WO2022041933A1 - 一种双硬度模压发泡鞋底的制备方法及其发泡鞋底 - Google Patents
一种双硬度模压发泡鞋底的制备方法及其发泡鞋底 Download PDFInfo
- Publication number
- WO2022041933A1 WO2022041933A1 PCT/CN2021/099588 CN2021099588W WO2022041933A1 WO 2022041933 A1 WO2022041933 A1 WO 2022041933A1 CN 2021099588 W CN2021099588 W CN 2021099588W WO 2022041933 A1 WO2022041933 A1 WO 2022041933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- hardness
- temperature
- foaming
- rice
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 238000005187 foaming Methods 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 241000209094 Oryza Species 0.000 claims description 31
- 235000007164 Oryza sativa Nutrition 0.000 claims description 31
- 210000001161 mammalian embryo Anatomy 0.000 claims description 31
- 235000009566 rice Nutrition 0.000 claims description 31
- 239000013518 molded foam Substances 0.000 claims description 24
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 17
- 229920002472 Starch Polymers 0.000 claims description 16
- 235000019698 starch Nutrition 0.000 claims description 16
- 239000008107 starch Substances 0.000 claims description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 13
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000007799 cork Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 10
- 229920000881 Modified starch Polymers 0.000 claims description 8
- 239000004368 Modified starch Substances 0.000 claims description 8
- 235000019426 modified starch Nutrition 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 7
- 238000005469 granulation Methods 0.000 claims description 7
- 230000003179 granulation Effects 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000002699 waste material Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 4
- 238000010097 foam moulding Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000004014 plasticizer Substances 0.000 claims description 4
- 229920002261 Corn starch Polymers 0.000 claims description 3
- 239000008120 corn starch Substances 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 3
- 235000013336 milk Nutrition 0.000 claims description 3
- 239000008267 milk Substances 0.000 claims description 3
- 210000004080 milk Anatomy 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 3
- 238000010792 warming Methods 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 2
- 238000005538 encapsulation Methods 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims 1
- 238000000967 suction filtration Methods 0.000 claims 1
- 239000006260 foam Substances 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 238000007906 compression Methods 0.000 abstract description 3
- 230000006835 compression Effects 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 230000035939 shock Effects 0.000 abstract description 3
- 239000007779 soft material Substances 0.000 abstract description 3
- 238000004925 denaturation Methods 0.000 abstract description 2
- 230000036425 denaturation Effects 0.000 abstract description 2
- 238000005507 spraying Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 235000021355 Stearic acid Nutrition 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000006261 foam material Substances 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 235000021190 leftovers Nutrition 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/122—Soles
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/02—Esters
- C08B31/04—Esters of organic acids, e.g. alkenyl-succinated starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0023—Use of organic additives containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0085—Use of fibrous compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0095—Mixtures of at least two compounding ingredients belonging to different one-dot groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/06—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
- C08J9/10—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
- C08J9/102—Azo-compounds
- C08J9/103—Azodicarbonamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/04—N2 releasing, ex azodicarbonamide or nitroso compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2403/00—Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
- C08J2403/04—Starch derivatives
- C08J2403/06—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2497/00—Characterised by the use of lignin-containing materials
- C08J2497/02—Lignocellulosic material, e.g. wood, straw or bagasse
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the invention relates to the technical field of foamed materials, in particular to a preparation method of a dual-hardness molded foamed sole and a foamed sole thereof.
- EVA foam material has better dynamic viscoelastic properties, is more in line with ergonomic testing requirements, has a better range of softness and hardness, soft touch and lower compression resistance, etc., and is often used by major sports brands for sports. sole.
- the injection molding machine has two injection barrels, which are injected into the upper and lower molds of the injection mold at the same time.
- the temperature is 80°C-110°C
- the mold is opened, the upper mold and the lower mold are separated, and the partition plate is pulled out; After foam molding and mold opening, two-color and two-hardness soles can be obtained.
- the material is in a molten state in the mold, and the soft and hard adjoining parts cannot be accurately positioned at the same position, resulting in problems such as color streaking and distortion of the sole shape.
- the secondary molding production process is usually considered. After the two different raw materials are respectively mixed, open, extruded and granulated, and foamed, they all need to go through a cooling process, which generally takes 24 hours. , after cooling, the initial foaming embryo shrinks and shapes, and the surface of the initial foaming embryo crystallizes to form a dense surface layer. Then it needs to be roughened to remove the skin, and then put into an oil pressure mold, pressurized and heated, and then cooled with water. The production process takes a long time. Production efficiency is low.
- the invention provides a method for preparing a double-hardness molded foam sole, which solves the problems in the prior art that the product has poor dimensional stability, the sole foaming needs to be cooled for 24 hours, and the production time is long, and the production efficiency is improved. , the beneficial effect of saving production costs, especially suitable for the production of foam materials with high elasticity, low hardness, skin-friendly, comfortable and other characteristics.
