), 11 (b), and 11 (c) are plan views of the second conductor plate (upper arm circuit collector side) 431. 11 (a) shows a plan view of the present embodiment, FIG. 11 (b) shows a modified example 1, and FIG. 11 (c) shows a modified example 2. In each figure, the plan view shows the surface to which the power semiconductor elements 155 and 156 are joined.
図11(a)に示す本実施形態では、導体板431にパワー半導体素子155、156を囲む位置に低剛性部460を設けている。したがって、パワー半導体素子155、156の周囲において、導体板431とシート部材440、441との密着性を高めることができる。また、導体板431が広いため放熱性に優れる効果がある。
In the present embodiment shown in FIG. 11A, a low-rigidity portion 460 is provided at a position surrounding the power semiconductor element 155 and 156 on the conductor plate 431. Therefore, it is possible to improve the adhesion between the conductor plate 431 and the sheet members 440 and 441 around the power semiconductor element 155 and 156. Further, since the conductor plate 431 is wide, there is an effect of excellent heat dissipation.
図11(b)に示す変形例1では、導体板431のX方向の長さを縮小し、加圧外郭線pの内側に導体板431が収まるようにした。これにより低剛性部460をパワー半導体素子155、156に対しY軸方向のみ設けている。低剛性部460を省略することで加工コストを低減できる。
In the modified example 1 shown in FIG. 11B, the length of the conductor plate 431 in the X direction was reduced so that the conductor plate 431 fits inside the pressurized outer line p. As a result, the low-rigidity portion 460 is provided only in the Y-axis direction with respect to the power semiconductor elements 155 and 156. Machining cost can be reduced by omitting the low-rigidity portion 460.
図11(c)に示す変形例2では、導体板431のX方向の長さを縮小し、加圧外郭線pの内側に導体板431が収まるようにし、且つ低剛性部460を断続的に設けている。具体的には、凹部などの低剛性部460を所定間隔で導体板431のX方向に沿って配置する。低剛性部460を省略することで加工コストを低減できる他に、低剛性部460を断続的に設けているので導体板431に熱が広がりやすく放熱性に優れる。
In the modification 2 shown in FIG. 11C, the length of the conductor plate 431 in the X direction is reduced so that the conductor plate 431 fits inside the pressurized outer line p, and the low-rigidity portion 460 is intermittently provided. It is provided. Specifically, low-rigidity portions 460 such as recesses are arranged along the X direction of the conductor plate 431 at predetermined intervals. By omitting the low-rigidity portion 460, the processing cost can be reduced, and since the low-rigidity portion 460 is provided intermittently, heat easily spreads to the conductor plate 431 and the heat dissipation is excellent.
図12は、図1に示すY-Y線における1パワーモジュール分の断面図であり、導体板431の変形例を示す。
図12に示すように、第1導体板(上アーム回路エミッタ側)430の低剛性部460として、図9(b)で示したモデルBを適用したものである。
モデルBでは、モデルAと比較すると導体板430の断面積が小さくなるが、導体板430をプレス加工で作製しやすい効果がある。なお、放熱性の点では、導体板430の断面積が大きいモデルAが優れる。 FIG. 12 is a cross-sectional view of one power module on the YY line shown in FIG. 1, and shows a modified example of theconductor plate 431.
As shown in FIG. 12, the model B shown in FIG. 9B is applied as the low-rigidity portion 460 of the first conductor plate (upper arm circuit emitter side) 430.
In model B, the cross-sectional area of theconductor plate 430 is smaller than that in model A, but there is an effect that the conductor plate 430 can be easily manufactured by press working. In terms of heat dissipation, the model A having a large cross-sectional area of the conductor plate 430 is excellent.
