WO2022092300A1 - ポリオレフィン微多孔膜 - Google Patents
ポリオレフィン微多孔膜 Download PDFInfo
- Publication number
- WO2022092300A1 WO2022092300A1 PCT/JP2021/040160 JP2021040160W WO2022092300A1 WO 2022092300 A1 WO2022092300 A1 WO 2022092300A1 JP 2021040160 W JP2021040160 W JP 2021040160W WO 2022092300 A1 WO2022092300 A1 WO 2022092300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin
- microporous membrane
- polyolefin microporous
- less
- membrane
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/20—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
- B29C67/202—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/041—Microporous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
- C08J2423/12—Polypropene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a microporous polyolefin membrane.
- the polyolefin microporous membrane exhibits excellent electrical insulation and ion permeability, it is used in battery separators, capacitor separators, fuel cell materials, precision filtration membranes, etc., especially for lithium ion secondary batteries. It is used as a separator.
- lithium-ion secondary batteries have also been used in small electronic devices such as mobile phones and notebook computers, and in electric vehicles such as electric vehicles and small electric motorcycles.
- Lithium-ion secondary battery separators are required not only to have mechanical properties and ion permeability, but also to be safe in various safety tests. Further, from the viewpoint of heat resistance or rigidity of the separator for lithium ion secondary battery, cycle characteristics of the lithium ion secondary battery, etc., the crystallinity of the polyolefin contained in the separator or the press test of the microporous polyolefin film used as the separator. The characteristics have been studied (Patent Documents 1 to 4).
- Patent Document 1 describes the length of the lamella crystal portion measured by the small-angle X-ray scattering (SAXS) method of a dry-stretched and porous polyolefin micropore film from the viewpoint of excellent both lithium ion permeability and heat resistance. It describes the cycle.
- SAXS small-angle X-ray scattering
- Patent Document 2 describes the long period of polymer crystals measured by the SAXS method of stretched polypropylene film from the viewpoint of achieving both low heat shrinkage and high rigidity.
- Patent Documents 3 and 4 from the viewpoint of the compression resistance of the separator for a lithium ion secondary battery, the cycle characteristics of the lithium ion secondary battery, etc., for example, a heat compression test for 60 minutes at a temperature of 80 ° C. and a pressure of 1 MPa ( The rate of change in the film thickness of the polyolefin microporous film before and after Patent Document 3) is described, or the polyolefin microporous film before and after the heat compression test (Patent Document 4) for 5 minutes at a temperature of 90 ° C. and a pressure of 5.0 MPa. The rate of change in air permeability and the rate of change in film thickness are described.
- Patent Documents 5 to 9 For example, in a battery equipped with a special electrode, in an environment such as high temperature, high pressure, and large dimensions, the balance of mechanical properties, heat resistance, compression resistance, dimensional stability, liquid absorption, safety, battery characteristics, etc. From the viewpoint of removing the heat, a polyolefin microporous membrane used as a separator has been studied (Patent Documents 5 to 9).
- Patent Document 5 from the viewpoint of widening the difference between the shutdown temperature and the meltdown temperature of the thin film separator to ensure battery safety, measurements are taken before and after the pressurization treatment is performed at a specific pressure and temperature. The rate of change in air permeability of the microporous membrane and the puncture strength converted to a thickness of 12 ⁇ m are described.
- Patent Document 6 describes shutdown characteristics, meltdown characteristics, permeability, and mechanical strength of a polyethylene multilayer microporous film including a polyethylene-based resin layer and a layer containing a polyethylene-based resin and a heat-resistant resin other than polypropylene. From the viewpoint of balancing heat shrinkage resistance and compression resistance, the amount of increase in air permeability measured before and after the pressurization treatment at a specific pressure and temperature, and the puncture strength per 20 ⁇ m thickness are is described.
- Patent Document 7 describes a membrane in the production of a polyethylene multilayer microporous membrane from the viewpoint of balancing permeability, mechanical properties, heat shrinkage resistance, compression resistance, electrolyte absorption, shutdown characteristics and meltdown characteristics.
- a method for controlling the distribution of the average pore diameter in the thickness direction is described, and when the pressure treatment is performed at a specific pressure and temperature of the obtained membrane, the ultimate air permeability before and after the pressure treatment and the per 20 ⁇ m thickness.
- the puncture strength of is also exemplified.
- Patent Document 8 describes the compressive modulus and surface roughness of a microporous film containing at least one of polyethylene and polypropylene from the viewpoint of balancing durability in the thickness direction of the separator, safety, and film characteristics. The average value is described, and in the production of the microporous film, the porosity is performed by a dry method.
- Patent Document 9 when the separator is used together with a negative electrode material having a severe expansion and contraction, in order to achieve both long-term battery cycle characteristics and safety, before and after extraction of the plasticizer in the production of a microporous membrane.
- the air permeability and the air permeability of the obtained separator after sandblasting are described.
- Non-aqueous secondary batteries such as lithium-ion secondary batteries are available in various shapes such as cylindrical type, square type, and pouch type, depending on the application.
- the method of manufacturing a battery differs depending on the shape of the battery. For example, in the manufacture of a square battery, there is a step of pressing an electrode and a wound or laminated body of a microporous polyolefin membrane and inserting the battery into a rectangular parallelepiped outer can. ..
- the cell and separator can be used as a separator even when external pressure is applied. It is further required to secure the ion permeability of the microporous film and the output characteristics or cycle characteristics of the battery containing the microporous film.
- the safety of the non-aqueous secondary battery containing the separator may deteriorate, for example, in a nail stick safety test.
- the present invention can achieve high output and high cycle characteristics of a non-aqueous secondary battery, and / or achieve both battery characteristics and safety of a non-aqueous secondary battery. It is an object of the present invention to provide a polyolefin microporous film capable of forming, and a separator for a non-aqueous secondary battery and a non-aqueous secondary battery containing the same.
- the present inventors measured the porosity after compression of the polyolefin microporous film; the crystallinity of polyethylene contained as the main component in the polyolefin microporous film; the puncture strength in terms of grain, and three points along the width direction (TD).
- TD three points along the width direction
- the microporous polyolefin membrane according to item 1 or 2 which contains polyethylene as a main component and has a crystallite size of the polyethylene of 28.0 nm or less.
- the basis weight equivalent puncture strength is 50 gf / (g / m 2 ) or more.
- the difference between the maximum and minimum values of air permeability measured at two points 10% inside the total width from both ends to the center along the width direction (TD) and one point at the center is the difference between the maximum and minimum values.
- the polyethylene component having a weight average molecular weight (Mw) of 1,000,000 or more measured by GPC is 7% or more of the total elution component measured by GPC, items 1 to 1.
- MI melt flow index
- Item 1 in which the ratio (MD / TD tensile strength ratio) of the tensile strength in the longitudinal direction (MD) and the tensile strength in the width direction (TD) of the microporous polyolefin membrane is 0.5 to 2.0.
- the polyolefin microporous membrane according to any one of 10 to 10.
- a non-aqueous secondary battery comprising the polyolefin microporous membrane according to any one of items 1 to 11 or the separator according to any one of items 12 to 14.
- the resistance of the film is reduced after the pressing step in the production of a non-aqueous secondary battery using the polyolefin microporous film, and / Alternatively, the structural uniformity of the film and the reaction uniformity in the non-aqueous secondary battery are improved, and high output and high cycle characteristics of the non-aqueous secondary battery can be achieved. Further, in the present invention, the piercing strength in terms of the texture of the microporous polyolefin membrane, the difference between the maximum and minimum values of the air permeability measured at three points along the TD, and the measurement under 30 ° C. and 3 MPa pressurized conditions. By specifying the air permeability, it is possible to achieve both the battery characteristics and safety of a non-aqueous secondary battery containing a microporous polyolefin membrane.
- the present invention even when an electrode which easily expands and contracts in a cell of a non-aqueous secondary battery provided with a microporous polyolefin film is used, or when the separator is compressed during modularization of the non-aqueous secondary battery.
- the high pore ratio and low air permeability of the polyolefin microporous film that is, high ion permeability can be maintained, the increase in resistance can be suppressed, and the battery characteristics and safety can be ensured.
- the longitudinal direction (MD) means the mechanical direction of continuous forming of the microporous membrane
- the width direction (TD) means the direction of crossing the MD of the microporous membrane at an angle of 90 °.
- the upper limit value and the lower limit value of each numerical range can be arbitrarily combined. Further, the fact that a certain member contains a specific component as a main component means that the content of the specific component is 50% by mass or more based on the mass of the member. Unless otherwise stated, the physical properties or numerical values described herein are measured or calculated by the methods described in the Examples.
- One aspect of the present invention is a microporous polyolefin membrane. Since the polyolefin microporous film contains a polyolefin resin as a main component and can exhibit excellent electrical insulation and ion permeability, for example, in a non-aqueous secondary battery or the like, specifically, a separator for a non-aqueous secondary battery Can be used as.
- the microporous polyolefin membrane according to Embodiment 1 has the following characteristics: The film thickness is 1 ⁇ m to 30 ⁇ m; The air permeability is 500 sec / 100 cm 3 or less; and the post-compressed porosity measured in the compression test under the conditions of temperature 70 ° C., pressure 8 MPa, and compression time 3 minutes is 30% or more.
- the microporous polyolefin film according to the first embodiment has a permeability of 500 sec / 100 cm 3 or less and a pore ratio after compression of 30% or more within a range of 1 ⁇ m to 30 ⁇ m in thickness, and thus, for example, a polyolefin as a separator.
- the electrical resistance of the polyolefin microporous membrane is reduced after the pressing process and the increase in electrical resistance is suppressed to achieve high output and high cycle of the non-aqueous secondary battery. The characteristics can be achieved.
- the suppression of the increase in resistance by the microporous polyolefin membrane according to the first embodiment is remarkable when an electrode that easily expands and contracts in the cell of a non-aqueous secondary battery is used, and has a high capacity used for an in-vehicle battery or the like. This is more remarkable when an electrode or a silicon (Si) -containing negative electrode is used.
- the post-compression porosity is related to the structure of the main component of the polyolefin microporous membrane which reduces the resistance and / or suppresses the resistance increase in the non-aqueous secondary battery.
- the porosity after compression of the microporous polyolefin membrane according to the first embodiment is preferably 31% or more, more preferably 32% or more, still more preferably 33% or more.
- the upper limit of the porosity after compression of the microporous polyolefin membrane according to the first embodiment can be determined according to the porosity before compression, and may be, for example, 50% or less or less than 50%.
- the pore ratio after the compression test of the polyolefin microporous membrane according to the first embodiment is, for example, the molecular weight of the polyolefin raw material, the molecular weight and content of the polyethylene raw material, the stretching ratio in the biaxial stretching step, in the process of manufacturing the polyolefin microporous membrane.
- the temperature is adjusted within the numerical range described above. Can be done.
- the post-compression pore ratio of the polyolefin microporous film is the molecular weight of the polyolefin raw material, the molecular weight and content of the polyethylene raw material, the draw ratio during the biaxial stretching step, the preheating coefficient during the biaxial stretching step, and the biaxial stretching.
- the adjustment can be made within the numerical range described above.
- Comparing the porosity of the microporous polyolefin membrane according to the first embodiment before and after the compression test reduces the resistance of the non-aqueous secondary battery and / or suppresses the increase in the resistance to obtain high output and high cycle characteristics. It is preferable from the viewpoint of specifying the structure of the main component of the membrane that can be achieved.
- the porosity (hereinafter, simply referred to as “porosity”) before the compression test of the microporous polyolefin membrane or not subjected to the compression test is measured by the method described in Examples, and a preferable numerical range thereof will be described later.
- the film thickness of the microporous polyolefin membrane according to the first embodiment is preferably 3 to 20 ⁇ m, more preferably 5 ⁇ m or more, from the viewpoint of reducing the size, in addition to suppressing the decrease in electrical resistance and the increase in resistance described above. It is 16 ⁇ m, more preferably 6 ⁇ m to 13 ⁇ m.
- the film thickness of the microporous film can be optimized, for example, by the distance between rolls of the cast roll, the stretching ratio in the stretching step, and the like.
- the air permeability of the microporous polyolefin membrane according to the first embodiment can be measured by the method described in the item “Air permeability version 1 (seconds / 100 cm 3 ) (before compression)” of the example.
- Air permeability version 1 seconds / 100 cm 3
- the ion permeability of the microporous membrane and the increase in output of the non-aqueous secondary battery in addition to the suppression of the decrease in electrical resistance and the suppression of the resistance increase described above, the ion permeability of the microporous membrane and the increase in output of the non-aqueous secondary battery.
- the air permeability of the microporous membrane can be optimized in the same manner as the means for controlling the post-compression porosity described above.
- the microporous polyolefin membrane according to the second embodiment has the following characteristics: Polyethylene is contained as a main component; and the crystal length period measured by the small-angle X-ray scattering (SAXS) method of the microporous polyolefin membrane is 37.0 nm or more.
- SAXS small-angle X-ray scattering
- the polyolefin microporous film according to the second embodiment contains polyethylene as a main component and has a crystal length period of 37.0 nm or more, which surprisingly improves the structural uniformity and compression resistance of the polyolefin microporous film. Along with this, the reaction uniformity in the non-aqueous secondary battery is also improved, for example, even after the pressing step in the production of the non-aqueous secondary battery using the polyolefin microporous film as the separator, the non-aqueous secondary battery. High output and high cycle characteristics can be achieved.
- the improvement in structural uniformity and compression resistance of the polyolefin microporous membrane according to the second embodiment is remarkable when an electrode that easily expands and contracts in the cell of a non-aqueous secondary battery is used, and is remarkable for an in-vehicle battery or the like. This is more remarkable when the high-capacity electrode or the silicon (Si) -containing negative electrode used is used.
- the SAXS measurement of the polyolefin microporous film is detailed in the examples, and the crystal length period obtained by the SAXS measurement determines the structural uniformity and compression resistance of the film and the reaction uniformity in the non-aqueous secondary battery. It may be related to the structure of polyethylene to be improved. Further, although it is not desired that the crystal length period of the microporous polyolefin membrane is constrained by theory, it is conceivable that it correlates with the porosity after compression of the membrane.
- the crystal length period of the microporous polyolefin membrane according to the second embodiment is 37.0 nm to 60.0 nm, 38.0 nm to 55.0 nm, 40.0 nm to 50.0 nm, or 42. It is preferably in the range of 0 nm to 50.0 nm.
- the crystal length period of the polyolefin microporous film according to the second embodiment is, for example, the molecular weight of the polyolefin raw material, the molecular weight and content of the polyethylene raw material, the stretching ratio in the biaxial stretching step, and the biaxial in the process of manufacturing the polyolefin microporous film.
- the temperature is adjusted within the numerical range described above. be able to.
- the film thickness of the microporous polyolefin membrane according to the second embodiment has a lower limit of 1 ⁇ m or more in order to have mechanical strength and maintain insulating properties.
- the film thickness is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
- the film thickness is preferably 6 ⁇ m or more, more preferably 10 ⁇ m or more.
- the film thickness of the microporous polyolefin membrane according to the second embodiment is preferably 16 ⁇ m or less from the viewpoint of increasing the capacity of the non-aqueous secondary battery.
- the film thickness of the microporous film can be adjusted by controlling the distance between the rolls of the cast roll, the stretching ratio in the stretching step, and the like.
- the air permeability (before compression) of the microporous polyolefin membrane according to the second embodiment can be measured in the same manner as in the first embodiment, preferably 30 sec / 100 cm 3 or more and 250 sec / 100 cm 3 or less, more preferably. Is 40 sec / 100 cm 3 or more and 200 sec / 100 cm 3 or less, more preferably 50 sec / 100 cm 3 or more and 180 sec / 100 cm 3 or less, and further preferably 60 sec / 100 cm 3 or more and 150 sec / 100 cm 3 or less.
- the air permeability (before compression) of the microporous membrane is preferably 40 sec / 100 cm 3 or more from the viewpoint of ensuring puncture strength, and preferably 200 sec / 100 cm 3 or less from the viewpoint of output characteristics.
- the microporous polyolefin membrane according to Embodiment 3 has the following characteristics: Metsuke equivalent puncture strength is 50 gf / (g / m 2 ) or more; The difference between the maximum and minimum values of air permeability measured at two points 10% inside the total width from both ends to the center along the TD and one point at the center (hereinafter referred to as difference R). ) Is 15 sec / 100 cm 3 or less; and the air permeability under 30 ° C. and 3 MPa pressurized state is 140 sec / 100 cm 3 or less.
- the microporous polyolefin film according to the third embodiment has the maximum value of air permeability measured at two points 10% inside the entire width from both ends toward the center along the TD and one point at the center.
- the puncture strength in terms of grain and the air permeability under pressure at 30 ° C and 3 MPa as described above, for example, for a non-aqueous secondary battery containing a polyolefin microporous film as a separator or the like.
- battery characteristics such as rate characteristics and cycle characteristics be compatible with safety such as nail stick test safety, but also the pore ratio and ion permeability of the polyolefin microporous membrane can be improved, for example, non-aqueous secondary.
- the high pore ratio and low air permeability of the polyolefin microporous film can be maintained. can.
- a grain-equivalent puncture strength of 50 gf / (g / m 2 ) or more represents a film structure that has a high film strength per resin grain and is not easily crushed by compressive stress.
- the microporous polyolefin membrane used tends to be difficult to break even with high pore ratio and low air permeability, improving the safety of the battery.
- the basis weight conversion puncture strength was measured by the method described in the example, and the basis weight was obtained at two points 10% inside the entire width from both ends toward the center and one point at the center along the TD of the membrane.
- piercing strength unconverted piercing strength
- the advantage of controlling the puncture strength according to the third embodiment is remarkable when an electrode that easily expands and contracts in the cell of a non-aqueous secondary battery is used, and is a high-capacity electrode used for an in-vehicle battery or the like, or This is more remarkable when a silicon (Si) -containing negative electrode is used.
- the basis weight equivalent puncture strength of the polyolefin microporous film is preferably 50 gf / (g / m 2 ) to 150 gf / (g / m 2 ), and 55 gf / (g / m 2 ) to 130 gf. / (G / m 2 ) is more preferable, and 70 gf / (g / m 2 ) to 120 gf / (g / m 2 ) is even more preferable.
- the texture of the polyolefin microporous membrane is 1 It is preferably in the range of 0.0 g / m 2 to 15 g / m 2 .
- the piercing strength of the polyolefin microporous film is the piercing strength.
- it is preferably 220 gf or more, more preferably 250 gf or more, further preferably 280 gf or more, and particularly preferably 300 gf or more.
- the upper limit of the puncture strength is not particularly limited, but can be determined depending on the crystallinity of the film and the suppressed electrical resistance, and may be, for example, 700 gf or less, or 680 gf or less.
