[go: up one dir, main page]

JP7549520B2 - Power module and power conversion device - Google Patents

Power module and power conversion device Download PDF

Info

Publication number
JP7549520B2
JP7549520B2 JP2020212041A JP2020212041A JP7549520B2 JP 7549520 B2 JP7549520 B2 JP 7549520B2 JP 2020212041 A JP2020212041 A JP 2020212041A JP 2020212041 A JP2020212041 A JP 2020212041A JP 7549520 B2 JP7549520 B2 JP 7549520B2
Authority
JP
Japan
Prior art keywords
power
conductor plate
power module
conductor
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020212041A
Other languages
Japanese (ja)
Other versions
JP2022098581A (en
Inventor
円丈 露野
佑輔 高木
ひろみ 島津
裕二朗 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2020212041A priority Critical patent/JP7549520B2/en
Priority to PCT/JP2021/036018 priority patent/WO2022137704A1/en
Publication of JP2022098581A publication Critical patent/JP2022098581A/en
Application granted granted Critical
Publication of JP7549520B2 publication Critical patent/JP7549520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/18Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Description

本発明は、パワーモジュールおよび電力変換装置に関する。 The present invention relates to a power module and a power conversion device.

パワー半導体素子のスイッチングを用いた電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。このパワー半導体素子は通電により発熱するため、高い放熱性が求められる。例えば、車載用においては、小型、軽量化のため水冷を用いた高効率な装置が採用されている。 Power conversion devices that use switching power semiconductor elements have high conversion efficiency and are therefore widely used in consumer, automotive, railway and substation equipment. These power semiconductor elements generate heat when electricity is passed through them, so they require high heat dissipation properties. For example, for automotive applications, highly efficient devices that use water cooling are used to reduce size and weight.

パワー半導体素子には導体板が接合され、さらに、導体板とシート部材とをトランスファーモールドにより絶縁樹脂などの封止部材を封止している。そして、封止部材の注入時の圧力を用いて導体板とシート部材を接合させている。 A conductor plate is bonded to the power semiconductor element, and then the conductor plate and sheet member are sealed with a sealing material such as insulating resin by transfer molding. The conductor plate and sheet member are then bonded together using the pressure applied when the sealing material is injected.

特許文献1には、モールド金型のキャビティ内に絶縁シートを載置し、その上に電子部品を載置し、モールド金型のエアベント部から空気を抜きつつ、キャビティ内にモールド樹脂を注入して絶縁シート及び電子部品を樹脂封止する技術が開示されている。 Patent Document 1 discloses a technique in which an insulating sheet is placed in the cavity of a molding die, an electronic component is placed on top of the insulating sheet, and while removing air from an air vent in the molding die, molding resin is injected into the cavity to resin-seal the insulating sheet and electronic component.

特開2008-16506号公報JP 2008-16506 A

特許文献1の技術では、導体板が平坦ではなく反りや傾斜などがある場合に、トランスファーモールドによる圧力が加わっても、導体板とシート部材との密着性が損なわれ、放熱性が低下する。 In the technology of Patent Document 1, if the conductive plate is not flat but has warping or tilt, the adhesion between the conductive plate and the sheet member is lost even when pressure is applied from the transfer mold, and heat dissipation is reduced.

本発明によるパワーモジュールは、導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記導体板と前記シート部材とをトランスファーモールドにより封止する封止部材と、を備えたパワーモジュールであって、前記第2領域には、前記第2領域内の所定位置から前記導体板の外縁部まで連続して、前記導体板の板厚を他の部分よりも薄くした低剛性部が形成されている The power module according to the present invention is a power module comprising: a power semiconductor element joined to one side of a conductor plate; a sheet member including an insulating layer joined to the other side of the conductor plate; and a sealing member that seals the conductor plate and the sheet member by transfer molding, wherein a low-rigidity portion is formed in the second region, extending continuously from a predetermined position within the second region to the outer edge of the conductor plate, the thickness of the conductor plate being thinner than other portions .

本発明によれば、導体板が平坦ではない場合であっても、導体板とシート部材とを密着することができ、放熱性に優れた装置を提供できる。 According to the present invention, even if the conductive plate is not flat, the conductive plate and the sheet member can be tightly attached to each other, providing a device with excellent heat dissipation properties.

電気回路体の平面図である。FIG. 電気回路体のX-X線断面図である。XX line cross-sectional view of the electric circuit body. 電気回路体のY-Y線断面図である。4 is a cross-sectional view of the electric circuit body taken along line YY. パワーモジュールの断面斜視図である。FIG. 2 is a cross-sectional perspective view of a power module. (a)~(c)電気回路体の製造方法を説明する断面図である。5A to 5C are cross-sectional views illustrating a method for manufacturing an electric circuit body. (d)~(f)電気回路体の製造方法を説明する断面図である。5(d) to 5(f) are cross-sectional views illustrating a method for manufacturing an electric circuit body. (g)~(i)電気回路体の製造方法を説明する断面図である。5(g) to 5(i) are cross-sectional views illustrating a method for manufacturing an electric circuit body. (a)(b)トランスファーモールドの詳細を示す図である。1A and 1B are diagrams showing details of a transfer mold. (a)~(c)モデルA、Bと各モデルの解析結果を示すグラフである。13A to 13C are graphs showing models A and B and the analysis results of each model. 放熱を説明する電気回路体のY-Y線断面図である。4 is a cross-sectional view of the electric circuit taken along line YY, illustrating heat dissipation. FIG. (a)~(c)導体板の平面図である。4A to 4C are plan views of a conductor plate. 変形例における電気回路体のY-Y線断面図である。13 is a cross-sectional view of an electric circuit body according to a modified example taken along line YY. FIG. パワーモジュールの半透過平面図である。FIG. 2 is a semi-transparent plan view of the power module. パワーモジュールの回路図である。FIG. 2 is a circuit diagram of a power module. パワーモジュールを用いた電力変換装置の回路図である。FIG. 1 is a circuit diagram of a power conversion device using a power module. 電力変換装置の外観斜視図である。FIG. 2 is an external perspective view of the power conversion device. 電力変換装置のXV-XV線の断面斜視図である。1 is a cross-sectional perspective view of the power conversion device taken along line XV-XV.

以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 The following describes an embodiment of the present invention with reference to the drawings. The following description and drawings are examples for explaining the present invention, and some parts have been omitted or simplified as appropriate for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.

図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.

同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are multiple components with the same or similar functions, they may be described using the same reference numerals with different subscripts. However, when there is no need to distinguish between these multiple components, the subscripts may be omitted.

図1は、電気回路体400の平面図、図2は、電気回路体400の図1に示すX-X線断面図である。図3は、電気回路体400の図1に示すY-Y線断面図である。
図1に示すように、電気回路体400は、3個のパワーモジュール300と冷却部材340よりなる。パワーモジュール300は、パワー半導体素子を用い直流電流と交流電流とを変換する機能があり、通電により発熱する。このため、冷却部材340の中に冷媒を流通して冷却する構造としている。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いる。なお、冷却部材340は、ピン状のフィンが冷却部材340のベース板に立設された構成であってもよい。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。冷却部材340は、押し出し成型や、鍛造、ろう付け等で作製する。
Fig. 1 is a plan view of the electric circuit body 400, and Fig. 2 is a cross-sectional view of the electric circuit body 400 taken along line XX shown in Fig. 1. Fig. 3 is a cross-sectional view of the electric circuit body 400 taken along line YY shown in Fig. 1.
As shown in FIG. 1, the electric circuit body 400 is composed of three power modules 300 and a cooling member 340. The power module 300 has a function of converting DC current and AC current using power semiconductor elements, and generates heat when electricity is applied. For this reason, a cooling member 340 is configured to be cooled by circulating a coolant through it. The coolant used may be water or an antifreeze solution in which ethylene glycol is mixed with water. The cooling member 340 may have a pin-shaped fin standing on a base plate of the cooling member 340. The cooling member 340 is preferably made of aluminum, which has high thermal conductivity and is lightweight. The cooling member 340 is manufactured by extrusion molding, forging, brazing, or the like.

パワーモジュール300は、一方側に、直流回路のコンデンサモジュール500(後述の図14参照)に連結する正極側端子315Bおよび負極側端子319Bを備えている。正極側端子315Bおよび負極側端子319Bの他方側には、交流回路のモータジェネレータ192、194(後述の図15参照)に連結する交流側端子320B等の大電流が流れるパワー端子を備えている。また、他方側には、下アームゲート信号端子325L、ミラーエミッタ信号端子325M、ケルビンエミッタ信号端子325K、上アームゲート信号端子325U等のパワーモジュール300の制御に用いる信号端子等を備えている。 The power module 300 has a positive terminal 315B and a negative terminal 319B on one side that are connected to the capacitor module 500 of the DC circuit (see FIG. 14 described later). The other side of the positive terminal 315B and the negative terminal 319B has power terminals through which a large current flows, such as the AC terminal 320B that is connected to the motor generators 192, 194 of the AC circuit (see FIG. 15 described later). The other side also has signal terminals used to control the power module 300, such as the lower arm gate signal terminal 325L, the mirror emitter signal terminal 325M, the Kelvin emitter signal terminal 325K, and the upper arm gate signal terminal 325U.