図12に示すように、第1導体板(上アーム回路エミッタ側)430の低剛性部460として、図9(b)で示したモデルBを適用したものである。
モデルBでは、モデルAと比較すると導体板430の断面積が小さくなるが、導体板430をプレス加工で作製しやすい効果がある。なお、放熱性の点では、導体板430の断面積が大きいモデルAが優れる。 FIG. 12 is a cross-sectional view of one power module on the YY line shown in FIG. 1, and shows a modified example of the
As shown in FIG. 12, the model B shown in FIG. 9B is applied as the low-
In model B, the cross-sectional area of the
上述した本実施形態によれば、導体板430、431、432、433に反りがあっても、また、はんだ接続後に傾斜が生じても、トランスファーモールド工程において、導体板430、431、432、433の反りや傾斜を矯正し、シート部材440、441と導体板430、431、432、433を端部まで接着することができ、絶縁性、放熱性に優れる効果がある。
According to the above-described embodiment, even if the conductor plates 430, 431, 432, and 433 are warped, and even if the conductor plates are tilted after the solder connection, the conductor plates 430, 431, 432, and 433 are used in the transfer molding process. The warp and inclination of the solder can be corrected, and the sheet members 440 and 441 and the conductor plates 430, 431, 432 and 433 can be adhered to the ends, which has an effect of excellent insulation and heat dissipation.
図13は、本実施形態におけるパワーモジュール300の半透過平面図である。図14は、本実施形態におけるパワーモジュール300の回路図である。
FIG. 13 is a semi-transmissive plan view of the power module 300 in this embodiment. FIG. 14 is a circuit diagram of the power module 300 in this embodiment.
図13、図14に示すように、正極側端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート信号端子325Uは、上アーム回路の能動素子155のゲート及びエミッタセンスから出力している。負極側端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート信号端子325Lは、下アーム回路の能動素子157のゲート及びエミッタセンスから出力している。交流側端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
As shown in FIGS. 13 and 14, the positive electrode side terminal 315B outputs from the collector side of the upper arm circuit and is connected to the positive electrode side of the battery or the capacitor. The upper arm gate signal terminal 325U outputs from the gate and emitter sense of the active element 155 of the upper arm circuit. The negative electrode side terminal 319B outputs from the emitter side of the lower arm circuit, and is connected to the negative electrode side of the battery or the capacitor, or GND. The lower arm gate signal terminal 325L outputs from the gate and emitter sense of the active element 157 of the lower arm circuit. The AC side terminal 320B outputs from the collector side of the lower arm circuit and is connected to the motor. When grounding to the neutral point, the lower arm circuit is connected to the negative electrode side of the capacitor instead of GND.
また、第1パワー半導体素子(上アーム回路)の能動素子155およびダイオード156の上下に第1導体板(上アーム回路エミッタ側)430、第2導体板(上アーム回路コレクタ側)431が配置される。第2パワー半導体素子(下アーム回路)の能動素子157およびダイオード158の上下に第3導体板(下アーム回路エミッタ側)432、第4導体板(下アーム回路コレクタ側)433が配置される。なお、各導体板430、431、432、433に形成されている低剛性部460は、図示を省略している。
Further, the first conductor plate (upper arm circuit emitter side) 430 and the second conductor plate (upper arm circuit collector side) 431 are arranged above and below the active element 155 and the diode 156 of the first power semiconductor element (upper arm circuit). To. A third conductor plate (lower arm circuit emitter side) 432 and a fourth conductor plate (lower arm circuit collector side) 433 are arranged above and below the active element 157 and the diode 158 of the second power semiconductor element (lower arm circuit). The low-rigidity portion 460 formed on each conductor plate 430, 431, 432, and 433 is not shown.
本実施形態のパワーモジュール300は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。この他に、複数の上アーム回路及び下アーム回路を、1つのモジュールに一体化した構造を用いてもよい。この場合は、パワーモジュール300からの出力端子の数を低減し小型化することができる。
The power module 300 of this embodiment has a 2in1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module. In addition to this, a structure in which a plurality of upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the power module 300 can be reduced to reduce the size.
