WO2021059936A1 - 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置 - Google Patents
熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置 Download PDFInfo
- Publication number
- WO2021059936A1 WO2021059936A1 PCT/JP2020/033738 JP2020033738W WO2021059936A1 WO 2021059936 A1 WO2021059936 A1 WO 2021059936A1 JP 2020033738 W JP2020033738 W JP 2020033738W WO 2021059936 A1 WO2021059936 A1 WO 2021059936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- component
- silicone composition
- conductive silicone
- thermally conductive
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/16—Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/18—Spheres
- C08L2205/20—Hollow spheres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
Definitions
- the present invention relates to a thermally conductive silicone composition. More specifically, the present invention relates to a thermally conductive silicone composition for efficiently cooling electronic components, a method for producing the same, and a semiconductor device.
- a cooling member heat sink or the like
- the heat is dissipated by efficiently removing heat from the cooling member after bringing them into close contact with each other. At that time, if there is a gap between the heat generating member and the cooling member, the thermal resistance increases due to the presence of air having poor thermal conductivity, and the temperature of the heat generating member does not drop sufficiently.
- a heat radiating material having good thermal conductivity and following the surface of the member for example, a liquid heat radiating material or a heat radiating sheet is used.
- the gap may be as narrow as 10 ⁇ m or less, and a liquid heat dissipation material capable of compressing to 10 ⁇ m or less is used (Patent No. 2938428, Japanese Patent No. 2938429, Japanese Patent No. 3580366).
- Japanese Patent No. 3952184, Japanese Patent No. 4572343, Japanese Patent No. 4656340, Japanese Patent No. 4913874, Japanese Patent No. 4917380, Japanese Patent No. 4933094 Japanese Patent Application Laid-Open No. 2008-260798, Japanese Patent Application Laid-Open No. 2009- 209165, 2012-102283, 2012-96361 (Patent Documents 1 to 13).
- the heat conductive material may be required to have insulating properties.
- metal particles such as aluminum, copper, and silver cannot be used as the heat conductive filler, and in many cases, an insulating heat conductive filler such as aluminum hydroxide and alumina (aluminum oxide) is used.
- aluminum hydroxide and alumina have low thermal conductivity of their own, they must be filled in a large amount in order to obtain a thermally conductive material having high thermal conductivity.
- thermally conductive silicone composition having both high thermal conductivity and compressibility to a thickness of 10 ⁇ m or less and having high durability (power cycle resistance, pump-out resistance).
- the present invention has been made in view of the above circumstances, and has higher thermal conductivity than the conventional thermally conductive silicone composition, can be compressed to a thickness of 10 ⁇ m or less, and has high durability.
- An object of the present invention is to provide a conductive silicone composition, a method for producing the same, and a semiconductor device.
- an organopolysiloxane having a hydroxyl group As a result of diligent studies on the above problems, the present inventor has found an organopolysiloxane having a hydroxyl group, an organopolysiloxane having a specific structure having at least one hydrolyzable silyl group in one molecule, and an organopolysiloxane having a specific structure in one molecule.
- the silicone composition containing zinc oxide in the above has higher thermal conductivity than the conventional silicone composition, has good compressibility to a thickness of 10 ⁇ m or less, and has high durability (power).
- the present invention has been completed by finding that it can exhibit cycle resistance and pump-out resistance).
- the present invention provides the following thermally conductive silicone composition, a method for producing the same, and a semiconductor device in order to achieve the above object.
- 1. The following components (A) to (E): (A) Organopolysiloxane represented by the following general formula (1): 100 parts by mass, (In the general formula (1), R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of Rs may be the same or different from each other. N is 10 or more.
- R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
- X 1 and X 3 are independently R 1 or -R 2- SiR 3 g (OR 4 ) 3- The group represented by g, X 2 is the group represented by -R 2- SiR 3 g (OR 4 ) 3-g , and at least one -R 2- SiR 3 g (OR 4 ) 3 in the molecule. It has -g .
- R 2 is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
- R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond
- R 4 is independent.
- g is an integer of 0 to 2.
- a and b are 1 ⁇ a ⁇ 1, respectively. 000, 0 ⁇ b ⁇ 1,000 (where b is 1 ⁇ b ⁇ 1,000 when both X 1 and X 3 are R 1 ).
- Each repeating unit is randomly combined.
- a cross-linking agent component which is a hydrolyzable organosilane compound having a group and having three hydrolyzable groups and / or a partially hydrolyzed condensate thereof: 0.1 to 100 parts by mass,
- D Zinc oxide particles having an average particle size of 0.1 ⁇ m or more and 2 ⁇ m or less, and a content ratio of coarse powder having a particle size of 10 ⁇ m or more in the laser diffraction type particle size distribution is 1% by volume or less of the whole component (D): Adhesion promoter excluding 1,500 to 6,500 parts by mass and components (E) and (C): 0.01 to 30 parts by volume, and the content of component (D) is 45 with respect to the entire composition.
- a thermally conductive silicone composition having a thermal conductivity of about 70% by volume, a thermal conductivity of 1.3 W / mK or more at 25 ° C. by the hot disk method, and a thickness of 10 ⁇ m or less.
- the thermally conductive silicone composition according to any one of 1 to 5 which has an absolute viscosity of 3 to 600 Pa ⁇ s at 25 ° C. and a shear rate of 6 s -1 as measured by a spiral viscometer. 7.
- the heat according to any one of 1 to 8 according to the method for producing a heat conductive silicone composition which comprises a step of mixing the components (A), (B), (C), (D) and (E).
- a method for producing a conductive silicone composition 10.
- a method for producing a thermally conductive silicone composition which comprises a step of mixing at a temperature for 30 minutes or more and a step of mixing at least the components (C) and (E). 11.
- the heat conductive silicone composition according to any one of 1 to 8 is packed in a layer in a gap having a thickness of 10 ⁇ m or less formed between the heating element and the cooling element, and the composition layer is formed between the heating element and the cooling element.
- 12. 11 The semiconductor device according to 11, wherein the heating element is an insulated gate bipolar transistor.
- the present invention has higher thermal conductivity than the conventional thermally conductive silicone composition, has good compressibility to a thickness of 10 ⁇ m or less, and has high durability (power cycle resistance, pump-out resistance). ) Also, it is possible to provide a thermally conductive silicone composition.
- "compressibility to a thickness of 10 ⁇ m or less” means that a thermally conductive silicone composition is sandwiched between two substrates with a predetermined thickness and pressed and compressed at a predetermined pressure. It means that the minimum thickness of the heat conductive silicone composition filled between the two substrates obtained in the above is 10 ⁇ m or less.
- the present invention (A) Organopolysiloxane represented by the following general formula (1): 100 parts by mass, (In the general formula (1), R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of Rs may be the same or different from each other. N is 10 or more. Is an integer of.) (B) Organopolysiloxane represented by the following general formula (2) and having at least one hydrolyzable silyl group in one molecule: 150 to 600 parts by mass, (In general formula (2), R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
- X 1 and X 3 are independently R 1 or -R 2- SiR 3 g (OR 4 ) 3-
- the group represented by g X 2 is the group represented by -R 2- SiR 3 g (OR 4 ) 3-g , and at least one -R 2- SiR 3 g (OR 4 ) 3 in the molecule. It has -g .
- R 2 is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
- R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond
- R 4 is independent.
- a and b are 1 ⁇ a ⁇ 1, respectively. 000, 0 ⁇ b ⁇ 1,000 (where b is 1 ⁇ b ⁇ 1,000 when both X 1 and X 3 are R 1 ). Each repeating unit is randomly combined. You can.) (C) An unsubstituted monovalent hydrocarbon selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms and an aryl group having 6 to 8 carbon atoms in one molecule.
- a cross-linking agent component which is a hydrolyzable organosilane compound having a group and having three hydrolyzable groups and / or a partially hydrolyzed condensate thereof: 0.1 to 100 parts by mass
- a thermally conductive silicone composition having a thermal conductivity of 1.3 W /
- the component (A) is an organopolysiloxane represented by the following general formula (1).
- the organopolysiloxane has a structure in which both ends of the molecular chain are sealed with a hydroxyl group bonded to a silicon atom, that is, a silanol group or a diorganohydroxysiloxy group.
- the linear organopolysiloxane having the structure acts as a main agent (base polymer constituting the main chain of the organopolysiloxane crosslinked structure) in the composition of the present invention.
- R is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and a plurality of Rs may be the same or different from each other.
- N is 10 or more. Is an integer of.
- the carbon number of the unsubstituted or substituted monovalent hydrocarbon group of R is 1 to 20, preferably 1 to 10, and more preferably 1 to 8.
- R-unsubstituted monovalent hydrocarbon group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group and a neopentyl group.
- Cycloalkyl group such as cyclopentyl group, cyclohexyl group; alkenyl group such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group, hexenyl group; phenyl group, trill group, xsilyl group, ⁇ -, ⁇ An aryl group such as a naphthyl group; an aralkyl group such as a benzyl group, a
- substituted monohydric hydrocarbon group of R a group in which a part or all of hydrogen atoms of the unsubstituted monovalent hydrocarbon group is substituted with a halogen atom such as fluorine, chlorine or bromine or a cyano group or the like.
- a halogen atom such as fluorine, chlorine or bromine or a cyano group or the like.
- Examples of such a group include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group and the like.
