WO2021220459A1 - プラズマ処理装置 - Google Patents
プラズマ処理装置 Download PDFInfo
- Publication number
- WO2021220459A1 WO2021220459A1 PCT/JP2020/018261 JP2020018261W WO2021220459A1 WO 2021220459 A1 WO2021220459 A1 WO 2021220459A1 JP 2020018261 W JP2020018261 W JP 2020018261W WO 2021220459 A1 WO2021220459 A1 WO 2021220459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- circular waveguide
- microwave power
- plasma processing
- microwave
- Prior art date
Links
- 239000007788 liquid Substances 0.000 claims description 91
- 230000001902 propagating effect Effects 0.000 claims description 14
- 230000000903 blocking effect Effects 0.000 claims description 5
- 239000000758 substrate Substances 0.000 abstract description 25
- 238000005530 etching Methods 0.000 abstract description 22
- 238000009826 distribution Methods 0.000 abstract description 16
- 230000000644 propagated effect Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000010453 quartz Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
- H01J37/32678—Electron cyclotron resonance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32229—Waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32247—Resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32266—Means for controlling power transmitted to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32311—Circuits specially adapted for controlling the microwave discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
- H01J2237/3341—Reactive etching
Definitions
- the present invention relates to a plasma processing apparatus using microwaves.
- etching processing technology with a high aspect ratio has been promoted due to the high degree of integration of semiconductor elements.
- One of the miniaturized etching technologies in the semiconductor field is dry etching technology, in which dry etching processing using plasma is often used.
- Plasma uses the collision of electrons and processing gas molecules or atoms to excite the processing gas molecules or atoms to generate ions and radicals.
- the plasma processing apparatus realizes anisotropic etching by ions and isotropic etching by radicals.
- As a plasma source there is an electron cyclotron resonance ECR (ECR: Electron Cyclotron Resonance).
- Patent Document 1 states that 2.45 GHz microwaves emitted from a magnetron are propagated in a rectangular waveguide and a circular waveguide and passed through a quartz window at the upper part of a processing chamber. It is introduced into a processing chamber where a magnetic field is formed inside, and electron cyclotro resonance is caused by the electric field generated by microwaves and the magnetic field formed in the direction perpendicular to it, and a high-density plasma is generated to generate a substrate.
- the configuration for processing is described.
- the space between the inner wall of the cavity resonator and the discharge tube is filled with a dielectric, and the resonance frequency of the cavity resonator and the microwave oscillation frequency by the magnetron match when the gas condition or the substrate is changed.
- the dielectric is replaced with one with a different dielectric constant, and when a liquid dielectric is used, this is introduced from the outside of the cavity resonator, and between the inner wall of the cavity resonator and the discharge tube.
- a microwave discharge generator configured to flow and discharge to the outside of the cavity resonator is described.
- the plasma density on the wall surface of the processing chamber of the plasma processing apparatus is lower than that in the center of the processing chamber due to the loss due to the reaction of the solid surface which is the wall surface. Due to such non-uniformity of plasma density distribution, the etching rate on the substrate to be processed becomes non-uniform.
- Patent Document 1 in order to improve the non-uniformity of the plasma density distribution in the processing chamber, a configuration is adopted in which the microwave power introduced into the processing chamber is divided by using inner and outer waveguides. There is. With such a configuration, the plasma density on the wall surface of the processing chamber can be increased.
- the etching rate of the substrate to be processed does not always depend on the plasma density. Therefore, when process conditions such as heat distribution are prioritized, in order to obtain processing uniformity, it is finally possible to adjust the plasma density in the order of ambient height, center height, and uniformity in one process cycle. In some cases, in-plane uniformity on the substrate to be processed can be obtained.
- the thin film distribution on the substrate to be processed has a non-uniform film thickness due to characteristics such as the exhaust conductance of the film forming apparatus and the symmetry of the processing chamber.
- the film thickness distribution of the thin film to be etched has a convex distribution such as from the center height to the peripheral low, the input power of the microwave on the center of the substrate to be processed is made larger than the input power of the peripheral portion. It is required to control as such.
- the film thickness has a concave distribution such as from low center to high peripheral height, it is necessary to make the microwave input power on the center of the processing substrate smaller than the input power of the peripheral portion.
- an etching apparatus using plasma is required to have a high degree of freedom in controlling the plasma density distribution.
- bias power is applied to the substrate electrodes using an RF power supply.
- RF bias power is applied to the substrate electrodes while plasma is generated in the processing chamber, charges accumulate on the surface of the substrate placed on the substrate electrodes, causing charge-up damage to the semiconductor elements formed on the substrate. It may end up. Reducing the occurrence of this charge-up damage can greatly contribute to improving the yield of semiconductor elements.
- a plasma etching apparatus having a high degree of freedom in plasma density distribution control is required to solve problems such as reduction of charge-up damage as well as in-plane uniformity of etching processing.
- the microwave discharge generator described in Patent Document 2 has a configuration in which the space between the inner wall of the cavity resonator and the discharge tube is filled with a dielectric, and the plasma inside the discharge tube on which the substrate is placed is formed. No consideration is given to controlling the distribution of densities.
- the present invention solves the above-mentioned problems and makes it possible to control the plasma density distribution with a high degree of freedom in order to solve not only the in-plane uniformity of the etching process but also the problems such as reduction of charge-up damage.
- the purpose is to provide a plasma processing apparatus.
- a processing chamber in which a sample is subjected to plasma processing, a high-frequency power source for supplying high-frequency microwave power for generating plasma via a waveguide, and an inside of the processing chamber.
- the waveguide is arranged outside the first circular waveguide filled with a liquid dielectric and the first circular waveguide. It is characterized by including a first circular waveguide and a second circular waveguide arranged coaxially.
- a processing chamber in which a sample is plasma-processed, a high-frequency power source for supplying high-frequency microwave power for generating microwaves via a waveguide, and a processing chamber. It is equipped with a magnetic field forming mechanism that forms a magnetic field inside, and the waveguide is a first circular waveguide filled with a liquid dielectric and a first arranged outside the first circular waveguide.
- the microwave power control system that controls the microwave power of a plasma processing apparatus including a second circular waveguide arranged coaxially with the circular waveguide of the above, the liquid level height of the dielectric is controlled. By doing so, the ratio of the microwave power propagating in the first circular waveguide and the microwave power propagating in the second circular waveguide is controlled.
- the plasma density in the plasma processing apparatus can be controlled according to a desired etching rate, and problems such as reduction of charge-up damage as well as in-plane uniformity of plasma processing can be solved. It can be solved with a relatively high degree of freedom.
- the relative permittivity of the liquid dielectric filled in the inner waveguide is particularly different from that of the inner waveguide in which the inner waveguide is coaxially arranged and the inner waveguide is filled with the liquid dielectric and the outer waveguide in which the inside is hollow.
- the present invention relates to a plasma processing apparatus (ECR plasma etching apparatus) capable of controlling the distribution of microwave radiation power in the plasma processing chamber according to the filling amount.
- the present invention divides microwave power from a single microwave source into a coaxially arranged inner waveguide and an outer waveguide, and fills the liquid dielectric inside the inner waveguide.
- the microwave split power ratio between the inner waveguide and the outer waveguide can be adjusted by adjusting the microwave power passing through the inner waveguide, and the plasma density in the plasma processing chamber can be desired. It is controlled according to the etching rate.
- the microwave power from the rectangular waveguide connected to the magnetron is branched into the inner and outer waveguides arranged coaxially, respectively, and the inner and outer waveguides are divided.
- the microwave can be radiated from each radiation section into the inside of the plasma processing chamber.
- the microwave power when limiting the propagation of the microwave power of the inner waveguide, if the radius a of the inner waveguide is designed by the equation (Equation 1), the microwave power can be passed or cut off.