図15は、電気回路体400を用いた電力変換装置200の回路図である。
電力変換装置200は、インバータ回路140、142と、補機用のインバータ回路43と、コンデンサモジュール500とを備えている。インバータ回路140及び142は、パワーモジュール300を複数個備えた電気回路体400(図示省略)により構成されており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更にパワーモジュール300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、パワーモジュール300に内蔵しているパワー半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。 FIG. 15 is a circuit diagram of apower conversion device 200 using the electric circuit body 400.
Thepower conversion device 200 includes inverter circuits 140 and 142, an inverter circuit 43 for auxiliary equipment, and a capacitor module 500. The inverter circuits 140 and 142 are composed of an electric circuit body 400 (not shown) including a plurality of power modules 300, and a three-phase bridge circuit is formed by connecting them. When the current capacity is large, the power modules 300 are further connected in parallel, and these parallel connections are made corresponding to each phase of the three-phase inverter circuit to cope with the increase in the current capacity. Further, the increase in current capacity can be coped with by connecting the active elements 155, 157 and the diodes 156, 158, which are power semiconductor elements built in the power module 300, in parallel.
電力変換装置200は、インバータ回路140、142と、補機用のインバータ回路43と、コンデンサモジュール500とを備えている。インバータ回路140及び142は、パワーモジュール300を複数個備えた電気回路体400(図示省略)により構成されており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更にパワーモジュール300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、パワーモジュール300に内蔵しているパワー半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。 FIG. 15 is a circuit diagram of a
The
インバータ回路140とインバータ回路142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。
The inverter circuit 140 and the inverter circuit 142 have the same basic circuit configuration, and the control method and operation are also basically the same. Since the outline of the circuit-like operation of the inverter circuit 140 and the like is well known, detailed description thereof will be omitted here.
上述のように、上アーム回路は、スイッチング用のパワー半導体素子として上アーム用の能動素子155と上アーム用のダイオード156とを備えており、下アーム回路は、スイッチング用のパワー半導体素子として下アーム用の能動素子157と下アーム用のダイオード158とを備えている。能動素子155、157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。
As described above, the upper arm circuit includes an active element 155 for the upper arm and a diode 156 for the upper arm as a power semiconductor element for switching, and the lower arm circuit is a lower power semiconductor element for switching. It includes an active element 157 for the arm and a diode 158 for the lower arm. The active elements 155 and 157 receive a drive signal output from one or the other of the two driver circuits constituting the driver circuit 174 and perform switching operation to convert the DC power supplied from the battery 136 into three-phase AC power. ..
上述したように、上アーム用の能動素子155および下アーム用の能動素子157は、コレクタ電極、エミッタ電極、ゲート電極を備えている。上アーム用のダイオード156および下アーム用のダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。図13に示すように、ダイオード156、158のカソード電極が能動素子155、157のコレクタ電極に、アノード電極が能動素子155、157のエミッタ電極にそれぞれ電気的に接続されている。これにより、上アーム用の能動素子155および下アーム用の能動素子157のエミッタ電極からコレクタ電極に向かう電流の流れが順方向となっている。
As described above, the active element 155 for the upper arm and the active element 157 for the lower arm include a collector electrode, an emitter electrode, and a gate electrode. The diode 156 for the upper arm and the diode 158 for the lower arm include two electrodes, a cathode electrode and an anode electrode. As shown in FIG. 13, the cathode electrode of the diode 156 and 158 is electrically connected to the collector electrode of the active element 155 and 157, and the anode electrode is electrically connected to the emitter electrode of the active element 155 and 157. As a result, the current flow from the emitter electrode of the active element 155 for the upper arm and the active element 157 for the lower arm to the collector electrode is in the forward direction.
なお、能動素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いても良く、この場合は、上アーム用のダイオード156、下アーム用のダイオード158は不要となる。
A MOSFET (metal oxide semiconductor type field effect transistor) may be used as the active element, and in this case, the diode 156 for the upper arm and the diode 158 for the lower arm are unnecessary.