図2に示すように、上アーム回路を形成する第1パワー半導体素子として、能動素子155、ダイオード156を備える。能動素子155を構成する半導体材料としては、例えばSi、SiC、GaN、GaO、C等を用いることができる。能動素子155のボディダイオードを用いる場合は、ダイオード156を省略してもよい。能動素子155のコレクタ側およびダイオード156のカソード側は、第2導体板431に接合されている。能動素子155のエミッタ側およびダイオード156のアノード側には第1導体板430が接合されている。これらの接合には、はんだを用いてもよいし、焼結金属を用いてもよい。また、第1導体板430、第2導体板431は、電気伝導性と熱伝導率が高い材料であれば特に限定されないが、銅系又はアルミ系材料が望ましい。これらは、単独で用いてもよいが、はんだや、焼結金属との接合性を高めるためNiやAg等のめっきを施してもよい。 2, the active element 155 and the diode 156 are provided as the first power semiconductor element forming the upper arm circuit. Examples of the semiconductor material constituting the active element 155 include Si, SiC, GaN, GaO, and C. When the body diode of the active element 155 is used, the diode 156 may be omitted. The collector side of the active element 155 and the cathode side of the diode 156 are joined to the second conductor plate 431. The emitter side of the active element 155 and the anode side of the diode 156 are joined to the first conductor plate 430. Solder or sintered metal may be used for these connections. The first conductor plate 430 and the second conductor plate 431 are not particularly limited as long as they have high electrical conductivity and thermal conductivity, but copper-based or aluminum-based materials are preferable. These may be used alone, or may be plated with Ni, Ag, or the like to improve the bonding with the solder or sintered metal.

第1導体板430には、第1シート部材440、さらに熱伝導部材453を介して冷却部材340が密着される。第1シート部材440は、第1樹脂絶縁層442と金属箔444とを積層して構成され、金属箔444側が熱伝導部材453に密着される。 The cooling member 340 is attached to the first conductive plate 430 via the first sheet member 440 and the thermally conductive member 453. The first sheet member 440 is formed by laminating a first resin insulating layer 442 and a metal foil 444, and the metal foil 444 side is attached to the thermally conductive member 453.

第2導体板431には、第2シート部材441、さらに熱伝導部材453を介して冷却部材340が密着される。第2シート部材441は、第2樹脂絶縁層443と金属箔444とを積層して構成され、金属箔444側が熱伝導部材453に密着される。 The cooling member 340 is adhered to the second conductive plate 431 via the second sheet member 441 and the thermally conductive member 453. The second sheet member 441 is formed by laminating a second resin insulating layer 443 and a metal foil 444, and the metal foil 444 side is adhered to the thermally conductive member 453.

図3に示すように、下アーム回路を形成する第2パワー半導体素子として、能動素子157、ダイオード158(後述の図13、図14参照)を備える。なお、図3において、ダイオード158はX軸方向で能動素子157の奥側に配置されている。能動素子157のコレクタ側およびダイオード158のカソード側は、第4導体板433に接合されている。能動素子157のエミッタ側およびダイオード158のアノード側には第3導体板432が接合されている。 As shown in FIG. 3, the second power semiconductor elements forming the lower arm circuit include an active element 157 and a diode 158 (see FIG. 13 and FIG. 14 described later). In FIG. 3, the diode 158 is disposed behind the active element 157 in the X-axis direction. The collector side of the active element 157 and the cathode side of the diode 158 are joined to the fourth conductor plate 433. The third conductor plate 432 is joined to the emitter side of the active element 157 and the anode side of the diode 158.

図3に示すように、第1導体板430、第2導体板431、第3導体板432、第4導体板433は、電流を通電する役割の他に、第1パワー半導体素子155、156、第2パワー半導体素子157、158が発する熱を冷却部材340に伝熱する伝熱部材としての役割を果たしている。各導体板430、431、432、433と冷却部材340とは電位が異なるため、図2に示すように、各導体板430、431、432、433と冷却部材340との間に第1樹脂絶縁層442を有する第1シート部材440を介し、第2樹脂絶縁層443を有する第2シート部材441を介する。各シート部材440、441と冷却部材340との間には、接触熱抵抗を低減するため熱伝導部材453を有する。なお、第1パワー半導体素子155、156、第2パワー半導体素子157、158を単にパワー半導体素子159と称する場合がある。 3, the first conductor plate 430, the second conductor plate 431, the third conductor plate 432, and the fourth conductor plate 433, in addition to carrying current, also serve as heat transfer members that transfer heat generated by the first power semiconductor elements 155, 156 and the second power semiconductor elements 157, 158 to the cooling member 340. Since the electric potentials of the conductor plates 430, 431, 432, and 433 are different from those of the cooling member 340, as shown in FIG. 2, a first sheet member 440 having a first resin insulating layer 442 is interposed between the conductor plates 430, 431, 432, and 433 and the cooling member 340, and a second sheet member 441 having a second resin insulating layer 443 is interposed between the conductor plates 430, 431, 432, and 433 and the cooling member 340. A heat conductive member 453 is provided between the sheet members 440 and 441 and the cooling member 340 to reduce contact thermal resistance. In addition, the first power semiconductor elements 155, 156 and the second power semiconductor elements 157, 158 may be simply referred to as power semiconductor element 159.

熱伝導部材453は、熱伝導率が高い材料であれば特に限定されないが、金属、セラミックス、炭素系材料等の高熱伝導材料を樹脂材料と組み合わせて用いることが好ましい。これは、熱伝導部材453と冷却部材340との間、熱伝導部材453と各シート部材440、441との間を樹脂材料が補填し、接触熱抵抗が低減するためである。 The thermal conductive member 453 is not particularly limited as long as it is a material with high thermal conductivity, but it is preferable to use a highly thermal conductive material such as a metal, ceramic, or carbon-based material in combination with a resin material. This is because the resin material fills the gap between the thermal conductive member 453 and the cooling member 340, and between the thermal conductive member 453 and each sheet member 440, 441, reducing contact thermal resistance.

第1パワー半導体素子155、156、第2パワー半導体素子157、158、各導体板430、431、432、433、各シート部材440、441は、トランスファーモールド成型により封止部材360で封止されている。各シート部材440、441の第1樹脂絶縁層442、第2樹脂絶縁層443は、各導体板430、431、432、433との接着性を有するものであれば特に限定されないが、粉末状の無機充填剤を分散したエポキシ樹脂系樹脂絶縁層が望ましい。これは、接着性と放熱性のバランスが良いためである。各シート部材440、441は、樹脂絶縁層単体でもよいが、熱伝導部材453と接する側に金属箔444を設けることが望ましい。トランスファーモールド成型工程において、各シート部材440、441を金型に搭載する際、金型への接着を防ぐため、各シート部材440、441と金型との接触面には、離型シート又は、金属箔444を設ける。離型シートは、熱伝導率が悪いためトランスファーモールド後に剥離する工程が必要となるが、金属箔444の場合は、銅系や、アルミ系の熱伝導率の高い金属を選択することで、トランスファーモールド後に剥離することなく使用することができる。各シート部材440、441を含めてトランスファーモールドする事で、各シート部材440、441の端部が封止部材360で被覆されることで製品の信頼性が向上する効果がある。 The first power semiconductor elements 155, 156, the second power semiconductor elements 157, 158, the conductor plates 430, 431, 432, 433, and the sheet members 440, 441 are sealed with the sealing member 360 by transfer molding. The first resin insulating layer 442 and the second resin insulating layer 443 of each sheet member 440, 441 are not particularly limited as long as they have adhesive properties with the conductor plates 430, 431, 432, 433, but an epoxy resin-based resin insulating layer in which powdered inorganic filler is dispersed is preferable. This is because it has a good balance between adhesiveness and heat dissipation. Each sheet member 440, 441 may be a resin insulating layer alone, but it is preferable to provide a metal foil 444 on the side in contact with the heat conductive member 453. In the transfer molding process, when each sheet member 440, 441 is mounted on a mold, a release sheet or metal foil 444 is provided on the contact surface between each sheet member 440, 441 and the mold to prevent adhesion to the mold. Release sheets have poor thermal conductivity and require a process to peel them off after transfer molding, but in the case of metal foil 444, by selecting a copper-based or aluminum-based metal with high thermal conductivity, it can be used without peeling after transfer molding. By transfer molding including each sheet member 440, 441, the ends of each sheet member 440, 441 are covered with sealing member 360, which has the effect of improving product reliability.