- the embodiment of the present application provides a kind of preparation method of dual-hardness molded foam sole, comprising the following steps:
- Step 1 prepare rice A
- Step 2 prepare rice B
- Step 3 Pour the material B into the suction bucket, and inject it through an injection machine at a temperature of 5°C-20°C to obtain a cold embryo, and the thickness of the cold embryo is 1-7mm;
- Step 4 Put the cold embryo on the edge of the small vacuum foaming mold, then pour the material A into the middle of the small vacuum foaming mold, close the mold, raise the temperature for foaming, the foaming temperature is 172°C-182°C, and the foaming is completed. Automatically open the mold to obtain a foamed embryo with a temperature not lower than 130 °C;
- Step 5 Put the initial foaming embryo with a temperature not lower than 130 °C into the hydraulic mold, close the mold, push it into the heating station of the secondary foaming molding machine, pressurize and heat up, the temperature is 170 °C-180 °C, and the time 20 seconds to 100 seconds; then transfer the hydraulic mold to the cooling station, pressurize and pour water to cool the mold, and the setting time is 150 seconds to 400 seconds, pull out the mold, and take out the finished product to obtain a double-hardness molded foam sole.
- the specific preparation method of the rice A is as follows: first mix the raw materials A for banburying, adjust the banburying temperature to be 95 °C-98 °C, keep 4min-6min, then turn the material twice, continue banburying to heat up, The discharge temperature is 105°C-107°C, and after the banburying is completed, open-mixing, extrusion and granulation are carried out to obtain feed rice A;
- the specific preparation method of the rice B is as follows: first mix the raw materials B for banburying, adjust the banburying temperature to be 95°C-98°C, keep it for 4min-6min, then turn the material twice, continue banburying to heat up, and the discharge temperature The temperature is 105°C-107°C, and after the banburying is finished, open-mixing, extrusion and granulation are carried out to obtain rice B.
- the hardness of the edge position of the dual-hardness molded foam sole is greater than that of the middle position.
- ingredients contained in the rice A and the rice B are different.
- weight portion of each raw material contained in the described rice A is as follows:
- weight portion of each raw material contained in the described rice B is as follows:
- weight portion of each raw material contained in the described rice A is as follows:
- the preparation method of the regenerated EVA is as follows: the material head, defective product, waste product, leftover material, and waste photovoltaic cell encapsulation EVA film produced in the process of producing the EVA sole are put into a crusher and crushed, and then prepared by banburying. become;
- the plasticized cork powder is a plasticized cork powder formed by compounding the cork powder with glycerin and formamide.
- modified starch preparation method comprises the following steps:
- the corn starch is weighed and placed in the reactor, under stirring conditions, added distilled water, mixed with a mass ratio of 40% starch milk, adding and accounting for the mass fraction of starch to be 3% solid sodium chloride, warming up to 50 ° C, The pH value was adjusted to 11.0 with 0.5mol/L NaOH solution, and the solid sodium hexametaphosphate with a mass fraction of 2% of starch was added. The reaction process kept the pH unchanged, and the reaction time was 4h;
- the cold embryo prepared from the material rice B is put into the edge of the small vacuum foaming mold, which is equivalent to building a wall, and the hardness of the wall is 55C-62C, and then the material rice A is poured into the small vacuum foaming mold.
- a foamed preliminary embryo is obtained.
- the hardness of the material A in the middle of the vacuum small foaming mold in the foamed preliminary embryo is 35C-43C, that is, the hardness in the middle of the foamed preliminary embryo is smaller than that of the wall. hardness. It is beneficial to improve the comfort of the sole, with high rebound rate and good shock absorption performance; the hardness of the surrounding circle is high, which is beneficial to improve the defects of easy collapse of soft materials, high compression rate and severe wrinkling.
- the cold embryo and the rice A are put into the vacuum small foaming mold together, so that the two are bonded in the vacuum small foaming mold, without the use of other adhesives, and there will be no degumming phenomenon, which improves the product quality.
- the hydraulic heating time is greatly shortened, the energy consumption is reduced, and the surface is not crystallized, the embossing pattern is easier, and the production time is short, and no cooling and roughening are required.
- quality inspection, warehousing and other processes shorten the production cycle by more than 40%, and reduce labor costs by about 30%.
- a kind of preparation of dual-hardness molded foam sole comprising the following steps:
- the material heads, defective products, waste products, leftovers, and waste photovoltaic cell packaging EVA film produced in the process of producing EVA soles are put into a crusher to be crushed, and then prepared by banburying.