各上・下アーム直列回路の正極側端子315Bと負極側端子319Bとはコンデンサモジュール500のコンデンサ接続用の直流端子362A、362Bにそれぞれ接続されている。上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生し、各上・下アーム直列回路の上アーム回路と下アーム回路の接続部は各パワーモジュール300の交流側端子320Bに接続されている。各相の各パワーモジュール300の交流側端子320Bはそれぞれ電力変換装置200の交流出力端子に接続され、発生した交流電力はモータジェネレータ192または194の固定子巻線に供給される。
The positive electrode side terminal 315B and the negative electrode side terminal 319B of each of the upper and lower arm series circuits are connected to the DC terminals 362A and 362B for connecting the capacitors of the capacitor module 500, respectively. AC power is generated at the connection between the upper arm circuit and the lower arm circuit, respectively, and the connection between the upper arm circuit and the lower arm circuit of each upper / lower arm series circuit is connected to the AC side terminal 320B of each power module 300. ing. The AC side terminal 320B of each power module 300 of each phase is connected to the AC output terminal of the power converter 200, and the generated AC power is supplied to the stator winding of the motor generator 192 or 194.
制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アーム用の能動素子155、下アームの能動素子157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アーム用の能動素子155、下アーム用の能動素子157をスイッチング動作させるための駆動信号を生成する。なお、181、182、188はコネクタである。
The control circuit 172 is for controlling the switching timing of the active element 155 for the upper arm and the active element 157 of the lower arm based on the input information from the control device or the sensor (for example, the current sensor 180) on the vehicle side. Generate a timing signal. The driver circuit 174 generates a drive signal for switching the active element 155 for the upper arm and the active element 157 for the lower arm based on the timing signal output from the control circuit 172. In addition, 181 and 182, 188 are connectors.
上・下アーム直列回路は、不図示の温度センサを含み、上・下アーム直列回路の温度情報が制御回路172に入力される。また、制御回路172には上・下アーム直列回路の直流正極側の電圧情報が入力される。制御回路172は、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用の能動素子155、下アーム用の能動素子157のスイッチング動作を停止させ、上・下アーム直列回路を過温度或いは過電圧から保護する。
The upper / lower arm series circuit includes a temperature sensor (not shown), and the temperature information of the upper / lower arm series circuit is input to the control circuit 172. Further, voltage information on the DC positive electrode side of the upper / lower arm series circuit is input to the control circuit 172. The control circuit 172 performs overtemperature detection and overvoltage detection based on the information, and when overtemperature or overvoltage is detected, switching of all the active elements 155 for the upper arm and the active element 157 for the lower arm. Stop the operation and protect the upper / lower arm series circuit from overtemperature or overvoltage.
図16は、図15に示す電力変換装置200の外観斜視図であり、図17は、図16に示す電力変換装置200のXV-XV線の断面斜視図である。
図16に示すように、電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷却水流入管13および冷却水流出管14が突出している。下部ケース11は、上部側(Z方向)が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産性も向上する。 16 is an external perspective view of thepower conversion device 200 shown in FIG. 15, and FIG. 17 is a cross-sectional perspective view of the power conversion device 200 shown in FIG. 16 taken along the line XV-XV.
As shown in FIG. 16, thepower conversion device 200 is composed of a lower case 11 and an upper case 10, and includes a housing 12 formed in a substantially rectangular parallelepiped shape. An electric circuit body 400, a capacitor module 500, and the like are housed inside the housing 12. The electric circuit body 400 has a cooling flow path, and a cooling water inflow pipe 13 and a cooling water outflow pipe 14 communicating with the cooling flow path project from one side surface of the housing 12. The lower case 11 is opened on the upper side (Z direction), and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11. The upper case 10 and the lower case 11 are formed of an aluminum alloy or the like, and are sealed and fixed to the outside. The upper case 10 and the lower case 11 may be integrated and configured. Since the housing 12 has a simple rectangular parallelepiped shape, it can be easily attached to a vehicle or the like, and productivity is also improved.