導体板430、431、432、433は、電気伝導性が高く、熱伝導率が高い材料が望ましく、銅やアルミ等の金属系材料や、金属系材料と高熱伝導率のダイヤモンド、カーボンやセラミック等の複合材料等を用いることもできる。導体板430、431、432、433は、詳細は後述するが、一方面にパワー半導体素子159が接合される第1領域と、当該一方面に封止部材と接する第2領域と、に区分され、第2領域に他の部分よりも剛性が低い低剛性部460(図2参照)を形成する。低剛性部460は、プレス加工により凹部を、または機械加工やレーザ加工による切削により板厚を薄く形成する。 The conductor plates 430, 431, 432, 433 are preferably made of a material with high electrical conductivity and high thermal conductivity, and may be made of metal-based materials such as copper or aluminum, or composite materials of metal-based materials and high thermal conductivity materials such as diamond, carbon, or ceramic. The conductor plates 430, 431, 432, 433 are divided into a first region where the power semiconductor element 159 is bonded to one side, and a second region where the sealing member is in contact with the one side, as will be described in detail later, and a low-rigidity portion 460 (see FIG. 2) with lower rigidity than other portions is formed in the second region. The low-rigidity portion 460 is formed by forming a recess by pressing, or by cutting using mechanical processing or laser processing to reduce the plate thickness.

図4は、図1に示すX-X線におけるパワーモジュール300の断面斜視図であり、電気回路体400から冷却部材340を取り除いた状態を示す。図4に示すように、第1シート部材440の端部は、封止部材360によって覆われている。第1導体板430の表面と重なる第1シート部材440は放熱面である。第1シート部材440の放熱面上に冷却部材340を密着して、冷却部材340との間の密着性を確保し、放熱性が損なわれないようにする。 Figure 4 is a cross-sectional perspective view of the power module 300 taken along line X-X in Figure 1, showing the state in which the cooling member 340 has been removed from the electric circuit body 400. As shown in Figure 4, the end of the first sheet member 440 is covered by a sealing member 360. The first sheet member 440 that overlaps with the surface of the first conductive plate 430 is the heat dissipation surface. The cooling member 340 is tightly attached to the heat dissipation surface of the first sheet member 440 to ensure close contact with the cooling member 340 and to prevent loss of heat dissipation.

図5(a)~(c)、図6(d)~(f)、図7(g)~(i)は、電気回路体400の製造方法を示す断面図である。各図の左側に図1に示すX-X線における1パワーモジュール分の断面図を、右側に図1に示すY-Y線における1パワーモジュール分の断面図を示す。 Figures 5(a)-(c), 6(d)-(f), and 7(g)-(i) are cross-sectional views showing a manufacturing method for the electric circuit body 400. The left side of each figure shows a cross-sectional view of one power module taken along line X-X in Figure 1, and the right side shows a cross-sectional view of one power module taken along line Y-Y in Figure 1.

図5(a)は、はんだ接続工程及びワイヤボンディング工程を示す図である。第2導体板431に、第1パワー半導体素子である能動素子155のコレクタ側およびダイオード156のカソード側を接続し、能動素子155のゲート電極をワイヤボンディングで接続する。第1導体板430に能動素子155のエミッタ側およびダイオード156のアノード側を接続する。同様に、第4導体板433に、第2パワー半導体素子である能動素子157のコレクタ側およびダイオード158のカソード側を接続し、能動素子157のゲート電極をワイヤボンディングで接続する。第3導体板432に能動素子157のエミッタ側およびダイオード158のアノード側を接続する。このようにして、回路体310を形成する。 Figure 5 (a) is a diagram showing the solder connection process and the wire bonding process. The collector side of the active element 155, which is the first power semiconductor element, and the cathode side of the diode 156 are connected to the second conductor plate 431, and the gate electrode of the active element 155 is connected by wire bonding. The emitter side of the active element 155 and the anode side of the diode 156 are connected to the first conductor plate 430. Similarly, the collector side of the active element 157, which is the second power semiconductor element, and the cathode side of the diode 158 are connected to the fourth conductor plate 433, and the gate electrode of the active element 157 is connected by wire bonding. The emitter side of the active element 157 and the anode side of the diode 158 are connected to the third conductor plate 432. In this way, the circuit body 310 is formed.

導体板430、431、432、433は、低剛性部460を備える。また、導体板430、431、432、433には、反りがあってもよく、また、はんだ厚さのばらつきになどにより、はんだ接続後に傾斜が生じる場合がある。 The conductive plates 430, 431, 432, and 433 each have a low-rigidity portion 460. The conductive plates 430, 431, 432, and 433 may be warped, and may become inclined after solder connection due to variations in solder thickness, etc.

図5(b)は、金型設置工程を示す図である。トランスファーモールド装置601は、スプリング602とシート部材440、441を金型に真空吸着する。シート部材440、441を金型に真空吸着するための真空脱気機構等は図示省略している。予め175℃の恒温状態に加熱した金型内に、治具を用い位置合わせしたシート部材440、441を真空吸着にて保持する。そこに、あらかじめ175℃に予熱した回路体310をシート部材440、441から離間した状態の金型内に設置する。 Figure 5(b) shows the mold installation process. The transfer mold device 601 vacuum-adsorbs the spring 602 and the sheet members 440, 441 to the mold. A vacuum degassing mechanism for vacuum-adsorbing the sheet members 440, 441 to the mold is not shown. The sheet members 440, 441 are aligned using a jig and held by vacuum adsorption in a mold that has been heated to a constant temperature of 175°C. The circuit body 310, which has been preheated to 175°C, is then placed in the mold separated from the sheet members 440, 441.

図5(c)は、加圧工程を示す図である。シート部材440、441と回路体310とが離間した状態から、上下の金型を近接し、図示していない上下金型の周囲に設置したパッキンのみ接触させる。次に、金型のキャビティ内を真空排気する。所定の気圧以下になるよう真空排気が完了すると、パッキンを更に押しつぶすように、上下の金型を加圧し完全に締め付ける。この時、シート部材440、441と回路体310は接触する。 Figure 5 (c) shows the pressurizing process. With the sheet members 440, 441 and the circuit body 310 separated, the upper and lower dies are brought close together, and only the packings installed around the upper and lower dies (not shown) come into contact. Next, the cavity of the die is evacuated. When the evacuation is completed to a predetermined air pressure or less, the upper and lower dies are pressurized and completely tightened so as to further crush the packing. At this time, the sheet members 440, 441 and the circuit body 310 come into contact.

導体板430、431、432、433のパワー半導体素子159が接合される第1領域に反りや傾斜がある場合、スプリング602による圧力でシート部材440、441と導体板430、431、432、433は密着する。一方、導体板430、431、432、433の封止部材と接する第2領域に反りや傾斜がある場合、スプリング602による圧力が及ばず、導体板430、431、432、433とシート部材440、441の密着性が不足し、導体板430、431、432、433とシート部材440、441との間に隙間が発生する可能性がある。しかし、本実施形態では、以下に説明するようにして導体板430、431、432、433とシート部材440、441との密着性を高めることが可能になる。 If the first region of the conductor plates 430, 431, 432, and 433 where the power semiconductor element 159 is joined is warped or tilted, the pressure of the spring 602 will bring the sheet members 440 and 441 into close contact with the conductor plates 430, 431, 432, and 433. On the other hand, if the second region of the conductor plates 430, 431, 432, and 433 that contacts the sealing member is warped or tilted, the pressure of the spring 602 will not reach the conductor plates 430, 431, 432, and 433, and the sheet members 440 and 441 will be insufficient, and gaps may occur between the conductor plates 430, 431, 432, and 433 and the sheet members 440 and 441. However, in this embodiment, it is possible to increase the adhesion between the conductor plates 430, 431, 432, and 433 and the sheet members 440 and 441 as described below.

