[go: up one dir, main page]

WO2022107649A1 - Centrifugal blower for vehicle - Google Patents

Centrifugal blower for vehicle Download PDF

Info

Publication number
WO2022107649A1
WO2022107649A1 PCT/JP2021/041265 JP2021041265W WO2022107649A1 WO 2022107649 A1 WO2022107649 A1 WO 2022107649A1 JP 2021041265 W JP2021041265 W JP 2021041265W WO 2022107649 A1 WO2022107649 A1 WO 2022107649A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
air
axial direction
air flow
impeller
Prior art date
Application number
PCT/JP2021/041265
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 金森
久善 吉崎
敬介 原
直人 林
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2022107649A1 publication Critical patent/WO2022107649A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to a centrifugal blower applied to a two-phase flow type vehicle air conditioner.
  • Centrifugal blowers applied to vehicle air conditioners include a spiral scroll housing, an impeller housed in the scroll housing, a motor that drives the impeller to rotate, and a separator tube inserted inside the impeller.
  • Centrifugal blowers equipped with are known. In such a centrifugal blower, when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, the outside air is flowed to the upper layer of the scroll housing and the inside air is flowed to the lower layer.
  • the upper half of the impeller and the lower half of the impeller are separated by a circumferential dividing member so that the outside air and the inside air are separated from each other.
  • the internal space of the scroll housing is divided into an upper air flow path and a lower air flow path by a circumferential partition wall.
  • the lower end of the separation cylinder, the dividing member, and the partition wall are arranged at the same position in the axial direction.
  • the ventilation resistance of the lower layer air flow path is increased by the arrangement of the temperature control door and the outlet door of the air conditioner. It is higher than the ventilation resistance of the air flow path. As a result, a part of the inside air flowing through the lower air flow path may flow into the upper air flow path through which the outside air flows. If the dry outside air and the moist inside air are mixed in, there is a possibility that it is difficult to secure the window clearness in the vehicle interior.
  • the split member is radially more than the blade row. It extends outward to the bottom of the partition wall.
  • the present invention is a centrifugal blower applied to a two-phase flow type vehicle air conditioner, and when the air conditioner is operated in the inside / outside air two-phase flow mode, the wet inside air is generated between the separation cylinder and the split member. It is an object of the present invention to provide a centrifugal blower that reduces the risk of being mixed with dry outside air through the space.
  • the motor It has a plurality of first blades forming the first blade row in the circumferential direction, and is rotationally driven by the motor around a rotation axis extending in the axial direction to radially air air in the space inside the radial direction of the first blade row.
  • the first impeller that blows out to the outside It has a plurality of second blades forming the second blade row in the circumferential direction, and is rotationally driven by the motor around the rotation axis to direct the air in the space inside the radial direction of the second blade row to the outside in the radial direction.
  • the second impeller that blows out A dividing member formed in a circumferential shape between the first wing row and the second wing row and dividing the space between the plurality of first wings and the space between the plurality of second wings.
  • a scroll housing having an internal space for accommodating the first impeller and the second impeller, a suction port opening on one end side in the axial direction, and a discharge port opening in the circumferential direction.
  • a region of the internal space of the scroll housing between the inner peripheral surface of the scroll housing and the outer peripheral surfaces of the first impeller and the second impeller, and the internal space of the discharge port in the axial direction.
  • a partition wall that is divided to form a first air flow path facing the first blade row and a second air flow path facing the second blade row.
  • a separation cylinder extending in the axial direction through the radial inside of the suction port and the radial inside of the first blade row, and the flow of air sucked from the suction port into the scroll housing is separated.
  • the first air flow is provided so as to be divided into a first air flow passing through the outside of the separation cylinder and a second air flow passing through the inside of the separation cylinder, and the first air flow is turned outward in the radial direction.
  • a separation cylinder having an outlet-side end that guides the second air flow to the flow path and guides the second air flow outward in the radial direction to the second air flow path.
  • the first wing row is located on one side of the split member in the axial direction.
  • the second wing row is located on the other side of the split member in the axial direction.
  • the outlet-side end of the separation cylinder has a first turning surface that turns the first air flow outward in the radial direction, and a second turning surface that turns the second air flow outward in the radial direction.
  • the first wing has an inner edge of the first wing that faces inward in the radial direction.
  • the second wing has an inner edge of the second wing that faces inward in the radial direction.
  • the distance between the other side end portion of the inner edge of the first wing in the axial direction and the outer edge portion of the first turning surface in the radial direction is the one side end of the inner edge of the second wing in the axial direction.
  • a centrifugal blower that is longer than the distance between the portion and the radial outer edge of the first turning surface.
  • the present invention is a centrifugal blower applied to a two-phase flow type vehicle air conditioner, and when the air conditioner is operated in the inside / outside air two-phase flow mode, the wet inside air is separated from the separation cylinder. It is possible to provide a centrifugal blower in which the risk of mixing with dry outside air through the gap between the split member and the split member is suppressed.
  • FIG. 3 is a meridional cross-sectional view of a vehicle air conditioner cut at a cut surface orthogonal to the cut surface in FIG. 1. It is a meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 1st Embodiment. It is a figure corresponding to FIG. 3, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on the modification of 1st Embodiment. It is a figure corresponding to FIG.
  • FIG. 1 and 2 are cross-sectional views showing the structure of an air intake portion and a centrifugal blower of an air conditioner according to the first embodiment. Further, FIG. 3 is an enlarged view showing a region surrounded by a two-dot chain line indicated by reference numeral III in FIG. 1.
  • the centrifugal blower 1 of the first embodiment is a single-suction type centrifugal blower used in a two-phase flow type vehicle air conditioner.
  • the air conditioner has a defroster outlet (not shown), a vent outlet (not shown), and a foot outlet (not shown), and from each outlet, the windshield of the vehicle and the upper body of the occupant. And it is designed to blow air toward the feet of the occupants.
  • the centrifugal blower 1 includes a motor 2, a first impeller 3 and a second impeller 5 that are rotationally driven around a rotation axis Ax extending in the axial direction by the motor 2, and a first impeller. It has a scroll housing 10 for accommodating the impeller 3 and the second impeller 5.
  • the direction of the rotation axis Ax is referred to as an axial direction or a vertical direction.
  • the upper side and the lower side of FIGS. 1 and 2 are referred to as "one side in the axial direction” or “upper side in the axial direction” and “the other side in the axial direction” or “lower side in the axial direction”, respectively.
  • this does not mean that the direction of the rotation axis Ax coincides with the vertical direction when the air conditioner is actually incorporated in the vehicle.
  • the direction of the radius of a circle drawn on a plane orthogonal to the rotation axis Ax about an arbitrary point on the rotation axis Ax is referred to as a radial direction.
  • the circumferential direction of a circle is called the circumferential direction or the circumferential direction.
  • the first impeller 3 has a plurality of first blades 4 forming a first blade row arranged in the circumferential direction.
  • the first impeller 3 is rotationally driven around the rotation axis Ax to blow out air in the space inside the radial direction of the first blade row toward the outside in the radial direction.
  • Each of the first wings 4 has an inner edge 41 of the first wing facing inward in the radial direction, an outer edge 42 of the first wing facing outward in the radial direction, and one side of the first wing facing one side (upper side) in the axial direction. It has an edge 43 and a first wing other side edge 44 facing the other side (lower side) in the axial direction.
  • the second impeller 5 is aligned with the first impeller 3 in the axial direction.
  • the second impeller 5 has a plurality of second blades 6 forming a second blade row arranged in the circumferential direction.
  • the second impeller 5 is rotationally driven around the rotation axis Ax to blow out air in the space inside the radial direction of the second blade row toward the outside in the radial direction.
  • Each of the second wings 6 has an inner edge 61 of the second wing facing inward in the radial direction, an outer edge 62 of the second wing facing outward in the radial direction, and one side of the second wing facing one side (upper side) in the axial direction.
  • the axial dimension of the first wing 4 and the axial dimension of the second wing 6 are the same, but are not limited to this.
  • the axial dimension of the first wing 4 and the axial dimension of the second wing 6 may be different.
  • a dividing member 7 is formed between the first blade row of the first impeller 3 and the second blade row of the second impeller 5.
  • the dividing member 7 is formed in a circumferential shape along the blade row of the first impeller 3 and the second impeller 5.
  • the dividing member 7 divides the space between the plurality of first wings 4 and the space between the plurality of second wings 6.
  • the dividing member 7 is integrally formed with the first blade row of the first impeller 3 and the second blade row of the second impeller 5.
  • the first blade row of the first impeller 3 is located on one side in the axial direction of the dividing member 7.
  • the second blade row of the second impeller 5 is located on the other side in the axial direction of the dividing member 7.
  • the dividing member 7 has an inner end surface 75 of the dividing member facing inward in the radial direction and an outer end surface 76 of the dividing member facing outward in the radial direction.
  • the inner deflection member 8 is integrally formed on the impellers 3 and 5.
  • the inner deflection member 8 is a rotating body in a geometrical sense. In the illustrated example, it has a side peripheral portion 8a connected to the lower end of the second impeller 5 and a disk-shaped central portion 8b.
  • the central portion 8b is connected to the rotating shaft 2a of the motor 2.
  • the inner deflection member 8 forms an air flow passage between the inner deflection member 8 and the outlet side end portion 33 of the separation cylinder 30, which will be described later.
  • the central portion 8b does not necessarily have to have a disk shape, and may have a well-known boss shape.
  • the scroll housing 10 has an internal space for accommodating the impellers 3 and 5, a suction port 11 that opens on one end side in the axial direction, and a discharge port 12 that opens in the circumferential direction.
  • the discharge port 12 extends substantially in the tangential direction of the outer peripheral surface of the scroll housing 10 when the scroll housing 10 is viewed from the axial direction.
  • the internal space of the scroll housing 10 is divided (partitioned) by a circumferential partition wall 15 extending inward in the radial direction from the inner peripheral surface of the scroll housing 10.
  • the partition wall 15 axially (s) the area between the inner peripheral surface of the scroll housing 10 and the outer peripheral surfaces of the impellers 3 and 5 and the internal space of the discharge port 12 in the internal space of the scroll housing 10. It is divided into upper and lower parts. Since the internal space of the scroll housing 10 is divided by the partition wall 15, the first air flow path 13 facing the first blade row of the first impeller 3 and the second impeller 5 are contained in the scroll housing 10. A second air flow path 14 facing the second blade row of the above is formed. The air flowing through the first air flow path 13 is sent out to the defroster outlet and / or the vent outlet of the vehicle. Further, the air flowing through the second air flow path 14 is sent out to the foot outlet of the vehicle.
  • the axial dimension of the first air flow path 13 and the axial dimension of the second air flow path 14 are the same, but are not limited to this.
  • the axial dimension of the first air flow path 13 and the axial dimension of the second air flow path 14 may be different.
  • the partition wall 15 has a partition wall inner end surface 16 facing inward in the radial direction.
  • the partition wall 15 is provided so as to be substantially at the same position as the dividing member 7 in the axial direction.
  • the partition wall inner end surface 16 of the partition wall 15 faces the partition member outer end surface 76.
  • the separation cylinder 30 is inserted into the scroll housing 10 via the suction port 11.
  • the cross section of the inlet side end (upper part) 31 of the separation cylinder 30 is approximately rectangular.
  • the cross section of the central portion 32 of the separation cylinder 30 is circular or substantially circular.
  • the cross-sectional shape of the separation cylinder 30 smoothly changes from a rectangular shape to a circular shape or a substantially circular shape as it approaches the central portion 32 from the inlet side end portion 31.
  • the outlet side end (lower part) 33 of the separation cylinder 30 has a flare shape that increases in diameter as it approaches the lower end.
  • the entire separation cylinder 30 may be integrally molded by resin injection molding. Instead of this, the inlet side end portion (upper part) 31 of the separation cylinder 30 and the central portion 32 and the outlet side end portion (lower part) 33 of the separation cylinder 30 may be separately molded and then connected to each other. ..
  • the separation cylinder 30 extends axially through the inside of the suction port 11 in the radial direction and the inside of the first blade row of the first impeller 3 in the radial direction.
  • the inlet side end portion 31 of the separation cylinder 30 is located on the outside of the scroll housing 10 (above the suction port 11 in the axial direction).
  • the separation cylinder 30 allows the flow of air sucked into the scroll housing 10 from the suction port 11 to pass through the first passage 30A outside the separation cylinder 30 and the second passage 30B inside the separation cylinder 30. Separates into a second air stream passing through.
  • the first air flow flows into the radial inside of the first blade row of the first impeller 3 through the ring-shaped region outside the outer peripheral surface of the separation cylinder 30 in the suction port 11 of the scroll housing 10.
  • the second air flow enters the inside of the separation cylinder 30 from the upper end of the separation cylinder 30 and flows into the inside of the second blade row of the second impeller 5 in the radial direction.
  • the outlet-side end 33 of the separation cylinder 30 diverts the inflowing first air flow outward in the radial direction, guides the inflowing first air flow to the first air flow path 13 through the first blade row of the first impeller 3, and flows in.
  • the second air flow is turned outward in the radial direction and guided to the second air flow path 14 through the second blade row of the second impeller 5.
  • the outlet side end portion 33 has a first turning surface 34 facing one side (upper side) in the axial direction.
  • the first turning surface 34 turns the first air flow outward in the radial direction.
  • the outlet side end portion 33 has a second turning surface 36 facing the other side (lower side) in the axial direction.
  • the second turning surface 36 turns the second air flow outward in the radial direction.
  • an air intake housing 50 is arranged on one side (upper side) of the scroll housing 10 in the axial direction so as to cover the suction port 11.
  • the scroll housing 10 and the air intake housing 50 may be integrally molded, or may be manufactured separately and then connected by a method such as screwing, bonding, or fitting.
  • the separation cylinder 30 is a separate component from the scroll housing 10 and the air intake housing 50, and is supported at a predetermined position by the air intake housing 50.
  • the air intake housing 50 has a first opening 51, a second opening 52, a third opening 53, and a fourth opening 54.
  • Inside air vehicle interior air
  • Inside air vehicle interior air
  • the first opening 51 and the third opening 53 are the first and second inside air introduction ports for taking in the inside air into the air intake housing 50.
  • the outside air from the outside of the vehicle
  • the second opening 52 and the fourth opening 54 are first and second outside air introduction ports for taking in outside air into the air intake housing 50.
  • the inflow of air (inside air) from the first opening 51 into the air intake housing 50 can be allowed or blocked.
  • the inflow of air (outside air) from the second opening 52 into the air intake housing 50 can be allowed or blocked.
  • the door 59 around the rotation shaft 59A to switch the position, air (inside air or outside air) flows into the air intake housing 50 through either the third opening 53 or the fourth opening 54. Can be made to.
  • the air intake housing 50 and the separation cylinder 30 are formed so that almost all of the air introduced into the air intake housing 50 passes through the second passage 30B.
  • the configuration of the air intake housing 50 is not limited to the configurations shown in FIGS. 1 and 2.
  • the doors 57 and 58 of the air intake housing 50 may be rotary doors like the door 59.
  • a filter 80 is provided in the air intake housing 50.
  • the filter 80 is arranged between the region where the first opening 51, the second opening 52, the third opening 53 and the fourth opening 54 are arranged and the inlet side end portion 31 of the separation cylinder 30, and is dust in the air. , Removes contaminants such as particles.
  • the vehicle air conditioner when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, high separability between the first air flow (outside air) and the second air flow (inside air) is required. This is due to the following reasons. That is, when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, dry outside air is applied to the windshield so as to prevent fogging of the windshield. However, if the outside air that hits the windshield is mixed with the moist inside air, the windshield anti-fog function of the vehicle air conditioner may be impaired.
  • the ventilation resistance of the second air flow path is higher than the ventilation resistance of the first air flow path depending on the position of the door in the vehicle air conditioner. It can be expensive. As a result, a part of the inside air flowing through the second air flow path may flow into the first air flow path through the gap between the elements constituting the centrifugal blower.
  • the centrifugal blower 1 shown in FIGS. 1 to 3 is configured to suppress the possibility that the second air flow is mixed with the first air flow. More specifically, in the centrifugal blower 1 shown in FIGS. 1 to 3, there is a possibility that a part of the second air flow may enter the first air flow path 13 through the gap between the separation cylinder 30 and the dividing member 7. Is configured to suppress.
  • the centrifugal blower 1 is configured as follows. That is, as is well shown in FIG. 3, the distance between the other side end portion 46 in the axial direction of the inner end edge 41 of the first blade and the radial outer edge portion 35 of the first turning surface 34 of the separation cylinder 30. D1 is larger than the distance D2 between the one-sided end portion 65 in the axial direction of the inner end edge 61 of the second blade and the edge portion 35 of the first turning surface 34 of the separation cylinder 30. In other words, the edge portion 35 of the first turning surface 34 is closer to the second wing 6 of the second impeller 5 than to the first wing 4 of the first impeller 3.
  • the edge portion 35 of the first turning surface 34 is located on the other side in the axial direction than the one side end portion 65 in the axial direction of the inner edge 61 of the second blade.