- the piercing strength and the puncture-equivalent piercing strength of the polyolefin microporous film according to the third embodiment are, for example, the molecular weight and blending ratio of a polymer raw material such as polyolefin in the process of producing the polyolefin microporous film, and the stretching ratio in the biaxial stretching step.
- a polymer raw material such as polyolefin in the process of producing the polyolefin microporous film
- the stretching ratio in the biaxial stretching step By controlling the MD / TD stretching temperature during the biaxial stretching step, the heating amount coefficient per unit resin of the resin composition during the biaxial stretching step, the heat fixation (HS) magnification, etc., the numerical values described above. It can be adjusted within the range.
- the difference R between the maximum and minimum values of air permeability measured at 3 points of TD before compression, air permeability distribution before compression is measured by the method described in the example, and before the compression test of the polyolefin microporous membrane. Represents the air permeability distribution of.
- the total width W of the polyolefin microporous membrane is preferably 50 mm or more, more preferably 100 mm or more, still more preferably 300 mm or more, from the viewpoint of measurement accuracy of air permeability.
- the upper limit of the total width W is not particularly limited and can be determined according to, for example, a film forming device, a film forming process, a mother roll dimension, a slit roll dimension, a coating process, etc., for example, 5000 mm or less, or 4000 mm or less. It's fine.
- the air permeability distribution maintained well so as to satisfy R ⁇ 15 sec / 100 cm 3 has a small variation in air permeability in the plane as well as the air permeability under a pressurized state of 30 ° C. and 3 MPa, which will be described later.
- in-plane electrochemical reactions occur uniformly and tend to improve battery characteristics such as rate characteristics and cycle characteristics. ..
- the difference R is preferably 0 sec / 100 cm 3 or more and 15 sec / 100 cm 3 or less, more preferably 0 sec / 100 cm 3 or more and 13 sec / 100 cm 3 or less, and 0 sec / 100 cm 3 or more and 11 sec /. It is more preferably 100 cm 3 or less, and particularly preferably 0 sec / 100 cm 3 or more and 9 sec / 100 cm 3 or less.
- the average value of the measured values of the above three points is expressed as the air permeability (before compression), and is expressed by the method described in the item "Air permeability version 2 (second / 100 cm 3 ) (before compression)" of the example. It can be measured, and from the same viewpoint as above, from the viewpoint of maintaining high (ion) permeability even in the compressed state, and from the viewpoint of ensuring puncture strength, 0 sec / 100 cm 3 or more and 200 sec / 100 cm 3 or less. It is preferably 30 sec / 100 cm 3 or more and 180 sec / 100 cm 3 or less, and more preferably 40 sec / 100 cm 3 or more and 150 sec / 100 cm 3 or less.
- the difference R and the air permeability (before compression) of the polyolefin microporous film according to the third embodiment are, for example, the molecular weight and blending ratio of the polymer raw material such as polyolefin, and the biaxial stretching step in the process of producing the polyolefin microporous film.
- the third embodiment by subjecting the polyolefin microporous membrane to a compression test under specific conditions, the characteristics of the polyolefin microporous membrane that can achieve both the battery characteristics and the safety of the non-aqueous secondary battery are found.
- the compression test described in detail in the Examples, is performed at room temperature, preferably 30 ° C., in a combination of the compression press test and the compression TMA test as follows: ⁇ Compression press test> (I) The microporous membrane or separator is pressed with a flat plate press, compressed in the thickness direction, and then unloaded, and the change in porosity is measured from the change in air permeability and thickness of the microporous membrane or separator before and after the test.
- the microporous membrane or the separator was measured under four different pressure conditions (for example, pressures of 2.5 MPa, 5 MPa, 7.5 MPa, and 10 MPa) by the method described later in the examples, and four points were measured. From the measurement result of, the relational expression between the porosity and the air permeability of the microporous membrane or separator after unloading is obtained.
- Pressures of 2.5 MPa, 5 MPa, 7.5 MPa, and 10 MPa for example, pressures of 2.5 MPa, 5 MPa, 7.5 MPa, and 10 MPa
- air permeability under pressure 30 ° C, 3 MPa When the air permeability of the polyolefin microporous membrane under pressure at 30 ° C and 3 MPa (hereinafter referred to as “air permeability under pressure 30 ° C, 3 MPa ) is 140 sec / 100 cm 3 or less, it is added in the thickness direction. It represents the characteristics of a polyolefin microporous membrane that can ensure high ion permeability even under pressure.
- the air permeability under pressure of 30 ° C and 3MPa is exactly the state where 3MPa is applied from the thickness in the exact state (in situ) and the basis weight before TMA measurement.
- the air permeability under pressure of 30 ° C., 3MPa ⁇ 140sec / 100cm 3 is a non-aqueous secondary battery containing a polyolefin microporous membrane as a separator or the like, together with the air permeability distribution before compression or the difference R described above.
- battery characteristics such as rate characteristics and cycle characteristics. This tendency is remarkable for the improvement of the rate characteristics when an electrode that easily expands and contracts in the cell of a non-aqueous secondary battery is used or when the separator is compressed by the pressure from the outside of the cell. This is more remarkable when a high-capacity electrode or a silicon (Si) -containing negative electrode used for the above is used.
- the air permeability under pressure of 30 ° C. and 3 MPa is preferably 120 sec / 100 cm 3 or less, more preferably 100 sec / 100 cm 3 or less, and 80 sec / 100 cm 3 or less. Is more preferable.
- the lower limit of the air permeability under pressure of 30 ° C. and 3 MPa is not particularly limited, but can be determined according to the mechanical strength or piercing strength of the microporous membrane, for example, 0 sec / 100 cm 3 or more, 20 sec. It may be / 100 cm 3 or more, or 40 sec / 100 cm 3 or more.
- the temperature of the polyolefin microporous film is 30 ° C.
- the porosity under pressure of 3 MPa (hereinafter referred to as 30 ° C., 3 MPa under pressure) is preferably 40% or more, more preferably 40% or more and 60% or less, and 43%. It is more preferably 60% or more, and particularly preferably 49% or more and 60% or less.
- 3 MPa under pressure can be calculated from the thickness in the exact state (in situ) where 3 MPa is applied and the basis weight before TMA measurement in the compression TMA test.
- a method for measuring a porosity of 30 ° C. and 3 MPa under pressure is described in detail in Examples.
- the air permeability under pressure of the polyolefin microporous film according to the third embodiment is 30 ° C. and 3 MPa
- the pore ratio under pressure is 30 ° C. and 3 MPa .
- Molecular weight and blending ratio of raw materials, draw ratio during biaxial stretching step, MD / TD stretching temperature during biaxial stretching step, heating amount coefficient per unit resin of resin composition during biaxial stretching step, HS magnification, HS By controlling the temperature and the like, it can be adjusted within the numerical range described above.
- the microporous polyolefin film according to the fourth embodiment contains polyethylene as a main component, has a film thickness of 1 ⁇ m to 30 ⁇ m, has an air permeability (before compression) of 500 sec / 100 cm 3 or less, and has both ends along the TD.
- the puncture strength in terms of grain is 50 gf / (g / m 2 ) or more, the crystal length period measured by the SAXS method of the microporous polyolefin membrane is 37.0 nm or more, and 30 ° C. and 3 MPa are added.
- the air permeability under pressure is 140 sec / 100 cm 3 or less, and the post-compression pore ratio measured in the compression test under the conditions of a temperature of 70 ° C., a pressure of 8 MPa, and a compression time of 3 minutes is 30% or more. Is.
- polyolefin microporous film examples include a porous film containing a polyolefin resin; in addition to the polyolefin resin, polyethylene terephthalate, polycycloolefin, polyethersulfone, polyamide, polyimide, polyimideamide, polyaramid, polycycloolefin, nylon, and polytetra.
- Porous film containing a resin such as fluoroethylene; woven polyolefin-based fiber (woven cloth); non-woven fabric of polyolefin-based fiber and the like can be mentioned.
- a microporous membrane containing a polyolefin resin (hereinafter referred to as a polyolefin resin porous membrane) is preferable from the viewpoints of suppressing the decrease or increase of the electric resistance of the membrane, the compression resistance of the membrane, and the structural uniformity, and polyethylene is the main component.
- a microporous membrane containing the above is more preferable.
- the polyolefin resin porous membrane will be described.
- the polyolefin resin porous membrane is made of 50% by mass or more and 100% by mass or less of the resin component constituting the porous membrane from the viewpoint of improving the shutdown performance when forming the polyolefin microporous membrane for non-aqueous secondary batteries. It is preferably a porous film formed of the occupied polyolefin resin composition.
- the proportion of the polyolefin resin in the polyolefin resin composition is more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, and most preferably 95% by mass or more and 100%. It is less than mass%.
- the polyolefin resin contained in the polyolefin resin composition is not particularly limited, and for example, ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like are used as monomers. Examples thereof include the obtained homopolymer, copolymer, multistage polymer and the like. Further, these polyolefin resins may be used alone or in combination of two or more.
- polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-other monomers are used as polyolefin resins from the viewpoints of suppressing the decrease or increase of the electric resistance of the film, the compression resistance of the film, and the structural uniformity.
- Copolymers of the above, as well as mixtures thereof, are preferred.
- polyethylene examples include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-high-molecular-weight polyethylene
- polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, and atactic.
- copolymer examples include polyethylene-propylene random copolymer, polyethylene propylene rubber and the like.
- the polyolefin resin porous membrane is 50% by mass or more and 100% by mass of the resin component constituting the microporous membrane from the viewpoint of crystallinity, high strength, compression resistance, etc. when the polyolefin microporous membrane for non-aqueous secondary batteries is formed. It is preferably a porous membrane formed of a polyethylene composition in which polyethylene accounts for% or less.
- the proportion of polyethylene in the resin component constituting the porous membrane is more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, and most preferably 90% by mass. It is 100% by mass or less.
- the polyethylene contained in the polyolefin resin porous membrane as a main component preferably has a crystal MDND surface (110) crystallite size of 28 nm or less.
- the MDND plane (110) crystallite size of polyethylene can be measured by the X-ray diffraction (XRD) method or the wide-angle X-ray scattering (WAXS) method, as detailed in the examples.
- the MDND plane (110) crystallite size of polyethylene which is the main component of the membrane, is more preferably 27.0 nm or less, still more preferably 10.0 nm to 27.0 nm, or 15.0 nm. It is ⁇ 26.0 nm, or 15.0 nm ⁇ 25.0 nm, or 15.0 nm ⁇ 22.0 nm.
- the rigidity of the film is increased and the compression resistance is improved.
- the MDND surface (110) crystallite size of polyethylene which is the main component of the polyolefin microporous film, is, for example, the molecular weight of the polyolefin raw material, the molecular weight of the polyethylene raw material, and the draw ratio during the biaxial stretching step in the process of manufacturing the polyolefin microporous film.
- the preheating coefficient in the biaxial stretching step, the stretching coefficient in the biaxial stretching step, and the like can be adjusted within the numerical range described above.
- the polyolefin resin contained in the polyolefin resin porous membrane has a melting point of preferably 120 ° C. or higher and 150 ° C. or lower, more preferably 125 ° C. or higher and 140 ° C. or lower, from the viewpoint of making the membrane rigid and improving compression resistance. It is within the range and / or the 1st peak temperature of DSC is preferably in the range of 136 ° C to 144 ° C.
- the proportion of polyethylene in the polyolefin resin is preferably 30% by mass or more. , 50% by mass or more, more preferably 70% by mass or more, particularly preferably 80% by mass or more, and preferably 100% by mass or less, more preferably 97% by mass or less, and 95% by mass.
- the proportion of polyethylene (PE) in the polyolefin resin is preferably 100% by mass from the viewpoint of developing strength.
- the ratio of PE in the polyolefin resin is 50% or more, the fuse behavior is also preferable from the viewpoint of exhibiting high responsiveness.
- the polyolefin resin composition can contain any additive.
- the additive include polymers other than polyolefin resins; inorganic fillers; antioxidants such as phenol-based, phosphorus-based and sulfur-based; metal soaps such as calcium stearate and zinc stearate; ultraviolet absorbers; light stabilizers. ; Antistatic agent; Antifogging agent; Colored pigment and the like.
- the total amount of these additives added is preferably 20% by mass or less with respect to 100% by mass of the polyolefin resin from the viewpoint of improving shutdown performance and the like, more preferably 10% by mass or less, still more preferably 5% by mass. % Or less.
- the viscosity average molecular weight (Mv) of the polyolefin resin used as a raw material is preferably 30,000 or more and 6,000,000 or less, more preferably 80,000 or more and 3 It is less than, million, more preferably 150,000 or more and 2,000,000 or less.
- the viscosity average molecular weight is 30,000 or more, the strength tends to be high due to the entanglement of the polymers, which is preferable.
- the viscosity average molecular weight is 6,000,000 or less, it is preferable from the viewpoint of improving the moldability in the extrusion and drawing steps.
- the Mv of at least one type of polyethylene is preferably 600,000 or more, more preferably 700,000 or more, from the viewpoint of film orientation and rigidity.
- the Mv upper limit of polyethylene may be, for example, 2,000,000 or less.
- the proportion of polyethylene having an Mv of 700,000 or more in the polyolefin resin constituting the polyolefin resin porous membrane is preferably 50% by mass or more, more preferably 60% by mass or more, and more preferably 70% by mass. It is more preferably% or more, and may be 100% by mass.
- the proportion of polyethylene with Mv 600,000 or more in the polyolefin resin constituting the polyolefin resin porous film is 30% by mass or more. Is more preferable, 50% by mass or more is more preferable, 60% by mass or more is further preferable, 70% by mass or more is particularly preferable, and 100% by mass may be used.
- the type, molecular weight, and composition of the polyolefin resin constituting the polyolefin resin porous film can be determined, for example, by controlling the type, molecular weight, blending ratio, and the like of a polymer raw material such as polyolefin in the process for producing a polyolefin microporous film. It can be adjusted as follows. Further, a multilayer polyolefin resin microporous film having a structure in which two or more layers of the same or different types of polyolefin resin microporous film are laminated is also adjusted as described above.
- the polyolefin microporous membrane Since the polyolefin microporous membrane has a porous structure in which a large number of very small pores are gathered to form dense communication pores, the polyolefin microporous membrane has excellent ion permeability and high strength in a state containing an electrolytic solution. It has the feature.
- the average film thickness (before compression) of the polyolefin microporous membrane reduces the occupied volume of the separator and improves battery capacity in terms of high ion permeability and good rate characteristics, and when used for high capacity batteries. From the viewpoint of contributing to the above, it is preferably 1 ⁇ m to 14 ⁇ m, more preferably 3 ⁇ m to 13 ⁇ m, and further preferably 5 ⁇ m to 12 ⁇ m.
- the average film thickness of the polyolefin microporous film should be adjusted within the above numerical range by controlling the distance between the rolls of the cast roll, the cast clearance, the stretching ratio during the biaxial stretching process, the HS magnification, the HS temperature, and the like. Can be done.
- the porosity (before compression) of the microporous membrane reduces the electrical resistance of the membrane after the press process, for example, in the manufacture of non-aqueous secondary batteries with the microporous membrane as a separator, resulting in high output and high cycle of the battery.
- it is preferably 20% or more, more preferably 35% or more, still more preferably 38% or more, still more preferably 40%.
- the above particularly preferably 45% or more, and preferably 70% or less, more preferably 65% or less, from the viewpoint of battery safety and achieving a certain film strength and low air permeability. , More preferably 60% or less.
- the pore ratio of the microporous film controls the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, the stretching ratio, the heat fixing temperature, the stretching ratio at the time of heat fixing, the relaxation rate at the time of heat fixing, etc., or these. Can be adjusted by combining.
- the pore size of the microporous membrane is preferably 30 nm to 70 nm, more preferably 35 nm to 60 nm when measured by the half-dry method from the viewpoint of achieving high ion permeability, excellent withstand voltage and high strength. ..
- the pore size of the microporous membrane can be adjusted, for example, by controlling the stretching temperature, stretching ratio, heat fixing temperature, stretching ratio at the time of heat fixing, relaxation rate at the time of heat fixing, or a combination thereof.
- the melt flow index (MI) of the polyolefin microporous membrane is 1.0 from the viewpoint of lowering the fluidity when the membrane is melted and suppressing the short circuit between the electrodes due to the flow of the separator in the heat generation state during the nail piercing test. It is preferably 0.001 or more and 1.0 or less, more preferably 0.005 or more and 0.8 or less, and particularly preferably 0.01 or more and 0.4 or less. preferable.
- the MI of the microporous polyolefin membrane can be adjusted within the above numerical range by, for example, controlling the molecular weight and the mixing ratio of the polymer raw material such as polyolefin.
- the polyethylene component with Mw of 1,000,000 or more is the elution component from the viewpoint of the decrease in fluidity during melting of the membrane and the short-circuit resistance during the nail piercing test. It is preferably 7% or more, more preferably 9% or more, further preferably 12% or more, and particularly preferably 15% or more of the whole. Further, from the viewpoint of suppressing excessive stress when the membrane shrinks in a high temperature environment, it is preferable that the polyethylene component having a Mw of 1,000,000 or more is 57% or less of the total elution component, and 42% or less is more.
- the molecular weight distribution of the microporous polyolefin membrane can be adjusted within the above numerical range by, for example, controlling the type, molecular weight and blending ratio of the polyolefin raw material.
- the piercing strength not converted into the basis weight of the microporous membrane is preferably 250 gf or more and 700 gf or less.
- the puncture strength is preferably 250 gf or more from the viewpoint of battery safety, and is preferably 700 gf or less from the viewpoint of suppressing the porosity, crystallinity, and electrical resistance of the microporous polyolefin membrane after compression.
- the puncture strength is more preferably 300 gf to 690 gf, still more preferably 310 fg to 680 gf.
- the basis weight of the microporous polyolefin membrane is preferably 3.0 g / m 2 or more from the viewpoint of suppressing thermal runaway of the non-aqueous secondary battery, and preferably 10 g / m 2 or less from the viewpoint of increasing the capacity of the battery. More preferably, the basis weight of the microporous polyolefin membrane is 3.0 g / m 2 or more and 7.0 g / m 2 or less. More preferably, the basis weight of the microporous polyolefin membrane is 3.0 g / m 2 or more and 6.0 g / m 2 or less. By improving the compression resistance, the safety of the battery can be guaranteed even with a lower basis weight.
- the withstand voltage per basis weight of the microporous membrane is preferably 0.13 kV / (g / m 2 ) or more from the viewpoint of safety of the non-aqueous secondary battery containing the microporous membrane.
- the upper limit of the tensile breaking strength of the polyolefin microporous film is the upper limit for both MD and TD from the viewpoint of ensuring the film strength required for winding and laminating the electrode and separator in the manufacturing process of non-aqueous secondary batteries.