図6(d)~図6(f)は、トランスファーモールドにより封止部材360を注入する注入工程を示す図である。図6(d)に示すように、図示省略した注入口より封止部材360を金型内に注入する。図6(e)の矢印で示すように、封止部材360の注入による成型圧力は静水圧として、金型内部に均等に加わる。この時、図6(f)の矢印で示すように、導体板430、431、432、433の第2領域には低剛性部460が形成されているので、成型圧力により、導体板430、431、432、433の第2領域がシート部材440、441に押し付けられる。これにより、導体板430、431、432、433に反りや傾斜があっても導体板430、431、432、433の端部までシート部材440、441と密着させることができる。導体板430、431、432、433の第2領域に低剛性部460を形成していない場合は、導体板430、431、432、433の第2領域に反りや傾斜があれば、第2領域の曲げ剛性が高いままとなり、導体板430、431、432、433の曲げ反力により、導体板430、431、432、433をシート部材440、441に押し付けることができない。しかし、本実施形態では、低剛性部460を設けているため、導体板430、431、432、433の曲げ反力が低減し、導体板430、431、432、433とシート部材440、441との密着性を向上できる。 6(d) to 6(f) are diagrams showing the injection process of injecting the sealing member 360 by transfer molding. As shown in FIG. 6(d), the sealing member 360 is injected into the mold from an injection port not shown. As shown by the arrows in FIG. 6(e), the molding pressure caused by the injection of the sealing member 360 is applied evenly inside the mold as hydrostatic pressure. At this time, as shown by the arrows in FIG. 6(f), since the low-rigidity portion 460 is formed in the second region of the conductor plates 430, 431, 432, and 433, the second region of the conductor plates 430, 431, 432, and 433 is pressed against the sheet members 440 and 441 by the molding pressure. As a result, even if the conductor plates 430, 431, 432, and 433 are warped or tilted, the sheet members 440 and 441 can be tightly attached to the ends of the conductor plates 430, 431, 432, and 433. If the low rigidity portion 460 is not formed in the second region of the conductor plates 430, 431, 432, 433, if the second region of the conductor plates 430, 431, 432, 433 is warped or tilted, the bending rigidity of the second region remains high, and the bending reaction force of the conductor plates 430, 431, 432, 433 cannot press the conductor plates 430, 431, 432, 433 against the sheet members 440, 441. However, in this embodiment, since the low rigidity portion 460 is provided, the bending reaction force of the conductor plates 430, 431, 432, 433 is reduced, and the adhesion between the conductor plates 430, 431, 432, 433 and the sheet members 440, 441 can be improved.

図7(g)は、硬化工程を示す図である。トランスファーモールド装置601から封止部材360で封止したパワーモジュール300を取り出し、常温で冷却し、2時間以上の硬化を行う。 Figure 7 (g) shows the curing process. The power module 300 sealed with the sealing member 360 is removed from the transfer molding device 601, cooled to room temperature, and cured for at least two hours.

図7(h)は、冷却部材340の設置工程を示す図である。パワーモジュール300の両面に熱伝導部材453を介して冷却部材340を押し当てる。これにより、冷却部材340は、熱伝導部材453を介して第1シート部材440、第2シート部材441に密着される。 Figure 7 (h) is a diagram showing the installation process of the cooling member 340. The cooling member 340 is pressed against both sides of the power module 300 via the thermal conductive member 453. This causes the cooling member 340 to be in close contact with the first sheet member 440 and the second sheet member 441 via the thermal conductive member 453.

図7(i)は、以上の工程により製造された電気回路体400を示す図である。このようにして、パワーモジュール300の両面に冷却部材340が設置されて電気回路体400が製造される。 Figure 7(i) shows the electric circuit body 400 manufactured by the above process. In this way, the cooling members 340 are installed on both sides of the power module 300, and the electric circuit body 400 is manufactured.

図8(a)、図8(b)は、トランスファーモールドの詳細を示す図である。これらの図を参照して、導体板430、431、432、433とシート部材440、441との密着について説明する。いずれも、図1に示すY-Y線における1パワーモジュール分の断面図を例に説明する。 Figures 8(a) and 8(b) are diagrams showing the details of the transfer mold. With reference to these figures, the adhesion between the conductive plates 430, 431, 432, and 433 and the sheet members 440 and 441 will be explained. In both cases, the cross-sectional view of one power module taken along line Y-Y in Figure 1 will be used as an example.

図8(a)は、金型を閉じてスプリング602により圧力461が加わっている状態である。導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、当該一方面に封止部材360と接する第2領域D2に区分される。導体板430、431、432、433の第1領域D1は、パワー半導体素子159に向けて形成された凸部の上面でパワー半導体素子159と接合している。第1領域D1には、スプリング602による圧力が加わる。この圧力は、導体板430、431、432、433の凸部の底面端部dからシート部材440、441へ向けて導体板430、431、432、433内を45°の角度で広がる。以降、導体板430、431、432、433の凸部の底面端部からシート部材440、441へ向けて導体板430、431、432、433内を広がる圧力の外郭線を加圧外郭線pと称する。本実施形態では、加圧外郭線pは、底面端部dから45°の角度で広がる例を示すが、必ずしも45°でなくてもよい。低剛性部460は、加圧外郭線pより外側に形成される。したがって、スプリング602による圧力461が加わった場合でも、低剛性部460に過度な圧力が掛かることを低減できる。 8(a) shows a state in which the mold is closed and pressure 461 is applied by spring 602. Conductor plates 430, 431, 432, 433 are divided into a first region D1 where power semiconductor element 159 is bonded to one side, and a second region D2 where the sealing member 360 is in contact with the one side. The first region D1 of conductor plates 430, 431, 432, 433 is bonded to the power semiconductor element 159 on the upper surface of the convex portion formed toward the power semiconductor element 159. Pressure by spring 602 is applied to the first region D1. This pressure spreads at an angle of 45° inside conductor plates 430, 431, 432, 433 from the bottom end d of the convex portion of conductor plates 430, 431, 432, 433 toward sheet members 440, 441. Hereinafter, the pressure contour line that spreads from the bottom end of the convex portion of the conductor plates 430, 431, 432, 433 toward the sheet members 440, 441 within the conductor plates 430, 431, 432, 433 is referred to as the pressure contour line p. In this embodiment, the pressure contour line p spreads at an angle of 45° from the bottom end d, but it does not necessarily have to be 45°. The low rigidity portion 460 is formed outside the pressure contour line p. Therefore, even when pressure 461 is applied by the spring 602, excessive pressure on the low rigidity portion 460 can be reduced.

図8(a)では、スプリング602による圧力により、導体板430、431、432、433にかかる圧力が高い領域462を、シート部材440、441に縦罫線を付して示す。また、スプリング602による圧力により、導体板430、431、432、433にかかる圧力が低い領域463は縦罫線を付していない。導体板430、431、432、433とシート部材440、441の接着には接着力の発現に必要な面圧が必要となるため、領域462で接着しても、領域463では剥離する場合が生じる。 In FIG. 8(a), vertical lines are drawn on the sheet members 440 and 441 to show region 462 where the pressure exerted by the spring 602 on the conductor plates 430, 431, 432, and 433 is high. Vertical lines are not drawn on region 463 where the pressure exerted by the spring 602 on the conductor plates 430, 431, 432, and 433 is low. Since the adhesion between the conductor plates 430, 431, 432, and 433 and the sheet members 440 and 441 requires a surface pressure necessary to exert an adhesive force, even if the adhesion is achieved in region 462, peeling may occur in region 463.

図8(b)は、封止部材360を注入口603より注入している状態である。封止部材360は一旦液状になるため、成型圧力が静水圧として封止部材360全体に加わる。この圧力が導体板430、431、432、433の第2領域D2にも加わる。第2領域D2には、低剛性部460を設けているため、導体板430、431、432、433の曲げ反力が低減している。したがって、圧力464により導体板430、431、432、433はシート部材440、441に押し付けられる。これにより、スプリング602の圧力による圧力が低い領域463も面圧を向上でき、導体板430、431、432、433とシート部材440、441との密着性を向上できる。 Figure 8 (b) shows the state in which the sealing member 360 is injected from the injection port 603. Since the sealing member 360 becomes liquid once, the molding pressure is applied to the entire sealing member 360 as hydrostatic pressure. This pressure is also applied to the second region D2 of the conductor plates 430, 431, 432, and 433. Since the low-rigidity portion 460 is provided in the second region D2, the bending reaction force of the conductor plates 430, 431, 432, and 433 is reduced. Therefore, the conductor plates 430, 431, 432, and 433 are pressed against the sheet members 440 and 441 by the pressure 464. As a result, the surface pressure can be improved even in the region 463 where the pressure due to the pressure of the spring 602 is low, and the adhesion between the conductor plates 430, 431, 432, and 433 and the sheet members 440 and 441 can be improved.

図9(a)は、導体板430、431、432、433のモデルAを、図9(b)は、導体板430、431、432、433のモデルBを、図9(c)は、各モデルの解析結果を示すグラフである。
モデルAは、導体板430、431、432、433に低剛性部460として凹部を、モデルBは、低剛性部460として板厚を薄くしたものである。いずれも、導体板430、431、432、433は、板厚T0であり、低剛性部460は、板厚T1(T0>T1)である。また、低剛性化した領域の導体板430、431、432、433の長さLは、低剛性化していない領域の導体板430、431、432、433の長さOより4倍以上長い。導体板430、431、432、433の左端部を固定し、上方より圧力Pを加える。
9A shows model A of conductive plates 430, 431, 432, and 433, FIG. 9B shows model B of conductive plates 430, 431, 432, and 433, and FIG. 9C is a graph showing the analysis results of each model.
Model A has recesses as low-rigidity parts 460 in conductive plates 430, 431, 432, 433, and model B has a reduced plate thickness as low-rigidity part 460. In both cases, conductive plates 430, 431, 432, 433 have a plate thickness T0, and low-rigidity part 460 has a plate thickness T1 (T0>T1). In addition, length L of conductive plates 430, 431, 432, 433 in the reduced-rigidity area is four times or more longer than length O of conductive plates 430, 431, 432, 433 in the non-reduced-rigidity area. The left ends of conductive plates 430, 431, 432, 433 are fixed, and pressure P is applied from above.