- R is preferably a methyl group, an ethyl group or a phenyl group, and a methyl group or a phenyl group is particularly preferable from the viewpoint of availability, productivity and cost.
- the organopolysiloxane of the component (A) preferably has a viscosity at 25 ° C. of 10 to 1,000,000 mPa ⁇ s, more preferably 50 to 500,000 mPa ⁇ s, and particularly preferably 100 to 200 mPa ⁇ s. It is 000 mPa ⁇ s, more preferably 500 to 100,000 mPa ⁇ s.
- the viscosity of the organopolysiloxane at 25 ° C. is 10 mPa ⁇ s or more, it is preferable because it is easy to obtain a coating film having excellent physical and mechanical strength.
- the viscosity of the composition does not become too high and the workability at the time of use is good, which is preferable.
- the viscosities described in the present specification are viscosities (absolute viscosities) of each component constituting the composition, and are all numerical values measured by a rotational viscometer unless otherwise specified (the same in the examples). Examples of the rotational viscometer include BL type, BH type, BS type, cone plate type and the like.
- the method of measuring the absolute viscosity of the heat conductive silicone composition is different from the method of measuring the viscosity of each component, and a constant deviation is performed by a spiral viscometer (coaxial double cylinder rotary viscometer). It is a value measured at a speed of 6s -1.
- n in the above general formula (1) is the number of bifunctional diorganosiloxane units present in the molecule or the degree of polymerization.
- the number of units or the degree of polymerization of the bifunctional diorganosiloxane represented by n in the general formula (1) is 10 to 10 to It is an integer of 2,000, preferably 50 to 1,800, more preferably 100 to 1,700, and even more preferably 200 to 1,600.
- the degree of polymerization (or molecular weight) described in the present specification is obtained as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) or the like in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. is there.
- the organopolysiloxane of the component (A) can be used alone or in combination of two or more.
- the component (B) is a hydrolyzate having at least one hydrolyzable silyl group such as an alkoxysilyl group at the terminal and / or side chain (non-terminal) of the molecular chain and / or the side chain (non-terminal) per molecule represented by the following general formula (2). It is a degradable organopolysiloxane.
- the component (B) acts as a surface treatment agent (dispersant or wetter) for the zinc oxide particles (thermally conductive filler) of the component (D) described later.
- the thermal conductivity At the same time that the silicone composition can maintain its fluidity, it is possible to suppress deterioration of heat dissipation performance due to oil separation and pump-out over time.
- R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group.
- X 1 and X 3 are independently R 1 or -R 2- SiR 3 g (OR 4 ) 3- The group represented by g,
- X 2 is the group represented by -R 2- SiR 3 g (OR 4 ) 3-g , and at least one -R 2- SiR 3 g (OR 4 ) 3 in the molecule. It has -g .
- R 2 is an oxygen atom or an alkylene group having 1 to 4 carbon atoms
- R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond
- R 4 is independent.
- a and b are 1 ⁇ a ⁇ 1, respectively. 000, 0 ⁇ b ⁇ 1,000 (where b is 1 ⁇ b ⁇ 1,000 when both X 1 and X 3 are R 1 ). Each repeating unit is randomly combined. You can.)
- R 1 is an independently unsubstituted or substituted monovalent hydrocarbon group having preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms, and examples thereof.
- Examples thereof include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkyl halide group and the like.
- Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group and an octyl group.
- Examples of the branched-chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group and a 2-ethylhexyl group.
- Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
- Examples of the alkenyl group include a vinyl group and an allyl group.
- Examples of the aryl group include a phenyl group and a tolyl group.
- Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
- alkyl halide group examples include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
- R 1 a methyl group, a phenyl group and a vinyl group are preferable.
- alkylene group having 1 to 4 carbon atoms of R 2 examples include a methylene group, an ethylene group, a propylene group, a butylene group and the like.
- R 3 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no aliphatic unsaturated bond, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 carbon atoms.
- alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group.
- Cycloalkyl groups such as cyclopentyl group, cyclohexyl group, cycloheptyl group, aryl groups such as phenyl group, trill group, xylyl group and naphthyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group and methylbenzyl group, Examples thereof include a group in which a part or all of the hydrogen atom to which the carbon atom of these groups is bonded is substituted with a halogen atom such as fluorine, chlorine or bromine, a cyano group or the like.
- a halogen atom such as fluorine, chlorine or bromine, a cyano group or the like.
- R 4 is independently an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group having 2 to 4 carbon atoms, an alkenyl group or an acyl group.
- alkyl group of R 4 include alkyl groups having 1 to 4 carbon atoms similar to those exemplified for R 1.
- alkoxyalkyl group include a methoxyethyl group having 2 to 4 carbon atoms, a methoxypropyl group and the like.
- Examples of the alkenyl group include an alkenyl group having 2 to 4 carbon atoms similar to those exemplified for R 1.
- the acyl group of R 4 include an acetyl group having 2 to 4 carbon atoms and a propionoxy group.
- R 4 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group.
- X 1 and X 3 are independently represented by R 1 or -R 2- SiR 3 g (OR 4 ) 3-g , but any of X 1 and X 3 One is R 1 and the other is a group represented by -R 2- SiR 3 g (OR 4 ) 3-g (that is, the hydrolyzable organopolysiloxane of component (B) is a fragment of the molecular chain. It has a hydrolyzable silyl group at the end).
- a and b are as described above, but preferably 10 ⁇ a ⁇ 1,000 and 0 ⁇ b ⁇ 100, more preferably 10 ⁇ a ⁇ 300 and 0 ⁇ b ⁇ 30, and even more preferably 12.
- ⁇ a ⁇ 100 and 0 ⁇ b ⁇ 10, and most preferably 14 ⁇ a ⁇ 50 and b 0.
- a + b is preferably 10 to 1,000, more preferably 10 to 300, further preferably 12 to 100, and most preferably 14 to 50.
- g is an integer of 0 to 2, preferably 0. It is preferable to have 1 to 6, particularly 3 or 6 OR 4 groups in the molecule. Each siloxane unit shown in parentheses may be randomly bonded.
- the hydrolyzable organopolysiloxane of the component (B) has a hydrolyzable silyl group such as an alkoxysilyl group at the end of the molecular chain and / or the side chain (non-terminal), but at least the end of the molecular chain ( It is preferable that it has a hydrolyzable silyl group at both ends or one end), and in particular, it is preferable that it has a hydrolyzable silyl group only at one end of the molecular chain.
- the component (B) is the main component of the silicone matrix in the thermally conductive silicone composition of the present invention (that is, the component contained in the largest amount among the organopolysiloxane components contained in the entire composition), and is contained therein.
- the amount is 150 to 600 parts by mass, preferably 160 to 500 parts by mass with respect to 100 parts by mass of the component (A).
- the content of the component (B) is preferably 20 to 40% by volume, more preferably 25 to 35% by volume, based on the entire heat conductive silicone composition.
- the content (volume%) of the component (B) with respect to the entire heat conductive silicone composition is the volume ratio to the composition, and the volume of the component (B) is determined from the blending amount (mass) and density of the component (B). , And calculated the total volume of the entire heat-conducting silicone composition obtained from the respective blending amounts (mass) and density of all the components, and ⁇ (B) component volume ⁇ / ⁇ whole heat-conducting silicone composition.
- the content (% by volume) of the component (B) with respect to the entire heat conductive silicone composition can be determined by the total volume of ⁇ ⁇ 100 (%).
- the component (B) may be blended alone or in combination of two or more.
- component (C) Cross-linking agent component-
- the component (C) is an unsubstituted 1 selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms and an aryl group having 6 to 8 carbon atoms, which is one in one molecule.
- An organosiloxane oligomer having three or more residual hydrolyzable groups in a molecule produced by partially hydrolyzing and condensing a silane compound), and the hydrolyzable organosilane compound has the formula; Y-SiX 3 (In the above formula, Y is any one unsubstituted monovalent hydrocarbon selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms and an aryl group having 6 to 8 carbon atoms. It is a hydrogen group.
- X is a hydrolyzable group.) It is represented by.
- Y is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl.
- Examples thereof include an aryl group having 6 to 8 carbon atoms such as an ethylphenyl group.
- an alkyl group having 1 to 4 carbon atoms a methyl group and an ethyl group are preferable, and as an alkenyl group having 2 to 4 carbon atoms, a vinyl group and an allyl group are used.
- the group is preferable, and as the aryl group having 6 to 8 carbon atoms, a phenyl group and a tolyl group are preferable, and a methyl group, a vinyl group and a phenyl group are more preferable.
- the component (C) is used as a cross-linking agent (chain extender). Further, the above condensate as the component (C) does not have an amino group.
- the hydrolyzable group is one in which a is 2 (Y 2 -SiX 2) and / or a hydrolyzable group 4 (SiX 4 ) may be further included as an optional component, if necessary.
- Examples of the hydrolyzable group contained in the component (C) include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group and the like having 1 to 20 carbon atoms.
- component (C) examples include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, phenyltrimethoxysilane, and phenyltriethoxy.
- Trifunctional organoalkoxysilane compounds such as silane and phenyltriisopropoxysilane, trifunctional organosubstituted alkoxysilane compounds such as methyltris (methoxyethoxy) silane, vinyltris (methoxyethoxy) silane and phenyltris (methoxyethoxy) silane, methyl Trifunctional organoalkenyloxysilane compounds such as triisopropenoxysilane, vinyl triisopropenoxysilane, and phenyltriisopropenoxysilane, and trifunctional organos such as methyltriacetoxysilane, vinyltriacetoxysilane, and phenyltriacetoxysilane.