図16に示すように、電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷却水流入管13および冷却水流出管14が突出している。下部ケース11は、上部側(Z方向)が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産性も向上する。 16 is an external perspective view of the
As shown in FIG. 16, the
筐体12の長手方向の一側面に、コネクタ17が取り付けられており、このコネクタ17には、交流ターミナル18が接続されている。また、冷却水流入管13および冷却水流出管14が導出された面には、コネクタ21が設けられている。
A connector 17 is attached to one side surface of the housing 12 in the longitudinal direction, and an AC terminal 18 is connected to this connector 17. Further, a connector 21 is provided on the surface from which the cooling water inflow pipe 13 and the cooling water outflow pipe 14 are led out.
図17に示すように、筐体12内には、電気回路体400が収容されている。電気回路体400の上方には、制御回路172およびドライバ回路174が配置され、電気回路体400の直流端子側には、コンデンサモジュール500が収容されている。コンデンサモジュールを電気回路体400と同一高さに配置することで、電力変換装置200を薄型化でき、車両への設置自由度が向上する。電気回路体400の交流側端子320Bは、電流センサ180を貫通してバスバーに接合されている。また、電気回路体400の直流端子である正極側端子315Bおよび負極側端子319Bは、それぞれ、コンデンサモジュール500の正・負極端子(図13の直流端子362A、362B)に接合される。
As shown in FIG. 17, the electric circuit body 400 is housed in the housing 12. A control circuit 172 and a driver circuit 174 are arranged above the electric circuit body 400, and a capacitor module 500 is housed on the DC terminal side of the electric circuit body 400. By arranging the capacitor module at the same height as the electric circuit body 400, the power conversion device 200 can be made thinner and the degree of freedom of installation in a vehicle is improved. The AC side terminal 320B of the electric circuit body 400 penetrates the current sensor 180 and is joined to the bus bar. Further, the positive electrode side terminal 315B and the negative electrode side terminal 319B, which are the DC terminals of the electric circuit body 400, are joined to the positive and negative electrode terminals ( DC terminals 362A and 362B in FIG. 13) of the capacitor module 500, respectively.
以上説明した実施形態によれば、次の作用効果が得られる。
(1)パワーモジュール300は、導体板430、431、432、433の一方面に接合されるパワー半導体素子159と、導体板430、431、432、433の他方面に接合される絶縁層を含んだシート部材440、441と、導体板430、431、432、433とシート部材440、441とをトランスファーモールドにより封止する封止部材360と、を備え、導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、一方面に封止部材360と接する第2領域D2と、に区分され、第2領域D2に剛性が低い低剛性部460を形成した。これにより、導体板が平坦ではない場合であっても、導体板とシート部材とを密着することができ、放熱性に優れた装置を提供できる。 According to the embodiment described above, the following effects can be obtained.
(1) Thepower module 300 includes a power semiconductor element 159 bonded to one surface of the conductor plates 430, 431, 432, and 433, and an insulating layer bonded to the other surface of the conductor plates 430, 431, 432, and 433. The sheet members 440 and 441 are provided with a sealing member 360 for sealing the conductor plates 430 and 431, 432, 433 and the sheet members 440 and 441 by a transfer mold, and the conductor plates 430, 431, 432 and 433 are provided. A low-rigidity portion 460 having low rigidity is provided in the second region D2, which is divided into a first region D1 to which the power semiconductor element 159 is bonded to one surface and a second region D2 in contact with the sealing member 360 on one surface. Formed. As a result, even when the conductor plate is not flat, the conductor plate and the sheet member can be brought into close contact with each other, and a device having excellent heat dissipation can be provided.