図9(c)の横軸は厚さ比であり、低剛性化した部分の板厚T1を低剛性化していない部分の板厚T0で除した値、縦軸は変形率であり、低剛性部460を設けたときの右端部の変形量を、低剛性部460を設けなかった場合の右端部の変形量で除した値を示す。図9(c)に示すように、モデルA、モデルBともに、低剛性化していない厚さ比1に比べ、低剛性化することで変形率は指数関数的に増加する。これは、導体板430、431、432、433の曲げ剛性が低剛性化により大幅に低下することを示している。このように導体板430、431、432、433の曲げ剛性を低下することで、導体板430、431、432、433の反力が低下する。このため、前述のように、封止部材360の成型圧力により導体板430、431、432、433はシート部材440、441に押し付けられ、導体板430、431、432、433とシート部材440、441と密着時の面圧を向上できる。このように密着時の面圧を向上することで、430、431、432、433とシート部材440、441を接着し絶縁性を向上することができる。 9(c), the horizontal axis is the thickness ratio, which is the value obtained by dividing the plate thickness T1 of the portion with reduced rigidity by the plate thickness T0 of the portion without reduced rigidity, and the vertical axis is the deformation rate, which is the value obtained by dividing the deformation amount of the right end portion when the low rigidity portion 460 is provided by the deformation amount of the right end portion when the low rigidity portion 460 is not provided. As shown in FIG. 9(c), in both Model A and Model B, the deformation rate increases exponentially by reducing the rigidity compared to the thickness ratio of 1 without reduced rigidity. This indicates that the bending rigidity of the conductor plates 430, 431, 432, and 433 is significantly reduced by reducing the rigidity. By reducing the bending rigidity of the conductor plates 430, 431, 432, and 433 in this way, the reaction force of the conductor plates 430, 431, 432, and 433 is reduced. For this reason, as described above, the molding pressure of the sealing member 360 presses the conductive plates 430, 431, 432, and 433 against the sheet members 440 and 441, improving the surface pressure when the conductive plates 430, 431, 432, and 433 are in close contact with the sheet members 440 and 441. By improving the surface pressure when in close contact in this way, the conductor plates 430, 431, 432, and 433 can be bonded to the sheet members 440 and 441, improving the insulation.

図10は、図1に示すY-Y線における1パワーモジュール分の断面図である。
図10を用いて、導体板430、431、432、433の低剛性部460と放熱経路を説明する。図8(a)を参照して説明したように、導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、当該一方面に封止部材と接する第2領域D2に区分される。パワー半導体素子159の熱は、導体板430、431、432、433の凸部の底面端部dからシート部材440、441へ向けて導体板430、431、432、433内を45°の角度で広がる。その後、パワー半導体素子159の熱は、シート部材440、441及び熱伝導部材453を介して冷却部材340に伝わる。このように、導体板430、431、432、433の板厚に対しおよそ45度の角度、すなわち加圧外郭線pが、主たる熱伝導経路となるため、加圧外郭線pより内側に凹部などの低剛性部460があると放熱性が著しく低下する。このため、低剛性部460を設ける場合は、加圧外郭線pの外側に設けることが望ましい。なお、低剛性部460は、第1導体板430と第2導体板431の一方、および、第3導体板432と第4導体板433の一方にのみそれぞれ設けても良く、その場合は、少なくとも第2導体板(上アーム回路コレクタ側)431、第4導体板(下アーム回路コレクタ側)433、すなわち、パワー半導体素子159のコレクタ電極に接続される導体板431、433に設けるのが望ましい。その理由は、パワー半導体素子159のコレクタ電極に大電流が流れて高温となるため、コレクタ電極に接続される導体板431、433とシート部材440、441との密着性をより高めて放熱性を向上させる必要があるからである。
FIG. 10 is a cross-sectional view of one power module taken along line YY shown in FIG.
The low rigidity portion 460 and the heat dissipation path of the conductor plates 430, 431, 432, and 433 will be described with reference to FIG. 8A. As described with reference to FIG. 8A, the conductor plates 430, 431, 432, and 433 are divided into a first region D1 where the power semiconductor element 159 is bonded to one surface, and a second region D2 where the one surface is in contact with the sealing member. The heat of the power semiconductor element 159 spreads at an angle of 45° inside the conductor plates 430, 431, 432, and 433 from the bottom end d of the convex portion of the conductor plates 430, 431, 432, and 433 toward the sheet members 440 and 441. The heat of the power semiconductor element 159 is then transferred to the cooling member 340 via the sheet members 440 and 441 and the heat conductive member 453. In this way, the angle of about 45 degrees with respect to the plate thickness of the conductor plates 430, 431, 432, and 433, i.e., the pressurized outer boundary line p, becomes the main heat conduction path, so if there is a low-rigidity portion 460 such as a recess inside the pressurized outer boundary line p, the heat dissipation performance will be significantly reduced. For this reason, when the low-rigidity portion 460 is provided, it is preferable to provide it outside the pressurized outer boundary line p. Note that the low-rigidity portion 460 may be provided only on one of the first conductor plate 430 and the second conductor plate 431, and on one of the third conductor plate 432 and the fourth conductor plate 433, respectively. In that case, it is preferable to provide it at least on the second conductor plate (upper arm circuit collector side) 431 and the fourth conductor plate (lower arm circuit collector side) 433, i.e., the conductor plates 431 and 433 connected to the collector electrode of the power semiconductor element 159. The reason for this is that a large current flows through the collector electrode of the power semiconductor element 159, causing it to become hot, and therefore it is necessary to improve the adhesion between the conductive plates 431, 433 connected to the collector electrode and the sheet members 440, 441 to improve heat dissipation.

図11(a)、図11(b)、図11(c)は、第2導体板(上アーム回路コレクタ側)431の平面図である。図11(a)は、本実施形態の平面図を、図11(b)は、変形例1を、図11(c)は、変形例2を示す。各図において、平面図はパワー半導体素子155、156が接合される面を示す。 Figures 11(a), 11(b), and 11(c) are plan views of the second conductor plate (upper arm circuit collector side) 431. Figure 11(a) shows the plan view of this embodiment, Figure 11(b) shows modified example 1, and Figure 11(c) shows modified example 2. In each figure, the plan view shows the surface where the power semiconductor elements 155 and 156 are joined.

図11(a)に示す本実施形態では、導体板431にパワー半導体素子155、156を囲む位置に低剛性部460を設けている。したがって、パワー半導体素子155、156の周囲において、導体板431とシート部材440、441との密着性を高めることができる。また、導体板431が広いため放熱性に優れる効果がある。 In this embodiment shown in FIG. 11(a), a low-rigidity portion 460 is provided in the conductor plate 431 at a position surrounding the power semiconductor elements 155, 156. This increases the adhesion between the conductor plate 431 and the sheet members 440, 441 around the power semiconductor elements 155, 156. In addition, the conductor plate 431 is wide, which has the effect of providing excellent heat dissipation.

図11(b)に示す変形例1では、導体板431のX方向の長さを縮小し、加圧外郭線pの内側に導体板431が収まるようにした。これにより低剛性部460をパワー半導体素子155、156に対しY軸方向のみ設けている。低剛性部460を省略することで加工コストを低減できる。 In the first modification shown in FIG. 11(b), the length of the conductor plate 431 in the X direction is reduced so that the conductor plate 431 fits inside the pressurized outer contour line p. This means that the low-rigidity portion 460 is provided only in the Y-axis direction with respect to the power semiconductor elements 155 and 156. By omitting the low-rigidity portion 460, the processing cost can be reduced.

図11(c)に示す変形例2では、導体板431のX方向の長さを縮小し、加圧外郭線pの内側に導体板431が収まるようにし、且つ低剛性部460を断続的に設けている。具体的には、凹部などの低剛性部460を所定間隔で導体板431のX方向に沿って配置する。低剛性部460を省略することで加工コストを低減できる他に、低剛性部460を断続的に設けているので導体板431に熱が広がりやすく放熱性に優れる。 In the second modification shown in FIG. 11(c), the length of the conductor plate 431 in the X direction is reduced so that the conductor plate 431 fits inside the pressurized outer contour line p, and low rigidity sections 460 are provided intermittently. Specifically, low rigidity sections 460 such as recesses are arranged at predetermined intervals along the X direction of the conductor plate 431. In addition to being able to reduce processing costs by omitting the low rigidity sections 460, the low rigidity sections 460 are provided intermittently, so that heat spreads easily in the conductor plate 431, resulting in excellent heat dissipation.