- Trifunctional organohydrolytic silane compounds such as acyloxysilane compounds, trifunctional organoketooxim silane compounds such as methyltris (methylethylketooxime) silane, vinyltris (methylethylketooxime) silane, and phenyltris (methylethylketooxime) silane, and these Examples thereof include a partially hydrolyzed condensate of a hydrolyzable organosilane compound (organosiloxane oligomer having three or more residual hydrolyzable groups in the molecule).
- the component (C) is not limited to these specific examples.
- the corresponding compound can be used alone or in combination of two or more.
- the content of the component (C) is 0.1 to 100 parts by mass, preferably 0.1 to 25 parts by mass, and more preferably 0.5 to 0.5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). It is used in the range of 18 parts by mass. If the content of the component (C) is less than 0.1 parts by mass, cross-linking is not sufficient, and it is difficult to obtain the desired viscous composition. If it exceeds 100 parts by mass, the mechanical properties of the physical properties of the obtained composition are deteriorated, which causes a problem that it is economically disadvantageous.
- the thermally conductive silicone composition of the present invention contains (D) zinc oxide particles as a thermally conductive filler.
- Zinc oxide has a high thermal conductivity equivalent to that of metal oxides such as aluminum oxide and magnesium oxide. Therefore, if a necessary and sufficient amount of filling is possible, a thermally conductive silicone composition having a relatively high thermal conductivity can be obtained.
- the average particle size of the zinc oxide particles of the component (D) is 0.1 ⁇ m or more and 2 ⁇ m or less, preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less. When the average particle size of the zinc oxide particles of the component (D) exceeds 2 ⁇ m, the compressibility of the obtained thermally conductive silicone composition is significantly deteriorated. Further, when the average particle size of the zinc oxide particles (D) is less than 0.1 ⁇ m, the viscosity of the thermally conductive silicone composition increases remarkably.
- the average particle diameter is a volume average particle diameter (cumulative average diameter D 50 (median diameter)) by a microtrack (laser diffraction / scattering method), and can be measured by, for example, a microtrack MT330OEX manufactured by Nikkiso Co., Ltd.
- the content (content ratio) of the coarse powder (coarse particles) having a particle diameter of 10 ⁇ m or more in the laser diffraction type particle size distribution of the component (D) is 1% by volume or less of the entire component (D). If the content of the crude powder exceeds 1% by volume, the thickness of the thermally conductive silicone composition when compressed cannot be 10 ⁇ m or less. In order to obtain such a crude powder content, it is preferable to perform classification treatment in advance by a conventionally known means, or the zinc oxide powder ((D) component) having such a crude powder content). Is available as a commercial product in grades such as zinc oxide 1, 2, and 3.
- the content of the coarse powder (coarse particles) can be easily determined by measuring the particle size distribution of the entire component (D) by, for example, Nikkiso Co., Ltd. Microtrack MT330OEX by a laser diffraction scattering method. ..
- the thermally conductive silicone composition of the present invention contains zinc oxide particles of the component (D) in an amount of 1,500 to 6,500 parts by mass, preferably 2,000 to 6,000 parts by mass with respect to 100 parts by mass of the component (A). It is partially blended and contains 45 to 70% by mass, preferably 55 to 65% by mass of the component (D) with respect to the entire heat conductive silicone composition. (D) When the content of the zinc oxide particles is less than 1,500 parts by volume or less than 45% by volume, the thermal conductivity of the thermally conductive silicone composition decreases, and when it exceeds 6,500 parts by volume or 70% by volume. , The thermally conductive silicone composition is not uniform.
- the content (% by volume) of the zinc oxide particles in the entire heat conductive silicone composition is the volume ratio to the composition, and the component (D) is obtained from the blending amount (mass) and density of the component (D).
- the total volume of the heat conductive silicone composition obtained from the respective blending amounts (mass) and density of all the components was calculated, and ⁇ (D) component volume ⁇ / ⁇ heat conductive silicone composition.
- the total content (% by volume) of the component (D) with respect to the entire heat conductive silicone composition can be determined by the total volume of the entire product ⁇ ⁇ 100 (%).
- the component (D) is surface-treated with the component (B).
- a known silane coupling agent is preferably used.
- the silane coupling agent for example, a monovalent hydrocarbon group (carbon functional group) containing a functional group containing at least one heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom is contained in the molecule.
- a carbon functional group-containing hydrolyzable silane (so-called carbon functional silane) or the like is preferably used, and a (meth) acrylic silane coupling agent, an epoxy silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent, etc. Examples thereof include an isocyanate silane coupling agent.
- (meth) acrylic silanes such as ⁇ - (meth) acryloxypropyltrimethoxysilane; ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, Epoxysilanes such as ⁇ -glycidoxypropylmethyldiethoxysilane; aminosilanes such as 3-aminopropyltriethoxysilane and N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane (however, guanidyl group-containing hydrolysis) (Excluding sex silanes); mercaptosilanes such as ⁇ -mercaptopropyltrimethoxysilane; isocyanatesilanes such as 3-isocyanatepropyltriethoxysilane and compounds in which these are partially hydrolyzed and condensed (res),
- epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane; 3-aminopropyltriethoxysilane.
- Aminosilanes such as N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane; isocyanatesilanes such as 3-isocyanatepropyltriethoxysilane are preferred.
- the content of the component (E) is 0.01 to 30 parts by mass, particularly preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (A). If the content of the component (E) is less than 0.01 parts by mass, which is too small with respect to 100 parts by mass of the component (A), sufficient adhesion cannot be given to the composition of the present invention. If it exceeds 30 parts by mass, the mechanical properties of the physical properties of the obtained composition are deteriorated, which causes a problem that it is economically disadvantageous.
- reaction catalyst- The reaction catalyst of the component (F) is an optional component that may be blended if necessary, and a non-metallic organic catalyst and / or a metal-based catalyst can be used as the reaction catalyst of the component (F).
- the component (F) has an action of accelerating the curing (increased viscosity) of the thermally conductive silicone composition of the present invention.
- the non-metallic organic catalyst is not particularly limited, but a known catalyst can be used as a curing (viscosity increase) accelerator of the thermally conductive silicone composition.
- a known catalyst can be used as a curing (viscosity increase) accelerator of the thermally conductive silicone composition.
- phosphazene-containing compounds such as N, N, N', N', N'', N''-hexamethyl-N'''-(trimethylsilylmethyl) -phosphorimidic triamide; hexylamine, dodecylamine phosphate.
- Amine compounds such as or salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; N, N, N', N'-tetramethylguanidylpropyltri Guanidyl groups such as methoxysilane, N, N, N', N'-tetramethylguanidylpropylmethyldimethoxysilane, N, N, N', N'-tetramethylguanidylpropyltris (trimethylsiloxy) silane Examples thereof include silane and siloxane contained. Further, one kind of non-metallic organic catalyst may be used, or two or more kinds may be mixed and used.
- the metal-based catalyst is not particularly limited, but known ones can be used as the reaction (viscosity increase) accelerator of the thermally conductive silicone composition.
- alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, dioctyltin dineodecanoate, di-n-butyl-dimethoxytin; tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis.
- Titanium esters or titanium chelate compounds such as (2-ethylhexoxy) titanium, dipropoxybis (acetylacetonato) titanium, titanium isopropoxyoctylene glycol; zinc naphthenate, zinc stearate, zinc-2-ethyloctate; aluminum Alcolate aluminum compounds such as isopropylate and aluminum secondary butyrate; aluminum chelate compounds such as aluminum alkylacetate / diisopropyrate, aluminum bisethylacetate / monoacetylacetonate; Organics such as bismuth (III), bismuth citrate (III), bismuth octylate, iron-2-ethylhexoate, cobalt-2-ethylhexoate, manganese-2-ethylhexoate, cobalt naphthenate; Metal compounds: Lower fatty acid salts of alkali metals such as potassium acetate, sodium acetate and lithium oxalate.
- the metal catalyst is not limited to
- the content of the component (F) may be a small amount of catalyst.
- the content thereof is 0.01 to 20 parts by mass, particularly preferably 0.05 to 10 parts by mass, based on 100 parts by mass of the component (A). It is preferably 0.05 to 5 parts by mass. If the content of the component (F) is less than 0.01 parts by mass, a good reaction (viscosity increase) cannot be obtained, which causes a problem that the reaction rate becomes slow. If it exceeds 20 parts by mass, the reaction rate of the composition is too fast, so that the working time after applying the composition may be shortened.
- the filler of the component (G) is an optional component that may be blended as needed, and the component (G) is a filler (inorganic filler and / or organic resin) other than the zinc oxide particles of the component (D). Filler), which is used to impart sufficient mechanical strength to this composition.
- a known filler can be used as the filler for the component (G).
- fine powder silica fine powder silica, calcined silica, fumigant silica (dry silica), precipitated silica (wet silica), sol-gel silica, silica whose surface is hydrophobized with an organic silicon compound; glass beads; glass balloons; Transparent resin beads; Silica aerogel; Metal oxides such as diatomaceous earth, iron oxide, titanium oxide, fuming metal oxides; Wet silica or those whose surfaces are silane treated; Quartz powder (crystalline silica), talc, zeolite and Reinforcing agents such as bentonite; metal carbonates such as asbestos, glass fiber, carbon fiber, calcium carbonate, magnesium carbonate, zinc carbonate; synthetic resin powder such as glass wool, fine mica, molten silica powder, polystyrene, polyvinyl chloride, polypropylene, etc.