(1)パワーモジュール300は、導体板430、431、432、433の一方面に接合されるパワー半導体素子159と、導体板430、431、432、433の他方面に接合される絶縁層を含んだシート部材440、441と、導体板430、431、432、433とシート部材440、441とをトランスファーモールドにより封止する封止部材360と、を備え、導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、一方面に封止部材360と接する第2領域D2と、に区分され、第2領域D2に剛性が低い低剛性部460を形成した。これにより、導体板が平坦ではない場合であっても、導体板とシート部材とを密着することができ、放熱性に優れた装置を提供できる。 According to the embodiment described above, the following effects can be obtained.
(1) The
本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.
10・・・上部ケース、11・・・下部ケース、13・・・冷却水流入管、14・・・冷却水流出管、17・・・コネクタ、18・・・交流ターミナル、21・・・コネクタ、43、140、142・・・インバータ回路、155・・・第1パワー半導体素子(上アーム回路能動素子)、156・・・第1パワー半導体素子(上アーム回路ダイオード)、157・・・第2パワー半導体素子(下アーム回路能動素子)、158・・・第2パワー半導体素子(下アーム回路ダイオード)、159・・・パワー半導体素子、172・・・制御回路、174・・・ドライバ回路、180・・・電流センサ、181、182、188・・・コネクタ、192、194・・・モータジェネレータ、200・・・電力変換装置、300・・・パワーモジュール、310・・・回路体、315B・・・正極側端子、319B・・・負極側端子、320B・・・交流側端子、325・・・信号端子、325K・・・ケルビンエミッタ信号端子、325L・・・下アームゲート信号端子、325M・・・ミラーエミッタ信号端子、325U・・・上アームゲート信号端子、340・・・冷却部材、360・・・封止部材、400・・・電気回路体、430・・・第1導体板(上アーム回路エミッタ側)、431・・・第2導体板(上アーム回路コレクタ側)、432・・・第3導体板(下アーム回路エミッタ側)、433・・・第4導体板(下アーム回路コレクタ側)、440・・・第1シート部材(エミッタ側)、441・・・第2シート部材(コレクタ側)、442・・・第1樹脂絶縁層(エミッタ側)、443・・・第2樹脂絶縁層(コレクタ側)、444・・・金属箔、453・・・熱伝導部材、460・・・低剛性部、461・・・スプリングによる圧力、462・・・スプリングによる加圧で面圧が高い領域、463・・・スプリングによる加圧で面圧が低い領域、464・・・成型圧力による圧力、500・・・コンデンサモジュール、601・・・トランスファーモールド装置、602・・・スプリング、D1・・・第1領域、D2・・・第2領域、p・・・加圧外郭線。
10 ... upper case, 11 ... lower case, 13 ... cooling water inflow pipe, 14 ... cooling water outflow pipe, 17 ... connector, 18 ... AC terminal, 21 ... connector, 43, 140, 142 ... Inverter circuit, 155 ... First power semiconductor element (upper arm circuit active element), 156 ... First power semiconductor element (upper arm circuit diode), 157 ... Second Power semiconductor element (lower arm circuit active element), 158 ... second power semiconductor element (lower arm circuit diode), 159 ... power semiconductor element, 172 ... control circuit, 174 ... driver circuit, 180 ... current sensor, 181, 182, 188 ... connector, 192, 194 ... motor generator, 200 ... power converter, 300 ... power module, 310 ... circuit body, 315B ... -Positive side terminal, 319B ... Negative side terminal, 320B ... AC side terminal, 325 ... Signal terminal, 325K ... Kelvin emitter signal terminal, 325L ... Lower arm gate signal terminal, 325M ... -Mirror emitter signal terminal, 325U ... upper arm gate signal terminal, 340 ... cooling member, 360 ... sealing member, 400 ... electric circuit body, 430 ... first conductor plate (upper arm) Circuit emitter side), 431 ... 2nd conductor plate (upper arm circuit collector side), 432 ... 3rd conductor plate (lower arm circuit emitter side), 433 ... 4th conductor plate (lower arm circuit collector side) Side), 440 ... 1st sheet member (emitter side), 441 ... 2nd sheet member (collector side), 442 ... 1st resin insulating layer (emitter side), 443 ... 2nd resin Insulation layer (collector side), 444: metal foil, 453: heat conductive member, 460: low rigidity part, 461: pressure by spring, 462: surface pressure by pressurization by spring High region, 463 ... Region where the surface pressure is low due to pressurization by the spring, 464 ... Pressure due to molding pressure, 500 ... Condenser module, 601 ... Transfer molding device, 602 ... Spring, D1 ... .. 1st region, D2 ... 2nd region, p ... Pressurized outer line.