- fc is 2.45GHz microwave frequency
- C is a vacuum light velocity 2.99x10 8 m / s.
- the value of the relative permittivity ⁇ r is 1, so the radius of the inner waveguide is 0. It will be 0357m.
- the propagation velocity of microwave power is reduced to 1 / ⁇ r, so the radius of the inner waveguide is according to equation (Equation 1). It will be 0.0252 m.
- the microwave power of 2.45 GHz is cut off when the medium is vacuum or air, so that the inner waveguide has a constant length. Microwave power cannot pass through the waveguide. That is, it can be seen that the inner radiating portion connected to the inner waveguide does not radiate microwave power, and the plasma density near the central portion of the plasma processing chamber decreases.
- microwave power can pass through the inner waveguide. That is, microelectric power is radiated from the inner radiation portion connected to the inner waveguide, and the plasma density near the center of the plasma processing chamber increases. Therefore, the divided power ratio of the microwaves to be freely introduced into the processing chamber can be freely controlled according to the conditions of the etching process of the semiconductor element.
- the medium having a relative permittivity of ⁇ r of 2 is, for example, a liquid when a liquid dielectric is used, so that the liquid level can be freely manipulated and the microwave passing through the inner waveguide can be freely manipulated.
- the power can be adjusted. Therefore, the split power ratio of the microwave power of the inner waveguide and the outer waveguide can be adjusted within a certain range depending on the liquid level of the liquid dielectric.
- Equation 2 The definition of the above-mentioned microwave division power ratio is shown in the following equation (Equation 2).
- S 21 is a transmission S parameter of the inner waveguide
- S 31 is a transmission S parameter of the outer waveguide.
- the outer waveguide Since the outer waveguide is coaxial with the inner waveguide, it propagates microwaves as a coaxial waveguide.
- the coaxial waveguide has no shielding in the TEM mode, which is the basic mode, but the outer waveguide diameter b at the time of shielding the TE11, which is the higher-order mode, can be determined by using the following equation (Equation 3). can.
- a radius of the inner waveguide [m]
- b Radius of the outer waveguide [m]
- FIG. 1 shows a schematic configuration of a plasma processing apparatus (ECR plasma etching apparatus) 100 according to an embodiment of the present invention.
- 101 is a microwave power oscillator
- 102 is an isolator
- 103 is an automatic matcher
- 111 is a rectangular waveguide
- 112 is a circular-rectangular converter
- 104 is a circular polarization generator
- 113 is.
- the circular waveguide, 114 is the outer waveguide
- 115 is the inner waveguide
- 116 is the liquid dielectric housed inside the inner waveguide 115
- 117 is the inner cavity
- 118 is the outer cavity.
- 120 is a plasma processing chamber
- 121 is a vacuum chamber
- 122 is the upper part of the vacuum chamber
- 123 is the inner cavity wall
- 124 is a ring stay
- 125 is a quartz window
- 126 is a lower electrode
- 127 is an RF power supply
- 131 is an electromagnet coil.
- 132 is a yoke
- 10 is a substrate to be processed.
- the control unit that controls the microwave power oscillator 101, the automatic matching unit 103, the electromagnetic coil 131, the RF power supply 127, and the like is not shown.
- the microwave power with a frequency of 2.45 GHz output from the microwave oscillator 101 is propagated to the circular rectangular converter 112 by the rectangular waveguide 111 via the isolator 102 and the automatic matcher 103.
- a magnetron was used as the microwave oscillator 101.
- the circular-rectangular converter 112 also serves as a corner that bends the traveling direction of microwave power by 90 degrees, and aims to reduce the size of the entire device.
- a circularly polarized wave generator 104 is connected to the lower part of the circularly rectangular converter 112 to convert microwave power incident by linearly polarized waves into circularly polarized waves. Further, on the side of the plasma processing chamber 120 of the circularly polarized wave generator 104, there is a circular waveguide 113 provided on the substantially central axis of the vacuum chamber 121 constituting the plasma processing chamber 120, and the circularly polarized wave is formed. Microwave power is propagated.
- the microwave power propagated from the circular waveguide 113 is incident on the outer waveguide 114 attached to the upper part 122 of the vacuum chamber and the inner waveguide 115 arranged inside the outer waveguide 114.
- the radius of the inner waveguide 115 is smaller than 0.0357 m, which is the radius for blocking microwave power when the inside is air, which is described using the equation (1), and the relative permittivity ⁇ r inside. Is formed in a size larger than 0.0252 m, which is a radius for blocking microwave power when the liquid dielectric of 2 is filled.
- the inner waveguide 115 cuts off the microwave power.
- the microwave power propagated from the circular waveguide 113 is incident only on the outer waveguide 114.
- the inner waveguide 115 propagates microwave power, so that the circular waveguide is used.
- the microwave power propagated from the tube 113 is incident on the outer waveguide 114 and the inner waveguide 115.
- the outer waveguide 114 is connected to the outer cavity 118 inside the vacuum chamber upper part 122, and the inner waveguide 115 is connected to the inner cavity 117 partitioned by the inner cavity wall 123 inside the vacuum chamber upper 122. ing.
- the outer cavity 118 and the inner cavity 117 are separated from the plasma processing chamber 120 inside the vacuum chamber 121 by a quartz window 125.
- the outer periphery of the vacuum chamber 121 and the upper part 122 of the vacuum chamber is covered with an electromagnetic coil 131 for forming a magnetic field inside the vacuum chamber 121 and the upper part 122 of the vacuum chamber so that the ECR plasma etching process can be performed.
- a lower electrode 126 for placing the substrate 10 to be processed is installed on the central bottom surface of the plasma processing chamber 120.
- An RF power supply 127 for applying RF bias power is connected to the lower electrode 126.
- the ions of the processing gas ionized in the plasma are accelerated toward the processed substrate 10 placed on the lower electrode 126, and the processed substrate is processed.
- the thin film on 10 is removed.
- the microwave power output from the oscillator 101 and propagating through the isolator 102, the automatic matcher 103, the circular rectangular converter 112, the circularly polarized wave generator 104, and the circular waveguide 113 is the inner waveguide 115 and the outer waveguide 115. It is divided into 114.
- the liquid dielectric 116 When the liquid dielectric 116 is not filled inside the inner waveguide 115, it is filled with air. In this state, as described above, the dielectric constant of the air is 1, and the radius of the inner waveguide is formed so as to block microwaves, so that the microwave power is inside the waveguide. It cannot pass through the tube 115.
- the liquid dielectric 116 when the liquid dielectric 116 is filled inside the inner waveguide 115, microwaves start to leak from the inner waveguide 115, and when the liquid dielectric 116 is gradually poured, the liquid in the inner waveguide 115 is charged.
- the level of the liquid level (liquid level) of the dielectric 116 increases, and the amount of microwave power passing through also increases.
- FIG. 2 shows the detailed configuration of the inner waveguide 115 and the outer waveguide 114.
- the inside of the inner waveguide 115 is hollow, and a dielectric upper lid 1151 and a bottom plate 1152 are provided to seal the inside.
- a quartz ring stay 124 between the inner waveguide 115 and the outer waveguide 114, and the inner waveguide 115 and the outer waveguide 114 are coaxially fixed by the ring stay 124. .. Further, in order to be able to supply or discharge the liquid dielectric 116 from the outside to the inside of the inner waveguide 115, a flow path 141 leading from the outer waveguide 114 to the inner waveguide 115 through the ring stay 124 is provided. It is formed.
- This flow path 141 is connected to a pump 243 for supplying or discharging the liquid dielectric 116 to the inside of the inner waveguide 115.
- the pump 243 is controlled by the control unit 242 to supply the liquid dielectric 116 stored in the storage unit 244 to the inside of the inner waveguide 115 through the flow path 141.
- the liquid dielectric 116 inside the inner waveguide 115 is discharged to the storage portion 244 side through the flow path 141.