- EVA 7470M weight parts, the same below
- 27 parts of recycled EVA 18 parts of plasticized cork powder
- 20 parts of modified starch 2.5 parts of foaming agent AC, 1.5 parts of cross-linking agent BIBP, stearic acid 1.5 parts of zinc, 1.0 parts of zinc oxide, 1.3 parts of stearic acid, and 7 parts of talc powder
- 106 °C after the banburying is finished, open-mixing, extrusion and granulation are carried out to obtain rice A;
- EVA 7350M weight parts, the same below
- 8 parts of EVA V4110J 27 parts of recycled EVA
- 18 parts of plasticized cork powder 2.0 parts of foaming agent AC, 1.2 parts of cross-linking agent BIBP, zinc stearate 1.5 parts of zinc oxide, 1.0 parts of zinc oxide, 1.3 parts of stearic acid, and 12 parts of talc powder were mixed for banburying.
- °C after the banburying is finished, open-mixing, extrusion and granulation are carried out to obtain rice B;
- the temperature of the initial foaming embryo is not lower than 130 °C, close the mold, push it into the heating station of the secondary foaming molding machine, pressurize and heat up, the temperature is 180 °C, and the time is 50 seconds ; Then transfer the hydraulic mold to the cooling station, pressurize and spray water to cool the mold, the water temperature of the water cooling mold is not higher than 5 °C, the setting time is 280 seconds, pull out the mold, and take out the finished product, that is, a double-hardness mold is obtained. foam material.
- a kind of preparation of dual-hardness molded foam sole comprising the following steps:
- the preparation method is the same as in Example 1, the difference is
- a method for making a double-hardness molded foam sole comprising the following steps:
- the preparation method is the same as in Example 1, the difference is
- the pre-foamed embryo was placed at room temperature for 24 hours, and then roughened with a leather wheel to remove the epidermis (the dense layer caused by surface crystallization) of the pre-foamed embryo; Not lower than 130°C, close the mold, push it into the heating station of the secondary foam molding machine, pressurize and heat up, the temperature is 180°C, and the time is 280 seconds; then transfer the hydraulic mold to the cooling station, pressurize, spray Water cooling the mold, the water temperature of the water cooling mold is not higher than 5 °C, the setting time is 280 seconds, the mold is pulled out, and the finished product is taken out, that is, a dual-hardness molded foam material is obtained.