  • the distance D1 between the other side end portion 46 of the first wing inner end edge 41 and the edge portion 35 of the first turning surface 34 is the one side end portion 65 of the second wing inner end edge 61 and the first turning surface. It is longer than the distance D2 from the edge 35 of 34.
  • the second opening 52 and the fourth opening 54 are opened, and the first opening 51 and the third opening 53 are closed. This state is not shown.
  • the outside air introduced from the second opening 52 forms a first air flow through the first passage 30A outside the separation cylinder 30.
  • the outside air introduced from the fourth opening 54 forms a second air flow passing through the second passage 30B inside the separation cylinder 30. Most of the air forming the first air flow is drawn into the first blade row by the first blade 4 of the first impeller 3 and pushed out into the first air flow path 13 by the first blade 4.
  • a part of the air forming the first air flow (more specifically, the air flowing near the edge 35 of the separation cylinder 30) and the air forming the second air flow are the air of the second impeller 5. It is drawn into the second wing row by the second wing 6 and pushed out into the second air flow path 14 by the second wing 6.
  • the second opening 52 and the third opening 53 are opened, and the first opening 51 and the fourth opening 54 are closed.
  • This state is shown in FIGS. 1 and 2.
  • the outside air FE introduced from the second opening 52 forms a first air flow through the first passage 30A outside the separation cylinder 30.
  • the inside air FR introduced from the third opening 53 forms a second air flow through the second passage 30B inside the separation cylinder 30.
  • Most of the air forming the first air flow is drawn into the first blade row by the first blade 4 of the first impeller 3 and pushed out into the first air flow path 13 by the first blade 4.
  • a part of the air forming the first air flow (more specifically, the air flowing near the edge 35 of the separation cylinder 30) and the air forming the second air flow are the air of the second impeller 5. It is drawn into the second wing row by the second wing 6 and pushed out into the second air flow path 14 by the second wing 6.
  • the second operation mode (inside / outside air two-phase flow mode) is used, for example, when operating in the differential foot mode.
  • the harmonized air air flowing through the first air flow path 13
  • the relatively small amount of water is blown out from the defrost outlet of the vehicle interior toward the front glass (not shown) of the vehicle, and the relatively water content is relatively small.
  • a large amount of harmonious air air flowing through the second air flow path 14
  • the first opening 51 and the third opening 53 are opened, and the second opening 52 and the fourth opening 54 are closed. This state is not shown.
  • the inside air introduced from the first opening 51 forms a first air flow through the first passage 30A outside the separation cylinder 30.
  • the inside air introduced from the third opening 53 forms a second air flow passing through the second passage 30B inside the separation cylinder 30. Most of the air forming the first air flow is drawn into the first blade row by the first blade 4 of the first impeller 3 and pushed out into the first air flow path 13 by the first blade 4.
  • a part of the air forming the first air flow (more specifically, the air flowing near the edge 35 of the separation cylinder 30) and the air forming the second air flow are the air of the second impeller 5. It is drawn into the second wing row by the second wing 6 and pushed out into the second air flow path 14 by the second wing 6.
  • the air flowing through the second passage 30B flows into the second blade row of the second impeller 5.
  • a part of the air flowing through the first passage 30A is drawn into the second blade row through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7, and thus one of the air flowing through the second passage 30B. It is suppressed that the portion flows into the first passage 30A or the first blade row of the first impeller 3 through the gap.
  • the centrifugal blower 1 of the first embodiment is a single suction type centrifugal blower 1 for a vehicle, and is a motor 2, a first impeller 3, a second impeller 5, and a split member. 7, a scroll housing 10, a partition wall 15, and a separation cylinder 30 are provided.
  • the first impeller 3 has a plurality of first blades 4 forming a circumferential first blade row.
  • the first impeller 3 is rotationally driven by a motor 2 around a rotation axis Ax extending in the axial direction, and blows out air in the space inside the radial direction of the first blade row toward the outside in the radial direction.
  • the second impeller 5 has a plurality of second blades 6 forming a circumferential second blade row.
  • the second impeller 5 is rotationally driven around the rotation axis Ax by the motor 2 to blow out air in the space inside the radial direction of the second blade row toward the outside in the radial direction.
  • the dividing member 7 is formed in a circumferential shape between the first wing row and the second wing row, and divides the space between the plurality of first wing 4 and the space between the plurality of second wing 6.
  • the scroll housing 10 has an internal space for accommodating the first impeller 3 and the second impeller 5, a suction port 11 that opens on one end side in the axial direction, and a discharge port 12 that opens in the circumferential direction.
  • the partition wall 15 covers an area between the inner peripheral surface of the scroll housing 10 and the outer peripheral surfaces of the first impeller 3 and the second impeller 5 in the internal space of the scroll housing 10, and the internal space of the discharge port 12.
  • the first air flow path 13 facing the first blade row and the second air flow path 14 facing the second blade row are formed by dividing in the axial direction.
  • the separation cylinder 30 extends axially through the inside of the suction port 11 in the radial direction and the inside of the first blade row in the radial direction.
  • the separation cylinder 30 divides the air flow sucked into the scroll housing 10 from the suction port 11 into a first air flow passing through the outside of the separation cylinder 30 and a second air flow passing through the inside of the separation cylinder 30. It is provided as follows.
  • the separation cylinder 30 diverts the first air flow outward in the radial direction to guide it to the first air flow path 13, and also diverts the second air flow outward in the radial direction to guide the second air flow path 14 to the second air flow path 14. It has an exit side end 33 that guides the air.
  • the first blade row is located on one side of the dividing member 7 in the axial direction.
  • the second blade row is located on the other side of the split member 7 in the axial direction.
  • the outlet-side end 33 of the separation cylinder 30 has a first turning surface 34 that turns the first air flow outward in the radial direction, and a second turning surface 36 that turns the second air flow outward in the radial direction. Have.
  • the first wing 4 has a first wing inner edge 41 facing inward in the radial direction.
  • the second wing 6 has a second wing inner edge 61 facing inward in the radial direction.
  • the distance D1 between the other side end portion 46 in the axial direction of the inner end edge 41 of the first wing and the outer edge portion 35 in the radial direction of the first turning surface 34 is one side end in the axial direction of the inner end edge 61 of the second wing.
  • the distance between the portion 65 and the radial outer edge portion 35 of the first turning surface 34 is longer than the distance D2.
  • the edge portion 35 of the first turning surface 34 is closer to the second blade 6 of the second impeller 5 than the first blade 4 of the first impeller 3.
  • the impellers 3 and 5 are rotationally driven, the air in the vicinity of the edge 35 of the first turning surface 34 is drawn into the second blade row of the second impeller 5 and blown out from the second blade row.
  • a part of the first air flow flows into the second air flow path 14 through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7.
  • the possibility that a part of the second air flow flows into the first air flow path 13 through the gap is suppressed.
  • the radial outer edge portion 35 of the first turning surface 34 is located on the other side in the axial direction than the one side end portion 65 in the axial direction of the second blade inner end edge 61. is doing. As a result, the distance D1 becomes longer than the distance D2.
  • FIG. 4 is a diagram corresponding to FIG. 3 and is a diagram for explaining a modification of the first embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the split member 7 projects axially from one side surface (upper surface) of the main body 70 at the main body 70 extending in the radial direction and the radial inner end 71 of the main body 70. It has an inner one-side protruding portion 72.
  • the inner edge 41 of the first wing is connected to the inner one-side protrusion 72. Since the dividing member 7 has an inner one-side protruding portion 72 connected to the first wing inner end edge 41, the position of the other side end portion 46 of the first wing inner end edge 41 in the axial direction can be determined by the dividing member 7. It can be determined without depending on the position of the main body 70 of 7 in the axial direction.
  • the dividing member 7 has the inner one-side protruding portion 72, the range in the axial direction in which the separation cylinder 30 can be arranged with respect to the dividing member 7 is expanded so that the distance D1 is longer than the distance D2. do.
  • the separation cylinder 30 is arranged with respect to the dividing member 7 so that the distance D1 is longer than the distance D2 even if there is a dimensional tolerance of each component constituting the centrifugal blower 1. Is easy. Therefore, as shown in FIG.
  • the distance D1 is set. It can be longer than the distance D2.
  • the split member 7 may further have an inner other side protruding portion 73 that protrudes in the axial direction from the other side surface of the main body portion 70 at the end portion 71.
  • the inner other side protrusion 73 is connected to the inner edge 61 of the second blade. Also in this case, if the distance D1 is longer than the distance D2, a part of the second air flow flows into the first air flow path 13 through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7. The fear is suppressed.
  • the inner other side protruding portion 73 connected to the inner edge 61 of the second wing is provided, the first air flow passing through the first passage 30A unintentionally passes through the second passage 30B. It is possible to suppress the inflow to the flow.
  • FIG. 5 is a diagram corresponding to FIG. 3 and is a diagram for explaining a second embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the length of the other side edge 44 of the first wing 4 is shorter than the length of the one side edge 63 of the second wing 6.
  • the other side end portion 46 of the first wing inner end edge 41 is located radially outside the one side end portion 65 of the second wing inner end edge 61.
  • the other side end portion 46 of the first wing inner end edge 41 is located radially outside the one side end portion 65 of the second wing inner end edge 61, the other side of the first wing inner end edge 41 It is easy to increase the distance D1 between the end portion 46 and the edge portion 35 of the first turning surface 34. That is, as shown in FIG. 5, even if the outlet side end portion 33 of the separation cylinder 30 faces the inner end surface 75 of the dividing member, the distance D1 can be made longer than the distance D2. This means that the axial range in which the separation cylinder 30 can be arranged with respect to the dividing member 7 is expanded so that the distance D1 is longer than the distance D2.
  • the separation cylinder 30 is arranged with respect to the dividing member 7 so that the distance D1 is longer than the distance D2 even if there is a dimensional tolerance of each component constituting the centrifugal blower 1. Is easy.
  • the axial position of the edge 35 of the first turning surface 34 is the same as the axial position of the other side end 46 of the inner edge 41 of the first wing, but the distance D1 is the distance D2. Longer than.
  • the axial position of the edge portion 35 of the first turning surface 34 is the other side (in the axial direction) than the axial position of the other side end portion 46 of the first blade inner end edge 41. It may be located on the lower side).
  • the inner end surface 75 of the dividing member is connected to the inner end edge 61 of the second blade, but the present invention is not limited to this.
  • the dividing member inner end surface 75 may be formed at the same position as the first blade inner end edge 41 in the radial direction.
  • FIG. 7 is a diagram corresponding to FIG. 3 and is a diagram for explaining a third embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the dividing member 7 becomes thicker toward the outside in the radial direction.
  • the axial dimension L1 of the split member outer end face 76 is longer than the axial dimension L2 of the split member inner end face 75. Since the dimension L1 of the dividing member 7 is longer than the dimension L2, it is easy to make the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall 15 face each other. That is, the range in the axial direction in which the impellers 3 and 4 can be arranged with respect to the partition wall 15 is expanded so that the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall 15 face each other.
  • the impeller when assembling the centrifugal blower 1, the impeller so that the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall 15 face each other even if there is a dimensional tolerance of each component constituting the centrifugal blower 1. It is easy to arrange the 3 and 4 with respect to the partition wall 15. Since the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall face each other, a part of the air blown out from the second blade row of the impeller 5 in the centrifugal direction flows into the first air flow path 13. , Is suppressed.
  • the dimension L1 is longer than the dimension L2 because the dividing member 7 becomes thicker toward the outside in the radial direction, but the present invention is not limited to this.
  • the dimension L1 may be longer than the dimension L2 by making the shape of the split member 7 as shown in FIG.
  • the split member 7 has a main body portion 70 extending in the radial direction and an outer end portion 77 on the radial outer side of the main body portion 70, which protrudes axially from one side surface (upper surface) of the main body portion 70. It has a one-side projecting portion 78 and an outer other-side projecting portion 79 projecting axially from the other side surface (lower surface) of the main body portion 70.
  • the outer edge 42 of the first wing is connected to the outer one-side protrusion 78.
  • the outer edge 62 of the second wing is connected to the outer other side protrusion 79.
  • the split member 7 further has an inner one-side projecting portion 72 projecting axially from one side surface of the main body 70 at the radial inner end 71 of the main body 70, and the end portion.
  • the 71 has an inner other side protruding portion 73 that protrudes in the axial direction from the other side surface of the main body portion 70.
  • the inner edge 41 of the first wing is connected to the inner one-side protrusion 72.
  • the inner end edge 61 of the second wing is connected to the inner other side protruding portion 73.
  • split member 7 is provided with the inner one-side protruding portion 72, the same effect as that of the centrifugal blower 1 shown in FIG. 4 can be obtained. Further, since the split member 7 is provided with the inner side protruding portion 73, the same effect as that of the centrifugal blower 1 shown in FIG. 4 can be obtained.
  • FIG. 9 is a diagram corresponding to FIG. 3 and is a diagram for explaining a fourth embodiment.
  • the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the dividing member 7 is located on the other side (lower side) in the axial direction with respect to the partition wall 15.
  • the other end portion 48 in the axial direction of the outer edge 42 of the first wing of the first wing 4 is located on the other side in the axial direction with respect to the inner end surface 16 of the partition wall of the partition wall 15.
  • the air drawn into the first blade row of the first impeller 3 by the other side end portion 48 of the first blade outer end edge 42 located on the other side in the axial direction with respect to the partition wall inner end surface 16. Is blown out to the second air flow path 14.
  • the possibility that the inside air blown out from the second impeller 5 flows into the first air flow path 13 through the gap between the partition wall 15 and the dividing member 7 is suppressed.
  • the dividing member 7 since the dividing member 7 is located on the other side (lower side) in the axial direction with respect to the partition wall 15, the other side end portion 48 of the first wing outer edge 42 is partitioned. It is located on the other side in the axial direction with respect to the inner end surface 16 of the partition wall of the wall 15, but is not limited to this.
  • the other side end portion 48 of the first blade outer edge 42 is located on the other side in the axial direction with respect to the partition wall inner end surface 16 of the partition wall 15. May be.
  • the dividing member 7 is inclined toward the other side (lower side) in the axial direction as it goes outward in the radial direction.
  • the other side end portion 48 of the first wing outer end edge 42 of the first wing 4 is located on the other side in the axial direction with respect to the partition wall inner end surface 16.
  • the same effect as that of the centrifugal blower 1 shown in FIG. 9 can be obtained.
  • FIG. 11 is a diagram corresponding to FIG. 9 and is a diagram for explaining a fifth embodiment.
  • the same parts as those in the fourth embodiment shown in FIG. 9 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the dividing member 7 extends to the other side (lower side) of the partition wall 15 in the axial direction.
  • the outer end surface 76 of the dividing member is located on the outer side in the radial direction and on the other side (lower side) in the axial direction of the partition wall 15 than the inner end surface 16 of the partition wall. Since the outer end surface 76 of the dividing member is located on the other side in the axial direction of the partition wall 15, a part of the air drawn into the first blade row of the first impeller 3 is separated into the second air flow path 14. It is blown out to.
  • the possibility that the inside air blown out from the second impeller 5 flows into the first air flow path 13 through the gap between the partition wall 15 and the dividing member 7 is suppressed.
  • the dividing member 7 extends to the other side (lower side) of the partition wall 15 in the axial direction and the outer end surface 76 of the dividing member is located radially outside the inner end surface 16 of the partition wall, the second part is formed. The possibility that the inside air blown out from the impeller 5 flows into the first air flow path 13 through the gap between the partition wall 15 and the dividing member 7 is more effectively suppressed.
  • FIG. 12 is a diagram corresponding to FIG. 8 and is a diagram for explaining the sixth embodiment.
  • the same parts as those of the modified example of the third embodiment shown in FIG. 8 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the outlet side end portion 33 is bifurcated. More specifically, the outlet side end portion 33 has a first turning portion 33a extending from the central portion 32 of the separation cylinder 30, and a first turning portion 33a extending from the central portion 32 to the other side (lower side) in the axial direction of the first turning portion 33a. It has two turning portions 33b. The surface of the first turning portion 33a facing one side (upper side) in the axial direction forms the first turning surface 34. Further, the surface of the second turning portion 33b facing the other side (lower side) in the axial direction forms the second turning surface 36.
  • the outlet side end portion 33 of the separation cylinder 30 has a first turning portion 33a and a second turning portion 33b located on the other side in the axial direction of the first turning portion 33a, so that the outlet side end portion At 33, the air flowing through the second passage 30B can be axially separated from the air flowing through the first passage 30A.
  • the possibility that the air flowing through the second passage 30B is drawn into the first blade row of the first impeller 3 and flows into the first air flow path 13 is effectively suppressed.
  • the first turning portion 35 of the surface 34 shall indicate the next position. That is, the edge portion 35 of the first turning surface 34 is a position where the surface S1 extending from the first turning surface 34 and the surface S2 in contact with the outlet side end portion 33 extending in parallel with the axial direction intersect. Point to.
  • centrifugal blower for a vehicle can be industrially manufactured and can be the subject of commercial transactions, it can be industrially used with economic value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