Claims (8)
- 導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記導体板と前記シート部材とをトランスファーモールドにより封止する封止部材と、を備えたパワーモジュールであって、
前記導体板は、前記一方面に前記パワー半導体素子が接合される第1領域と、前記一方面に前記封止部材と接する第2領域と、に区分され、前記第2領域に他の部分よりも剛性が低い低剛性部を形成したパワーモジュール。 A sheet member including a power semiconductor element bonded to one surface of a conductor plate and an insulating layer bonded to the other surface of the conductor plate, and the conductor plate and the sheet member are sealed by a transfer mold. It is a power module equipped with members and
The conductor plate is divided into a first region in which the power semiconductor element is bonded to the one surface and a second region in contact with the sealing member on the one surface, and the second region is divided into a second region from another portion. A power module that forms a low-rigidity part with low rigidity. - 請求項1に記載のパワーモジュールにおいて、
前記導体板の板厚を薄くすることにより前記低剛性部を形成したパワーモジュール。 In the power module according to claim 1,
A power module in which the low-rigidity portion is formed by reducing the thickness of the conductor plate. - 請求項1に記載のパワーモジュールにおいて、
前記導体板に凹部を設けることにより前記低剛性部を形成したパワーモジュール。 In the power module according to claim 1,
A power module in which the low-rigidity portion is formed by providing a recess in the conductor plate. - 請求項1に記載のパワーモジュールにおいて、
前記導体板の前記第1領域は、前記パワー半導体素子に向けて形成された凸部の上面部で前記パワー半導体素子と接合し、
前記低剛性部は、前記導体板の前記凸部の底面端部から前記シート部材へ向けて広がる圧力の加圧外郭線より外側に形成されるパワーモジュール。 In the power module according to claim 1,
The first region of the conductor plate is joined to the power semiconductor device at an upper surface portion of a convex portion formed toward the power semiconductor device.
The low-rigidity portion is a power module formed outside the pressurized outer line of pressure spreading from the bottom end portion of the convex portion of the conductor plate toward the seat member. - 請求項4に記載のパワーモジュールにおいて、
前記加圧外郭線は、前記凸部の底面端部から前記シート部材へ向けて45°の角度で広がるパワーモジュール。 In the power module according to claim 4,
The pressurized outer line is a power module that extends from the bottom end of the convex portion toward the seat member at an angle of 45 °. - 請求項1に記載のパワーモジュールにおいて、
前記低剛性部を形成した前記導体板は、前記パワー半導体素子のコレクタ電極に接続されるパワーモジュール。 In the power module according to claim 1,
The conductor plate on which the low-rigidity portion is formed is a power module connected to a collector electrode of the power semiconductor element. - 請求項1から請求項6までのいずれか一項に記載のパワーモジュールにおいて、
前記導体板は、前記パワー半導体素子の両面に配置されて、前記配置された前記各導体板の一方面は前記パワー半導体素子に接合され、
前記シート部材は、前記各導体板の他方面に接合されるパワーモジュール。 In the power module according to any one of claims 1 to 6.