図12は、図1に示すY-Y線における1パワーモジュール分の断面図であり、導体板431の変形例を示す。
図12に示すように、第1導体板(上アーム回路エミッタ側)430の低剛性部460として、図9(b)で示したモデルBを適用したものである。
モデルBでは、モデルAと比較すると導体板430の断面積が小さくなるが、導体板430をプレス加工で作製しやすい効果がある。なお、放熱性の点では、導体板430の断面積が大きいモデルAが優れる。
FIG. 12 is a cross-sectional view of one power module taken along line YY in FIG.
As shown in FIG. 12, model B shown in FIG. 9B is applied as a low-rigidity portion 460 of a first conductive plate (upper arm circuit emitter side) 430.
In model B, the cross-sectional area of the conductor plate 430 is smaller than that of model A, but there is an advantage that the conductor plate 430 can be easily manufactured by press working. In terms of heat dissipation, model A, in which the cross-sectional area of the conductor plate 430 is larger, is superior.

上述した本実施形態によれば、導体板430、431、432、433に反りがあっても、また、はんだ接続後に傾斜が生じても、トランスファーモールド工程において、導体板430、431、432、433の反りや傾斜を矯正し、シート部材440、441と導体板430、431、432、433を端部まで接着することができ、絶縁性、放熱性に優れる効果がある。 According to the present embodiment described above, even if the conductive plates 430, 431, 432, and 433 are warped or tilted after solder connection, the warping and tilting of the conductive plates 430, 431, 432, and 433 can be corrected in the transfer molding process, and the sheet members 440 and 441 and the conductive plates 430, 431, 432, and 433 can be bonded to the ends, resulting in excellent insulation and heat dissipation properties.

図13は、本実施形態におけるパワーモジュール300の半透過平面図である。図14は、本実施形態におけるパワーモジュール300の回路図である。 Figure 13 is a semi-transparent plan view of the power module 300 in this embodiment. Figure 14 is a circuit diagram of the power module 300 in this embodiment.

図13、図14に示すように、正極側端子315Bは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート信号端子325Uは、上アーム回路の能動素子155のゲート及びエミッタセンスから出力している。負極側端子319Bは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート信号端子325Lは、下アーム回路の能動素子157のゲート及びエミッタセンスから出力している。交流側端子320Bは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。 As shown in Figures 13 and 14, the positive terminal 315B is output from the collector side of the upper arm circuit and is connected to the positive side of a battery or a capacitor. The upper arm gate signal terminal 325U is output from the gate and emitter sense of the active element 155 of the upper arm circuit. The negative terminal 319B is output from the emitter side of the lower arm circuit and is connected to the negative side of a battery or a capacitor, or GND. The lower arm gate signal terminal 325L is output from the gate and emitter sense of the active element 157 of the lower arm circuit. The AC side terminal 320B is output from the collector side of the lower arm circuit and is connected to the motor. When the neutral point is grounded, the lower arm circuit is connected to the negative side of the capacitor instead of GND.

また、第1パワー半導体素子(上アーム回路)の能動素子155およびダイオード156の上下に第1導体板(上アーム回路エミッタ側)430、第2導体板(上アーム回路コレクタ側)431が配置される。第2パワー半導体素子(下アーム回路)の能動素子157およびダイオード158の上下に第3導体板(下アーム回路エミッタ側)432、第4導体板(下アーム回路コレクタ側)433が配置される。なお、各導体板430、431、432、433に形成されている低剛性部460は、図示を省略している。 A first conductor plate (upper arm circuit emitter side) 430 and a second conductor plate (upper arm circuit collector side) 431 are arranged above and below the active element 155 and diode 156 of the first power semiconductor element (upper arm circuit). A third conductor plate (lower arm circuit emitter side) 432 and a fourth conductor plate (lower arm circuit collector side) 433 are arranged above and below the active element 157 and diode 158 of the second power semiconductor element (lower arm circuit). Note that the low rigidity portions 460 formed on the conductor plates 430, 431, 432, and 433 are omitted from the illustration.

本実施形態のパワーモジュール300は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。この他に、複数の上アーム回路及び下アーム回路を、1つのモジュールに一体化した構造を用いてもよい。この場合は、パワーモジュール300からの出力端子の数を低減し小型化することができる。 The power module 300 of this embodiment has a 2-in-1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module. Alternatively, a structure in which multiple upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the power module 300 can be reduced, resulting in a smaller size.

図15は、電気回路体400を用いた電力変換装置200の回路図である。
電力変換装置200は、インバータ回路140、142と、補機用のインバータ回路43と、コンデンサモジュール500とを備えている。インバータ回路140及び142は、パワーモジュール300を複数個備えた電気回路体400(図示省略)により構成されており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更にパワーモジュール300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、パワーモジュール300に内蔵しているパワー半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。
FIG. 15 is a circuit diagram of a power conversion device 200 using the electric circuit body 400.
The power conversion device 200 includes inverter circuits 140 and 142, an inverter circuit 43 for auxiliary equipment, and a capacitor module 500. The inverter circuits 140 and 142 are configured with an electric circuit body 400 (not shown) including a plurality of power modules 300, which are connected to form a three-phase bridge circuit. When the current capacity is large, the current capacity can be increased by connecting further power modules 300 in parallel and making these parallel connections corresponding to each phase of the three-phase inverter circuit. In addition, the current capacity can be increased by connecting active elements 155 and 157 and diodes 156 and 158, which are power semiconductor elements built into the power module 300, in parallel.

インバータ回路140とインバータ回路142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。 The inverter circuit 140 and the inverter circuit 142 have the same basic circuit configuration, and the control method and operation are also basically the same. Since the outline of the circuit operation of the inverter circuit 140 and the like is well known, a detailed explanation will be omitted here.

上述のように、上アーム回路は、スイッチング用のパワー半導体素子として上アーム用の能動素子155と上アーム用のダイオード156とを備えており、下アーム回路は、スイッチング用のパワー半導体素子として下アーム用の能動素子157と下アーム用のダイオード158とを備えている。能動素子155、157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。 As described above, the upper arm circuit includes an upper arm active element 155 and an upper arm diode 156 as power semiconductor elements for switching, and the lower arm circuit includes a lower arm active element 157 and a lower arm diode 158 as power semiconductor elements for switching. The active elements 155 and 157 receive a drive signal output from one or the other of the two driver circuits that make up the driver circuit 174 and perform a switching operation to convert the DC power supplied from the battery 136 into three-phase AC power.

上述したように、上アーム用の能動素子155および下アーム用の能動素子157は、コレクタ電極、エミッタ電極、ゲート電極を備えている。上アーム用のダイオード156および下アーム用のダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。図13に示すように、ダイオード156、158のカソード電極が能動素子155、157のコレクタ電極に、アノード電極が能動素子155、157のエミッタ電極にそれぞれ電気的に接続されている。これにより、上アーム用の能動素子155および下アーム用の能動素子157のエミッタ電極からコレクタ電極に向かう電流の流れが順方向となっている。 As described above, the upper arm active element 155 and the lower arm active element 157 have a collector electrode, an emitter electrode, and a gate electrode. The upper arm diode 156 and the lower arm diode 158 have two electrodes, a cathode electrode and an anode electrode. As shown in FIG. 13, the cathode electrodes of the diodes 156 and 158 are electrically connected to the collector electrodes of the active elements 155 and 157, and the anode electrodes are electrically connected to the emitter electrodes of the active elements 155 and 157, respectively. This causes the current flow from the emitter electrode of the upper arm active element 155 and the lower arm active element 157 to the collector electrode in the forward direction.

なお、能動素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いても良く、この場合は、上アーム用のダイオード156、下アーム用のダイオード158は不要となる。 Note that a MOSFET (metal-oxide semiconductor field-effect transistor) may be used as the active element, in which case the upper arm diode 156 and the lower arm diode 158 are not required.