[Problem] To make it possible to reduce the risk of inside air mixing with outside air when an air conditioner is operating in an inside/outside air two-layer flow mode. [Solution] This centrifugal blower (1) comprises a first impeller (3), a second impeller (5), and a separation tube (30). An outlet-side end (33) of the separation tube 30 has a first turning surface (34) which turns a first air flow passing through the outside of the separation tube (30) outward in the radial direction. A distance (D1) between an end (46) of an inner edge (41) of a first blade (4) of the first impeller (3) and an edge (35) of the first turning surface (34) is longer than a distance (D2) between an end (65) of an inner edge (61) of a second blade (6) of the second impeller (5) and the edge (35) of the first turning surface (34).

Description

車両用の遠心送風機Centrifugal blower for vehicles

 本発明は、二層流式の車両用空調装置に適用される遠心送風機に関する。

The present invention relates to a centrifugal blower applied to a two-phase flow type vehicle air conditioner.



 車両用空調装置に適用される遠心送風機として、らせん状のスクロールハウジングと、スクロールハウジングに収容される羽根車と、羽根車を回転駆動するモータと、羽根車の内側に挿入された分離筒と、を備えた遠心送風機が知られている。このような遠心送風機は、車両用空調装置が内外気二層流モードで運転される場合、スクロールハウジングの上層に外気を、下層に内気を流す。外気と内気とが互いから分離されるよう、羽根車の上半部の翼列と下半部の翼列とは、周状の分割部材によって隔てられている。また、スクロールハウジングの内部空間は、周状の仕切壁によって、上層の空気流路と下層の空気流路とに仕切られている。一般に、分離筒の下端部と分割部材と仕切壁とは、軸方向において同じ位置に配置される。そして、空調装置が内外気二層流モードで運転される場合、羽根車の回転によって遠心送風機に導入された外気及び内気は、分離筒と分割部材とに案内されて、それぞれスクロールハウジングの上層の空気流路及び下層の空気流路に流入する。 



Centrifugal blowers applied to vehicle air conditioners include a spiral scroll housing, an impeller housed in the scroll housing, a motor that drives the impeller to rotate, and a separator tube inserted inside the impeller. Centrifugal blowers equipped with are known. In such a centrifugal blower, when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, the outside air is flowed to the upper layer of the scroll housing and the inside air is flowed to the lower layer. The upper half of the impeller and the lower half of the impeller are separated by a circumferential dividing member so that the outside air and the inside air are separated from each other. Further, the internal space of the scroll housing is divided into an upper air flow path and a lower air flow path by a circumferential partition wall. Generally, the lower end of the separation cylinder, the dividing member, and the partition wall are arranged at the same position in the axial direction. When the air conditioner is operated in the inside / outside air two-phase flow mode, the outside air and the inside air introduced into the centrifugal blower by the rotation of the impeller are guided by the separation cylinder and the split member, and are respectively in the upper layer of the scroll housing. It flows into the air flow path and the lower air flow path.



 ここで、二層流式の車両用空調装置が内外気二層流モードで運転される場合、空調装置の温調ドアや吹出ドアの配置によって、下層の空気流路の通気抵抗が、上層の空気流路の通気抵抗よりも高くなる。これにより、下層の空気流路を流れる内気の一部が、外気が流れる上層の空気流路に流入する虞がある。乾燥した外気に湿潤した内気が混入すると、車室内の窓晴れ性の確保を阻害する虞がある。 



Here, when the two-layer flow type vehicle air conditioner is operated in the inside / outside air two-layer flow mode, the ventilation resistance of the lower layer air flow path is increased by the arrangement of the temperature control door and the outlet door of the air conditioner. It is higher than the ventilation resistance of the air flow path. As a result, a part of the inside air flowing through the lower air flow path may flow into the upper air flow path through which the outside air flows. If the dry outside air and the moist inside air are mixed in, there is a possibility that it is difficult to secure the window clearness in the vehicle interior.



 車両用空調装置が内外気二層流モードで運転される際に内気が外気に混入することを抑制するため、特許文献1に開示された遠心送風機では、分割部材は、翼列よりも径方向外側に、仕切壁の下方まで延出している。これにより、空調装置が内外気二層流モードで運転される際に、羽根車の下半部の翼列から吹き出した内気が分割部材と仕切壁との隙間を通じて上層の外気側の空気流路に流入する、ということが防止されている。 



In the centrifugal blower disclosed in Patent Document 1 in order to prevent the inside air from being mixed in when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, the split member is radially more than the blade row. It extends outward to the bottom of the partition wall. As a result, when the air conditioner is operated in the inside / outside air two-phase flow mode, the inside air blown out from the blade row in the lower half of the impeller passes through the gap between the dividing member and the partition wall, and the air flow path on the outside air side of the upper layer. It is prevented from flowing into.



 しかしながら、特許文献1に開示された方法では、分離筒と分割部材との隙間を通じて内気が外気に混入する虞がある。



However, in the method disclosed in Patent Document 1, there is a possibility that the inside air may be mixed with the outside air through the gap between the separation cylinder and the dividing member.
特開2019-44739号公報Japanese Unexamined Patent Publication No. 2019-44739



 本発明は、二層流式の車両用空調装置に適用される遠心送風機であって、空調装置が内外気二層流モードで運転される際に湿潤な内気が、分離筒と分割部材との間を通じて乾燥した外気に混入する、という虞を低減させた遠心送風機を提供することを目的としている。



The present invention is a centrifugal blower applied to a two-phase flow type vehicle air conditioner, and when the air conditioner is operated in the inside / outside air two-phase flow mode, the wet inside air is generated between the separation cylinder and the split member. It is an object of the present invention to provide a centrifugal blower that reduces the risk of being mixed with dry outside air through the space.



 本発明の好適な一実施形態によれば、



 車両用の片吸込型の遠心送風機であって、



 モータと、



 周方向第1翼列を形成する複数の第1翼を有し、前記モータにより軸方向に延びる回転軸線周りに回転駆動されて、前記第1翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す第1羽根車と、



 周方向第2翼列を形成する複数の第2翼を有し、前記モータにより前記回転軸線周りに回転駆動されて、前記第2翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す第2羽根車と、



 前記第1翼列と前記第2翼列との間に周状に形成され、前記複数の第1翼の間の空間と前記複数の第2翼の間の空間とを分割する分割部材と、



 前記第1羽根車及び前記第2羽根車を収容する内部空間と、前記軸方向の一端側に開口する吸込口と、周方向に開口する吐出口と、を有するスクロールハウジングと、



 前記スクロールハウジングの前記内部空間のうちの前記スクロールハウジングの内周面と第1羽根車及び前記第2羽根車の外周面との間の領域、並びに前記吐出口の内部空間を、前記軸方向に分割して、前記第1翼列に対向する第1空気流路と前記第2翼列に対向する第2空気流路とを形成する仕切壁と、



 前記吸込口の半径方向内側及び前記第1翼列の半径方向内側を通って前記軸方向に延びる分離筒であって、前記吸込口から前記スクロールハウジング内に吸入される空気の流れを、分離筒の外側を通る第1空気流と、前記分離筒の内側を通る第2空気流とに分割するように設けられ、且つ、前記第1空気流を半径方向外向きに転向して前記第1空気流路に案内するとともに、前記第2空気流を半径方向外向きに転向して前記第2空気流路に案内する出口側端部を有している、分離筒と、



を備え、 前記第1翼列は、前記軸方向における前記分割部材の一側に位置し、



 前記第2翼列は、前記軸方向における前記分割部材の他側に位置し、



 前記分離筒の前記出口側端部は、前記第1空気流を前記半径方向外向きに転向する第1転向面と、前記第2空気流を前記半径方向外向きに転向する第2転向面と、を有し、



 前記第1翼は、前記半径方向内側を向く第1翼内側端縁を有し、



 前記第2翼は、前記半径方向内側を向く第2翼内側端縁を有し、



 前記第1翼内側端縁の前記軸方向における他側端部と前記第1転向面の前記半径方向外側の縁部との距離は、前記第2翼内側端縁の前記軸方向における一側端部と前記第1転向面の前記半径方向外側の縁部との距離よりも長い、遠心送風機が提供される。



According to a preferred embodiment of the invention



It is a one-suction type centrifugal blower for vehicles.



With the motor



It has a plurality of first blades forming the first blade row in the circumferential direction, and is rotationally driven by the motor around a rotation axis extending in the axial direction to radially air air in the space inside the radial direction of the first blade row. The first impeller that blows out to the outside,



It has a plurality of second blades forming the second blade row in the circumferential direction, and is rotationally driven by the motor around the rotation axis to direct the air in the space inside the radial direction of the second blade row to the outside in the radial direction. The second impeller that blows out



A dividing member formed in a circumferential shape between the first wing row and the second wing row and dividing the space between the plurality of first wings and the space between the plurality of second wings.



A scroll housing having an internal space for accommodating the first impeller and the second impeller, a suction port opening on one end side in the axial direction, and a discharge port opening in the circumferential direction.



A region of the internal space of the scroll housing between the inner peripheral surface of the scroll housing and the outer peripheral surfaces of the first impeller and the second impeller, and the internal space of the discharge port in the axial direction. A partition wall that is divided to form a first air flow path facing the first blade row and a second air flow path facing the second blade row.



A separation cylinder extending in the axial direction through the radial inside of the suction port and the radial inside of the first blade row, and the flow of air sucked from the suction port into the scroll housing is separated. The first air flow is provided so as to be divided into a first air flow passing through the outside of the separation cylinder and a second air flow passing through the inside of the separation cylinder, and the first air flow is turned outward in the radial direction. A separation cylinder having an outlet-side end that guides the second air flow to the flow path and guides the second air flow outward in the radial direction to the second air flow path.



The first wing row is located on one side of the split member in the axial direction.



The second wing row is located on the other side of the split member in the axial direction.



The outlet-side end of the separation cylinder has a first turning surface that turns the first air flow outward in the radial direction, and a second turning surface that turns the second air flow outward in the radial direction. Have,



The first wing has an inner edge of the first wing that faces inward in the radial direction.



The second wing has an inner edge of the second wing that faces inward in the radial direction.



The distance between the other side end portion of the inner edge of the first wing in the axial direction and the outer edge portion of the first turning surface in the radial direction is the one side end of the inner edge of the second wing in the axial direction. Provided is a centrifugal blower that is longer than the distance between the portion and the radial outer edge of the first turning surface.



 上記本発明の実施形態によれば、二層流式の車両用空調装置に適用される遠心送風機であって、空調装置が内外気二層流モードで運転される際に湿潤な内気が分離筒と分割部材との隙間を通じて乾燥した外気に混入する、という虞が抑制された遠心送風機を提供することが可能である。



According to the embodiment of the present invention, it is a centrifugal blower applied to a two-phase flow type vehicle air conditioner, and when the air conditioner is operated in the inside / outside air two-phase flow mode, the wet inside air is separated from the separation cylinder. It is possible to provide a centrifugal blower in which the risk of mixing with dry outside air through the gap between the split member and the split member is suppressed.
車両用空調装置の空気取入部及び遠心送風機の構造を示す図であって、遠心送風機の子午断面を含む縦断面図である。It is a figure which shows the structure of the air intake part and the centrifugal blower of the air conditioner for a vehicle, and is the vertical sectional view which includes the meridional cross section of the centrifugal blower. 図1における切断面と直交する切断面で切断した、車両用空調装置の子午断面図である。FIG. 3 is a meridional cross-sectional view of a vehicle air conditioner cut at a cut surface orthogonal to the cut surface in FIG. 1. 第1実施形態に係る遠心送風機の要部を示す子午断面図である。It is a meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 1st Embodiment. 図3に対応する図であって、第1実施形態の変形例に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 3, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on the modification of 1st Embodiment. 図3に対応する図であって、第2実施形態に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 3, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 2nd Embodiment. 図5に対応する図であって、第2実施形態の変形例に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 5, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on the modification of 2nd Embodiment. 図3に対応する図であって、第3実施形態に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 3, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 3rd Embodiment. 図7に対応する図であって、第3実施形態の変形例に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 7, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on the modification of 3rd Embodiment. 図3に対応する図であって、第4実施形態に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 3, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 4th Embodiment. 図9に対応する図であって、第4実施形態の変形例に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 9, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on the modification of 4th Embodiment. 図9に対応する図であって、第5実施形態に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 9, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 5th Embodiment. 図8に対応する図であって、第6実施形態に係る遠心送風機の要部を示す子午断面図である。It is a figure corresponding to FIG. 8, and is the meridional cross-sectional view which shows the main part of the centrifugal blower which concerns on 6th Embodiment. 分離筒の子午断面の部分拡大図であって、出口側端部の縁部を示す図である。It is a partially enlarged view of the meridian cross section of a separation cylinder, and is the figure which shows the edge part of the exit side end part.
〔第1実施形態〕



 以下に添付図面を参照して本発明の第1実施形態について説明する。 
[First Embodiment]



The first embodiment of the present invention will be described below with reference to the accompanying drawings.



 図1及び図2は、第1実施形態による空調装置の空気取入部及び遠心送風機の構造を示す断面図である。また、図3は、図1において参照符号IIIで示される二点鎖線で囲まれた領域を拡大して示す図である。 



1 and 2 are cross-sectional views showing the structure of an air intake portion and a centrifugal blower of an air conditioner according to the first embodiment. Further, FIG. 3 is an enlarged view showing a region surrounded by a two-dot chain line indicated by reference numeral III in FIG. 1.