The conductor plates are arranged on both sides of the power semiconductor element, and one surface of each of the arranged conductor plates is joined to the power semiconductor element.
The sheet member is a power module joined to the other surface of each conductor plate. - 請求項1から請求項6までのいずれか一項に記載のパワーモジュールと、
前記パワーモジュールと熱伝導部材を介して接着される冷却部材と、を備え、直流電力を交流電力に変換する電力変換装置。 The power module according to any one of claims 1 to 6.
A power conversion device comprising the power module and a cooling member bonded via a heat conductive member, and converting DC power into AC power.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-212041 | 2020-12-22 | ||
JP2020212041A JP7549520B2 (en) | 2020-12-22 | 2020-12-22 | Power module and power conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137704A1 true WO2022137704A1 (en) | 2022-06-30 |
Family
ID=82157468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/036018 WO2022137704A1 (en) | 2020-12-22 | 2021-09-29 | Power module and power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7549520B2 (en) |
WO (1) | WO2022137704A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012244035A (en) * | 2011-05-23 | 2012-12-10 | Aisin Seiki Co Ltd | Semiconductor device and manufacturing method of the same |
JP2013106503A (en) * | 2011-11-17 | 2013-05-30 | Mitsubishi Electric Corp | Power conversion apparatus |
JP2014216459A (en) * | 2013-04-25 | 2014-11-17 | 三菱電機株式会社 | Semiconductor device |
JP2018014357A (en) * | 2016-07-19 | 2018-01-25 | 三菱電機株式会社 | Semiconductor device |
-
2020
- 2020-12-22 JP JP2020212041A patent/JP7549520B2/en active Active
-
2021
- 2021-09-29 WO PCT/JP2021/036018 patent/WO2022137704A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012244035A (en) * | 2011-05-23 | 2012-12-10 | Aisin Seiki Co Ltd | Semiconductor device and manufacturing method of the same |
JP2013106503A (en) * | 2011-11-17 | 2013-05-30 | Mitsubishi Electric Corp | Power conversion apparatus |
JP2014216459A (en) * | 2013-04-25 | 2014-11-17 | 三菱電機株式会社 | Semiconductor device |
JP2018014357A (en) * | 2016-07-19 | 2018-01-25 | 三菱電機株式会社 | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2022098581A (en) | 2022-07-04 |
JP7549520B2 (en) | 2024-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7491707B2 (en) | Electrical circuit body, power conversion device, and method for manufacturing the electrical circuit body | |
JP7196047B2 (en) | ELECTRICAL CIRCUIT, POWER CONVERTER, AND METHOD OF MANUFACTURING ELECTRICAL CIRCUIT | |
WO2022123870A1 (en) | Electrical circuit body, power conversion device, and electrical circuit body manufacturing method | |
JPWO2020157965A1 (en) | Semiconductor devices, their manufacturing methods, and power conversion devices | |
WO2022137701A1 (en) | Electric circuit element and power converting apparatus | |
CN113261095A (en) | Semiconductor device, method for manufacturing semiconductor device, and power conversion device | |
WO2022137692A1 (en) | Electrical circuit and power conversion device | |
WO2022137704A1 (en) | Power module and power conversion device | |
JP7699483B2 (en) | Electrical circuit and power conversion device | |
JP7650836B2 (en) | Semiconductor device and power conversion device | |
JP2010239033A (en) | Semiconductor device and manufacturing method thereof | |
JP2024006808A (en) | Electric circuits and power converters | |
WO2023112997A1 (en) | Semiconductor device and power conversion device | |
JP2025002137A (en) | Semiconductor module, electric circuit body and electric power conversion device | |
WO2024009617A1 (en) | Electric circuit body and power conversion device | |
JP2023081051A (en) | Semiconductor module, electric power conversion device and method of manufacturing semiconductor module | |
JP2024072609A (en) | Electrical circuit and power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21909862 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21909862 Country of ref document: EP Kind code of ref document: A1 |