- the invention discloses a method for preparing a double-hardness molded foam sole, which comprises the following steps: preparing a material A; preparing a material B; pouring the material B into a suction bucket, and ejecting it through a single injection machine to obtain a cold embryo ;Put the cold embryo on the edge of the small vacuum foaming mold, then pour the material A into the middle of the small vacuum foaming mold, close the mold, heat up and foam, the foaming is completed, and the mold is automatically opened to obtain the initial foaming embryo; The first foamed embryo is put into the hydraulic mold, the mold is closed, and it is pushed into the heating station of the secondary foaming molding machine to pressurize and heat up; then the hydraulic mold is transferred to the cooling station, and the mold is pressurized and watered to cool the mold.
- the foamed sole of the present invention has the hardness of 55C-62C in the surrounding area, the hardness in the middle is 35C-43C, and the hardness in the middle is low, which is conducive to improving the comfort of the sole, the rebound rate is high, and the shock absorption performance is good; the hardness in the surrounding area is high. , which is beneficial to improve the defects of easy collapse of soft materials, high compressive denaturation rate and severe wrinkling, and has industrial practicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Mechanical Engineering (AREA)
- Emergency Medicine (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
本发明公开了一种双硬度模压发泡鞋底的制备方法,包括以下步骤:制备料米A;制备料米B;将料米B倒入吸料桶,经一次射出机台射出,得到冷胚;将冷胚放在真空小发泡模具的边沿,再将料米A倒入真空小发泡模具中间,合模、升温发泡,发泡结束,自动开模,得到发泡初胚;将发泡初胚放入油压模具,合模,推入二次发泡成型机的加热站位,加压、升温;然后将油压模具转移至冷却站位,加压、淋水冷却模具,拉出模具,取出成品,即得到双硬度模压发泡鞋底。本发明的发泡鞋底,周围一圈的硬度55C-62C,中间的硬度35C-43C,中间硬度低,有利于提高鞋底舒适性,回弹率高,减震性能好;周围一圈的硬度高,有利于改善软料容易塌陷、压缩变性率大、起皱厉害的缺陷。
Description
本发明涉及发泡材料技术领域,尤其涉及一种双硬度模压发泡鞋底的制备方法及其发泡鞋底。
EVA发泡材料具有更佳的动态粘弹性质,更符合人体工学的测试要求,具有更佳的软硬度范围、柔软触感及更低的抗压缩性等,经常被各大体育品牌用于运动鞋底。同时由于其物理性能极佳,边料可回收利用,极具环保竞争力,因此逐渐取代NBR、SBR、CR等传统发泡材料,发展前景乐观。
现有的双色双硬度鞋底的成型工艺,注塑机拥有两支注射枪管,同时往注塑模具的上模和下模进行注塑,模具温度168℃-185℃,经过隔板预压后,隔板温度80℃-110℃,开模,将上模和下模分离,抽离隔板;将上模和下模再进行合模,上、下层复合材料在合模腔内进粘合、交联发泡成型,开模,即可得到双色双硬度的鞋底。料在模具中成熔融状态,在软硬临接部位,根本无法准确地定位在同一位置,导致鞋底外形产生串色、扭曲等问题。
亦或采用以EVA为主要成分的适量材料,制作未交联、发泡的第一胚片和第二胚片,然后放入模具,形成鞋底成型前的形状,再加温加压,发泡成型。在实际操作过程中,需要精确控制胚片的厚度和重量,容易导致串色和毛边问题。以上两种公开技术用于生产低结晶率材料的发泡 材料,都存在材料粘度大导致注塑困难、产品尺寸稳定性差的缺点。
为了改善产品尺寸稳定性差的问题,通常考虑二次模压生产工艺,两种不同的原材料分别经密炼、开炼、挤出造粒、发泡后,均需经过冷却工序,冷却一般需要24小时,冷却后发泡初胚收缩定型,发泡初胚表面结晶,形成致密表层,然后需打粗去除表皮,再放入油压模具,加压加温,再用水冷却模具,生产工艺耗时长、生产效率低。
发明内容
本发明提供一种双硬度模压发泡鞋底的制备方法,解决了现有技术中产品尺寸稳定性差、鞋底发泡需经冷却24小时、打粗等工序生产时间长等问题,实现了提高生产效率,节约生产成本的有益效果,特别适用于生产具有高弹、低硬度、亲肤、舒适等特性的发泡材料。
本申请实施例提供了一种双硬度模压发泡鞋底的制备方法,包括以下步骤:
步骤1:制备料米A;
步骤2:制备料米B;
步骤3:将料米B倒入吸料桶,经一次射出机台射出,模具温度5℃-20℃,得到冷胚,所述冷胚的厚度是1-7mm;
步骤4:将冷胚放在真空小发泡模具的边沿,再将料米A倒入真空小发泡模具中间,合模、升温发泡,发泡温度172℃-182℃,发泡结束,自动开模,得到温度不低于130℃的发泡初胚;
步骤5:将温度不低于130℃的发泡初胚放入油压模具,合模,推入 二次发泡成型机的加热站位,加压、升温,温度170℃-180℃,时间20秒-100秒;然后将油压模具转移至冷却站位,加压、淋水冷却模具,定型时间150秒-400秒,拉出模具,取出成品,即得到双硬度模压发泡鞋底。
进一步地,所述料米A的具体制备方法为:先将原材料A混合进行密炼,调整密炼温度为95℃-98℃,保持4min-6min,然后翻料2次,继续密炼升温,出料温度为105℃-107℃,密炼结束后进行开炼、挤出造粒,得到料米A;
所述料米B的具体制备方法为:先将原材料B混合进行密炼,调整密炼温度为95℃-98℃,保持4min-6min,然后翻料2次,继续密炼升温,出料温度为105℃-107℃,密炼结束后进行开炼、挤出造粒,得到料米B。
进一步地,所述步骤5的具体步骤为:
将温度不低于130℃的发泡初胚放入油压模具,合模,推入二次发泡成型机的加热站位,加压、升温,温度(175±5)℃,时间40秒-70秒;然后将油压模具转移至冷却站位,加压、淋水冷却模具,淋水冷却模具的水温不高于5℃,定型时间220秒-300秒,拉出模具,取出成品,即得到双硬度模压发泡材料。
进一步地,所述双硬度模压发泡鞋底的边沿位置硬度比中间位置硬度大。
进一步地,所述料米A与所述料米B所含成分不同。
进一步地,所述料米A中所含各原料的重量份如下:
进一步地,所述料米B中所含各原料的重量份如下:
进一步地,所述料米A中所含各原料的重量份如下:
进一步地,所述再生EVA的制备方法为:将生产EVA鞋底过程中产生的料头、次品、废品、边角料、废弃光伏电池封装EVA胶膜放入破碎机破碎,再经密炼制备而成;
所述增塑软木粉是将软木粉与甘油、甲酰胺复合而成的增塑软木粉。
进一步地,所述改性淀粉制备方法包括以下步骤:
1)将玉米淀粉称重置于反应釜中,在搅拌条件下,加入蒸馏水,配制成质量比为40%淀粉乳,加入占淀粉的质量分数为3%固体氯化钠,升温到50℃,以0.5mol/L的NaOH溶液调节至pH值11.0,加入占淀粉的质量分数为2%的六偏磷酸钠固体,反应过程保持pH不变,反应时间4h;
2)以0.5mol/L的HCl溶液调节至pH值为8.5,逐滴加入占淀粉质 量分数为7.5%的乙酸酐,滴加过程中,不断以0.5mol/L NaOH溶液中和反应体系,使体系保持pH值不变,滴加乙酸酐结束后继续反应3.0h;
3)反应结束后,以0.5mol/L HCl溶液调节pH至中性,抽滤,用蒸馏水洗涤3次,烘干、粉碎,得乙酰化淀粉成品;
4)称取500g的乙酰化淀粉成品,控制水分在8%以下,放置在容器中,加入甘油和甲酰胺复合增塑剂,粗略搅拌后转入高速搅拌搅机中搅拌均匀,装入密闭容器中放置24h后,得改性淀粉成品。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
1、本申请将由料米B制得的冷胚放入真空小发泡模具的边沿,相当于是建了围墙,该围墙硬度为55C-62C,然后在将料米A倒入真空小发泡模具中间,再经一系列工序后得到发泡初胚,该发泡初胚中位于真空小发泡模具中间的料米A的硬度在35C-43C,也就是发泡初胚中间的硬度小于围墙的硬度。有利于提高鞋底舒适性,回弹率高,减震性能好;周围一圈的硬度高,有利于改善软料容易塌陷、压缩变性率大、起皱厉害的缺陷。
2、本申请将冷胚与料米A一并放入真空小发泡模具中,使得两者在真空小发泡模具内粘合,无需借助其他粘合剂,不会产生脱胶现象,提高产品的寿命;同时在得到发泡初胚后,立即转移至油压模具,油压升温时间大大缩短,减少能源消耗,且表面未结晶,压花纹较容易,生产时间短,无需经过冷却、打粗、品检、入库等工序,缩短生产周期40%以上,降低人工成本约30%。
为了更好的理解上述技术方案,下面将结合说明书以及具体的实施方式对上述技术方案进行详细的说明。
实施例1:
一种双硬度模压发泡鞋底的制备,包括以下步骤:
a)制备改性淀粉:
1)将1000g玉米淀粉置于四口反应釜中,在搅拌条件下,加入蒸馏水配制成40%(质量比)淀粉乳,加入30g固体氯化钠,升温到50℃,以0.5mol/L的NaOH溶液调节至pH值11.0,加入20g的六偏磷酸钠固体,反应过程保持pH不变,反应时间4h;
2)以0.5mol/L HCl溶液调节pH值到8.5,逐滴加入75g的乙酸酐,滴加过程中,不断以0.5mol/L NaOH溶液中和反应体系,使体系保持pH值基本不变,滴加乙酸酐结束后继续反应3.0h;
3)反应结束后,以0.5mol/L HCl溶液调节pH至中性,抽滤,用蒸馏水洗涤3次,烘干、粉碎,得乙酰化淀粉成品;
4)称取500g的乙酰化淀粉,控制水分在8%以下,至于在容器中,加入40g甘油和15g甲酰胺的复合增塑剂,粗略搅拌后转入高速搅拌搅机中搅拌均匀,装入密闭容器中放置24h后,得改性淀粉成品。
b)制备再生EVA:
将生产EVA鞋底过程中产生的料头、次品、废品、边角料、废弃光伏电池封装EVA胶膜放入破碎机破碎、再经密炼制备而成。
c)制备增塑软木粉:
称取500g的软木粉,控制水分在5%以下(淀粉是多羟基化合物,很容易吸水,不是真空干燥环境,会吸收空气中的水分,因此要控制其水分),至于容器中,加入50g甘油和25g甲酰胺的复合增塑剂,粗略搅拌后转入高速搅拌搅机中搅拌均匀,装入密闭容器中放置24h后,得改增塑软木粉成品。
d)制备料米A
先将EVA 7470M 25份(重量份,下同)、再生EVA 27份、增塑软木粉18份、改性淀粉20份、发泡剂AC 2.5份、交联剂BIBP1.5份、硬脂酸锌1.5份、氧化锌1.0份、硬脂酸1.3份、滑石粉7份混合进行密炼,调整密炼温度为96℃,保持6min,然后翻料2次,继续密炼升温,出料温度为106℃,密炼结束后进行开炼、挤出造粒,得到料米A;
e)制备料米B
先将EVA 7350M 17份(重量份,下同)、EVA V4110J 8份、再生EVA 27份、增塑软木粉18份、发泡剂AC 2.0份、交联剂BIBP1.2份、硬脂酸锌1.5份、氧化锌1.0份、硬脂酸1.3份、滑石粉12份混合进行密炼,调整密炼温度为96℃,保持6min,然后翻料2次,继续密炼升温,出料温度为107℃,密炼结束后进行开炼、挤出造粒,得到料米B;
f)制备冷胚
将料米B倒入吸料桶,经一次射出机台射出,模具温度15℃,得到冷胚,冷胚厚度3mm;
g)发泡
将冷胚放在真空小发泡模具的边沿,再将料米A倒入真空小发泡模具中间,合模、升温发泡,发泡温度180℃,发泡结束,自动开模,得到发泡初胚;
h)二次发泡定型
将发泡初胚放入油压模具,发泡初胚温度不低于130℃,合模,推入二次发泡成型机的加热站位,加压、升温,温度180℃,时间50秒;然后将油压模具转移至冷却站位,加压、淋水冷却模具,淋水冷却模具的水温不高于5℃,定型时间280秒,拉出模具,取出成品,即得到双硬度模压发泡材料。
实施例2:
一种双硬度模压发泡鞋底的制备,包括以下步骤:
制备方法与实施例1相同,所不同的是
d)制备料米A
先将EVA 7470M 10份(重量份,下同)、EVA 7350M 10份、再生EVA 30份、增塑软木粉25份、改性淀粉15份、发泡剂AC 2.6份、交联剂BIBP1.6份、硬脂酸锌1.6份、氧化锌1.0份、硬脂酸1.3份、滑石粉5份混合进行密炼,调整密炼温度为96℃,保持6min,然后翻料2次,继续密炼升温,出料温度为106℃,密炼结束后进行开炼、挤出造粒,得到料米A;
对比例1
一种双硬度模压发泡鞋底的制作方法,包括以下步骤:
制备方法与实施例1相同,所不同的是
h)二次发泡定型
发泡初胚室温放置24小时,然后使用皮轮打粗,将发泡初胚的表皮(表面结晶导致的致密层)去除;然后将发泡初胚放入油压模具,发泡初胚温度不低于130℃,合模,推入二次发泡成型机的加热站位,加压、升温,温度180℃,时间280秒;然后将油压模具转移至冷却站位,加压、淋水冷却模具,淋水冷却模具的水温不高于5℃,定型时间280秒,拉出模具,取出成品,即得到双硬度模压发泡材料。
将本发明实施例1-2的一种双硬度模压发泡鞋底制备方法制得的产品与对比例1所得的发泡鞋底进行材料物性试验、生产时间进行对比,其中,硬度采用GS-701N硬度计测试,回弹率测试采用GT-7042-RE型冲击弹性试验机,尺寸收缩率按照70度40分钟测试,试验对比结果如下表1所示:
以上所记载,仅为利用本创作技术内容的实施例,任何熟悉本项技艺者运用本创作所做的修饰、变化,皆属本创作主张的专利范围,而不限于实施例所揭示者。
本发明公开了一种双硬度模压发泡鞋底的制备方法,包括以下步骤:制备料米A;制备料米B;将料米B倒入吸料桶,经一次射出机台射出,得到冷胚;将冷胚放在真空小发泡模具的边沿,再将料米A倒入真空小发泡模具中间,合模、升温发泡,发泡结束,自动开模,得到发泡初胚;将发泡初胚放入油压模具,合模,推入二次发泡成型机的加热站位,加压、升温;然后将油压模具转移至冷却站位,加压、淋水冷却模具,拉出模具,取出成品,即得到双硬度模压发泡鞋底。本发明的发泡鞋底,周围一圈的硬度55C-62C,中间的硬度35C-43C,中间硬度低,有利于提高鞋底舒适性,回弹率高,减震性能好;周围一圈的硬度高,有利于改善软料容易塌陷、压缩变性率大、起皱厉害的缺陷,具有工业实用性。
Claims (11)
- 一种双硬度模压发泡鞋底的制备方法,其特征在于,包括以下步骤:步骤1:制备料米A;步骤2:制备料米B;步骤3:将料米B倒入吸料桶,经一次射出机台射出,模具温度5℃-20℃,得到冷胚,所述冷胚的厚度是1-7mm;步骤4:将冷胚放在真空小发泡模具的边沿,再将料米A倒入真空小发泡模具中间,合模、升温发泡,发泡温度172℃-182℃,发泡结束,自动开模,得到温度不低于130℃的发泡初胚;步骤5:将温度不低于130℃的发泡初胚放入油压模具,合模,推入二次发泡成型机的加热站位,加压、升温,温度170℃-180℃,时间20秒-100秒;然后将油压模具转移至冷却站位,加压、淋水冷却模具,定型时间150秒-400秒,拉出模具,取出成品,即得到双硬度模压发泡鞋底。
- 根据权利要求1所述的一种双硬度模压发泡鞋底的制备方法,其特征在于:所述料米A的具体制备方法为:先将原材料A混合进行密炼,调整密炼温度为95℃-98℃,保持4min-6min,然后翻料2次,继续密炼升温,出料温度为105℃-107℃,密炼结束后进行开炼、挤出造粒,得到料米A;所述料米B的具体制备方法为:先将原材料B混合进行密炼,调整 密炼温度为95℃-98℃,保持4min-6min,然后翻料2次,继续密炼升温,出料温度为105℃-107℃,密炼结束后进行开炼、挤出造粒,得到料米B。