- the average particle size of the filler of the component (G) is preferably 0.1 ⁇ m or more and 2 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less.
- the filler of the component (G) does not include zinc oxide that satisfies the requirements of the predetermined average particle size and the predetermined coarse particle content defined as the component (D) described above.
- the content thereof is 1 to 1,000 parts by mass, preferably 3 to 500 parts by mass, and particularly 5 to 300 parts by mass, per 100 parts by mass of the component (A). It is preferable to use a part. If it is used in a larger amount than 1,000 parts by mass, the viscosity of the composition increases and the workability deteriorates. If the content of the component (G) is less than 1 part by mass, the mechanical strength of the obtained composition cannot be sufficiently increased.
- the content (content ratio) of the coarse powder (coarse particles) having a particle size of 10 ⁇ m or more in the laser diffraction type particle size distribution is (content ratio), similarly to the zinc oxide particles of the component (D).
- the content of the component (D) is preferably 2% by mass or less, and more preferably 1% by mass or less.
- the thermally conductive silicone composition of the present invention further (H) is a linear diorganopolysiloxane represented by the following general formula (3) (so-called non-functionality). Silicone oil) may be contained as an optional component that can be blended as needed.
- R 5 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent and does not contain an aliphatic unsaturated bond, and p is 1 to 2,000. It is an integer.
- the monovalent hydrocarbon group containing no unsaturated or substituted aliphatic unsaturated bond of R 5 has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more. It is preferably 1 to 8.
- the plurality of R 5s may be the same or different from each other.
- the unsubstituted monovalent hydrocarbon group of R 5 of the formula (3) includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group and a neopentyl group.
- Alkyl group such as group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group and eicosyl group.
- Cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group, xsilyl group, ⁇ -, ⁇ -naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group and 3-phenylpropyl group Groups can be exemplified.
- the substituted monovalent hydrocarbon group a part or all of the hydrogen atoms of these unsubstituted monovalent hydrocarbon groups were substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups and the like.
- R 5 in the formula (3) is preferably a methyl group, and is preferably a dimethylpolysiloxane in which both ends of the molecular chain are sealed with a trimethylsiloxy group.
- p is a numerical value indicating the degree of polymerization of the component (H) and is an integer of 1 to 2,000, particularly preferably 2 to 2,000, and more preferably 20 to 2,000.
- the viscosity of the diorganopolysiloxane of the component (H) at 25 ° C. is 1.5 to 1,000,000 mPa ⁇ s, preferably 30 to 100,000 mPa ⁇ s. It becomes.
- the content thereof is preferably 0.01 to 100 parts by mass, and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the component (A).
- the amount of the component (H) is within the above range, it is preferable in that the mechanical properties and flame retardancy of the thermally conductive silicone composition of the present invention are not impaired. Further, the composition can be adjusted to have an elastic modulus and viscosity that are easy to handle in construction.
- a conventionally known antioxidant such as 2,6-di-t-butyl-4-methylphenol may be added as required in order to prevent deterioration of the thermally conductive silicone composition. May be blended. Further, a thixophilic imparting agent, a dye, a pigment, a flame retardant, a sedimentation inhibitor, a thixotropic property improving agent and the like can be blended as needed.
- the method for producing the thermally conductive silicone composition of the present invention is the above-mentioned method for producing a thermally conductive silicone composition of the present invention, wherein the above-mentioned (A), (B), (C), (D) and (E) It is characterized by having a step of mixing the components.
- each component (A), (B), (C), (D), and (E) is preferably subjected to normal pressure or reduced pressure. Is produced by mixing under reduced pressure of 0.09 to 0.01 MPa (simultaneously at the same time), and then further mixing the mixture under non-heating, preferably at 60 ° C. or lower for about 30 minutes to 3 hours. Can be done.
- components other than the components (A), (B), (C), (D), and (E) are blended in the above manufacturing method, (A), (B), (C), and (D) are blended. ) And (E) may be blended when starting mixing under normal pressure or reduced pressure.
- the method for producing a thermally conductive silicone composition of the present invention is the above-mentioned method for producing a thermally conductive silicone composition of the present invention, wherein the above components (B) or (A) and (B) are used. It is characterized by including a step of mixing with the component (D) at a temperature of 100 ° C. or higher, preferably 150 ° C. or higher and 250 ° C. or lower for 30 minutes or longer, preferably 40 minutes or longer and 6 hours or shorter. Specifically, a step of mixing the above-mentioned (B) component, or (A) and (B) components and (D) component as described above, and at least (C) and (E) components, necessary. It is preferable to include a step of mixing other optional components accordingly.
- the components (B) and (D) or the components (A), (B) and (D) are mixed in advance under reduced pressure, and heated, specifically at 100 ° C. to 250 ° C. Mix for about 30 minutes to 6 hours. Subsequently, each component (C) and (E) and other components to be blended as needed are blended with the mixture, and the mixture is further mixed under normal pressure or a reduced pressure of 0.09 to 0.01 MPa.
- the composition of the present invention can be produced by mixing under non-heating, preferably at 60 ° C. or lower, usually for about 30 minutes to 3 hours.
- the mixing device is not particularly limited, and Trimix, Twinmix, Planetary Mixer (all registered trademarks of Inoue Seisakusho Co., Ltd. mixer), Ultra Mixer (registered trademark of Mizuho Kogyo Co., Ltd. mixer), A mixer such as Hibis Dispermix (registered trademark of a mixer manufactured by Tokushu Kika Kogyo Co., Ltd.) can be used. Further, a three-roll finishing treatment or the like may be performed in order to crush the agglomeration of the zinc oxide particles (D) which are the heat conductive filler.
- thermally conductive silicone composition having a higher thermal conductivity than a conventional thermally conductive silicone composition and having good compressibility to a thickness of 10 ⁇ m or less. Further, by mixing the component (B) or the components (A) and (B) with the component (D) at a temperature of 100 ° C. or higher for 30 minutes or longer, the component (D) can be (D). B) The surface is sufficiently surface-treated by the component, and deterioration of thermal resistance over time can be suppressed.
- the thermally conductive silicone composition of the present invention obtained as described above has a higher thermal conductivity than the conventional thermally conductive silicone composition and has good compressibility to a thickness of 10 ⁇ m or less. is there.
- the thermal conductivity of the thermally conductive silicone composition of the present invention at 25 ° C. by the hot disk method is 1.3 W / mK or more.
- the details of the method for measuring the thermal conductivity are, for example, the methods of Examples described later.
- the thermally conductive silicone composition of the present invention has good compressibility.
- the thickness of the thermally conductive silicone composition when the pressurization of 4.1 MPa was applied for 2 minutes was 10 ⁇ m or less, preferably in the range of 0.5 to 10 ⁇ m, and more preferably in the range of 0.5 to 5 ⁇ m. preferable.
- the method of measuring the thickness when pressurization is performed is, for example, the method of Examples described later.
- the thermally conductive silicone composition of the present invention has both high thermal conductivity and good compressibility, and thus has low thermal resistance.
- the thermal resistance of the thermally conductive silicone composition is preferably 5 mm 2 ⁇ K / W or less at 25 ° C. measured by a laser flash method, and more preferably 3 mm 2 ⁇ K / W.
- the lower limit is not particularly limited, but as a physical problem, it can be set to, for example, 0.1 mm 2 ⁇ K / W.
- the thermal conductivity of the thermally conductive silicone composition is further increased.
- the details of the method for measuring thermal resistance are, for example, the methods of Examples described later.
- the absolute viscosity of the thermally conductive silicone composition of the present invention measured at 25 ° C. is preferably 3 to 600 Pa ⁇ s, more preferably 10 to 600 Pa ⁇ s.
- the absolute viscosity can be adjusted by blending each of the above-mentioned components.
- the absolute viscosity is, for example, a value measured by a spiral viscometer manufactured by Malcolm Co., Ltd. at 25 ° C. and a slip rate of 6s- 1.
- the thermally conductive silicone composition of the present invention is filled in layers in a gap having a thickness of 10 ⁇ m or less formed between a heating element such as an insulated gate bipolar transistor (IGBT) and a cooling element.
- the composition layer is characterized in that the heating element and the cooling element are thermally interposed.
- the thermally conductive silicone composition of the present invention is compressed to a thickness of 10 ⁇ m or less. As a result, improvement in cooling efficiency can be expected as compared with the conventional heat conductive silicone composition.
- a typical structure is shown in FIG. 1, but the present invention is not limited thereto.
- a heat conductive silicone composition layer 2 made of the heat conductive silicone composition of the present invention is interposed in a gap between a heating element 1 and a cooling body 3.
- the cooling body 3 has an insulating layer 3a provided on a surface in contact with the heat conductive silicone composition layer 2.
- the heating element 1 is preferably an insulated gate bipolar transistor (IGBT).
- IGBT insulated gate bipolar transistor
- the cooling body 3 is preferably a cooling fin made of a material having good heat conduction (a flat plate and one made of protrusions for heat dissipation provided on one main surface of the flat plate).