 第1実施形態の遠心送風機1は、二層流式の車両用空調装置に用いられる片吸込型の遠心送風機である。当該空調装置は、デフロスタ吹出口(図示せず)とベント吹出口(図示せず)とフット吹出口(図示せず)とを有し、それぞれの吹出口から、車両のフロントガラス、乗員の上半身及び乗員の足元に向けて送風するようになっている。 



The centrifugal blower 1 of the first embodiment is a single-suction type centrifugal blower used in a two-phase flow type vehicle air conditioner. The air conditioner has a defroster outlet (not shown), a vent outlet (not shown), and a foot outlet (not shown), and from each outlet, the windshield of the vehicle and the upper body of the occupant. And it is designed to blow air toward the feet of the occupants.



 図1及び図2に示すように、遠心送風機1は、モータ2と、モータ2により軸方向に延びる回転軸線Ax周りに回転駆動される第1羽根車3及び第2羽根車5と、第1羽根車3及び第2羽根車5を収容するスクロールハウジング10と、を有する。 



As shown in FIGS. 1 and 2, the centrifugal blower 1 includes a motor 2, a first impeller 3 and a second impeller 5 that are rotationally driven around a rotation axis Ax extending in the axial direction by the motor 2, and a first impeller. It has a scroll housing 10 for accommodating the impeller 3 and the second impeller 5.



 本明細書において、説明の便宜上、回転軸線Axの方向を軸方向または上下方向と呼ぶ。また、図1及び図2の上側及び下側を、それぞれ、「軸方向の一側」あるいは「軸方向上側」、及び、「軸方向の他側」あるいは「軸方向下側」と呼ぶ。しかしながら、このことによって、空調装置が実際に車両に組み込まれた場合に回転軸線Axの方向が鉛直方向に一致するものと限定されるわけではない。また、本明細書においては、特別な注記が無い限り、回転軸線Ax上の任意の点を中心として回転軸線Axと直交する平面上に描かれた円の半径の方向を半径方向と呼び、当該円の円周方向を周方向または円周方向と呼ぶ。





In the present specification, for convenience of explanation, the direction of the rotation axis Ax is referred to as an axial direction or a vertical direction. Further, the upper side and the lower side of FIGS. 1 and 2 are referred to as "one side in the axial direction" or "upper side in the axial direction" and "the other side in the axial direction" or "lower side in the axial direction", respectively. However, this does not mean that the direction of the rotation axis Ax coincides with the vertical direction when the air conditioner is actually incorporated in the vehicle. Further, in the present specification, unless otherwise specified, the direction of the radius of a circle drawn on a plane orthogonal to the rotation axis Ax about an arbitrary point on the rotation axis Ax is referred to as a radial direction. The circumferential direction of a circle is called the circumferential direction or the circumferential direction.





 第1羽根車3は、周方向に並んだ第1翼列を形成する複数の第1翼4を有している。第1羽根車3は、回転軸線Ax周りに回転駆動されることにより、第1翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す。各第1翼4は、半径方向内側を向く第1翼内側端縁41と、半径方向外側を向く第1翼外側端縁42と、軸方向の一側(上側)を向く第1翼一側端縁43と、軸方向の他側(下側)を向く第1翼他側端縁44とを有する。第1羽根車3を回転駆動すると、第1翼4の第1翼内側端縁41近傍の領域で空気を第1翼列内に引き込み、引き込んだ空気を第1翼4の第1翼外側端縁42近傍の領域で半径方向外側へ押し出す。 



The first impeller 3 has a plurality of first blades 4 forming a first blade row arranged in the circumferential direction. The first impeller 3 is rotationally driven around the rotation axis Ax to blow out air in the space inside the radial direction of the first blade row toward the outside in the radial direction. Each of the first wings 4 has an inner edge 41 of the first wing facing inward in the radial direction, an outer edge 42 of the first wing facing outward in the radial direction, and one side of the first wing facing one side (upper side) in the axial direction. It has an edge 43 and a first wing other side edge 44 facing the other side (lower side) in the axial direction. When the first impeller 3 is rotationally driven, air is drawn into the first wing row in the region near the inner end edge 41 of the first wing of the first wing 4, and the drawn air is taken into the outer end of the first wing of the first wing 4. Extrude outward in the radial direction in the region near the edge 42.



 第2羽根車5は、第1羽根車3と軸方向に並んでいる。第2羽根車5は、周方向に並んだ第2翼列を形成する複数の第2翼6を有している。第2羽根車5は、回転軸線Ax周りに回転駆動されることにより、第2翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す。各第2翼6は、半径方向内側を向く第2翼内側端縁61と、半径方向外側を向く第2翼外側端縁62と、軸方向の一側(上側)を向く第2翼一側端縁63と、軸方向の他側(下側)を向く第2翼他側端縁64とを有する。第2羽根車5を回転駆動すると、第2翼6の第2翼内側端縁61近傍の領域で空気を第2翼列内に引き込み、引き込んだ空気を第2翼6の第2翼外側端縁62近傍の領域で半径方向外側へ押し出す。 



The second impeller 5 is aligned with the first impeller 3 in the axial direction. The second impeller 5 has a plurality of second blades 6 forming a second blade row arranged in the circumferential direction. The second impeller 5 is rotationally driven around the rotation axis Ax to blow out air in the space inside the radial direction of the second blade row toward the outside in the radial direction. Each of the second wings 6 has an inner edge 61 of the second wing facing inward in the radial direction, an outer edge 62 of the second wing facing outward in the radial direction, and one side of the second wing facing one side (upper side) in the axial direction. It has an edge 63 and a second wing other side edge 64 facing the other side (lower side) in the axial direction. When the second impeller 5 is rotationally driven, air is drawn into the second wing row in the region near the inner end edge 61 of the second wing of the second wing 6, and the drawn air is taken into the outer end of the second wing of the second wing 6. Extrude outward in the radial direction in the region near the edge 62.



 図示された例では、第1翼4の軸方向の寸法と第2翼6の軸方向の寸法とは同一であるが、これに限られない。第1翼4の軸方向の寸法と第2翼6の軸方向の寸法とは、異なっていてもよい。 



In the illustrated example, the axial dimension of the first wing 4 and the axial dimension of the second wing 6 are the same, but are not limited to this. The axial dimension of the first wing 4 and the axial dimension of the second wing 6 may be different.



 第1羽根車3の第1翼列と第2羽根車5の第2翼列との間には、分割部材7が形成されている。分割部材7は、第1羽根車3及び第2羽根車5の翼列に沿って周状に形成されている。分割部材7は、複数の第1翼4の間の空間と複数の第2翼6の間の空間とを分割する。図1乃至図3に示す例では、分割部材7は、第1羽根車3の第1翼列及び第2羽根車5の第2翼列と一体に形成されている。第1羽根車3の第1翼列は、分割部材7の軸方向の一側に位置している。また、第2羽根車5の第2翼列は、分割部材7の軸方向の他側に位置している。分割部材7は、半径方向内側を向く分割部材内側端面75と、半径方向外側を向く分割部材外側端面76とを有している。 



A dividing member 7 is formed between the first blade row of the first impeller 3 and the second blade row of the second impeller 5. The dividing member 7 is formed in a circumferential shape along the blade row of the first impeller 3 and the second impeller 5. The dividing member 7 divides the space between the plurality of first wings 4 and the space between the plurality of second wings 6. In the example shown in FIGS. 1 to 3, the dividing member 7 is integrally formed with the first blade row of the first impeller 3 and the second blade row of the second impeller 5. The first blade row of the first impeller 3 is located on one side in the axial direction of the dividing member 7. Further, the second blade row of the second impeller 5 is located on the other side in the axial direction of the dividing member 7. The dividing member 7 has an inner end surface 75 of the dividing member facing inward in the radial direction and an outer end surface 76 of the dividing member facing outward in the radial direction.



 また、羽根車3,5には、内側偏向部材8が一体に成形されている。この内側偏向部材8は、幾何学的な意味における回転体である。図示された例では、第2羽根車5の下端に接続された側周部8aと、円板形の中央部8bとを有している。中央部8bはモータ2の回転軸2aに連結されている。内側偏向部材8は、後述する分離筒30の出口側端部33との間に、空気流の通路を形成する。なお、中央部8bは必ずしも円板状でなくともよく、周知のボス形状であってもよい。 



Further, the inner deflection member 8 is integrally formed on the impellers 3 and 5. The inner deflection member 8 is a rotating body in a geometrical sense. In the illustrated example, it has a side peripheral portion 8a connected to the lower end of the second impeller 5 and a disk-shaped central portion 8b. The central portion 8b is connected to the rotating shaft 2a of the motor 2. The inner deflection member 8 forms an air flow passage between the inner deflection member 8 and the outlet side end portion 33 of the separation cylinder 30, which will be described later. The central portion 8b does not necessarily have to have a disk shape, and may have a well-known boss shape.



 スクロールハウジング10は、羽根車3,5を収容する内部空間と、軸方向の一端側に開口する吸込口11と、周方向に開口する吐出口12と、を有している。吐出口12は、スクロールハウジング10を軸方向から見た場合、スクロールハウジング10の外周面の概ね接線方向に延びている。 



The scroll housing 10 has an internal space for accommodating the impellers 3 and 5, a suction port 11 that opens on one end side in the axial direction, and a discharge port 12 that opens in the circumferential direction. The discharge port 12 extends substantially in the tangential direction of the outer peripheral surface of the scroll housing 10 when the scroll housing 10 is viewed from the axial direction.



 スクロールハウジング10の内部空間は、スクロールハウジング10の内周面から半径方向内側に向けて延びる周状の仕切壁15によって、分割されている(仕切られている)。仕切壁15は、スクロールハウジング10の内部空間のうち、スクロールハウジング10の内周面と羽根車3,5の外周面との間の領域、並びに、吐出口12の内部空間を、軸方向に(上下に)分割している。スクロールハウジング10の内部空間が仕切壁15によって分割されることにより、スクロールハウジング10内には、第1羽根車3の第1翼列に対面する第1空気流路13と、第2羽根車5の第2翼列に対面する第2空気流路14とが形成される。第1空気流路13を流れる空気は、車両のデフロスタ吹出口及び/またはベント吹出口に送り出される。また、第2空気流路14を流れる空気は、車両のフット吹出口に送り出される。 



The internal space of the scroll housing 10 is divided (partitioned) by a circumferential partition wall 15 extending inward in the radial direction from the inner peripheral surface of the scroll housing 10. The partition wall 15 axially (s) the area between the inner peripheral surface of the scroll housing 10 and the outer peripheral surfaces of the impellers 3 and 5 and the internal space of the discharge port 12 in the internal space of the scroll housing 10. It is divided into upper and lower parts. Since the internal space of the scroll housing 10 is divided by the partition wall 15, the first air flow path 13 facing the first blade row of the first impeller 3 and the second impeller 5 are contained in the scroll housing 10. A second air flow path 14 facing the second blade row of the above is formed. The air flowing through the first air flow path 13 is sent out to the defroster outlet and / or the vent outlet of the vehicle. Further, the air flowing through the second air flow path 14 is sent out to the foot outlet of the vehicle.



 図示された例では、第1空気流路13の軸方向の寸法と第2空気流路14の軸方向の寸法とは同一であるが、これに限られない。第1空気流路13の軸方向の寸法と第2空気流路14の軸方向の寸法とは、異なっていてもよい。 



In the illustrated example, the axial dimension of the first air flow path 13 and the axial dimension of the second air flow path 14 are the same, but are not limited to this. The axial dimension of the first air flow path 13 and the axial dimension of the second air flow path 14 may be different.



 仕切壁15は、半径方向内側を向く仕切壁内側端面16を有している。仕切壁15は、軸方向において分割部材7と略同じ位置となるように設けられている。図示された例では、仕切壁15の仕切壁内側端面16は、分割部材外側端面76に対面している。 



The partition wall 15 has a partition wall inner end surface 16 facing inward in the radial direction. The partition wall 15 is provided so as to be substantially at the same position as the dividing member 7 in the axial direction. In the illustrated example, the partition wall inner end surface 16 of the partition wall 15 faces the partition member outer end surface 76.



 スクロールハウジング10内には、吸込口11を介して、分離筒30が挿入されている。図1と図2を比較対照することにより理解できるように、分離筒30の入口側端部(上部)31の断面は概ね矩形である。分離筒30の中央部32の断面は円形または概ね円形である。分離筒30の断面形状は、入口側端部31から中央部32に近づくに従って、矩形から円形または概ね円形に滑らかに推移する。分離筒30の出口側端部(下部)33は、下端に近づくに従って拡径するフレア形状を有している。 



The separation cylinder 30 is inserted into the scroll housing 10 via the suction port 11. As can be understood by comparing and contrasting FIGS. 1 and 2, the cross section of the inlet side end (upper part) 31 of the separation cylinder 30 is approximately rectangular. The cross section of the central portion 32 of the separation cylinder 30 is circular or substantially circular. The cross-sectional shape of the separation cylinder 30 smoothly changes from a rectangular shape to a circular shape or a substantially circular shape as it approaches the central portion 32 from the inlet side end portion 31. The outlet side end (lower part) 33 of the separation cylinder 30 has a flare shape that increases in diameter as it approaches the lower end.



 分離筒30の全体が樹脂射出成形により一体成形されていてもよい。これに代えて、分離筒30の入口側端部(上部)31と、分離筒30の中央部32及び出口側端部(下部)33とを別々に成形した後に、両者を連結してもよい。 



The entire separation cylinder 30 may be integrally molded by resin injection molding. Instead of this, the inlet side end portion (upper part) 31 of the separation cylinder 30 and the central portion 32 and the outlet side end portion (lower part) 33 of the separation cylinder 30 may be separately molded and then connected to each other. ..



 分離筒30は、吸込口11の半径方向内側及び第1羽根車3の第1翼列の半径方向内側を通って、軸方向に延びている。分離筒30の入口側端部31は、スクロールハウジング10の外側(吸込口11よりも軸方向上側)に位置している。 



The separation cylinder 30 extends axially through the inside of the suction port 11 in the radial direction and the inside of the first blade row of the first impeller 3 in the radial direction. The inlet side end portion 31 of the separation cylinder 30 is located on the outside of the scroll housing 10 (above the suction port 11 in the axial direction).



 分離筒30は、吸込口11からスクロールハウジング10内に吸入される空気の流れを、分離筒30の外側の第1通路30Aを通る第1空気流と、分離筒30の内側の第2通路30Bを通る第2空気流とに分離する。第1空気流は、スクロールハウジング10の吸込口11のうちの分離筒30の外周面より外側のリング状領域を通って第1羽根車3の第1翼列の半径方向内側に流入する。第2空気流は、分離筒30の上端から分離筒30の内側に入り、第2羽根車5の第2翼列の半径方向内側に流入する。 



The separation cylinder 30 allows the flow of air sucked into the scroll housing 10 from the suction port 11 to pass through the first passage 30A outside the separation cylinder 30 and the second passage 30B inside the separation cylinder 30. Separates into a second air stream passing through. The first air flow flows into the radial inside of the first blade row of the first impeller 3 through the ring-shaped region outside the outer peripheral surface of the separation cylinder 30 in the suction port 11 of the scroll housing 10. The second air flow enters the inside of the separation cylinder 30 from the upper end of the separation cylinder 30 and flows into the inside of the second blade row of the second impeller 5 in the radial direction.



 分離筒30の出口側端部33は、流入した第1空気流を半径方向外向きに転向し、第1羽根車3の第1翼列を通じて第1空気流路13に案内するとともに、流入した第2空気流を半径方向外向きに転向し、第2羽根車5の第2翼列を通じて第2空気流路14に案内する。より詳しくは、出口側端部33は、軸方向の一側(上側)を向く第1転向面34を有している。第1転向面34は、第1空気流を半径方向外向きに転向する。また、出口側端部33は、軸方向の他側(下側)を向く第2転向面36を有している。第2転向面36は、第2空気流を半径方向外向きに転向する。 



The outlet-side end 33 of the separation cylinder 30 diverts the inflowing first air flow outward in the radial direction, guides the inflowing first air flow to the first air flow path 13 through the first blade row of the first impeller 3, and flows in. The second air flow is turned outward in the radial direction and guided to the second air flow path 14 through the second blade row of the second impeller 5. More specifically, the outlet side end portion 33 has a first turning surface 34 facing one side (upper side) in the axial direction. The first turning surface 34 turns the first air flow outward in the radial direction. Further, the outlet side end portion 33 has a second turning surface 36 facing the other side (lower side) in the axial direction. The second turning surface 36 turns the second air flow outward in the radial direction.