- 根据权利要求1所述的一种双硬度模压发泡鞋底的制备方法,其特征在于,所述步骤5的具体步骤为:将温度不低于130℃的发泡初胚放入油压模具,合模,推入二次发泡成型机的加热站位,加压、升温,温度175±5℃,时间40秒-70秒;然后将油压模具转移至冷却站位,加压、淋水冷却模具,淋水冷却模具的水温不高于5℃,定型时间220秒-300秒,拉出模具,取出成品,即得到双硬度模压发泡材料。
- 根据权利要求1所述的一种双硬度模压发泡鞋底的制备方法,其特征在于,所述双硬度模压发泡鞋底的边沿位置硬度比中间位置硬度大。
- 根据权利要求2所述的一种双硬度模压发泡鞋底的制备方法,其特征在于,所述料米A与所述料米B所含成分不同。
- 根据权利要求6-8任一所述的一种双硬度模压发泡鞋底的制备方法,其特征在于,所述再生EVA的制备方法为:将生产EVA鞋底过程中产生的料头、次品、废品、边角料、废弃光伏电池封装EVA胶膜放入破碎机破碎,再经密炼制备而成;所述增塑软木粉是将软木粉与甘油、甲酰胺复合而成的增塑软木粉。
- 根据权利要求6或8任一所述的一种双硬度模压发泡鞋底的制备方法,其特征在于,所述改性淀粉制备方法包括以下步骤:1)将玉米淀粉称重置于反应釜中,在搅拌条件下,加入蒸馏水,配制成质量比为40%淀粉乳,加入占淀粉的质量分数为3%固体氯化钠,升温到50℃,以0.5mol/L的NaOH溶液调节至pH值11.0,加入占淀粉的质量分数为2%的六偏磷酸钠固体,反应过程保持pH不变,反应时间4h;2)以0.5mol/L的HCl溶液调节至pH值为8.5,逐滴加入占淀粉质量分数为7.5%的乙酸酐,滴加过程中,不断以0.5mol/L NaOH溶液中和 反应体系,使体系保持pH值不变,滴加乙酸酐结束后继续反应3.0h;3)反应结束后,以0.5mol/L HCl溶液调节pH至中性,抽滤,用蒸馏水洗涤3次,烘干、粉碎,得乙酰化淀粉成品;4)称取500g的乙酰化淀粉成品,控制水分在8%以下,放置在容器中,加入甘油和甲酰胺复合增塑剂,粗略搅拌后转入高速搅拌机中搅拌均匀,装入密闭容器中放置24h后,得改性淀粉成品。
- 一种发泡鞋底,其特征在于,所述发泡鞋底的边沿位置硬度比中间位置硬度大。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010875320.7 | 2020-08-27 | ||
CN202010875320.7A CN112172219B (zh) | 2020-08-27 | 2020-08-27 | 一种双硬度模压发泡鞋底的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022041933A1 true WO2022041933A1 (zh) | 2022-03-03 |
Family
ID=73924384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/099588 WO2022041933A1 (zh) | 2020-08-27 | 2021-06-11 | 一种双硬度模压发泡鞋底的制备方法及其发泡鞋底 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112172219B (zh) |
WO (1) | WO2022041933A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117700811A (zh) * | 2023-12-25 | 2024-03-15 | 东莞市利泰运动用品有限公司 | 一种双密度eva发泡软木鞋材及其制备工艺 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112172219B (zh) * | 2020-08-27 | 2023-08-04 | 茂泰(福建)鞋材有限公司 | 一种双硬度模压发泡鞋底的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1103769A (zh) * | 1993-12-15 | 1995-06-21 | 建新企业股份有限公司 | 聚乙烯醋酸乙烯酯模压发泡鞋底的制造方法 |
CN102173073A (zh) * | 2011-01-04 | 2011-09-07 | 安踏(中国)有限公司 | Eva多色多硬度鞋底的制作方法 |
CN102626996A (zh) * | 2012-04-17 | 2012-08-08 | 晋江市五里艇源鞋塑有限公司 | 一种双色鞋底的成型工艺及制备方法 |
US20160227877A1 (en) * | 2013-03-15 | 2016-08-11 | New Balance Athletics, Inc. | Multi-density sole elements, and systems and methods for manufacturing same |
CN112172219A (zh) * | 2020-08-27 | 2021-01-05 | 茂泰(福建)鞋材有限公司 | 一种双硬度模压发泡鞋底的制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1031122C (zh) * | 1991-08-20 | 1996-02-28 | 安顺企业股份有限公司 | 乙烯-醋酸乙烯共聚物发泡鞋中底的制法 |
CN100455430C (zh) * | 2003-12-16 | 2009-01-28 | 刘坤钟 | 具有同色、异物性耐磨区域的发泡鞋底成型方法 |
CN1736285B (zh) * | 2004-08-20 | 2010-05-26 | 宝成工业股份有限公司 | 双硬度eva发泡鞋底之制造方法 |