- Is preferably 5000 kgf / cm 2 or less, more preferably 4500 kgf / cm 2 or less, further preferably 4000 kgf / cm 2 or less, or even more preferably 3500 kgf / cm 2 or less.
- 3,000 kgf / cm 2 or less the lower limit thereof is preferably 500 kgf / cm 2 or more, more preferably 700 kgf / cm 2 or more, and 1,000 kgf / cm 2 or more.
- the upper limit of the tensile breaking strength of the polyolefin microporous membrane is preferably lower than 5000 kgf / cm 2 from the viewpoint of suppressing heat shrinkage of the polyolefin microporous membrane for both MD and TD.
- the ratio of the tensile breaking strength of MD and the tensile breaking strength of TD (MD / TD tensile breaking strength ratio) of the polyolefin microporous film is preferably 0.5 or more and 2.0 or less, preferably 0.7. More than 1.5 is more preferable, 0.7 or more and 1.4 or less is more preferable, or 0.7 or more and 1.3 or less is more preferable, and more preferably within the range of 0.75 to 1.25 or 0. It is in the range of 8 to 1.3, and very preferably in the range of 0.8 to 1.2.
- the MD / TD tensile breaking strength ratio of the polyolefin microporous film can be adjusted within the numerical range described above by controlling, for example, the stretching ratio, the HS ratio, etc. at the time of the biaxial stretching step.
- the tensile elongation at break of the polyolefin microporous membrane is controlled within an appropriate numerical range for both MD and TD, the short-circuit area is minimized by the membrane being moderately stretched and torn during the nailing test of a non-aqueous secondary battery. As a result, the safety of the nail piercing test is improved.
- the nail piercing portion is stretched too much, so that the peripheral portion other than the nail piercing membrane rupture portion is pulled and the film thickness of the peripheral portion becomes thin, which leads to a short circuit in a large area.
- the tensile elongation at break of the microporous polyolefin membrane is preferably 20% or more and 200% or less, more preferably 30% or more and 150% or less, and further preferably 40% or more and 120% or less for both MD and TD. 50% or more and 110% or less are particularly preferable.
- the tensile elongation at break of MD and / or TD of the polyolefin microporous membrane shall be adjusted within the numerical range described above by controlling, for example, the draw ratio, HS ratio, etc. during the biaxial stretching step. Can be done.
- the ratio of MD tensile elongation at break and TD tensile elongation at break (MD / TD tensile elongation at break) of the microporous polyolefin membrane is preferably 0.3 or more and 2.0 or less, preferably 0.35.
- the MD / TD tensile elongation at break elongation ratio of the polyolefin microporous membrane can be adjusted within the numerical range described above by controlling, for example, the draw ratio, the HS ratio, etc. at the time of the biaxial stretching step. ..
- the tensile modulus of elastic modulus of the polyolefin microporous film makes it difficult for the separator to break when the nail penetrates the non-aqueous secondary battery during the nail piercing test and also penetrates the separator and the electrode to deform it. From the viewpoint of improving safety without completing a short circuit, it is preferably 1,000 kg / cm 2 to 10,000 kg / cm 2 , preferably 2,000 kg / cm 2 to 90,000 kg / cm 2 . Is more preferable.
- the ratio of the tensile elastic modulus of MD and the tensile elastic modulus of TD (MD / TD tensile elastic modulus) of the microporous polyolefin membrane is preferably 0.3 or more and 3.0 or less, more preferably.
- the MD / TD tensile modulus ratio of the microporous polyolefin membrane can be adjusted within the numerical range described above by controlling, for example, the draw ratio during the biaxial stretching step, the HS ratio, and the like.
- the thermal shrinkage of the polyolefin microporous membrane is 120 from the viewpoint that the shape stability of the membrane at a relatively high temperature is high and short circuit is suppressed in the thermal runaway state of the non-aqueous secondary battery during a nail piercing test or the like.
- it is preferably ⁇ 10% or more and 20% or less, more preferably ⁇ 5% or more and 15% or less, and further preferably 0% or more and 10% or less.
- the heat shrinkage of the microporous polyolefin membrane is preferably -10% or more and 20% or less, more preferably -5% or more and 18% or less, and 0% or more when measured in TD at 120 ° C. It is more preferably 15% or less, and particularly preferably 0% or more and 10% or less.
- the shutdown temperature of the microporous membrane is preferably 150 ° C. or lower, more preferably 149 ° C. or lower.
- a shutdown temperature of 150 ° C or lower means that when some abnormal reaction occurs and the battery temperature rises, the separator holes are closed by the time the temperature reaches 150 ° C. Therefore, the lower the shutdown temperature, the faster the flow of lithium ions between the electrodes stops at a low temperature, and the safety is improved.
- the fuse temperature of the microporous membrane is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, still more preferably 138 ° C. or higher, and further preferably 139 ° C. The above is particularly preferable.
- the average value of the surface smoothness between one surface and the other surface of the polyolefin microporous membrane is preferably 20,000 sec from the viewpoint of cycle characteristics and rate characteristics under pressure. / 10 cm 3 or more and 200,000 sec / 10 cm 3 or less, more preferably 30,000 sec / 10 cm 3 or more and 180,000 sec / 10 cm 3 or less, still more preferably 40,000 sec / 10 cm 3 or more and 160,000 sec / 10 cm 3 or less, particularly preferable. Is 50,000 sec / 10 cm 3 or more and 140,000 sec / 10 cm 3 or less.
- the surface smoothness When the surface smoothness is lower than 20,000 sec / 10 cm 3 , the physical distance between the microporous polyolefin membrane and the electrode material becomes non-uniform, which may result in non-uniform battery reaction and deterioration of cycle characteristics. Further, when the surface smoothness is higher than 200,000 sec / 10 cm 3 , the distance between the polyolefin microporous membrane and the electrode material becomes small, and the voids formed between the microporous membrane and the electrode material become small, so that electrolysis is performed. The uniform penetration of the liquid may be hindered and the cycle characteristics may deteriorate.
- the surface smoothness of the polyolefin microporous film is, for example, the molecular weight and blending ratio of a polymer raw material such as polyolefin, the distance between rolls of cast rolls, the draw ratio during the biaxial stretching step, and the MD / TD stretching during the biaxial stretching step.
- a polymer raw material such as polyolefin
- the temperature can be adjusted within the numerical range described above.
- Multilayer porous membrane In one aspect of the present invention, there is also provided a multilayer porous membrane having the polyolefin microporous membrane described above and at least one layer arranged on at least one side thereof.
- the multilayer porous membrane can impart one or more functions to the polyolefin microporous membrane depending on the properties of at least one layer, and can also be used as a separator for a non-aqueous secondary battery.
- the porosity (before compression) of the multilayer porous film is preferably in the range of 20% or more and 80% or less from the viewpoint of achieving a certain film strength and low air permeability.
- the porosity of the multilayer porous membrane is determined as described in the examples.
- the multilayer porous membrane can have any of the following layer configurations 1 to 3:
- Layer structure 1 Contains a polyolefin microporous membrane and an inorganic porous layer arranged on at least one side of the polyolefin microporous membrane;
- Layer structure 2 contains a polyolefin microporous film and a thermoplastic resin layer arranged on at least one side of the polyolefin microporous film;
- layer structure 3 a polyolefin microporous film and arranged on at least one side of the polyolefin microporous film.
- the inorganic porous layer contains inorganic particles and a binder polymer. Since the multilayer porous membrane including the inorganic porous layer has a pore structure of the inorganic porous layer, it has an excellent ability to suppress heat shrinkage even in a thin film while maintaining ion permeability.
- the inorganic particles are not particularly limited, but those having high heat resistance and electrical insulation and being electrochemically stable within the range of use of a non-aqueous secondary battery are preferable.
- Materials for the inorganic particles include, for example, oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, ittoria, zinc oxide, and iron oxide; nitride-based ceramics such as silicon nitride, titanium nitride, and boron nitride.
- oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, ittoria, zinc oxide, and iron oxide
- nitride-based ceramics such as silicon nitride, titanium nitride, and boron nitride.
- Ceramics Silicon Carbide, Calcium Carbonate, Magnesium Sulfate, Aluminum Sulfate, Barium Sulfate, Aluminum Hydroxide, Aluminum Hydroxide or Boehmite, Potassium Titanium, Tarku, Kaolinite, Decite, Nacrite, Halloysite, Pyrophyllite, Montmorillonite, Seri Examples include ceramics such as sight, mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; and glass fiber. Among these, at least one selected from the group consisting of alumina, boehmite, and barium sulfate is preferable from the viewpoint of stability in a non-aqueous secondary battery. Further, as the boehmite, synthetic boehmite capable of reducing ionic impurities which adversely affect the characteristics of the electrochemical device is preferable.
- the inorganic particles may be used alone or in combination of two or more.
- Examples of the shape of the inorganic particles include a plate shape, a scale shape, a polyhedron, a needle shape, a columnar shape, a granular shape, a spherical shape, a spindle shape, a block shape, and the like, and even if a plurality of types of inorganic particles having the above shapes are used in combination. good.
- the block shape is preferable from the viewpoint of the balance between permeability and heat resistance.
- the aspect ratio of the inorganic particles is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.5 or less.
- the aspect ratio of 3.0 or less By having an aspect ratio of 3.0 or less, the amount of water adsorbed in the multilayer porous membrane is suppressed, the capacity deterioration during repeated cycles is suppressed, and the deformation at a temperature exceeding the melting point of the PO microporous membrane is suppressed. It is preferable from the viewpoint of suppressing.
- the proportion of the inorganic particles in the inorganic porous layer is preferably 90% by mass or more and 99% by mass or less, more preferably 91% by mass or more and 98% by mass or less, and further preferably 92% by mass or more and 98% by mass or less. It is as follows.
- the proportion of the inorganic particles is 90% by mass or more, it is preferable from the viewpoint of ion permeability and from the viewpoint of suppressing deformation at a temperature exceeding the melting point of the polyolefin microporous membrane. Further, when this ratio is 99% by mass or less, it is preferable from the viewpoint of maintaining the binding force between the inorganic particles or the interfacial binding force between the inorganic particles and the microporous polyolefin membrane.
- the binder polymer is a material that binds a plurality of inorganic particles to each other in the inorganic porous layer, or binds the inorganic porous layer to the polyolefin microporous membrane.
- a type of binder polymer when a multilayer porous film is used as a separator, it is insoluble in the electrolytic solution of a non-aqueous secondary battery and is electrochemically stable within the range of use of the non-aqueous secondary battery. It is preferable to use one.
- binder polymer examples include the following 1) to 7).
- 1) Polyolefin For example, polyethylene, polypropylene, ethylene propylene rubber, and modified products thereof;
- Conjugate diene polymer For example, styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride;
- Acrylic polymer For example, a methacrylic acid ester-acrylic acid ester copolymer, a styrene-acrylic acid ester copolymer, an acrylonitrile-acrylic acid ester copolymer;
- Polyvinyl alcohol-based resin For example, polyvinyl alcohol, polyvinyl acetate;
- Fluororesin For example, polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-
- polysulfone polysulfone
- polyethersulfone polyphenylene sulfide
- polyetherimide polyamideimide
- Polyamide polyester
- polyamide As the polyamide, a total aromatic polyamide, particularly polymethphenylene isophthalamide, is preferable from the viewpoint of durability.
- the above 2) conjugated diene polymer is preferable, and from the viewpoint of withstand voltage resistance, the above 3) acrylic polymer and 5) fluororesin are preferable.
- the above 2) conjugated diene-based polymer is a polymer containing a conjugated diene compound as a monomer unit.
- conjugated diene compound examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chlor-1,3-butadiene, and substituted linear chain.
- Conjugated pentadiene, substituted and side chain conjugated hexadiene and the like can be mentioned, and these may be used alone or in combination of two or more. Of these, 1,3-butadiene is particularly preferable.
- the above 3) acrylic polymer is a polymer containing a (meth) acrylic compound as a monomer unit.
- the (meth) acrylic compound refers to at least one selected from the group consisting of (meth) acrylic acid and (meth) acrylic acid ester.
- Examples of the (meth) acrylic acid used in the above 3) acrylic polymer include acrylic acid and methacrylic acid.
- Examples of the (meth) acrylic acid ester used in the acrylic polymer include (meth) acrylic acid alkyl esters such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, and butyl methacrylate, 2 -Epoxyhexyl acrylate, 2-ethylhexyl amethacrylate; epoxy group-containing (meth) acrylic acid ester, for example, glycidyl acrylate, glycidyl methacrylate; these may be used alone or in combination of two or more. May be good.
- 2-ethylhexyl acrylate (EHA) and butyl acrylate (BA) are particularly preferable.
- the acrylic polymer is preferably a polymer containing EHA or BA as a main constituent unit from the viewpoint of safety of a non-aqueous secondary battery.
- the main building block refers to a polymer moiety corresponding to a monomer that accounts for 40 mol% or more of the total raw material for forming the polymer.
- the above 2) conjugated diene-based polymer and 3) acrylic-based polymer may be obtained by copolymerizing other monomers copolymerizable with these.
- Other copolymerizable monomers used include, for example, unsaturated carboxylic acid alkyl esters, aromatic vinyl-based monomers, vinyl cyanide-based monomers, and unsaturated monomers containing hydroxyalkyl groups.
- unsaturated carboxylic acid alkyl ester monomers are particularly preferable.
- Examples of the unsaturated carboxylic acid alkyl ester monomer include dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, monomethyl fumarate, monoethyl fumarate, and the like. It may be used alone or in combination of two or more.
- the above 2) conjugated diene polymer may be obtained by copolymerizing the above (meth) acrylic compound as another monomer.
- the binder polymer is preferably in the form of latex from the viewpoint that the binding force between a plurality of inorganic particles is strong even at a high temperature exceeding normal temperature and suppresses heat shrinkage, and the latex of an acrylic polymer is preferable. Is more preferable.
- a dispersant such as a surfactant may be added to the coating liquid for forming the inorganic porous layer in order to stabilize the dispersion or improve the coatability.
- the dispersant is one that adsorbs to the surface of the inorganic particles in the slurry and stabilizes the inorganic particles by electrostatic repulsion or the like, and is, for example, a polycarboxylate, a sulfonate, a polyoxyether, or the like.
- the amount of the dispersant added is preferably 0.2 parts by weight or more and 5.0 parts by weight or less, more preferably 0.3 parts by weight or more and 1.0 part by weight or less in terms of solid content.
- the total thickness of the inorganic porous layer is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.2 ⁇ m to 7 ⁇ m, and even more preferably 0.3 ⁇ m to 4 ⁇ m.
- the total thickness of the inorganic porous layer is the total thickness of the inorganic porous layer when it is formed on one side of the polyolefin microporous film, and the total thickness of both inorganic porous layers when it is formed on both sides of the PO microporous film. show.
- the total thickness of the inorganic porous layer of 0.1 ⁇ m or more is preferable from the viewpoint of suppressing deformation at a temperature exceeding the melting point of the polyolefin microporous membrane, and the total thickness of 10 ⁇ m or less improves the battery capacity. It is preferable from the viewpoint of.
- thermoplastic resin layer is a layer containing a thermoplastic resin as a main component, and may contain other components as desired. From the viewpoint of high adhesiveness, it is preferable that the thermoplastic resin layer and the microporous polyolefin membrane are in direct contact with each other.
- the proportion of the thermoplastic resin in the thermoplastic resin layer is preferably more than 3% by mass, more preferably 10% by mass or more, still more preferably 20% by mass or more and 40% by mass or more, from the viewpoint of adhesiveness to the electrode. , 60% by mass or more, or 80% by mass or more, and 90% by mass or more is particularly preferable.
- thermoplastic resin examples include specific examples of the binder polymer contained in the above-mentioned inorganic porous layer, among which, from the viewpoint of adhesiveness and safety at the time of nail sticking test or short circuit of non-aqueous secondary battery. From the viewpoint, 2) conjugated diene-based polymer, 3) acrylic-based polymer, 5) fluororesin, and 7) polyamide as a polymer are preferable.
- the area ratio of the thermoplastic resin layer to the total area of the surface of the polyolefin microporous membrane is preferably 100% or less, 95% or less, 80% or less, 75% or less, or 70% or less, and this area ratio. Is preferably 5% or more, 10% or more, or 15% or more. It is preferable that the area ratio is 100% or less from the viewpoint of suppressing the blockage of the pores of the polyolefin microporous membrane by the thermoplastic resin and further improving the permeability of the separator. It is preferable that the area ratio is 5% or more from the viewpoint of further improving the adhesiveness with the electrode.
- the arrangement pattern of the thermoplastic resin layer may be, for example, dot-like, diagonal, striped, lattice-like, striped, or turtle shell. Shapes, random shapes, etc., and combinations thereof can be mentioned.
- the thickness of the thermoplastic resin layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, further preferably 0.3 ⁇ m or more, and further preferably 10 ⁇ m per one side of the polyolefin microporous membrane. It is preferably less than or equal to, more preferably 7 ⁇ m or less, still more preferably 4 ⁇ m or less. It is preferable that the thickness of the thermoplastic resin layer is 0.1 ⁇ m or more from the viewpoint of uniformly exhibiting the adhesive force between the electrode and the multilayer porous film, and as a result, the battery characteristics can be improved. It is preferable that the thickness of the thermoplastic resin layer is 10 ⁇ m or less from the viewpoint of suppressing the decrease in ion permeability.
- the multifunctional layer is a layer that imparts a large number of functions to the microporous polyolefin membrane or separator, and can have, for example, the functions of both the above-mentioned inorganic porous layer and the thermoplastic resin layer. More specifically, the multifunctional layer may include the binder polymer or thermoplastic resin described above with the inorganic particles and optionally additional components such as a dispersant.
- the thickness of the multifunctional layer is not limited, but can be determined according to the function imparted to the microporous polyolefin membrane and the coating conditions.
- the method for producing a microporous polyolefin membrane according to the present invention is not particularly limited, and examples thereof include a method including the following steps: (A) A step of extruding a polyolefin composition containing a polyolefin resin and a pore-forming material to form a gel-like sheet; (B) A step of biaxially stretching a gel-like sheet to form a stretched sheet; (C) A step of extracting a pore-forming material from a stretched sheet to form a porous film; and (D) a step of heat-fixing the porous film.
- step (A) the polyolefin composition is extruded to form a gel-like sheet.
- the polyolefin composition may contain a polyolefin resin, a pore-forming agent, and the like.
- the resin contained in the polyolefin composition does not contain a non-resin component such as fine particles or a highly heat-resistant resin having a significantly different melting point, and is composed only of the polyolefin, so that the stretching stress is made uniform and the resulting film is permeable. It is preferable from the viewpoint of improving the degree and air permeability distribution.