- the insulating layer 3a is formed on the surface (flat plate of the cooling fin) on which the heat conductive silicone composition layer 2 of the cooling body 3 (cooling fin) is provided, and has heat conductivity such as silicon nitride, aluminum nitride, and diamond. It is a thin film having a thickness of 10 to 1,000 ⁇ m made of a good insulating material.
- the heat conductive silicone composition of the present invention is layered in a gap between the back surface side of the heating element 1 (IGBT) and the flat side of the cooling body 3 (cooling fins). It is provided in.
- the thickness of the thermally conductive silicone composition layer 2 is 10 ⁇ m or less, preferably in the range of 0.5 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
- the method for producing the semiconductor device of the present invention is not particularly limited, but in order to reduce the thickness of the thermally conductive silicone composition to 10 ⁇ m or less, the pressure is preferably 0.1 MPa or more, more preferably 4.0 MPa or more. Assembled. The time required for compression can be reduced by increasing the pressure during pressurization of the thermally conductive silicone composition.
- thermally conductive silicone composition of the present invention does not cause contact failure of electrical and electronic parts, it is useful as an insulating material and an adhesive for electrical and electronic parts.
- the average particle size of the (D) zinc oxide particles and the content (volume%) of the coarse powder having a particle size of 10 ⁇ m or more in the component (D) are determined by laser diffraction using, for example, Microtrac MT330OEX manufactured by Nikkiso Co., Ltd. It was measured by the type particle size distribution measurement method (laser diffraction scattering method).
- (D) component] (D-1) Zinc oxide particles having an average particle size of 1.0 ⁇ m and 10 ⁇ m or more of coarse powder of 0.1% by volume or less (D') Average particle size of 40.0 ⁇ m and 80% by volume of coarse powder of 10 ⁇ m or more The above zinc oxide particles (for comparison)
- thermally conductive silicone composition [Examples 1 to 20, Comparative Examples 1 to 4] ⁇ Preparation of thermally conductive silicone composition>
- the above components (A) to (G) were blended by the methods shown below according to the contents shown in Tables 1 to 5 below to prepare a thermally conductive silicone composition.
- the components (A), (B) and (D) were added to a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) and mixed at 170 ° C. for 1 hour. After cooling to room temperature, the components (C) and (E) were added and mixed so as to be uniform to prepare a thermally conductive silicone composition. Further, the components (F) and (G) were added as necessary, mixed, and then a heat conductive silicone composition was prepared.
- the viscosity, thermal conductivity, compressibility, and thermal resistance were measured according to the following methods. The results are shown in Tables 1-5.
- Thermal conductivity The heat conductive silicone composition was wrapped in a kitchen wrap, and the heat conductivity of the purse-shaped test piece was measured by the hot disk method with TPA-501 manufactured by Kyoto Denshi Kogyo Co., Ltd. under the condition of 25 ° C.
- the produced thermally conductive silicone composition was sandwiched between two metal plates (silicone wafers) cut into a circle having a diameter of 1 mm so as to have a thickness of 75 ⁇ m, and using SHIMAZU Autograph AG-5KNZPLUS.
- the minimum thickness was measured after pressurizing at 1 MPa for 2 minutes.
- the minimum thickness is the total thickness of the two metal plates when compressed with nothing between the two metal plates using two metal plates as the initial value, and between the two metal plates after the initial value is measured.
- the minimum thickness of the thermally conductive silicone composition was measured by subtracting the initial value (total thickness of two metal plates) from the thickness. ..
- Thermal resistance Using the above test piece, the measurement was performed at 25 ° C. with a thermal resistance measuring device (xenon flash analyzer manufactured by Nets Co., Ltd .; LFA447NanoFlash) based on the laser flash method.
- a thermal resistance measuring device xenon flash analyzer manufactured by Nets Co., Ltd .; LFA447NanoFlash
- Thermal resistance after heat cycle The above test piece was subjected to a thermal shock test of -40 ° C x 30 minutes ⁇ 150 ° C x 30 minutes as one cycle using a cold shock tester TSE-11A manufactured by ESPEC CORPORATION for 1,000 cycles, and then heat was applied. The resistance was measured at 25 ° C.
- Comparative Example 3 in which zinc oxide particles having an average particle diameter of 40 ⁇ m were used as the heat conductive filler, the compressibility was lowered and the thermal resistance value was remarkably deteriorated.
- Comparative Example 4 in which the content of the heat conductive filler (zinc oxide particles having an average particle diameter of 40 ⁇ m) is less than that of Comparative Example 3 and less than 40% by volume, the thermal conductivity is significantly lowered and the thermal resistance value is further deteriorated. did.
- Comparative Example 5 since the content (blending mass and volume%) of the component (B) is small, sufficient compressibility cannot be obtained, and the requirements for minimum thickness and thermal conductivity cannot be satisfied at the same time.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.
- Insulated gate bipolar transistor IGBT 2
- Thermally conductive silicone composition layer 3
- Cooling fins 3a Insulation layer 4 Cooling water
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、上記事情に鑑みなされたもので、従来の熱伝導性シリコーン組成物に比べ、高い熱伝導率を有し、かつ厚さ10μm以下に圧縮可能であり、更に高耐久性を兼ね備える熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置を提供することを目的とする。
1.
下記(A)~(E)成分:
(A)下記一般式(1)で示されるオルガノポリシロキサン:100質量部、
(B)下記一般式(2)で示され、1分子中に少なくとも1個の加水分解性シリル基を有するオルガノポリシロキサン:150~600質量部、
(C)1分子中に1個の、炭素数1~4のアルキル基、炭素数2~4のアルケニル基及び炭素数6~8のアリール基からなる群から選ばれる非置換の1価炭化水素基を有し、かつ3個の加水分解性基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である架橋剤成分:0.1~100質量部、
(D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布における粒子径10μm以上の粗粉の含有割合が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、及び
(E)(C)成分を除く粘着促進剤:0.01~30質量部
を含有し、(D)成分の含有量が組成物全体に対して45~70体積%であって、ホットディスク法での25℃における熱伝導率が1.3W/mK以上であり、かつ厚さ10μm以下への圧縮が可能である熱伝導性シリコーン組成物。
2.
(B)成分の含有量が組成物全体に対して20~40体積%である1に記載の熱伝導性シリコーン組成物。
3.
(A)成分100質量部に対して、更に(F)反応触媒:0.01~20質量部を含有する1又は2に記載の熱伝導性シリコーン組成物。
4.
(A)成分100質量部に対して、更に(D)成分以外の(G)充填剤:1~1,000質量部を含有する1~3のいずれかに記載の熱伝導性シリコーン組成物。
5.
レーザーフラッシュ法で測定した25℃での熱抵抗が5mm2・K/W以下である1~4のいずれかに記載の熱伝導性シリコーン組成物。
6.
スパイラル粘度計で測定した25℃、ずり速度6s-1での絶対粘度が3~600Pa・sである1~5のいずれかに記載の熱伝導性シリコーン組成物。
7.
ヒートサイクル試験後のズレ性を抑制できるものである1~6のいずれかに記載の熱伝導性シリコーン組成物。
8.
前記(D)成分が(B)成分で表面処理されてなる1~7のいずれかに記載の熱伝導性シリコーン組成物。
9.
1~8のいずれかに記載の熱伝導性シリコーン組成物の製造方法であって、前記(A)、(B)、(C)、(D)及び(E)成分を混合する工程を有する熱伝導性シリコーン組成物の製造方法。
10.
1~8のいずれかに記載の熱伝導性シリコーン組成物の製造方法であって、前記(B)成分、又は前記(A)及び(B)成分を、前記(D)成分とともに100℃以上の温度で30分以上混合する工程と、これに少なくとも(C)及び(E)成分を混合する工程とを含むことを特徴とする熱伝導性シリコーン組成物の製造方法。
11.
発熱体と冷却体の間に形成された厚み10μm以下の間隙に1~8のいずれかに記載の熱伝導性シリコーン組成物が層状に充填され、この組成物層が前記発熱体と冷却体とを熱的に介在していることを特徴とする半導体装置。
12.