 図1及び図2に示すように、スクロールハウジング10の軸方向の一側(上側)には、空気取入ハウジング50が、吸込口11を覆うように配置されている。スクロールハウジング10と空気取入ハウジング50とは、一体成形されていてもよいし、別々に作製された後にネジ止め、接着、嵌め込み等の手法により連結されてもよい。なお、好適な一実施形態においては、分離筒30は、スクロールハウジング10及び空気取入ハウジング50とは別体の部品であり、空気取入ハウジング50によって所定位置に支持される。 



As shown in FIGS. 1 and 2, an air intake housing 50 is arranged on one side (upper side) of the scroll housing 10 in the axial direction so as to cover the suction port 11. The scroll housing 10 and the air intake housing 50 may be integrally molded, or may be manufactured separately and then connected by a method such as screwing, bonding, or fitting. In a preferred embodiment, the separation cylinder 30 is a separate component from the scroll housing 10 and the air intake housing 50, and is supported at a predetermined position by the air intake housing 50.



 空気取入ハウジング50は、第1開口51、第2開口52、第3開口53及び第4開口54を有している。第1開口51及び第3開口53を介して、空気取入ハウジング50の内部空間に、車室内空間55(詳細は図示せず)から、内気(車室内空気)を導入することができる。つまり、第1開口51及び第3開口53は、空気取入ハウジング50内に内気を取り込むための第1及び第2の内気導入口である。また、第2開口52及び第4開口54を介して、空気取入ハウジング50の内部空間に、車両に備えられた外気導入路の出口56(詳細は図示せず)から、外気(車両外部から取り入れた空気)を導入することができる。つまり、第2開口52及び第4開口54は、空気取入ハウジング50内に外気を取り込むための第1及び第2の外気導入口である。 



The air intake housing 50 has a first opening 51, a second opening 52, a third opening 53, and a fourth opening 54. Inside air (vehicle interior air) can be introduced into the internal space of the air intake housing 50 from the vehicle interior space 55 (details are not shown) through the first opening 51 and the third opening 53. That is, the first opening 51 and the third opening 53 are the first and second inside air introduction ports for taking in the inside air into the air intake housing 50. Further, through the second opening 52 and the fourth opening 54, the outside air (from the outside of the vehicle) is introduced into the internal space of the air intake housing 50 from the outlet 56 (details are not shown) of the outside air introduction path provided in the vehicle. Incorporated air) can be introduced. That is, the second opening 52 and the fourth opening 54 are first and second outside air introduction ports for taking in outside air into the air intake housing 50.



 ドア57を回転軸57A周りに回転させることにより、第1開口51から空気取入ハウジング50内への空気(内気)の流入を許容または遮断することができる。ドア58を回転軸58A周りに回転させることにより、第2開口52から空気取入ハウジング50内への空気(外気)の流入を許容または遮断することができる。ドア59を回転軸59A周りに回転させて位置を切り替えることにより、第3開口53及び第4開口54のうちのいずれか一方を介して空気取入ハウジング50内へ空気(内気または外気)を流入させることができる。 



By rotating the door 57 around the rotation shaft 57A, the inflow of air (inside air) from the first opening 51 into the air intake housing 50 can be allowed or blocked. By rotating the door 58 around the rotation shaft 58A, the inflow of air (outside air) from the second opening 52 into the air intake housing 50 can be allowed or blocked. By rotating the door 59 around the rotation shaft 59A to switch the position, air (inside air or outside air) flows into the air intake housing 50 through either the third opening 53 or the fourth opening 54. Can be made to.



 第1開口51及び/又は第2開口52から空気取入ハウジング50内に導入された空気のほぼ全てが第1通路30Aを通るように、且つ、第3開口53及び/又は第4開口54から空気取入ハウジング50に導入された空気のほぼ全てが第2通路30Bを通るように、空気取入ハウジング50及び分離筒30が形成されている。 



Almost all of the air introduced into the air intake housing 50 from the first opening 51 and / or the second opening 52 passes through the first passage 30A, and from the third opening 53 and / or the fourth opening 54. The air intake housing 50 and the separation cylinder 30 are formed so that almost all of the air introduced into the air intake housing 50 passes through the second passage 30B.



 なお、空気取入ハウジング50の構成は、図1及び図2に示す構成に限られない。例えば、空気取入ハウジング50のドア57,58は、ドア59と同様にロータリドアであってもよい。 



The configuration of the air intake housing 50 is not limited to the configurations shown in FIGS. 1 and 2. For example, the doors 57 and 58 of the air intake housing 50 may be rotary doors like the door 59.



 空気取入ハウジング50内には、フィルタ80が設けられている。フィルタ80は、第1開口51、第2開口52、第3開口53及び第4開口54が配置される領域と分離筒30の入口側端部31との間に配置されて、空気中のダスト、パーティクル等の汚染物質を除去する。 



A filter 80 is provided in the air intake housing 50. The filter 80 is arranged between the region where the first opening 51, the second opening 52, the third opening 53 and the fourth opening 54 are arranged and the inlet side end portion 31 of the separation cylinder 30, and is dust in the air. , Removes contaminants such as particles.



 ところで、車両用空調装置は、内外気二層流モードで運転される際、第1空気流(外気)と第2空気流(内気)との高い分離性が要求される。これは次の理由による。すなわち、車両用空調装置は、内外気二層流モードで運転される際、フロントガラスの曇りを防止するよう、乾燥した外気をフロントガラスに当てる。しかしながら、フロントガラスに当てる外気に湿潤な内気が混入すると、車両用空調装置のフロントガラス曇り防止機能が損なわれる虞がある。とりわけ、車両用空調装置が内外気二層流モードで運転される場合、車両用空調装置内のドアの位置によっては、第2空気流路の通気抵抗が第1空気流路の通気抵抗よりも高くなることがある。この結果、第2空気流路を流れる内気の一部が、遠心送風機を構成する要素の隙間から第1空気流路に流入する虞がある。 



By the way, when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, high separability between the first air flow (outside air) and the second air flow (inside air) is required. This is due to the following reasons. That is, when the vehicle air conditioner is operated in the inside / outside air two-phase flow mode, dry outside air is applied to the windshield so as to prevent fogging of the windshield. However, if the outside air that hits the windshield is mixed with the moist inside air, the windshield anti-fog function of the vehicle air conditioner may be impaired. In particular, when the vehicle air conditioner is operated in the inside / outside air two-layer flow mode, the ventilation resistance of the second air flow path is higher than the ventilation resistance of the first air flow path depending on the position of the door in the vehicle air conditioner. It can be expensive. As a result, a part of the inside air flowing through the second air flow path may flow into the first air flow path through the gap between the elements constituting the centrifugal blower.



 このような事情を考慮して、図1乃至図3に示す遠心送風機1は、第1空気流に第2空気流が混入する、という虞を抑制するよう構成されている。より具体的には、図1乃至図3に示す遠心送風機1は、第2空気流の一部が分離筒30と分割部材7との隙間を通じて第1空気流路13に入り込んでしまう、という虞を抑制するよう構成されている。 



In consideration of such circumstances, the centrifugal blower 1 shown in FIGS. 1 to 3 is configured to suppress the possibility that the second air flow is mixed with the first air flow. More specifically, in the centrifugal blower 1 shown in FIGS. 1 to 3, there is a possibility that a part of the second air flow may enter the first air flow path 13 through the gap between the separation cylinder 30 and the dividing member 7. Is configured to suppress.



 具体的には、遠心送風機1は、次のように構成されている。すなわち、図3によく示されているように、第1翼内側端縁41の軸方向における他側端部46と分離筒30の第1転向面34の半径方向外側の縁部35との距離D1は、第2翼内側端縁61の軸方向における一側端部65と分離筒30の第1転向面34の縁部35との距離D2よりも大きい。言い換えると、第1転向面34の縁部35は、第1羽根車3の第1翼4よりも第2羽根車5の第2翼6に近い。この結果、羽根車3,5が回転駆動されると、第1転向面34の縁部35近傍の空気は、第2羽根車5の第2翼列に引き込まれ、第2翼列から吹き出される。つまり、第1空気流の一部が、分離筒30の出口側端部33と分割部材7との隙間を通じて、第2空気流路14に流入する。これにより、第2空気流の一部が分離筒30の出口側端部33と分割部材7との隙間から第1空気流路13に流入する、という虞が抑制される。 



Specifically, the centrifugal blower 1 is configured as follows. That is, as is well shown in FIG. 3, the distance between the other side end portion 46 in the axial direction of the inner end edge 41 of the first blade and the radial outer edge portion 35 of the first turning surface 34 of the separation cylinder 30. D1 is larger than the distance D2 between the one-sided end portion 65 in the axial direction of the inner end edge 61 of the second blade and the edge portion 35 of the first turning surface 34 of the separation cylinder 30. In other words, the edge portion 35 of the first turning surface 34 is closer to the second wing 6 of the second impeller 5 than to the first wing 4 of the first impeller 3. As a result, when the impellers 3 and 5 are rotationally driven, the air in the vicinity of the edge 35 of the first turning surface 34 is drawn into the second blade row of the second impeller 5 and blown out from the second blade row. To. That is, a part of the first air flow flows into the second air flow path 14 through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7. As a result, the possibility that a part of the second air flow flows into the first air flow path 13 through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7 is suppressed.



 図3に示す例では、第1転向面34の縁部35は、第2翼内側端縁61の軸方向における一側端部65よりも、軸方向の他側に位置している。これにより、第1翼内側端縁41の他側端部46と第1転向面34の縁部35との距離D1は、第2翼内側端縁61の一側端部65と第1転向面34の縁部35との距離D2よりも長くなる。 



In the example shown in FIG. 3, the edge portion 35 of the first turning surface 34 is located on the other side in the axial direction than the one side end portion 65 in the axial direction of the inner edge 61 of the second blade. As a result, the distance D1 between the other side end portion 46 of the first wing inner end edge 41 and the edge portion 35 of the first turning surface 34 is the one side end portion 65 of the second wing inner end edge 61 and the first turning surface. It is longer than the distance D2 from the edge 35 of 34.



 次に、図1~図3に示す車両用空調装置の動作について説明する。 



Next, the operation of the vehicle air conditioner shown in FIGS. 1 to 3 will be described.



 車両用空調装置の第1の動作モード(外気モード)では、第2開口52及び第4開口54が開かれ、第1開口51及び第3開口53が閉じられる。この状態は図示されていない。この場合、第2開口52から導入された外気は、分離筒30の外側の第1通路30Aを通る第1空気流を形成する。また、第4開口54から導入された外気は、分離筒30の内側の第2通路30Bを通る第2空気流を形成する。第1空気流を形成する空気の大部分は、第1羽根車3の第1翼4によって第1翼列に引き込まれ、第1翼4によって第1空気流路13に押し出される。その一方で、第1空気流を形成する空気の一部(より具体的には分離筒30の縁部35近傍を流れる空気)及び第2空気流を形成する空気は、第2羽根車5の第2翼6によって第2翼列に引き込まれ、第2翼6によって第2空気流路14に押し出される。 



In the first operation mode (outside air mode) of the vehicle air conditioner, the second opening 52 and the fourth opening 54 are opened, and the first opening 51 and the third opening 53 are closed. This state is not shown. In this case, the outside air introduced from the second opening 52 forms a first air flow through the first passage 30A outside the separation cylinder 30. Further, the outside air introduced from the fourth opening 54 forms a second air flow passing through the second passage 30B inside the separation cylinder 30. Most of the air forming the first air flow is drawn into the first blade row by the first blade 4 of the first impeller 3 and pushed out into the first air flow path 13 by the first blade 4. On the other hand, a part of the air forming the first air flow (more specifically, the air flowing near the edge 35 of the separation cylinder 30) and the air forming the second air flow are the air of the second impeller 5. It is drawn into the second wing row by the second wing 6 and pushed out into the second air flow path 14 by the second wing 6.



 第2の動作モード(内外気二層流モード)では、第2開口52及び第3開口53が開かれ、第1開口51及び第4開口54が閉じられる。この状態は図1及び図2に示されている。この場合、第2開口52から導入された外気FEは、分離筒30の外側の第1通路30Aを通る第1空気流を形成する。また、第3開口53から導入された内気FRは、分離筒30の内側の第2通路30Bを通る第2空気流を形成する。第1空気流を形成する空気の大部分は、第1羽根車3の第1翼4によって第1翼列に引き込まれ、第1翼4によって第1空気流路13に押し出される。その一方で、第1空気流を形成する空気の一部(より具体的には分離筒30の縁部35近傍を流れる空気)及び第2空気流を形成する空気は、第2羽根車5の第2翼6によって第2翼列に引き込まれ、第2翼6によって第2空気流路14に押し出される。 



In the second operation mode (inside / outside air two-phase flow mode), the second opening 52 and the third opening 53 are opened, and the first opening 51 and the fourth opening 54 are closed. This state is shown in FIGS. 1 and 2. In this case, the outside air FE introduced from the second opening 52 forms a first air flow through the first passage 30A outside the separation cylinder 30. Further, the inside air FR introduced from the third opening 53 forms a second air flow through the second passage 30B inside the separation cylinder 30. Most of the air forming the first air flow is drawn into the first blade row by the first blade 4 of the first impeller 3 and pushed out into the first air flow path 13 by the first blade 4. On the other hand, a part of the air forming the first air flow (more specifically, the air flowing near the edge 35 of the separation cylinder 30) and the air forming the second air flow are the air of the second impeller 5. It is drawn into the second wing row by the second wing 6 and pushed out into the second air flow path 14 by the second wing 6.



 第2の動作モード(内外気二層流モード)は、例えば、デフフットモードでの運転を行うときに用いられる。このときには、相対的に水分量の少ない調和空気(第1空気流路13を流れる空気)が車室のデフロスト吹出口から車両のフロントガラス(図示せず)に向けて吹き出され、相対的に水分量の多い調和空気(第2空気流路14を流れる空気)が車室のフット吹出口(図示せず)から乗員の足元に向けて吹き出される。 



The second operation mode (inside / outside air two-phase flow mode) is used, for example, when operating in the differential foot mode. At this time, the harmonized air (air flowing through the first air flow path 13) having a relatively small amount of water is blown out from the defrost outlet of the vehicle interior toward the front glass (not shown) of the vehicle, and the relatively water content is relatively small. A large amount of harmonious air (air flowing through the second air flow path 14) is blown out from the foot outlet (not shown) of the passenger compartment toward the feet of the occupant.



 第3の動作モード(内気モード)では、第1開口51及び第3開口53が開かれ、第2開口52及び第4開口54が閉じられる。この状態は図示されていない。この場合、第1開口51から導入された内気は、分離筒30の外側の第1通路30Aを通る第1空気流を形成する。また、第3開口53から導入された内気は、分離筒30の内側の第2通路30Bを通る第2空気流を形成する。第1空気流を形成する空気の大部分は、第1羽根車3の第1翼4によって第1翼列に引き込まれ、第1翼4によって第1空気流路13に押し出される。その一方で、第1空気流を形成する空気の一部(より具体的には分離筒30の縁部35近傍を流れる空気)及び第2空気流を形成する空気は、第2羽根車5の第2翼6によって第2翼列に引き込まれ、第2翼6によって第2空気流路14に押し出される。 



In the third operation mode (inside air mode), the first opening 51 and the third opening 53 are opened, and the second opening 52 and the fourth opening 54 are closed. This state is not shown. In this case, the inside air introduced from the first opening 51 forms a first air flow through the first passage 30A outside the separation cylinder 30. Further, the inside air introduced from the third opening 53 forms a second air flow passing through the second passage 30B inside the separation cylinder 30. Most of the air forming the first air flow is drawn into the first blade row by the first blade 4 of the first impeller 3 and pushed out into the first air flow path 13 by the first blade 4. On the other hand, a part of the air forming the first air flow (more specifically, the air flowing near the edge 35 of the separation cylinder 30) and the air forming the second air flow are the air of the second impeller 5. It is drawn into the second wing row by the second wing 6 and pushed out into the second air flow path 14 by the second wing 6.