各上・下アーム直列回路の正極側端子315Bと負極側端子319Bとはコンデンサモジュール500のコンデンサ接続用の直流端子362A、362Bにそれぞれ接続されている。上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生し、各上・下アーム直列回路の上アーム回路と下アーム回路の接続部は各パワーモジュール300の交流側端子320Bに接続されている。各相の各パワーモジュール300の交流側端子320Bはそれぞれ電力変換装置200の交流出力端子に接続され、発生した交流電力はモータジェネレータ192または194の固定子巻線に供給される。 The positive terminal 315B and negative terminal 319B of each upper and lower arm series circuit are connected to DC terminals 362A and 362B for connecting capacitors of the capacitor module 500, respectively. AC power is generated at the connection between the upper arm circuit and the lower arm circuit, and the connection between the upper arm circuit and the lower arm circuit of each upper and lower arm series circuit is connected to the AC side terminal 320B of each power module 300. The AC side terminal 320B of each power module 300 of each phase is connected to the AC output terminal of the power conversion device 200, and the generated AC power is supplied to the stator winding of the motor generator 192 or 194.

制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アーム用の能動素子155、下アームの能動素子157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アーム用の能動素子155、下アーム用の能動素子157をスイッチング動作させるための駆動信号を生成する。なお、181、182、188はコネクタである。 The control circuit 172 generates a timing signal for controlling the switching timing of the upper arm active element 155 and the lower arm active element 157 based on input information from the vehicle's control device and sensors (e.g., current sensor 180). The driver circuit 174 generates a drive signal for switching the upper arm active element 155 and the lower arm active element 157 based on the timing signal output from the control circuit 172. Note that 181, 182, and 188 are connectors.

上・下アーム直列回路は、不図示の温度センサを含み、上・下アーム直列回路の温度情報が制御回路172に入力される。また、制御回路172には上・下アーム直列回路の直流正極側の電圧情報が入力される。制御回路172は、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用の能動素子155、下アーム用の能動素子157のスイッチング動作を停止させ、上・下アーム直列回路を過温度或いは過電圧から保護する。 The upper and lower arm series circuits include a temperature sensor (not shown), and temperature information of the upper and lower arm series circuits is input to the control circuit 172. In addition, voltage information of the DC positive pole side of the upper and lower arm series circuits is input to the control circuit 172. The control circuit 172 performs over-temperature detection and over-voltage detection based on this information, and if over-temperature or over-voltage is detected, it stops the switching operation of all upper arm active elements 155 and lower arm active elements 157, protecting the upper and lower arm series circuits from over-temperature or over-voltage.

図16は、図15に示す電力変換装置200の外観斜視図であり、図17は、図16に示す電力変換装置200のXV-XV線の断面斜視図である。
図16に示すように、電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷却水流入管13および冷却水流出管14が突出している。下部ケース11は、上部側(Z方向)が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産性も向上する。
16 is an external perspective view of the power conversion device 200 shown in FIG. 15, and FIG. 17 is a cross-sectional perspective view of the power conversion device 200 shown in FIG. 16 taken along line XV-XV.
As shown in FIG. 16, the power conversion device 200 includes a housing 12 formed of a lower case 11 and an upper case 10 and having a substantially rectangular parallelepiped shape. An electric circuit body 400, a capacitor module 500, and the like are housed inside the housing 12. The electric circuit body 400 has a cooling flow path, and a cooling water inlet pipe 13 and a cooling water outlet pipe 14 communicating with the cooling flow path protrude from one side of the housing 12. The lower case 11 has an opening on the upper side (Z direction), and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11. The upper case 10 and the lower case 11 are formed of an aluminum alloy or the like, and are fixed in a sealed manner against the outside. The upper case 10 and the lower case 11 may be integrally configured. By forming the housing 12 into a simple rectangular parallelepiped shape, it becomes easy to attach it to a vehicle or the like, and also improves productivity.

筐体12の長手方向の一側面に、コネクタ17が取り付けられており、このコネクタ17には、交流ターミナル18が接続されている。また、冷却水流入管13および冷却水流出管14が導出された面には、コネクタ21が設けられている。 A connector 17 is attached to one longitudinal side of the housing 12, and an AC terminal 18 is connected to this connector 17. In addition, a connector 21 is provided on the surface from which the cooling water inlet pipe 13 and the cooling water outlet pipe 14 are led out.

図17に示すように、筐体12内には、電気回路体400が収容されている。電気回路体400の上方には、制御回路172およびドライバ回路174が配置され、電気回路体400の直流端子側には、コンデンサモジュール500が収容されている。コンデンサモジュールを電気回路体400と同一高さに配置することで、電力変換装置200を薄型化でき、車両への設置自由度が向上する。電気回路体400の交流側端子320Bは、電流センサ180を貫通してバスバーに接合されている。また、電気回路体400の直流端子である正極側端子315Bおよび負極側端子319Bは、それぞれ、コンデンサモジュール500の正・負極端子(図13の直流端子362A、362B)に接合される。 As shown in FIG. 17, the electric circuit body 400 is housed in the housing 12. The control circuit 172 and the driver circuit 174 are arranged above the electric circuit body 400, and the capacitor module 500 is housed on the DC terminal side of the electric circuit body 400. By arranging the capacitor module at the same height as the electric circuit body 400, the power conversion device 200 can be made thinner, improving the degree of freedom of installation in the vehicle. The AC side terminal 320B of the electric circuit body 400 is connected to the bus bar through the current sensor 180. In addition, the positive side terminal 315B and the negative side terminal 319B, which are DC terminals of the electric circuit body 400, are respectively connected to the positive and negative terminals of the capacitor module 500 (DC terminals 362A and 362B in FIG. 13).

以上説明した実施形態によれば、次の作用効果が得られる。
(1)パワーモジュール300は、導体板430、431、432、433の一方面に接合されるパワー半導体素子159と、導体板430、431、432、433の他方面に接合される絶縁層を含んだシート部材440、441と、導体板430、431、432、433とシート部材440、441とをトランスファーモールドにより封止する封止部材360と、を備え、導体板430、431、432、433は、一方面にパワー半導体素子159が接合される第1領域D1と、一方面に封止部材360と接する第2領域D2と、に区分され、第2領域D2に剛性が低い低剛性部460を形成した。これにより、導体板が平坦ではない場合であっても、導体板とシート部材とを密着することができ、放熱性に優れた装置を提供できる。
According to the embodiment described above, the following advantageous effects can be obtained.
(1) The power module 300 includes a power semiconductor element 159 bonded to one side of the conductor plates 430, 431, 432, 433, sheet members 440, 441 including an insulating layer bonded to the other side of the conductor plates 430, 431, 432, 433, and a sealing member 360 that seals the conductor plates 430, 431, 432, 433 and the sheet members 440, 441 by transfer molding, and the conductor plates 430, 431, 432, 433 are divided into a first region D1 where the power semiconductor element 159 is bonded to one side and a second region D2 that contacts the sealing member 360 on one side, and a low-rigidity portion 460 with low rigidity is formed in the second region D2. As a result, even if the conductor plate is not flat, the conductor plate and the sheet member can be tightly attached to each other, and a device with excellent heat dissipation properties can be provided.

本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other forms that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention, so long as they do not impair the characteristics of the present invention. In addition, the above-described embodiment may be combined with multiple modified examples.