- the gel-like sheet can be obtained by melt-kneading the polyolefin resin and the pore-forming material to form a sheet.
- the polyolefin resin and the pore-forming material are melt-kneaded.
- a melt-kneading method for example, a polyolefin resin and, if necessary, other additives are added to a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin component.
- a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin component.
- a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin component.
- a pore-forming material at an arbitrary ratio and
- the polyolefin resin contained in the polyolefin composition can be determined according to a predetermined resin raw material of the obtained polyolefin microporous film.
- the polyolefin resin used in the extrusion step (A) may be the polyolefin resin described as a component of the polyolefin microporous membrane according to the first to fourth embodiments.
- the content of the plasticizer in the resin composition is preferably 66% by mass to 90% by mass, more preferably 68% by mass to 88% by mass, and further preferably 70% by mass to 80% by mass.
- the content of the plasticizer is preferably 66% by mass to 90% by mass, more preferably 68% by mass to 88% by mass, and further preferably 70% by mass to 80% by mass.
- the PC of the resin composition is preferably 20 from the viewpoint of uniformly applying stretching stress by uniformly dispersing the resin having a high molecular weight and improving the ion permeability and air permeability distribution of the obtained membrane. It is by mass% to 40% by mass, more preferably 22% by mass to 37% by mass, and further preferably 24% by mass to 33% by mass.
- PC refers to "ratio (mass%) of polymer component in extruded component".
- the high molecular weight raw material contained in the polyolefin composition is the molecular weight of the obtained microporous film, MI, puncture strength, puncture strength in terms of grain size, difference R between the maximum and minimum values of air permeability at 3 points of TD, (before compression).
- MI molecular weight of the obtained microporous film
- puncture strength puncture strength in terms of grain size
- difference R between the maximum and minimum values of air permeability at 3 points of TD, (before compression).
- the air permeability under pressure of 30 °C, 3MPa the porosity under pressure of 30 °C, 3MPa
- the heat shrinkage within the numerical range explained above.
- the Mv lower limit is preferably 700,000 or more, and the Mv upper limit may be, for example, 2,000,000 or less.
- the ratio of the high molecular weight raw material of Mv 700,000 or more to the resin contained in the polyolefin composition is preferably 30% by mass or more, more preferably 40% by mass or more, and 50% by mass. It is more preferably% or more, and may be 100% by mass.
- the Mv of polyethylene adjusts the post-compressed porosity, crystal length period, or crystallite size of the obtained microporous membrane within the numerical ranges described above. Therefore, it is preferably 600,000 or more, more preferably 700,000 or more, and the Mv upper limit of polyethylene may be, for example, 2,000,000 or less. From the same viewpoint, the proportion of polyethylene having an Mv of 700,000 or more in the polyolefin resin constituting the polyolefin composition is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass. The above is more preferable, and it may be 100% by mass.
- the Mv of polyethylene is the difference between the maximum value and the minimum value of the molecular weight, MI, puncture strength, grain-equivalent puncture strength, and air permeability at 3 points of TD of the obtained microporous film.
- air permeability and porosity pressurized air permeability 30 ° C, 3MPa and pressurized porosity 30 ° C, 3MPa , and heat shrinkage within the numerical ranges described above. From the viewpoint of adjustment, it is more preferable that at least one of the raw materials is 700,000 or more, and the Mv upper limit of polyethylene may be, for example, 2,000,000 or less.
- the proportion of polyethylene having an Mv of 700,000 or more in the polyolefin resin constituting the polyolefin composition is preferably 30% by mass or more, more preferably 40% by mass or more, and 50% by mass.
- the above is more preferable, and it may be 100% by mass.
- polypropylene may be mixed with the polyolefin composition from the viewpoint of the heat resistance of the obtained microporous membrane.
- the ratio of polypropylene to the total polyolefin resin in the polyolefin composition is preferably 1% by mass or more and 20% by mass or less, more preferably 2% by mass or more, from the viewpoint of film strength and compression resistance. It is 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less.
- the ratio of polypropylene to the total polyolefin resin in the polyolefin composition is preferably 3% by mass or more and 10% by mass or less, and preferably 5% by mass or more and 9% by mass or less.
- Examples of the pore-forming material include a plasticizer, an inorganic material, or a combination thereof.
- the plasticizer is not particularly limited, but it is preferable to use a non-volatile solvent capable of forming a uniform solution above the melting point of the polyolefin.
- a non-volatile solvent capable of forming a uniform solution above the melting point of the polyolefin.
- specific examples of the non-volatile solvent include hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol. After extraction, these plasticizers may be recovered and reused by an operation such as distillation.
- liquid paraffin has high compatibility with polyethylene or polypropylene when the polyolefin resin is polyethylene, and even if the melt-kneaded product is stretched, interfacial peeling between the resin and the plasticizer is unlikely to occur, and uniform stretching is possible. It is preferable because it tends to be easy to carry out.
- the non-equipment is not particularly limited, and for example, oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, ittoria, zinc oxide, iron oxide; silicon nitride, titanium nitride, nitride.
- oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, ittoria, zinc oxide, iron oxide; silicon nitride, titanium nitride, nitride.
- Nitride-based ceramics such as boron; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite.
- silica is particularly preferable because it is easy to extract.
- the ratio of the polyolefin resin composition to the inorganic material is preferably 3% by mass or more, and more preferably 10% by mass or more, based on the total mass of these, from the viewpoint of obtaining good isolation.
- it is preferably 60% by mass or less, and more preferably 50% by mass or less.
- the melt-kneaded product is molded into a sheet to obtain a gel-like sheet.
- the ratio (Q / N,) of the extrusion speed of the polyolefin composition that is, the discharge rate Q: kg / hour of the extruder
- the screw rotation speed N (rpm) of the extruder is used.
- the unit: kg / (h ⁇ rpm)) is preferably 0.1 or more and 7.0 or less, more preferably 0.5 or more and 6.0 or less, and further preferably 1.0 or more and 5.0 or less.
- the melt-kneaded product is extruded into a sheet shape via a T-die or the like, brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component.
- a heat conductor used for cooling solidification
- the heat conductor used for cooling solidification include metals, water, air, and plasticizers.
- sandwiching it between the rolls further enhances the efficiency of heat conduction, and the sheet is oriented to increase the film strength and the surface smoothness of the sheet. It is more preferable because it tends to improve.
- the distance between the rolls is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
- the distance between rolls of the cast roll is 200 ⁇ m or more, the risk of film breakage can be reduced in the subsequent stretching step, and when the distance between rolls is 3,000 ⁇ m or less, the cooling rate is high and uneven cooling can be prevented.
- the cast thickness is preferably 500 ⁇ m to 2200 ⁇ m, preferably 700 ⁇ m to 2000 ⁇ m, from the viewpoint of obtaining a thin film and achieving the draw ratio required for improving the plane orientation and crystallinity to improve the compressibility. Is preferable.
- the extruded sheet-shaped molded body or gel-like sheet may be rolled. Rolling can be carried out, for example, by a method using a roll or the like.
- the rolled surface magnification is preferably more than 1 times and 3 times or less, and more preferably more than 1 times and 2 times or less.
- the rolling ratio exceeds 1 times, the surface orientation increases and the film strength of the finally obtained porous film tends to increase.
- the rolling ratio is 3 times or less, the orientation difference between the surface layer portion and the inside of the center is small, and a uniform porous structure tends to be formed in the thickness direction of the film.
- Step (B) the gel-like sheet obtained in the step (A) is stretched.
- the step (B) is performed before the step (C) of extracting the pore-forming material from the sheet.
- the stretching treatment of the gel-like sheet is performed at least once in the longitudinal direction and the width direction (that is, by biaxial stretching) from the viewpoint of controlling the bending rigidity of the polyolefin microporous film.
- Examples of the stretching method include simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, and multiple stretching.
- the trunk structure tends to be isotropic in the plane, and stress is isotropically dispersed during the nail piercing test, so that the nail piercing test safety is good.
- Simultaneous biaxial stretching is preferable from the viewpoint of Simultaneous biaxial stretching refers to a stretching method in which MD stretching and TD stretching are performed at the same time, and the stretching ratio in each direction may be different.
- Sequential biaxial stretching refers to a stretching method in which MD and TD are stretched independently, and when MD or TD is stretched, the other direction is fixed in an unconstrained state or a fixed length. It is in a state of being.
- step (B) from the viewpoint of adjusting the post-compressed porosity, crystal length period, or crystallite size of the obtained microporous membrane within the numerical range described above, it is gelled immediately before stretching in a stretching furnace. It is preferable to preheat the sheet, and it is more preferable to increase the preheating coefficient.
- the preheating coefficient is a value obtained by multiplying the preheating temperature by the preheating wind speed and the preheating time, and is preferably in the range of 130000 ° C.m to 300,000 ° C.m, preferably 150,000 ° C.m to 300,000 ° C.m. It is more preferably within the range, and further preferably within the range of 180,000 ° C.m to 300,000 ° C.m.
- the preheating furnace was divided into a plurality of rooms having different wind speeds, it was calculated as the wind speed of the entire preheating furnace from the total of "wind speed of each room x furnace length of each room / furnace length of the entire preheating
- polyethylene as a main component is highly used from the viewpoint of adjusting the post-compressed porosity, crystal length period, or crystallinity size of the obtained microporous film within the numerical range described above.
- MD stretch ratio from the viewpoint of forming a highly rigid trunk by orienting to, and from the viewpoint of increasing the crystallinity in addition to increasing the strength of the film by stretching orienting, and improving the compressibility. Is preferably 5 times or more, more preferably 5 times or more and 10 times or less, further preferably 5 times or more and 9 times or less, 6 or more and 10 times or less, and particularly preferably 6 times or more and 8 times or less.
- the MD stretching ratio can be adjusted according to, for example, the MD stretching temperature, the MD stretching wind speed, the MD stretching time, the MD stretching coefficient, and the like.
- the lower limit of the MD stretching temperature is set. It is preferably 122.0 ° C. or higher, more preferably 123.0 ° C. or higher, still more preferably 124.0 ° C. or higher, still more preferably 125.0 ° C. or higher, and particularly preferably 126.0 ° C. or higher. ° C. or higher, most preferably 127.0 ° C. or higher, and the upper limit thereof is preferably 145.0 ° C.
- the MD stretching temperature is from the melting point of the main component of ⁇ 12 ° C. to the melting point, stress is appropriately applied to the film, which is presumed to be preferable in terms of stretch molding.
- the MD stretching temperature is more preferably from the melting point of the main component of ⁇ 10 ° C. to the melting point.
- the MD stretching temperature is more preferably from the melting point of the main component of ⁇ 8 ° C. to the melting point.
- polyethylene as a main component is highly used from the viewpoint of adjusting the post-compressed porosity, crystal length period, or crystallinity size of the obtained microporous film within the numerical range described above.
- TD stretch ratio from the viewpoint of forming a highly rigid trunk by orienting to, and from the viewpoint of increasing the crystallinity in addition to increasing the strength of the film by stretching orientation, the compressibility can be improved. Is preferably 5 times or more, more preferably 5 times or more and 10 times or less, further preferably 5 times or more and 9 times or less, or 6 or more and 10 times or less, and particularly preferably 6 to 8 times.
- the TD stretching temperature in step (B) from the viewpoint of improving the properties and from the viewpoint of uniformly applying stress even to a high-molecular-weight resin to improve the permeability and air permeability distribution of the obtained film.
- the lower limit of the temperature is preferably 122.0 ° C. or higher, more preferably 123.0 ° C. or higher, still more preferably 124.0 ° C. or higher, and even more preferably 125.0 ° C. or higher.
- it is 126.0 ° C. or higher, most preferably 127.0 ° C. or higher
- the upper limit thereof is preferably 145.0 ° C. or lower, more preferably 140.0 ° C. or lower, and further.
- it may be 131.0 ° C. or lower.
- the TD stretching ratio and the TD stretching temperature in the step (B) can be adjusted according to, for example, the TD stretching wind speed, the TD stretching time, the TD stretching coefficient, and the like.
- step (B) the ratio of the preheating coefficient to the stretching coefficient (preheating) from the viewpoint of adjusting the post-compressed porosity, crystal length period, or crystallite size of the obtained microporous film within the numerical range described above.
- the coefficient / stretching coefficient) is preferably adjusted to 5.7 or more and 7.0 or less, and particularly preferably 5.8 or more and 7.0 or less.
- this ratio is adjusted to 5.7 or more, in the preheating immediately before stretching, by adding a larger amount of heat, the sheet is easily stretched, a uniform structure is easily formed, and a non-aqueous film having a microporous film finally obtained is provided.
- the cycle characteristics of the secondary battery tend to improve.
- the stretching coefficient is a value obtained by multiplying the stretching temperature by the stretching wind speed and the residence time of the film in the stretching step, and is preferably in the range of 20,000 ° C.m to 50,000 ° C.m, preferably 30,000 ° C.m. It is more preferable that the temperature is within the range of about 50,000 ° C. and m.
- the stretching furnace was divided into a plurality of rooms having different wind speeds, it was calculated as the wind speed of the entire stretching furnace from the total of "wind speed of each room x furnace length of each room / furnace length of the entire stretching furnace".
- the residence time in the stretching furnace was calculated from the furnace length of the entire stretching furnace / the average speed of the entire stretching furnace.
- step (B) the piercing strength of the obtained microporous film, the piercing strength in terms of grain, the difference R between the maximum and minimum values of the air permeability at three TD points, the air permeability and porosity (before compression), and pressurization.
- air permeability 30 °C, 3MPa and under pressure porosity 30 °C, 3MPa heat shrinkage, and tensile breaking strength and MD / TD tensile breaking strength ratio are adjusted within the numerical range explained above.
- the biaxial stretching ratio is preferably 5 times ⁇ 5 times or more, more preferably 5 ⁇ 5 times or more and 10 ⁇ 10 times or less, and 6 ⁇ 6 times or more and 10 ⁇ 10 times or less. Is even more preferable.
- the biaxial stretching ratio is preferably a simultaneous biaxial stretching ratio.
- the puncture strength and the equivalent puncture strength of the obtained microporous film are adjusted within the numerical range explained above.
- air permeability 30 °C, 3MPa and under pressure porosity 30 °C, 3MPa heat shrinkage, and tensile breaking strength and MD / TD tensile breaking strength ratio are adjusted within the numerical range explained above.
- the biaxial stretching temperature is preferably 122 ° C. or higher and 147 ° C. or lower, more preferably 123 ° C. or higher and 146 ° C. or lower, further preferably 124 ° C. or higher and 145 ° C. or lower, and 127 ° C. or higher. It is particularly preferable that the temperature is 140 ° C. or lower.
- the gel-like sheet PC used in the step (B) is 22% to 30% from the viewpoint of increasing the amount of heat applied per unit resin, making the stretching stress uniform, and increasing the distribution of the permeability of the obtained film. %, Or preferably 25% to 32%.
- step (B) the puncture strength of the obtained microporous membrane, the basis weight conversion puncture strength, the difference R between the maximum and minimum values of the air permeability at three TD points, the air permeability and porosity (before compression), and pressurization.
- Heating amount coefficient per unit resin (biaxial stretching temperature-115 ° C) ⁇ PC ⁇ ⁇ ⁇ (I)
- the value represented by is preferably 0.26 ° C./% or more. This value is 0.26 ° C /% or more and 1.2 ° C /% or less from the viewpoint of increasing the amount of heat applied per unit resin, making the stretching stress uniform, and increasing the distribution of the permeability of the obtained film.
- the temperature is 40 ° C./% or more and 0.95 ° C./% or less.
- the amount of heat required for uniforming the stretching stress is larger, so the value calculated by the above formula is used. It shall be excluded from.
- the pore-forming material is removed from the sheet-shaped molded product to obtain a porous film.
- the method for removing the pore-forming material include a method in which a sheet-shaped molded product is immersed in an extraction solvent to extract the pore-forming material and sufficiently dried.
- the method for extracting the pore-forming material may be either a batch method or a continuous method.
- the residual amount of the pore-forming material in the porous membrane is preferably less than 1% by mass with respect to the total mass of the porous membrane.
- the extraction solvent used when extracting the pore-forming material a solvent that is poor with respect to the polyolefin resin, is a good solvent with respect to the pore-forming material, and has a boiling point lower than the melting point of the polyolefin resin may be used.
- examples of such an extraction solvent include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorine type such as hydrofluoroether and hydrofluorocarbon.
- Hydrocarbon solvents such as ethanol and isopropanol
- ethers such as diethyl ether and tetrahydrofuran
- ketones such as acetone and methyl ethyl ketone
- an aqueous solution of sodium hydroxide, potassium hydroxide or the like can be used as the extraction solvent.
- Heat fixing step (D) In the heat fixing step (D), in order to suppress the shrinkage of the polyolefin microporous film, after extracting the plasticizer in the step (C), the microporous film is heat-treated for the purpose of heat fixing (HS).
- the heat treatment of the porous membrane includes a stretching operation performed at a predetermined temperature atmosphere and a predetermined stretching ratio for the purpose of adjusting physical properties, and / or a predetermined temperature atmosphere and a predetermined relaxation for the purpose of reducing stretching stress.
- the relaxation operation is a film reduction operation after the stretching operation.
- step (D) preheating is performed immediately before stretching the microporous membrane from the viewpoint of adjusting the post-compressed porosity, crystal length cycle, or crystallite size of the obtained microporous membrane within the numerical ranges described above. It is preferable to do it.
- the preheating in the step (D) can be controlled by, for example, the preheating temperature or the like.
- the TD stretching operation in the step (D) is performed so that the TD stretching temperature is preferably 130 ° C. or higher and 150 ° C. or lower, more preferably 132 ° C. or higher and 145 ° C. or lower, and further preferably 133 ° C. or higher and 140 ° C. or lower.
- the TD heat shrinkage at the temperature of 120 ° C. of the obtained film can be reduced, and the safety in the nail piercing test of the non-aqueous secondary battery can be improved.
- the TD stretching operation in the step (D) is performed so that the TD stretching ratio of the film is preferably 1.1 times or more, more preferably 1.4 times or more, still more preferably 1.5 times or more. Further, the TD stretch ratio in the step (D) is preferably 3 times or less, more preferably 2.5 times or less.
- the stretch orientation can increase the strength of the film, and the porosity can be controlled to optimize the balance between compressibility and permeability. Therefore, the stress inside the film can be relaxed to suppress heat shrinkage, specifically, the TD heat shrinkage at a temperature of 120 ° C. can be reduced, and the safety in the nail piercing test can be improved.
- the heat-fixing ratio in step (D), that is, the post-relaxation ratio, is from the viewpoint of crystallizing polyethylene, which is the main component of the microporous film, to form a stem with high rigidity, and the obtained microporous film (before compression).