 上述したように、第2通路30Bを流れる空気は、第2羽根車5の第2翼列に流入する。このとき、第1通路30Aを流れる空気の一部が分離筒30の出口側端部33と分割部材7との隙間を通じて第2翼列に引き込まれることにより、第2通路30Bを流れる空気の一部が上記隙間を通じて第1通路30A又は第1羽根車3の第1翼列に流入することが、抑制される。 



As described above, the air flowing through the second passage 30B flows into the second blade row of the second impeller 5. At this time, a part of the air flowing through the first passage 30A is drawn into the second blade row through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7, and thus one of the air flowing through the second passage 30B. It is suppressed that the portion flows into the first passage 30A or the first blade row of the first impeller 3 through the gap.



 以上のように、第1の実施形態の遠心送風機1は、車両用の片吸込型の遠心送風機1であって、モータ2と、第1羽根車3と、第2羽根車5と、分割部材7と、スクロールハウジング10と、仕切壁15と、分離筒30とを備えている。



 第1羽根車3は、周方向第1翼列を形成する複数の第1翼4を有している。第1羽根車3は、モータ2により軸方向に延びる回転軸線Ax周りに回転駆動されて、第1翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す。



 第2羽根車5は、周方向第2翼列を形成する複数の第2翼6を有している。第2羽根車5は、モータ2により回転軸線Ax周りに回転駆動されて、第2翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す。



 分割部材7は、第1翼列と第2翼列との間に周状に形成され、複数の第1翼4の間の空間と複数の第2翼6の間の空間とを分割する。



 スクロールハウジング10は、第1羽根車3及び第2羽根車5を収容する内部空間と、軸方向の一端側に開口する吸込口11と、周方向に開口する吐出口12と、を有する。



 仕切壁15は、スクロールハウジング10の内部空間のうちのスクロールハウジング10の内周面と第1羽根車3及び第2羽根車5の外周面との間の領域、並びに吐出口12の内部空間を、軸方向に分割して、第1翼列に対向する第1空気流路13と第2翼列に対向する第2空気流路14とを形成する。



 分離筒30は、吸込口11の半径方向内側及び第1翼列の半径方向内側を通って軸方向に延びている。分離筒30は、吸込口11からスクロールハウジング10内に吸入される空気の流れを、分離筒30の外側を通る第1空気流と、分離筒30の内側を通る第2空気流とに分割するように設けられている。また、分離筒30は、第1空気流を半径方向外向きに転向して第1空気流路13に案内するとともに、第2空気流を半径方向外向きに転向して第2空気流路14に案内する出口側端部33を有している。



 第1翼列は、軸方向における分割部材7の一側に位置している。



 第2翼列は、軸方向における分割部材7の他側に位置している。



 分離筒30の出口側端部33は、第1空気流を半径方向外向きに転向する第1転向面34と、第2空気流を半径方向外向きに転向する第2転向面36と、を有している。



 第1翼4は、半径方向内側を向く第1翼内側端縁41を有している。



 第2翼6は、半径方向内側を向く第2翼内側端縁61を有している。



 第1翼内側端縁41の軸方向における他側端部46と第1転向面34の半径方向外側の縁部35との距離D1は、第2翼内側端縁61の軸方向における一側端部65と第1転向面34の半径方向外側の縁部35との距離D2よりも長い。 



As described above, the centrifugal blower 1 of the first embodiment is a single suction type centrifugal blower 1 for a vehicle, and is a motor 2, a first impeller 3, a second impeller 5, and a split member. 7, a scroll housing 10, a partition wall 15, and a separation cylinder 30 are provided.



The first impeller 3 has a plurality of first blades 4 forming a circumferential first blade row. The first impeller 3 is rotationally driven by a motor 2 around a rotation axis Ax extending in the axial direction, and blows out air in the space inside the radial direction of the first blade row toward the outside in the radial direction.



The second impeller 5 has a plurality of second blades 6 forming a circumferential second blade row. The second impeller 5 is rotationally driven around the rotation axis Ax by the motor 2 to blow out air in the space inside the radial direction of the second blade row toward the outside in the radial direction.



The dividing member 7 is formed in a circumferential shape between the first wing row and the second wing row, and divides the space between the plurality of first wing 4 and the space between the plurality of second wing 6.



The scroll housing 10 has an internal space for accommodating the first impeller 3 and the second impeller 5, a suction port 11 that opens on one end side in the axial direction, and a discharge port 12 that opens in the circumferential direction.



The partition wall 15 covers an area between the inner peripheral surface of the scroll housing 10 and the outer peripheral surfaces of the first impeller 3 and the second impeller 5 in the internal space of the scroll housing 10, and the internal space of the discharge port 12. , The first air flow path 13 facing the first blade row and the second air flow path 14 facing the second blade row are formed by dividing in the axial direction.



The separation cylinder 30 extends axially through the inside of the suction port 11 in the radial direction and the inside of the first blade row in the radial direction. The separation cylinder 30 divides the air flow sucked into the scroll housing 10 from the suction port 11 into a first air flow passing through the outside of the separation cylinder 30 and a second air flow passing through the inside of the separation cylinder 30. It is provided as follows. Further, the separation cylinder 30 diverts the first air flow outward in the radial direction to guide it to the first air flow path 13, and also diverts the second air flow outward in the radial direction to guide the second air flow path 14 to the second air flow path 14. It has an exit side end 33 that guides the air.



The first blade row is located on one side of the dividing member 7 in the axial direction.



The second blade row is located on the other side of the split member 7 in the axial direction.



The outlet-side end 33 of the separation cylinder 30 has a first turning surface 34 that turns the first air flow outward in the radial direction, and a second turning surface 36 that turns the second air flow outward in the radial direction. Have.



The first wing 4 has a first wing inner edge 41 facing inward in the radial direction.



The second wing 6 has a second wing inner edge 61 facing inward in the radial direction.



The distance D1 between the other side end portion 46 in the axial direction of the inner end edge 41 of the first wing and the outer edge portion 35 in the radial direction of the first turning surface 34 is one side end in the axial direction of the inner end edge 61 of the second wing. The distance between the portion 65 and the radial outer edge portion 35 of the first turning surface 34 is longer than the distance D2.



 このような遠心送風機1によれば、第1転向面34の縁部35は、第1羽根車3の第1翼4よりも第2羽根車5の第2翼6に近い。この結果、羽根車3,5が回転駆動されると、第1転向面34の縁部35近傍の空気は、第2羽根車5の第2翼列に引き込まれ、第2翼列から吹き出される。つまり、第1空気流の一部が、分離筒30の出口側端部33と分割部材7との隙間を通じて第2空気流路14に流入する。これにより、第2空気流の一部が上記隙間を通じて第1空気流路13に流入する、という虞が抑制される。 



According to such a centrifugal blower 1, the edge portion 35 of the first turning surface 34 is closer to the second blade 6 of the second impeller 5 than the first blade 4 of the first impeller 3. As a result, when the impellers 3 and 5 are rotationally driven, the air in the vicinity of the edge 35 of the first turning surface 34 is drawn into the second blade row of the second impeller 5 and blown out from the second blade row. To. That is, a part of the first air flow flows into the second air flow path 14 through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7. As a result, the possibility that a part of the second air flow flows into the first air flow path 13 through the gap is suppressed.



 とりわけ、第1実施形態においては、第1転向面34の半径方向外側の縁部35は、第2翼内側端縁61の軸方向における一側端部65よりも、軸方向の他側に位置している。これにより、距離D1は距離D2よりも長くなる。 



In particular, in the first embodiment, the radial outer edge portion 35 of the first turning surface 34 is located on the other side in the axial direction than the one side end portion 65 in the axial direction of the second blade inner end edge 61. is doing. As a result, the distance D1 becomes longer than the distance D2.
〔第1実施形態の変形例〕



 次に、図4を参照して、第1実施形態の変形例における遠心送風機について説明する。


[Modified example of the first embodiment]



Next, with reference to FIG. 4, the centrifugal blower in the modified example of the first embodiment will be described.





 図4は、図3に対応する図であって、第1実施形態の変形例を説明するための図である。図4に示す変形例において、図1乃至図3に示す第1実施形態と同一部分には同一符号を付して詳細な説明は省略する。 



FIG. 4 is a diagram corresponding to FIG. 3 and is a diagram for explaining a modification of the first embodiment. In the modification shown in FIG. 4, the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.



 図4に示す変形例では、分割部材7は、半径方向に延びる本体部70と、本体部70の半径方向内側の端部71において、本体部70の一側面(上面)から軸方向に突出する内側一側突出部72と、を有している。そして、第1翼内側端縁41は、内側一側突出部72に接続している。分割部材7が第1翼内側端縁41に接続する内側一側突出部72を有していることにより、第1翼内側端縁41の他側端部46の軸方向における位置を、分割部材7の本体部70の軸方向における位置に依ることなく、決定することができる。したがって、第1翼内側端縁41の他側端部46と第1転向面34の縁部35との距離D1を長くすることが容易である。また、分割部材7が内側一側突出部72を有していることにより、距離D1が距離D2よりも長くなるように分離筒30を分割部材7に対して配置可能な軸方向の範囲が拡大する。これにより、遠心送風機1を組み立てる際に、遠心送風機1を構成する各部品の寸法公差があっても、距離D1が距離D2よりも長くなるように分離筒30を分割部材7に対して配置することが容易である。したがって、図4に示すように、分離筒30の出口側端部33と分割部材7の本体部70とが対面するように分離筒30が分割部材7に対して配置されても、距離D1を距離D2よりも長くすることができる。





In the modified example shown in FIG. 4, the split member 7 projects axially from one side surface (upper surface) of the main body 70 at the main body 70 extending in the radial direction and the radial inner end 71 of the main body 70. It has an inner one-side protruding portion 72. The inner edge 41 of the first wing is connected to the inner one-side protrusion 72. Since the dividing member 7 has an inner one-side protruding portion 72 connected to the first wing inner end edge 41, the position of the other side end portion 46 of the first wing inner end edge 41 in the axial direction can be determined by the dividing member 7. It can be determined without depending on the position of the main body 70 of 7 in the axial direction. Therefore, it is easy to increase the distance D1 between the other side end portion 46 of the first blade inner end edge 41 and the edge portion 35 of the first turning surface 34. Further, since the dividing member 7 has the inner one-side protruding portion 72, the range in the axial direction in which the separation cylinder 30 can be arranged with respect to the dividing member 7 is expanded so that the distance D1 is longer than the distance D2. do. As a result, when assembling the centrifugal blower 1, the separation cylinder 30 is arranged with respect to the dividing member 7 so that the distance D1 is longer than the distance D2 even if there is a dimensional tolerance of each component constituting the centrifugal blower 1. Is easy. Therefore, as shown in FIG. 4, even if the separation cylinder 30 is arranged with respect to the division member 7 so that the outlet side end portion 33 of the separation cylinder 30 and the main body portion 70 of the division member 7 face each other, the distance D1 is set. It can be longer than the distance D2.





 なお、図4に示すように、分割部材7は、さらに、上記端部71において、本体部70の他側面から軸方向に突出する内側他側突出部73を有していてもよい。図4に示す例では、内側他側突出部73は、第2翼内側端縁61に接続している。この場合も、距離D1が距離D2よりも長ければ、第2空気流の一部が分離筒30の出口側端部33と分割部材7との隙間を通じて第1空気流路13に流入する、という虞が抑制される。なお、第2翼内側端縁61に接続する内側他側突出部73を有していることにより、第1通路30Aを通る第1空気流が意図せずに第2通路30Bを通る第2空気流に流入することを抑制できる。 



As shown in FIG. 4, the split member 7 may further have an inner other side protruding portion 73 that protrudes in the axial direction from the other side surface of the main body portion 70 at the end portion 71. In the example shown in FIG. 4, the inner other side protrusion 73 is connected to the inner edge 61 of the second blade. Also in this case, if the distance D1 is longer than the distance D2, a part of the second air flow flows into the first air flow path 13 through the gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7. The fear is suppressed. In addition, since the inner other side protruding portion 73 connected to the inner edge 61 of the second wing is provided, the first air flow passing through the first passage 30A unintentionally passes through the second passage 30B. It is possible to suppress the inflow to the flow.



〔第2実施形態〕



 次に、図5を参照して、第2実施形態における遠心送風機について説明する。 



[Second Embodiment]



Next, the centrifugal blower according to the second embodiment will be described with reference to FIG.



 図5は、図3に対応する図であって、第2実施形態を説明するための図である。図5に示す第2実施形態において、図1乃至図3に示す第1実施形態と同一部分には同一符号を付して詳細な説明は省略する。 



FIG. 5 is a diagram corresponding to FIG. 3 and is a diagram for explaining a second embodiment. In the second embodiment shown in FIG. 5, the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.



 図5に示す例では、第1翼4の他側端縁44の長さは、第2翼6の一側端縁63の長さよりも短い。これにより、第1翼内側端縁41の他側端部46は、第2翼内側端縁61の一側端部65よりも半径方向外側に位置している。 



In the example shown in FIG. 5, the length of the other side edge 44 of the first wing 4 is shorter than the length of the one side edge 63 of the second wing 6. As a result, the other side end portion 46 of the first wing inner end edge 41 is located radially outside the one side end portion 65 of the second wing inner end edge 61.



 第1翼内側端縁41の他側端部46が第2翼内側端縁61の一側端部65よりも半径方向外側に位置していることにより、第1翼内側端縁41の他側端部46と第1転向面34の縁部35との距離D1を長くすることが容易である。すなわち、図5に示すように、分離筒30の出口側端部33が分割部材内側端面75に対面していても、距離D1を距離D2よりも長くすることができる。このことは、距離D1が距離D2よりも長くなるように分離筒30を分割部材7に対して配置可能な軸方向の範囲が拡大する、ということを意味する。したがって、遠心送風機1を組み立てる際に、遠心送風機1を構成する各部品の寸法公差があっても、距離D1が距離D2よりも長くなるように分離筒30を分割部材7に対して配置することが容易である。 



Since the other side end portion 46 of the first wing inner end edge 41 is located radially outside the one side end portion 65 of the second wing inner end edge 61, the other side of the first wing inner end edge 41 It is easy to increase the distance D1 between the end portion 46 and the edge portion 35 of the first turning surface 34. That is, as shown in FIG. 5, even if the outlet side end portion 33 of the separation cylinder 30 faces the inner end surface 75 of the dividing member, the distance D1 can be made longer than the distance D2. This means that the axial range in which the separation cylinder 30 can be arranged with respect to the dividing member 7 is expanded so that the distance D1 is longer than the distance D2. Therefore, when assembling the centrifugal blower 1, the separation cylinder 30 is arranged with respect to the dividing member 7 so that the distance D1 is longer than the distance D2 even if there is a dimensional tolerance of each component constituting the centrifugal blower 1. Is easy.



 図示された例では、第1転向面34の縁部35の軸方向位置は、第1翼内側端縁41の他側端部46の軸方向位置と同じ位置であるが、距離D1は距離D2よりも長い。 



In the illustrated example, the axial position of the edge 35 of the first turning surface 34 is the same as the axial position of the other side end 46 of the inner edge 41 of the first wing, but the distance D1 is the distance D2. Longer than.