前記発熱体が絶縁ゲートバイポーラトランジスタであることを特徴とする11に記載の半導体装置。
なお、本発明において、『厚さ10μm以下への圧縮性』とは、2枚の基材の間に所定の厚みで熱伝導性シリコーン組成物をはさみ、所定の圧力で加圧・圧縮した際に得られる2枚の基材間に充填された当該熱伝導性シリコーン組成物の最少の厚みが10μm以下であることを意味するものである。
(A)下記一般式(1)で示されるオルガノポリシロキサン:100質量部、
(B)下記一般式(2)で示され、1分子中に少なくとも1個の加水分解性シリル基を有するオルガノポリシロキサン:150~600質量部、
(C)1分子中に1個の、炭素数1~4のアルキル基、炭素数2~4のアルケニル基及び炭素数6~8のアリール基からなる群から選ばれる非置換の1価炭化水素基を有し、かつ3個の加水分解性基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である架橋剤成分:0.1~100質量部、
(D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布における粒子径10μm以上の粗粉の含有割合が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、及び
(E)(C)成分を除く粘着促進剤:0.01~30質量部
を含有し、更に、任意に、
(F)反応触媒成分:0.01~20質量部、
(G)(D)以外の充填剤成分:1~1,000質量部
を含有してもよく、(D)成分の含有量が組成物全体に対して45~70体積%であって、ホットディスク法での25℃における熱伝導率が1.3W/mK以上であり、かつ厚さ10μm以下への圧縮が可能である熱伝導性シリコーン組成物である。
-(A)成分:オルガノポリシロキサン-
(A)成分は、下記一般式(1)で示されるオルガノポリシロキサンである。該オルガノポリシロキサンは、分子鎖の両末端が、ケイ素原子に結合した水酸基、即ち、シラノール基あるいはジオルガノヒドロキシシロキシ基で封鎖された構造である。当該構造の直鎖状のオルガノポリシロキサンは、本発明の組成物において主剤(オルガノポリシロキサン架橋構造の主鎖を構成するベースポリマー)として作用するものである。
(B)成分は、下記一般式(2)で示される、1分子当たり、分子鎖末端及び/又は側鎖(非末端)に少なくとも1個のアルコキシシリル基等の加水分解性シリル基を有する加水分解性オルガノポリシロキサンである。(B)成分は後述する(D)成分の酸化亜鉛粒子(熱伝導性充填剤)の表面処理剤(分散剤又はウェッター)として作用する。そのため、(B)成分と(D)成分の酸化亜鉛粒子の相互作用が強くなる結果、(D)成分の酸化亜鉛粒子を熱伝導性シリコーン組成物中に多量に充填しても、熱伝導性シリコーン組成物が流動性を保つことができると同時に、経時でのオイル分離やポンプアウトに起因する放熱性能の低下を抑えることができる。
また、(B)成分は、1種単独で又は2種以上を組み合わせて配合してよい。
(C)成分は、1分子中に1個の、炭素数1~4のアルキル基、炭素数2~4のアルケニル基及び炭素数6~8のアリール基からなる群から選ばれる非置換の1価炭化水素基を有し、かつ3個の加水分解性基を有する(即ち、3官能性の)(B)成分以外の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(該オルガノシラン化合物を部分的に加水分解・縮合して生成する分子中に残存加水分解性基を3個以上有するオルガノシロキサンオリゴマー)であり、該加水分解性オルガノシラン化合物としては、式;
Y-SiX3
(上記式において、Yは炭素数1~4のアルキル基、炭素数2~4のアルケニル基及び炭素数6~8のアリール基からなる群から選択されるいずれか1つの非置換の1価炭化水素基である。Xは加水分解性基である。)
で表される。
本発明の熱伝導性シリコーン組成物は、熱伝導性充填剤として(D)酸化亜鉛粒子を含む。酸化亜鉛は、酸化アルミニウム、酸化マグネシウムなどの金属酸化物と同等に高い熱伝導率を有する。したがって、必要十分量の充填ができれば、比較的高い熱伝導率を有する熱伝導性シリコーン組成物を得ることができる。(D)成分の酸化亜鉛粒子の平均粒子径は、0.1μm以上2μm以下であり、好ましくは、0.2μm以上1.5μm以下である。(D)成分の酸化亜鉛粒子の平均粒子径が2μmを超える場合、得られる熱伝導性シリコーン組成物の圧縮性が著しく悪化する。また、(D)酸化亜鉛粒子の平均粒子径が0.1μm未満であると、熱伝導性シリコーン組成物の粘度が著しく上昇する。
当該粗粉(粗粒子)の含有量は、レーザー回折散乱法により、例えば、日機装(株)製マイクロトラックMT330OEXを用いて(D)成分全体の粒度分布を測定し、それから容易に求めることができる。
(E)成分の粘着促進剤は、(C)成分を除くものであり、本発明の熱伝導性シリコーン組成物に必要な粘着性を与えるために使用される。(E)成分の粘着促進剤としては、公知のシランカップリング剤が好適に使用される。シランカップリング剤の例としては、例えば、酸素原子、窒素原子、硫黄原子等の少なくとも1種のヘテロ原子を含む官能性基を含有する1価炭化水素基(炭素官能性基)を分子中に有する炭素官能性基含有加水分解性シラン(いわゆるカーボンファンクショナルシラン)等が好適に使用され、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤、イソシアネートシランカップリング剤などが例示される。
(F)成分の反応触媒は必要に応じて配合してもよい任意成分であり、この(F)成分の反応触媒としては非金属系有機触媒及び/又は金属系触媒を用いることができる。(F)成分は、本発明の熱伝導性シリコーン組成物の硬化(粘度上昇)を促進する作用を有する。
(G)成分の充填剤は必要に応じて配合してもよい任意成分であり、この(G)成分は前記(D)成分の酸化亜鉛粒子以外の充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、この組成物に十分な機械的強度を与えるために使用される。(G)成分の充填剤としては公知のものを使用することができる。例えば、微粉末シリカ、焼成シリカ、煙霧質シリカ(乾式シリカ)、沈降性シリカ(湿式シリカ)、ゾル-ゲルシリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカ;ガラスビーズ;ガラスバルーン;透明樹脂ビーズ;シリカエアロゲル;珪藻土、酸化鉄、酸化チタン、煙霧状金属酸化物などの金属酸化物;湿式シリカあるいはこれらの表面をシラン処理したもの;石英粉末(結晶性シリカ)、タルク、ゼオライト及びベントナイト等の補強剤;アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩;ガラスウール、微粉マイカ、溶融シリカ粉末、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。上記に例示する充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に表面を疎水化処理した煙霧質シリカ、炭酸カルシウムが好ましい。
(G)成分の充填剤の平均粒子径は、好ましくは0.1μm以上2μm以下であり、より好ましくは0.2μm以上1.5μm以下である。
なお、(G)成分の充填剤には、前述の(D)成分として定義される所定の平均粒子径と所定の粗粒含有量の要件を満足する酸化亜鉛は包含されない。
本発明の熱伝導性シリコーン組成物は、上記(A)~(G)成分に加えて、更に(H)下記一般式(3)で表される直鎖状ジオルガノポリシロキサン(いわゆる無官能性シリコーンオイル)を必要に応じて配合できる任意成分として含有してもよい。
本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の劣化を防ぐために、2,6-ジ-t-ブチル-4-メチルフェノール等の従来公知の酸化防止剤を必要に応じて配合してもよい。更に、チクソ性付与剤、染料、顔料、難燃剤、沈降防止剤、チクソ性向上剤等を必要に応じて配合することができる。
本発明の熱伝導性シリコーン組成物の製造方法について説明する。
本発明の熱伝導性シリコーン組成物の製造方法は、上述した本発明の熱伝導性シリコーン組成物の製造方法であって、前記前記(A)、(B)、(C)、(D)及び(E)成分を混合する工程を有することを特徴とするものである。
具体的には、上記(B)成分、又は(A)及び(B)成分と、(D)成分を上記のように混合する工程と、これに少なくとも(C)及び(E)成分、必要に応じてその他任意成分を混合する工程とを含むことが好ましい。
また、上記(B)成分、又は(A)及び(B)成分と、(D)成分を混合する工程の際に100℃以上の温度で30分以上混合することで、(D)成分が(B)成分によって十分に表面処理され、経時での熱抵抗の悪化を抑えることができる。
以上のようにして得られる本発明の熱伝導性シリコーン組成物は、従来の熱伝導性シリコーン組成物に比べ高い熱伝導率を有し、かつ厚さ10μm以下への圧縮性が良好なものである。
本発明の半導体装置は、絶縁ゲートバイポーラトランジスタ(IGBT)などの発熱体と冷却体との間に形成された厚み10μm以下の間隙に本発明の熱伝導性シリコーン組成物が層状に充填され、この組成物層が前記発熱体と冷却体とを熱的に介在していることを特徴とするものである。本発明の熱伝導性シリコーン組成物は厚さ10μm以下まで圧縮される。これにより従来の熱伝導性シリコーン組成物と比較して、冷却効率の向上が期待できる。
代表的な構造を図1に示すが、本発明はこれに限定されるものではない。
冷却体3は、熱伝導のよい材料からなる冷却フィン(平板及び平板の一方の主面に設けられた放熱用の突起からなるもの)であることが好ましい。
絶縁層3aは、冷却体3(冷却フィン)の熱伝導性シリコーン組成物層2が設けられる面(冷却フィンの平板)上に形成された、窒化ケイ素、窒化アルミニウム、ダイヤモンドなどの熱伝導性のよい絶縁材料からなる厚さ10~1,000μmの薄膜である。
また、熱伝導性シリコーン組成物層2は、発熱体1(IGBT)の裏面側と冷却体3(冷却フィン)の平面側との間の間隙に、本発明の熱伝導性シリコーン組成物が層状に設けられたものである。熱伝導性シリコーン組成物層2の厚さは10μm以下であり、0.5~10μmの範囲にあることが好ましく、0.5~5μmにあることがより好ましい。
このような半導体装置の構成とすることにより、発熱体1で発生した熱は熱伝導性シリコーン組成物2を介して冷却体3に伝わり、外部へ、図1の場合は冷却体3と接する冷却水4へ放熱される。
[(A)成分]
(A-1)25℃における粘度が700mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn=約268)
(A-2)25℃における粘度が20,000mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn=約615)
(A-3)25℃における粘度が50,000mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn=約886)
(A-4)25℃における粘度が100,000mPa・sの分子鎖両末端が水酸基で封鎖されたジメチルポリシロキサン(式(1)におけるn=約1,589)
(B-1)下記式で示される片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
(C-1)フェニルトリイソプロペノキシシラン
(C-2)ビニルトリイソプロペノキシシラン
(C-3)メチルトリメトキシシラン
(D-1)平均粒子径1.0μmで、10μm以上の粗粉が0.1体積%以下の酸化亜鉛粒子
(D’)平均粒子径40.0μmで、10μm以上の粗粉が80体積%以上の酸化亜鉛粒子(比較用)
(E-1)3-アミノプロピルトリエトキシシラン
(F-1)N,N,N’,N’-テトラメチルグアニジルプロピルトリメトキシシラン
(G)BET比表面積が130m2/gの乾式シリカ(10μm以上の粗粉が0.1体積%以下)
〈熱伝導性シリコーン組成物の調製〉
上記(A)~(G)成分を、下記表1~5に示す含有量に従い、下記に示す方法で配合して熱伝導性シリコーン組成物を調製した。