- () Average film thickness, puncture strength and conversion puncture strength, difference R between maximum and minimum values of air permeability at 3 points of TD, air permeability and porosity (before compression), air permeability under pressure 30 °C, 3MPa and under pressure Porosity 30 °C, 3MPa , heat shrinkage, and tensile breaking strength and MD / TD tensile breaking strength ratio are adjusted within the numerical range explained above, 1.4.
- the stretch orientation increases the strength of the film, and the porosity can be controlled to optimize the balance between compressibility and permeability.
- the stress inside the film is relaxed and the TD heat at a temperature of 120 ° C. Shrinkage can be reduced to improve safety in nail piercing tests of non-aqueous secondary batteries.
- the heat fixing temperature that is, the relaxation temperature in the step (D) is the average film thickness (before compression) of the obtained microporous membrane, the air permeability under pressure of 30 ° C, 3 MPa , and the pore ratio under pressure of 30 ° C. , 3MPa is adjusted within the numerical range explained above to reduce the TD thermal shrinkage of the obtained microporous membrane at a temperature of 120 ° C. and improve the safety in the nail piercing test of non-aqueous secondary batteries. From the viewpoint, it is preferably 130 ° C. or higher and 150 ° C. or lower, more preferably 132 ° C. or higher and 145 ° C. or lower, further preferably 133 ° C. or higher and 140 ° C. or lower, and particularly preferably 135 ° C. or higher and 140 ° C. or lower. ..
- the microporous polyolefin membrane according to Embodiments 1 to 4 can be obtained by the production method including the steps (A) to (D).
- the total draw ratio of the finally obtained polyolefin microporous membrane is preferably 60 times or more in order to crystallize polyethylene, which is the main component of the microporous membrane, to form a stem with high rigidity. It is more preferable that the value is fold or more and 81 times or less.
- the PC of the resin composition, the gel-like sheet or the porous film increases the amount of heat applied per unit resin, makes the stretching stress uniform, and finally obtains the permeability of the film. From the viewpoint of enhancing the distribution of the above, it is preferably 22% to 30%, or 25% to 32%.
- the method for producing a multilayer porous membrane according to one aspect of the present invention is not particularly limited, but as an example, a multifunctional layer, an inorganic porous layer, and a thermoplastic resin layer are formed on at least one surface of the polyolefin microporous membrane produced above. It can include the step of arranging at least one layer selected from the group consisting of.
- the method of arranging the multifunctional layer, the inorganic porous layer or the thermoplastic resin layer is not particularly limited, and for example, a coating liquid containing the constituent components of any of these layers is applied to one or both sides of the polyolefin microporous film.
- a method of coating on a layer formed on a microporous polyolefin membrane can be mentioned.
- the thickness of the coating layer is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 7 ⁇ m, and even more preferably 0.3 to 4 ⁇ m.
- the number of coating layers is preferably 0 to 5, and more preferably 0 to 3. By properly controlling the thickness of the coating layer, the battery capacity can be increased.
- Inorganic coating has the effect of suppressing the shrinkage of the base material and enhancing the safety of the battery
- organic coating has the effect of enhancing the adhesion to the electrode and enhancing the workability.
- the coating method is not particularly limited as long as it can realize a desired coating pattern, coating film thickness, and coating area.
- a gravure coater method for example, a gravure coater method, a small diameter gravure coater method, a reverse roll coater method, and a transfer.
- Roll coater method kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, cast coater method, die coater method, screen printing method, spray coating method, inkjet coating.
- the law etc. can be mentioned.
- the medium of the coating liquid water or a mixed solvent of water and a water-soluble organic medium is preferable.
- the water-soluble organic medium is not particularly limited, and examples thereof include ethanol, methanol, and the like.
- a surface treatment to the polyolefin microporous film prior to coating because the coating liquid can be easily applied and the adhesiveness between the polyolefin microporous film and the coating layer is improved.
- the surface treatment method include a corona discharge treatment method, a plasma treatment method, a mechanical roughening method, a solvent treatment method, an acid treatment method, and an ultraviolet oxidation method.
- the solvent may be removed from the coating film by drying at a temperature below the melting point of the microporous polyolefin membrane, drying under reduced pressure, solvent extraction, or the like.
- a microporous polyolefin membrane and at least one layer selected from the group consisting of a multifunctional layer, an inorganic porous layer, and a thermoplastic resin layer are separately manufactured and affixed, laminated, bonded, etc.
- the two may be integrated by fusion or the like.
- microporous polyolefin membranes according to the first to fourth embodiments can be used, for example, in a non-aqueous secondary battery or the like, specifically as a separator for a non-aqueous secondary battery.
- non-aqueous secondary battery include a lithium ion secondary battery and the like.
- the polyolefin microporous film according to the first to fourth embodiments into a lithium ion secondary battery, not only the thermal runaway of the lithium ion secondary battery is suppressed, but also a shrinkable electrode, a high capacity electrode, or Si Even when the contained negative electrode is provided, battery characteristics such as high output characteristics and high cycle characteristics can be compatible with safety.
- a calibration curve was prepared by measuring standard polystyrene under the following conditions using ALC / GPC 150C type TM manufactured by Waters. Chromatograms were measured for each of the following polymers under the same conditions, and the weight average molecular weight of each polymer was calculated by the following method based on the calibration curve.
- MI Melt Flow Index
- DSC measurement differential scanning calorimetry
- the DSC was measured using a DSC60 manufactured by Shimadzu Corporation.
- a PO microporous membrane was punched into a circle with a diameter of 5 mm, and several sheets were stacked to make 3 mg, which was used as a measurement sample.
- This sample was laid on an aluminum open sample pan having a diameter of 5 mm, a clamping cover was placed on the sample, and the sample was fixed in the aluminum pan by a sample sealer.
- the temperature is raised from 30 ° C to 200 ° C at a temperature rise rate of 10 ° C / min (first temperature rise), held at 200 ° C for 5 minutes, and then from 200 ° C to 30 ° C at a temperature drop rate of 10 ° C / min. The temperature has dropped. Subsequently, after holding at 30 ° C. for 5 minutes, the temperature was raised again from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min (second temperature increase). In the melting endothermic curve of the second temperature rise, the maximum temperature was taken as the melting point of the PO microporous membrane. When there were a plurality of maximum values, the 1st peak and the largest peak were detected. The temperature at which the maximum value of the maximum melt endothermic curve is reached can be adopted as the melting point (Tm) of the PO microporous membrane.
- Tm melting point
- the basis weight is the weight (g) of the polyolefin microporous membrane per unit area (1 m 2 ). After sampling to 1 m ⁇ 1 m, the weight was measured with an electronic balance (AUW120D) manufactured by Shimadzu Corporation. When sampling to 1 m ⁇ 1 m was not possible, the sample was cut into an appropriate area, the weight was measured, and then the weight was converted into the weight (g) per unit area (1 m 2 ).
- AUW120D electronic balance
- the porosity (before compression) of the multilayer porous membrane is calculated by the following formula.
- Porosity of the multilayer porous membrane (Porosity of the polyolefin resin microporous membrane as the base material) x (Average thickness of the polyolefin resin microporous membrane as the base material) ⁇ (Thickness of the entire multilayer porous membrane) + (Coating Porosity of the layer) x (thickness of the coated layer) ⁇ (thickness of the entire multilayer porous film)
- the porosity of the multilayer porous film was calculated assuming that the porosity of the coating layer was 50%.
- the porosity of the coating layer can be calculated in the same manner as the porosity of the polyolefin microporous film, if necessary, in the same manner as in the above formula.
- the thickness of the coating layer is measured by direct observation with SEM or the change in film thickness before and after coating, and the volume of the coating layer sample having a specific area is obtained.
- the porosity of the coating layer is calculated using the mass average density of the coating components calculated from the material ratio of the constituent components of the coating layer.
- Air permeability (before compression) version 1 (seconds / 100 cm 3 ) The air permeability was measured with the Oken type air permeability measuring machine "EGO2" of Asahi Seiko Co., Ltd.
- the measured value of the air permeability is a value obtained by measuring the air permeability at a total of three points, 5 cm from both ends and one point in the center along the width direction of the membrane, and calculating the average value thereof.
- Air permeability version 2 (seconds / 100 cm 3 ) (before compression)
- the air permeability was measured with the Oken type air permeability measuring machine "EGO2" of Asahi Seiko Co., Ltd.
- the air permeability is measured by measuring the air permeability at two points 10% inside the entire width from both ends to the center along the width direction (TD) of the membrane, and one point at the center, for a total of three points. It is a value calculated by the average value of them.
- compression press test A rubber cushioning material having a thickness of 0.8 mm, a PET film having a thickness of 0.1 mm, two microporous membranes, the PET film, and the cushioning material were laminated in this order, and the obtained laminate was allowed to stand.
- a compression test was performed by applying pressure to the cushioning material surface on one side of the laminate.
- the microporous membrane used was 5 ⁇ 5 cm square, and the average film thickness (9-point average), basis weight, and air permeability (according to the measurement method of version 2) were measured before use in the press test.
- the porosity before the compression press test was calculated from the basis weight and the average film thickness.
- the compression test was performed using a press at a pressure of 2.5 MPa, 5 MPa, 7.5 MPa, and 10 MPa under the conditions of a temperature of 30 ° C. and a compression time of 3 minutes. Further, 1 hour after unloading, the microporous membrane was removed from the laminate, and the average film thickness after compression (9-point average) and the air permeability after compression were measured. In addition, the porosity after compression was calculated from the basis weight and the average film thickness after compression. Finally, from the four measurement points compressed by the above four types of pressure, an approximate curve as shown in FIG. 1 was created with respect to the porosity after compression and the air permeability after compression by using a power approximation.
- TMA Thermo Mechanical Analysis
- SS6100 manufactured by Hitachi High-Tech
- 16 microporous membranes whose porosity is calculated by measuring the basis weight and film thickness are prepared in a 1 ⁇ 1 cm square and stacked in the thickness direction to form a laminated body. This is set on the sample table, and 0.06 MPa is applied as the initial load. After 1 minute, a load is applied in the thickness direction at a rate of 6 MPa / min, and when the load reaches 3 MPa, the load of 3 MPa is maintained for 3 minutes. The film thickness after 3 minutes is defined as the film thickness under pressure of 3 MPa (in situ).
- a microporous membrane was fixed with a sample holder having an opening diameter of 11.3 mm using a handy compression tester KES-G5 TM manufactured by Kato Tech. Next, the central portion of the fixed microporous membrane was subjected to a puncture test at a radius of curvature of 0.5 mm at the tip of the needle, a puncture speed of 2 mm / sec, an atmosphere of room temperature of 23 ° C. and a humidity of 40%, and a maximum puncture was performed.
- the puncture strength (gf) was measured as a load.
- the measured value of the puncture test is a value obtained by measuring a total of 3 points, 2 points inside 10% of the total width from both ends toward the center and 1 point in the center, along the TD of the membrane, and calculating the average value thereof. Is.
- the basis weight conversion puncture strength is calculated by the following formula.
- the polyolefin microporous is from the viewpoint of evaluating the strength of the resin and the strength per basis weight. The characteristics were evaluated based on the puncture strength of the film substrate and the puncture strength in terms of basis weight.
- Ni foils (A, B) were pasted together, and both sides were pressed with clips with two glass plates.
- the Ni foil electrode thus produced was placed in an oven at 25 ° C. and heated to 200 ° C. at 2 ° C./min.
- the impedance change at this time was measured under the condition of 1 V and 1 kHz using an electric resistance measuring device "AG-4311" (manufactured by Ando Electric Co., Ltd.).
- the temperature at which the impedance value reached 1000 ⁇ in this measurement was defined as the Fuse (shutdown) temperature (° C.).
- a total of 25 points of MD5 points x TD5 points were measured at 15 mm intervals, and the average value was taken as the withstand voltage measurement value.
- the ratio of the basis weight to the withstand voltage was calculated.
- the crystallite size was calculated by Scherrer's equation (Equation 1) from the full width at half maximum of the (110) plane diffraction peak calculated by peak separation.
- D (110) K ⁇ / ( ⁇ cos ⁇ ) Equation 1 ⁇ In the formula, D (110): crystallite size (nm) K: 0.9 (constant) ⁇ : X-ray wavelength (nm) ⁇ : ( ⁇ 1 2 - ⁇ 2 2 ) 0.5 ⁇ 1 : Half width at half maximum (rad) of the peak calculated as a result of peak separation (hkl) ⁇ 2 : Full width at half maximum (rad) of the spread of the incident beam ⁇ : Bragg angle ⁇
- a fluororubber having a thickness of 1 mm was attached to the inside of the chuck of the tensile tester. The measurement was performed under the conditions of a temperature of 23 ⁇ 2 ° C., a chuck pressure of 0.40 MPa, and a tensile speed of 100 mm / min.
- the tensile breaking strength (MPa) was determined by dividing the breaking strength of the microporous polyolefin membrane by the cross-sectional area of the sample before the test.
- the elongation at break of the microporous polyolefin membrane was defined as the tensile elongation at break (%).
- the tensile breaking strength was obtained for each of MD and TD, and the ratio of MD tensile breaking strength to TD tensile breaking strength (MD / TD tensile breaking strength ratio) was also calculated.
- the tensile elongation at break was obtained for each of MD and TD, and the ratio of the MD tensile elongation at break and the TD tensile elongation at break (MD / TD tensile elongation at break) was also calculated.
- the sample was set so that the distance between the chucks was 50 mm, and the sample was stretched at a tensile speed of 200 mm / min until the distance between the chucks reached 60 mm, that is, the strain reached 20.0%.
- the tensile modulus (MPa) was determined from the slope of the strain 1.0% to 4.0% in the obtained stress-strain curve.
- the tensile modulus was obtained for each of MD and TD, and the ratio of MD tensile modulus to TD tensile modulus (MD / TD tensile modulus ratio) was also calculated.
- a slurry was prepared by dispersing lithium cobalt composite oxide LiCoO 2 as a positive electrode active material and graphite and acetylene black as conductive materials in polyvinylidene fluoride (PVDF) and N-methylpyrrolidone (NMP), which are binders. .. This slurry was applied to an aluminum foil having a thickness of 15 ⁇ m as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression-molded with a roll press machine. The obtained molded product was slit to a width of 57.0 mm to obtain a positive electrode.
- PVDF polyvinylidene fluoride
- NMP N-methylpyrrolidone
- Negative Electrode A slurry was prepared by dispersing artificial graphite as a negative electrode active material, an ammonium salt of carboxymethyl cellulose as a binder, and a styrene-butadiene copolymer latex in purified water. This slurry was applied to a copper foil as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded with a roll press machine. The obtained molded product was slit to a width of 58.5 mm to obtain a negative electrode.
- a wound electrode body was prepared by a conventional method and pressed by a press machine so as to be contained in an outer can. The number of turns was adjusted according to the thickness of the microporous polyolefin membrane and the degree of springback. The outermost peripheral end of the obtained wound electrode body was fixed by attaching an insulating tape.
- the negative electrode lead was welded to the battery can and the positive electrode lead was welded to the safety valve, and the wound electrode body was inserted into the battery can.
- a non-aqueous electrolyte solution is injected into the battery can, and the lid is crimped to the battery can via a gasket to obtain a square secondary having a width of 42.0 mm, a height of 63.0 mm, and a thickness of 10.5 mm.
- This square secondary battery is charged to a battery voltage of 4.2 V at a current value of 0.2 C (current 0.2 times the 1-hour rate (1 C) of the rated electric capacity) under an atmosphere of 25 ° C. Charging was carried out for a total of 3 hours by a method of starting to throttle the current value so as to hold 4.2 V. Subsequently, the battery was discharged to a battery voltage of 3.0 V at a current value of 0.2 C.
- Capacity retention rate was evaluated according to the following criteria.
- Rate characteristic test (charging / discharging at 30 ° C and 3 MPa pressurization) The above d.
- the square secondary battery assembled in the same manner as above and selected for evaluation is charged with a constant current of 1C in an environment of 30 ° C. and 3MPa pressurization, reaches 4.2V, and then 4.2V. It was charged at the constant voltage of 3 for a total of 3 hours.
- the 1C discharge capacity and the 5C discharge capacity of the charged battery up to a discharge end voltage of 3V were measured in a constant temperature state at an atmosphere of 30 ° C., and the ratio of the 5C capacity / 1C capacity was used as the output characteristic value.
- the rate characteristics were evaluated according to the following criteria.
- C The output characteristic value is 70% or more and less than 80%.
- Capacity maintenance rate (%) is 90% or more.
- B Capacity retention rate (%) is 80% or more and less than 90%.
- C Capacity retention rate (%) is 70% or more and less than 80%.
- D Capacity retention rate (%) is more than 50% and less than 70%.
- E Capacity maintenance rate (%) is 50% or less.
- Nail stick safety test d The batteries assembled in the same manner as above and selected for evaluation were placed on an iron plate in an explosion-proof booth where the temperature could be controlled. An iron nail with a diameter of 3.0 mm was prepared, and a thermocouple was installed inside the nail. An iron nail was pierced through the center of the battery at a speed of 2 mm / sec in an environment of 30 ° C. and 3 MPa pressurization in the explosion-proof booth, and the nail was maintained in a pierced state. From the start of nail piercing to after the nail penetrated, the battery was observed and the safety was evaluated according to the following criteria. A: None happens. B: It emits smoke. C: Cell swelling / deformation is observed. D: Ignite. E: It explodes.
- Example 1 As shown in Table 1, the ratio of polyethylene (PE) having an Mv of 700,000 or more was adjusted to obtain a raw material resin composition.
- the Mv of the raw material resin composition was 900,000.
- a polyolefin composition was obtained by blending a raw material resin composition, liquid paraffin, and 0.1% by mass of an antioxidant so as to have the resin content (PC) shown in Table 1.
- the polyolefin composition was put into a twin-screw extruder, and the melted polyolefin composition was extruded to form a gel-like sheet, which was then cooled and solidified by a cast roll.
- Examples 2 to 23 and Comparative Examples 1 to 7 A microporous polyolefin membrane was obtained and evaluated in the same manner as in Example 1 except that the resin raw materials and production conditions shown in Tables 1 and 2 were used. The evaluation results are shown in Tables 3 and 4 below.
- a microporous polyolefin membrane was prepared by the following procedure.
- a raw material composition was obtained by blending with 3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate) methane. Next, the obtained composition was charged into a twin-screw extruder via a feeder.
- liquid paraffin (kinematic viscosity at 37.78 ° C. 75.90 cSt) is used as the pore-forming material, and the total of the resin raw material + liquid paraffin is 100 parts by mass.
- PC kinematic viscosity at 37.78 ° C. 75.90 cSt
- (B) Immediately after extrusion, the sheet was cooled and solidified with a cast roll cooled to 30 ° C. to form a sheet having a thickness of 1.530 mm.