- the communication pipe 142 communicating from the outer waveguide 114 through the ring stay 124 to the inside of the inner waveguide 115. Is provided.
- the communication pipe 142 is connected to the level sensor 241 by a pipe 245.
- the liquid level of the liquid dielectric 116 inside the inner waveguide 115 is measured by using the level sensor 241 via the pipe 245 connected to the communication pipe 142, and the liquid level is transmitted to the control unit 242 as an electronic signal. provide feedback.
- the pump 243 When the liquid dielectric 116 is filled inside the inner waveguide 115, the pump 243 is used to suck up the liquid dielectric 116 from the storage section 244 for storing the liquid dielectric 116, and the inner waveguide 115 The inside is filled with the liquid dielectric 116.
- the pump 243 When the pump 243 is rotated in the reverse direction, the liquid dielectric 116 in the inner waveguide 115 is sucked out and returned to the storage unit 244 for storing the liquid dielectric 116.
- the control unit 242 the ratio of the microwave power propagating from the circular waveguide 113 to the inner waveguide 115 and the microwave power propagating to the outer waveguide 114 (microwave division power ratio) becomes a preset value. As described above, it has a program for adjusting the liquid level of the liquid dielectric 116 inside the inner waveguide 115 based on the liquid level detection signal from the level sensor 241. This program controls the operating time of the pump 243 to achieve the desired microwave split power ratio.
- FIG. 3 shows the result of obtaining the relationship between the divided power ratio and the dielectric fluid level by electromagnetic field simulation.
- the vertical axis represents the microwave power division ratio
- the horizontal axis represents the level of the dielectric fluid level as the dielectric fluid level.
- the liquid dielectric fluid level and the split power ratio have a substantially linear relationship as shown by the straight line 310.
- the liquid level setting value of the liquid dielectric required to obtain the desired microwave division power ratio can be set to the desired microwave division power. It can be converted from the ratio.
- the desired divided power ratio of microwave power is input (S401).
- the value of the liquid level (liquid level) of the liquid dielectric corresponding to the input desired microwave division power ratio is obtained from the graph shown in FIG. 3, and this is set as the set value (S402).
- the level sensor 241 detects the level (liquid level) of the liquid level of the liquid dielectric 116 inside the inner waveguide 115 (S403), and the detection signal of the level sensor 241 and the inner waveguide obtained in advance are detected. Based on the relationship with the level of the liquid level of the liquid dielectric 116 inside the tube 115, the liquid level of the liquid dielectric 116 corresponding to the detection signal of the level sensor 241 is obtained (S404).
- the pump operating time (PT) of the pump 243 and the amount of liquid injected into the inner waveguide 115 with the temperature of the liquid dielectric 116 obtained in advance as a parameter The pump operating time is calculated based on the relationships 710 to 730 (S407).
- the control unit 242 controls the pump 243 to supply the liquid dielectric 116 to the inside of the inner waveguide 115.
- the microwave power oscillated from the oscillator 101 and propagated from the circular waveguide 113 is divided into the inner waveguide 115 and the outer waveguide 114 according to the desired microwave division power ratio. Propagate.
- the liquid dielectric 116 is desired even if its volume changes with temperature.
- the microwave power division ratio can be adjusted.
- the control unit 242 controls the pump 243 so that the pump operating time obtained by the procedure described above is obtained, and supplies the liquid dielectric 116 to the inner waveguide 115.
- the plasma processing chamber 120 is evacuated to a vacuum by an exhaust means (not shown), and the processing gas is supplied to the plasma processing chamber 120 from a gas supply means (not shown) so that the plasma processing chamber 120 is predetermined. Set to pressure.
- the oscillator 101 is driven to transmit microwave power.
- the microwave power transmitted from the oscillator 101 propagates through the isolator 102, the automatic matcher 103, the circular rectangular converter 112, the circularly polarized wave generator 104, and the circular waveguide 113, and propagates through the inner waveguide 115 and the outer guide.
- the wave tube 114 is divided and input.
- the level of the liquid level of the liquid dielectric 116 inside the inner waveguide 115 is adjusted so as to have a desired microwave power division ratio. Therefore, the microwave power divided at a desired division ratio is propagated from the inner waveguide 115 to the inner cavity 117 and from the outer waveguide 114 to the outer cavity 118.
- the microwave power thus divided and propagated inside the inner waveguide 115 is propagated from the inner cavity 117 connected to the inner waveguide 115 to the vicinity of the center of the plasma processing chamber 120 through the quartz window 125.
- the microwave power that has been divided and propagated inside the outer waveguide 114 is transmitted from the outer cavity 118 connected to the outer waveguide 114 to the vicinity of the peripheral portion (away from the central portion) of the plasma processing chamber 120 through the quartz window 125. It is propagated to the part).
- plasma having a density corresponding to the microwave power propagated from the inner cavity portion 117 is generated near the central portion of the plasma processing chamber 120, and is used as the microwave power propagated from the outer cavity portion 118.
- Plasma having a corresponding density is generated in a portion away from the central portion of the plasma processing chamber 120, and plasma having a desired density distribution is generated in the entire plasma processing chamber 120.
- the substrate 10 to be processed mounted on the lower electrode 126 is etched by generating plasma having a desired plasma density distribution in the plasma processing chamber 120 in this way, the in-plane uniformity of the etching treatment is performed. Not only that, the charge-up damage can be reduced and the etching process can be performed.
- the configuration is such that the microwave power division ratio propagating to the inner waveguide 115 and the outer waveguide 114 can be adjusted, so that the configuration of the etching apparatus is changed according to the process conditions. Even if there is, even if the film thickness distribution of the thin film formed on the substrate to be processed is non-uniform, the plasma density in the plasma processing apparatus can be controlled according to a desired etching rate. , It is possible to perform the etching process with reduced charge-up damage while maintaining the in-plane uniformity of the etching process.
- the relative permittivity of the liquid dielectric at present is due to the size of the waveguide of the microwave power waveguide.
- the value of ⁇ r is preferably around 2.
- silicone oil for example, there are silicone oil, Fluorinert (trademark) manufactured by 3M, and Garden (trademark) manufactured by Solvay.
- the size of the waveguide of the waveguide changes according to the increase in size of the processing apparatus using the large substrate to be processed, if the function of the present invention that shields or passes microwaves can be achieved depending on the presence or absence of the liquid dielectric.
- the value of the relative permittivity ⁇ r of the liquid dielectric is not particularly limited.
- the shape of the upper lid 1151 and the bottom plate 1152 of the inner waveguide 115 in this embodiment is preferably disk-shaped or conical, the liquid dielectric 116 is enclosed inside the inner waveguide 115 to reflect microwaves. Any shape may be used as long as the power can be reduced. A dielectric such as quartz or ceramic is preferable so that microwaves can pass through the top lid 1151 and the bottom plate 1152.
- the ring stay 124 for connecting the inner waveguide 115 and the outer waveguide 114 is preferably made of a dielectric such as quartz or ceramics in order to reduce the reflection of microwave power.