10・・・上部ケース、11・・・下部ケース、13・・・冷却水流入管、14・・・冷却水流出管、17・・・コネクタ、18・・・交流ターミナル、21・・・コネクタ、43、140、142・・・インバータ回路、155・・・第1パワー半導体素子(上アーム回路能動素子)、156・・・第1パワー半導体素子(上アーム回路ダイオード)、157・・・第2パワー半導体素子(下アーム回路能動素子)、158・・・第2パワー半導体素子(下アーム回路ダイオード)、159・・・パワー半導体素子、172・・・制御回路、174・・・ドライバ回路、180・・・電流センサ、181、182、188・・・コネクタ、192、194・・・モータジェネレータ、200・・・電力変換装置、300・・・パワーモジュール、310・・・回路体、315B・・・正極側端子、319B・・・負極側端子、320B・・・交流側端子、325・・・信号端子、325K・・・ケルビンエミッタ信号端子、325L・・・下アームゲート信号端子、325M・・・ミラーエミッタ信号端子、325U・・・上アームゲート信号端子、340・・・冷却部材、360・・・封止部材、400・・・電気回路体、430・・・第1導体板(上アーム回路エミッタ側)、431・・・第2導体板(上アーム回路コレクタ側)、432・・・第3導体板(下アーム回路エミッタ側)、433・・・第4導体板(下アーム回路コレクタ側)、440・・・第1シート部材(エミッタ側)、441・・・第2シート部材(コレクタ側)、442・・・第1樹脂絶縁層(エミッタ側)、443・・・第2樹脂絶縁層(コレクタ側)、444・・・金属箔、453・・・熱伝導部材、460・・・低剛性部、461・・・スプリングによる圧力、462・・・スプリングによる加圧で面圧が高い領域、463・・・スプリングによる加圧で面圧が低い領域、464・・・成型圧力による圧力、500・・・コンデンサモジュール、601・・・トランスファーモールド装置、602・・・スプリング、D1・・・第1領域、D2・・・第2領域、p・・・加圧外郭線。 10: upper case, 11: lower case, 13: cooling water inlet pipe, 14: cooling water outlet pipe, 17: connector, 18: AC terminal, 21: connector, 43, 140, 142: inverter circuit, 155: first power semiconductor element (upper arm circuit active element), 156: first power semiconductor element (upper arm circuit diode), 157: second power semiconductor element (lower arm circuit active element), 158: second power semiconductor element (lower arm circuit diode), 159 . . Power semiconductor element, 172... Control circuit, 174... Driver circuit, 180... Current sensor, 181, 182, 188... Connector, 192, 194... Motor generator, 200... Power conversion device, 300... Power module, 310... Circuit body, 315B... Positive terminal, 319B... Negative terminal, 320B... AC terminal, 325... Signal terminal, 325K... Kelvin emitter signal terminal, 325L... Lower arm gate signal terminal, 325M... a first resin insulating layer (emitter side), a second resin insulating layer (collector side), a third resin insulating layer (emitter side), a fourth resin insulating layer (collector side), a fourth resin insulating layer (collector side), a second resin insulating layer (emitter side), a third resin insulating layer (collector side), a fourth resin insulating layer (collector side), a fourth resin insulating layer (emitter side), a fifth resin insulating layer (collector side), a sixth resin insulating layer (emitter side), a sixth resin insulating layer (collector side), a sixth resin insulating layer (collector side), a sixth resin insulating layer (collector side), a sixth resin insulating layer (collector side), a sixth resin insulating layer (collector side), a sixth resin insulating layer (collector side), a seventh resin insulating layer (emitter side), a seventh resin insulating layer (collector ... 443: second resin insulating layer (collector side), 444: metal foil, 453: heat conductive member, 460: low rigidity section, 461: pressure from spring, 462: high surface pressure area due to pressure from spring, 463: low surface pressure area due to pressure from spring, 464: pressure from molding pressure, 500: capacitor module, 601: transfer molding device, 602: spring, D1: first area, D2: second area, p: pressure outer contour line.

Claims (6)

導体板の一方面に接合されるパワー半導体素子と、前記導体板の他方面に接合される絶縁層を含んだシート部材と、前記導体板と前記シート部材とをトランスファーモールドにより封止する封止部材と、を備えたパワーモジュールであって、
前記導体板は、前記一方面に前記パワー半導体素子が接合される第1領域と、前記一方面に前記封止部材と接する第2領域と、に区分され、
前記第2領域には、前記第2領域内の所定位置から前記導体板の外縁部まで連続して、前記導体板の板厚を他の部分よりも薄くした低剛性部が形成されているパワーモジュール。
A power module comprising: a power semiconductor element bonded to one surface of a conductor plate; a sheet member including an insulating layer bonded to the other surface of the conductor plate; and a sealing member that seals the conductor plate and the sheet member by transfer molding,
the conductor plate is divided into a first region to which the power semiconductor element is bonded on the one surface, and a second region in contact with the sealing member on the one surface,
A power module in which a low-rigidity portion is formed in the second region, extending continuously from a predetermined position within the second region to the outer edge of the conductor plate, the thickness of the conductor plate being thinner than other portions .
請求項1に記載のパワーモジュールにおいて、
前記導体板の前記第1領域は、前記パワー半導体素子に向けて形成された凸部の上面部で前記パワー半導体素子と接合し、
前記低剛性部は、前記導体板の前記凸部の底面端部から前記シート部材へ向けて広がる圧力の加圧外郭線より外側に形成されるパワーモジュール。
2. The power module according to claim 1,
the first region of the conductor plate is joined to the power semiconductor element at an upper surface portion of a protrusion formed toward the power semiconductor element,
The low rigidity portion is a power module formed outside a pressure contour line of pressure spreading from a bottom end of the convex portion of the conductor plate toward the sheet member.
請求項に記載のパワーモジュールにおいて、
前記加圧外郭線は、前記凸部の底面端部から前記シート部材へ向けて45°の角度で広がるパワーモジュール。
3. The power module according to claim 2 ,
The pressurized contour line extends at an angle of 45° from the bottom end of the convex portion toward the sheet member.
請求項1に記載のパワーモジュールにおいて、
前記低剛性部を形成した前記導体板は、前記パワー半導体素子のコレクタ電極に接続されるパワーモジュール。
2. The power module according to claim 1,
The conductor plate having the low rigidity portion formed therein is connected to a collector electrode of the power semiconductor element.
請求項1から請求項までのいずれか一項に記載のパワーモジュールにおいて、
前記導体板は、前記パワー半導体素子の両面に配置されて、前記配置された前記各導体板の一方面は前記パワー半導体素子に接合され、
前記シート部材は、前記各導体板の他方面に接合されるパワーモジュール。
The power module according to any one of claims 1 to 4 ,
the conductor plates are disposed on both sides of the power semiconductor element, and one side of each of the conductor plates is joined to the power semiconductor element;
The sheet member is a power module joined to the other surface of each of the conductor plates.
請求項1から請求項までのいずれか一項に記載のパワーモジュールと、
前記パワーモジュールと熱伝導部材を介して接着される冷却部材と、を備え、直流電力を交流電力に変換する電力変換装置。
A power module according to any one of claims 1 to 4 ;
A power conversion device comprising: a cooling member bonded to the power module via a thermally conductive member; the power conversion device converts DC power into AC power.
JP2020212041A 2020-12-22 2020-12-22 Power module and power conversion device Active JP7549520B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020212041A JP7549520B2 (en) 2020-12-22 2020-12-22 Power module and power conversion device
PCT/JP2021/036018 WO2022137704A1 (en) 2020-12-22 2021-09-29 Power module and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020212041A JP7549520B2 (en) 2020-12-22 2020-12-22 Power module and power conversion device

Publications (2)

Publication Number Publication Date
JP2022098581A JP2022098581A (en) 2022-07-04
JP7549520B2 true JP7549520B2 (en) 2024-09-11

Family

ID=82157468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020212041A Active JP7549520B2 (en) 2020-12-22 2020-12-22 Power module and power conversion device

Country Status (2)

Country Link
JP (1) JP7549520B2 (en)
WO (1) WO2022137704A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244035A (en) 2011-05-23 2012-12-10 Aisin Seiki Co Ltd Semiconductor device and manufacturing method of the same
JP2013106503A (en) 2011-11-17 2013-05-30 Mitsubishi Electric Corp Power conversion apparatus
JP2014216459A (en) 2013-04-25 2014-11-17 三菱電機株式会社 Semiconductor device
JP2018014357A (en) 2016-07-19 2018-01-25 三菱電機株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244035A (en) 2011-05-23 2012-12-10 Aisin Seiki Co Ltd Semiconductor device and manufacturing method of the same
JP2013106503A (en) 2011-11-17 2013-05-30 Mitsubishi Electric Corp Power conversion apparatus
JP2014216459A (en) 2013-04-25 2014-11-17 三菱電機株式会社 Semiconductor device
JP2018014357A (en) 2016-07-19 2018-01-25 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
WO2022137704A1 (en) 2022-06-30
JP2022098581A (en) 2022-07-04

Similar Documents

Publication Publication Date Title
JP6979864B2 (en) Power semiconductor devices and their manufacturing methods
JP7196047B2 (en) ELECTRICAL CIRCUIT, POWER CONVERTER, AND METHOD OF MANUFACTURING ELECTRICAL CIRCUIT
JP7491707B2 (en) Electrical circuit body, power conversion device, and method for manufacturing the electrical circuit body
JP7555257B2 (en) Electrical circuit body, power conversion device, and method for manufacturing the electrical circuit body
CN107924885A (en) Tectosome
WO2018159209A1 (en) Power semiconductor device
JPWO2020157965A1 (en) Semiconductor devices, their manufacturing methods, and power conversion devices
JP7555262B2 (en) Electrical circuit and power conversion device
JP7555261B2 (en) Electrical circuit and power conversion device
JP7549520B2 (en) Power module and power conversion device
WO2024009613A1 (en) Electrical circuit body and power conversion device
US20240243032A1 (en) Electric Circuit Body and Power Conversion Device
WO2023112997A1 (en) Semiconductor device and power conversion device
WO2024106072A1 (en) Electrical circuit body and power conversion device
JP7171516B2 (en) Power semiconductor module, power converter, and method for manufacturing power semiconductor module
JP2010239033A (en) Semiconductor device, and method of manufacturing the same
JP2025002137A (en) SEMICONDUCTOR MODULE, ELECTRIC CIRCUIT BODY, AND POWER CONVERSION DEVICE
WO2024009617A1 (en) Electric circuit body and power conversion device
CN118648106A (en) Semiconductor device and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240830

R150 Certificate of patent or registration of utility model

Ref document number: 7549520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150