 もちろん、図5に示す例において、第1転向面34の縁部35の軸方向位置は、第1翼内側端縁41の他側端部46の軸方向位置よりも、軸方向における他側(下側)に位置していてもよい。 



Of course, in the example shown in FIG. 5, the axial position of the edge portion 35 of the first turning surface 34 is the other side (in the axial direction) than the axial position of the other side end portion 46 of the first blade inner end edge 41. It may be located on the lower side).



 また、図5に示す例では、分割部材内側端面75は第2翼内側端縁61に接続しているが、これに限られない。例えば、図6に示すように、分割部材内側端面75は、半径方向において第1翼内側端縁41と同じ位置に形成されていてもよい。 



Further, in the example shown in FIG. 5, the inner end surface 75 of the dividing member is connected to the inner end edge 61 of the second blade, but the present invention is not limited to this. For example, as shown in FIG. 6, the dividing member inner end surface 75 may be formed at the same position as the first blade inner end edge 41 in the radial direction.



〔第3実施形態〕



 次に、図7を参照して、第3実施形態における遠心送風機について説明する。 



[Third Embodiment]



Next, the centrifugal blower according to the third embodiment will be described with reference to FIG. 7.



 図7は、図3に対応する図であって、第3実施形態を説明するための図である。図7に示す第3実施形態において、図1乃至図3に示す第1実施形態と同一部分には同一符号を付して詳細な説明は省略する。 



FIG. 7 is a diagram corresponding to FIG. 3 and is a diagram for explaining a third embodiment. In the third embodiment shown in FIG. 7, the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.



 図7に示す例では、分割部材7は、半径方向外側へ向かうほど厚くなっている。そして、分割部材外側端面76の軸方向における寸法L1は、分割部材内側端面75の軸方向における寸法L2よりも長い。分割部材7の寸法L1が寸法L2よりも長いことにより、分割部材外側端面76と仕切壁15の仕切壁内側端面16とを対面させることが容易である。すなわち、分割部材外側端面76と仕切壁15の仕切壁内側端面16とを対面させるように羽根車3,4を仕切壁15に対して配置可能な軸方向の範囲が拡大する。これにより、遠心送風機1を組み立てる際に、遠心送風機1を構成する各部品の寸法公差があっても、分割部材外側端面76と仕切壁15の仕切壁内側端面16とを対面させるように羽根車3,4を仕切壁15に対して配置することが容易である。なお、分割部材外側端面76と仕切壁内側端面16とが対面していることにより、羽根車5の第2翼列から遠心方向に吹き出された空気の一部が第1空気流路13に流れ込む、ということが抑制される。 



In the example shown in FIG. 7, the dividing member 7 becomes thicker toward the outside in the radial direction. The axial dimension L1 of the split member outer end face 76 is longer than the axial dimension L2 of the split member inner end face 75. Since the dimension L1 of the dividing member 7 is longer than the dimension L2, it is easy to make the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall 15 face each other. That is, the range in the axial direction in which the impellers 3 and 4 can be arranged with respect to the partition wall 15 is expanded so that the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall 15 face each other. As a result, when assembling the centrifugal blower 1, the impeller so that the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall 15 face each other even if there is a dimensional tolerance of each component constituting the centrifugal blower 1. It is easy to arrange the 3 and 4 with respect to the partition wall 15. Since the outer end surface 76 of the dividing member and the inner end surface 16 of the partition wall face each other, a part of the air blown out from the second blade row of the impeller 5 in the centrifugal direction flows into the first air flow path 13. , Is suppressed.



 図7に示す例では、分割部材7が半径方向外側へ向かうほど厚くなっていることにより、寸法L1が寸法L2よりも長くなっているが、これに限られない。例えば、分割部材7の形状を図8に示すような形状にすることにより、寸法L1が寸法L2よりも長くてもよい。 



In the example shown in FIG. 7, the dimension L1 is longer than the dimension L2 because the dividing member 7 becomes thicker toward the outside in the radial direction, but the present invention is not limited to this. For example, the dimension L1 may be longer than the dimension L2 by making the shape of the split member 7 as shown in FIG.



 図8に示す例では、分割部材7は、半径方向に延びる本体部70と、本体部70の半径方向外側の端部77において、本体部70の一側面(上面)から軸方向に突出する外側一側突出部78と、本体部70の他側面(下面)から軸方向に突出する外側他側突出部79と、を有している。そして、第1翼外側端縁42は、外側一側突出部78に接続している。また、第2翼外側端縁62は、外側他側突出部79に接続している。このように分割部材7に外側一側突出部78及び/又は外側他側突出部79を設けることにより、分割部材7の寸法L1を寸法L2よりも長くしてもよい。 



In the example shown in FIG. 8, the split member 7 has a main body portion 70 extending in the radial direction and an outer end portion 77 on the radial outer side of the main body portion 70, which protrudes axially from one side surface (upper surface) of the main body portion 70. It has a one-side projecting portion 78 and an outer other-side projecting portion 79 projecting axially from the other side surface (lower surface) of the main body portion 70. The outer edge 42 of the first wing is connected to the outer one-side protrusion 78. Further, the outer edge 62 of the second wing is connected to the outer other side protrusion 79. By providing the split member 7 with the outer one-side protruding portion 78 and / or the outer other-side protruding portion 79 in this way, the dimension L1 of the split member 7 may be longer than the dimension L2.



 図8に示す例では、分割部材7は、更に、本体部70の半径方向内側の端部71において、本体部70の一側面から軸方向に突出する内側一側突出部72と、上記端部71において本体部70の他側面から軸方向に突出する内側他側突出部73と、を有している。そして、第1翼内側端縁41は、内側一側突出部72に接続している。また、第2翼内側端縁61は、内側他側突出部73に接続している。このような分割部材7であっても、寸法L1が寸法L2よりも長ければ、図7に示す遠心送風機1と同様の効果を得ることができる。また、分割部材7に内側一側突出部72が設けられていることにより、図4に示す遠心送風機1と同様の効果を得ることができる。また、分割部材7に内側他側突出部73が設けられていることにより、図4に示す遠心送風機1と同様の効果を得ることができる。 



In the example shown in FIG. 8, the split member 7 further has an inner one-side projecting portion 72 projecting axially from one side surface of the main body 70 at the radial inner end 71 of the main body 70, and the end portion. The 71 has an inner other side protruding portion 73 that protrudes in the axial direction from the other side surface of the main body portion 70. The inner edge 41 of the first wing is connected to the inner one-side protrusion 72. Further, the inner end edge 61 of the second wing is connected to the inner other side protruding portion 73. Even with such a split member 7, if the dimension L1 is longer than the dimension L2, the same effect as that of the centrifugal blower 1 shown in FIG. 7 can be obtained. Further, since the split member 7 is provided with the inner one-side protruding portion 72, the same effect as that of the centrifugal blower 1 shown in FIG. 4 can be obtained. Further, since the split member 7 is provided with the inner side protruding portion 73, the same effect as that of the centrifugal blower 1 shown in FIG. 4 can be obtained.
〔第4実施形態〕



 次に、図9を参照して、第4実施形態における遠心送風機について説明する。 
[Fourth Embodiment]



Next, the centrifugal blower according to the fourth embodiment will be described with reference to FIG. 9.



 図9は、図3に対応する図であって、第4実施形態を説明するための図である。図9に示す第4実施形態において、図1乃至図3に示す第1実施形態と同一部分には同一符号を付して詳細な説明は省略する。 



FIG. 9 is a diagram corresponding to FIG. 3 and is a diagram for explaining a fourth embodiment. In the fourth embodiment shown in FIG. 9, the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.



 図9に示す例では、分割部材7は仕切壁15よりも軸方向の他側(下側)に位置している。そして、第1翼4の第1翼外側端縁42の軸方向における他側端部48は、仕切壁15の仕切壁内側端面16よりも、軸方向の他側に位置している。第1翼外側端縁42の他側端部48が仕切壁内側端面16よりも軸方向の他側に位置していることにより、第1羽根車3の第1翼列内に引き込まれた空気の一部が、第2空気流路14に吹き出される。これにより、第2羽根車5から吹き出された内気が仕切壁15と分割部材7との隙間を通じて第1空気流路13に流入する、という虞が抑制される。 



In the example shown in FIG. 9, the dividing member 7 is located on the other side (lower side) in the axial direction with respect to the partition wall 15. The other end portion 48 in the axial direction of the outer edge 42 of the first wing of the first wing 4 is located on the other side in the axial direction with respect to the inner end surface 16 of the partition wall of the partition wall 15. The air drawn into the first blade row of the first impeller 3 by the other side end portion 48 of the first blade outer end edge 42 located on the other side in the axial direction with respect to the partition wall inner end surface 16. Is blown out to the second air flow path 14. As a result, the possibility that the inside air blown out from the second impeller 5 flows into the first air flow path 13 through the gap between the partition wall 15 and the dividing member 7 is suppressed.



 なお、図9に示す例では、分割部材7が仕切壁15よりも軸方向の他側(下側)に位置していることにより、第1翼外側端縁42の他側端部48は仕切壁15の仕切壁内側端面16よりも軸方向の他側に位置しているが、これに限られない。例えば、分割部材7を図10に示すように形成することにより、第1翼外側端縁42の他側端部48が仕切壁15の仕切壁内側端面16よりも軸方向の他側に位置していてもよい。 



In the example shown in FIG. 9, since the dividing member 7 is located on the other side (lower side) in the axial direction with respect to the partition wall 15, the other side end portion 48 of the first wing outer edge 42 is partitioned. It is located on the other side in the axial direction with respect to the inner end surface 16 of the partition wall of the wall 15, but is not limited to this. For example, by forming the dividing member 7 as shown in FIG. 10, the other side end portion 48 of the first blade outer edge 42 is located on the other side in the axial direction with respect to the partition wall inner end surface 16 of the partition wall 15. May be.



 図10に示す例では、分割部材7が半径方向外側に向かうにつれて軸方向の他側(下側)に向かうように傾斜している。これにより、第1翼4の第1翼外側端縁42の他側端部48は、仕切壁内側端面16よりも、軸方向の他側に位置している。この場合も、図9に示す遠心送風機1と同様の効果を得ることができる。 



In the example shown in FIG. 10, the dividing member 7 is inclined toward the other side (lower side) in the axial direction as it goes outward in the radial direction. As a result, the other side end portion 48 of the first wing outer end edge 42 of the first wing 4 is located on the other side in the axial direction with respect to the partition wall inner end surface 16. In this case as well, the same effect as that of the centrifugal blower 1 shown in FIG. 9 can be obtained.



〔第5実施形態〕



 次に、図11を参照して、第5実施形態における遠心送風機について説明する。 



[Fifth Embodiment]



Next, the centrifugal blower according to the fifth embodiment will be described with reference to FIG.



 図11は、図9に対応する図であって、第5実施形態を説明するための図である。図11に示す第5実施形態において、図9に示す第4実施形態と同一部分には同一符号を付して詳細な説明は省略する。 



FIG. 11 is a diagram corresponding to FIG. 9 and is a diagram for explaining a fifth embodiment. In the fifth embodiment shown in FIG. 11, the same parts as those in the fourth embodiment shown in FIG. 9 are designated by the same reference numerals, and detailed description thereof will be omitted.



 図11に示す例では、分割部材7は仕切壁15の軸方向の他側(下側)まで延び入っている。そして、分割部材外側端面76は、仕切壁内側端面16よりも半径方向の外側且つ仕切壁15の軸方向の他側(下側)に位置している。分割部材外側端面76が仕切壁15の軸方向の他側に位置していることにより、第1羽根車3の第1翼列内に引き込まれた空気の一部が、第2空気流路14に吹き出される。これにより、第2羽根車5から吹き出された内気が仕切壁15と分割部材7との隙間を通じて第1空気流路13に流入する、という虞が抑制される。また、分割部材7が仕切壁15の軸方向の他側(下側)まで延び入って、分割部材外側端面76が仕切壁内側端面16よりも半径方向外側に位置しているころにより、第2羽根車5から吹き出された内気が仕切壁15と分割部材7との隙間を通じて第1空気流路13に流入する、という虞が、さらに効果的に抑制される。 



In the example shown in FIG. 11, the dividing member 7 extends to the other side (lower side) of the partition wall 15 in the axial direction. The outer end surface 76 of the dividing member is located on the outer side in the radial direction and on the other side (lower side) in the axial direction of the partition wall 15 than the inner end surface 16 of the partition wall. Since the outer end surface 76 of the dividing member is located on the other side in the axial direction of the partition wall 15, a part of the air drawn into the first blade row of the first impeller 3 is separated into the second air flow path 14. It is blown out to. As a result, the possibility that the inside air blown out from the second impeller 5 flows into the first air flow path 13 through the gap between the partition wall 15 and the dividing member 7 is suppressed. Further, when the dividing member 7 extends to the other side (lower side) of the partition wall 15 in the axial direction and the outer end surface 76 of the dividing member is located radially outside the inner end surface 16 of the partition wall, the second part is formed. The possibility that the inside air blown out from the impeller 5 flows into the first air flow path 13 through the gap between the partition wall 15 and the dividing member 7 is more effectively suppressed.



〔第6実施形態〕



 次に、図12を参照して、第6実施形態における遠心送風機について説明する。 



[Sixth Embodiment]



Next, the centrifugal blower according to the sixth embodiment will be described with reference to FIG. 12.



 図12は、図8に対応する図であって、第6実施形態を説明するための図である。図12に示す第6実施形態において、図8に示す第3実施形態の変形例と同一部分には同一符号を付して詳細な説明は省略する。 



FIG. 12 is a diagram corresponding to FIG. 8 and is a diagram for explaining the sixth embodiment. In the sixth embodiment shown in FIG. 12, the same parts as those of the modified example of the third embodiment shown in FIG. 8 are designated by the same reference numerals, and detailed description thereof will be omitted.



 図12に示す例では、出口側端部33は二股に分かれている。より詳しくは、出口側端部33は分離筒30の中央部32から延び出す第1転向部33aと、中央部32から第1転向部33aの軸方向の他側(下側)に延び出す第2転向部33bと、を有している。第1転向部33aの軸方向の一側(上側)を向く面は、第1転向面34をなす。また、第2転向部33bの軸方向の他側(下側)を向く面は、第2転向面36をなす。分離筒30がこのような形状を有する場合であっても、距離D1が距離D2よりも長ければ、第2空気流の一部が分離筒30の出口側端部33と分割部材7との隙間を通じて第1空気流路13に流入する、という虞が抑制される。 



In the example shown in FIG. 12, the outlet side end portion 33 is bifurcated. More specifically, the outlet side end portion 33 has a first turning portion 33a extending from the central portion 32 of the separation cylinder 30, and a first turning portion 33a extending from the central portion 32 to the other side (lower side) in the axial direction of the first turning portion 33a. It has two turning portions 33b. The surface of the first turning portion 33a facing one side (upper side) in the axial direction forms the first turning surface 34. Further, the surface of the second turning portion 33b facing the other side (lower side) in the axial direction forms the second turning surface 36. Even when the separation cylinder 30 has such a shape, if the distance D1 is longer than the distance D2, a part of the second air flow is a gap between the outlet side end portion 33 of the separation cylinder 30 and the dividing member 7. The possibility of flowing into the first air flow path 13 through the air flow path 13 is suppressed.



 さらに、分離筒30の出口側端部33が第1転向部33aと第1転向部33aの軸方向の他側に位置する第2転向部33bとを有していることにより、出口側端部33において、第2通路30Bを流れる空気を、第1通路30Aを流れる空気から軸方向に遠ざけることができる。これにより、第2通路30Bを流れる空気が第1羽根車3の第1翼列に引き込まれて第1空気流路13に流入する、という虞が効果的に抑制される。 



Further, the outlet side end portion 33 of the separation cylinder 30 has a first turning portion 33a and a second turning portion 33b located on the other side in the axial direction of the first turning portion 33a, so that the outlet side end portion At 33, the air flowing through the second passage 30B can be axially separated from the air flowing through the first passage 30A. As a result, the possibility that the air flowing through the second passage 30B is drawn into the first blade row of the first impeller 3 and flows into the first air flow path 13 is effectively suppressed.