- This sheet was stretched 7 ⁇ 6.4 times with a simultaneous biaxial stretching machine so that the strain rate of MD was 35% / sec and the strain rate of TD was 30% / sec under the condition of 128 ° C.
- C After stretching, it was immersed in methylene chloride to extract and remove liquid paraffin.
- D After that, the sheet was dried and stretched 1.85 times in the width direction (TD) by a tenter stretching machine. Then, the stretched sheet is heat-treated to relax in the width direction (TD) at a strain rate of -4.2% / sec so that the magnification after relaxation is 1.75 times under the condition of 131 ° C., and the polyolefin microporous film is subjected to.
- Got (E) The obtained microporous polyolefin membrane was evaluated according to the above method, and a battery provided with the microporous polyolefin membrane was also evaluated. The evaluation results are shown in Table 7.
- Examples 25 to 45 and Comparative Examples 8 to 21 A microporous polyolefin film and a coated film thereof were obtained and evaluated in the same manner as in Example 24 except that the resin raw materials shown in Tables 5 and 6 and the production conditions and coating conditions were used. The evaluation results are shown in Tables 7 and 8.
- Example 42-45 the following step (F) was further performed on the obtained polyolefin microporous membrane.
- the first layer, the second layer, and the third layer were each coated on the microporous polyolefin membrane so as to have the coating thickness shown in Table 5.
- Examples 42-45 boehmite was used as the inorganic filler for the inorganic coating, acrylic latex and sodium carboxymethyl cellulose were used as the binder, acrylic latex was used for the organic coating, and the inorganic filler was used for the organic-inorganic mixed coating. Alumina was used as the binder and PVdF was used as the binder.
- the coating liquid is applied to the surface of the base material treated with corona discharge using a gravure coater, the coating liquid is dried, and the separator of Examples 42-45 having a coating layer is provided. Got The evaluation results of Examples 42-45 are shown in Table 7.
- Comparative Example 16 a polyolefin microporous film was obtained and evaluated under the production conditions of Comparative Example 16 shown in Table 6 with reference to Example 1 of JP-A-2018-162438.
- Comparative Example 17 a polyolefin microporous film was obtained and evaluated under the production conditions of Comparative Example 17 shown in Table 6 with reference to Example 5 of JP-A-2020-164861.
- Comparative Example 18 a polyolefin microporous film was obtained and evaluated under the production conditions of Comparative Example 18 shown in Table 6 with reference to Example 10 of JP-A-2020-164861.
- Comparative Example 19 a polyolefin microporous film was obtained and evaluated under the production conditions of Comparative Example 19 shown in Table 6 with reference to Example 1 of JP-A-2002-888188.
- Comparative Example 20 a polyolefin microporous membrane was obtained and evaluated under the production conditions of Comparative Example 20 shown in Table 6 with reference to Example 7 of International Publication No. 2008/093572.
- Comparative Example 21 the polyolefin microporous membrane was formed by a dry porous method under the production conditions of Comparative Example 21 shown in Table 6 with reference to Example 1 of Japanese Patent Application Laid-Open No. 2017-25294 (Patent Document 8). Obtained and evaluated.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Cell Separators (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
(1) 膜厚が1μm~30μmであり、透気度が500sec/100cm3以下であり、かつ温度70℃、圧力8MPa、及び圧縮時間3分間の条件下で圧縮試験において測定される圧縮後気孔率が、30%以上であるポリオレフィン微多孔膜。
(2) 主成分としてポリエチレンを含むポリオレフィン微多孔膜であって、前記ポリオレフィン微多孔膜の小角X線散乱(SAXS)法により測定される結晶長周期が、37.0nm以上であるポリオレフィン微多孔膜。
(3) 主成分としてポリエチレンを含み、前記ポリエチレンの結晶子サイズが、28.0nm以下である、項目1又は2に記載のポリオレフィン微多孔膜。
(4) 前記ポリオレフィン微多孔膜の気孔率が、35%以上である、項目1~3のいずれか1項に記載のポリオレフィン微多孔膜。
(5) 目付換算突刺強度が、50gf/(g/m2)以上であり、
幅方向(TD)に沿って、両端から中央に向かって全幅の10%内側の地点2点と中央1点との計3点で測定された透気度の最大値と最小値の差が、15sec/100cm3以下であり、かつ
30℃及び3MPa加圧状態下での透気度が、140sec/100cm3以下である、ポリオレフィン微多孔膜。
(6) 前記ポリオレフィン微多孔膜の30℃及び3MPa加圧状態下での気孔率が、40%以上である、項目1~5のいずれか1項に記載のポリオレフィン微多孔膜。
(7) 前記ポリオレフィン微多孔膜の突刺強度が、220gf以上である、項目1~6のいずれか1項に記載のポリオレフィン微多孔膜。
(8) 前記ポリオレフィン微多孔膜は、GPCにより測定される重量平均分子量(Mw)が1,000,000以上のポリエチレン成分がGPCにより測定される溶出成分全体の7%以上である、項目1~7のいずれか1項に記載のポリオレフィン微多孔膜。
(9) 前記ポリオレフィン微多孔膜のメルトフローインデックス(MI)が、1.0以下である、項目1~8のいずれか1項に記載のポリオレフィン微多孔膜。
(10) 前記ポリオレフィン微多孔膜の120℃でのTD熱収縮率が、20%以下である、項目1~9のいずれか1項に記載のポリオレフィン微多孔膜。
(11) 前記ポリオレフィン微多孔膜の長手方向(MD)の引張強度と幅方向(TD)の引張強度の比(MD/TD引張強度比)が、0.5~2.0である、項目1~10のいずれか1項に記載のポリオレフィン微多孔膜。
(12) 項目1~11のいずれか1項に記載のポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも片面に配置される無機多孔層と、
を有するセパレータ。
(13) 項目1~11のいずれか1項に記載のポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも片面に配置される熱可塑性樹脂層と、
を有するセパレータ。
(14) 項目1~11のいずれか1項に記載のポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも片面に配置される、多機能層、無機多孔層および熱可塑性樹脂層から成る群から選択される少なくとも一層と、
を有するセパレータ。
(15) 項目1~11のいずれか1項に記載のポリオレフィン微多孔膜、又は項目12~14のいずれか1項に記載のセパレータを含む非水系二次電池。
本発明の一態様は、ポリオレフィン微多孔膜である。ポリオレフィン微多孔膜は、主成分としてポリオレフィン樹脂を含み、優れた電気絶縁性及びイオン透過性を示すことができるため、例えば非水系二次電池等において、具体的には非水系二次電池用セパレータとして、使用されることができる。
実施形態1に係るポリオレフィン微多孔膜は、次の特徴を有する:
膜厚が1μm~30μmである;
透気度が500sec/100cm3以下である;及び
温度70℃、圧力8MPa、及び圧縮時間3分間の条件下で圧縮試験において測定される圧縮後気孔率が、30%以上である。
実施形態2に係るポリオレフィン微多孔膜は、次の特徴を有する:
主成分としてポリエチレンを含む;及び
ポリオレフィン微多孔膜の小角X線散乱(SAXS)法により測定される結晶長周期が、37.0nm以上である。
実施形態3に係るポリオレフィン微多孔膜は、次の特徴を有する:
目付換算突刺強度が、50gf/(g/m2)以上である;
TDに沿って、両端から中央に向かって全幅の10%内側の地点2点と中央1点との計3点で測定された透気度の最大値と最小値の差(以下、差Rという)が、15sec/100cm3以下である;及び
30℃及び3MPa加圧状態下での透気度が、140sec/100cm3以下である。
50gf/(g/m2)以上の目付換算突刺強度は、樹脂目付当たりの膜強度が高く、かつ圧縮応力に対して潰れ難い膜構造を表し、例えば釘刺試験又は加圧試験時に、セパレータとして使用されるポリオレフィン微多孔膜が、高気孔率で低透気度であっても破膜し辛くなり、電池の安全性を向上させる傾向にある。目付換算突刺強度は、実施例に記載の方法により測定され、膜のTDに沿って、両端から中央に向かって全幅の10%内側の地点2点と中央1点との計3点で目付に換算されてない突刺強度(以下、単に突刺強度という)を測定し、それらの平均値を目付で除することにより得られる。実施形態3に係る突刺強度の制御による利点は、非水系二次電池のセル内で膨張収縮し易い電極を用いた場合に、顕著であり、車載用電池等に使用される高容量電極、又はケイ素(Si)含有負極を用いる場合に、より顕著である。このような観点から、ポリオレフィン微多孔膜の目付換算突刺強度は、50gf/(g/m2)~150gf/(g/m2)であることが好ましく、55gf/(g/m2)~130gf/(g/m2)であることがより好ましく、70gf/(g/m2)~120gf/(g/m2)であることが更に好ましい。
ポリオレフィン微多孔膜のTDに沿って上記のとおり3点で測定される透気度の最大値と最小値の差Rが、実施例に記載の方法により測定され、ポリオレフィン微多孔膜の圧縮試験前の透気度分布を表す。ポリオレフィン微多孔膜の全幅Wは、透気度の測定精度の観点から、好ましくは50mm以上、より好ましくは100mm以上、より更に好ましくは300mm以上である。全幅Wの上限値は、特に限定されず、例えば製膜デバイス、製膜プロセス、マザーロール寸法、スリットロール寸法、塗工プロセス等に応じて決定されることができ、例えば5000mm以下、または4000mm以下でよい。
実施形態3において、特定の条件下でポリオレフィン微多孔膜を圧縮試験に供することによって、非水系二次電池の電池特性と安全性を両立することができるポリオレフィン微多孔膜の特性が見出される。圧縮試験は、実施例において詳述されるが、室温で、好ましくは30℃で、圧縮プレス試験と圧縮TMA試験を概ね以下のように組み合わせて行われる:
<圧縮プレス試験>
(i)微多孔膜又はセパレータを平板プレス機で加圧して厚み方向に圧縮した後に除荷し、試験前後での微多孔膜又はセパレータの透気度変化および厚み変化から気孔率変化を測定する。
(ii)また、微多孔膜又はセパレータを、実施例において後述される方法で4種の異なる圧力条件(例えば、2.5MPa、5MPa、7.5MPa、及び10MPaの圧力)で測定し、4点の測定結果から、除荷後の微多孔膜又はセパレータの気孔率と透気度の関係式を得る。
<圧縮TMA試験>
プローブを用いて特定の荷重で微多孔膜又はセパレータを厚み方向に圧縮し、3MPa加圧状態下(in situ)での膜厚を測定する。
実施形態4では、実施形態1~実施形態3に係る構成を組み合わせたポリオレフィン微多孔膜が提供される。
ポリオレフィン微多孔膜としては、例えば、ポリオレフィン樹脂を含む多孔膜;ポリオレフィン樹脂に加えて、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂も含む多孔膜;ポリオレフィン系の繊維を織ったもの(織布);ポリオレフィン系の繊維の不織布などが挙げられる。これらの中でも、膜の電気抵抗の低下又は上昇抑制、膜の耐圧縮性及び構造均一性などの観点から、ポリオレフィン樹脂を含む微多孔膜(以下、ポリオレフィン樹脂多孔膜)が好ましく、主成分としてポリエチレンを含む微多孔膜がより好ましい。
ポリオレフィン微多孔膜は、非常に小さな孔が多数集まって緻密な連通孔を形成した多孔構造を有しているため、電解液を含んだ状態においてイオン透過性に非常に優れると同時に高強度であるという特徴を有する。
本発明の一態様では、上記で説明されたポリオレフィン微多孔膜と、その少なくとも片面に配置される少なくとも1つの層とを有する多層多孔膜も提供される。多層多孔膜は、少なくとも1つの層の性質に応じて、ポリオレフィン微多孔膜に単数又は複数の機能を付与することができ、非水系二次電池用セパレータとして使用されることもできる。
層構成1:ポリオレフィン微多孔膜と、ポリオレフィン微多孔膜の少なくとも片面に配置される無機多孔層とを含む;
層構成2:ポリオレフィン微多孔膜と、ポリオレフィン微多孔膜の少なくとも片面に配置される熱可塑性樹脂層とを含む;及び
層構成3:ポリオレフィン微多孔膜と、ポリオレフィン微多孔膜の少なくとも片面に配置される、多機能層、無機多孔層および熱可塑性樹脂層から成る群から選択される少なくとも一層とを含む。
無機多孔層は、無機粒子及びバインダ高分子を含む。無機多孔層を含む多層多孔膜は、無機多孔層の孔構造を有するため、イオン透過性を維持しながら、薄膜でも熱収縮抑制能に優れたものとなる。
1)ポリオレフィン:例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンラバー、及びこれらの変性体;
2)共役ジエン系重合体:例えば、スチレン-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体及びその水素化物;
3)アクリル系重合体:例えば、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体;
4)ポリビニルアルコール系樹脂:例えば、ポリビニルアルコール、ポリ酢酸ビニル;
5)含フッ素樹脂:例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体;
6)セルロース誘導体:例えば、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース;
7)融点及び/又はガラス転移温度が180℃以上の樹脂あるいは融点を有しないが分解温度が200℃以上のポリマー:例えば、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル。
熱可塑性樹脂層は、熱可塑性樹脂を主成分として含む層であり、所望により他の成分を含んでよい。高接着性の観点から、熱可塑性樹脂層とポリオレフィン微多孔膜が直接接触していることが好ましい。
多機能層は、ポリオレフィン微多孔膜又はセパレータに多数の機能を付与する層であり、例えば、上記の無機多孔層と熱可塑性樹脂層の両方の機能を有することができる。より詳細には、多機能層は、上記で説明された、バインダ高分子又は熱可塑性樹脂と、無機粒子とを含み、所望により分散剤などの追加の成分を含んでよい。多機能層の厚みは、限定されるものではないが、ポリオレフィン微多孔膜に付与する機能、及び塗工条件に応じて決定されることができる。
本発明に係るポリオレフィン微多孔膜の製造方法は、特に限定されないが、一例として以下の工程を含む方法が挙げられる:
(A)ポリオレフィン樹脂及び孔形成材を含むポリオレフィン組成物を押し出して、ゲル状シートを形成する工程;
(B)ゲル状シートを二軸延伸して、延伸シートを形成する工程;
(C)延伸シートから孔形成材を抽出して、多孔膜を形成する工程;並びに
(D)多孔膜を熱固定する工程。
ポリオレフィン微多孔膜の製造工程及び好ましい実施形態について以下に説明する。
工程(A)では、ポリオレフィン組成物を押し出して、ゲル状シートを形成する。ポリオレフィン組成物は、ポリオレフィン樹脂、孔形成剤等を含んでよい。ポリオレフィン組成物に含まれる樹脂は、微粒子等の非樹脂成分、又は融点の大きく異なる高耐熱性樹脂を含まずに、ポリオレフィンのみから成ることが、延伸応力の均一化、及び得られる膜の透気度と透気度分布を良好にする観点から好ましい。ゲル状シートは、ポリオレフィン樹脂と孔形成材とを溶融混練してシート状に成形することにより得ることができる。
工程(B)では、工程(A)で得られたゲル状シートを延伸する。工程(B)は、シートから孔形成材を抽出する工程(C)の前に行う。工程(B)では、ゲル状シートの延伸処理は、ポリオレフィン微多孔膜の曲げ剛性をコントロールする観点から、長手方向と幅方向に少なくとも1回ずつ(すなわち、二軸延伸により)行われる。
単位樹脂当たりの加熱量係数=(二軸延伸温度-115℃)÷ PC ・・・(I)
により表される値が、0.26℃/%以上であることが好ましい。この値は、単位樹脂当たりに掛ける熱量を多くし、延伸応力を均一にして、得られる膜の透過性の分布を高めるという観点から、0.26℃/%以上1.2℃/%以下であることがより好ましく、0.34℃/%以上1.0℃/%以下であることが更に好ましく、0.37℃/%0.98℃/%以下であることがより更に好ましく、0.40℃/%以上0.95℃/%以下であることが特に好ましい。但し、液体の非存在下で膜の製造と多孔化を行なう乾式法の場合は、可塑化されていないため、延伸応力の均一化に必要な熱量がより多いので、上記式で計算される値から除かれるものとする。
工程(C)では、シート状成形体から孔形成材を除去して多孔膜を得る。孔形成材を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して孔形成材を抽出し、充分に乾燥させる方法が挙げられる。孔形成材を抽出する方法は、バッチ式と連続式のいずれであってもよい。多孔膜の収縮を抑えるために、浸漬及び乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、多孔膜中の孔形成材残存量は、多孔膜全体の質量に対して1質量%未満であることが好ましい。
熱固定工程(D)では、ポリオレフィン微多孔膜の収縮を抑制するために、工程(C)の可塑剤抽出後に、熱固定(HS)を目的として微多孔膜の熱処理を行う。多孔膜の熱処理としては、物性の調整を目的として、所定の温度の雰囲気及び所定の延伸倍率で行う延伸操作、並びに/又は、延伸応力の低減を目的として、所定の温度の雰囲気及び所定の緩和率で行う緩和操作が挙げられる。緩和操作は、延伸操作後の膜の縮小操作のことである。これらの熱処理は、テンター又はロール延伸機を用いて行うことができる。なお、可塑剤抽出後の延伸及び緩和操作などを含む熱固定は、TDに行うことが好ましい。
本発明の一態様に係る多層多孔膜の製造方法は、特に限定されないが、一例として、上記で製造されたポリオレフィン微多孔膜の少なくとも片面に、多機能層、無機多孔層、及び熱可塑性樹脂層から成る群から選択される少なくとも一層を配置する工程を含むことができる。
実施形態1~4に係るポリオレフィン微多孔膜は、例えば非水系二次電池等において、具体的には非水系二次電池用セパレータとして、使用されることができる。非水系二次電池としては、例えば、リチウムイオン二次電池等が挙げられる。実施形態1~4に係るポリオレフィン微多孔膜は、リチウムイオン二次電池に組み込まれることによって、リチウムイオン二次電池の熱暴走を抑制するだけでなく、易収縮性電極、高容量電極、又はSi含有負極を備える場合でさえも、高出力特性及び高サイクル特性などの電池特性と、安全性とを両立することができる。
ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
ポリエチレンについては、次式により算出した。
[η]=6.77×10-4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
Waters社製 ALC/GPC 150C型(商標)を用い、標準ポリスチレンを以下の条件で測定して較正曲線を作成した。また、下記各ポリマーについても同様の条件でクロマトグラムを測定し、較正曲線に基づいて、下記方法により各ポリマーの重量平均分子量を算出した。
カラム :東ソー製 GMH6-HT(商標)2本+GMH6-HTL(商標)2本
移動相 :o-ジクロロベンゼン
検出器 :示差屈折計
流速 :1.0ml/min
カラム温度:140℃
試料濃度 :0.1wt%
(ポリエチレン及びポリプロピレンの重量平均分子量と数平均分子量)
得られた較正曲線における各分子量成分に、0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)又は0.64(ポリプロピレンのQファクター/ポリスチレンのQファクター=26.4/41.3)を乗じることにより、ポリエチレン換算又はポリプロピレン換算の分子量分布曲線を得て、重量平均分子量と数平均分子量を算出した。
(樹脂組成物又は樹脂微多孔膜の重量平均分子量と数平均分子量)
最も質量分率の大きいポリオレフィンのQファクター値を用い、その他はポリエチレンの場合と同様にして重量平均分子量と数平均分子量を算出した。
JIS K7210:1999(プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR))に従って、微多孔膜のメルトフローインデックス(MI)を測定した。190℃で21.6kgfの荷重を膜に加えて、直径2mm、長さ10mmのオリフィスから10分で流出した樹脂量(g)を測定し、小数点以下第一位を四捨五入した値をMIとした。
DSCは、島津製作所社製DSC60を使用して測定した。まず、PO微多孔膜を、直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとしたものを測定サンプルとして用いた。このサンプルを、直径5mmのアルミニウム製オープンサンプルパンに敷き、クランピングカバーを乗せ、サンプルシーラーによりアルミニウムパン内に固定した。窒素雰囲気下、昇温速度10℃/分で30℃から200℃まで昇温し(1回目昇温)、200℃で5分ホールドした後、降温速度10℃/分で200℃から30℃まで降温した。続いて、30℃において5分間ホールドした後、再度、昇温速度10℃/分で30℃から200℃まで昇温した(2回目昇温)。2回目昇温の融解吸熱曲線において、極大となる温度をPO微多孔膜の融点とした。極大値が複数ある場合は、1stピークと一番大きなピークを検出した。なお、一番大きな融解吸熱曲線の極大値となる温度をPO微多孔膜の融点(Tm)として採用することができる。
JIS K7112:1999に従い、密度勾配管法(23℃)により、試料の密度を測定した。
目付は、単位面積(1m2)当たりのポリオレフィン微多孔膜の重量(g)である。1m×1mにサンプリング後、島津製作所製の電子天秤(AUW120D)にて重量を測定した。なお、1m×1mにサンプリングできない場合は、適当な面積に切り出して重量を測定した後、単位面積(1m2)当たりの重量(g)に換算した。
東洋精機製の微少測厚器(タイプKBN、端子径Φ5mm)を用いて、雰囲気温度23±2℃で厚みを測定した。なお、厚みを測定する際には微多孔膜を10cm×10cmにサンプリング後、重ねて15μm以上になるように複数枚微多孔膜を重ねて、9か所を測定して平均を取り、その平均値を重ねた枚数で割った値を1枚の厚みとする。
東洋精機株式会社製の微小測厚器「KBM(商標)」を用いて、室温(23±2℃)で多層多孔膜の厚みを測定して、(圧縮前の)微多孔膜の平均膜厚と(圧縮前の)多層多孔膜のそれぞれの厚みから塗工層の厚みを算出した。また、多層多孔膜からの検出の観点から、断面SEM像を用いて各層の厚みを計測することも可能である。
3cm×3cm四方、1cm×1cm四方、5cm×5cm四方、または10cm×10cm四方の試料をポリオレフィン微多孔膜から切り取り、前記膜厚の測定結果より、その体積(cm3)と質量(g)を求め、それらと密度(g/cm3)より、次式を用いて計算した。
気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
なお、混合組成物の密度は、用いたポリオレフィン樹脂と他の成分の各々の密度と混合比より計算して求められる値を用いた。
多層多孔膜の気孔率=(基材となるポリオレフィン樹脂微多孔膜の気孔率)×(基材となるポリオレフィン樹脂微多孔膜の平均膜厚)÷(多層多孔膜全体の厚み)+(塗工層の気孔率)×(塗工層の厚み)÷(多層多孔膜全体の厚み)
ここでは、塗工層の気孔率は50%として、多層多孔膜の気孔率を算出した。塗工層の気孔率が50%ではない場合には、必要に応じて、塗工層の気孔率をポリオレフィン微多孔膜の気孔率と同様に上記式と同様に算出できる。具体的には、塗工膜において、SEMでの直接観察もしくは塗工前後の膜厚変化から塗工層の厚みを測定し、特定の面積の塗工層試料の体積を求めたうえで、当該塗工層の構成成分の材料比率から算出した塗工成分の質量平均密度を用いて、塗工層の気孔率を算出する。
厚さ0.8mmのゴム製の緩衝材、厚さ0.1mmのPETフィルム、微多孔膜2枚、前記PETフィルム、前記緩衝材の順序で積層し、得られた積層体を静置し、積層体の片側の緩衝材面に対して圧力を掛けることにより圧縮試験を行なった。圧縮試験は、プレス機を用いて、温度70℃、圧力8MPa、及び圧縮時間3分間の条件下で行われた。必要に応じて、プレス緩和後の圧縮率を計測した。圧縮率の測定は、プレス緩和から2時間後~24時間後の間に行った。圧縮試験後にプレス緩和して、積層体から微多孔膜を取り外して、圧縮試験後の微多孔膜を試料として使用すること以外は上記「(圧縮前の)気孔率(%)」と同様の方法によって圧縮後気孔率(%)を測定した。
旭精工株式会社の王研式透気度測定機「EGO2」で透気度を測定した。
透気度の測定値は、膜の幅方向に沿って両端から5cmの地点と中央1点との計3点の透気度を測定し、それらの平均値を算出した値である。
旭精工株式会社の王研式透気度測定機「EGO2」で透気度を測定した。
透気度の測定値は、膜の幅方向(TD)に沿って両端から中央に向かって全幅の10%内側の地点2点と中央1点との計3点の透気度を測定し、それらの平均値を算出した値である。
厚さ0.8mmのゴム製の緩衝材、厚さ0.1mmのPETフィルム、微多孔膜2枚、上記PETフィルム、上記緩衝材の順序で積層し、得られた積層体を静置し、積層体の片側の緩衝材面に対して圧力を掛けることにより圧縮試験を行なった。ここで、用いる微多孔膜は5×5cm四方であり、プレス試験に用いる前に平均膜厚(9点平均)、目付、及び透気度(version 2の測定方法による)を測定した。また、目付と平均膜厚から圧縮プレス試験前の気孔率を算出した。
圧縮試験は、プレス機を用いて、温度30℃及び圧縮時間3分間の条件下、2.5MPa、5MPa、7.5MPa、及び10MPaの圧力で行われた。また、除荷してから1時間後に積層体から微多孔膜を取り外し、圧縮後の平均膜厚(9点平均)、圧縮後の透気度を測定した。また、目付と圧縮後の平均膜厚から、圧縮後の気孔率を算出した。
最終的に、上記の4種の圧力で圧縮した4点の測定点から、圧縮後の気孔率と圧縮後の透気度に関して、累乗近似を用いて図1のような近似曲線を作成した。
測定には日立ハイテク製TMA(Thermo Mechanical Analysis):SS6100を用いた。試料に荷重を加えるプローブは、石英製0.5mmΦのものを用いた。
目付と膜厚を測定して気孔率を算出した微多孔膜を、1×1cm四方で16枚用意し、厚み方向に重ねて積層体とする。これを試料台にセットし、初期荷重として0.06MPaを付荷する。1分後、6MPa/分の速度で厚み方向に荷重を加え、3MPaまで到達した時点で3分間、3MPaの荷重を保持する。3分後の膜厚を、3MPa加圧状態下(in situ)での膜厚とする。
上記圧縮TMA試験において、3MPaが掛かっているまさにその状態(in situ)での厚みとTMA測定前の目付から、3MPaが掛かっているまさにその状態(in situ)での気孔率を算出する。算出は、前記の3MPaが掛かっているまさにその状態(in situ)での厚みの測定結果より、先に記載した(圧縮前の)気孔率(%)の算出と同様の算出式を用いておこなう。
室温における3MPa加圧状態下(in situ)での気孔率の値を、先述のプレス試験において作成した、圧縮後の気孔率と圧縮後の透気度に関する近似曲線に入力し、室温における3MPa加圧状態下(in situ)での透気度の値を算出した。
旭精工株式会社の王研式透気度測定機(測定部の直径30mmφ)を用い、膜の左幅を0%、右端を100%とした時、50%の位置となる中央1点と左端から10%中央側(10%の位置)、および右端から10%中央側(90%の位置)の計3点の透気度を測定し、3点のうち最も大きい値と最も小さい値の差Rを得た。
測定するサンプルの幅に応じ、具体的にはサンプル幅が150mm幅以下の場合においては、測定部の直径が13mmφであるノズルを用いて同様に幅方向の透気度分布を測定する。
サンプルとして、多孔膜をMDに100mmかつTDに100mm、MDに50mmでTDかつ50mm、またはMDに30mmかつTDに30mmの加熱前の長さ(mm)に切り取り、120℃のオーブン中に1時間静置した。このとき、温風が直接サンプルに当たらないように、サンプルを10枚の紙に挟んだ。サンプルをオーブンから取り出して冷却した後、長さを測定して加熱後の長さ(mm)とし、下式にて熱収縮率を算出した。測定はMDとTDでそれぞれ行い、数値の大きい方を熱収縮率とした。
熱収縮率(%)={(加熱前の長さ-加熱後の長さ)/加熱前の長さ}×100
カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、室温23℃及び湿度40%の雰囲気下にて突刺試験を行うことにより、最大突刺荷重として突刺強度(gf)を測定した。突刺試験の測定値は、膜のTDに沿って、両端から中央に向かって全幅の10%内側の地点2点と中央1点との計3点を測定し、それらの平均値を算出した値である。
目付換算突刺強度は以下の式で求める。
目付換算突刺強度[gf/(g/m2)]=突刺強度[gf]/目付[g/m2]
ここで、ポリオレフィン微多孔膜基材に少なくとも1つ以上の層を設けた多層多孔膜の突刺強度および目付換算突刺強度に関しては、樹脂の強度および目付当たりの強度を評価する観点から、ポリオレフィン微多孔膜基材の突刺強度および目付換算突刺強度をもって特性を評価した。
ハーフドライ法に準拠し、パームポロメータ(Porous Materials,Inc.社:CFP-1500AE)を用い、平均孔径(nm)を測定した。浸液には同社製のパーフルオロポリエステル(商品名「Galwick」、表面張力15.6dyn/cm)を用いた。乾燥曲線、及び湿潤曲線について、印加圧力、及び空気透過量の測定を行い、得られた乾燥曲線の1/2の曲線と湿潤曲線とが交わる圧力PHD(Pa)から、次式により平均孔径dHD(nm)を求め、孔径とした。
dHD=2860×γ/PHD
厚さ10μmのNi箔を2枚(A,B)用意し、一方のNi箔Aを縦15mm、横10mmの長方形部分を残してテフロン(登録商標)テープでマスキングするとともに他方のNi箔Bには測定試料のセパレータを置き、セパレータの両端をテフロン(登録商標)テープで固定した。このNi箔Bを電解液1mol/Lのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=体積比1/1/2の混合溶媒)に浸漬してセパレータに電解液を含浸させた後、Ni箔(A,B)を貼り合わせ、2枚のガラス板で両側をクリップで押さえた。このようにして作製したNi箔電極を25℃のオーブンに入れ、200℃まで2℃/minで昇温した。この際のインピーダンス変化を電気抵抗測定装置「AG-4311」(安藤電気社製)を用いて、1V、1kHzの条件下で測定した。この測定においてインピーダンス値が1000Ωに達した温度をFuse(シャットダウン)温度(℃)とした。
ポリオレフィン微多孔膜の幅方向の中央1点について、MD10cm×TD10cmに切り出し、直径5mmのアルミニウム板で挟み、菊水電子工業製の耐電圧測定機(TOS9201)でこれの測定を実施した。測定条件については、直流電圧を初電圧0Vからスタートし、100V/secの昇圧速度で電圧を掛け、電流値が0.2mA流れた時の電圧値(kV)を微多孔膜の耐電圧測定値とした。なお、15mm間隔にMD5点×TD5点の合計25点測定し、その平均値を耐電圧測定値とした。目付当たりの耐電圧は、耐電圧に対する目付の比(耐電圧/目付)を算出した。
ポリオレフィン微多孔膜中の結晶長周期については、リガク社製NANOPIXを用い、透過法の小角X線散乱測定を行った。CuKα線を試料に照射し、半導体検出器HyPix-6000により散乱を検出した。試料-検出器間距離は1312mm、出力は40kV,30mAの条件で測定を行った。光学系はポイントフォーカスを採用し、スリット径は1st slit:φ=0.55mm, 2nd slit:open, guard slit:φ=0.35mmの条件で行った。なお、試料は、試料面とX線入射方向とが垂直になるようにセットした。
HyPix-6000から得られたX線散乱パターンに対して、円環平均によりSAXSプロフィールI(q)を得た。得られた1次元プロフィールI(q)のLinear-Linearプロットにおいて0.1nm-1< q < 0.6nm-1範囲で直線のベースラインを引き、Gauss関数でフィッティングを行った。最大強度となっている位置を結晶長周期由来のピーク位置qmとして式4から結晶長周期を計算した。
d = 2π/ qm 式4
{式中、d(nm):結晶長周期
qm(mm-1):SAXSプロフィール中のラメラ由来のピーク位置}
得られたXRDプロフィールの2θ=10.0°から2θ=30.0°の範囲を斜方晶(110)面回折ピーク、斜方晶(200)面回折ピーク、非晶ピークの3つに分離し、(110)面回折ピークの半値全幅より、シェラーの式(式1)に従って、結晶子サイズを算出した。(110)面回折ピーク、(200)面回折ピークはvoigt関数で近似し、非晶ピークはgauss関数で近似した。なお、非晶ピークのピーク位置は、2θ=19.6°、半値全幅は6.3°で固定し、結晶ピークのピーク位置、半値全幅は特に固定せずにピーク分離を行った。ピーク分離により算出された(110)面回折ピークの半値全幅より、シェラーの式(式1)により、結晶子サイズを算出した。
D(110)=Kλ/(βcosθ) 式1
{式中、D(110):結晶子サイズ(nm)
K:0.9 (定数)
λ:X線の波長(nm)
β:(β1 2-β2 2)0.5
β1:ピーク分離の結果算出された(hkl)ピークの半値全幅(rad)
β2:入射ビームの広がりの半値全幅(rad)
θ:ブラッグ角}
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG-A型(商標)を用いて、MD及びTDサンプル(形状;幅10mm×長さ100mm)について測定した。引張試験機のチャック間を50mmとし、サンプルの両端部(各25mm)の片面にセロハン(登録商標)テープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に、厚み1mmのフッ素ゴムを貼り付けた。
なお、測定は、温度23±2℃、チャック圧0.40MPa、及び引張速度100mm/minの条件下で行った。
引張破断強度(MPa)は、ポリオレフィン微多孔膜の破断時の強度を、試験前のサンプル断面積で除することで求めた。また、ポリオレフィン微多孔膜の破断時の伸度を、引張破断伸度(%)とした。
引張破断強度をMDとTDのそれぞれについて求めて、MD引張破断強度とTD引張破断強度の比(MD/TD引張破断強度比)も算出した。同様に、引張破断伸度をMDとTDのそれぞれについて求めて、MD引張破断伸度とTD引張破断伸度の比(MD/TD引張破断伸度比)も算出した。
MD及びTDの測定について、MDサンプル(MD120mm×TD10mm)及びTDサンプル(MD10mm×TD120mm)を切り出した。雰囲気温度23±2℃、湿度40±2%の状況下でJIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG-A型(商標)を用いて、サンプルのMD及びTDの引張弾性率を測定した。サンプルをチャック間距離が50mmとなるようにセットし、引張速度200mm/分でチャック間が60mm、すなわち歪みが20.0%に達するまでサンプルを伸張した。引張弾性率(MPa)は、得られる応力-歪曲線における歪み1.0%から4.0%の傾きから求めた。
引張弾性率をMDとTDのそれぞれについて求めて、MD引張弾性率とTD引張弾性率の比(MD/TD引張弾性率比)も算出した。
ISO 8791-5:2020に準拠し、旭精工(株)製の透気度平滑度計EYO-5型において内径0.15mm、長さ50mmのステンレス製のノズルを用いて、温度30℃、及び湿度40%の雰囲気でポリオレフィン微多孔膜の平滑度を測定した。ポリオレフィン微多孔膜の一方の表面と他方の表面について、それぞれ表面平滑度の測定を行って、上記で説明されたとおりに一方の表面と他方の表面の平滑度の平均値も算出した。
a.正極の作製
正極活物質としてリチウムコバルト複合酸化物LiCoO2、並びに導電材としてグラファイト及びアセチレンブラックを、バインダであるポリフッ化ビニリデン(PVDF)及びN-メチルピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ15μmのアルミニウム箔にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を57.0mm幅にスリットして正極を得た。
負極活物質として人造グラファイト、及びバインダとしてカルボキシメチルセルロースのアンモニウム塩とスチレン-ブタジエン共重合体ラテックスとを、精製水に分散させてスラリーを調製した。このスラリーを負極集電体となる銅箔にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を58.5mm幅にスリットして負極を得た。
エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=1:1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1mol/Lとなるように溶解させて、非水電解液を調製した。
正極、実施例又は比較例で得られた多孔膜及び負極を捲回した後、常法により捲回電極体を作製し、外装缶に入るようにプレス機にてプレスした。なお、捲回数はポリオレフィン微多孔膜の厚み及びスプリングバックの程度によって調整した。得られた巻回電極体の最外周端部を絶縁テープの貼付により固定した。負極リードを電池缶に、正極リードを安全弁にそれぞれ溶接して、巻回電極体を電池缶の内部に挿入した。その後、非水電解液を電池缶内に5g注入し、ガスケットを介して蓋を電池缶にかしめることにより、幅42.0mm、高さ63.0mm、厚さ10.5mmの角型二次電池を得た。この角型二次電池を25℃の雰囲気下、0.2C(定格電気容量の1時間率(1C)の0.2倍の電流)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を絞り始めるという方法で、合計3時間充電を行った。続いて0.2Cの電流値で電池電圧3.0Vまで放電した。
上記d.と同様にして組み立てて評価のために選定された角型二次電池について、25℃の環境下で、1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。充電後の電池を、25℃の雰囲気下の恒温状態で放電終止電圧3Vまでの1C放電容量と5C放電容量を測定し、5C容量/1C容量を出力特性値とした。なお、下記基準に即して出力特性値を評価した。
A:出力特性値が0.95以上。
B:出力特性値が0.90以上0.95未満。
C:出力特性値が0.85以上0.90未満。
D:出力特性値が0.80以上0.85未満。
E:出力特性値が0.80未満。
上記d.と同様にして組み立てて評価のために選定された角型二次電池を用いて、(i)電流量0.5C、上限電圧4.2V、合計3時間の定電流定電圧充電、(ii)10分間の休止、(iii)電流量0.5C、終止電圧3.0Vの定電流放電、(iv)10分間の休止、のサイクル条件下で都合100回の充放電を行った。上記充放電処理は全て25℃の雰囲気下にてそれぞれ実施した。その後、上記初回電池容量X(mAh)に対する上記100サイクル目の放電容量の比を100倍することで、容量維持率(%)を求めた。なお、下記基準に即して容量維持率を評価した。
A:容量維持率(%)が90%以上。
B:容量維持率(%)が88%以上90%未満。
C:容量維持率(%)が84%以上88%未満。
D:容量維持率(%)が80%以上84%未満。
E:容量維持率(%)が80%未満。
上記d.と同様にして組み立てて評価のために選定された角型二次電池について、30℃・3MPa加圧の環境下で、1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。充電後の電池を、30℃の雰囲気下の恒温状態で放電終止電圧3Vまでの1C放電容量と5C放電容量を測定し、5C容量/1C容量の割合を出力特性値とした。なお、下記基準に即してレート特性を評価した。
A:出力特性値が90%以上。
B:出力特性値が80%以上90%未満。
C:出力特性値が70%以上80%未満。
D:出力特性値が50%超70%未満。
E:出力特性値が50%以下。
上記d.と同様にして組み立てて評価のために選定された角型二次電池を用いて、30℃・3MPa加圧の環境下で、(i)電流量0.5C、上限電圧4.2V、合計3時間の定電流定電圧充電、(ii)10分間の休止、(iii)電流量0.5C、終止電圧3.0Vの定電流放電、(iv)10分間の休止、のサイクル条件下で都合100回の充放電を行った。上記充放電処理は全て30℃の雰囲気下にてそれぞれ実施した。その後、上記初回電池容量X(mAh)に対する上記100サイクル目の放電容量の比を100倍することで、容量維持率(%)を求めた。なお、下記基準に即して容量維持率を評価した。
A:容量維持率(%)が90%以上。
B:容量維持率(%)が80%以上90%未満。