5リットルのプラネタリーミキサー(井上製作所(株)製)に(A)、(B)及び(D)成分を加え、170℃で1時間混合した。常温になるまで冷却した後、(C)、(E)成分を加え均一になるように混合し、熱伝導性シリコーン組成物を調製した。
更に、(F)成分、(G)成分については必要に応じて添加し、混合した後、熱伝導性シリコーン組成物を調製した。
上記方法で得られた各熱伝導性組成物について、下記の方法に従い、粘度、熱伝導率、圧縮性、及び熱抵抗を測定した。結果を表1~5に示す。
熱伝導性シリコーン組成物の絶対粘度を(株)マルコム製スパイラル粘度計を用い、25℃、回転数(ずり速度)6s-1の条件で測定した。
熱伝導性シリコーン組成物をキッチンラップに包み、巾着状にした試験片の熱伝導率を京都電子工業(株)製TPA-501で25℃の条件でホットディスク法により測定した。
製造した熱伝導性シリコーン組成物を直径1mmの円にカットされた2枚の金属板(シリコーンウエハ)の間に厚さ75μmとなるように挟み、SHIMAZU製オートグラフAG-5KNZPLUSを用いて4.1MPaで2分間の加圧を行った後に最小厚みを測定した。最小厚みは、金属板2枚を用い、金属板の間に何もない状態で圧縮した際の金属板2枚の合計の厚みを初期値とし、初期値を測定した後の金属板2枚の間に熱伝導性シリコーン組成物を挟んで圧縮した際の厚みを測定した後、当該厚みから初期値(金属板2枚の合計の厚み)を差し引くことにより熱伝導性シリコーン組成物の最小厚みを測定した。
上記の試験片を用いてレーザーフラッシュ法に基づく熱抵抗測定器(ネッツ社製、キセノンフラッシュアナライザー;LFA447NanoFlash)により25℃にて測定した。
上記の試験片を(株)エスペック製冷熱衝撃試験機TSE-11Aを用い、-40℃×30分→150℃×30分を1サイクルとする冷熱衝撃試験を1,000サイクル行った後、熱抵抗を25℃にて測定した。
2 熱伝導性シリコーン組成物層
3 冷却フィン
3a 絶縁層
4 冷却水
Claims (12)
- 下記(A)~(E)成分:
(A)下記一般式(1)で示されるオルガノポリシロキサン:100質量部、
(B)下記一般式(2)で示され、1分子中に少なくとも1個の加水分解性シリル基を有するオルガノポリシロキサン:150~600質量部、
(C)1分子中に1個の、炭素数1~4のアルキル基、炭素数2~4のアルケニル基及び炭素数6~8のアリール基からなる群から選ばれる非置換の1価炭化水素基を有し、かつ3個の加水分解性基を有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物である架橋剤成分:0.1~100質量部、
(D)平均粒子径が0.1μm以上2μm以下であり、かつレーザー回折型粒度分布における粒子径10μm以上の粗粉の含有割合が(D)成分全体の1体積%以下である酸化亜鉛粒子:1,500~6,500質量部、及び
(E)(C)成分を除く粘着促進剤:0.01~30質量部
を含有し、(D)成分の含有量が組成物全体に対して45~70体積%であって、ホットディスク法での25℃における熱伝導率が1.3W/mK以上であり、かつ厚さ10μm以下への圧縮が可能である熱伝導性シリコーン組成物。 - (B)成分の含有量が組成物全体に対して20~40体積%である請求項1に記載の熱伝導性シリコーン組成物。
- (A)成分100質量部に対して、更に(F)反応触媒:0.01~20質量部を含有する請求項1又は2に記載の熱伝導性シリコーン組成物。
- (A)成分100質量部に対して、更に(D)成分以外の(G)充填剤:1~1,000質量部を含有する請求項1~3のいずれか1項に記載の熱伝導性シリコーン組成物。
- レーザーフラッシュ法で測定した25℃での熱抵抗が5mm2・K/W以下である請求項1~4のいずれか1項に記載の熱伝導性シリコーン組成物。
- スパイラル粘度計で測定した25℃、ずり速度6s-1での絶対粘度が3~600Pa・sである請求項1~5のいずれか1項に記載の熱伝導性シリコーン組成物。
- ヒートサイクル試験後のズレ性を抑制できるものである請求項1~6のいずれか1項に記載の熱伝導性シリコーン組成物。
- 前記(D)成分が(B)成分で表面処理されてなる請求項1~7のいずれか1項に記載の熱伝導性シリコーン組成物。
- 請求項1~8のいずれか1項に記載の熱伝導性シリコーン組成物の製造方法であって、前記(A)、(B)、(C)、(D)及び(E)成分を混合する工程を有する熱伝導性シリコーン組成物の製造方法。
- 請求項1~8のいずれか1項に記載の熱伝導性シリコーン組成物の製造方法であって、前記(B)成分、又は前記(A)及び(B)成分を、前記(D)成分とともに100℃以上の温度で30分以上混合する工程と、これに少なくとも(C)及び(E)成分を混合する工程とを含むことを特徴とする熱伝導性シリコーン組成物の製造方法。
- 発熱体と冷却体の間に形成された厚み10μm以下の間隙に請求項1~8のいずれか1項に記載の熱伝導性シリコーン組成物が層状に充填され、この組成物層が前記発熱体と冷却体とを熱的に介在していることを特徴とする半導体装置。
- 前記発熱体が絶縁ゲートバイポーラトランジスタであることを特徴とする請求項11に記載の半導体装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021548752A JP7283555B2 (ja) | 2019-09-27 | 2020-09-07 | 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置、半導体装置の熱伝導性充填剤層の耐ポンプアウト性を改善する方法 |
KR1020227013386A KR20220074901A (ko) | 2019-09-27 | 2020-09-07 | 열전도성 실리콘 조성물, 그 제조 방법 및 반도체 장치 |
CN202080067592.2A CN114423825B (zh) | 2019-09-27 | 2020-09-07 | 导热性有机硅组合物及其制造方法、以及半导体装置 |
US17/762,844 US12104113B2 (en) | 2019-09-27 | 2020-09-07 | Thermally conductive silicone composition, production method thereof, and semiconductor device |
EP20869660.9A EP4036964A4 (en) | 2019-09-27 | 2020-09-07 | HEAT-CONDUCTING SILICONE COMPOSITION, PRODUCTION PROCESS THEREOF AND SEMICONDUCTOR COMPONENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019177423 | 2019-09-27 | ||
JP2019-177423 | 2019-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021059936A1 true WO2021059936A1 (ja) | 2021-04-01 |
Family
ID=75165698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/033738 WO2021059936A1 (ja) | 2019-09-27 | 2020-09-07 | 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12104113B2 (ja) |
EP (1) | EP4036964A4 (ja) |
JP (1) | JP7283555B2 (ja) |
KR (1) | KR20220074901A (ja) |
CN (1) | CN114423825B (ja) |
TW (1) | TWI858132B (ja) |
WO (1) | WO2021059936A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021235259A1 (ja) * | 2020-05-22 | 2021-11-25 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、その製造方法及び半導体装置 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913874B1 (ja) | 1969-08-29 | 1974-04-03 | ||
JPS4917380B1 (ja) | 1970-07-06 | 1974-04-30 | ||
JPS4933094B1 (ja) | 1968-12-31 | 1974-09-04 | ||
JPS58366B2 (ja) | 1973-10-06 | 1983-01-06 | ソニー株式会社 | 表面材貼付方法 |
JPH07228779A (ja) * | 1994-02-17 | 1995-08-29 | Three Bond Co Ltd | 室温硬化性オルガノシロキサン組成物 |
JP2938428B1 (ja) | 1998-02-27 | 1999-08-23 | 信越化学工業株式会社 | 熱伝導性グリース組成物 |
JP2938429B1 (ja) | 1998-02-27 | 1999-08-23 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物 |
JP2004091743A (ja) | 2002-09-04 | 2004-03-25 | Denki Kagaku Kogyo Kk | 熱伝導性グリース |
JP3952184B2 (ja) | 2002-10-10 | 2007-08-01 | 信越化学工業株式会社 | 熱伝導性シート |
JP2008260798A (ja) | 2007-04-10 | 2008-10-30 | Shin Etsu Chem Co Ltd | 熱伝導性硬化物及びその製造方法 |
JP2009209165A (ja) | 2008-02-29 | 2009-09-17 | Shin Etsu Chem Co Ltd | 熱伝導性硬化物及びその製造方法 |
JP2009286855A (ja) * | 2008-05-27 | 2009-12-10 | Dow Corning Toray Co Ltd | 熱伝導性シリコーン組成物および電子装置 |
JP4572243B2 (ja) | 2008-03-27 | 2010-11-04 | 信越化学工業株式会社 | 熱伝導性積層体およびその製造方法 |
JP4656340B2 (ja) | 2008-03-03 | 2011-03-23 | 信越化学工業株式会社 | 熱伝導性シリコーングリース組成物 |
JP2012069783A (ja) * | 2010-09-24 | 2012-04-05 | Yokohama Rubber Co Ltd:The | 熱伝導性シリコーン組成物およびこれを用いる実装基板 |
JP2012077256A (ja) * | 2010-10-06 | 2012-04-19 | Shin-Etsu Chemical Co Ltd | 室温湿気増粘型熱伝導性シリコーングリース組成物 |
JP2012096361A (ja) | 2010-10-29 | 2012-05-24 | Shin-Etsu Chemical Co Ltd | シリコーン構造体の製造方法及び半導体装置 |
JP2012102283A (ja) | 2010-11-12 | 2012-05-31 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーングリース組成物 |
WO2013018416A1 (ja) * | 2011-07-29 | 2013-02-07 | 信越化学工業株式会社 | 室温湿気増粘型熱伝導性シリコーングリース組成物 |
JP2013091683A (ja) * | 2011-10-24 | 2013-05-16 | Shin-Etsu Chemical Co Ltd | 室温湿気増粘型熱伝導性シリコーングリース組成物 |
JP2015523456A (ja) * | 2012-07-30 | 2015-08-13 | ダウ コーニング コーポレーションDow Corning Corporation | 熱伝導性縮合反応硬化型ポリオルガノシロキサン組成物、並びに該組成物の調製及び使用のための方法 |
JP2017210518A (ja) | 2016-05-24 | 2017-11-30 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及びその硬化物 |
JP2017226724A (ja) | 2016-06-20 | 2017-12-28 | 信越化学工業株式会社 | 熱伝導性シリコーンパテ組成物 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0939115A1 (en) | 1998-02-27 | 1999-09-01 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive grease composition |
JP3580366B2 (ja) | 2001-05-01 | 2004-10-20 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及び半導体装置 |
JP4933094B2 (ja) | 2005-12-27 | 2012-05-16 | 信越化学工業株式会社 | 熱伝導性シリコーングリース組成物 |
JP4917380B2 (ja) | 2006-07-31 | 2012-04-18 | 信越化学工業株式会社 | 放熱用シリコーングリース組成物及びその製造方法 |
JP4913874B2 (ja) | 2010-01-18 | 2012-04-11 | 信越化学工業株式会社 | 硬化性オルガノポリシロキサン組成物および半導体装置 |
WO2017159252A1 (ja) * | 2016-03-18 | 2017-09-21 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及び半導体装置 |
-
2020
- 2020-09-07 WO PCT/JP2020/033738 patent/WO2021059936A1/ja active Application Filing
- 2020-09-07 KR KR1020227013386A patent/KR20220074901A/ko active Pending
- 2020-09-07 EP EP20869660.9A patent/EP4036964A4/en active Pending
- 2020-09-07 JP JP2021548752A patent/JP7283555B2/ja active Active
- 2020-09-07 US US17/762,844 patent/US12104113B2/en active Active
- 2020-09-07 CN CN202080067592.2A patent/CN114423825B/zh active Active
- 2020-09-17 TW TW109132012A patent/TWI858132B/zh active
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4933094B1 (ja) | 1968-12-31 | 1974-09-04 | ||
JPS4913874B1 (ja) | 1969-08-29 | 1974-04-03 | ||
JPS4917380B1 (ja) | 1970-07-06 | 1974-04-30 | ||
JPS58366B2 (ja) | 1973-10-06 | 1983-01-06 | ソニー株式会社 | 表面材貼付方法 |
JPH07228779A (ja) * | 1994-02-17 | 1995-08-29 | Three Bond Co Ltd | 室温硬化性オルガノシロキサン組成物 |
JP2938428B1 (ja) | 1998-02-27 | 1999-08-23 | 信越化学工業株式会社 | 熱伝導性グリース組成物 |
JP2938429B1 (ja) | 1998-02-27 | 1999-08-23 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物 |
JP2004091743A (ja) | 2002-09-04 | 2004-03-25 | Denki Kagaku Kogyo Kk | 熱伝導性グリース |
JP3952184B2 (ja) | 2002-10-10 | 2007-08-01 | 信越化学工業株式会社 | 熱伝導性シート |
JP2008260798A (ja) | 2007-04-10 | 2008-10-30 | Shin Etsu Chem Co Ltd | 熱伝導性硬化物及びその製造方法 |
JP2009209165A (ja) | 2008-02-29 | 2009-09-17 | Shin Etsu Chem Co Ltd | 熱伝導性硬化物及びその製造方法 |
JP4656340B2 (ja) | 2008-03-03 | 2011-03-23 | 信越化学工業株式会社 | 熱伝導性シリコーングリース組成物 |
JP4572243B2 (ja) | 2008-03-27 | 2010-11-04 | 信越化学工業株式会社 | 熱伝導性積層体およびその製造方法 |
JP2009286855A (ja) * | 2008-05-27 | 2009-12-10 | Dow Corning Toray Co Ltd | 熱伝導性シリコーン組成物および電子装置 |
JP2012069783A (ja) * | 2010-09-24 | 2012-04-05 | Yokohama Rubber Co Ltd:The | 熱伝導性シリコーン組成物およびこれを用いる実装基板 |
JP2012077256A (ja) * | 2010-10-06 | 2012-04-19 | Shin-Etsu Chemical Co Ltd | 室温湿気増粘型熱伝導性シリコーングリース組成物 |
JP2012096361A (ja) | 2010-10-29 | 2012-05-24 | Shin-Etsu Chemical Co Ltd | シリコーン構造体の製造方法及び半導体装置 |
JP2012102283A (ja) | 2010-11-12 | 2012-05-31 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーングリース組成物 |
WO2013018416A1 (ja) * | 2011-07-29 | 2013-02-07 | 信越化学工業株式会社 | 室温湿気増粘型熱伝導性シリコーングリース組成物 |
JP2013091683A (ja) * | 2011-10-24 | 2013-05-16 | Shin-Etsu Chemical Co Ltd | 室温湿気増粘型熱伝導性シリコーングリース組成物 |
JP2015523456A (ja) * | 2012-07-30 | 2015-08-13 | ダウ コーニング コーポレーションDow Corning Corporation | 熱伝導性縮合反応硬化型ポリオルガノシロキサン組成物、並びに該組成物の調製及び使用のための方法 |
JP2017210518A (ja) | 2016-05-24 | 2017-11-30 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及びその硬化物 |
JP2017226724A (ja) | 2016-06-20 | 2017-12-28 | 信越化学工業株式会社 | 熱伝導性シリコーンパテ組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4036964A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021235259A1 (ja) * | 2020-05-22 | 2021-11-25 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物、その製造方法及び半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7283555B2 (ja) | 2023-05-30 |
TW202124584A (zh) | 2021-07-01 |
EP4036964A1 (en) | 2022-08-03 |
CN114423825A (zh) | 2022-04-29 |
TWI858132B (zh) | 2024-10-11 |
US20220275265A1 (en) | 2022-09-01 |
KR20220074901A (ko) | 2022-06-03 |
CN114423825B (zh) | 2023-10-03 |
EP4036964A4 (en) | 2023-10-18 |
JPWO2021059936A1 (ja) | 2021-04-01 |
US12104113B2 (en) | 2024-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106751904B (zh) | 一种导热有机硅凝胶及其制备方法 | |
US10604658B2 (en) | Organic silicon compound, surface treatment agent containing same, resin composition containing same, and gel or cured product of same | |
JP5733087B2 (ja) | 室温湿気増粘型熱伝導性シリコーングリース組成物 | |
KR102132243B1 (ko) | 열전도성 실리콘 조성물 및 경화물, 및 복합 시트 | |
JP7144542B2 (ja) | サーマルギャップフィラー及びバッテリーマネジメントシステムへのその用途 | |
JP5699901B2 (ja) | 室温湿気増粘型熱伝導性シリコーングリース組成物 | |
JP6895596B1 (ja) | 熱伝導性組成物及びその製造方法 | |
TWI732896B (zh) | 熱傳導性薄片 | |
WO2021059936A1 (ja) | 熱伝導性シリコーン組成物及びその製造方法、並びに半導体装置 | |
JP7388550B2 (ja) | 熱伝導性シリコーン組成物、その製造方法及び半導体装置 | |
JP2017031231A (ja) | 縮合硬化型シリコーン組成物 | |
CN108473770B (zh) | 将缩合固化反应和有机过氧化物固化反应并用的有机硅组合物 | |
KR20240131357A (ko) | 열전도성 실리콘 조성물 및 반도체 장치 | |
JP7010381B2 (ja) | シリコーン組成物及びその製造方法 | |
JP6536493B2 (ja) | 耐湿性に優れた縮合硬化型シリコーン組成物の製造方法 | |
TW202430598A (zh) | 導熱矽酮組合物及生產彼之方法 | |
JP2016125004A (ja) | 室温湿気硬化型熱伝導性シリコーングリース組成物 | |
TW202235579A (zh) | 熱傳導性組成物及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869660 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021548752 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227013386 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020869660 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020869660 Country of ref document: EP Effective date: 20220428 |