- Substrate to be processed 101 Oscillator 102 Isolator 103 Automatic matcher 104 Circular polarization generator 113 Circular waveguide 114 Outer waveguide 115 Inner waveguide 116 Liquid dielectric 117 Inner cavity 118 Outer cavity 120 Plasma processing chamber 121 Vacuum chamber 122 Vacuum chamber upper part 123 Inner cavity wall 124 Ring stay 125 Quartz window 126 Lower electrode 127 RF power supply 131 Electromagnetic coil 241 Level sensor 242 Control unit 243 Pump 244 Storage unit 1151 Top lid 1152 Bottom plate
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
エッチング処理の面内均一性だけでなく、チャージアップダメージの低減といった課題を解決するのに自由度の高いプラズマ密度分布制御を行うことを可能にするために、内部で基板をプラズマ処理するプラズマ処理室を備えてこのプラズマ処理室の内部を真空に排気可能な真空チャンバと、マイクロ波源と円形導波管を備えてマイクロ波源から発振されたマイクロ波電力を円形導波管を介して真空チャンバに供給するマイクロ波電力供給部とを備えたプラズマ処理装置において、マイクロ波電力供給部は、円形導波管と真空チャンバとの間に、円形導波管と同軸上で同心状に配置されて内部が異なる誘電率を有する複数の導波管を配置して構成した。
Description
本発明はマイクロ波を用いたプラズマ処理装置に関する。
半導体素子の高集積度化により、高アスペクト比のエッチング加工技術の開発が進められてきた。半導体分野の微細化エッチング技術の一つはドライエッチング技術であり、その中に特にプラズマを用いたドライエッチング加工がよく使われている。
プラズマは電子及び処理ガスの分子または原子との衝突を利用して処理ガスの分子または原子を励起し、イオンおよびラジカルを生成する。プラズマ処理装置はイオンによって異方性エッチング、ラジカルによって等方性エッチングを実現している。プラズマ源としては、電子サイクロトロン共鳴ECR(ECR: Electron Cyclotron Resonance)がある。
従来のECRエッチング装置の構成として、特許文献1には、マグネトロンから発せられた2.45GHzのマイクロ波を矩形導波管及び円形導波管内を伝播させて、処理室の上部にある石英窓を通して内部に磁場が形成されている処理室に導入して、マイクロ波による電界とそれに対して垂直方向に形成されている磁界により、電子サイクロトロ共鳴を起こして、高密度なプラズマを生成して基板を処理する構成が記載されている。
また、特許文献2には、空胴共振器の内壁と放電管の間を誘電体で満たし、ガス条件や基板の変更に際して、空胴共振器の共振周波数とマグネトロンによるマイクロ波発振周波数が一致する様に、誘電体を異なる誘電率のものに入れかえるとともに、液体の誘電体を使用する場合には、これを空胴共振器の外から導入し、空胴共振器の内壁と放電管の間を流して、空胴共振器の外に排出するように構成したマイクロ波による放電発生装置が記載されている。
WAVEGUIDE HANDBOOK N.MARCUVITZ
プラズマ処理装置の処理室壁面のプラズマ密度は、壁面である固体表面の反応による損失によって処理室の中心部よりも低くなっていることが一般的に知られている。このようなプラズマ密度分布の不均一性によって被処理基板上のエッチングレートが不均一になってしまう。
特許文献1においては処理室のプラズマ密度分布の不均一性を改善するために、処理室に導入するマイクロ波電力を内側と外側導波管を用いて、その電力を分割する構成を採用している。このような構成とすることで処理室壁面のプラズマ密度を高めることができる。
しかし、特許文献1に開示されている構成では、単一のマイクロ波源を用いるため、導波管の配置数によって処理室中心と壁側のマイクロ波電力比が固定されてしまう。一方、プラズマ処理を行う場合、プロセス条件に応じて、処理装置のハードウェアの変更が伴う場合があり、それに応じてマイクロ波電力比を調整する必要が生じるが、特許文献1に開示されている構成では、柔軟に電力比の調節に対応することが難しい。
そして半導体素子の製造プロセス工程においては被処理基板のエッチングレートは必ずしもプラズマ密度に依存しているとは限らない。そのため、例えば熱分布のようなプロセス条件を優先にした場合、処理の均一性を得るためには、一つのプロセスサイクルの中でプラズマ密度を周囲高、中心高、均一といった順番に調整できれば最終的に被処理基板上のエッチング面内均一性が得られる場合がある。
また、半導体素子の薄膜をエッチング処理する場合には、被処理基板上の薄膜分布が成膜装置の排気コンダクタンス、処理室の対称性等の特性によって、形成された膜厚が不均一になることが多い。例えば、エッチング処理対象とする薄膜の膜厚の分布が中心高から周囲低のような凸分布の場合、被処理基板の中心上に対するマイクロ波の投入電力を周囲部の投入電力に対して大きくするように制御することが求められる。一方で、膜厚が中心低から周囲高のような凹分布の場合には処理基板の中心上のマイクロ波投入電力を周囲部の投入電力に対して小さくする必要がある。
上記に示したように、エッチング処理の面内均一性を実現するためにはさまざまな要因があるため、プラズマを用いたエッチング装置には自由度の高いプラズマ密度分布制御が求められている。
一方、イオン入射を用いた異方性エッチングを実現するために、RF電源を用いて基板電極にバイアス電力を印加する構成が採用されている。処理室内にプラズマを発生させた状態で基板電極にRFバイアス電力を印加すると、基板電極に載置した基板の表面に電荷がたまって、基板上に形成した半導体素子にチャージアップダメージを発生させてしまう場合がある。このチャージアップダメージの発生を低減させることは、半導体素子の歩留まり改善に大きく貢献できる。
そのため、エッチング処理の面内均一性だけでなく、チャージアップダメージの低減といった課題を解決するのに自由度の高いプラズマ密度分布制御を有するプラズマエッチング装置が求められている。
一方、特許文献2に記載されているマイクロ波による放電発生装置では、空胴共振器の内壁と放電管の間を誘電体で満たす構成となっており、基板を載置する放電管内部におけるプラズマ密度の分布を制御することについては、配慮されていない。
本発明は、上記した課題を解決して、エッチング処理の面内均一性だけでなく、チャージアップダメージの低減といった課題を解決するのに自由度の高いプラズマ密度分布制御を行うことを可能にするプラズマ処理装置を提供することにある。
上記した課題を解決するために、本発明では、試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を導波路を介して供給する高周波電源と、処理室の内部に磁場を形成する磁場形成機構とを備えるプラズマ処理装置において、導波路は、液体の誘電体が充填された第一の円形導波管と、この第一の円形導波管の外側に配置され第一の円形導波管と同軸上に配置された第二の円形導波管とを具備することを特徴とする。
また、上記した課題を解決するために、本発明では、試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を導波路を介して供給する高周波電源と、処理室の内部に磁場を形成する磁場形成機構とを備え、導波路は、液体の誘電体が充填された第一の円形導波管と、この第一の円形導波管の外側に配置され第一の円形導波管と同軸上に配置された第二の円形導波管と、を具備するプラズマ処理装置のマイクロ波電力を制御するマイクロ波電力制御システムにおいて、誘電体の液面高さを制御することにより、第一の円形導波管を伝搬するマイクロ波電力と第二の円形導波管を伝搬するマイクロ波電力の比を制御するように構成した。
本発明によれば、プラズマ処理装置内のプラズマ密度を所望のエッチングレートに合わせて制御することができるようになり、プラズマ処理の面内均一性だけでなく、チャージアップダメージの低減といった課題を、比較的高い自由度を以って解決することができる。
本発明は、同軸に配置された内部に液体誘電体を充填した内側導波管と内部が空洞の外側導波管に対して、特に内側導波管に充填された液体誘電体の比誘電率及び充填量によるプラズマ処理室内へのマイクロ波放射電力の分布を制御できるようにしたプラズマ処理装置(ECRプラズマエッチング装置)に関するものである。
また、本発明は、単一のマイクロ波源からのマイクロ波電力を、同軸に配置された内側導波管と外側導波管にそれぞれ分割し、内側導波管の内部にある液体誘電体の充填量によって、内側導波管に通過するマイクロ波電力を加減することにより内側導波管と外側導波管とのマイクロ波分割電力比を調整できるようにして、プラズマ処理室内のプラズマ密度を所望のエッチングレートに合わせて制御するようにしたものである。
ECRプラズマエッチング装置において、マグネトロンに接続している矩形導波管からのマイクロ波電力をそれぞれ同軸配置の内側導波管と外側導波管に分岐して、内側導波管及び外側導波管の終端をそれぞれの処理室の上面に設置されている内側放射部と外側放射部に接続することにより、マイクロ電力はそれぞれの放射部よりプラズマ処理室の内部に放射できるようになる。
ここで、内側導波管のマイクロ波電力の伝播を制限するときには、内側導波管の半径aを式(数1)によって設計すれば、マイクロ波電力を通過または遮断できるようになる。
ここで、fcはマイクロ波周波数2.45GHz、Cは真空中光速度2.99x108m/sである。
例えば、TE11モードのマイクロ波電力の伝播において、媒質が空気または真空の場合は、その比誘電率εrの値が1になるため、式(数1)によると内側導波管の半径が0.0357mになる。内側導波管内の媒質の比誘電率εrの値が2の場合は、マイクロ波電力の伝播速度が1/√εr分に遅くなるため、式(数1)によると内側導波管の半径が0.0252mになる。
内側導波管の半径aを0.0357mより小さく、0.0252mより大きく設計すれば、媒質が真空または空気の場合は2.45GHzのマイクロ波電力が遮断されるため、一定の長さを有する導波管をマイクロ波電力は通過することができない。すなわち、内側導波管に接続する内側放射部からはマイクロ波電力の放射がなく、プラズマ処理室の中心部付近のプラズマ密度が低下することが分かる。
一方で、前述の半径aを有する内側導波管中に比誘電率εrの値が2の媒質を挿入すれば、マイクロ波電力が内側導波管を通過することができるようになる。すなわち、内側導波管に接続する内側放射部からマイクロ電力が放射され、プラズマ処理室の中心部付近のプラズマ密度が上昇する。従って、半導体素子のエッチングプロセスの条件に応じて、自由に処理室に導入するマイクロ波の分割電力比を制御することができる。
前述の比誘電率εrの値が2の媒質は、例えば、液体誘電体を用いる場合、液体のため、その液レベルを自由に操作することができて、内側導波管を通過するマイクロ波の電力を調節することができる。そのため、内側導波管と外側導波管のマイクロ波電力の分割電力比は、液体誘電体の液レベルによって前述の分割電力比を一定範囲内で調整することができる。前述のマイクロ波の分割電力比の定義は下記式(数2)に示す。
ここで、S21は内側導波管の伝送Sパラメータ、S31は外側導波管の伝送Sパラメータである。
外側導波管は内側導波管と同軸になるため、同軸導波管としてマイクロ波を伝播する。同軸導波管は基本モードであるTEMモードには遮蔽が存在しないが、その高次モードであるTE11の遮蔽時の外側導波管径bは下記の式(数3)を用いて決めることができる。
ここで、a:内側導波管の半径 [m]
b:外側導波管の半径 [m]
式(数2)を考慮して、外導波管が遮蔽とならない寸法とする。
b:外側導波管の半径 [m]
式(数2)を考慮して、外導波管が遮蔽とならない寸法とする。
本発明は、上記に説明した考え方に基づくものであり、その具体的な実施の形態を、図を用いて説明する。
以下に、本発明の実施の形態を図面に基づいて詳細に説明する。本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。
ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
本発明の実施例に係るプラズマ処理装置(ECRプラズマエッチング装置)100の概略の構成を、図1に示す。
図1に示した構成において、101はマイクロ波電力の発振器、102はアイソレータ、103は自動整合器、111は矩形導波管、112は円矩形変換器、104は円偏波発生器、113は円形導波管、114は外側導波管、115は内側導波管、116は内側導波管115の内部に収容された液体誘電体、117は内側空洞部、118は外側空洞部である。
また、120はプラズマ処理室、121は真空チャンバ、122は真空チャンバ上部、123は内側空洞部壁、124はリングステー、125は石英窓、126は下部電極、127はRF電源、131は電磁石コイル、132はヨーク、10は被処理基板である。
なお、図1に示した構成において、真空チャンバ121の内部、すなわちプラズマ処理室120を真空に排気する排気手段、および真空チャンバ121の内部、すなわちプラズマ処理室120に処理ガスを供給するガス供給手段、マイクロ波電力の発振器101や自動整合器103、電磁コイル131、RF電源127等を制御する制御部については、図示を省略している。
上記した構成において、マイクロ波の発振器101より出力された周波数2.45GHzのマイクロ波電力はアイソレータ102、自動整合器103を介して円矩形変換器112に矩形導波管111により伝搬される。マイクロ波の発振器101としてマグネトロンを用いた。円矩形変換器112はマイクロ波電力の進行方向を90度曲げるコーナも兼ねて、装置全体の小型化を図っている。
円矩形変換器112の下部には円偏波発生器104が接続され、直線偏波で入射したマイクロ波電力を円偏波に変換している。さらに円偏波発生器104のプラズマ処理室120の側には、プラズマ処理室120を構成する真空チャンバ121の略中心軸上に設けられた円形導波管113があり、円偏波化されたマイクロ波電力が伝搬される。
本実施例においては、円形導波管113から伝搬されたマイクロ波電力は、真空チャンバ上部122に取り付けた外側導波管114と、その内部に配置された内側導波管115に入射する。
ここで、内側導波管115の半径は、式(1)を用いて説明した内部が空気の時にマイクロ波電力を遮断する半径である0.0357mよりも小さく、かつ、内部に比誘電率εrが2の液体誘電体を充填したときにマイクロ波電力を遮断する半径となる0.0252mよりも大きい寸法で形成されている。
これにより、液体誘電体116を収納せずに内部が空気で満たされている場合には、内側導波管115はマイクロ波電力を遮断する。この場合、円形導波管113から伝搬されたマイクロ波電力は外側導波管114だけに入射する。
一方、内側導波管115の内部に液体誘電体116を収納して内部が液体誘電体116で満たされている場合には、内側導波管115はマイクロ波電力を伝搬するので、円形導波管113から伝搬されたマイクロ波電力は外側導波管114と内側導波管115に入射する。
外側導波管114は真空チャンバ上部122の内部の外側空洞部118と繋がっており、内側導波管115は真空チャンバ上部122の内部で内側空洞部壁123により仕切られた内側空洞部117と繋がっている。外側空洞部118と内側空洞部117とは、石英窓125により真空チャンバ121の内部のプラズマ処理室120と仕切られている。
ECRプラズマエッチング処理を行えるようにするために、真空チャンバ121と真空チャンバ上部122の外周は、真空チャンバ121と真空チャンバ上部122の内部に磁場を形成するための電磁コイル131に覆われている。プラズマ処理室120の中心底面には被処理基板10を置くための下部電極126が設置されている。
この下部電極126には、RFバイアス電力を印加するためのRF電源127が接続されている。RF電源127からRFバイアス電力を下部電極126に印加することにより、プラズマ中に電離されている処理ガスのイオンが下部電極126に載置された被処理基板10に向かって加速され、被処理基板10上の薄膜が除去される。
発振器101から出力されてアイソレータ102、自動整合器103、円矩形変換器112、円偏波発生器104、円形導波管113を伝搬したマイクロ波電力は、内側導波管115および外側導波管114に分割される。
内側導波管115の内部に液体誘電体116が充填されていない時は、空気が充満されている。この状態では、上記に説明したように、空気の誘電率が1であり、内側導波管の半径がマイクロ波を遮断するような寸法で形成されているために、マイクロ波電力は内側導波管115を通過することができない。
一方、液体誘電体116が内側導波管115の内部に充填されると、内側導波管115からマイクロ波が漏れ始め、徐々に液体誘電体116を注ぐと、内側導波管115内の液体誘電体116の液面のレベル(液レベル)が高くなり、マイクロ波電力の通過量も増える。内側導波管115内の液体誘電体116の液レベルを調整することによって、円形導波管113から内側導波管115に伝搬されるマイクロ波電力と外側導波管114に伝搬されるマイクロ波電力の比を変えることができる。
図2には、内側導波管115と外側導波管114の詳細構成を示す。内側導波管115は、内部が空洞になっており、誘電体製の上蓋1151と底板1152が設けられて、内部が密閉される構成となっている。
内側導波管115と外側導波管114との間には石英製のリングステー124があり、内側導波管115と外側導波管114とは、このリングステー124によって同軸に固定されている。また、外部から内側導波管115の内部に液体誘電体116を供給又は排出できるようにするために、外側導波管114からリングステー124を通って内側導波管115に通じる流路141が形成されている。
この流路141は、液体誘電体116を内側導波管115の内部に供給又は排出するためのポンプ243と接続している。ポンプ243は、制御部242で制御されて、貯蔵部244に貯蔵されている液体誘電体116を流路141を通して内側導波管115の内部に供給する。また、逆に、内側導波管115の内部にある液体誘電体116を、流路141を通して貯蔵部244の側に排出する。
また、内側導波管115の内部の液体誘電体116の液面の高さをモニタするために、外側導波管114からリングステー124を通って内側導波管115の内部に通じる連通管142が設けられている。この連通管142は、配管245によりレベルセンサ241と接続している。
次に、内側導波管115の内部への液体誘電体116の充填/排出の液面制御システムの一連の動作を説明する。内側導波管115の内部の液体誘電体116の液面レベルは、連通管142に接続する配管245を介してレベルセンサ241を用いて計測し、電子信号として、液面レベルを制御部242にフィードバックする。
液体誘電体116を内側導波管115の内部に充填する際に、ポンプ243を用いて、液体誘電体116を貯蔵するための貯蔵部244から液体誘電体116を吸い上げ、内側導波管115の内部に液体誘電体116を充填する。ポンプ243を逆回転させれば、内側導波管115内の液体誘電体116が吸い出されて液体誘電体116を貯蔵するための貯蔵部244に戻せる。
制御部242は、円形導波管113から内側導波管115に伝搬するマイクロ波電力と外側導波管114に伝搬するマイクロ波電力の比(マイクロ波分割電力比)が予め設定した値となるように、レベルセンサ241からの液面検出信号に基づいて内側導波管115の内部の液体誘電体116の液面レベルを調節するためのプログラムを有している。このプログラムにより、所望のマイクロ波分割電力比となるように、ポンプ243の運転時間を制御する。
図3に、分割電力比と誘電体液レベルの関係を電磁界シミュレーションにより求めた結果を示す。図3に示したグラフ300では、縦軸にマイクロ波電力分割比、横軸に誘電体液の液面のレベルを誘電体液レベルとして表示してある。
このグラフより、液体誘電体液レベルと分割電力比は、直線310で示されるように、ほぼ線形関係になっていることがわかる。これにより、この線形関係を多項式化したプログラムを制御部242に実装すれば、所望のマイクロ波分割電力比を得るために必要な液体誘電体の液レベルの設定値を、所望のマイクロ波分割電力比から換算することができる。
次に、図5乃至7を参照しながら、図4を用いて、内側導波管115と外側導波管114の所望マイクロ波分割電力比に基づいてポンプ243の運転時間を決める処理のフローを説明する。
まず、マイクロ波電力の所望の分割電力比を入力する(S401)。次に、入力した所望のマイクロ波分割電力比に対応する液体誘電体の液面のレベル(液レベル)の値を図3に示したグラフから求め、これを設定値とする(S402)。
次に、レベルセンサ241で内側導波管115の内部の液体誘電体116の液面のレベル(液レベル)を検出し(S403)、予め求めておいたレベルセンサ241の検出信号と内側導波管115の内部の液体誘電体116の液面のレベルとの関係に基づいて、レベルセンサ241の検出信号に対応する液体誘電体116の液レベルを求める(S404)。
次に、図5のグラフ500に示すように、求めた内側導波管115の内部における液体誘電体116の液レベルの値(センサレベル53)とS402で求めた設定値(設定誘電体液レベル52)との差(液面レベル差511)を算出する(S405)。
次に、予め求めておいた図6のグラフ600に示すような、ポンプ243から内側導波管115に供給する液体誘電体116の注液量とレベルセンサ241で検出した内側導波管115の内部の液体誘電体116の液面レベルとの関係610に基づいて、内側導波管115の内部へ注入する液体誘電体116の必要注入量612を算出する(S406)。
最後に、図7のグラフ700に示すような、予め求めておいた液体誘電体116の温度をパラメータとしたポンプ243のポンプ運転時間(PT)と内側導波管115への注液量との関係710乃至730に基づいて、ポンプ運転時間を算出する(S407)。
このようにして求めたポンプ運転時間に基づいて制御部242でポンプ243を制御して内側導波管115の内部に液体誘電体116を供給する。これにより、発振器101から発振されて円形導波管113から伝搬されるマイクロ波電力は、所望のマイクロ波分割電力比に応じて、内側導波管115と外側導波管114とに分割されて伝搬される。
以上に説明したような処理フローに基づいて内側導波管115の内部の液体誘電体116の液面のレベルを制御すれば、液体誘電体116は温度によってその体積が変化しても、所望のマイクロ波電力分割比を調節することができる。
次に、本実施例における被処理基板10を処理する手順を説明する。
まず、上記に説明したような手順で求めたポンプ運転時間となるように制御部242でポンプ243を制御して内側導波管115に液体誘電体116を供給する。次に、この状態で、プラズマ処理室120を図示していない排気手段により真空に排気し、図示していないガス供給手段からプラズマ処理室120に処理ガスを供給してプラズマ処理室120が所定の圧力になるように設定する。
まず、上記に説明したような手順で求めたポンプ運転時間となるように制御部242でポンプ243を制御して内側導波管115に液体誘電体116を供給する。次に、この状態で、プラズマ処理室120を図示していない排気手段により真空に排気し、図示していないガス供給手段からプラズマ処理室120に処理ガスを供給してプラズマ処理室120が所定の圧力になるように設定する。
この状態で、発振器101を駆動してマイクロ波電力を発信させる。発振器101から発信されたマイクロ波電力は、アイソレータ102、自動整合器103、円矩形変換器112、円偏波発生器104、円形導波管113を伝搬して、内側導波管115および外側導波管114に分割して入力する。
ここで、内側導波管115と外側導波管114とは、所望のマイクロ波電力分割比となるように内側導波管115の内部の液体誘電体116の液面のレベルが調整されているので、内側導波管115から内側空洞部117へ、外側導波管114から外側空洞部118に、所望の分割比で分割されたマイクロ波電力が伝搬される。
このようにして分割されて内側導波管115の内部を伝搬したマイクロ波電力は、内側導波管115に接続する内側空洞部117から石英窓125を通してプラズマ処理室120の中心部付近に伝搬される。一方、分割されて外側導波管114の内部を伝搬したマイクロ波電力は、外側導波管114に接続する外側空洞部118から石英窓125を通してプラズマ処理室120の周辺部付近(中心部から離れた部分)に伝搬される。
プラズマ処理室120には、内側空洞部117から伝搬されたマイクロ波電力に応じた密度を有するプラズマがプラズマ処理室120の中心部分付近に発生し、外側空洞部118から伝搬されたマイクロ波電力に応じた密度を有するプラズマがプラズマ処理室120の中心部から離れた部分に発生し、プラズマ処理室120全体として、所望の密度分布を持ったプラズマが生成される。
このようにしてプラズマ処理室120に所望のプラズマ密度の分布を持ったプラズマを発生させることにより、下部電極126に載置した被処理基板10をエッチング処理する場合において、エッチング処理の面内均一性だけでなく、チャージアップダメージを低減させてエッチング処理を行うことができる。
本実施例によれば、内側導波管115と外側導波管114とに伝搬するマイクロ波電力分割比を調節出来る構成としたことにより、プロセス条件に応じてエッチング装置の構成を変更した場合であっても、また、被処理基板上に形成された薄膜の膜厚分布が不均一な場合であっても、プラズマ処理装置内のプラズマ密度を所望のエッチングレートに合わせて制御することができるので、エッチング処理の面内均一性を維持しながら、チャージアップダメージを低減させたエッチング処理を行うことができる。
なお、本実施例を被処理基板が12インチの大きさのプラズマエッチング装置に適用する場合には、マイクロ波電力の導波管の管路の大きさから、現状では液体誘電体の比誘電率εrの値は2前後のものが望ましい。例えばシリコンオイル、3M社製のフロリナート(商標)、ソルベイ社製のガルデン(商標)がある。さらに大型被処理基板による処理装置の大型化に応じて導波管の管路の大きさもそれに応じて変わるため、液体誘電体の有無によってマイクロ波の遮蔽または通過する本発明の機能を果たせるならば液体誘電体の比誘電率εrの値は特に制約はない。
さらに、本実施例における内側導波管115の上蓋1151と底板1152の形状は円盤状、または円錐状が望ましいが、液体誘電体116を内側導波管115の内部に封じ込められ、マイクロ波の反射電力を低減できれば、どの形状でもよい。上蓋1151と底板1152に、マイクロ波が透過できるように石英またはセラミックスのような誘電体が良い。内側導波管115と外側導波管114を接続するためのリングステー124は、マイクロ波電力の反射を低減するために石英またはセラミックスのような誘電体からなることが望ましい。
以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
10 被処理基板
101 発振器
102 アイソレータ
103 自動整合器
104 円偏波発生器
113 円形導波管
114 外側導波管
115 内側導波管
116 液体誘電体
117 内側空洞部
118 外側空洞部
120 プラズマ処理室
121 真空チャンバ
122 真空チャンバ上部
123 内側空洞部壁
124 リングステー
125 石英窓
126 下部電極
127 RF電源
131 電磁コイル
241 レベルセンサ
242 制御部
243 ポンプ
244 貯蔵部
1151 上蓋
1152 底板
101 発振器
102 アイソレータ
103 自動整合器
104 円偏波発生器
113 円形導波管
114 外側導波管
115 内側導波管
116 液体誘電体
117 内側空洞部
118 外側空洞部
120 プラズマ処理室
121 真空チャンバ
122 真空チャンバ上部
123 内側空洞部壁
124 リングステー
125 石英窓
126 下部電極
127 RF電源
131 電磁コイル
241 レベルセンサ
242 制御部
243 ポンプ
244 貯蔵部
1151 上蓋
1152 底板
Claims (10)
- 試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を導波路を介して供給する高周波電源と、前記処理室の内部に磁場を形成する磁場形成機構とを備えるプラズマ処理装置において、
前記導波路は、液体の誘電体が充填された第一の円形導波管と、前記第一の円形導波管の外側に配置され前記第一の円形導波管と同軸上に配置された第二の円形導波管と、を具備することを特徴とするプラズマ処理装置。 - 請求項1に記載のプラズマ処理装置において、
前記第一の円形導波管を伝搬するマイクロ波電力と前記第二の円形導波管を伝搬するマイクロ波電力の比が所望の比となるように前記誘電体の液面高さを制御する制御装置をさらに備えていることを特徴とするプラズマ処理装置。 - 請求項1に記載のプラズマ処理装置において、
前記導波路は、前記第一の円形導波管の上方に配置された円形導波管をさらに具備し、
前記円形導波管の内径は、第二の円形導波管の内径より小さいことを特徴とするプラズマ処理装置。 - 請求項1に記載のプラズマ処理装置において、
前記第一の円形導波管の半径は、比誘電率が2の前記誘電体が内部に充填された場合のマイクロ波電力を遮断する半径より大きく、かつ、内部が空気の場合のマイクロ波電力を遮断する半径より小さいことを特徴とするプラズマ処理装置。 - 請求項2に記載のプラズマ処理装置において、
前記第一の円形導波管の半径は、比誘電率が2の前記誘電体が内部に充填された場合のマイクロ波電力を遮断する半径より大きく、かつ、内部が空気の場合のマイクロ波電力を遮断する半径より小さいことを特徴とするプラズマ処理装置。 - 請求項2に記載のプラズマ処理装置において、
前記制御装置は、前記第二の円形導波管を伝搬するマイクロ波電力に対する前記第一の円形導波管を伝搬するマイクロ波電力の比を大きくする場合、前記液面高さが高くなるように前記液面高さを制御することを特徴とするプラズマ処理装置。 - 請求項2に記載のプラズマ処理装置において、
前記制御装置は、前記第一の円形導波管を伝搬するマイクロ波電力と前記第二の円形導波管を伝搬するマイクロ波電力の比と前記液面高さとの相関関係を基に前記液面高さを制御し、
前記相関関係は、概ね線形であることを特徴とするプラズマ処理装置。 - 請求項3に記載のプラズマ処理装置において、
前記マイクロ波の周波数は、2.45GHzであり、
前記第一の円形導波管の半径は、比誘電率が2の前記誘電体が内部に充填された場合のマイクロ波電力を遮断する半径より大きく、かつ、内部が空気の場合のマイクロ波電力を遮断する半径より小さいことを特徴とするプラズマ処理装置。 - 請求項5に記載のプラズマ処理装置において、
前記マイクロ波の周波数は、2.45GHzであり、
前記導波路は、前記第一の円形導波管の上方に配置された円形導波管をさらに具備し、
前記円形導波管の内径は、前記第二の円形導波管の内径より小さいことを特徴とするプラズマ処理装置。 - 試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を導波路を介して供給する高周波電源と、前記処理室の内部に磁場を形成する磁場形成機構とを備え、前記導波路は、液体の誘電体が充填された第一の円形導波管と、前記第一の円形導波管の外側に配置され前記第一の円形導波管と同軸上に配置された第二の円形導波管と、を具備するプラズマ処理装置のマイクロ波電力を制御するマイクロ波電力制御システムにおいて、
前記誘電体の液面高さを制御することにより、前記第一の円形導波管を伝搬するマイクロ波電力と前記第二の円形導波管を伝搬するマイクロ波電力の比を制御することを特徴とするマイクロ波電力制御システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/018261 WO2021220459A1 (ja) | 2020-04-30 | 2020-04-30 | プラズマ処理装置 |
JP2021529438A JP7043684B1 (ja) | 2020-04-30 | 2020-04-30 | プラズマ処理装置 |
CN202080006807.XA CN113892166B (zh) | 2020-04-30 | 2020-04-30 | 等离子处理装置 |
KR1020217016705A KR102749254B1 (ko) | 2020-04-30 | 2020-04-30 | 플라스마 처리 장치 |
US17/433,327 US12002655B2 (en) | 2020-04-30 | 2020-04-30 | Plasma processing apparatus |
TW110106614A TWI851877B (zh) | 2020-04-30 | 2021-02-25 | 電漿處理裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/018261 WO2021220459A1 (ja) | 2020-04-30 | 2020-04-30 | プラズマ処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021220459A1 true WO2021220459A1 (ja) | 2021-11-04 |
Family
ID=78331898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018261 WO2021220459A1 (ja) | 2020-04-30 | 2020-04-30 | プラズマ処理装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12002655B2 (ja) |
JP (1) | JP7043684B1 (ja) |
KR (1) | KR102749254B1 (ja) |
CN (1) | CN113892166B (ja) |
TW (1) | TWI851877B (ja) |
WO (1) | WO2021220459A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11888553B2 (en) * | 2019-10-18 | 2024-01-30 | Nokia Technologies Oy | Massive MIMO antenna array |
JP7302094B2 (ja) * | 2021-01-21 | 2023-07-03 | 株式会社日立ハイテク | プラズマ処理装置 |
KR102748017B1 (ko) * | 2021-12-28 | 2024-12-31 | 세메스 주식회사 | 기판 처리 장치 |
US12084759B2 (en) * | 2022-01-07 | 2024-09-10 | Wave Power Technology Inc. | Artificial diamond plasma production device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0319332A (ja) * | 1989-06-16 | 1991-01-28 | Hitachi Ltd | マイクロ波プラズマ処理装置 |
JPH0757892A (ja) * | 1993-08-09 | 1995-03-03 | Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk | 高周波電力供給装置 |
JPH07135093A (ja) * | 1993-11-08 | 1995-05-23 | Matsushita Electric Ind Co Ltd | プラズマ処理装置及び処理方法 |
JP2012033385A (ja) * | 2010-07-30 | 2012-02-16 | Toshiba Corp | プラズマ処理装置及びプラズマ処理方法 |
JP2014089976A (ja) * | 2013-12-24 | 2014-05-15 | Tokyo Electron Ltd | プラズマ処理装置及びこれに用いる遅波板 |
JP2020507187A (ja) * | 2017-02-03 | 2020-03-05 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | プラズマ均一性を径方向制御及び方位角制御するためのシステム及び方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134965A (en) * | 1989-06-16 | 1992-08-04 | Hitachi, Ltd. | Processing apparatus and method for plasma processing |
DE69306007T2 (de) * | 1992-01-30 | 1997-05-22 | Hitachi Ltd | Verfahren und Vorrichtung zur Plasmaerzeugung und Verfahren zur Halbleiter-Bearbeitung |
JPH0677147A (ja) | 1992-08-28 | 1994-03-18 | Mitsubishi Electric Corp | プラズマ反応装置 |
JPH0757894A (ja) | 1993-08-20 | 1995-03-03 | Mitsubishi Heavy Ind Ltd | マイクロ波による放電発生方法及び装置 |
JPH07263186A (ja) * | 1994-03-17 | 1995-10-13 | Hitachi Ltd | プラズマ処理装置 |
US5714009A (en) * | 1995-01-11 | 1998-02-03 | Deposition Sciences, Inc. | Apparatus for generating large distributed plasmas by means of plasma-guided microwave power |
SG50732A1 (en) | 1995-05-19 | 1998-07-20 | Hitachi Ltd | Method and apparatus for plasma processing apparatus |
JP3813741B2 (ja) | 1998-06-04 | 2006-08-23 | 尚久 後藤 | プラズマ処理装置 |
JP2000260757A (ja) * | 1999-03-11 | 2000-09-22 | Hitachi Ltd | プラズマ処理装置 |
JP4213482B2 (ja) * | 2003-02-07 | 2009-01-21 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP2005129483A (ja) * | 2003-09-30 | 2005-05-19 | Shibaura Mechatronics Corp | プラズマ処理装置 |
KR20050079860A (ko) * | 2004-02-07 | 2005-08-11 | 삼성전자주식회사 | 마이크로 웨이브 공급장치, 이를 이용한 플라즈마공정장치 및 플라즈마 공정방법 |
JP4852997B2 (ja) * | 2005-11-25 | 2012-01-11 | 東京エレクトロン株式会社 | マイクロ波導入装置及びプラズマ処理装置 |
JP5082229B2 (ja) * | 2005-11-29 | 2012-11-28 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP4677918B2 (ja) * | 2006-02-09 | 2011-04-27 | 東京エレクトロン株式会社 | プラズマ処理装置及びプラズマ処理方法 |
JP2008098474A (ja) * | 2006-10-13 | 2008-04-24 | Tokyo Electron Ltd | プラズマ処理装置とその運転方法、プラズマ処理方法および電子装置の製造方法 |
GB201021860D0 (en) | 2010-12-23 | 2011-02-02 | Element Six Ltd | A microwave plasma reactor for diamond synthesis |
US20120186747A1 (en) * | 2011-01-26 | 2012-07-26 | Obama Shinji | Plasma processing apparatus |
-
2020
- 2020-04-30 WO PCT/JP2020/018261 patent/WO2021220459A1/ja active Application Filing
- 2020-04-30 CN CN202080006807.XA patent/CN113892166B/zh active Active
- 2020-04-30 JP JP2021529438A patent/JP7043684B1/ja active Active
- 2020-04-30 KR KR1020217016705A patent/KR102749254B1/ko active Active
- 2020-04-30 US US17/433,327 patent/US12002655B2/en active Active
-
2021
- 2021-02-25 TW TW110106614A patent/TWI851877B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0319332A (ja) * | 1989-06-16 | 1991-01-28 | Hitachi Ltd | マイクロ波プラズマ処理装置 |
JPH0757892A (ja) * | 1993-08-09 | 1995-03-03 | Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk | 高周波電力供給装置 |
JPH07135093A (ja) * | 1993-11-08 | 1995-05-23 | Matsushita Electric Ind Co Ltd | プラズマ処理装置及び処理方法 |
JP2012033385A (ja) * | 2010-07-30 | 2012-02-16 | Toshiba Corp | プラズマ処理装置及びプラズマ処理方法 |
JP2014089976A (ja) * | 2013-12-24 | 2014-05-15 | Tokyo Electron Ltd | プラズマ処理装置及びこれに用いる遅波板 |
JP2020507187A (ja) * | 2017-02-03 | 2020-03-05 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | プラズマ均一性を径方向制御及び方位角制御するためのシステム及び方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20210134601A (ko) | 2021-11-10 |
JP7043684B1 (ja) | 2022-03-29 |
US20220344132A1 (en) | 2022-10-27 |
CN113892166B (zh) | 2025-02-28 |
JPWO2021220459A1 (ja) | 2021-11-04 |
TW202143801A (zh) | 2021-11-16 |
US12002655B2 (en) | 2024-06-04 |
KR102749254B1 (ko) | 2025-01-03 |
CN113892166A (zh) | 2022-01-04 |
TWI851877B (zh) | 2024-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7043684B1 (ja) | プラズマ処理装置 | |
KR101560122B1 (ko) | 표면파 플라즈마 처리 장치 | |
KR101711713B1 (ko) | 마이크로파 방사 기구, 마이크로파 플라즈마원 및 표면파 플라즈마 처리 장치 | |
KR101751200B1 (ko) | 마이크로파 방사 안테나, 마이크로파 플라즈마원 및 플라즈마 처리 장치 | |
US8136479B2 (en) | Plasma treatment apparatus and plasma treatment method | |
US7478609B2 (en) | Plasma process apparatus and its processor | |
WO2021220329A1 (ja) | プラズマ処理装置 | |
CN110391127B (zh) | 模块化高频源 | |
WO2010140526A1 (ja) | プラズマ処理装置及びプラズマ処理装置の給電方法 | |
JPH07263187A (ja) | プラズマ処理装置 | |
JPH09289099A (ja) | プラズマ処理方法および装置 | |
JPH01184923A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
KR102521817B1 (ko) | 플라스마 처리 장치 | |
JP2010277969A (ja) | プラズマ処理装置及びプラズマ処理装置の給電方法 | |
KR20250018148A (ko) | 플라스마 처리 장치 및 플라스마 처리 방법 | |
JP2018006256A (ja) | マイクロ波プラズマ処理装置 | |
JP7302094B2 (ja) | プラズマ処理装置 | |
JP4514291B2 (ja) | マイクロ波プラズマ処理装置及びプラズマ処理方法 | |
JP2007018819A (ja) | 処理装置および処理方法 | |
JPH04141594A (ja) | プラズマ処理装置及び該装置を用いたプラズマ処理方法 | |
JPH04217318A (ja) | マイクロ波プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021529438 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20934017 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20934017 Country of ref document: EP Kind code of ref document: A1 |