C:容量維持率(%)が70%以上80%未満。
D:容量維持率(%)が50%超70%未満。
E:容量維持率(%)が50%以下。
上記d.と同様にして組み立てて評価のために選定された電池を、温調可能な防爆ブース内の鉄板上に静置した。直径3.0mmの鉄製釘を用意し、釘内部に熱電対を設置した。防爆ブース内の30℃・3MPa加圧の環境下で、電池の中央部に鉄製釘を2mm/secの速度で貫通させ、釘は貫通した状態で維持した。釘刺の開始から、釘が貫通した後まで、電池を観察して、下記基準により安全性を評価した。
A:何も起こらない。
B:発煙する。
C:セル膨れ・変形が観察される。
D:発火する。
E:爆発する。
(A)表1に示すように、Mv70万以上のポリエチレン(PE)の割合を調整して、原料樹脂組成物を得た。原料樹脂組成物のMvは、90万であった。次に、表1に示される樹脂含有率(PC)となるように、原料樹脂組成物と流動パラフィンと0.1質量%の酸化防止剤とを配合して、ポリオレフィン組成物を得た。次に、ポリオレフィン組成物を二軸押出機に投入し、溶融したポリオレフィン組成物を押出してゲル状シートを形成し、キャストロールで冷却固化した。
(B)同時二軸延伸機を用いて、表1に示される条件下で、冷却固化されたシートの二軸延伸工程を行なって、延伸シートを得た。
(C)その後、延伸シートを塩化メチレンに浸漬し、流動パラフィンを抽出除去してから乾燥させて多孔化した。
(D)さらに、一軸延伸機を用いて、表1に示される条件下で、得られた多孔化物の熱固定を行なって、ポリオレフィン微多孔膜を得た。得られたポリオレフィン微多孔膜の総延伸倍率は、67倍であった。得られたポリオレフィン微多孔膜を上記方法に従って評価し、さらにポリオレフィン微多孔膜を備える電池も評価した。評価結果を表3に示す。
表1及び2に示される樹脂原料と製造条件を使用したこと以外は実施例1と同様の方法でポリオレフィン微多孔膜を得て、評価した。評価結果を下記表3及び4に示す。
<ポリオレフィン微多孔膜の製造>
ポリオレフィン微多孔膜を、以下の手順で作製した。
(A)表5に示すように、Mv90万のポリエチレン30質量部と、Mv30万のポリエチレン70質量部をドライブレンドし、さらに酸化防止剤として0.3質量部のテトラキス-(メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタンとを配合して原料組成物を得た。次に、得られた組成物を、二軸押出機にフィーダーを介して投入した。次に、孔形成材として流動パラフィン(37.78℃における動粘度75.90cSt)を、樹脂原料+流動パラフィンの合計を100質量部として、表5に示される「押出成分中のポリマー成分の割合(PC)」が30%となるように、サイドフィードで押出機に注入し、混錬温度が160℃で混練した後押出機先端に設置したTダイから押出した。
(B)押出後、ただちに30℃に冷却したキャストロールで冷却固化させ、厚さ1.530mmのシートを成形した。このシートを同時二軸延伸機で128℃の条件でMDの歪速度が35%/sec、TDの歪速度が30%/secとなるように7×6.4倍に延伸した。
(C)延伸後、塩化メチレンに浸漬して流動パラフィンを抽出除去した。
(D)その後、シートを乾燥し、テンター延伸機により幅方向(TD)に1.85倍延伸した。その後、この延伸シートを131℃の条件で緩和後の倍率が1.75倍になるように歪速度-4.2%/secで幅方向(TD)に緩和する熱処理を行い、ポリオレフィン微多孔膜を得た。
(E)得られたポリオレフィン微多孔膜を上記方法に従って評価し、さらにポリオレフィン微多孔膜を備える電池も評価した。評価結果を表7に示す。
表5及び6に示される樹脂原料と製造条件と塗工条件を使用したこと以外は実施例24と同様の方法でポリオレフィン微多孔膜及びその塗工膜を得て、評価した。評価結果を表7及び8に示す。
(F)さらに、表5に示される塗工厚になるように、第1層、第2層、及び第3層をそれぞれポリオレフィン微多孔膜に塗工した。
Claims (15)
- 膜厚が1μm~30μmであり、透気度が500sec/100cm3以下であり、かつ温度70℃、圧力8MPa、及び圧縮時間3分間の条件下で圧縮試験において測定される圧縮後気孔率が、30%以上であるポリオレフィン微多孔膜。
- 主成分としてポリエチレンを含むポリオレフィン微多孔膜であって、前記ポリオレフィン微多孔膜の小角X線散乱(SAXS)法により測定される結晶長周期が、37.0nm以上であるポリオレフィン微多孔膜。
- 主成分としてポリエチレンを含み、前記ポリエチレンの結晶子サイズが、28.0nm以下である、請求項1又は2に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィン微多孔膜の気孔率が、35%以上である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。
- 目付換算突刺強度が、50gf/(g/m2)以上であり、
幅方向(TD)に沿って、両端から中央に向かって全幅の10%内側の地点2点と中央1点との計3点で測定された透気度の最大値と最小値の差が、15sec/100cm3以下であり、かつ
30℃及び3MPa加圧状態下での透気度が、140sec/100cm3以下である、ポリオレフィン微多孔膜。 - 前記ポリオレフィン微多孔膜の30℃及び3MPa加圧状態下での気孔率が、40%以上である、請求項1~5のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィン微多孔膜の突刺強度が、220gf以上である、請求項1~6のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィン微多孔膜は、GPCにより測定される重量平均分子量(Mw)が1,000,000以上のポリエチレン成分がGPCにより測定される溶出成分全体の7%以上である、請求項1~7のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィン微多孔膜のメルトフローインデックス(MI)が、1.0以下である、請求項1~8のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィン微多孔膜の120℃でのTD熱収縮率が、20%以下である、請求項1~9のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィン微多孔膜の長手方向(MD)の引張強度と幅方向(TD)の引張強度の比(MD/TD引張強度比)が、0.5~2.0である、請求項1~10のいずれか1項に記載のポリオレフィン微多孔膜。
- 請求項1~11のいずれか1項に記載のポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも片面に配置される無機多孔層と、
を有するセパレータ。 - 請求項1~11のいずれか1項に記載のポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも片面に配置される熱可塑性樹脂層と、
を有するセパレータ。 - 請求項1~11のいずれか1項に記載のポリオレフィン微多孔膜と、
前記ポリオレフィン微多孔膜の少なくとも片面に配置される、多機能層、無機多孔層および熱可塑性樹脂層から成る群から選択される少なくとも一層と、
を有するセパレータ。 - 請求項1~11のいずれか1項に記載のポリオレフィン微多孔膜、又は請求項12~14のいずれか1項に記載のセパレータを含む非水系二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/034,030 US20240055722A1 (en) | 2020-10-30 | 2021-10-29 | Polyolefin microporous membrane |
KR1020237011600A KR20230065291A (ko) | 2020-10-30 | 2021-10-29 | 폴리올레핀 미다공막 |
JP2022559282A JP7343716B2 (ja) | 2020-10-30 | 2021-10-29 | ポリオレフィン微多孔膜 |
CN202180073087.3A CN116615490A (zh) | 2020-10-30 | 2021-10-29 | 聚烯烃微多孔膜 |
EP21886417.1A EP4238752A4 (en) | 2020-10-30 | 2021-10-29 | POLYOLEFIN MICROPOROUS MEMBRANE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020183213 | 2020-10-30 | ||
JP2020-183213 | 2020-10-30 | ||
JP2021047962 | 2021-03-22 | ||
JP2021-047962 | 2021-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022092300A1 true WO2022092300A1 (ja) | 2022-05-05 |
Family
ID=81382650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040160 WO2022092300A1 (ja) | 2020-10-30 | 2021-10-29 | ポリオレフィン微多孔膜 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240055722A1 (ja) |
EP (1) | EP4238752A4 (ja) |
JP (1) | JP7343716B2 (ja) |
KR (1) | KR20230065291A (ja) |
WO (1) | WO2022092300A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023034730A1 (en) * | 2021-08-30 | 2023-03-09 | W.L. Gore & Associates, Inc. | Polyethylene membrane acoustic assembly |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002088188A (ja) | 2000-09-18 | 2002-03-27 | Asahi Kasei Corp | ポリエチレン微多孔膜 |
JP2004149637A (ja) | 2002-10-29 | 2004-05-27 | Tonen Chem Corp | 微多孔膜及びその製造方法並びに用途 |
WO2008093572A1 (ja) | 2007-01-30 | 2008-08-07 | Asahi Kasei E-Materials Corporation | ポリオレフィン製微多孔膜 |
WO2011118660A1 (ja) | 2010-03-23 | 2011-09-29 | 帝人株式会社 | ポリオレフィン微多孔膜、非水系二次電池用セパレータ、非水系二次電池及びポリオレフィン微多孔膜の製造方法 |
JP5021461B2 (ja) * | 2005-03-29 | 2012-09-05 | 東レバッテリーセパレータフィルム合同会社 | ポリオレフィン微多孔膜の製造方法及びその微多孔膜 |
JP5295834B2 (ja) | 2009-03-26 | 2013-09-18 | 旭化成イーマテリアルズ株式会社 | 合金系負極電極リチウムイオン二次電池用セパレーター |
WO2014175252A1 (ja) * | 2013-04-26 | 2014-10-30 | 積水化学工業株式会社 | オレフィン系樹脂微孔フィルム、電池用セパレータ、電池、及びオレフィン系樹脂微孔フィルムの製造方法 |
JP2017025294A (ja) | 2015-06-19 | 2017-02-02 | 宇部興産株式会社 | ポリオレフィン微多孔膜、蓄電デバイス用セパレータフィルム、および蓄電デバイス |
WO2018043331A1 (ja) * | 2016-08-29 | 2018-03-08 | 東レ株式会社 | 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法 |
WO2018164056A1 (ja) | 2017-03-08 | 2018-09-13 | 東レ株式会社 | ポリオレフィン微多孔膜 |
JP2018162438A (ja) | 2017-03-24 | 2018-10-18 | 旭化成株式会社 | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 |
JP2020092068A (ja) * | 2018-12-07 | 2020-06-11 | 旭化成株式会社 | 微多孔膜の製造方法 |
JP2020164861A (ja) | 2019-03-29 | 2020-10-08 | 東レ株式会社 | ポリオレフィン微多孔膜、電池用セパレータ、二次電池及びポリオレフィン微多孔膜の製造方法 |
JP2021105165A (ja) * | 2019-12-26 | 2021-07-26 | 東レ株式会社 | ポリオレフィン微多孔膜 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1920920B1 (en) | 2005-08-25 | 2013-12-04 | Toray Battery Separator Film Co., Ltd. | Polyethylene multilayer microporous membrane, battery separator using same, and battery |
JP5283383B2 (ja) | 2005-09-28 | 2013-09-04 | 東レバッテリーセパレータフィルム株式会社 | ポリエチレン微多孔膜の製造方法及び電池用セパレータ |
JP5572334B2 (ja) * | 2008-05-30 | 2014-08-13 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜 |
JP6477472B2 (ja) | 2013-07-23 | 2019-03-06 | 東洋紡株式会社 | 延伸ポリプロピレンフィルム |
WO2015194504A1 (ja) | 2014-06-20 | 2015-12-23 | 東レバッテリーセパレータフィルム株式会社 | ポリオレフィン微多孔質膜、電池用セパレータ及び電池 |
CN110621731B (zh) * | 2017-05-26 | 2022-04-08 | 旭化成株式会社 | 聚烯烃微多孔膜、蓄电装置用分隔件及蓄电装置 |
WO2019074122A1 (ja) * | 2017-10-13 | 2019-04-18 | 旭化成株式会社 | ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池 |
-
2021
- 2021-10-29 WO PCT/JP2021/040160 patent/WO2022092300A1/ja active Application Filing
- 2021-10-29 EP EP21886417.1A patent/EP4238752A4/en active Pending
- 2021-10-29 JP JP2022559282A patent/JP7343716B2/ja active Active
- 2021-10-29 KR KR1020237011600A patent/KR20230065291A/ko active Pending
- 2021-10-29 US US18/034,030 patent/US20240055722A1/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002088188A (ja) | 2000-09-18 | 2002-03-27 | Asahi Kasei Corp | ポリエチレン微多孔膜 |
JP2004149637A (ja) | 2002-10-29 | 2004-05-27 | Tonen Chem Corp | 微多孔膜及びその製造方法並びに用途 |
JP5021461B2 (ja) * | 2005-03-29 | 2012-09-05 | 東レバッテリーセパレータフィルム合同会社 | ポリオレフィン微多孔膜の製造方法及びその微多孔膜 |
WO2008093572A1 (ja) | 2007-01-30 | 2008-08-07 | Asahi Kasei E-Materials Corporation | ポリオレフィン製微多孔膜 |
JP5295834B2 (ja) | 2009-03-26 | 2013-09-18 | 旭化成イーマテリアルズ株式会社 | 合金系負極電極リチウムイオン二次電池用セパレーター |
WO2011118660A1 (ja) | 2010-03-23 | 2011-09-29 | 帝人株式会社 | ポリオレフィン微多孔膜、非水系二次電池用セパレータ、非水系二次電池及びポリオレフィン微多孔膜の製造方法 |
EP2458660A1 (en) | 2010-03-23 | 2012-05-30 | Teijin Limited | Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film |
WO2014175252A1 (ja) * | 2013-04-26 | 2014-10-30 | 積水化学工業株式会社 | オレフィン系樹脂微孔フィルム、電池用セパレータ、電池、及びオレフィン系樹脂微孔フィルムの製造方法 |
JP2017025294A (ja) | 2015-06-19 | 2017-02-02 | 宇部興産株式会社 | ポリオレフィン微多孔膜、蓄電デバイス用セパレータフィルム、および蓄電デバイス |
WO2018043331A1 (ja) * | 2016-08-29 | 2018-03-08 | 東レ株式会社 | 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法 |
WO2018164056A1 (ja) | 2017-03-08 | 2018-09-13 | 東レ株式会社 | ポリオレフィン微多孔膜 |
EP3594278A1 (en) | 2017-03-08 | 2020-01-15 | Toray Industries, Inc. | Polyolefin microporous film |
JP2018162438A (ja) | 2017-03-24 | 2018-10-18 | 旭化成株式会社 | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 |
JP2020092068A (ja) * | 2018-12-07 | 2020-06-11 | 旭化成株式会社 | 微多孔膜の製造方法 |
JP2020164861A (ja) | 2019-03-29 | 2020-10-08 | 東レ株式会社 | ポリオレフィン微多孔膜、電池用セパレータ、二次電池及びポリオレフィン微多孔膜の製造方法 |
JP2021105165A (ja) * | 2019-12-26 | 2021-07-26 | 東レ株式会社 | ポリオレフィン微多孔膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4238752A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023034730A1 (en) * | 2021-08-30 | 2023-03-09 | W.L. Gore & Associates, Inc. | Polyethylene membrane acoustic assembly |
Also Published As
Publication number | Publication date |
---|---|
US20240055722A1 (en) | 2024-02-15 |
JP7343716B2 (ja) | 2023-09-12 |
EP4238752A4 (en) | 2025-03-26 |
EP4238752A1 (en) | 2023-09-06 |
JPWO2022092300A1 (ja) | 2022-05-05 |
KR20230065291A (ko) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102642365B (zh) | 多层多孔膜及其制造方法 | |
TWI629176B (zh) | 多孔膜及多層多孔膜 | |
JP6378998B2 (ja) | 蓄電デバイス用セパレータの製造方法 | |
JP6756902B2 (ja) | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 | |
JP7127216B2 (ja) | ポリオレフィン微多孔膜 | |
JP6864762B2 (ja) | ポリオレフィン微多孔膜 | |
JP7343716B2 (ja) | ポリオレフィン微多孔膜 | |
US20220389203A1 (en) | Polyolefin Microporous Membrane | |
WO2022059744A1 (ja) | 蓄電デバイス用セパレータ及び蓄電デバイス | |
JP7525686B2 (ja) | ポリオレフィン微多孔膜 | |
CN116615490A (zh) | 聚烯烃微多孔膜 | |
JP7017345B2 (ja) | 蓄電デバイス用セパレータ | |
JP2022051238A (ja) | ポリオレフィン微多孔膜 | |
JP2023161496A (ja) | ポリオレフィン微多孔膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21886417 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022559282 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237011600 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180073087.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18034030 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317031428 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021886417 Country of ref document: EP Effective date: 20230530 |