TWI264363B (en) * | 2004-08-24 | 2006-10-21 | Pou Chen Corp | Method for manufacturing a two-color and two-hardness sole using EVA foaming |
CN100443280C (zh) * | 2005-04-20 | 2008-12-17 | 微细科技股份有限公司 | 热可塑性弹性体复合材料的高倍发泡制造方法 |
FR2937039B1 (fr) * | 2008-10-13 | 2011-11-18 | Roquette Freres | Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions |
CN110818990A (zh) * | 2019-10-28 | 2020-02-21 | 茂泰(福建)鞋材有限公司 | 一种轻便慢跑鞋鞋底的制备方法 |
-
2020
- 2020-08-27 CN CN202010875320.7A patent/CN112172219B/zh active Active
-
2021
- 2021-06-11 WO PCT/CN2021/099588 patent/WO2022041933A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1103769A (zh) * | 1993-12-15 | 1995-06-21 | 建新企业股份有限公司 | 聚乙烯醋酸乙烯酯模压发泡鞋底的制造方法 |
CN102173073A (zh) * | 2011-01-04 | 2011-09-07 | 安踏(中国)有限公司 | Eva多色多硬度鞋底的制作方法 |
CN102626996A (zh) * | 2012-04-17 | 2012-08-08 | 晋江市五里艇源鞋塑有限公司 | 一种双色鞋底的成型工艺及制备方法 |
US20160227877A1 (en) * | 2013-03-15 | 2016-08-11 | New Balance Athletics, Inc. | Multi-density sole elements, and systems and methods for manufacturing same |
CN112172219A (zh) * | 2020-08-27 | 2021-01-05 | 茂泰(福建)鞋材有限公司 | 一种双硬度模压发泡鞋底的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117700811A (zh) * | 2023-12-25 | 2024-03-15 | 东莞市利泰运动用品有限公司 | 一种双密度eva发泡软木鞋材及其制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN112172219A (zh) | 2021-01-05 |
CN112172219B (zh) | 2023-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022041924A1 (zh) | 一种二次模压发泡鞋底的制备方法 | |
WO2022041933A1 (zh) | 一种双硬度模压发泡鞋底的制备方法及其发泡鞋底 | |
CN107552725B (zh) | 一种stmma大尺寸实型铸造板材消失模及其制备方法 | |
CN108340530A (zh) | 一种保温箱表面结皮工艺 | |
CN101693281B (zh) | 热模法离心铸铁管铸型涂料及其制备方法 | |
CN101497715B (zh) | 一种发泡材料及其制备工艺 | |
CN110614346A (zh) | 一种用消失模铸造工艺生产汽车模具的方法 | |
CN107650395A (zh) | 一种fd消失模板材制备方法及其所制得的消失模板材 | |
CN103817964A (zh) | 一种eva多色鞋底的生产制备方法 | |
CN110270676A (zh) | 一种铝硅合金铸造工艺 | |
CN108357004A (zh) | 一种杜仲胶形状记忆材料的制备方法及应用 | |
CN102248123A (zh) | 一种石膏制模的成形方法 | |
CN113999424A (zh) | 一种内压可控的聚丙烯发泡材料的制备方法 | |
CN115852747B (zh) | 一种纸浆模塑包装制品的制备方法 | |
CN107175313A (zh) | 一种富氧消失模泡沫白模 | |
CN106985329B (zh) | 一种良外观化学发泡注塑成型工艺 | |
CN1075912A (zh) | 一种鞋中底的制造方法 | |
JP2000270901A (ja) | 発泡靴底成型方法 | |
CN105291340A (zh) | 利用高吸水树脂作为载体的水发泡注射方法 | |
CN110511473A (zh) | 一种超轻鞋底及其加工方法 | |
CN103397114A (zh) | 一种软包制作工艺 | |
CN109589338B (zh) | 一种胶类速溶产品微孔结构瞬时固化方法 | |
CN108274680B (zh) | 中底锁模扣 | |
CN118769585A (zh) | 一种发泡鞋底制备方法 | |
CN101337607A (zh) | 聚苯乙烯泡沫塑料回收再生缓冲包装衬垫及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21859777 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21859777 Country of ref document: EP Kind code of ref document: A1 |