 なお、上述した実施形態およびその変形例において、分離筒30の出口側端部33又は出口側端部33の第1転向部33aが図13に示すように丸みを帯びている場合、第1転向面34の縁部35とは、次の位置を指すものとする。すなわち、第1転向面34の縁部35とは、第1転向面34を延長した面S1と、出口側端部33に接する面であって軸方向と平行に延びる面S2と、が交わる位置を指す。 



In the above-described embodiment and its modification, when the first turning portion 33a of the outlet side end portion 33 or the outlet side end portion 33 of the separation cylinder 30 is rounded as shown in FIG. 13, the first turning The edge portion 35 of the surface 34 shall indicate the next position. That is, the edge portion 35 of the first turning surface 34 is a position where the surface S1 extending from the first turning surface 34 and the surface S2 in contact with the outlet side end portion 33 extending in parallel with the axial direction intersect. Point to.



 また、以上において上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。



In addition, although some modifications to the above-described embodiments have been described above, it is naturally possible to apply a plurality of modifications in combination as appropriate.



 本発明に係る車両用の遠心送風機は、工業的に製造することができ、また商取引の対象とすることができるから、経済的価値を有して産業上利用することができる。



Since the centrifugal blower for a vehicle according to the present invention can be industrially manufactured and can be the subject of commercial transactions, it can be industrially used with economic value.



  1 遠心送風機



  2 モータ



  3 第1羽根車



  4 第1翼



  5 第2羽根車



  6 第2翼



  7 分割部材



  10 スクロールハウジング



  13 第1空気流路



  14 第2空気流路



  15 仕切壁



  30 分離筒



  34 第1転向面



  36 第2転向面



  50 空気取入ハウジング



  Ax 回転軸線



  



1 Centrifugal blower



2 motor



3 1st impeller



4 1st wing



5 Second impeller



6 Second wing



7 Dividing member



10 Scroll housing



13 First air flow path



14 Second air flow path



15 partition wall



30 Separation cylinder



34 First turning surface



36 Second turning surface



50 Air intake housing



Ax rotation axis



Claims (9)




  1.  車両用の片吸込型の遠心送風機(1)であって、



     モータ(2)と、



     周方向第1翼列を形成する複数の第1翼(4)を有し、前記モータ(2)により軸方向に延びる回転軸線(Ax)周りに回転駆動されて、前記第1翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す第1羽根車(3)と、



     周方向第2翼列を形成する複数の第2翼(6)を有し、前記モータ(2)により前記回転軸線(Ax)周りに回転駆動されて、前記第2翼列の半径方向内側の空間の空気を半径方向外側に向けて吹き出す第2羽根車(5)と、



     前記第1翼列と前記第2翼列との間に周状に形成され、前記複数の第1翼(4)の間の空間と前記複数の第2翼(6)の間の空間とを分割する分割部材(7)と、



     前記第1羽根車(3)及び前記第2羽根車(5)を収容する内部空間と、前記軸方向の一端側に開口する吸込口(11)と、周方向に開口する吐出口(12)と、を有するスクロールハウジング(10)と、



     前記スクロールハウジング(10)の前記内部空間のうちの前記スクロールハウジング(10)の内周面と前記第1羽根車(3)及び前記第2羽根車(4)の外周面との間の領域、並びに前記吐出口(12)の内部空間を、前記軸方向に分割して、前記第1翼列に対向する第1空気流路(13)と前記第2翼列に対向する第2空気流路(14)とを形成する仕切壁(15)と、



     前記吸込口(11)の半径方向内側及び前記第1翼列の半径方向内側を通って前記軸方向に延びる分離筒(30)であって、前記吸込口(11)から前記スクロールハウジング(10)内に吸入される空気の流れを、分離筒(30)の外側を通る第1空気流と、前記分離筒(30)の内側を通る第2空気流とに分割するように設けられ、且つ、前記第1空気流を半径方向外向きに転向して前記第1空気流路(13)に案内するとともに、前記第2空気流を半径方向外向きに転向して前記第2空気流路(14)に案内する出口側端部(33)を有している、分離筒(30)と、を備え、



     前記第1翼列は、前記軸方向における前記分割部材(7)の一側に位置し、



     前記第2翼列は、前記軸方向における前記分割部材(7)の他側に位置し、



     前記分離筒(30)の前記出口側端部(33)は、前記第1空気流を前記半径方向外向きに転向する第1転向面(34)と、前記第2空気流を前記半径方向外向きに転向する第2転向面(36)と、を有し、



     前記第1翼(4)は、前記半径方向内側を向く第1翼内側端縁(41)を有し、



     前記第2翼(6)は、前記半径方向内側を向く第2翼内側端縁(61)を有し、



     前記第1翼内側端縁(41)の前記軸方向における他側端部(46)と前記第1転向面(34)の前記半径方向外側の縁部(35)との距離(D1)は、前記第2翼内側端縁(61)の前記軸方向における一側端部(65)と前記第1転向面(34)の前記半径方向外側の縁部(35)との距離(D2)よりも長い、遠心送風機(1)。



    It is a one-suction type centrifugal blower (1) for vehicles.



    Motor (2) and



    It has a plurality of first blades (4) forming the first blade row in the circumferential direction, and is rotationally driven by the motor (2) around a rotation axis (Ax) extending in the axial direction, and the radius of the first blade row. The first impeller (3), which blows out the air in the space inside the direction toward the outside in the radial direction,



    It has a plurality of second blades (6) forming a circumferential second blade row, and is rotationally driven by the motor (2) around the rotation axis (Ax) to be inside the radial direction of the second blade row. The second impeller (5), which blows out the air in the space toward the outside in the radial direction,



    A circumferential space is formed between the first wing row and the second wing row, and the space between the plurality of first wing (4) and the space between the plurality of second wing (6) are formed. The dividing member (7) to be divided and



    An internal space for accommodating the first impeller (3) and the second impeller (5), a suction port (11) opening on one end side in the axial direction, and a discharge port (12) opening in the circumferential direction. And a scroll housing (10) with



    A region of the internal space of the scroll housing (10) between the inner peripheral surface of the scroll housing (10) and the outer peripheral surfaces of the first impeller (3) and the second impeller (4). Further, the internal space of the discharge port (12) is divided in the axial direction, and the first air flow path (13) facing the first blade row and the second air flow path facing the second blade row are divided. The partition wall (15) forming the (14) and



    A separation cylinder (30) extending in the axial direction through the radial inside of the suction port (11) and the radial inside of the first blade row, and the scroll housing (10) from the suction port (11). The flow of air sucked into the inside is provided so as to be divided into a first air flow passing through the outside of the separation cylinder (30) and a second air flow passing through the inside of the separation cylinder (30). The first air flow is turned outward in the radial direction to be guided to the first air flow path (13), and the second air flow is turned outward in the radial direction to be guided to the second air flow path (14). ), With a separation tube (30) having an outlet side end (33).



    The first blade row is located on one side of the dividing member (7) in the axial direction.



    The second blade row is located on the other side of the dividing member (7) in the axial direction.



    The outlet side end portion (33) of the separation cylinder (30) has a first turning surface (34) that diverts the first air flow outward in the radial direction and a second air flow outside the radial direction. It has a second turning surface (36) that turns in the direction, and has.



    The first wing (4) has a first wing inner edge (41) facing inward in the radial direction.



    The second wing (6) has a second wing inner edge (61) facing inward in the radial direction.



    The distance (D1) between the other side end portion (46) of the first blade inner end edge (41) in the axial direction and the radial outer edge portion (35) of the first turning surface (34) is More than the distance (D2) between the one side end portion (65) of the second wing inner end edge (61) in the axial direction and the radial outer edge portion (35) of the first turning surface (34). Long, centrifugal blower (1).



  2.  前記第1転向面(34)の前記半径方向外側の縁部(35)は、前記第2翼内側端縁(61)の前記軸方向における一側端部(65)よりも、前記軸方向の他側に位置している、請求項1に記載の遠心送風機(1)。



    The radial outer edge (35) of the first turning surface (34) is more axial than the axial one-sided end (65) of the second wing inner edge (61). The centrifugal blower (1) according to claim 1, which is located on the other side.



  3.  前記分割部材(7)は、前記半径方向に延びる本体部(70)と、前記本体部(70)の前記半径方向内側の端部(71)において、前記本体部(70)の一側面から前記軸方向に突出する内側一側突出部(72)と、を有し、



     前記第1翼内側端縁(41)は、前記内側一側突出部(72)に接続している、請求項1又は2に記載の遠心送風機(1)。



    The split member (7) has a main body portion (70) extending in the radial direction and an end portion (71) on the inner side in the radial direction of the main body portion (70) from one side surface of the main body portion (70). It has an inner one-sided protrusion (72) that protrudes in the axial direction, and has.



    The centrifugal blower (1) according to claim 1 or 2, wherein the first blade inner edge (41) is connected to the inner one-side protrusion (72).



  4.  前記分割部材(7)は、前記半径方向に延びる本体部(70)と、前記本体部(70)の前記半径方向内側の端部(71)において、前記本体部(70)の他側面から前記軸方向に突出する内側他側突出部(73)と、を有し、



     前記第2翼内側端縁(61)は、前記内側他側突出部(73)に接続している、請求項1乃至3のいずれか一項に記載の遠心送風機(1)。



    The split member (7) has a main body portion (70) extending in the radial direction and an end portion (71) on the inner side in the radial direction of the main body portion (70) from the other side surface of the main body portion (70). It has an inner other side protrusion (73) that protrudes in the axial direction, and has.



    The centrifugal blower (1) according to any one of claims 1 to 3, wherein the second blade inner edge (61) is connected to the inner other side protrusion (73).



  5.  前記第1翼内側端縁(41)の前記軸方向における他側端部(46)は、前記第2翼内側端縁(61)の前記軸方向における一側端部(65)よりも前記半径方向外側に位置している、請求項1乃至4のいずれか一項に記載の遠心送風機(1)。



    The other side end portion (46) of the first wing inner end edge (41) in the axial direction has a radius higher than that of the one side end portion (65) of the second wing inner end edge (61) in the axial direction. The centrifugal blower (1) according to any one of claims 1 to 4, which is located outside the direction.



  6.  前記第1転向面(34)の前記半径方向外側の縁部(35)の軸方向位置は、前記第1翼内側端縁(41)の前記軸方向における他側端部(46)の軸方向位置と同じ位置若しくは当該位置よりも前記軸方向における他側に位置している、請求項5に記載の遠心送風機(1)。



    The axial position of the radial outer edge portion (35) of the first turning surface (34) is the axial direction of the other side end portion (46) of the first blade inner end edge (41) in the axial direction. The centrifugal blower (1) according to claim 5, which is located at the same position as the position or on the other side in the axial direction from the position.



  7.  前記分割部材(7)の前記半径方向外側を向く分割部材外側端面(76)の前記軸方向における寸法(L1)は、前記分割部材(7)の前記半径方向内側を向く分割部材内側端面(75)の前記軸方向における寸法(L2)よりも長い、請求項1乃至6のいずれか一項に記載の遠心送風機(1)。



    The axial dimension (L1) of the split member outer end face (76) facing the radial outer side of the split member (7) is the radial inner end face (75) of the split member (7). The centrifugal blower (1) according to any one of claims 1 to 6, which is longer than the axial dimension (L2) of).



  8.  前記第1翼(4)は、前記半径方向外側を向く第1翼外側端縁(42)を有し、



     前記第1翼外側端縁(42)の前記軸方向における他側端部(48)は、前記仕切壁(15)の前記半径方向内側を向く仕切壁内側端面(16)よりも、前記軸方向の他側に位置している、請求項1乃至7のいずれか一項に記載の遠心送風機(1)。



    The first wing (4) has a first wing outer edge (42) facing outward in the radial direction.



    The other side end portion (48) of the first blade outer edge (42) in the axial direction is axially more than the inner end surface (16) of the partition wall facing inward in the radial direction of the partition wall (15). The centrifugal blower (1) according to any one of claims 1 to 7, which is located on the other side.



  9.  前記分割部材(7)の前記半径方向外側を向く分割部材外側端面(76)は、前記仕切壁(15)の前記半径方向内側を向く仕切壁内側端面(16)よりも前記半径方向の外側且つ前記仕切壁(15)の前記軸方向の他側に位置している、請求項1乃至8のいずれか一項に記載の遠心送風機(1)。



    The outer end face (76) of the split member facing the radial outer side of the split member (7) is radially outside and more than the inner end face (16) of the partition wall facing the radial inner side of the partition wall (15). The centrifugal blower (1) according to any one of claims 1 to 8, which is located on the other side of the partition wall (15) in the axial direction.
PCT/JP2021/041265 2020-11-17 2021-11-10 Centrifugal blower for vehicle WO2022107649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-191192 2020-11-17
JP2020191192 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022107649A1 true WO2022107649A1 (en) 2022-05-27

Family

ID=81708847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041265 WO2022107649A1 (en) 2020-11-17 2021-11-10 Centrifugal blower for vehicle

Country Status (1)

Country Link
WO (1) WO2022107649A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132342A (en) * 2002-10-15 2004-04-30 Denso Corp Centrifugal blower
JP2019044739A (en) * 2017-09-06 2019-03-22 株式会社ヴァレオジャパン Centrifugal blower for air conditioner for vehicle
JP2019173571A (en) * 2018-03-26 2019-10-10 株式会社デンソー Centrifugal blower
WO2020013288A1 (en) * 2018-07-12 2020-01-16 株式会社デンソー Centrifugal blower
JP2020139419A (en) * 2019-02-26 2020-09-03 株式会社ヴァレオジャパン Centrifugal blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132342A (en) * 2002-10-15 2004-04-30 Denso Corp Centrifugal blower
JP2019044739A (en) * 2017-09-06 2019-03-22 株式会社ヴァレオジャパン Centrifugal blower for air conditioner for vehicle
JP2019173571A (en) * 2018-03-26 2019-10-10 株式会社デンソー Centrifugal blower
WO2020013288A1 (en) * 2018-07-12 2020-01-16 株式会社デンソー Centrifugal blower
JP2020139419A (en) * 2019-02-26 2020-09-03 株式会社ヴァレオジャパン Centrifugal blower

Similar Documents

Publication Publication Date Title
WO2018074339A1 (en) Centrifugal blower
JP2019044739A (en) Centrifugal blower for air conditioner for vehicle
WO2018128143A1 (en) Centrifugal fan
JP7171846B2 (en) centrifugal blower for vehicle air conditioner
US6893218B2 (en) Centrifugal blower unit
JP6662761B2 (en) Centrifugal blower
WO2018043640A1 (en) Centrifugal blower for vehicle air conditioner
JP6862290B2 (en) Centrifugal blower for vehicle air conditioners
EP3660327B1 (en) Centrifugal fan
JP6576891B2 (en) Centrifugal blower for vehicle air conditioner
EP3578826B1 (en) Blower
JP3921832B2 (en) Centrifugal blower
JP2018155151A (en) Centrifugal blower for vehicular air conditioner
US11852163B2 (en) Single suction centrifugal blower
WO2019022115A1 (en) Centrifugal fan
WO2022107649A1 (en) Centrifugal blower for vehicle
JP3876830B2 (en) Centrifugal blower and blower for air conditioner
JP4378869B2 (en) Centrifugal blower
JP6794318B2 (en) Centrifugal blower for vehicle air conditioners
WO2021085086A1 (en) Blower
JP6588052B2 (en) Centrifugal blower
WO2021106406A1 (en) Blower
CN113286715A (en) Centrifugal blower
US20230398484A1 (en) Filter and centrifugal blower
WO2021090648A1 (en) Blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP