[go: up one dir, main page]

WO2021235259A1 - 熱伝導性シリコーン組成物、その製造方法及び半導体装置 - Google Patents

熱伝導性シリコーン組成物、その製造方法及び半導体装置 Download PDF

Info

Publication number
WO2021235259A1
WO2021235259A1 PCT/JP2021/017793 JP2021017793W WO2021235259A1 WO 2021235259 A1 WO2021235259 A1 WO 2021235259A1 JP 2021017793 W JP2021017793 W JP 2021017793W WO 2021235259 A1 WO2021235259 A1 WO 2021235259A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
silicone composition
conductive silicone
mass
Prior art date
Application number
PCT/JP2021/017793
Other languages
English (en)
French (fr)
Inventor
貴大 山口
晃 打它
隆文 坂本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN202180036731.XA priority Critical patent/CN115667406B/zh
Priority to JP2022524389A priority patent/JP7388550B2/ja
Priority to EP21808894.6A priority patent/EP4156249A4/en
Priority to US17/926,483 priority patent/US20230183483A1/en
Priority to KR1020227043810A priority patent/KR20230015374A/ko
Publication of WO2021235259A1 publication Critical patent/WO2021235259A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling

Definitions

  • the present invention relates to a thermally conductive silicone composition. More specifically, the present invention relates to a thermally conductive silicone composition for efficiently cooling electronic components, a method for producing the same, and a semiconductor device.
  • a cooling member heat sink or the like
  • the heat is dissipated by efficiently removing heat from the cooling member after bringing them into close contact with each other. At that time, if there is a gap between the heat generating member and the cooling member, the thermal resistance increases due to the presence of air having poor thermal conductivity, and the temperature of the heat generating member does not drop sufficiently.
  • a heat radiating material having good thermal conductivity and following the surface of the member for example, a liquid heat radiating material or a heat radiating sheet is used.
  • the gap may be very narrow as 10 ⁇ m or less, and a liquid heat dissipation material capable of compressing to 10 ⁇ m or less is used (Patent No. 2938428, Japanese Patent No. 2938429, Japanese Patent No. 3580366).
  • the heat conductive material may be required to have insulating properties.
  • metal particles such as aluminum, copper, and silver cannot be used as the heat conductive filler, and in many cases, an insulating heat conductive filler such as aluminum hydroxide and alumina (aluminum oxide) is used. many. Since aluminum hydroxide and alumina have low thermal conductivity in themselves, they must be filled in a large amount in order to obtain a thermally conductive material having high thermal conductivity.
  • thermally conductive silicone composition having both high thermal conductivity and compressibility to a thickness of 10 ⁇ m or less and having high durability (power cycle resistance, pump-out resistance). ..
  • a thermally conductive silicone composition that can immediately determine whether or not the reaction related to the thickening and curing after application (filling and coating) to a semiconductor device, particularly the thickening or curing, has been completed. Aimed at the development of.
  • the present invention has been made in view of the above circumstances, and has higher thermal conductivity than the conventional thermally conductive silicone composition, can be compressed to a thickness of 10 ⁇ m or less, and has high durability.
  • thermally conductive silicone composition capable of visually recognizing (determining) the degree of thickening or curing (that is, the progress state of the crosslinking reaction) after application (filling, coating) to a semiconductor device, a method for manufacturing the same, and a semiconductor device.
  • the purpose is to provide.
  • an organopolysiloxane having a hydroxyl group or a hydrolyzable group and a hydrolyzable organopolysiloxane having a specific hydrolyzable silyl group such as an alkoxysilyl group have found an organopolysiloxane having a hydroxyl group or a hydrolyzable group and a hydrolyzable organopolysiloxane having a specific hydrolyzable silyl group such as an alkoxysilyl group.
  • a silicone composition containing a silicon compound having a hydrolyzable silyl group and zinc oxide having an average particle size in a specific range has a higher thermal conductivity and a thickness as compared with a conventional silicone composition.
  • the present invention provides the following thermally conductive silicone composition, a method for producing the same, and a semiconductor device.
  • R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms independently, and n1 is an integer of 10 or more.
  • R 1 is an independently unsaturated or substituted monovalent hydrocarbon group
  • Y is an independent oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • R 2 is an independent fat.
  • R 3 is an alkyl group having 1 to 4 carbon atoms independently, an alkoxyalkyl group, an alkenyl group or an acyl group, and m is bonded. An integer of 0 to 2 is independently used for each silicon atom, and n2 is an integer of 10 or more.
  • (B) Organopolysiloxane represented by the following general formula (3): 150 to 600 parts by mass, [In the general formula (3), R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
  • X 1 is R 1 or -Y-Si R 2 g (OR 3 ) 3-g
  • Y is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • R 2 independently forms an aliphatic unsaturated bond. It is an unsubstituted or substituted monovalent hydrocarbon group that is not contained
  • R 3 is an alkyl group having 1 to 4 carbon atoms independently, an alkoxyalkyl group, an alkenyl group or an acyl group
  • g is an integer of 0 to 2.
  • X 2 is independently ⁇ Y—SiR 2 g (OR 3 ) 3-g (in the formula, Y, R 2 , R 3 , g are the same as those in X 1 above.) It is a group represented by, and contains at least one —Y—SiR 2 g (OR 3 ) 3-g in one molecule.
  • a and b are integers that satisfy the range of 1 ⁇ a ⁇ 1,000 and 0 ⁇ b ⁇ 1,000, respectively.
  • Hydrolyzing agent component 0.1 to 100 parts by mass
  • thermally conductive silicone composition [2] The heat conductive silicone composition according to [1], which is thickened or hardened by a cross-linking reaction due to humidity in the atmosphere, and when the cross-linking reaction is completed, the color of the composition changes from the unreacted state. thing. [3] The thermally conductive silicone composition according to [1] or [2], wherein the content of the component (B) is 20 to 40% by volume with respect to the entire composition and the thickness can be compressed to 10 ⁇ m or less. ..
  • the heat conductive silicone composition according to any one of [1] to [11] is packed in a layer in a gap having a thickness of 10 ⁇ m or less formed between a heating element and a cooling element, and the composition layer is the heating element.
  • the heating element is an insulated gate bipolar transistor.
  • the present invention has higher thermal conductivity than the conventional thermally conductive silicone composition, has good compressibility to a thickness of 10 ⁇ m or less, and has high durability (power cycle resistance, pump-out resistance). ) Also, it is possible to provide a thermally conductive silicone composition. Further, since the thermally conductive silicone composition changes color (from the unreacted state) when the crosslinking reaction is completed in the composition, the composition may be filled or applied to a semiconductor device or the like. After application, the heat is increased by thickening or curing at room temperature due to moisture in the atmosphere, and visually confirming that the color of the thermally conductive silicone composition has changed from that in the unreacted state immediately after application. It can be easily determined that the cross-linking reaction related to the thickening and curing of the conductive silicone composition has been completed.
  • the present invention (A) Organopolysiloxane represented by the following general formula (1) or (2): 100 parts by mass, (In the general formula (1), R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms independently, and n1 is an integer of 10 or more.) (In the general formula (2), R 1 is an independently unsaturated or substituted monovalent hydrocarbon group, Y is an independent oxygen atom or an alkylene group having 1 to 4 carbon atoms, and R 2 is an independent fat.
  • R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms independently, and n1 is an integer of 10 or more.
  • R 1 is an independently unsaturated or substituted monovalent hydrocarbon group
  • Y is an independent oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • R 2 is an independent fat.
  • R 3 is an alkyl group having 1 to 4 carbon atoms independently, an alkoxyalkyl group, an alkenyl group or an acyl group, and m is bonded. An integer of 0 to 2 is independently used for each silicon atom, and n2 is an integer of 10 or more.
  • (B) Organopolysiloxane represented by the following general formula (3): 150 to 600 parts by mass, [In the general formula (3), R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
  • X 1 is R 1 or -Y-Si R 2 g (OR 3 ) 3-g
  • Y is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • R 2 independently forms an aliphatic unsaturated bond. It is an unsubstituted or substituted monovalent hydrocarbon group that is not contained
  • R 3 is an alkyl group having 1 to 4 carbon atoms independently, an alkoxyalkyl group, an alkenyl group or an acyl group
  • g is an integer of 0 to 2.
  • X 2 is independently ⁇ Y—SiR 2 g (OR 3 ) 3-g (in the formula, Y, R 2 , R 3 , g are the same as those in X 1 above.) It is a group represented by, and contains at least one —Y—SiR 2 g (OR 3 ) 3-g in one molecule.
  • a and b are integers that satisfy the range of 1 ⁇ a ⁇ 1,000 and 0 ⁇ b ⁇ 1,000, respectively.
  • Hydrolyzing agent component 0.1 to 100 parts by mass
  • (F) pH indicator 0.01 to 20 parts by mass, and optionally.
  • a thermally conductive silicone composition which may contain a filler other than the components (D) and has a thermal conductivity of 0.5 W / mK or more at 25 ° C. by the hot disk method. More preferably, it can be compressed to a thickness of 10 ⁇ m or less, and is thickened or hardened by a cross-linking reaction due to humidity in the atmosphere. When this cross-linking reaction is completed, the color of the composition is from an unreacted state.
  • a variable thermally conductive silicone composition By thickening or hardening with the humidity in the atmosphere, it is possible to visually recognize (determine) that the reaction related to thickening or hardening is completed by changing the color from the unreacted one.
  • -(A) component organopolysiloxane-
  • the component (A) is an organopolysiloxane represented by the following general formula (1).
  • the organopolysiloxane has a structure in which both ends of a molecular chain are sealed with a group in which a hydroxyl group is bonded to a silicon atom, that is, a silanol group or a diorganohydroxysiloxy group.
  • the linear organopolysiloxane having the structure acts as a main agent (base polymer) in the composition of the present invention.
  • R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of Rs may be the same or different from each other.
  • N1 is 10 or more. Is an integer of.
  • the carbon number of the unsubstituted or substituted monovalent hydrocarbon group of R is 1 to 20, preferably 1 to 10, and more preferably 1 to 8.
  • unsubstituted monovalent hydrocarbon group of R examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group and a neopentyl group.
  • Cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group and hexenyl group; phenyl group, trill group, xsilyl group, ⁇ -, ⁇ An aryl group such as a naphthyl group; an aralkyl group such as a benzyl group, a 2-
  • substituted monovalent hydrocarbon group of R a part or all of hydrogen atoms of the unsubstituted monovalent hydrocarbon group are halogen atoms such as fluorine (F), chlorine (Cl) and bromine (Br). Or a group substituted with a cyano group or the like. Examples of such a group include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group and the like.
  • R among these unsubstituted or substituted monovalent hydrocarbon groups, a methyl group, an ethyl group and a phenyl group are preferable, and a methyl group and a phenyl group are particularly preferable from the viewpoint of availability, productivity and cost.
  • the organopolysiloxane of the component (A) (formula (1) and the formula (2) described later) preferably has a viscosity of 10 to 1,000,000 mPa ⁇ s at 25 ° C., and more preferably 50 to 50 to s. It is 500,000 mPa ⁇ s, particularly preferably 100 to 200,000 mPa ⁇ s, and more preferably 500 to 100,000 mPa ⁇ s.
  • the viscosity of the organopolysiloxane at 25 ° C. is 10 mPa ⁇ s or more, it is preferable because it is easy to obtain a coating film having excellent physical and mechanical strength.
  • the viscosity of the composition does not become too high and the workability at the time of use is good, which is preferable.
  • the viscosities described herein are all numerical values measured with a rotational viscometer. Examples of the rotational viscometer include BL type, BH type, BS type, cone plate type and the like (hereinafter, the same).
  • n1 in the above general formula (1) is the number of units or the degree of polymerization of the bifunctional diorganosiloxane present in the molecule.
  • the number of units or the degree of polymerization of the bifunctional diorganosiloxane represented by n1 in the general formula (1) is 10 to 10. It is an integer of 2,000, preferably 50 to 1,800, more preferably 100 to 1,700, and even more preferably 200 to 1,600.
  • the degree of polymerization (or molecular weight) described in the present specification is obtained as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. Yes (hereinafter the same).
  • the component (A) is an organopolysiloxane represented by the following general formula (2).
  • the organopolysiloxane is a linear organopolysiloxane sealed with a hydrolyzable silyl group having 1 to 3 organooxy groups bonded to silicon atoms at both ends of the molecular chain, and is the composition of the present invention. It acts as a main agent (base polymer) in.
  • R 1 is an independently unsaturated or substituted monovalent hydrocarbon group
  • Y is an independent oxygen atom or an alkylene group having 1 to 4 carbon atoms
  • R 2 is an independent fat.
  • R 3 is an alkyl group having 1 to 4 carbon atoms independently, an alkoxyalkyl group, an alkenyl group or an acyl group, and m is bonded.
  • An integer of 0 to 2 is independently used for each silicon atom, and n2 is an integer of 10 or more.
  • R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group having preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms, and examples thereof.
  • Examples thereof include a linear alkyl group, a branched chain alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, a halogenated alkyl group and the like.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group and an octyl group.
  • Examples of the branched chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group and a 2-ethylhexyl group.
  • Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • alkyl halide group examples include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 1 a methyl group, a phenyl group and a vinyl group are preferable, and a methyl group is more preferable.
  • alkylene group having 1 to 4 carbon atoms of Y examples include a linear alkylene group such as a methylene group, an ethylene group, a propylene group and a butylene group, and isomers thereof such as an isopropylene group and an isobutylene group. ..
  • Y an oxygen atom or an ethylene group is preferable.
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms.
  • Alkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group; Aryl group such as phenyl group, trill group, xylyl group, naphthyl group, biphenylyl group; benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl Aralkyl groups such as groups; and some or all of the hydrogen atoms to which the carbon atoms of these groups are bonded are halogen atoms such as fluorine (F), chlorine (Cl), bromine (Br), cyano groups, etc. Substituted groups and the like can be mentioned, but a methyl group is particularly preferable.
  • R 3 is independently an alkyl group having 1 to 4 carbon atoms, an alkoxyalkyl group, an alkenyl group or an acyl group.
  • the alkyl group of R 3 include an alkyl group having 1 to 4 carbon atoms similar to those exemplified for R 1.
  • the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
  • the alkenyl group include alkenyl groups having 1 to 4 carbon atoms similar to those exemplified for R 1.
  • the acyl group of R 3 include an acetyl group and a propionoxy group.
  • R 3 is preferably an alkyl group, and particularly preferably a methyl group or an ethyl group.
  • n is an integer of 0 to 2 independently for each silicon atom to be bonded, and is preferably 0. It is preferable to have 1 to 6, particularly 4 or 6 OR 3 groups in the molecule.
  • n2 in the above general formula (2) is the number of units or the degree of polymerization of the bifunctional diorganosiloxane present in the molecule.
  • the number of units or the degree of polymerization of the bifunctional diorganosiloxane represented by n2 in the general formula (2) is 10 to 10 to It is an integer of 2,000, preferably 50 to 1,800, more preferably 100 to 1,700, and even more preferably 200 to 1,600.
  • the organopolysiloxane of the component (A) can be used alone or in combination of two or more.
  • the component (B) is a hydrolyzable organopolysiloxane having a hydrolyzable silyl group such as an alkoxysilyl group at one terminal and / or side chain (non-terminal) of the molecular chain represented by the following general formula (3). ..
  • the component (B) acts as a surface treatment agent (dispersant or wetter) for the zinc oxide particles (heat conductive filler) of the component (D) described later.
  • the heat conductivity is obtained.
  • the silicone composition can maintain fluidity, it is possible to suppress deterioration of heat dissipation performance due to oil separation and pump-out over time.
  • R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
  • X 1 is R 1 or -Y-Si R 2 g (OR 3 ) 3-g
  • Y is an oxygen atom or an alkylene group having 1 to 4 carbon atoms, and R 2 independently forms an aliphatic unsaturated bond. It is an unsubstituted or substituted monovalent hydrocarbon group that is not contained, R 3 is an alkyl group having 1 to 4 carbon atoms independently, an alkoxyalkyl group, an alkenyl group or an acyl group, and g is an integer of 0 to 2.
  • X 2 is independently ⁇ Y—SiR 2 g (OR 3 ) 3-g (in the formula, Y, R 2 , R 3 , g are the same as those in X 1 above.) It is a group represented by, and contains at least one —Y—SiR 2 g (OR 3 ) 3-g in one molecule.
  • a and b are integers that satisfy the range of 1 ⁇ a ⁇ 1,000 and 0 ⁇ b ⁇ 1,000, respectively. ]
  • R 1 represents the same manner as R 1 in the formula (2), unsubstituted or substituted independently preferably 1 to 10 carbon atoms, more preferably 1 to 6, more preferably 1 to 3 is a monovalent hydrocarbon group, and examples thereof include a linear alkyl group, a branched chain alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, and an alkyl halide group.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group and an octyl group.
  • Examples of the branched chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group and a 2-ethylhexyl group.
  • Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • alkyl halide group examples include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 1 a methyl group, a phenyl group and a vinyl group are preferable.
  • alkylene group having 1 to 4 carbon atoms of Y examples include a linear alkylene group such as a methylene group, an ethylene group, a propylene group and a butylene group, and isomers thereof such as an isopropylene group and an isobutylene group. ..
  • Y an oxygen atom or an ethylene group is preferable.
  • R 2 does not independently contain an aliphatic unsaturated bond, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 substituents. Alternatively, it is a substituted monovalent hydrocarbon group.
  • Alkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group; Aryl group such as phenyl group, trill group, xylyl group, naphthyl group, biphenylyl group; benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl Aralkyl groups such as groups; and some or all of the hydrogen atoms to which the carbon atoms of these groups are bonded are halogen atoms such as fluorine (F), chlorine (Cl), bromine (Br), cyano groups, etc. Substituted groups and the like can be mentioned, but a methyl group is particularly preferable.
  • R 3 above like the R 3 in the formula (2), independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxyalkyl group, an alkenyl group or an acyl group.
  • the alkyl group of R 3 include an alkyl group having 1 to 4 carbon atoms similar to those exemplified for R 1.
  • the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
  • Examples of the alkenyl group include alkenyl groups having 1 to 4 carbon atoms similar to those exemplified for R 1.
  • the acyl group of R 3 include an acetyl group and a propionoxy group.
  • R 3 is preferably an alkyl group, and particularly preferably a methyl group or an ethyl group.
  • the hydrolyzable organopolysiloxane of the component (B) has a hydrolyzable silyl group such as an alkoxysilyl group at the terminal and / or the side chain (non-terminal) of the molecular chain piece, but at least the molecular chain piece. It preferably has a hydrolyzable silyl group at the end.
  • the component (B) is the main component of the silicone matrix in the thermally conductive silicone composition of the present invention, and the content thereof is 150 to 600 parts by mass, preferably 160 to 500 parts by mass with respect to 100 parts by mass of the component (A). Is.
  • the content of the component (B) is preferably 20 to 40% by volume, more preferably 25 to 35% by volume, based on the entire heat conductive silicone composition.
  • the content (% by volume) of the component (B) with respect to the entire heat conductive silicone composition is the volume ratio to the composition, and the volume of the component (B) is determined from the blending amount (mass) and density of the component (B). , And calculated the total volume of the entire heat conductive silicone composition obtained from the blending amount (mass) and density of each component, and ⁇ (B) volume of component ⁇ / ⁇ total volume of the heat conductive silicone composition.
  • the content (% by volume) of the component (B) with respect to the entire heat conductive silicone composition can be determined by the total volume of ⁇ ⁇ 100 (%). Further, the component (B) may be blended alone or in combination of two or more.
  • the component (C) has a hydrolyzable organosilane compound other than the component (B) having one methyl group, vinyl group or phenyl group in one molecule and having at least three hydrolyzable groups and / Alternatively, it is a partially hydrolyzable condensate (an organosiloxane oligomer having three or more residual hydrolyzable groups in a molecule produced by partially hydrolyzing and condensing the organosilane compound), and the hydrolyzable organosilane.
  • the compound is of the formula; R 4- SiX 3 (In the above formula, R 4 is any one group selected from the group consisting of a methyl group, a vinyl group and a phenyl group. X is a hydrolyzable group.) It is represented by.
  • the component (C) is used as a cross-linking agent (chain extender). Further, the above condensate as the component (C) does not have an amino group.
  • (C) a hydrolyzable organosilane compound of the component and / or with its partial hydrolysis condensate, the hydrolyzable groups are two organosilane compounds (SiR 4 2 X 2) and / or partial hydrolytic condensation thereof
  • a substance organosiloxane oligomer having two or more residual hydrolyzable groups in a molecule produced by partially hydrolyzing and condensing the organosilane compound may be used.
  • Examples of the hydrolyzable group contained in the component (C) include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group and the like having 1 to 20 carbon atoms, preferably 1 carbon number.
  • An alkenyloxy group having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms such as a vinyloxy group, an aryloxy group, a propenoxy group and an isopropenoxy group; a dimethyl ketooxym group and a diethyl ketooxym group.
  • Methylethylketooxym group or the like having 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 6 carbon atoms; an acetoxy group or the like having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, More preferably, an acyloxy group having 2 to 5 carbon atoms and the like can be mentioned.
  • the component (C) include methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, methyltris (methoxyethoxy) silane, vinyltris (methoxyethoxy) silane, and the like.
  • the component (C) is not limited to these specific examples.
  • the corresponding compound can be used alone or in combination of two or more.
  • the content of the component (C) is 0.1 to 100 parts by mass, preferably 0.1 to 25 parts by mass, and more preferably 0.5 to 0.5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). It is used in the range of 18 parts by mass. If the content of the component (C) is less than 0.1 parts by mass, cross-linking is not sufficient and it is difficult to obtain the desired viscous composition. If it exceeds 100 parts by mass, the mechanical properties of the physical properties of the obtained composition are deteriorated, which causes a problem that it is economically disadvantageous.
  • the thermally conductive silicone composition of the present invention contains (D) zinc oxide particles as a thermally conductive filler.
  • Zinc oxide has a high thermal conductivity equivalent to that of metal oxides such as aluminum oxide and magnesium oxide. Therefore, if a necessary and sufficient amount of filling is possible, a thermally conductive silicone composition having a relatively high thermal conductivity can be obtained.
  • the average particle size of the zinc oxide particles of the component (D) is 0.1 ⁇ m or more and 2 ⁇ m or less, preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less. When the average particle size of the zinc oxide particles of the component (D) exceeds 2 ⁇ m, the compressibility of the obtained thermally conductive silicone composition is significantly deteriorated. Further, when the average particle size of the zinc oxide particles (D) is less than 0.1 ⁇ m, the viscosity of the thermally conductive silicone composition is remarkably increased.
  • the average particle diameter is a volume average particle diameter (cumulative average diameter D 50 (median diameter)) by microtrack (laser diffraction / scattering method), and can be measured by, for example, Microtrack MT330OEX manufactured by Nikkiso Co., Ltd. (hereinafter, the same).
  • the content (content ratio) of the coarse powder (coarse particles) having a particle diameter of 10 ⁇ m or more in the laser diffraction type particle size distribution of the component (D) is 1% by volume or less of the entire component (D). If the content of the crude powder exceeds 1% by volume, the thickness of the thermally conductive silicone composition when compressed cannot be 10 ⁇ m or less. In order to obtain such a coarse powder content, it is preferable to perform a classification treatment in advance by a conventionally known means, or the zinc oxide powder ((D) component) having such a coarse powder content). Is available as a commercial product in grades such as 1 type, 2 types, and 3 types of zinc oxide.
  • the content of the coarse powder can be easily determined by measuring the particle size distribution of the entire component (D) using, for example, Microtrac MT330OEX manufactured by Nikkiso Co., Ltd. by a laser diffraction / scattering method (hereinafter, the same). ).
  • the zinc oxide particles of the component (D) are contained in an amount of 1,500 to 6,500 parts by mass, preferably 2,000 to 6,000 parts by mass with respect to 100 parts by mass of the component (A). It is to be mixed in parts. Further, the component (D) is preferably contained in an amount of 45 to 70% by volume, more preferably 55 to 65% by volume, based on the entire heat conductive silicone composition. (D) When the content of the zinc oxide particles is less than 1,500 parts by mass or less than 45% by volume, the thermal conductivity of the thermally conductive silicone composition decreases, and when it exceeds 6,500 parts by mass or 70% by volume. , The heat conductive silicone composition is not uniform.
  • the content (% by volume) of the (D) zinc oxide particles in the entire heat conductive silicone composition is the volume ratio to the composition, and the (D) component is based on the blending amount (mass) and density of the (D) component.
  • the total volume of the heat conductive silicone composition obtained from the blending amount (mass) and density of each of the components was calculated, and ⁇ (D) component volume ⁇ / ⁇ heat conductive silicone composition.
  • the total content (% by volume) of the component (D) with respect to the entire heat conductive silicone composition can be determined by the total volume of the entire product ⁇ ⁇ 100 (%).
  • the component (D) is surface-treated with the component (B).
  • Adhesive accelerator- The adhesiveness accelerator of the component (E) is used to impart the necessary adhesiveness to the thermally conductive silicone composition of the present invention.
  • a known silane coupling agent excluding the component (C)
  • the silane coupling agent a carbon functional group-containing hydrolyzable silane (so-called carbon functional silane) or the like is preferably used, and a (meth) acrylic silane coupling agent, an epoxysilane coupling agent, or an aminosilane coupling agent is used.
  • examples thereof include agents (excluding guanidyl group-containing hydrolyzable silane compounds), mercaptosilane coupling agents, and isocyanate silane coupling agents.
  • An example is a compound that has been condensed and condensed.
  • a basic silane coupling agent is preferable, and epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane are particularly preferable.
  • Aminosilanes such as 3-aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane; isocyanatesilane is preferred, 3-aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -Aminosilanes such as aminopropyltrimethoxysilane; isocyanatesilanes are more preferred, and aminosilanes such as 3-aminopropyltriethoxysilane and N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane are even more preferred, 3-amino. Aminoalkyltriethoxysilanes such as propyltriethoxysilane are particularly preferred.
  • the content of the component (E) is 0.01 to 30 parts by mass, particularly preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (A). If the content of the component (E) is less than 0.01 parts by mass with respect to 100 parts by mass of the component (A), sufficient adhesiveness cannot be imparted to the composition of the present invention. If it exceeds 30 parts by mass, the mechanical properties of the physical properties of the obtained composition are deteriorated, and there arises a problem that it is economically disadvantageous.
  • the component (F) used in the thermally conductive silicone composition of the present invention is a pH indicator that changes color with a change in pH, and preferably changes color in the basic region.
  • the component (F) is used in combination with a tackifier (silane coupling agent) of the component (E), particularly a basic silane coupling agent such as the above-mentioned aminosilane coupling agent (a pH indicator and a silane coupling agent are used). It is intended to impart a discoloration function utilizing the change in pH of the composition when the reaction of thickening and curing proceeds by adsorbing water in the atmosphere to the composition.
  • a commonly used pH indicator can be used.
  • phenolphthalein, thymolphthalein, alizarine yellow R, cresolphthalein, cresol red, phenolred, bromothymol blue and the like can be exemplified, and these may be used alone or in combination of two or more. It may be used together.
  • the blending amount of the component (F) is 0.01 to 20 parts by mass, preferably 0.1 to 9 parts by mass, and more preferably 1 to 6 parts by mass with respect to 100 parts by mass of the component (A). It is a department. If the blending amount of the component (F) is less than the above lower limit of 0.01 parts by mass, sufficient color change may not be obtained. Further, if the amount of the component (F) exceeds 20 parts by mass of the above upper limit value, a pH indicator may be deposited on the surface of the thermally conductive silicone composition, or the appearance of the composition may be deteriorated.
  • reaction catalyst-(G) component reaction catalyst-
  • the reaction catalyst of the component (G) is an optional component that may be blended as needed, and a non-metal-based organic catalyst and / or a metal-based catalyst can be used as the reaction catalyst of the component (G).
  • the component (G) has an action of promoting curing (increased viscosity) of the thermally conductive silicone composition of the present invention.
  • the non-metallic organic catalyst is not particularly limited, but a known one can be used as a curing (viscosity increasing) accelerator of the thermally conductive silicone composition.
  • phosphazene-containing compounds such as N, N, N', N', N'', N''-hexamethyl-N'''-(trimethylsilylmethyl) -phosphorimidic triamide; hexylamine, dodecylamine phosphate.
  • Amine compounds such as or salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; N, N, N', N'-tetramethylguanidylpropyltri
  • a guanidyl group such as methoxysilane, N, N, N', N'-tetramethylguanidylpropylmethyldimethoxysilane, N, N, N', N'-tetramethylguanidylpropyltris (trimethylsiloxy) silane Examples thereof include silanes and siloxanes contained therein. Further, one kind of non-metal organic catalyst may be used, or two or more kinds may be mixed and used.
  • the metal-based catalyst is not particularly limited, but a known catalyst as a curing (viscosity increasing) accelerator of the thermally conductive silicone composition can be used.
  • a known catalyst as a curing (viscosity increasing) accelerator of the thermally conductive silicone composition can be used.
  • alkyl tin ester compounds such as dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin dioctate, dioctyl tin dineodecanoate, di-n-butyl-dimethoxytin; tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis.
  • Titanium esters or titanium chelate compounds such as (2-ethylhexoxy) titanium, dipropoxybis (acetylacetonato) titanium, titanium isopropoxyoctylene glycol; zinc naphthenate, zinc stearate, zinc-2-ethyloctate; aluminum.
  • Alcolate aluminum compounds such as isopropylate and aluminum secondary butyrate; aluminum chelate compounds such as aluminum alkylacetate / diisopropyrate, aluminum bisethylacetate / monoacetylacetonate; bismuth neodecanoate (III), 2-ethylhexanoic acid Organic metals such as bismuth (III), bismuth citrate (III), bismuth octylate, iron-2-ethylhexoate, cobalt-2-ethylhexoate, manganese-2-ethylhexoate, cobalt naphthenate, etc.
  • Compounds; Examples thereof include lower fatty acid salts of alkali metals such as potassium acetate, sodium acetate and lithium oxalate.
  • the metal-based catalyst is not limited to these.
  • One type of metal catalyst may be used, or two or more types may be mixed and used.
  • the content of the component (G) may be a small amount of catalyst.
  • the content thereof is 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A), particularly preferably 0.05 to 10 parts by mass, and further. It is preferably 0.05 to 5 parts by mass. If the content of the component (G) is less than 0.01 parts by mass, a good curing reaction (viscosity increase) cannot be obtained, which causes a problem that the reaction rate becomes slow. If it exceeds 20 parts by mass, the reaction rate of the composition is too fast, so that the working time after applying the composition may be shortened.
  • filler-(H) component filler-
  • the filler of the component (H) is an optional component that may be blended as needed, and the component (H) is a filler (inorganic filler and / or organic resin) other than the zinc oxide particles of the component (D). Filler), which is used to impart sufficient mechanical strength to this composition.
  • a known filler can be used as the filler for the component (H). For example, fine powder silica, fumigant silica, sedimentation silica, silica whose surface is hydrophobized with an organic silicon compound; glass beads; glass balloons; transparent resin beads; silica aerogel; diatomaceous earth, iron oxide, titanium oxide, fumes.
  • Metal oxides such as metal oxides; Wet silica or silane treated surfaces thereof; Reinforcing agents such as quartz powder, talc, zeolite and bentonite; Asbestos, glass fibers, carbon fibers, calcium carbonate, magnesium carbonate, carbon dioxide Metallic carbonates such as zinc; glass wool, fine powder mica, molten silica powder, polystyrene, polyvinyl chloride, synthetic resin powders such as polypropylene and the like are used.
  • inorganic fillers such as silica, calcium carbonate and zeolite are preferable, and aerosol silica and calcium carbonate whose surface is hydrophobized are particularly preferable.
  • the filler of the component (H) does not include zinc oxide having a predetermined average particle size defined as the component (D) described above.
  • the content thereof is 1 to 1,000 parts by mass, preferably 3 to 500 parts by mass, and particularly 5 to 300 parts by mass with respect to 100 parts by mass of the component (A). It is preferably a mass part. If it is used in a larger amount than 1,000 parts by mass, the viscosity of the composition increases and the workability deteriorates. If the content of the component (H) is less than 1 part by mass, the mechanical strength of the obtained composition cannot be sufficiently increased.
  • the average particle size of the filler of the component (H) is preferably 0.005 ⁇ m (5 nm) or more and 2 ⁇ m or less, and more preferably 0.01 ⁇ m or more and 1.5 ⁇ m or less.
  • the content (content ratio) of the coarse powder (coarse particles) having a particle size of 10 ⁇ m or more in the laser diffraction type particle size distribution is the same as that of the zinc oxide particles of the component (D).
  • H) It is preferably 1% by volume or less of the total component. If the content of the crude powder in the component (H) exceeds 1% by volume, it may be difficult to reduce the thickness of the thermally conductive silicone composition to 10 ⁇ m or less when compressed.
  • the thermally conductive silicone composition of the present invention further (I) a linear diorganopolysiloxane represented by the following general formula (4) (so-called non-functionality). Silicone oil) may be added as an optional component as needed.
  • R 5 is a monovalent hydrocarbon group containing no aliphatic unsaturated bond having 1 to 20 carbon atoms which may have a hydrogen atom or a substituent, and p is 1 to 1. It is an integer of 2,000.
  • the monovalent hydrocarbon group containing no unsubstituted or substituted aliphatic unsaturated bond of R 5 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more. It is preferably 1 to 8.
  • the plurality of R 5s may be the same or different from each other.
  • the unsubstituted monovalent hydrocarbon group of R 5 in the formula (4) includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group and a neopentyl group.
  • Alkyl group such as group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group and eicosyl group.
  • Cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, trill group, xylyl group, ⁇ -, ⁇ -naphthyl group; aralkyl such as benzyl group, 2-phenylethyl group and 3-phenylpropyl group
  • the group can be exemplified.
  • the substituted monovalent hydrocarbon group a part or all of the hydrogen atom of the unsubstituted monovalent hydrocarbon group is a halogen atom such as fluorine (F), chlorine (Cl), bromine (Br).
  • R 5 in the formula (4) is preferably a methyl group, and is preferably a dimethylpolysiloxane in which both ends of the molecular chain are sealed with a trimethylsiloxy group.
  • p is a numerical value indicating the degree of polymerization of the component (I) and is an integer of 1 to 2,000, particularly preferably 2 to 2,000, and more preferably 20 to 2,000.
  • the viscosity of the diorganopolysiloxane of the component (I) at 25 ° C. is 1.5 to 1,000,000 mPa ⁇ s, preferably 30 to 100,000 mPa ⁇ s. Will be.
  • the content thereof is preferably 0.01 to 100 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the component (A).
  • the amount of the component (I) is within the above range, it is preferable in that the mechanical properties and flame retardancy of the thermally conductive silicone composition of the present invention are not impaired. Further, the composition can be adjusted to have an elastic modulus and viscosity that are easy to handle in construction.
  • a conventionally known antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be added as required in order to prevent deterioration of the thermally conductive silicone composition. May be blended. Further, a thixophilic imparting agent, a dye, a pigment, a flame retardant, a sedimentation inhibitor, a thixotropic property improving agent and the like can be blended as needed.
  • the thermally conductive silicone composition of the present invention has a higher thermal conductivity than the conventional thermally conductive silicone composition, and has good compressibility to a thickness of 10 ⁇ m or less.
  • the thermal conductivity of the thermally conductive silicone composition of the present invention at 25 ° C. in the hot disk method is 0.5 W / mK or more, preferably 1.3 W / mK or more.
  • the details of the method for measuring the thermal conductivity are, for example, the methods of Examples described later.
  • the thermally conductive silicone composition of the present invention has good compressibility.
  • the thickness of the thermally conductive silicone composition when the pressure of 4.1 MPa is applied for 2 minutes is 10 ⁇ m or less, preferably in the range of 0.5 to 10 ⁇ m, and preferably in the range of 0.5 to 5 ⁇ m. Is more preferable.
  • the details of the method for measuring the thickness when pressurization is performed are, for example, the methods of Examples described later.
  • the thermally conductive silicone composition of the present invention has both high thermal conductivity and good compressibility, and thus has low thermal resistance.
  • the thermal resistance of the thermally conductive silicone composition is preferably 5 mm 2 ⁇ K / W or less at 25 ° C. measured by a laser flash method, and more preferably 3 mm 2 ⁇ K / W.
  • the lower limit is not particularly limited, but as a physical problem, it can be set to, for example, 0.1 mm 2 ⁇ K / W.
  • the thermal conductivity of the thermally conductive silicone composition is further increased.
  • the details of the method for measuring thermal resistance are, for example, the methods of Examples described later.
  • the absolute viscosity of the thermally conductive silicone composition of the present invention measured by a spiral viscometer at 25 ° C. is preferably 3 to 600 Pa ⁇ s, more preferably 10 to 600 Pa ⁇ s.
  • the absolute viscosity can be adjusted by blending each of the above-mentioned components.
  • the absolute viscosity is a value measured by, for example, a spiral viscometer manufactured by Malcolm Co., Ltd. at 25 ° C. and a shear rate of 6S- 1.
  • the mechanism by which the color changes with thickening / curing is due to the color change due to the pH indicator.
  • the thermally conductive silicone composition of the present invention is thickened and cured by the progress of the condensation reaction (bridge reaction) due to the humidity (moisture) in the atmosphere. Therefore, the composition is in an unreacted state. When stored, it is stored in a state of being shielded from the atmosphere (outside air), but when the composition is exposed to the atmosphere containing moisture (moisture) during the condensation reaction, it is specified as a pH indicator.
  • the composition By containing (coexisting) an acidic or basic silane coupling agent in the composition, the composition adsorbs moisture (moisture) in the atmosphere when it is adsorbed from the surface. If moisture (moisture) permeates the system of the composition (or the cured product) and effective moisture is present in the system (in the composition or cured product), the moisture and the silane coupling agent are present. Discoloration occurs due to changes in pH due to coexistence. However, in the case of a moisture-thickening / curing type composition before the start of the condensation reaction and / or during the progress of the reaction (before the completion of the reaction), the composition system is applied from the surface of the composition until the reaction of the composition is completed.
  • the heat conductive silicone composition of the present invention has its own color (hue (hue) and / or color tone) that is not affected by the color development of the pH indicator from the unreacted state until the reaction is completed.
  • the composition changes from white or the hue of the filler itself other than white due to the presence of the filler to the color developed by the pH indicator after the reaction is completed. ) Changes in color. Therefore, by utilizing the discoloration mechanism of the present invention, it is possible to visually recognize (discriminate) the state of unreaction and reaction (thickening / hardening) more clearly as compared with the prior art.
  • the method for producing the thermally conductive silicone composition of the present invention is the above-mentioned method for producing the thermally conductive silicone composition of the present invention, and the above-mentioned (A), (B), (C), (D),. It is characterized by having a step of mixing the components (E) and (F).
  • the above-mentioned component (B) or the components (A) and (B) are mixed with the component (D) at a temperature of 100 ° C. or higher, preferably 150 ° C. or higher and 250 ° C. or lower for 30 minutes or longer, preferably 40 minutes or longer. It is preferable to include a step of mixing for less than an hour. Specifically, a step of mixing the above-mentioned (B) component, or (A) and (B) components and (D) component as described above, and at least (C), (E) and (F). It is preferable to include a step of mixing the components and other optional components as needed.
  • the components (B) and (D) or the components (A), (B) and (D) are mixed in advance under reduced pressure, and heated, specifically at 100 to 160 ° C. for 30 minutes to. Mix for about 3 hours. Subsequently, each component (C), (E) and (F) and other components to be blended as needed are blended into the mixture, and the mixture is blended under normal pressure or reduced pressure, preferably 0.09 to 0. Further mix under a reduced pressure of 01 MPa.
  • the composition of the present invention can be produced by mixing under non-heating, preferably at 60 ° C. or lower, usually for about 30 minutes to 3 hours.
  • the mixing device is not particularly limited, and Trimix, Twinmix, Planetary Mixer (all registered trademarks of Inoue Seisakusho Co., Ltd. mixer), Ultra Mixer (registered trademark of Mizuho Kogyo Co., Ltd. mixer), A mixer such as Hibis Dispermix (registered trademark of a mixer manufactured by Tokushu Kagaku Kogyo Co., Ltd.) can be used. Further, a three-roll finishing treatment or the like may be performed in order to crush the agglomeration of the zinc oxide particles (D) which are the heat conductive fillers.
  • thermoly conductive silicone composition having a higher thermal conductivity than a conventional thermally conductive silicone composition and having good compressibility to a thickness of 10 ⁇ m or less. Further, by mixing the component (B) or the components (A) and (B) at a temperature of 100 ° C. or higher for 30 minutes or more in the step of mixing the component (D), the component (D) is (D). B) The surface is sufficiently surface-treated by the component, and deterioration of thermal resistance over time can be suppressed.
  • each component (A), (B), (C), (D), (E) and (F) is subjected to normal pressure.
  • it can be produced by mixing under reduced pressure, preferably under reduced pressure of 0.09 to 0.01 MPa, and then further mixing the mixture under non-heating, preferably at 60 ° C. or lower for about 30 minutes to 3 hours.
  • components other than (A), (B), (C), (D), (E) and (F) are blended in the above manufacturing method, (A), (B), (C), ( D), (E) and (F) may be blended at the time of starting mixing under normal pressure or reduced pressure.
  • the heat conductive silicone composition of the present invention is filled in a layer in a gap having a thickness of 10 ⁇ m or less formed between a heating element such as an insulated gate bipolar transistor (IGBT) and a cooling element.
  • the composition layer is characterized in that the heating element and the cooling element are thermally interposed.
  • the thermally conductive silicone composition of the present invention is compressed to a thickness of 10 ⁇ m or less. This can be expected to improve the cooling efficiency as compared with the conventional heat conductive silicone composition.
  • a cross-sectional view of a typical structure is shown in FIG. 1, but the present invention is not limited thereto.
  • a heat conductive silicone composition layer 2 made of the heat conductive silicone composition of the present invention is interposed in a gap between a heating element 1 and a cooling element 3.
  • the cooling body 3 has an insulating layer 3a provided on a surface in contact with the heat conductive silicone composition layer 2.
  • the heating element 1 is preferably an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • the cooling body 3 is preferably a cooling fin made of a material having good heat conduction (a flat plate and one made of protrusions for heat dissipation provided on one main surface of the flat plate).
  • the insulating layer 3a is formed on the surface (flat plate of the cooling fins) on which the heat conductive silicone composition layer 2 of the cooling body 3 (cooling fins) is provided, and has heat conductivity such as silicon nitride, aluminum nitride, and diamond. It is a thin film having a thickness of 10 to 1,000 ⁇ m made of a good insulating material.
  • the heat conductive silicone composition of the present invention is layered in a gap between the back surface side of the heating element 1 (IGBT) and the flat side of the cooling body 3 (cooling fins). It is provided in.
  • the thickness of the heat conductive silicone composition layer 2 is 10 ⁇ m or less, preferably in the range of 0.5 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • the method for manufacturing the semiconductor device of the present invention is not particularly limited, but in order to reduce the thickness of the thermally conductive silicone composition to 10 ⁇ m or less, the pressure is preferably 0.1 MPa or more, more preferably 4.0 MPa or more. Assembled. By increasing the pressure of the thermally conductive silicone composition during pressurization, the time required for compression can be reduced.
  • the heat conductive silicone composition layer 2 provided in a layered manner in the gap between the back surface side of the heating element 1 (IGBT) and the flat surface side of the cooling body 3 (cooling fin) discolors after a certain period of time after filling. It is possible to confirm and judge that the thickening or curing reaction is completed without contacting the composition. At this time, if a part of the heat conductive silicone composition layer 2 is provided so as to slightly protrude from this gap, or at the same time, a separately coated plate of the heat conductive silicone composition is placed in the same environment. It is preferable because it is easy to confirm the discoloration of the composition layer 2 with the completion of the reaction after filling.
  • thermally conductive silicone composition of the present invention does not cause contact failure of electric and electronic parts, it is useful as an insulating material and an adhesive for electric and electronic parts.
  • the average particle size of the zinc oxide particles (D) and the content (volume%) of the coarse powder having a particle size of 10 ⁇ m or more in the component (D) are determined by laser diffraction type particle size using Microtrac MT330OEX manufactured by Nikkiso Co., Ltd. It was measured by the distribution measurement method (laser diffraction scattering method).
  • (D) component (D-1) Zinc oxide particles with an average particle diameter of 1.0 ⁇ m and 0.1% by volume or less of coarse powder of 10 ⁇ m or more (D-2) 80 volumes of coarse powder of 10 ⁇ m or more with an average particle diameter of 40.0 ⁇ m % Or more zinc oxide particles (for comparison)
  • thermoly conductive silicone composition [Examples 1 to 22, Comparative Examples 1 to 5] ⁇ Preparation of thermally conductive silicone composition>
  • the above components (A) to (H) were blended by the methods shown below according to the contents shown in Tables 1 to 6 below to prepare a thermally conductive silicone composition.
  • the components (A), (B) and (D) were added to a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), and the mixture was mixed at 170 ° C. for 1 hour. After cooling to room temperature, the components (C), (E) and (F) were added and mixed so as to be uniform to prepare a thermally conductive silicone composition.
  • thermally conductive silicone composition obtained by the above method, absolute viscosity, thermal conductivity, compressibility, thermal resistance, thermal resistance after heat cycle, and change in appearance color (hue) were measured according to the following methods. .. The results are shown in Tables 1-6.
  • Thermal conductivity The heat conductive silicone composition was wrapped in a kitchen wrap, and the heat conductivity of the test piece in a purse-like shape was measured by a hot disk method with TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd. under the condition of 25 ° C.
  • the produced thermally conductive silicone composition is sandwiched between two silicon wafers cut into circles having a diameter of 1 mm, and pressed at 4.1 MPa for 2 minutes using an Autograph AG-5KNZPLUS manufactured by Shimadzu Corporation.
  • the minimum thickness was measured after the above.
  • two metal plates silicone wafers
  • the total thickness of the two metal plates when compressed with nothing between the metal plates is used as the initial value, and the initial value is measured and then the metal plate is used.
  • Silicone wafer After measuring the thickness when the thermally conductive silicone composition is sandwiched between two sheets and compressed, the thermal conductivity is subtracted from the thickness by subtracting the initial value (total thickness of two metal plates). The minimum thickness of the silicone composition was measured.
  • Thermal resistance A thermal resistance measuring instrument (netch) based on the laser flash method using the above-mentioned test piece (the above-mentioned test piece after pressurization with [compressibility] (a heat conductive silicone composition sandwiched between two silicone wafers)). It was measured at 25 ° C. by a xenon flash analyzer manufactured by LFA447NanoFlash).
  • Thermal resistance after heat cycle The above test piece (the test piece after pressurization with the above [compressible] (the heat conductive silicone composition sandwiched between two silicone wafers)) is manufactured by Espec Co., Ltd. Cold and thermal shock tester TSE-11A. After performing a thermal shock test with a cycle of -40 ° C x 30 minutes ⁇ 150 ° C x 30 minutes for 1,000 cycles, the thermal resistance is measured by a thermal resistance measuring instrument based on the laser flash method (Netch, Xenon). It was measured at 25 ° C. with a flash analyzer; LFA447NanoFlash).
  • Examples 1 to 22 satisfying the requirements of the present invention have high thermal conductivity, and at the same time have good compressibility to 10 ⁇ m or less, and further, 23 ⁇ 2 ° C., 50 ⁇ .
  • a thermally conductive silicone composition was obtained in which a change in color from the initial stage could be confirmed when exposed to the atmosphere of 5% RH for 5 days (when the crosslinking reaction was completed).
  • Comparative Example 1 which did not contain the component (F) of the present invention and did not use the component (B), a uniform heat conductive silicone composition could not be obtained.
  • Comparative Example 2 in which the component (F) is not contained and the component (B) is less than 20% by volume and (D) the heat conductive filler is more than 70% by volume, a uniform heat conductive silicone composition cannot be obtained. rice field. Further, in Comparative Example 3 in which zinc oxide particles having an average particle diameter of 40 ⁇ m were used as the heat conductive filler without containing the component (F), the compressibility was lowered and the thermal resistance value was remarkably deteriorated. Further, in Comparative Example 4, which does not contain the component (F) and uses zinc oxide particles having an average particle diameter of 40 ⁇ m as the heat conductive filler and the content of the heat conductive filler is less than 40% by volume, the compressibility is high.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.
  • Heating element IGBT
  • Thermally conductive silicone composition layer Cooler (cooling fin) 3a Insulation layer 4 Cooling water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)分子鎖両末端に水酸基又は加水分解性基を有するジオルガノポリシロキサン:100質量部、 (B)特定の加水分解性シリル基を有する加水分解性オルガノポリシロキサン:150~600質量部、 (C)架橋剤成分:0.1~100質量部、 (D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布測定法による粒子中の粒子径10μm以上の粗粉の含有量が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、 (E)粘着促進剤:0.01~30質量部、及び (F)pH指示薬:0.01~20質量部 を含有し、ホットディスク法での25℃における熱伝導率が0.5W/mK以上である熱伝導性シリコーン組成物が、従来よりも高い熱伝導率を有し、かつ厚さ10μm以下に圧縮可能であり、更に高耐久性を兼ね備え、かつ半導体装置などへの適用後の増粘、硬化具合を判断できる。

Description

熱伝導性シリコーン組成物、その製造方法及び半導体装置
 本発明は、熱伝導性シリコーン組成物に関する。詳細には、電子部品を効率的に冷却する熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置に関する。
 電子部品は使用中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として、様々な放熱技術が用いられている。一般的に、発熱部付近に冷却部材(ヒートシンク等)を配置し、両者を密接させたうえで冷却部材から効率的に除熱することにより放熱を行っている。その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の悪い空気が介在することにより熱抵抗が増大し、発熱部材の温度が十分に下がらなくなってしまう。このような現象を防ぐため、熱伝導率がよく、部材の表面に追随性のある放熱材料、例えば液状放熱材料や放熱シートが用いられている。特に、装置によっては間隙が10μm以下と非常に狭い場合もあり、10μm以下に圧縮することが可能な液状放熱材料が使用される(特許第2938428号公報、特許第2938429号公報、特許第3580366号公報、特許第3952184号公報、特許第4572243号公報、特許第4656340号公報、特許第4913874号公報、特許第4917380号公報、特許第4933094号公報、特開2008-260798号公報、特開2009-209165号公報、特開2012-102283号公報、特開2012-96361号公報(特許文献1~13))。
 また、発熱部と冷却部材との間は電気的に絶縁状態を確保しなければならない場合が多く、熱伝導性材料に絶縁性が求められることがある。この場合、熱伝導性充填剤としてアルミニウムや銅、銀等の金属粒子を用いることができず、多くは水酸化アルミニウム、アルミナ(酸化アルミニウム)等の絶縁性熱伝導性充填剤が用いられることが多い。水酸化アルミニウムやアルミナは、それ自体の熱伝導率が低いためにこれらを用いて、高熱伝導性を有する熱伝導性材料を得ようとすると多量に充填しなければならない。その結果、熱伝導性材料の粘度が非常に高くなり塗布が困難となったり、十分な圧縮ができなくなったりし、あるいは熱伝達距離が厚くなるなどの問題が生じる(特開2017-226724号公報、特開2017-210518号公報(特許文献14、15))。
 更に、発熱部と冷却部材は発熱・冷却を繰り返すため、部材が熱収縮を繰り返すことが知られている。これによって、熱伝導性シリコーン組成物のオイル成分と熱伝導性充填剤の分離が促される。また、熱伝導性シリコーン組成物が発熱部と冷却部材の間から押し出されるポンプアウトといった現象が起こる。その結果、熱抵抗が上昇し効率的に発熱部を冷やすことができなくなる。このような現象を防ぐために増粘剤を添加して熱伝導性シリコーン組成物の粘度を高める手法が提案されている。しかしながら、粘度が非常に高くなり、塗布が困難であるといった問題があった(特開2004-91743号公報(特許文献16))。
 また、実際の半導体装置の製造条件下で大気中の湿気で増粘又は硬化するシリコーン組成物を充填、塗布した場合、任意の時間経過後の組成物の増粘又は硬化状態を組成物に接触することなく確認、判断することができれば、工程管理の改善や、組付け途中の部材等の保管場所が不要になるメリットが期待できる。このため、半導体装置に塗布された組成物の増粘、硬化状況を即時に判断できることが求められている。
特許第2938428号公報 特許第2938429号公報 特許第3580366号公報 特許第3952184号公報 特許第4572243号公報 特許第4656340号公報 特許第4913874号公報 特許第4917380号公報 特許第4933094号公報 特開2008-260798号公報 特開2009-209165号公報 特開2012-102283号公報 特開2012-96361号公報 特開2017-226724号公報 特開2017-210518号公報 特開2004-91743号公報
 上述したように、高い熱伝導率と厚さ10μm以下への圧縮性を両立し、高耐久性(パワーサイクル耐性、耐ポンプアウト性)を有する熱伝導性シリコーン組成物の開発が求められている。更には、半導体装置などへの適用(充填、塗布)後の増粘、硬化具合、特には増粘又は硬化に係わる反応が完了しているか、否かを即時に判断できる熱伝導性シリコーン組成物の開発を目指した。
 本発明は、上記事情に鑑みなされたもので、従来の熱伝導性シリコーン組成物に比べ、高い熱伝導率を有し、かつ厚さ10μm以下に圧縮可能であり、更に高耐久性を兼ね備え、かつ、半導体装置などへの適用(充填、塗布)後の増粘又は硬化具合(即ち、架橋反応の進行状態)を視認(判断)できる熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置を提供することを目的とする。
 上述のように、高い熱伝導率を有し、かつ10μm以下への圧縮性が良好であるシリコーン組成物の開発、更に、湿気と反応する際(即ち、架橋反応の際、特には架橋反応が完了した際)に組成物の色(ここでは、色相(色味)及び/又は色調)が当初のもの(未反応のもの)から大きく変化し、増粘又は硬化具合、特には増粘又は硬化に係わる反応が完了したことを視認(判断)できるシリコーン組成物の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、水酸基又は加水分解性基を有するオルガノポリシロキサンと、アルコキシシリル基等の特定の加水分解性シリル基を有する加水分解性オルガノポリシロキサンと、加水分解性シリル基を有したケイ素化合物と、平均粒子径が特定の範囲にある酸化亜鉛を含むシリコーン組成物が、従来のシリコーン組成物に比べて高い熱伝導率を有し、かつ厚さ10μm以下への圧縮性が良好なものであることを見出し、加えて、pH指示薬と塩基性シランカップリング剤を添加することで、増粘又は硬化に係わる反応に伴う明確な色変化を示すシリコーン組成物を調製し、本発明を完成させたものである。
 即ち、本発明は、下記の熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置を提供する。
[1]
 下記(A)~(F)成分:
(A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中、Rは独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、n1は10以上の整数である。)
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、R1は独立に非置換又は置換の1価炭化水素基であり、Yは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、mは結合するケイ素原子毎に独立に0~2の整数、n2は10以上の整数である。)
(B)下記一般式(3)で示されるオルガノポリシロキサン:150~600質量部、
Figure JPOXMLDOC01-appb-C000006
[一般式(3)中、R1は独立に非置換又は置換の1価炭化水素基である。X1はR1又は-Y-SiR2 g(OR33-g(式中、Yは酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは0~2の整数である。)で示される基であり、X2は独立に-Y-SiR2 g(OR33-g(式中、Y,R2,R3,gは上記X1におけるものと同じ。)で示される基であり、1分子中に少なくとも1つの-Y-SiR2 g(OR33-gを含む。a及びbはそれぞれ1≦a≦1,000、0≦b≦1,000の範囲を満たす整数である。]
(C)1分子中に1個のメチル基、ビニル基又はフェニル基を有し、かつ少なくとも3個の加水分解性基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である架橋剤成分:0.1~100質量部、
(D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布における粒子径10μm以上の粗粉の含有割合が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、
(E)粘着促進剤:0.01~30質量部、及び
(F)pH指示薬:0.01~20質量部
を含有し、ホットディスク法での25℃における熱伝導率が0.5W/mK以上である熱伝導性シリコーン組成物。
[2]
 大気中の湿気による架橋反応により増粘又は硬化するものであり、この架橋反応が完了すると組成物の色が未反応状態のものから変化するものである[1]に記載の熱伝導性シリコーン組成物。
[3]
 (B)成分の含有量が組成物全体に対して20~40体積%であり、かつ厚さ10μm以下への圧縮が可能である[1]又は[2]に記載の熱伝導性シリコーン組成物。
[4]
 (A)成分100質量部に対して、更に(G)反応触媒:0.01~20質量部を含有する[1]~[3]のいずれかに記載の熱伝導性シリコーン組成物。
[5]
 (A)成分100質量部に対して、更に(D)成分以外の(H)充填剤:1~1,000質量部を含有する[1]~[4]のいずれかに記載の熱伝導性シリコーン組成物。
[6]
 レーザーフラッシュ法で測定した25℃での熱抵抗が5mm2・K/W以下である[1]~[5]のいずれかに記載の熱伝導性シリコーン組成物。
[7]
 スパイラル粘度計で測定した25℃、ずり速度6S-1での絶対粘度が3~600Pa・Sである[1]~[6]のいずれかに記載の熱伝導性シリコーン組成物。
[8]
 ヒートサイクル試験後のズレ性を抑制できるものである[1]~[7]のいずれかに記載の熱伝導性シリコーン組成物。
[9]
 前記(D)成分が(B)成分で表面処理されてなる[1]~[8]のいずれかに記載の熱伝導性シリコーン組成物。
[10]
 (E)成分が塩基性シランカップリング剤である[1]~[9]のいずれかに記載の熱伝導性シリコーン組成物。
[11]
 (F)成分が塩基性領域で変色するものである[1]~[10]のいずれかに記載の熱伝導性シリコーン組成物。
[12]
 [1]~[11]のいずれかに記載の熱伝導性シリコーン組成物の製造方法であって、前記(A)、(B)、(C)、(D)、(E)及び(F)成分を混合する工程を有する熱伝導性シリコーン組成物の製造方法。
[13]
 前記(B)成分、又は前記(A)及び(B)成分を、前記(D)成分とともに100℃以上の温度で30分以上混合する工程と、これに少なくとも(C)、(E)及び(F)成分を混合する工程とを含む[12]に記載の熱伝導性シリコーン組成物の製造方法。
[14]
 発熱体と冷却体の間に形成された厚み10μm以下の間隙に[1]~[11]のいずれかに記載の熱伝導性シリコーン組成物が層状に充填され、この組成物層が前記発熱体と冷却体とを熱的に介在していることを特徴とする半導体装置。
[15]
 前記発熱体が絶縁ゲートバイポーラトランジスタであることを特徴とする[14]に記載の半導体装置。
 本発明によれば、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ厚さ10μm以下への圧縮性が良好であり、高耐久性(パワーサイクル耐性、耐ポンプアウト性)も兼ね備える熱伝導性シリコーン組成物を提供することができる。更に、該熱伝導性シリコーン組成物が組成物中で架橋反応が完了すると(未反応状態のものから)変色するものであることから、該組成物を半導体装置などに充填や塗布するなどして適用した後、大気中の湿気により室温にて増粘又は硬化させて該熱伝導性シリコーン組成物の色が適用直後の未反応状態のものから変化したことを目視にて確認することで該熱伝導性シリコーン組成物の増粘や硬化に関わる架橋反応が完了したことを容易に判別することができる。
本発明の熱伝導性シリコーン組成物が絶縁ゲートバイポーラトランジスタと冷却フィンの間隙に介在する半導体装置の一例を示す断面図である。
 本発明は、
(A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、Rは独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、n1は10以上の整数である。)
Figure JPOXMLDOC01-appb-C000008
(一般式(2)中、R1は独立に非置換又は置換の1価炭化水素基であり、Yは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、mは結合するケイ素原子毎に独立に0~2の整数、n2は10以上の整数である。)
(B)下記一般式(3)で示されるオルガノポリシロキサン:150~600質量部、
Figure JPOXMLDOC01-appb-C000009
[一般式(3)中、R1は独立に非置換又は置換の1価炭化水素基である。X1はR1又は-Y-SiR2 g(OR33-g(式中、Yは酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは0~2の整数である。)で示される基であり、X2は独立に-Y-SiR2 g(OR33-g(式中、Y,R2,R3,gは上記X1におけるものと同じ。)で示される基であり、1分子中に少なくとも1つの-Y-SiR2 g(OR33-gを含む。a及びbはそれぞれ1≦a≦1,000、0≦b≦1,000の範囲を満たす整数である。]
(C)1分子中に1個のメチル基、ビニル基又はフェニル基を有し、かつ少なくとも3個の加水分解性基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である架橋剤成分:0.1~100質量部、
(D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布における粒子径10μm以上の粗粉の含有割合が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、
(E)粘着促進剤:0.01~30質量部、及び
(F)pH指示薬:0.01~20質量部
を含有し、更に、任意に、
(G)反応触媒、
(H)(D)成分以外の充填剤
を含有してもよく、ホットディスク法での25℃における熱伝導率が0.5W/mK以上である熱伝導性シリコーン組成物である。更に好ましくは、厚さ10μm以下への圧縮が可能であり、大気中の湿気による架橋反応により増粘又は硬化するものであり、この架橋反応が完了すると組成物の色が未反応状態のものから変化する熱伝導性シリコーン組成物である。大気中の湿気により増粘又は硬化させることにより、未反応状態のものから変色して増粘又は硬化に係わる反応が完了したことを視認(判断)できる。
 以下、本発明について詳細に説明する。
-(A)成分:オルガノポリシロキサン-
 (A)成分は、下記一般式(1)で示されるオルガノポリシロキサンである。該オルガノポリシロキサンは、分子鎖の両末端が、ケイ素原子に水酸基を結合させた基、即ち、シラノール基あるいはジオルガノヒドロキシシロキシ基で封鎖された構造である。当該構造の直鎖状のオルガノポリシロキサンは、本発明の組成物において主剤(ベースポリマー)として作用するものである。
Figure JPOXMLDOC01-appb-C000010
(一般式(1)中、Rは炭素数1~20の非置換又は置換の1価炭化水素基であり、複数のRは互いに同一であっても、異なっていてもよい。n1は10以上の整数である。)
 上記式(1)中、Rの非置換又は置換の1価炭化水素基の炭素数は、1~20であり、好ましくは1~10であり、より好ましくは1~8である。
 Rの非置換の1価炭化水素基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基が挙げられる。また、Rの置換された1価炭化水素基としては非置換の1価炭化水素基の水素原子の一部又は全部が、フッ素(F)、塩素(Cl)、臭素(Br)等のハロゲン原子やシアノ基等で置換された基が挙げられる。このような基としては、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。Rとしてはこれらの非置換又は置換の1価炭化水素基の中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基が特に好ましい。
 また、(A)成分(式(1)及び後述の式(2)の)のオルガノポリシロキサンは、25℃における粘度が10~1,000,000mPa・sのものが好ましく、より好ましくは50~500,000mPa・sのもの、特に好ましくは100~200,000mPa・sのもの、更に好ましくは500~100,000mPa・sのものである。25℃における前記オルガノポリシロキサンの粘度が10mPa・s以上であれば、物理的・機械的強度に優れたコーティング塗膜を得ることが容易であるため好ましい。1,000,000mPa・s以下であれば、組成物の粘度が高くなりすぎず使用時における作業性が良いので好ましい。本明細書で説明する粘度は、特に明示しない限り、いずれも回転粘度計で測定された数値である。回転粘度計としては、例えば、BL型、BH型、BS型、コーンプレート型等のものが挙げられる(以下、同じ)。
 上記一般式(1)におけるn1の値は、分子中に存在する2官能性ジオルガノシロキサンの単位数又は重合度である。(A)成分のオルガノポリシロキサンが上記の好ましい範囲内の粘度を取り得る態様では、一般式(1)中、n1で表される2官能性ジオルガノシロキサンの単位数又は重合度は、10~2,000の整数であり、好ましくは50~1,800であり、より好ましくは100~1,700であり、更に好ましくは200~1,600である。なお、本明細書で説明する重合度(又は分子量)は、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めたものである(以下、同じ)。
 あるいは、(A)成分は、下記一般式(2)で示されるオルガノポリシロキサンである。該オルガノポリシロキサンは、分子鎖両末端にそれぞれケイ素原子に結合したオルガノオキシ基を1~3個有する加水分解性シリル基で封鎖された直鎖状のオルガノポリシロキサンであり、本発明の組成物において主剤(ベースポリマー)として作用するものである。
Figure JPOXMLDOC01-appb-C000011
(一般式(2)中、R1は独立に非置換又は置換の1価炭化水素基であり、Yは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、mは結合するケイ素原子毎に独立に0~2の整数、n2は10以上の整数である。)
 上記式(2)中、R1は独立に非置換又は置換の、好ましくは炭素数1~10、より好ましくは1~6、更に好ましくは1~3の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が挙げられる。シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が挙げられる。R1として、メチル基、フェニル基、ビニル基が好ましく、メチル基がより好ましい。
 Yの炭素数1~4のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基等の直鎖アルキレン基、及びこれらの異性体、例えば、イソプロピレン基、イソブチレン基等が挙げられる。Yとしては、酸素原子又はエチレン基が好ましい。
 R2は独立に脂肪族不飽和結合を含有しない、好ましくは炭素数1~10、より好ましくは1~6、更に好ましくは1~3の非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基;並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素(F)、塩素(Cl)、臭素(Br)等のハロゲン原子やシアノ基等で置換された基等が挙げられるが、特にメチル基が好ましい。
 上記R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。上記R3のアルキル基としては、例えば、R1について例示したものと同様の、炭素数1~4のアルキル基等が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。アルケニル基としては、例えば、R1について例示したものと同様の、炭素数1~4のアルケニル基が挙げられる。上記R3のアシル基としては、例えば、アセチル基、プロピオノキシ基等が挙げられる。R3はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
 mは結合するケイ素原子毎に独立に0~2の整数であり、好ましくは0である。なお、分子中にOR3基は1~6個、特に4個又は6個有することが好ましい。
 上記一般式(2)におけるn2の値は、分子中に存在する2官能性ジオルガノシロキサンの単位数又は重合度である。(A)成分のオルガノポリシロキサンが上記の好ましい範囲内の粘度を取り得る態様では、一般式(2)中、n2で表される2官能性ジオルガノシロキサンの単位数又は重合度は、10~2,000の整数であり、好ましくは50~1,800であり、より好ましくは100~1,700であり、更に好ましくは200~1,600である。
 (A)成分のオルガノポリシロキサンは1種又は2種以上を併用することができる。
-(B)成分:オルガノポリシロキサン-
 (B)成分は、下記一般式(3)で示される、分子鎖片末端及び/又は側鎖(非末端)にアルコキシシリル基等の加水分解性シリル基を有する加水分解性オルガノポリシロキサンである。(B)成分は後述する(D)成分の酸化亜鉛粒子(熱伝導性充填剤)の表面処理剤(分散剤又はウェッター)として作用する。そのため、(B)成分と(D)成分の酸化亜鉛粒子の相互作用が強くなる結果、(D)成分の酸化亜鉛粒子を熱伝導性シリコーン組成物中に多量に充填しても、熱伝導性シリコーン組成物が流動性を保つことができると同時に、経時でのオイル分離やポンプアウトに起因する放熱性能の低下を抑えることができる。
Figure JPOXMLDOC01-appb-C000012
[一般式(3)中、R1は独立に非置換又は置換の1価炭化水素基である。X1はR1又は-Y-SiR2 g(OR33-g(式中、Yは酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは0~2の整数である。)で示される基であり、X2は独立に-Y-SiR2 g(OR33-g(式中、Y,R2,R3,gは上記X1におけるものと同じ。)で示される基であり、1分子中に少なくとも1つの-Y-SiR2 g(OR33-gを含む。a及びbはそれぞれ1≦a≦1,000、0≦b≦1,000の範囲を満たす整数である。]
 上記式(3)中、R1は上記式(2)におけるR1と同様に、独立に非置換又は置換の、好ましくは炭素数1~10、より好ましくは1~6、更に好ましくは1~3の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が挙げられる。シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が挙げられる。R1として、メチル基、フェニル基、ビニル基が好ましい。
 Yの炭素数1~4のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基等の直鎖アルキレン基、及びこれらの異性体、例えば、イソプロピレン基、イソブチレン基等が挙げられる。Yとしては、酸素原子又はエチレン基が好ましい。
 R2は上記式(2)におけるR2と同様に、独立に脂肪族不飽和結合を含有しない、好ましくは炭素数1~10、より好ましくは1~6、更に好ましくは1~3の非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基;並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素(F)、塩素(Cl)、臭素(Br)等のハロゲン原子やシアノ基等で置換された基等が挙げられるが、特にメチル基が好ましい。
 上記R3は上記式(2)におけるR3と同様に、独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。上記R3のアルキル基としては、例えば、R1について例示したものと同様の、炭素数1~4のアルキル基等が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。アルケニル基としては、例えば、R1について例示したものと同様の、炭素数1~4のアルケニル基が挙げられる。上記R3のアシル基としては、例えば、アセチル基、プロピオノキシ基等が挙げられる。R3はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
 a、bは上記の通りであるが、aは好ましくは10~1,000であり、より好ましくは10~300であり、bは好ましくは0~100であり、より好ましくは0~50であり、特に好ましくは0である。また、好ましくはa+bが10~1,000であり、より好ましくは10~300であり、更に好ましくは12~100であり、最も好ましくは14~50である。なお、b=0のとき、aは好ましくは10~1,000であり、より好ましくは10~300であり、更に好ましくは12~100であり、最も好ましくは14~50であり、またX1は-Y-SiR2 g(OR33-g(式中、Y,R2,R3,gは上記と同じ。)である。gは0~2の整数であり、好ましくは0である。なお、分子中にOR3基は1~6個、特に3個有することが好ましい。なお、括弧内に示される各シロキサン単位の結合順序は、特に制限されるものではない。また、(B)成分の加水分解性オルガノポリシロキサンは、分子鎖片末端及び/又は側鎖(非末端)にアルコキシシリル基等の加水分解性シリル基を有するものであるが、少なくとも分子鎖片末端に加水分解性シリル基を有するものであることが好ましい。
(B)成分の好適な具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 (B)成分は本発明の熱伝導性シリコーン組成物におけるシリコーンマトリックスの主成分であり、その含有量は(A)成分100質量部に対して150~600質量部、好ましくは160~500質量部である。また、(B)成分の含有量は、熱伝導性シリコーン組成物全体に対して好ましくは20~40体積%であり、より好ましくは25~35体積%である。この範囲の(B)成分を含有することで良好な圧縮性を保ちつつ、オイル分離やポンプアウトに起因する熱抵抗の悪化を防ぐことができる。
 (B)成分の熱伝導性シリコーン組成物全体に対する含有量(体積%)は、当該組成物に占める体積割合であり、(B)成分の配合量(質量)と密度から(B)成分の体積を求め、全成分のそれぞれの配合量(質量)と密度から求めた熱伝導性シリコーン組成物全体の体積の総和を算出し、{(B)成分の体積}/{熱伝導性シリコーン組成物全体の体積の総和}×100(%)により(B)成分の熱伝導性シリコーン組成物全体に対する含有量(体積%)を求めることができる。
 また、(B)成分は、1種単独で又は2種以上を組み合わせて配合してよい。
-(C)成分:架橋剤成分-
 (C)成分は、1分子中に1個のメチル基、ビニル基又はフェニル基を有し、かつ少なくとも3個の加水分解性基を有する(B)成分以外の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(該オルガノシラン化合物を部分的に加水分解・縮合して生成する分子中に残存加水分解性基を3個以上有するオルガノシロキサンオリゴマー)であり、該加水分解性オルガノシラン化合物は、式;R4-SiX3
(上記式において、R4はメチル基とビニル基とフェニル基とからなる群から選択されるいずれか1つの基である。Xは加水分解性基である。)
で表される。
 (C)成分は、架橋剤(鎖延長剤)として使用される。また(C)成分となる上記の縮合物には、アミノ基は存在しない。なお、(C)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物と共に、加水分解性基が2個のオルガノシラン化合物(SiR4 22)及び/又はその部分加水分解縮合物(該オルガノシラン化合物を部分的に加水分解・縮合して生成する分子中に残存加水分解性基を2個以上有するオルガノシロキサンオリゴマー)を用いてもよい。
 (C)成分に含まれる加水分解性基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基等の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~4のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の炭素数2~40、好ましくは炭素数2~10、より好ましくは炭素数2~4のアルコキシアルコキシ基;ビニロキシ基、アリロキシ基、プロペノキシ基、イソプロペノキシ基等の炭素数2~20、好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニルオキシ基;ジメチルケトオキシム基、ジエチルケトオキシム基、メチルエチルケトオキシム基等の炭素数3~20、好ましくは炭素数3~10、より好ましくは炭素数3~6のケトオキシム基;アセトキシ基等の炭素数2~20、好ましくは炭素数2~10、より好ましくは炭素数2~5のアシルオキシ基等が挙げられる。
 (C)成分の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、メチルトリス(メトキシエトキシ)シラン、ビニルトリス(メトキシエトキシ)シラン、メチルトリプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシラン、メチルトリアセトキシシラン、ビニルトリアセトキシシラン、メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン等、及びこれらの加水分解性オルガノシランの部分加水分解縮合物が挙げられる。但し、(C)成分はこれらの具体例に限定されるものではない。(C)成分としては、該当する化合物を1種単独でも2種以上を組み合わせても使用することができる。
 上記(C)成分の含有量は、(A)成分のオルガノポリシロキサン100質量部に対して、0.1~100質量部、好ましくは0.1~25質量部、より好ましくは0.5~18質量部の範囲で使用されるものである。当該(C)成分の含有量が0.1質量部未満では十分に架橋せず、目的とする粘性の組成物が得難い。100質量部を超えると、得られる組成物による物性の機械特性が低下し、更に経済的に不利となるという問題が発生する。
-(D)成分:酸化亜鉛粒子-
 本発明の熱伝導性シリコーン組成物は、熱伝導性充填剤として(D)酸化亜鉛粒子を含む。酸化亜鉛は、酸化アルミニウム、酸化マグネシウムなどの金属酸化物と同等に高い熱伝導率を有する。したがって、必要十分量の充填ができれば、比較的高い熱伝導率を有する熱伝導性シリコーン組成物を得ることができる。(D)成分の酸化亜鉛粒子の平均粒子径は、0.1μm以上2μm以下であり、好ましくは0.2μm以上1.5μm以下である。(D)成分の酸化亜鉛粒子の平均粒子径が2μmを超える場合、得られる熱伝導性シリコーン組成物の圧縮性が著しく悪化する。また、(D)酸化亜鉛粒子の平均粒子径が0.1μm未満であると、熱伝導性シリコーン組成物の粘度が著しく上昇する。
 前記平均粒子径はマイクロトラック(レーザー回折散乱法)による体積平均粒子径(累積平均径D50(メディアン径)であり、例えば、日機装(株)製マイクロトラックMT330OEXにより測定できる(以下、同じ)。
 (D)成分のレーザー回折型粒度分布における粒子径10μm以上の粗粉(粗粒子)の含有量(含有割合)は(D)成分全体の1体積%以下である。当該粗粉の含有量が1体積%を超えると、熱伝導性シリコーン組成物を圧縮した時の厚みを10μm以下とすることができない。このような粗粉の含有量とするためには、従来公知の手段により予め分級処理することが好ましいが、あるいは、このような粗粉の含有量となった酸化亜鉛粉末((D)成分)は、酸化亜鉛1種、2種、3種などのグレードで市販品として入手可能である。
 当該粗粉の含有量は、レーザー回折散乱法により、例えば、日機装(株)製マイクロトラックMT330OEXを用いて(D)成分全体の粒度分布を測定し、それから容易に求めることができる(以下、同じ)。
 本発明の熱伝導性シリコーン組成物は、(D)成分の酸化亜鉛粒子を(A)成分100質量部に対して1,500~6,500質量部、好ましくは2,000~6,000質量部配合するものである。また、熱伝導性シリコーン組成物全体に対して(D)成分を好ましくは45~70体積%、より好ましくは55~65体積%含むものである。(D)酸化亜鉛粒子の含有量が1,500質量部未満又は45体積%未満であると熱伝導性シリコーン組成物の熱伝導率が低下し、6,500質量部又は70体積%を超えると、熱伝導性シリコーン組成物が均一にならない。
 (D)酸化亜鉛粒子の熱伝導性シリコーン組成物全体に対する含有量(体積%)は、当該組成物に占める体積割合であり、(D)成分の配合量(質量)と密度から(D)成分の体積を求め、全成分のそれぞれの配合量(質量)と密度から求めた熱伝導性シリコーン組成物全体の体積の総和を算出し、{(D)成分の体積}/{熱伝導性シリコーン組成物全体の体積の総和}×100(%)により(D)成分の熱伝導性シリコーン組成物全体に対する含有量(体積%)を求めることができる。
 なお、本発明の熱伝導性シリコーン組成物では、前記(D)成分が(B)成分で表面処理されてなることが好ましい。
-(E)成分:粘着促進剤-
 (E)成分の粘着促進剤は、本発明の熱伝導性シリコーン組成物に必要な粘着性を与えるために使用される。(E)成分の粘着促進剤としては、公知のシランカップリング剤((C)成分を除く)が好適に使用される。シランカップリング剤の例としては、炭素官能性基含有加水分解性シラン(いわゆるカーボンファンクショナルシラン)等が好適に使用され、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、アミノシランカップリング剤(但し、グアニジル基含有加水分解性シラン化合物を除く)、メルカプトシランカップリング剤、イソシアネートシランカップリング剤などが例示される。
 具体的には、γ-メタクリロキシプロピルトリメトキシシラン;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン;3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン;γ-メルカプトプロピルトリメトキシシラン、イソシアネートシラン等並びにこれらが部分的に加水分解され縮合した化合物が例示される。
 これらの(E)成分の具体例のうち、塩基性シランカップリング剤が好ましく、特にγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類;3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノシラン類;イソシアネートシランが好ましく、3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノシラン類;イソシアネートシランがより好ましく、3-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等のアミノシラン類が更に好ましく、3-アミノプロピルトリエトキシシラン等のアミノアルキルトリエトキシシランが特に好ましい。
 (E)成分の含有量は、前記(A)成分100質量部に対して0.01~30質量部であり、特に0.1~20質量部であることが好ましい。(A)成分100質量部に対し、(E)成分の含有量が0.01質量部未満と少なすぎると、本発明の組成物に対して十分な粘着性を与えることができない。30質量部を超えると、得られる組成物による物性の機械特性が低下し、更に経済的に不利となるという問題が発生する。
-(F)成分:pH指示薬-
 本発明の熱伝導性シリコーン組成物に用いる(F)成分は、pHの変化によって色変化するpH指示薬であり、好ましくは塩基性領域で変色するものである。(F)成分は(E)成分の粘着促進剤(シランカップリング剤)、特には、上述したアミノシランカップリング剤等の塩基性シランカップリング剤と併用する(pH指示薬とシランカップリング剤を系中に含有する)ことにより、大気中の水分が組成物に吸着し増粘、硬化の反応が進行した際の組成物のpHの変化を利用した変色機能を付与することを目的とする。
 (F)成分としては一般的に使用されるpH指示薬が使用できる。例えば、(F)成分としてはフェノールフタレイン、チモールフタレイン、アリザリンイエローR、クレゾールフタレイン、クレゾールレッド、フェノールレッド、ブロモチモールブルーなどが例示でき、これらは1種を単独で又は2種類以上を併用してもよい。
 (F)成分の配合量は、(A)成分100質量部に対して、0.01~20質量部であり、好ましくは、0.1~9質量部であり、更に好ましくは1~6質量部である。(F)成分の配合量が上記下限値0.01質量部未満であると、色変化が十分に得られないおそれがある。また、(F)成分の量が上記上限値の20質量部を超えると、熱伝導性シリコーン組成物の表面にpH指示薬が析出したり、組成物の外観が悪化したりする場合がある。
-(G)成分:反応触媒-
 (G)成分の反応触媒は必要に応じて配合してもよい任意成分であり、この(G)成分の反応触媒としては非金属系有機触媒及び/又は金属系触媒を用いることができる。(G)成分は、本発明の熱伝導性シリコーン組成物の硬化(粘度上昇)を促進する作用を有する。
 (G)成分の反応触媒のうち、非金属系有機触媒は特に制限されないが、熱伝導性シリコーン組成物の硬化(粘度上昇)促進剤として、公知のものを使用することができる。例えば、N,N,N’,N’,N'',N''-ヘキサメチル-N'''-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物又はその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;N,N,N’,N’-テトラメチルグアニジルプロピルトリメトキシシラン、N,N,N’,N’-テトラメチルグアニジルプロピルメチルジメトキシシラン、N,N,N’,N’-テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が挙げられる。また、非金属系有機触媒は1種使用してもよく、2種以上混合して使用してもよい。
 (G)成分の反応触媒のうち、金属系触媒は特に制限されないが、熱伝導性シリコーン組成物の硬化(粘度上昇)促進剤として公知のものを使用することができる。例えば、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクトエート、ジオクチルスズジネオデカノエート、ジ-n-ブチル-ジメトキシスズ等のアルキルスズエステル化合物;テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート;アルミニウムイソプロピレート、アルミニウムセカンダリーブチレートなどのアルコレートアルミニウム化合物;アルミニウムアルキルアセテート・ジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート等のアルミニウムキレート化合物;ネオデカン酸ビスマス(III)、2-エチルヘキサン酸ビスマス(III)、クエン酸ビスマス(III)、オクチル酸ビスマス、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト等の有機金属化合物;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩が挙げられる。金属系触媒はこれらに限定されない。金属系触媒は、1種使用してもよく、2種以上混合して使用してもよい。
 (G)成分の含有量は少量の触媒量でよい。(G)成分の反応触媒を含有する場合、その含有量は、前記(A)成分100質量部に対して0.01~20質量部であり、特に0.05~10質量部が好ましく、更に0.05~5質量部が好ましい。(G)成分の含有量が0.01質量部未満であると良好な硬化反応(粘度上昇)性を得ることができないため、反応速度が遅くなる不具合を生じる。20質量部を超えると、組成物の反応速度が速すぎるため、組成物塗布後の作業できる時間が短くなったりするおそれがある。
-(H)成分:充填剤-
 (H)成分の充填剤は必要に応じて配合してもよい任意成分であり、この(H)成分は前記(D)成分の酸化亜鉛粒子以外の充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、この組成物に十分な機械的強度を与えるために使用される。(H)成分の充填剤としては公知のものを使用することができる。例えば微粉末シリカ、煙霧質シリカ、沈降性シリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカ;ガラスビーズ;ガラスバルーン;透明樹脂ビーズ;シリカエアロゲル;珪藻土、酸化鉄、酸化チタン、煙霧状金属酸化物などの金属酸化物;湿式シリカあるいはこれらの表面をシラン処理したもの;石英粉末、タルク、ゼオライト及びベントナイト等の補強剤;アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩;ガラスウール、微粉マイカ、溶融シリカ粉末、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。上記に例示する充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に表面を疎水化処理した煙霧質シリカ、炭酸カルシウムが好ましい。なお、(H)成分の充填剤には、前述の(D)成分として定義される所定の平均粒子径を備える酸化亜鉛は包含されない。
 (H)成分を含有する場合、その含有量は、前記(A)成分100質量部に対して1~1,000質量部であり、3~500質量部とすることが好ましく、特に5~300質量部とすることが好ましい。1,000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなる。(H)成分の含有量が1質量部より少ないと、得られる組成物の機械的強度を十分高くすることができない。(H)成分の充填剤の平均粒子径は、好ましくは0.005μm(5nm)以上2μm以下であり、より好ましくは、0.01μm以上1.5μm以下である。なお、(H)成分の充填剤についても前記(D)成分の酸化亜鉛粒子と同様に、レーザー回折型粒度分布における粒子径10μm以上の粗粉(粗粒子)の含有量(含有割合)が(H)成分全体の1体積%以下であることが好ましい。(H)成分中において当該粗粉の含有量が1体積%を超えると、熱伝導性シリコーン組成物を圧縮した時の厚みを10μm以下とすることが困難となる場合がある。
-その他の成分:オルガノポリシロキサン-
 本発明の熱伝導性シリコーン組成物は、上記(A)~(H)成分に加えて、更に(I)下記一般式(4)で表される直鎖状ジオルガノポリシロキサン(いわゆる無官能性シリコーンオイル)を必要に応じて任意成分として配合してもよい。
Figure JPOXMLDOC01-appb-C000014
 一般式(4)中、R5は、水素原子、又は置換基を有していてもよい炭素数1~20の脂肪族不飽和結合を含有しない1価炭化水素基であり、pは1~2,000の整数である。
 上記式(4)中、R5の非置換又は置換の脂肪族不飽和結合を含有しない1価炭化水素基としては、その炭素数が1~20であり、好ましくは1~10であり、より好ましくは1~8である。複数のR5は互いに同一又は異なっていてもよい。式(4)のR5の非置換の1価炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基を例示することができる。また、置換された1価炭化水素基としては、上記非置換の1価炭化水素基の水素原子の一部又は全部が、フッ素(F)、塩素(Cl)、臭素(Br)等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基、フェニル基が好ましく、入手の容易さ、生産性、コストの面からメチル基、フェニル基がより好ましい。特に、式(4)におけるR5はいずれもメチル基であることが好ましく、分子鎖の両末端がトリメチルシロキシ基で封鎖されたジメチルポリシロキサンであることが好ましい。
 式(4)中、pは、(I)成分の重合度を示す数値で、1~2,000の整数であり、特に、2~2,000が好ましく、20~2,000がより好ましい。pが、上記の範囲内の数値である場合、(I)成分のジオルガノポリシロキサンの25℃における粘度は、1.5~1,000,000mPa・s、好ましくは30~100,000mPa・sとなる。
 (I)成分を含有する場合、その含有量は、好ましくは(A)成分100質量部に対して0.01~100質量部であり、より好ましくは10~80質量部である。(I)成分の量が上記範囲内にあると本発明の熱伝導性シリコーン組成物の機械特性や難燃性を損なわない点で好ましい。また当該組成物を施工上取り扱い易い弾性率や粘度に調整することができる。
[その他の成分]
 本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の劣化を防ぐために、2,6-ジ-tert-ブチル-4-メチルフェノール等の従来公知の酸化防止剤を必要に応じて配合してもよい。更に、チクソ性付与剤、染料、顔料、難燃剤、沈降防止剤、チクソ性向上剤等を必要に応じて配合することができる。
[シリコーン組成物の物性]
 本発明の熱伝導性シリコーン組成物は、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ厚さ10μm以下への圧縮性が良好なものである。
 本発明の熱伝導性シリコーン組成物のホットディスク法での25℃における熱伝導率は0.5W/mK以上であり、好ましくは1.3W/mK以上である。なお、熱伝導率の測定方法の詳細は、例えば後述する実施例の方法である。
 本発明の熱伝導性シリコーン組成物は、良好な圧縮性を有するものである。4.1MPaの加圧を2分間行った時の熱伝導性シリコーン組成物の厚さは10μm以下となり、0.5~10μmの範囲にあることが好ましく、0.5~5μmの範囲にあることがより好ましい。なお、加圧を行った時の厚さの測定方法の詳細は、例えば後述する実施例の方法である。
 本発明の熱伝導性シリコーン組成物は、高い熱伝導率と良好な圧縮性を両立しているため、低い熱抵抗を持つものとなる。熱伝導性シリコーン組成物の熱抵抗はレーザーフラッシュ法で測定した25℃で5mm2・K/W以下が好ましく、更に好ましくは3mm2・K/Wである。下限については特に制限はないが、物理的な問題として例えば0.1mm2・K/Wとすることができる。前記熱抵抗が所定の値以下であると、熱伝導性シリコーン組成物の熱伝導率が更に高くなる。なお、熱抵抗の測定方法の詳細は、例えば後述する実施例の方法である。
 本発明の熱伝導性シリコーン組成物の25℃にてスパイラル粘度計により測定される絶対粘度は3~600Pa・sであることが好ましく、10~600Pa・sであることがより好ましい。絶対粘度が3Pa・s以上であると、形状保持が容易で作業性が良くなる。一方、絶対粘度が600Pa・s以下である場合にも吐出が容易となるため作業性が良くなる。絶対粘度は、上述した各成分の配合により調整できる。本発明において、絶対粘度は例えば(株)マルコム製スパイラル粘度計により測定した25℃、ずり速度6S-1での値である。
 ここで、本発明の熱伝導性シリコーン組成物において、増粘・硬化に伴う色が変化するメカニズムは、pH指示薬による変色によるものである。通常、本発明の熱伝導性シリコーン組成物は、大気中の湿気(水分)による縮合反応(架橋反応)の進行によって増粘、硬化が進行するものであるため、該組成物を未反応状態で保存する際は、大気(外気)から遮断した状態で保管されるものであるが、縮合反応に際して、該組成物を湿気(水分)を含んだ大気中に曝露するときに、pH指示薬と特定の酸性又は塩基性を有するシランカップリング剤を該組成物中に含有させておく(共存させておく)ことにより、組成物が大気中の湿気(水分)を表面から吸着した際に、該吸着した湿気(水分)が組成物(又は硬化物)の系内に浸透して、系内(組成物中又は硬化物中)に有効な水分が存在する場合には、該水分とシランカップリング剤が共存することによるpHの変化によって変色が発生する。しかし、縮合反応開始前及び/又は反応進行途中(反応完了前)の湿気増粘・硬化型の組成物においては、該組成物の反応が完了するまでは、組成物の表面から該組成物系内(マトリックス中)に浸入してくる大気中の水分は、該組成物の硬化反応(縮合反応)に優先的に消費されるため、pH指示薬の発色に寄与する有効な水分が系内(マトリックス中)に存在しないため、反応が終了するまでは変色が発生せず、反応が完了した時点以降に発色することになる。即ち、本発明の熱伝導性シリコーン組成物は、未反応状態から反応が終了するまでは、pH指示薬の発色の影響のない該組成物自身の色(色相(色味)及び/又は色調)(通常、無機質充填剤等のフィラーを含有する場合は該フィラーの存在による白色又は白色以外の該フィラー自身の色相)から、反応完了時点以降のpH指示薬の発色による色へと組成物(又は硬化物)の色が変化するものである。そのため、本発明の変色機構を利用すれば、従来技術と比較して、より明確な未反応と反応(増粘・硬化)の状態を視認(判別)することができる。
[熱伝導性シリコーン組成物の製造方法]
 本発明の熱伝導性シリコーン組成物の製造方法について説明する。
 本発明の熱伝導性シリコーン組成物の製造方法は、上述した本発明の熱伝導性シリコーン組成物を製造する方法であって、前記(A)、(B)、(C)、(D)、(E)及び(F)成分を混合する工程を有することを特徴とするものである。
 このとき、上記(B)成分、又は(A)及び(B)成分を、(D)成分とともに100℃以上、好ましくは150℃以上250℃以下の温度で30分以上、好ましくは40分以上6時間以下混合する工程を含むことが好ましい。
 具体的には、上記(B)成分、又は(A)及び(B)成分と、(D)成分を上記のように混合する工程と、これに少なくとも(C)、(E)及び(F)成分、必要に応じてその他任意成分を混合する工程とを含むことが好ましい。
 即ち、予め(B)及び(D)成分、又は(A)、(B)及び(D)の各成分を減圧下で混合し、加熱下、具体的には100~160℃で、30分~3時間程度混合する。続いて、該混合物に(C)、(E)及び(F)の各成分、及び必要に応じて配合される他の成分を配合し、常圧下又は減圧下、好ましくは0.09~0.01MPaの減圧下で更に混合する。非加熱下、好ましくは60℃以下で、通常30分~3時間程度混合することによって本発明の組成物を製造できる。
 混合装置としては特に限定されず、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも(株)井上製作所製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機を用いることができる。また、熱伝導性充填剤である(D)酸化亜鉛粒子の凝集を解砕するために3本ロール仕上げ処理などを施してもよい。
 この製造方法により、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ厚さ10μm以下への圧縮性が良好な熱伝導性シリコーン組成物を製造できる。
 また、上記(B)成分、又は(A)及び(B)成分と、(D)成分を混合する工程の際に100℃以上の温度で30分以上混合することで、(D)成分が(B)成分によって十分に表面処理され、経時での熱抵抗の悪化を抑えることができる。
 他の製造方法の一例としては、本発明の熱伝導性シリコーン組成物は、上記(A)、(B)、(C)、(D)、(E)及び(F)の各成分を常圧下又は減圧下、好ましくは0.09~0.01MPaの減圧下で混合後、該混合物を、非加熱下、好ましくは60℃以下で、30分~3時間程度更に混合することによって製造することができる。上記の製造方法で(A)、(B)、(C)、(D)、(E)及び(F)以外の成分を配合する場合は、(A)、(B)、(C)、(D)、(E)及び(F)の各成分の常圧下又は減圧下での混合を開始する時に配合すればよい。
[半導体装置]
 本発明の半導体装置は、絶縁ゲートバイポーラトランジスタ(IGBT)などの発熱体と冷却体との間に形成された厚み10μm以下の間隙に本発明の熱伝導性シリコーン組成物が層状に充填され、この組成物層が前記発熱体と冷却体とを熱的に介在していることを特徴とするものである。本発明の熱伝導性シリコーン組成物は厚さ10μm以下まで圧縮される。これにより従来の熱伝導性シリコーン組成物と比較して、冷却効率の向上が期待できる。
 代表的な構造の断面図を図1に示すが、本発明はこれに限定されるものではない。
 図1に示される半導体装置は、発熱体1と冷却体3との間の間隙に本発明の熱伝導性シリコーン組成物からなる熱伝導性シリコーン組成物層2が介在しているものである。なお、冷却体3は、熱伝導性シリコーン組成物層2と接する面に設けられた絶縁層3aを有する。
 ここで、発熱体1は絶縁ゲートバイポーラトランジスタ(IGBT)であることが好ましい。発熱体1がIGBTであると、この半導体装置はIGBTが効率的に冷却されるものとなる。
 冷却体3は、熱伝導のよい材料からなる冷却フィン(平板及び平板の一方の主面に設けられた放熱用の突起からなるもの)であることが好ましい。
 絶縁層3aは、冷却体3(冷却フィン)の熱伝導性シリコーン組成物層2が設けられる面(冷却フィンの平板)上に形成された、窒化ケイ素、窒化アルミニウム、ダイヤモンドなどの熱伝導性のよい絶縁材料からなる厚さ10~1,000μmの薄膜である。
 また、熱伝導性シリコーン組成物層2は、発熱体1(IGBT)の裏面側と冷却体3(冷却フィン)の平面側との間の間隙に、本発明の熱伝導性シリコーン組成物が層状に設けられたものである。熱伝導性シリコーン組成物層2の厚さは10μm以下であり、0.5~10μmの範囲にあることが好ましく、0.5~5μmにあることがより好ましい。
 このような半導体装置の構成とすることにより、発熱体1で発生した熱は熱伝導性シリコーン組成物層2を介して冷却体3に伝わり、外部へ放熱され、図1の場合は冷却体3と接する冷却水4へ放熱される。
 本発明の半導体装置の製造方法は特に限定されないが、熱伝導性シリコーン組成物の厚さを10μm以下にするため、好ましくは0.1MPa以上の圧力で、更に好ましくは4.0MPa以上の圧力で組み立てられる。熱伝導性シリコーン組成物の加圧時の圧力を上げることで圧縮にかかる時間を低減できる。
 また、発熱体1(IGBT)の裏面側と冷却体3(冷却フィン)の平面側との間の間隙に層状に設けた熱伝導性シリコーン組成物層2が充填後の一定時間後に変色することをもって、その増粘又は硬化の反応が完了したことを組成物に接触することなく確認、判断することができる。このとき、熱伝導性シリコーン組成物層2の一部をこの間隙から少しはみ出すように設ける、あるいは同時に別途プレート上に熱伝導性シリコーン組成物を塗布したものを同じ環境下に置いておくと、充填後に組成物層2の反応完了に伴う変色を確認し易いため好ましい。
 また、本発明の熱伝導性シリコーン組成物は電気電子部品の接点障害を生じさせることがないので、電気電子部品用絶縁材や接着剤として有用である。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、(D)酸化亜鉛粒子の平均粒子径及び該(D)成分における粒子径10μm以上の粗粉の含有量(体積%)は、日機装(株)製マイクロトラックMT330OEXを用いてレーザー回折型粒度分布測定法(レーザー回折散乱法)により測定した。
 使用した成分は以下の通りである。
[(A)成分]
(A-1)25℃における粘度が700mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn1=約268)
(A-2)25℃における粘度が20,000mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn1=約615)
(A-3)25℃における粘度が50,000mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn1=約886)
(A-4)25℃における粘度が100,000mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn1=約1,589)
(A-5)25℃における粘度が900mPa・sの分子鎖両末端がトリメトキシシリル基で封鎖された下記式(2-1)で示されるジメチルポリシロキサン
(式(2)における、R1=R3=メチル基、Y=O、m=0、n2=285)
Figure JPOXMLDOC01-appb-C000015
[(B)成分]
(B-1)下記式で示される片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000016
(B-2)下記式で示される片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000017
(B-3)下記式で示される片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000018
(B’)下記式で示される加水分解性基を有さないジメチルポリシロキサン(比較品)
Figure JPOXMLDOC01-appb-C000019
[(C)成分]
(C-1)フェニルトリイソプロペノキシシラン
(C-2)ビニルトリイソプロペノキシシラン
(C-3)メチルトリメトキシシラン
[(D)成分]
(D-1)平均粒子径1.0μmで、10μm以上の粗粉が0.1体積%以下の酸化亜鉛粒子
(D-2)平均粒子径40.0μmで、10μm以上の粗粉が80体積%以上の酸化亜鉛粒子(比較用)
[(E)成分]
(E-1)3-アミノプロピルトリエトキシシラン
[(F)成分]
(F-1)フェノールフタレイン
(F-2)チモールフタレイン
[(G)成分]
(G)N,N,N’,N’-テトラメチルグアニジルプロピルトリメトキシシラン
[(H)成分]
(H)BET比表面積が130m2/gの乾式シリカ(平均粒子径:約15nm、粒子径10μm以上の粗粉の含有量<0.1体積%)
[実施例1~22、比較例1~5]
〈熱伝導性シリコーン組成物の調製〉
 上記(A)~(H)成分を、下記表1~6に示す含有量に従い、下記に示す方法で配合して熱伝導性シリコーン組成物を調製した。
 5リットルのプラネタリーミキサー((株)井上製作所製)に(A)、(B)及び(D)成分を加え、170℃で1時間混合した。常温になるまで冷却した後、(C)、(E)、(F)成分を加え均一になるように混合し、熱伝導性シリコーン組成物を調製した。
 更に、(G)成分、(H)成分については必要に応じて添加し、混合した後、熱伝導性シリコーン組成物を調製した。
 上記方法で得られた各熱伝導性シリコーン組成物について、下記の方法に従い、絶対粘度、熱伝導率、圧縮性、熱抵抗及びヒートサイクル後の熱抵抗、外観色の変化(色相)を測定した。結果を表1~6に示す。
[絶対粘度]
 熱伝導性シリコーン組成物の絶対粘度を(株)マルコム製スパイラル粘度計を用い、25℃、回転数(ずり速度)6S-1の条件で測定した。
[熱伝導率]
 熱伝導性シリコーン組成物をキッチンラップに包み、巾着状にした試験片の熱伝導率を京都電子工業(株)製TPA-501で25℃の条件でホットディスク法により測定した。
[圧縮性]
 製造した熱伝導性シリコーン組成物を直径1mmの円にカットされた2枚のシリコーンウエハの間に挟み、(株)島津製作所製オートグラフAG-5KNZPLUSを用いて4.1MPaで2分間の加圧を行った後に最小厚みを測定した。最小厚みは、金属板(シリコーンウエハ)2枚を用い、金属板の間に何もない状態で圧縮した際の金属板2枚の合計の厚みを初期値とし、初期値を測定した後の該金属板(シリコーンウエハ)2枚の間に熱伝導性シリコーン組成物を挟んで圧縮した際の厚みを測定した後、当該厚みから初期値(金属板2枚の合計の厚み)を差し引くことにより熱伝導性シリコーン組成物の最小厚みを測定した。
[熱抵抗]
 上記の試験片(上記[圧縮性]で加圧後の試験片(熱伝導性シリコーン組成物が2枚のシリコーンウエハで挟まれたもの)を用いてレーザーフラッシュ法に基づく熱抵抗測定器(ネッチ社製、キセノンフラッシュアナライザー;LFA447NanoFlash)により25℃にて測定した。
[ヒートサイクル後の熱抵抗]
 上記の試験片(上記[圧縮性]で加圧後の試験片(熱伝導性シリコーン組成物が2枚のシリコーンウエハで挟まれたもの)をエスペック(株)製冷熱衝撃の試験機TSE-11Aを用い、-40℃×30分→150℃×30分を1サイクルとする冷熱衝撃試験を1,000サイクル行った後、熱抵抗をレーザーフラッシュ法に基づく熱抵抗測定器(ネッチ社製、キセノンフラッシュアナライザー;LFA447NanoFlash)により25℃にて測定した。
[外観色の変化]
 各熱伝導性シリコーン組成物を型に流し込み、2mm厚シートを成形した後、その成形時の色相(初期)、23±2℃、50±5%RHの雰囲気下にて、5日間放置した後の色相(5日後)それぞれを目視にて評価し色の変化を確認した。なお、23±2℃、50±5%RHの雰囲気下にて、5日間放置した後に、いずれのシートも増粘が認められたが、その後23±2℃、50±5%RHの雰囲気下にて放置しても粘度変化及び色の変化は認められなかった。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 表1~6の結果より本発明の要件を満たす実施例1~22では高い熱伝導率を有し、同時に10μm以下への良好な圧縮性を有し、更には、23±2℃、50±5%RHの雰囲気下に5日間曝した場合(架橋反応が完了したとき)に初期からの色の変化を確認することができる熱伝導性シリコーン組成物が得られた。一方、本発明の(F)成分を含まず、(B)成分を用いていない比較例1では均一な熱伝導性シリコーン組成物が得られなかった。また、(F)成分を含まず、(B)成分が20体積%より少なく(D)熱伝導性充填剤が70体積%より多い比較例2でも均一な熱伝導性シリコーン組成物が得られなかった。更に(F)成分を含まず、熱伝導性充填剤として平均粒子径が40μmの酸化亜鉛粒子を用いた比較例3では圧縮性が低下し、熱抵抗値が著しく悪化した。また、(F)成分を含まず、熱伝導性充填剤として平均粒子径が40μmの酸化亜鉛粒子を用い、該熱伝導性充填剤の含有量が40体積%未満の比較例4では圧縮性が低下すると同時に、熱伝導率が大きく低下した。比較例5では(F)成分を含まず、(B)及び(D)成分の含有量が少ないために、十分な圧縮性が得られず、最小厚みと熱伝導率の要件を同時に満足することができない。比較例1~5の色変化に関しては、いずれも(F)pH指示薬を加えていないため、時間の経過とともに色変化しないことが確認された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
1 発熱体(IGBT)
2 熱伝導性シリコーン組成物層
3 冷却体(冷却フィン)
3a 絶縁層
4 冷却水

Claims (15)

  1.  下記(A)~(F)成分:
    (A)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:100質量部、
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは独立に炭素数1~20の非置換又は置換の1価炭化水素基であり、n1は10以上の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R1は独立に非置換又は置換の1価炭化水素基であり、Yは独立に酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、mは結合するケイ素原子毎に独立に0~2の整数、n2は10以上の整数である。)
    (B)下記一般式(3)で示されるオルガノポリシロキサン:150~600質量部、
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)中、R1は独立に非置換又は置換の1価炭化水素基である。X1はR1又は-Y-SiR2 g(OR33-g(式中、Yは酸素原子又は炭素数1~4のアルキレン基であり、R2は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R3は独立に炭素数1~4のアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、gは0~2の整数である。)で示される基であり、X2は独立に-Y-SiR2 g(OR33-g(式中、Y,R2,R3,gは上記X1におけるものと同じ。)で示される基であり、1分子中に少なくとも1つの-Y-SiR2 g(OR33-gを含む。a及びbはそれぞれ1≦a≦1,000、0≦b≦1,000の範囲を満たす整数である。]
    (C)1分子中に1個のメチル基、ビニル基又はフェニル基を有し、かつ少なくとも3個の加水分解性基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である架橋剤成分:0.1~100質量部、
    (D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布における粒子径10μm以上の粗粉の含有割合が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、
    (E)粘着促進剤:0.01~30質量部、及び
    (F)pH指示薬:0.01~20質量部
    を含有し、ホットディスク法での25℃における熱伝導率が0.5W/mK以上である熱伝導性シリコーン組成物。
  2.  大気中の湿気による架橋反応により増粘又は硬化するものであり、この架橋反応が完了すると組成物の色が未反応状態のものから変化するものである請求項1に記載の熱伝導性シリコーン組成物。
  3.  (B)成分の含有量が組成物全体に対して20~40体積%であり、かつ厚さ10μm以下への圧縮が可能である請求項1又は2に記載の熱伝導性シリコーン組成物。
  4.  (A)成分100質量部に対して、更に(G)反応触媒:0.01~20質量部を含有する請求項1~3のいずれか1項に記載の熱伝導性シリコーン組成物。
  5.  (A)成分100質量部に対して、更に(D)成分以外の(H)充填剤:1~1,000質量部を含有する請求項1~4のいずれか1項に記載の熱伝導性シリコーン組成物。
  6.  レーザーフラッシュ法で測定した25℃での熱抵抗が5mm2・K/W以下である請求項1~5のいずれか1項に記載の熱伝導性シリコーン組成物。
  7.  スパイラル粘度計で測定した25℃、ずり速度6S-1での絶対粘度が3~600Pa・Sである請求項1~6のいずれか1項に記載の熱伝導性シリコーン組成物。
  8.  ヒートサイクル試験後のズレ性を抑制できるものである請求項1~7のいずれか1項に記載の熱伝導性シリコーン組成物。
  9.  前記(D)成分が(B)成分で表面処理されてなる請求項1~8のいずれか1項に記載の熱伝導性シリコーン組成物。
  10.  (E)成分が塩基性シランカップリング剤である請求項1~9のいずれか1項に記載の熱伝導性シリコーン組成物。
  11.  (F)成分が塩基性領域で変色するものである請求項1~10のいずれか1項に記載の熱伝導性シリコーン組成物。
  12.  請求項1~11のいずれか1項に記載の熱伝導性シリコーン組成物の製造方法であって、前記(A)、(B)、(C)、(D)、(E)及び(F)成分を混合する工程を有する熱伝導性シリコーン組成物の製造方法。
  13.  前記(B)成分、又は前記(A)及び(B)成分を、前記(D)成分とともに100℃以上の温度で30分以上混合する工程と、これに少なくとも(C)、(E)及び(F)成分を混合する工程とを含む請求項12に記載の熱伝導性シリコーン組成物の製造方法。
  14.  発熱体と冷却体の間に形成された厚み10μm以下の間隙に請求項1~11のいずれか1項に記載の熱伝導性シリコーン組成物が層状に充填され、この組成物層が前記発熱体と冷却体とを熱的に介在していることを特徴とする半導体装置。
  15.  前記発熱体が絶縁ゲートバイポーラトランジスタであることを特徴とする請求項14に記載の半導体装置。
PCT/JP2021/017793 2020-05-22 2021-05-11 熱伝導性シリコーン組成物、その製造方法及び半導体装置 WO2021235259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180036731.XA CN115667406B (zh) 2020-05-22 2021-05-11 导热性有机硅组合物、其制造方法和半导体装置
JP2022524389A JP7388550B2 (ja) 2020-05-22 2021-05-11 熱伝導性シリコーン組成物、その製造方法及び半導体装置
EP21808894.6A EP4156249A4 (en) 2020-05-22 2021-05-11 THERMALLY CONDUCTIVE SILICONE COMPOSITION, PRODUCTION METHOD THEREOF, AND SEMICONDUCTOR COMPONENT
US17/926,483 US20230183483A1 (en) 2020-05-22 2021-05-11 Thermally conductive silicone composition, production method for same, and semiconductor device
KR1020227043810A KR20230015374A (ko) 2020-05-22 2021-05-11 열전도성 실리콘 조성물, 그 제조 방법 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-089511 2020-05-22
JP2020089511 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235259A1 true WO2021235259A1 (ja) 2021-11-25

Family

ID=78708919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017793 WO2021235259A1 (ja) 2020-05-22 2021-05-11 熱伝導性シリコーン組成物、その製造方法及び半導体装置

Country Status (7)

Country Link
US (1) US20230183483A1 (ja)
EP (1) EP4156249A4 (ja)
JP (1) JP7388550B2 (ja)
KR (1) KR20230015374A (ja)
CN (1) CN115667406B (ja)
TW (1) TWI870593B (ja)
WO (1) WO2021235259A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7621993B2 (ja) 2022-01-18 2025-01-27 信越化学工業株式会社 熱伝導性シリコーン組成物および半導体装置

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2004091743A (ja) 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk 熱伝導性グリース
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4913874B2 (ja) 2010-01-18 2012-04-11 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP4917380B2 (ja) 2006-07-31 2012-04-18 信越化学工業株式会社 放熱用シリコーングリース組成物及びその製造方法
JP4933094B2 (ja) 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP2012096361A (ja) 2010-10-29 2012-05-24 Shin-Etsu Chemical Co Ltd シリコーン構造体の製造方法及び半導体装置
JP2012102283A (ja) 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
WO2013018416A1 (ja) * 2011-07-29 2013-02-07 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2013091683A (ja) * 2011-10-24 2013-05-16 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2017210518A (ja) 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2017226724A (ja) 2016-06-20 2017-12-28 信越化学工業株式会社 熱伝導性シリコーンパテ組成物
WO2019163290A1 (ja) * 2018-02-22 2019-08-29 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物および構造体並びに該組成物の硬化状態の判別方法
WO2021059936A1 (ja) * 2019-09-27 2021-04-01 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JP2008088318A (ja) * 2006-10-03 2008-04-17 Momentive Performance Materials Japan Kk 熱伝導性シリコーン組成物及びそれを用いた半導体装置
EP2115065B1 (en) * 2007-02-20 2016-05-11 Dow Corning Corporation Filler treating agents based on hydrogen bonding polyorganosiloxanes
JP2012077256A (ja) * 2010-10-06 2012-04-19 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2004091743A (ja) 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk 熱伝導性グリース
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP4933094B2 (ja) 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4917380B2 (ja) 2006-07-31 2012-04-18 信越化学工業株式会社 放熱用シリコーングリース組成物及びその製造方法
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP4913874B2 (ja) 2010-01-18 2012-04-11 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP2012096361A (ja) 2010-10-29 2012-05-24 Shin-Etsu Chemical Co Ltd シリコーン構造体の製造方法及び半導体装置
JP2012102283A (ja) 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
WO2013018416A1 (ja) * 2011-07-29 2013-02-07 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2013091683A (ja) * 2011-10-24 2013-05-16 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2017210518A (ja) 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2017226724A (ja) 2016-06-20 2017-12-28 信越化学工業株式会社 熱伝導性シリコーンパテ組成物
WO2019163290A1 (ja) * 2018-02-22 2019-08-29 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物および構造体並びに該組成物の硬化状態の判別方法
WO2021059936A1 (ja) * 2019-09-27 2021-04-01 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156249A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7621993B2 (ja) 2022-01-18 2025-01-27 信越化学工業株式会社 熱伝導性シリコーン組成物および半導体装置

Also Published As

Publication number Publication date
TWI870593B (zh) 2025-01-21
KR20230015374A (ko) 2023-01-31
CN115667406B (zh) 2024-12-03
EP4156249A4 (en) 2024-06-05
JPWO2021235259A1 (ja) 2021-11-25
US20230183483A1 (en) 2023-06-15
EP4156249A1 (en) 2023-03-29
CN115667406A (zh) 2023-01-31
JP7388550B2 (ja) 2023-11-29
TW202210604A (zh) 2022-03-16

Similar Documents

Publication Publication Date Title
CN106751904B (zh) 一种导热有机硅凝胶及其制备方法
JP5733087B2 (ja) 室温湿気増粘型熱伝導性シリコーングリース組成物
JP7088211B2 (ja) 室温湿気硬化型シリコーンゲル組成物及びその硬化物並びに物品
JP2017190389A (ja) 熱伝導性含フッ素接着剤組成物及び電気・電子部品
CN102585505B (zh) 阻燃有机基聚硅氧烷组合物
JP6895596B1 (ja) 熱伝導性組成物及びその製造方法
JP6760223B2 (ja) 室温硬化性オルガノポリシロキサン組成物、およびこれを含有するシール剤、コーティング剤、接着剤、成形物
WO2021235259A1 (ja) 熱伝導性シリコーン組成物、その製造方法及び半導体装置
JP5601481B2 (ja) 高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
KR20240047480A (ko) 열전도성 실리콘 조성물 및 상기 조성물을 사용하여 갭 충전제를 제조하는 방법
WO2021059936A1 (ja) 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置
JP2010132865A (ja) 難燃性オルガノポリシロキサン組成物
CN108473770B (zh) 将缩合固化反应和有机过氧化物固化反应并用的有机硅组合物
JP2017183506A (ja) 樹脂成形体用材料
JP2002322361A (ja) 電磁波吸収性シリコーンゴム組成物
TWI869864B (zh) 導熱性矽酮組成物及其生產方法、以及使用該組成物生產導熱性構件的方法
TW202430598A (zh) 導熱矽酮組合物及生產彼之方法
TW202235579A (zh) 熱傳導性組成物及其製造方法
JP2016125004A (ja) 室温湿気硬化型熱伝導性シリコーングリース組成物
JP2018145242A (ja) 室温硬化型オルガノポリシロキサン組成物及び自動車用シール材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524389

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043810

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021808894

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE