WO2021117217A1 - Straddled vehicle - Google Patents
Straddled vehicle Download PDFInfo
- Publication number
- WO2021117217A1 WO2021117217A1 PCT/JP2019/048901 JP2019048901W WO2021117217A1 WO 2021117217 A1 WO2021117217 A1 WO 2021117217A1 JP 2019048901 W JP2019048901 W JP 2019048901W WO 2021117217 A1 WO2021117217 A1 WO 2021117217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- capacitor
- inverter
- battery
- engine
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 154
- 230000005291 magnetic effect Effects 0.000 claims description 29
- 238000004804 winding Methods 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 230000005611 electricity Effects 0.000 claims description 11
- 238000010248 power generation Methods 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 24
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000007858 starting material Substances 0.000 description 11
- 239000010687 lubricating oil Substances 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000009739 binding Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/28—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K6/485—Motor-assist type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to a saddle-mounted vehicle.
- Patent Document 1 discloses a motorcycle.
- the motorcycle of Patent Document 1 includes an ACG starter (alternating current generator starter), a battery, and a capacitor.
- ACG starter alternating current generator starter
- the battery and the capacitor connected to the battery are charged by the generated power of the ACG starter without boost chopper control during the operation of the engine.
- boost chopper control during the operation of the engine.
- the battery and capacitors power the ACG starter.
- the engine is started by the operation of the ACG starter.
- An object of the present invention is to provide a saddle-type vehicle capable of increasing the frequency of utilization of a capacitor as a power source for starting an engine.
- the battery and the capacitor receive a voltage generated by the generated power of the ACG starter while the engine is running.
- batteries and capacitors differ from each other in charging speed and changes in voltage associated with charging.
- the voltage of the capacitor is proportional to the amount of charge charged.
- the voltage of the battery has a correlation with the amount of electric charge to be charged, but the amount of increase in the voltage during charging is smaller than that of the capacitor.
- Batteries usually have a larger charge capacity than capacitors. When the engine starts, the charge of the battery and capacitor is consumed and the voltage drops. The battery and capacitor are charged after the engine is started.
- the capacitor when the battery and the capacitor are charged independently, the capacitor is fully charged in a relatively short time, and the voltage of the capacitor reaches the supply power generation. On the other hand, the battery takes a long time to be fully charged. In addition, the voltage rise of the battery with charging is gradual.
- the voltage of the capacitor shown in Patent Document 1 is affected by the voltage of the battery. More specifically, the voltage of the capacitor is constrained by the gradually rising battery voltage. As a result, unlike the case where the capacitor is charged alone, it takes a long time until the capacitor is fully charged. That is, the capacitor is unlikely to be fully charged. As a result, the next time the engine is started, a situation is likely to occur in which power is supplied to the ACG starter from a capacitor that is not fully charged. Therefore, the frequency of using the capacitor tends to be low.
- the present inventor deliberately considered disconnecting the electrical connection of the capacitor in order to increase the frequency of utilization of the capacitor as a power source for starting the engine. More specifically, I tried disconnecting the electrical connection between the inverter and the capacitor for at least part of the battery charging period. As a result, the influence of the battery voltage on the capacitor voltage can be reduced. The state of charge of the capacitor can be maintained even while the battery is charged by the electric power output from the inverter and the voltage of the battery is rising. As a result, the frequency of utilization of the capacitor as a power source for starting the engine can be increased.
- the vehicle according to each viewpoint of the present invention completed based on the above findings has the following configurations.
- the saddle-mounted vehicle is With wheels
- An engine that has a crankshaft and outputs torque for driving the wheels generated by the combustion operation of gas from the crankshaft.
- a permanent magnet generator provided at one end of the crankshaft, having a permanent magnet, starting the engine by rotating the crankshaft, and generating electricity by being driven by the engine.
- An inverter equipped with a plurality of switching units for controlling the current output from the permanent magnet generator, and A capacitor having a capacitance capable of charging an amount of electric power for starting the engine at least once and storing electric power output from the permanent magnet generator via the inverter.
- a charging path switching circuit for disconnecting the electrical connection between the inverter and the capacitor is provided.
- the charging path switching circuit disconnects the electrical connection between the inverter and the capacitor during at least a part of the period in which the battery is charged by the permanent magnet generator of the saddle-type vehicle in the above configuration. That is, the disconnection of the electrical connection between the inverter and the capacitor is performed in part or all of the period. The disconnection is performed, for example, substantially during the entire period. For example, the period during which the electrical connection is disconnected is longer than the period during which the electrical connection is made. As described above, in the above configuration, the battery is charged under the condition that the electrical connection between the inverter and the capacitor is disconnected. As a result, the influence of the battery voltage on the capacitor voltage can be reduced.
- the capacitor when the battery is charged with the power output from the inverter, the capacitor can maintain its state regardless of the voltage of the battery even if the battery is not fully charged.
- the battery and capacitor supply power to the permanent magnet generator. At this time, for example, electric power can be supplied to the permanent magnet generator from a fully charged capacitor. Therefore, the frequency of utilization of the capacitor as a power source for starting the engine can be increased.
- the saddle-mounted vehicle of (1) The charging path switching circuit disconnects the inverter from the battery when the capacitor is charged by the electric power output from the inverter by generating electricity from the permanent magnet generator.
- the charging path switching circuit disconnects the connection between the inverter and the battery. Therefore, the capacitor is charged in a situation where the electrical connection between the inverter and the battery is disconnected. This reduces the effect of the battery voltage on the capacitor voltage, even when the capacitor is charged. For example, when the capacitor is charged with the electric power output from the inverter, the capacitor can reach the fully charged state regardless of the voltage of the battery even if the battery is not fully charged. Capacitors can reach a fully charged state in a short period of time. Therefore, the frequency of utilization of the capacitor as a power source for starting the engine can be further increased.
- the saddle-mounted vehicle of (2) The charging path switching circuit charges the battery while disconnecting the connection between the inverter and the capacitor in a period after the period during which the capacitor is charged while disconnecting the connection between the inverter and the battery.
- the connection between the inverter and the capacitor is disconnected after the capacitor is charged.
- the capacitor can remain charged regardless of the voltage of the battery, even if the battery is not fully charged.
- the permanent magnet type generator includes a rotor having a plurality of magnetic poles composed of the permanent magnets and a rotor.
- a stator core having a plurality of slots formed at intervals in the circumferential direction of the permanent magnet generator and a stator having windings provided so as to pass through the slots are provided.
- the number of magnetic poles is larger than the number of the plurality of teeth.
- the angular velocity with respect to the rotational speed of the rotor is larger than that in the case where the number of magnetic poles is smaller than the number of the plurality of teeth.
- the angular velocity is the angular velocity with respect to the electric angle based on the repetition period of the magnetic poles.
- the inductance of the winding is large.
- the angular velocity further increases as the rotation speed of the rotor increases.
- the inductance of the winding interferes with the current flowing through the winding. Therefore, the induced electromotive voltage increases as the rotation speed of the rotor increases, but the large winding inductance suppresses an excessive increase in the current output from the generator.
- the power storage device can be charged to a higher rotation speed of the crankshaft than in the case where the number of magnetic poles is smaller than the number of the plurality of teeth. Therefore, the frequency of utilization of the capacitor can be further increased.
- the saddle-mounted vehicle of (1) further comprises a crankcase configured to lubricate the interior with oil.
- the permanent magnet type generator is provided at a position where it comes into contact with the oil.
- the power storage device can be charged in the range up to the rotation speed of the high crankshaft without wasting electric power. Therefore, in such a permanent magnet generator, the temperature of the stator winding does not become higher than or is unlikely to be higher than the temperature of the lubricating oil, so that even if the permanent magnet generator is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed.
- the permanent magnet type generator is arranged in an environment where it comes into contact with lubricating oil, it is usually required to increase the size of the cooling mechanism.
- the saddle-mounted vehicle of (1) The inverter supplies electric power from the power storage device to the permanent magnet generator while the saddle-mounted vehicle is traveling, and assists the permanent magnet generator in rotation of the crank shaft.
- the crankshaft can be driven to a higher rotation speed. Therefore, it is possible to assist the acceleration by the engine up to a higher rotation speed.
- the frequency of utilization of capacitors can be increased.
- the permanent magnet type generator has a permanent magnet.
- the configuration in which the rotor is provided with a coil instead of a permanent magnet is different from the permanent magnet type generator in this configuration.
- the battery is, for example, a lead battery.
- the battery is, for example, a deep cycle lead battery.
- the deep cycle lead battery has, for example, a plate having less complexity of the surface structure, so that the consumption of the surface structure is suppressed. Therefore, a decrease in storage capacity in the case of deep discharge is suppressed.
- the battery is not particularly limited, and for example, a lead battery other than the deep cycle lead battery may be used. Further, the battery may be, for example, a lithium ion battery or a nickel hydrogen battery.
- the capacitor is, for example, a lithium ion capacitor.
- the capacitor is not particularly limited, and may be, for example, an electric double layer capacitor, an electrolytic capacitor, or a tantalum capacitor.
- the condition for the charging path switching circuit to disconnect the connection between the inverter and the capacitor is, for example, the state of the capacitor.
- the charging path switching circuit disconnects the inverter and the capacitor based on the state of the capacitor.
- the state of the capacitor as a condition also includes, for example, estimation of the state of the capacitor.
- the state of the capacitor is, for example, the electrical state of the capacitor, for example, at least one of the following: (A) Capacitor voltage. (B) Capacitor charging time. (C) Integrated value of rotation speed. (D) Current and time. (E) Integrated value of current.
- a saddle-mounted vehicle is a vehicle in which the driver sits across the saddle.
- a saddle-type vehicle is a vehicle equipped with a saddle-type seat.
- a saddle-mounted vehicle is a vehicle in which the driver rides in a riding style.
- a saddle-mounted vehicle is an example of a vehicle.
- the saddle-mounted vehicle is, for example, a vehicle that turns in a lean posture, and is configured to lean toward the center of the curve when turning.
- the saddle-mounted vehicle is, for example, a motorcycle.
- the motorcycle is not particularly limited, and examples thereof include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
- the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, a tricycle.
- the saddle-mounted vehicle may be, for example, an ATV (All-Terrain Vehicle) or the like.
- the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
- the term “and / or” includes any or all combinations of one or more related listed components.
- the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
- the terms “attached”, “combined” and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
- FIG. 1 shows typically the saddle type vehicle which concerns on one Embodiment of this invention.
- FIG. 1 shows the state different from FIG. 1 of the charge path switching circuit shown in FIG.
- FIG. 1 shows the outline of the voltage change at the time of charging of the battery and the capacitor shown in FIG. 1 and FIG.
- FIG. 1 shows typically the saddle-type vehicle and the electric system which are application examples of the embodiment shown in FIG.
- FIG. 1 shows typically the saddle-type vehicle and the electric system which are application examples of the embodiment shown in FIG.
- FIG. 1 shows typically the saddle-type vehicle and the electric system which are application examples of the embodiment shown in FIG.
- It is a partial cross-sectional view schematically showing the schematic structure of the engine unit shown in FIG.
- FIG. 1 shows the cross section perpendicular to the rotation axis of the permanent magnet type generator shown in FIG.
- FIG. 1 is a diagram schematically showing a saddle-type vehicle according to an embodiment of the present invention.
- Part (a) of FIG. 1 is a side view of a saddle-mounted vehicle.
- Part (b) of FIG. 1 is a block diagram showing a schematic electrical configuration of the saddle-mounted vehicle shown in Part (a).
- the saddle-mounted vehicle 1 shown in FIG. 1 includes wheels 3a and 3b, an engine 10, a permanent magnet generator 20, an inverter 21, and a power storage device 4.
- the power storage device 4 includes a capacitor 42, a battery 41, and a charging path switching circuit 43. That is, it includes wheels 3a and 3b, an engine 10, a permanent magnet generator 20, an inverter 21, a capacitor 42, a battery 41, and a charging path switching circuit 43.
- the saddle-mounted vehicle 1 is provided with an electric auxiliary machine L.
- the saddle-mounted vehicle 1 includes a vehicle body 2.
- FIG. 1 shows a lean vehicle as an example of the saddle-mounted vehicle 1. The lean vehicle tilts to the left of the vehicle while turning left and tilts to the right of the vehicle while turning right.
- the wheels 3a and 3b provided in the saddle-mounted vehicle 1 include a front wheel 3a and a rear wheel 3b.
- the rear wheel 3b is a driving wheel.
- the engine 10 includes a crankshaft 15.
- the engine 10 outputs power via the crankshaft 15.
- the engine 10 outputs torque for driving the wheels 3b from the crankshaft 15.
- the wheels 3b receive power from the crankshaft 15 and drive the saddle-mounted vehicle 1.
- the power output from the engine 10 can be transmitted to the wheels 3b via, for example, a transmission and a clutch.
- the electric auxiliary machine L is an electric device mounted on the saddle-mounted vehicle 1.
- the electric auxiliary machine L operates by being supplied with electric power.
- the electric auxiliary machine L is, for example, an engine auxiliary machine that operates so as to cause the engine 10 to perform combustion.
- Engine accessories include, for example, a fuel injection device 18 and an ignition device 19 (see FIG. 5).
- the permanent magnet type generator 20 is provided at one end of the crankshaft 15.
- the permanent magnet type generator 20 has a permanent magnet. More specifically, the permanent magnet type generator 20 includes a permanent magnet portion 37 composed of a permanent magnet.
- the permanent magnet type generator 20 also serves as a starter for starting the engine 10.
- the permanent magnet type generator 20 is a permanent magnet type starting generator.
- the permanent magnet type generator 20 starts the engine 10 by rotating the crankshaft 15.
- the permanent magnet generator 20 also generates electricity by being driven by the engine 10.
- the power storage device 4 is a device capable of charging and discharging electricity.
- the power storage device 4 stores electric power.
- the power storage device 4 outputs the charged electric power to the outside.
- the power storage device 4 supplies electric power to the permanent magnet type generator 20.
- the power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started. Further, for example, after the engine 10 is started, the power storage device 4 is charged by the electric power generated by the permanent magnet type generator 20.
- the battery 41 stores the electric power output from the permanent magnet generator 20 via the inverter 21.
- the battery 41 has, for example, a maximum rated voltage of 12 V or more.
- the battery 41 is, for example, a battery having a nominal voltage of 12 V.
- the battery 41 is a lead battery.
- the capacitor 42 stores the electric power output from the permanent magnet generator 20 via the inverter 21.
- the maximum rated voltage of the capacitor 42 is equal to or higher than the maximum rated voltage of the battery 41.
- the capacitor 42 has, for example, a maximum rated voltage of 12 V or more.
- the capacitor 42 has a capacitance capable of charging an amount of electric power that starts the engine 10 at least once.
- the battery 41 has a capacity larger than that of the capacitor 42.
- the capacitor 42 has a maximum charge rate higher than the maximum charge rate of the battery 41.
- the charging rate represents the speed of charging.
- the unit is C [sea].
- the magnitude of the current that fully charges the capacity of the battery in one hour is defined as 1C.
- the maximum charge rate is the maximum charge rate allowed.
- the battery 41 has a maximum charge rate of 1 C or less
- the capacitor 42 has a maximum charge rate of 40 C or more.
- the specifications of the battery 41 and the capacitor 42 are not limited to this.
- the inverter 21 supplies the electric power generated by the permanent magnet generator 20 to the capacitor 42 and the battery 41, for example, when the engine 10 is in combustion operation. In this case, the inverter 21 rectifies the current generated by the permanent magnet generator 20. Further, the inverter 21 rotates the permanent magnet type generator 20 by supplying electric power to the permanent magnet type generator 20. The inverter 21 controls the current by controlling the on / off of the current flowing through the stator winding W of the permanent magnet generator 20.
- the inverter 21 includes a switching unit 211 and a control device 60.
- the control device 60 is physically provided integrally with the inverter 21.
- the control device 60 controls the voltage output from the inverter 21 by controlling the operation of the switching unit 211 of the inverter 21.
- the control device 60 controls the current flowing between the permanent magnet type generator 20 and the power storage device 4 by controlling the operation of the switching unit 211 of the inverter 21. Further, the control device 60 controls the operation of the permanent magnet type generator 20.
- the control device 60 controls the voltage output from the inverter 21 by, for example, a phase control method or vector control.
- the control device 60 controls the inverter 21 so that the voltage output from the inverter 21 is smaller than either the maximum rated voltage of the battery 41 or the maximum rated voltage of the capacitor 42, for example. That is, the control device 60 controls the inverter 21 so that the battery 41 and the capacitor 42 do not become overvoltage. For example, if the battery 41 has a nominal voltage of 12 V and a maximum rated voltage of 14.5 V and the capacitor 42 has a maximum rated voltage that is greater than the maximum rated voltage of the battery 41, the controller 60 may be the battery 41 or capacitor.
- the inverter 21 is controlled so as to supply a voltage of 14 V to 42.
- the voltage value is an example for understanding and is not particularly limited.
- the charging path switching circuit 43 switches the path of the current output from the permanent magnet type generator 20 via the inverter 21.
- the charging path switching circuit 43 includes a battery switch unit 431 and a capacitor switch unit 432.
- the battery switch unit 431 and the capacitor switch unit 432 are composed of, for example, transistors.
- the structures of the battery switch unit 431 and the capacitor switch unit 432 are not particularly limited, and may be, for example, a relay.
- the charging path switching circuit 43 is controlled by the control device 60.
- the charging path switching circuit 43 is an electrical connection between the inverter 21 and the capacitor 42 during at least a part of the period in which the battery 41 is charged by the electric power output from the inverter 21 by the permanent magnet type generator 20.
- part (b) of FIG. 1 shows a battery switch unit 431 in an on state and a capacitor switch unit 432 in an off state. In this state, the battery 41 is charged by the electric power output from the inverter 21, and the electrical connection between the inverter 21 and the capacitor 42 is cut off.
- FIG. 2 is a block diagram showing a state different from that of FIG. 1 in the charging path switching circuit 43 shown in FIG.
- FIG. 2 shows the battery switch unit 431 in the off state and the capacitor switch unit 432 in the on state.
- the capacitor 42 is charged by the electric power output from the inverter 21, and the electrical connection between the inverter 21 and the battery 41 is cut off.
- the control device 60 shown in FIGS. 1 and 2 causes the inverter 21 to supply a current from the power storage device 4 to the permanent magnet generator 20 in response to the signal from the starter switch 6. As a result, electric power is supplied from the power storage device 4 to the permanent magnet type generator 20, and the engine 10 is started.
- the control device 60 controls the inverter 21 so that the current from the permanent magnet generator 20 flows through at least one of the battery 41 and the capacitor 42. As a result, the battery 41 or the capacitor 42 is charged by the generated power of the permanent magnet generator 20. Further, the control device 60 transfers the electric power of the battery 41 or the capacitor 42 to the inverter 21 in response to the operation of the acceleration indicator 8 (see FIG. 4) after the engine 10 is started, that is, after the combustion operation is started. It can be supplied to 20. More specifically, the control device 60 supplies electric power from the battery 41 or the capacitor 42 to the permanent magnet generator 20 while the saddle-mounted vehicle 1 is traveling, and rotates the crankshaft 15 to the permanent magnet generator 20. To assist. As a result, the acceleration of the saddle-mounted vehicle 1 by the engine 10 is assisted by the permanent magnet generator 20.
- the control device 60 also has a function of an engine control unit that controls the supply and combustion of fuel to the engine 10.
- the control device 60 controls the combustion of the engine 10 by controlling the operation of the electric auxiliary machine L that functions as an auxiliary machine for the engine.
- the control device 60 includes a central processing unit and a memory (not shown).
- the control device 60 controls the combustion of the engine 10 by executing a program stored in the memory.
- the control device 60 operates on the electric power of the battery 41. More specifically, the control device 60 operates from the voltage of the battery 41 at an operating voltage down-converted so that it can be applied to the control device 60.
- the down converter is provided in, for example, the inverter 21.
- the voltage fluctuation of the battery 41 is smaller than that of the capacitor 42, for example. Therefore, fluctuations in the operating voltage of the control device 60 are also suppressed. For example, even if the current is consumed when the engine 10 is started, the fluctuation of the operating voltage of the control device 60 is suppressed.
- FIG. 3 is a chart showing an outline of voltage changes during charging of the battery 41 and the capacitor 42 shown in FIGS. 1 and 2.
- both the battery 41 and the capacitor 42 are in a discharged state.
- the voltage of the battery 41 is about 11V
- the voltage of the capacitor 42 is about 0V.
- electric power is output from the inverter 21 by generating electric power from the permanent magnet type generator 20.
- the voltage of the power storage device 4 is not always equal to the output of the inverter 21 due to the voltage drop of the cable between the inverter 21 and the power storage device 4.
- the voltage of the power storage device 4 fluctuates as shown in the graph of FIG. 3, for example.
- the solid line V1 in FIG. 3 shows the voltage of the power storage device 4. More specifically, V1 shows the voltage of node N1 in part (b) of FIG.
- the charging path switching circuit 43 disconnects the inverter 21 and the battery 41 when the capacitor 42 is charged by the electric power from the inverter 21.
- the charging path switching circuit 43 disconnects the inverter 21 and the battery 41 from time 0 to t1.
- the voltage of the capacitor 42 rises. Therefore, the voltage V1 of the power storage device 4 rises.
- the voltage of the capacitor 42 is approximately equal to the output voltage of the inverter 21 (14V in the example of FIG. 3) at time t1.
- the charging path switching circuit 43 is a period (0 to t1) after the period (0 to t1) for charging the capacitor 42 while disconnecting the connection between the inverter 21 and the battery 41, as shown in the part (b) of FIG.
- the battery 41 is charged while disconnecting the connection between the 21 and the capacitor 42.
- the charging path switching circuit 43 charges the battery 41 at time t1 while disconnecting the connection between the inverter 21 and the capacitor 42.
- the charging path switching circuit 43 switches the connection after a predetermined time (for example, t1 second) has elapsed after the start of charging, for example, by operating a timer.
- the charging path switching circuit 43 measures a predetermined time by, for example, a timer.
- the switching conditions in the charging path switching circuit 43 are not particularly limited.
- the charging path switching circuit 43 may be switched according to the terminal voltage of the capacitor 42, or may be switched according to the current flowing through the capacitor 42. May be done.
- the voltage V1 of the power storage device 4 reflects the voltage V12 of the battery 41 after the time t1.
- the voltage V1 of the power storage device 4 after the time t1 is equal to the voltage V12 of the battery 41.
- the broken line V11 indicates the terminal voltage of the capacitor 42 after the time t1.
- the terminal voltage of the disconnected capacitor 42 maintains the value of voltage V1 at time t1 (eg 14V). That is, the capacitor 42 maintains the voltage V11 when the connection is broken.
- the capacitor 42 maintains a voltage V11 that is substantially equal to the voltage output from the inverter 21.
- the rate of change of the voltage V12 of the battery 41 is smaller than that of the capacitor 42. That is, it takes a long time for the voltage V12 of the battery 41 to become substantially equal to the voltage output from the inverter 21.
- the broken line V12'in FIG. 3 indicates the voltage of the power storage device 4 of the reference example in which both the battery 41 and the capacitor 42 are always connected to the inverter 21.
- the voltage of the power storage device 4 is substantially equal to the voltage of the capacitor 42. Since the capacitor 42 is connected to the battery 41, the voltage of the capacitor 42 is restricted by the voltage of the battery 41. Even at time t1, the voltage (V12') of the capacitor 42 is constrained.
- the inverter 21 and the capacitor 42 are charged during a period in which the battery 41 is charged by the electric power output from the inverter 21 by generating electricity from the permanent magnet type generator 20. Disconnect the electrical connection. Therefore, the voltage of the capacitor 42 is not restricted by the voltage of the battery 41. At least after time t1, the voltage V11 of the capacitor 42 can be maintained in a state of exceeding the voltage (V12) of the battery 41.
- the power storage device 4 When the engine 10 is started, the power storage device 4 outputs electric power to the inverter 21. For example, when the engine 10 is started between the times t1 and t2 shown in FIG. 3, power is supplied to the permanent magnet generator 20 from the capacitor 42 having a high voltage. Therefore, for example, more power can be supplied from the capacitor 42 than in the case of the reference example in which the battery and the capacitor are always connected when charging the power storage device.
- the frequency of utilization of the capacitor 42 as a power source for starting the engine 10 can be increased.
- the charging path switching circuit 43 When the engine 10 is started, for example, the charging path switching circuit 43 outputs electric power from the capacitor 42 to the inverter 21 while electrically disconnecting the battery 41 and the inverter 21. In this case, power is supplied to the permanent magnet generator 20 from the capacitor 42 having a high voltage as shown in V11 of FIG. Therefore, more power can be supplied from the capacitor 42.
- FIG. 4 is a diagram schematically showing a saddle-mounted vehicle 1 and an electric system, which are application examples of the embodiment shown in FIG. Part (a) of FIG. 4 is a plan view of the saddle-mounted vehicle 1. Part (b) of FIG. 4 is a side view of the saddle-mounted vehicle 1. Part (c) of FIG. 4 is a physical wiring diagram schematically showing the connection of the electric system of the saddle-mounted vehicle 1.
- FIGS. 4 and 4 the elements corresponding to the embodiments shown in FIG. 1 will be described with the same reference numerals as those in FIG.
- the saddle-mounted vehicle 1 shown in FIG. 4 includes a vehicle body 2.
- the vehicle body 2 is provided with a seat 2a for the driver to sit on. The driver sits so as to straddle the seat 2a.
- FIG. 4 shows a motorcycle as an example of the saddle-mounted vehicle 1.
- the saddle-mounted vehicle 1 is provided with front wheels 3a and rear wheels 3b.
- the tread surfaces of the wheels 3a and 3b of the saddle-mounted vehicle 1 have an arcuate cross-sectional shape in a state where they do not come into contact with the road surface.
- the engine 10 constitutes an engine unit EU. That is, the saddle-mounted vehicle 1 includes an engine unit EU.
- the engine unit EU includes an engine 10 and a permanent magnet generator 20.
- the engine 10 outputs power via the crankshaft 15.
- the engine 10 outputs torque for driving the wheels 3b from the crankshaft 15.
- the wheels 3b receive power from the crankshaft 15 and drive the saddle-mounted vehicle 1.
- the engine 10 has, for example, a displacement of 100 mL or more.
- the engine 10 has, for example, a displacement of less than 400 mL.
- the saddle-mounted vehicle 1 includes a transmission CVT and a clutch CL. The power output from the engine 10 is transmitted to the wheels 3b via the transmission CVT and the clutch CL.
- the permanent magnet type generator 20 is driven by the engine 10 to generate electricity.
- the permanent magnet type generator 20 shown in FIG. 4 is a magnet type start generator.
- the permanent magnet generator 20 has a rotor 30 and a stator 40 (see FIG. 6).
- the rotor 30 includes a permanent magnet portion 37 composed of a permanent magnet.
- the rotor 30 rotates with the power output from the crankshaft 15.
- the stator 40 is arranged so as to face the rotor 30.
- the power storage device 4 is a device that can be charged and discharged.
- the power storage device 4 outputs the charged electric power to the outside.
- the power storage device 4 supplies electric power to the permanent magnet type generator 20 and the electric auxiliary machine L.
- the power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started. Further, the power storage device 4 is charged by the electric power generated by the permanent magnet type generator 20.
- the saddle-mounted vehicle 1 is equipped with an inverter 21.
- the inverter 21 includes a plurality of switching units 211 that control the current flowing between the permanent magnet type generator 20 and the power storage device 4.
- the permanent magnet type generator 20 rotates the crankshaft 15 by the electric power of the power storage device 4. As a result, the permanent magnet generator 20 starts the engine 10.
- the saddle-mounted vehicle 1 includes a main switch 5.
- the main switch 5 is a switch for supplying electric power to the electric auxiliary machine L (see FIG. 4) provided in the saddle-mounted vehicle 1 according to the operation.
- the electric auxiliary machine L comprehensively represents a device that operates while consuming electric power, except for the permanent magnet type generator 20.
- the electric auxiliary machine L includes, for example, a headlight 9, a fuel injection device 18, and an ignition device 19 (see FIG. 5).
- the saddle-mounted vehicle 1 includes a starter switch 6.
- the starter switch 6 is a switch for starting the engine 10 in response to an operation.
- the saddle-mounted vehicle 1 includes a main relay 75.
- the main relay 75 opens and closes a circuit including the electric auxiliary machine L in response to a signal from the main switch 5.
- the saddle-mounted vehicle 1 includes an acceleration indicator 8.
- the acceleration instruction unit 8 is an operator for instructing the acceleration of the saddle-mounted vehicle 1 according to the operation.
- the acceleration indicator 8 is, in detail, an accelerator grip
- the power storage device 4 includes, for example, a battery 41, a capacitor 42, and a charging path switching circuit 43.
- the battery 41 is, for example, a lead battery.
- the capacitor 42 is, for example, an electric double layer capacitor (Electric Double Layer Capacitor, EDLC).
- the permanent magnet type generator 20, the power storage device 4, the main relay 75, the inverter 21, and the electric auxiliary machine L are electrically connected by wiring J.
- the code (J) of the wiring is attached to a part of the wiring shown in the part (c) of FIG.
- the wiring J is composed of, for example, a lead wire.
- the wiring J may be composed of a plurality of connected lead wires.
- the wiring J may include a connector for relaying a lead wire, a fuse, and a connection terminal. The illustration of connectors, fuses, and connection terminals is omitted. Further, in the physical wiring diagram of the part (c) of FIG. 4, the connection of the positive electrode region is shown.
- the negative electrode region that is, the ground region is electrically connected via the vehicle body 2. More specifically, the negative electrode region is electrically connected via a metal frame (not shown) of the vehicle body 2.
- the distance of electrical connection of each device via the vehicle body 2 is usually equal to or shorter than the connection of the positive electrode region by a lead wire or the like. Therefore, in the part (c) of FIG. 4, the connection of the negative electrode region by the vehicle body 2 is not shown, and the wiring of the positive electrode region will be mainly described.
- the wiring J shown in FIG. 4 is combined with other wiring provided in the vehicle to form a wire harness (not shown).
- Part (c) of FIG. 4 shows only the wiring J that electrically connects the devices shown in the figure.
- Part (c) of FIG. 4 schematically shows the connection relationship of the wiring J between the devices and the distance of the wiring J.
- FIG. 5 is a partial cross-sectional view schematically showing a schematic configuration of the engine unit EU shown in FIG.
- the engine unit EU includes an engine 10.
- the engine 10 includes a crankcase 11, a cylinder 12, a piston 13, a connecting rod 14, and a crankshaft 15.
- the piston 13 is provided in the cylinder 12 so as to be reciprocating.
- the crankshaft 15 is rotatably provided in the crankcase 11.
- the crankshaft 15 is connected to the piston 13 via a connecting rod 14.
- a cylinder head 16 is attached to the upper part of the cylinder 12.
- a combustion chamber is formed by the cylinder 12, the cylinder head 16, and the piston 13.
- the crankshaft 15 is supported by the crankcase 11 in a rotatable manner.
- a permanent magnet type generator 20 is attached to one end portion 15a of the crankshaft 15.
- a transmission CVT is attached to the other end 15b of the crankshaft 15.
- the transmission CVT can change the gear ratio, which is the ratio of the rotation speed of the output to the rotation speed of the input.
- the transmission CVT can change the gear ratio corresponding to the rotation speed of the wheels with respect to
- the engine unit EU is provided with a fuel injection device 18.
- the fuel injection device 18 supplies fuel to the combustion chamber by injecting fuel.
- the fuel injection device 18 injects fuel into the air flowing through the intake passage Ip.
- a mixture of air and fuel is supplied to the combustion chamber of the engine 10.
- the engine unit EU is provided with an ignition device 19.
- the ignition device 19 has a spark plug 19a and an ignition voltage generation circuit 19b.
- the spark plug 19a is provided in the engine 10.
- the spark plug 19a is electrically connected to the ignition voltage generation circuit 19b.
- the fuel injection device 18 and the ignition device 19 are examples of the electric auxiliary machine L shown in FIG.
- the fuel injection device 18 and the ignition device 19 are examples of auxiliary equipment for an engine.
- the fuel injection device 18 and the ignition device 19 operate at an 18V system voltage.
- the engine 10 is an internal combustion engine.
- the engine 10 is supplied with fuel.
- the engine 10 outputs power by a combustion operation that burns the air-fuel mixture. That is, the piston 13 reciprocates by burning the air-fuel mixture containing the fuel supplied to the combustion chamber.
- the crankshaft 15 rotates in conjunction with the reciprocating movement of the piston 13.
- the power is output to the outside of the engine 10 via the crankshaft 15.
- the fuel injection device 18 adjusts the power output from the engine 10 by adjusting the amount of fuel to be supplied.
- the fuel injection device 18 is controlled by the control device 60.
- the fuel injection device 18 is controlled to supply an amount of fuel based on the amount of air supplied to the engine 10.
- the igniter 19 ignites a gas in which fuel and air are mixed.
- the fuel injection device 18 and the ignition device 19 are engine auxiliary machines that operate to cause the engine 10 to perform combustion.
- the engine 10 outputs power via the crankshaft 15.
- the power of the crankshaft 15 is transmitted to the wheels 3b via the transmission CVT and the clutch CL (see part (b) of FIG. 4).
- the crankcase 11 is configured so that the inside is lubricated with oil.
- the permanent magnet type generator 20 is provided at a position where it comes into contact with oil.
- the engine 10 has a high load region in which the load for rotating the crankshaft 15 is large and a low load region in which the load for rotating the crankshaft 15 is smaller than the load in the high load region during the four strokes.
- the high load region means a region in which the load torque is higher than the average value of the load torque in one combustion cycle in one combustion cycle of the engine 10.
- the low load region means a region in which the load torque is lower than the average value of the load torque in one combustion cycle in one combustion cycle of the engine 10. Looking at the rotation angle of the crankshaft 15 as a reference, the low load region is wider than the high load region. More specifically, the engine 10 rotates forward while repeating four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. The compression stroke has an overlap with the high load region.
- the engine 10 is a single cylinder engine.
- FIG. 6 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the permanent magnet type generator 20 shown in FIG.
- the permanent magnet type generator 20 will be described with reference to FIGS. 5 and 6.
- the permanent magnet type generator 20 has a rotor 30 and a stator 40.
- the permanent magnet type generator 20 of this application example is a radial gap type.
- the permanent magnet type generator 20 is an outer rotor type. That is, the rotor 30 is an outer rotor.
- the stator 40 is an inner stator.
- the rotor 30 has a rotor main body 31.
- the rotor body 31 is made of, for example, a ferromagnetic material.
- the rotor main body 31 has a bottomed tubular shape.
- the rotor main body 31 has a tubular boss portion 32, a disk-shaped bottom wall portion 33, and a tubular back yoke portion 34.
- the bottom wall portion 33 and the back yoke portion 34 are integrally formed.
- the bottom wall portion 33 and the back yoke portion 34 may be configured separately.
- the bottom wall portion 33 and the back yoke portion 34 are fixed to the crankshaft 15 via the tubular boss portion 32.
- the rotor 30 is not provided with a winding to which a current is supplied.
- the rotor 30 has a permanent magnet portion 37.
- the rotor 30 has a plurality of magnetic pole portions 37a.
- the plurality of magnetic pole portions 37a are formed by the permanent magnet portions 37.
- the plurality of magnetic pole portions 37a are provided on the inner peripheral surface of the back yoke portion 34.
- the permanent magnet portion 37 has a plurality of permanent magnets. That is, the rotor 30 has a plurality of permanent magnets.
- the plurality of magnetic pole portions 37a are provided on each of the plurality of permanent magnets.
- the permanent magnet portion 37 can also be formed by one annular permanent magnet. In this case, one permanent magnet is magnetized so that a plurality of magnetic pole portions 37a are lined up on the inner peripheral surface.
- the plurality of magnetic pole portions 37a are provided so that the north pole and the south pole are alternately arranged in the circumferential direction of the permanent magnet type generator 20.
- the number of magnetic poles of the rotor 30 facing the stator 40 is 24.
- the number of magnetic poles of the rotor 30 means the number of magnetic poles facing the stator 40.
- No magnetic material is provided between the magnetic pole portion 37a and the stator 40.
- the magnetic pole portion 37a is provided outside the stator 40 in the radial direction of the permanent magnet type generator 20.
- the back yoke portion 34 is provided outside the magnetic pole portion 37a in the radial direction.
- the permanent magnet type generator 20 has more magnetic pole portions 37a than the number of tooth portions 45.
- the rotor 30 may be of an embedded magnet type (IPM type) in which the magnetic pole portion 37a is embedded in a magnetic material, but as in this application example, the magnetic pole portion 37a is a surface magnet type exposed from the magnetic material. (SPM type) is preferable.
- IPM type embedded magnet type
- SPM type surface magnet type exposed from the magnetic material
- the stator 40 has a stator core ST and a plurality of stator windings W.
- the stator core ST has a plurality of teeth 45 provided at intervals in the circumferential direction.
- the plurality of tooth portions 45 integrally extend radially outward from the stator core ST.
- a total of 18 tooth portions 45 are provided at intervals in the circumferential direction.
- the stator core ST has a total of 18 slots SL formed at intervals in the circumferential direction.
- the tooth portions 45 are arranged at equal intervals in the circumferential direction.
- the rotor 30 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 45.
- the number of magnetic poles is 4/3 of the number of slots.
- FIG. 6 shows a state in which the stator winding W is in the slot SL.
- the permanent magnet type generator 20 is a three-phase generator.
- Each of the stator windings W belongs to any of U phase, V phase, and W phase.
- the stator windings W are arranged so as to be arranged in the order of, for example, U phase, V phase, and W phase.
- the power storage device 4 When the engine 10 is operating while the saddle-mounted vehicle 1 is running, the power storage device 4 is charged by the electric power generated by the permanent magnet generator 20. When the power storage device 4 is fully charged, the electric power generated by the permanent magnet generator 20 is consumed as heat by, for example, a short circuit of the windings, without being used for charging. Further, when the rotation speed of the crankshaft 15 becomes so large that the voltage output from the inverter 21 to the power storage device 4 cannot be suppressed to the rated value, the inverter 21 short-circuits the stator winding W of the permanent magnet generator 20. The switching unit 211 is controlled so as to do so. The upper limit rotation speed of the crankshaft 15 capable of charging the power storage device 4 can be set to a high value.
- Impedance is an element that hinders the current flowing through the stator winding W.
- Impedance includes the product of rotational speed ⁇ and inductance.
- the rotation speed ⁇ actually corresponds to the number of magnetic poles passing near the tooth portion in a unit time. That is, the rotation speed ⁇ is proportional to the ratio of the number of magnetic poles to the number of teeth in the generator and the rotation speed of the rotor.
- the permanent magnet type generator 20 shown in FIG. 6 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 45. That is, the permanent magnet type generator 20 has a number of magnetic pole portions 37a that is larger than the number of slots SL. Therefore, the stator winding W has a large impedance. Therefore, the voltage applied to the power storage device 4 is reduced as compared with the case where the number of magnetic poles is smaller than the number of teeth, for example. Therefore, the upper limit rotation speed of the crankshaft 15 can be set to a higher value than in the case of, for example, 12V. Therefore, in order to increase the torque at the time of starting in the permanent magnet type generator 20, a thick winding having a small electric resistance can be adopted.
- the temperature of the stator winding W does not become higher than the temperature of the lubricating oil or is unlikely to become higher than the temperature of the lubricating oil. Therefore, even if the permanent magnet type generator 20 is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed. Therefore, it is possible to suppress or avoid an increase in the size of the lubricating oil cooling mechanism.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control Of Eletrric Generators (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
The purpose of the present invention is to provide a straddled vehicle which can increase the utilization frequency of a capacitor as a power supply for starting an engine. This straddled vehicle comprises: wheels; an engine and a permanent magnet-type generator; an inverter; a capacitor; a battery; and a charging path switching circuit. The charging path switching circuit is electrically connected to the inverter, the permanent magnet-type generator, and a power storage device, and disconnects the electrical connection between the inverter and the capacitor in at least a part of a period in which the battery is charged with power that is output from the inverter by power generation of the permanent magnet-type generator.
Description
本発明は、鞍乗型車両に関する。
The present invention relates to a saddle-mounted vehicle.
例えば、特許文献1には、自動二輪車が示されている。特許文献1の自動二輪車は、ACGスタータ(alternating current generator starter)と、バッテリと、キャパシタとを備えている。
特許文献1の自動二輪車では、バッテリおよびバッテリと接続されたキャパシタは、エンジンの運転中に、昇圧チョッパ制御無しにACGスタータの発電電力で充電される。エンジンの始動時に、バッテリとキャパシタからACGスタータに電力が供給される。ACGスタータの動作によってエンジンが始動する。 For example, Patent Document 1 discloses a motorcycle. The motorcycle of Patent Document 1 includes an ACG starter (alternating current generator starter), a battery, and a capacitor.
In the motorcycle of Patent Document 1, the battery and the capacitor connected to the battery are charged by the generated power of the ACG starter without boost chopper control during the operation of the engine. When the engine starts, the battery and capacitors power the ACG starter. The engine is started by the operation of the ACG starter.
特許文献1の自動二輪車では、バッテリおよびバッテリと接続されたキャパシタは、エンジンの運転中に、昇圧チョッパ制御無しにACGスタータの発電電力で充電される。エンジンの始動時に、バッテリとキャパシタからACGスタータに電力が供給される。ACGスタータの動作によってエンジンが始動する。 For example, Patent Document 1 discloses a motorcycle. The motorcycle of Patent Document 1 includes an ACG starter (alternating current generator starter), a battery, and a capacitor.
In the motorcycle of Patent Document 1, the battery and the capacitor connected to the battery are charged by the generated power of the ACG starter without boost chopper control during the operation of the engine. When the engine starts, the battery and capacitors power the ACG starter. The engine is started by the operation of the ACG starter.
鞍乗型車両では、エンジンを始動する電源としてのキャパシタの活用の頻度を高めることが求められている。
In saddle-mounted vehicles, it is required to increase the frequency of utilization of capacitors as a power source for starting the engine.
本発明の目的は、エンジンを始動する電源としてのキャパシタの活用の頻度を高めることができる鞍乗型車両を提供することである。
An object of the present invention is to provide a saddle-type vehicle capable of increasing the frequency of utilization of a capacitor as a power source for starting an engine.
特許文献1の鞍乗型車両によれば、バッテリおよびキャパシタは、エンジンの運転中に、ACGスタータの発電電力による電圧を受ける。
しかし、バッテリとキャパシタは、充電の速度、及び充電に伴う電圧の変化が互いに異なる。キャパシタの電圧は、充電される電荷の量に比例する。これに対しバッテリの電圧は充電される電荷の量と相関を有するが、充電時の電圧の上昇量は、キャパシタの場合と比べて小さい。バッテリは、通常、キャパシタよりも充電容量が大きい。
エンジンの始動時にバッテリおよびキャパシタの電荷が消費されて電圧が低下する。エンジンの始動後にバッテリおよびキャパシタが充電される。例えば、バッテリおよびキャパシタがそれぞれ単独で充電される場合、キャパシタは、相対的に短時間で満充電となりキャパシタの電圧が供給発電に到達する。これに対し、バッテリは、満充電まで長時間を要する。また、充電に伴うバッテリの電圧の上昇は緩やかである。
特許文献1に示されるキャパシタの電圧がバッテリの電圧の影響を受ける。より詳細には、キャパシタの電圧が、徐々に上昇するバッテリの電圧に制約される。この結果、キャパシタが単独で充電される場合と異なりキャパシタが満充電となるまで長時間を有する。つまり、キャパシタが満充電になりにくい。
この結果、次にエンジンを始動する場合、満充電でないキャパシタからACGスタータに電力が供給される状況が生じやすい。このため、キャパシタの活用の頻度が低くなりやすい。 According to the saddle-mounted vehicle of Patent Document 1, the battery and the capacitor receive a voltage generated by the generated power of the ACG starter while the engine is running.
However, batteries and capacitors differ from each other in charging speed and changes in voltage associated with charging. The voltage of the capacitor is proportional to the amount of charge charged. On the other hand, the voltage of the battery has a correlation with the amount of electric charge to be charged, but the amount of increase in the voltage during charging is smaller than that of the capacitor. Batteries usually have a larger charge capacity than capacitors.
When the engine starts, the charge of the battery and capacitor is consumed and the voltage drops. The battery and capacitor are charged after the engine is started. For example, when the battery and the capacitor are charged independently, the capacitor is fully charged in a relatively short time, and the voltage of the capacitor reaches the supply power generation. On the other hand, the battery takes a long time to be fully charged. In addition, the voltage rise of the battery with charging is gradual.
The voltage of the capacitor shown in Patent Document 1 is affected by the voltage of the battery. More specifically, the voltage of the capacitor is constrained by the gradually rising battery voltage. As a result, unlike the case where the capacitor is charged alone, it takes a long time until the capacitor is fully charged. That is, the capacitor is unlikely to be fully charged.
As a result, the next time the engine is started, a situation is likely to occur in which power is supplied to the ACG starter from a capacitor that is not fully charged. Therefore, the frequency of using the capacitor tends to be low.
しかし、バッテリとキャパシタは、充電の速度、及び充電に伴う電圧の変化が互いに異なる。キャパシタの電圧は、充電される電荷の量に比例する。これに対しバッテリの電圧は充電される電荷の量と相関を有するが、充電時の電圧の上昇量は、キャパシタの場合と比べて小さい。バッテリは、通常、キャパシタよりも充電容量が大きい。
エンジンの始動時にバッテリおよびキャパシタの電荷が消費されて電圧が低下する。エンジンの始動後にバッテリおよびキャパシタが充電される。例えば、バッテリおよびキャパシタがそれぞれ単独で充電される場合、キャパシタは、相対的に短時間で満充電となりキャパシタの電圧が供給発電に到達する。これに対し、バッテリは、満充電まで長時間を要する。また、充電に伴うバッテリの電圧の上昇は緩やかである。
特許文献1に示されるキャパシタの電圧がバッテリの電圧の影響を受ける。より詳細には、キャパシタの電圧が、徐々に上昇するバッテリの電圧に制約される。この結果、キャパシタが単独で充電される場合と異なりキャパシタが満充電となるまで長時間を有する。つまり、キャパシタが満充電になりにくい。
この結果、次にエンジンを始動する場合、満充電でないキャパシタからACGスタータに電力が供給される状況が生じやすい。このため、キャパシタの活用の頻度が低くなりやすい。 According to the saddle-mounted vehicle of Patent Document 1, the battery and the capacitor receive a voltage generated by the generated power of the ACG starter while the engine is running.
However, batteries and capacitors differ from each other in charging speed and changes in voltage associated with charging. The voltage of the capacitor is proportional to the amount of charge charged. On the other hand, the voltage of the battery has a correlation with the amount of electric charge to be charged, but the amount of increase in the voltage during charging is smaller than that of the capacitor. Batteries usually have a larger charge capacity than capacitors.
When the engine starts, the charge of the battery and capacitor is consumed and the voltage drops. The battery and capacitor are charged after the engine is started. For example, when the battery and the capacitor are charged independently, the capacitor is fully charged in a relatively short time, and the voltage of the capacitor reaches the supply power generation. On the other hand, the battery takes a long time to be fully charged. In addition, the voltage rise of the battery with charging is gradual.
The voltage of the capacitor shown in Patent Document 1 is affected by the voltage of the battery. More specifically, the voltage of the capacitor is constrained by the gradually rising battery voltage. As a result, unlike the case where the capacitor is charged alone, it takes a long time until the capacitor is fully charged. That is, the capacitor is unlikely to be fully charged.
As a result, the next time the engine is started, a situation is likely to occur in which power is supplied to the ACG starter from a capacitor that is not fully charged. Therefore, the frequency of using the capacitor tends to be low.
本発明者は、エンジンを始動する電源としてのキャパシタの活用の頻度を高めるため、敢えてキャパシタの電気接続を切断することを検討した。より詳細には、バッテリが充電される期間の少なくとも一部において、インバータとキャパシタとの電気接続を切断してみた。これにより、キャパシタの電圧に対するバッテリの電圧の影響を低減できる。バッテリがインバータから出力される電力で充電されバッテリの電圧が上昇している途中でも、キャパシタの充電状態を維持することができる。この結果、エンジンを始動する電源としてのキャパシタの活用の頻度を高めることができる。
The present inventor deliberately considered disconnecting the electrical connection of the capacitor in order to increase the frequency of utilization of the capacitor as a power source for starting the engine. More specifically, I tried disconnecting the electrical connection between the inverter and the capacitor for at least part of the battery charging period. As a result, the influence of the battery voltage on the capacitor voltage can be reduced. The state of charge of the capacitor can be maintained even while the battery is charged by the electric power output from the inverter and the voltage of the battery is rising. As a result, the frequency of utilization of the capacitor as a power source for starting the engine can be increased.
以上の知見に基づいて完成した本発明の各観点による車両は、次の構成を備える。
The vehicle according to each viewpoint of the present invention completed based on the above findings has the following configurations.
(1) 鞍乗型車両であって、
前記鞍乗型車両は、
車輪と、
クランク軸を有し、ガスの燃焼動作によって生じた前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
前記クランク軸の一端部に設けられ、永久磁石を有し、前記クランク軸を回転させることにより前記エンジンを始動するとともに、前記エンジンに駆動されることにより発電する永久磁石式発電機と、
前記永久磁石式発電機から出力される電流を制御する複数のスイッチング部を備えたインバータと、
前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有し、前記インバータを介して前記永久磁石式発電機から出力される電力を蓄えるキャパシタと、
前記インバータを介して前記永久磁石式発電機から出力される電力を蓄えるバッテリと、
前記インバータ、前記永久磁石式発電機、及び蓄電装置と電気的に接続され、前記永久磁石式発電機が発電することにより前記インバータから出力される電力で前記バッテリが充電される期間の少なくとも一部において、前記インバータと前記キャパシタとの電気接続を切断する充電経路切替回路を備える。 (1) It is a saddle-mounted vehicle.
The saddle-mounted vehicle is
With wheels
An engine that has a crankshaft and outputs torque for driving the wheels generated by the combustion operation of gas from the crankshaft.
A permanent magnet generator provided at one end of the crankshaft, having a permanent magnet, starting the engine by rotating the crankshaft, and generating electricity by being driven by the engine.
An inverter equipped with a plurality of switching units for controlling the current output from the permanent magnet generator, and
A capacitor having a capacitance capable of charging an amount of electric power for starting the engine at least once and storing electric power output from the permanent magnet generator via the inverter.
A battery that stores electric power output from the permanent magnet generator via the inverter,
At least a part of the period in which the battery is charged by the electric power output from the inverter by being electrically connected to the inverter, the permanent magnet generator, and the power storage device and generating electricity by the permanent magnet generator. A charging path switching circuit for disconnecting the electrical connection between the inverter and the capacitor is provided.
前記鞍乗型車両は、
車輪と、
クランク軸を有し、ガスの燃焼動作によって生じた前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
前記クランク軸の一端部に設けられ、永久磁石を有し、前記クランク軸を回転させることにより前記エンジンを始動するとともに、前記エンジンに駆動されることにより発電する永久磁石式発電機と、
前記永久磁石式発電機から出力される電流を制御する複数のスイッチング部を備えたインバータと、
前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有し、前記インバータを介して前記永久磁石式発電機から出力される電力を蓄えるキャパシタと、
前記インバータを介して前記永久磁石式発電機から出力される電力を蓄えるバッテリと、
前記インバータ、前記永久磁石式発電機、及び蓄電装置と電気的に接続され、前記永久磁石式発電機が発電することにより前記インバータから出力される電力で前記バッテリが充電される期間の少なくとも一部において、前記インバータと前記キャパシタとの電気接続を切断する充電経路切替回路を備える。 (1) It is a saddle-mounted vehicle.
The saddle-mounted vehicle is
With wheels
An engine that has a crankshaft and outputs torque for driving the wheels generated by the combustion operation of gas from the crankshaft.
A permanent magnet generator provided at one end of the crankshaft, having a permanent magnet, starting the engine by rotating the crankshaft, and generating electricity by being driven by the engine.
An inverter equipped with a plurality of switching units for controlling the current output from the permanent magnet generator, and
A capacitor having a capacitance capable of charging an amount of electric power for starting the engine at least once and storing electric power output from the permanent magnet generator via the inverter.
A battery that stores electric power output from the permanent magnet generator via the inverter,
At least a part of the period in which the battery is charged by the electric power output from the inverter by being electrically connected to the inverter, the permanent magnet generator, and the power storage device and generating electricity by the permanent magnet generator. A charging path switching circuit for disconnecting the electrical connection between the inverter and the capacitor is provided.
上記構成における鞍乗型車両の永久磁石式発電機が発電することによりバッテリが充電される期間の少なくとも一部において、充電経路切替回路がインバータとキャパシタとの電気接続を切断する。即ち、インバータとキャパシタとの電気接続の切断は、当該期間の一部又は全部で行われる。当該切断は、例えば、実質的に当該期間の全てにおいて行われる。例えば、当該期間において当該電気接続の切断が行われる期間は、当該期間において当該電気接続が行われる期間より長い。このように、上記構成においては、インバータとキャパシタとの電気接続が切断されている状況下でバッテリが充電される。これにより、キャパシタの電圧に対するバッテリの電圧の影響を低減できる。例えば、バッテリがインバータから出力される電力で充電される場合に、バッテリが満充電となっていない場合でも、キャパシタは、バッテリの電圧に関わらず、状態を維持することができる。
エンジンの始動時、バッテリ及びキャパシタから永久磁石式発電機に電力が供給される。この時、例えば、満充電となったキャパシタから永久磁石式発電機に電力を供給することができる。従って、エンジンを始動する電源としてのキャパシタの活用の頻度を高めることができる。 The charging path switching circuit disconnects the electrical connection between the inverter and the capacitor during at least a part of the period in which the battery is charged by the permanent magnet generator of the saddle-type vehicle in the above configuration. That is, the disconnection of the electrical connection between the inverter and the capacitor is performed in part or all of the period. The disconnection is performed, for example, substantially during the entire period. For example, the period during which the electrical connection is disconnected is longer than the period during which the electrical connection is made. As described above, in the above configuration, the battery is charged under the condition that the electrical connection between the inverter and the capacitor is disconnected. As a result, the influence of the battery voltage on the capacitor voltage can be reduced. For example, when the battery is charged with the power output from the inverter, the capacitor can maintain its state regardless of the voltage of the battery even if the battery is not fully charged.
When the engine is started, the battery and capacitor supply power to the permanent magnet generator. At this time, for example, electric power can be supplied to the permanent magnet generator from a fully charged capacitor. Therefore, the frequency of utilization of the capacitor as a power source for starting the engine can be increased.
エンジンの始動時、バッテリ及びキャパシタから永久磁石式発電機に電力が供給される。この時、例えば、満充電となったキャパシタから永久磁石式発電機に電力を供給することができる。従って、エンジンを始動する電源としてのキャパシタの活用の頻度を高めることができる。 The charging path switching circuit disconnects the electrical connection between the inverter and the capacitor during at least a part of the period in which the battery is charged by the permanent magnet generator of the saddle-type vehicle in the above configuration. That is, the disconnection of the electrical connection between the inverter and the capacitor is performed in part or all of the period. The disconnection is performed, for example, substantially during the entire period. For example, the period during which the electrical connection is disconnected is longer than the period during which the electrical connection is made. As described above, in the above configuration, the battery is charged under the condition that the electrical connection between the inverter and the capacitor is disconnected. As a result, the influence of the battery voltage on the capacitor voltage can be reduced. For example, when the battery is charged with the power output from the inverter, the capacitor can maintain its state regardless of the voltage of the battery even if the battery is not fully charged.
When the engine is started, the battery and capacitor supply power to the permanent magnet generator. At this time, for example, electric power can be supplied to the permanent magnet generator from a fully charged capacitor. Therefore, the frequency of utilization of the capacitor as a power source for starting the engine can be increased.
(2) (1)の鞍乗型車両であって、
前記充電経路切替回路は、前記永久磁石式発電機が発電することにより前記インバータから出力される電力で前記キャパシタが充電される場合に前記インバータと前記バッテリとの接続を切断する。 (2) The saddle-mounted vehicle of (1)
The charging path switching circuit disconnects the inverter from the battery when the capacitor is charged by the electric power output from the inverter by generating electricity from the permanent magnet generator.
前記充電経路切替回路は、前記永久磁石式発電機が発電することにより前記インバータから出力される電力で前記キャパシタが充電される場合に前記インバータと前記バッテリとの接続を切断する。 (2) The saddle-mounted vehicle of (1)
The charging path switching circuit disconnects the inverter from the battery when the capacitor is charged by the electric power output from the inverter by generating electricity from the permanent magnet generator.
上記構成における鞍乗型車両の永久磁石式発電機が発電することによりインバータから出力される電力でキャパシタが充電される場合、充電経路切替回路がインバータとバッテリとの接続を切断する。従って、インバータとバッテリとの電気接続が切断されている状況下でキャパシタが充電される。これにより、キャパシタが充電される場合でも、キャパシタの電圧に対するバッテリの電圧の影響が低減する。例えば、キャパシタがインバータから出力される電力で充電される場合に、バッテリが満充電となっていない場合でも、キャパシタは、バッテリの電圧に関係なく満充電の状態に到達することができる。キャパシタは、短期間で満充電の状態に到達することができる。従って、エンジンを始動する電源としてのキャパシタの活用の頻度をさらに高めることができる。
When the capacitor is charged by the electric power output from the inverter by the permanent magnet type generator of the saddle type vehicle in the above configuration, the charging path switching circuit disconnects the connection between the inverter and the battery. Therefore, the capacitor is charged in a situation where the electrical connection between the inverter and the battery is disconnected. This reduces the effect of the battery voltage on the capacitor voltage, even when the capacitor is charged. For example, when the capacitor is charged with the electric power output from the inverter, the capacitor can reach the fully charged state regardless of the voltage of the battery even if the battery is not fully charged. Capacitors can reach a fully charged state in a short period of time. Therefore, the frequency of utilization of the capacitor as a power source for starting the engine can be further increased.
(3) (2)の鞍乗型車両であって、
前記充電経路切替回路は、前記インバータと前記バッテリとの接続を切断しつつ前記キャパシタを充電させる期間よりも後の期間で、前記インバータと前記キャパシタとの接続を切断しつつ前記バッテリを充電させる。 (3) The saddle-mounted vehicle of (2)
The charging path switching circuit charges the battery while disconnecting the connection between the inverter and the capacitor in a period after the period during which the capacitor is charged while disconnecting the connection between the inverter and the battery.
前記充電経路切替回路は、前記インバータと前記バッテリとの接続を切断しつつ前記キャパシタを充電させる期間よりも後の期間で、前記インバータと前記キャパシタとの接続を切断しつつ前記バッテリを充電させる。 (3) The saddle-mounted vehicle of (2)
The charging path switching circuit charges the battery while disconnecting the connection between the inverter and the capacitor in a period after the period during which the capacitor is charged while disconnecting the connection between the inverter and the battery.
上記構成における鞍乗型車両では、キャパシタ及びバッテリの両方が充電を要する場合において、キャパシタが充電された後で、インバータとキャパシタとの接続が切断される。例えば、バッテリが満充電となっていない場合でも、キャパシタは、バッテリの電圧に関係なく充電された状態を維持することができる。
In the saddle-mounted vehicle in the above configuration, when both the capacitor and the battery need to be charged, the connection between the inverter and the capacitor is disconnected after the capacitor is charged. For example, the capacitor can remain charged regardless of the voltage of the battery, even if the battery is not fully charged.
(4) (1)の鞍乗型車両であって、
永久磁石式発電機は、前記永久磁石で構成された複数の磁極部を有するロータと、
複数のスロットが前記永久磁石式発電機の周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
前記磁極部の数は前記複数のティースの数より多い。 (4) The saddle-mounted vehicle of (1)
The permanent magnet type generator includes a rotor having a plurality of magnetic poles composed of the permanent magnets and a rotor.
A stator core having a plurality of slots formed at intervals in the circumferential direction of the permanent magnet generator and a stator having windings provided so as to pass through the slots are provided.
The number of magnetic poles is larger than the number of the plurality of teeth.
永久磁石式発電機は、前記永久磁石で構成された複数の磁極部を有するロータと、
複数のスロットが前記永久磁石式発電機の周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
前記磁極部の数は前記複数のティースの数より多い。 (4) The saddle-mounted vehicle of (1)
The permanent magnet type generator includes a rotor having a plurality of magnetic poles composed of the permanent magnets and a rotor.
A stator core having a plurality of slots formed at intervals in the circumferential direction of the permanent magnet generator and a stator having windings provided so as to pass through the slots are provided.
The number of magnetic poles is larger than the number of the plurality of teeth.
上記構成における鞍乗型車両によれば、磁極部の数が複数のティースの数より少ない場合と比べてロータの回転速度に対する角速度が大きい。
角速度は、磁極の繰返し周期を基準とした電気角についての角速度である。角速度が大きいと、巻線のインダクタンスが大きい。また、角速度は、ロータの回転速度の増大に伴い更に増大する。巻線のインダクタンスは、巻線を流れる電流を妨げる。このため、誘導起電圧は、ロータの回転速度の増大に伴い増大するが、大きな巻線のインダクタンスによって、発電機から出力される電流の過度の増大が抑えられる。
このため、上記構成における鞍乗型車両によれば、磁極部の数が複数のティースの数より少ない場合と比べて、さらに高いクランク軸の回転速度まで蓄電装置を充電することができる。従って、キャパシタの活用の頻度をさらに高めることができる。 According to the saddle-mounted vehicle in the above configuration, the angular velocity with respect to the rotational speed of the rotor is larger than that in the case where the number of magnetic poles is smaller than the number of the plurality of teeth.
The angular velocity is the angular velocity with respect to the electric angle based on the repetition period of the magnetic poles. When the angular velocity is large, the inductance of the winding is large. Further, the angular velocity further increases as the rotation speed of the rotor increases. The inductance of the winding interferes with the current flowing through the winding. Therefore, the induced electromotive voltage increases as the rotation speed of the rotor increases, but the large winding inductance suppresses an excessive increase in the current output from the generator.
Therefore, according to the saddle-mounted vehicle in the above configuration, the power storage device can be charged to a higher rotation speed of the crankshaft than in the case where the number of magnetic poles is smaller than the number of the plurality of teeth. Therefore, the frequency of utilization of the capacitor can be further increased.
角速度は、磁極の繰返し周期を基準とした電気角についての角速度である。角速度が大きいと、巻線のインダクタンスが大きい。また、角速度は、ロータの回転速度の増大に伴い更に増大する。巻線のインダクタンスは、巻線を流れる電流を妨げる。このため、誘導起電圧は、ロータの回転速度の増大に伴い増大するが、大きな巻線のインダクタンスによって、発電機から出力される電流の過度の増大が抑えられる。
このため、上記構成における鞍乗型車両によれば、磁極部の数が複数のティースの数より少ない場合と比べて、さらに高いクランク軸の回転速度まで蓄電装置を充電することができる。従って、キャパシタの活用の頻度をさらに高めることができる。 According to the saddle-mounted vehicle in the above configuration, the angular velocity with respect to the rotational speed of the rotor is larger than that in the case where the number of magnetic poles is smaller than the number of the plurality of teeth.
The angular velocity is the angular velocity with respect to the electric angle based on the repetition period of the magnetic poles. When the angular velocity is large, the inductance of the winding is large. Further, the angular velocity further increases as the rotation speed of the rotor increases. The inductance of the winding interferes with the current flowing through the winding. Therefore, the induced electromotive voltage increases as the rotation speed of the rotor increases, but the large winding inductance suppresses an excessive increase in the current output from the generator.
Therefore, according to the saddle-mounted vehicle in the above configuration, the power storage device can be charged to a higher rotation speed of the crankshaft than in the case where the number of magnetic poles is smaller than the number of the plurality of teeth. Therefore, the frequency of utilization of the capacitor can be further increased.
(5) (1)の鞍乗型車両であって、
前記エンジンは、オイルで内部が潤滑されるように構成されたクランクケースを更に備え、
前記永久磁石式発電機は、前記オイルと接触する位置に設けられる。 (5) The saddle-mounted vehicle of (1)
The engine further comprises a crankcase configured to lubricate the interior with oil.
The permanent magnet type generator is provided at a position where it comes into contact with the oil.
前記エンジンは、オイルで内部が潤滑されるように構成されたクランクケースを更に備え、
前記永久磁石式発電機は、前記オイルと接触する位置に設けられる。 (5) The saddle-mounted vehicle of (1)
The engine further comprises a crankcase configured to lubricate the interior with oil.
The permanent magnet type generator is provided at a position where it comes into contact with the oil.
上記構成における鞍乗型車両によれば、高いクランク軸の回転速度までの範囲で、電力を無駄に消費することなく蓄電装置を充電することができる。従って、このような永久磁石式発電機では、ステータ巻線の温度が潤滑オイルの温度よりも高くならない又は高くなり難いため、永久磁石式発電機が潤滑オイルと接触するように配置されても、潤滑オイルの蒸発を抑制できる。
例えば、永久磁石式発電機が潤滑オイルと接触する環境下に配置される場合には、通常、冷却機構を大型化することが求められる。しかし、上記構成における鞍乗型車両によれば、冷却機構の大型化を抑制乃至回避できる。従って、キャパシタの活用の頻度を高めつつ、車体をよりコンパクトにできる。 According to the saddle-mounted vehicle in the above configuration, the power storage device can be charged in the range up to the rotation speed of the high crankshaft without wasting electric power. Therefore, in such a permanent magnet generator, the temperature of the stator winding does not become higher than or is unlikely to be higher than the temperature of the lubricating oil, so that even if the permanent magnet generator is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed.
For example, when the permanent magnet type generator is arranged in an environment where it comes into contact with lubricating oil, it is usually required to increase the size of the cooling mechanism. However, according to the saddle-mounted vehicle in the above configuration, it is possible to suppress or avoid the increase in size of the cooling mechanism. Therefore, the vehicle body can be made more compact while increasing the frequency of using the capacitor.
例えば、永久磁石式発電機が潤滑オイルと接触する環境下に配置される場合には、通常、冷却機構を大型化することが求められる。しかし、上記構成における鞍乗型車両によれば、冷却機構の大型化を抑制乃至回避できる。従って、キャパシタの活用の頻度を高めつつ、車体をよりコンパクトにできる。 According to the saddle-mounted vehicle in the above configuration, the power storage device can be charged in the range up to the rotation speed of the high crankshaft without wasting electric power. Therefore, in such a permanent magnet generator, the temperature of the stator winding does not become higher than or is unlikely to be higher than the temperature of the lubricating oil, so that even if the permanent magnet generator is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed.
For example, when the permanent magnet type generator is arranged in an environment where it comes into contact with lubricating oil, it is usually required to increase the size of the cooling mechanism. However, according to the saddle-mounted vehicle in the above configuration, it is possible to suppress or avoid the increase in size of the cooling mechanism. Therefore, the vehicle body can be made more compact while increasing the frequency of using the capacitor.
(6) (1)の鞍乗型車両であって、
前記インバータは、前記鞍乗型車両の走行中、前記永久磁石式発電機に前記蓄電装置からの電力を供給し、永久磁石式発電機にクランク軸の回転を補助する。 (6) The saddle-mounted vehicle of (1).
The inverter supplies electric power from the power storage device to the permanent magnet generator while the saddle-mounted vehicle is traveling, and assists the permanent magnet generator in rotation of the crank shaft.
前記インバータは、前記鞍乗型車両の走行中、前記永久磁石式発電機に前記蓄電装置からの電力を供給し、永久磁石式発電機にクランク軸の回転を補助する。 (6) The saddle-mounted vehicle of (1).
The inverter supplies electric power from the power storage device to the permanent magnet generator while the saddle-mounted vehicle is traveling, and assists the permanent magnet generator in rotation of the crank shaft.
上記構成における鞍乗型車両によれば、鞍乗型車両の走行中、永久磁石式発電機が、高い電圧を有するキャパシタの電力で駆動される可能性が高い。このため、より高い回転速度までクランク軸を駆動することができる。従って、より高い回転速度までエンジンによる加速を補助することができる。キャパシタの活用の頻度をより高めることができる。
According to the saddle-type vehicle in the above configuration, there is a high possibility that the permanent magnet generator is driven by the electric power of the capacitor having a high voltage while the saddle-type vehicle is running. Therefore, the crankshaft can be driven to a higher rotation speed. Therefore, it is possible to assist the acceleration by the engine up to a higher rotation speed. The frequency of utilization of capacitors can be increased.
永久磁石式発電機は、永久磁石を有する。例えばロータに永久磁石ではなくコイルを備えた構成は、本構成における永久磁石式発電機と異なる。
The permanent magnet type generator has a permanent magnet. For example, the configuration in which the rotor is provided with a coil instead of a permanent magnet is different from the permanent magnet type generator in this configuration.
バッテリは、例えば鉛バッテリである。バッテリは、例えばディープサイクル鉛バッテリである。ディープサイクル鉛バッテリは、例えば、表面構造の複雑さが少ないプレートを有するため、表面構造の消耗が抑えられる。このため、深放電した場合における蓄電能力の低下が抑えられている。但し、バッテリは特に限定されず、例えば、ディープサイクル鉛バッテリ以外の鉛バッテリでもよい。また、バッテリは、例えば、リチウムイオンバッテリ、又はニッケル水素バッテリでもよい。
The battery is, for example, a lead battery. The battery is, for example, a deep cycle lead battery. The deep cycle lead battery has, for example, a plate having less complexity of the surface structure, so that the consumption of the surface structure is suppressed. Therefore, a decrease in storage capacity in the case of deep discharge is suppressed. However, the battery is not particularly limited, and for example, a lead battery other than the deep cycle lead battery may be used. Further, the battery may be, for example, a lithium ion battery or a nickel hydrogen battery.
キャパシタは、例えば、リチウムイオンキャパシタである。但し、キャパシタは、特に限定されず、例えば、電気二重層キャパシタ、電解キャパシタ、又はタンタルキャパシタでもよい。
The capacitor is, for example, a lithium ion capacitor. However, the capacitor is not particularly limited, and may be, for example, an electric double layer capacitor, an electrolytic capacitor, or a tantalum capacitor.
充電経路切替回路が、インバータとキャパシタとの接続を切断する条件としては、例えば、キャパシタの状態である。この場合、充電経路切替回路が、キャパシタの状態に基づいて、インバータとキャパシタとの接続を切断する。
条件としてのキャパシタの状態は、例えば、キャパシタの状態の推定も含む。
キャパシタの状態は、例えば、キャパシタの電気的状態であり、例えば、次の少なくとも一つである。(A)キャパシタの電圧。(B)キャパシタの充電時間。(C)回転速度の積算値。(D)電流と時間。(E)電流の積算値。 The condition for the charging path switching circuit to disconnect the connection between the inverter and the capacitor is, for example, the state of the capacitor. In this case, the charging path switching circuit disconnects the inverter and the capacitor based on the state of the capacitor.
The state of the capacitor as a condition also includes, for example, estimation of the state of the capacitor.
The state of the capacitor is, for example, the electrical state of the capacitor, for example, at least one of the following: (A) Capacitor voltage. (B) Capacitor charging time. (C) Integrated value of rotation speed. (D) Current and time. (E) Integrated value of current.
条件としてのキャパシタの状態は、例えば、キャパシタの状態の推定も含む。
キャパシタの状態は、例えば、キャパシタの電気的状態であり、例えば、次の少なくとも一つである。(A)キャパシタの電圧。(B)キャパシタの充電時間。(C)回転速度の積算値。(D)電流と時間。(E)電流の積算値。 The condition for the charging path switching circuit to disconnect the connection between the inverter and the capacitor is, for example, the state of the capacitor. In this case, the charging path switching circuit disconnects the inverter and the capacitor based on the state of the capacitor.
The state of the capacitor as a condition also includes, for example, estimation of the state of the capacitor.
The state of the capacitor is, for example, the electrical state of the capacitor, for example, at least one of the following: (A) Capacitor voltage. (B) Capacitor charging time. (C) Integrated value of rotation speed. (D) Current and time. (E) Integrated value of current.
鞍乗型車両は、運転者がサドルに跨って着座する形式の車両をいう。鞍乗型車両は、サドル型のシートを備える車両である。鞍乗型車両は、運転者が騎乗スタイルで乗車する車両である。鞍乗型車両は、ビークルの一例である。鞍乗型車両は、例えば、リーン姿勢で旋回する車両であり、旋回時にカーブの中心方向にリーンするように構成されている。
鞍乗型車両は例えば自動二輪車である。自動二輪車としては、特に限定されず、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば三輪車であってもよい。また、鞍乗型車両としては、例えば、ATV(All-Terrain Vehicle)等であってもよい。 A saddle-mounted vehicle is a vehicle in which the driver sits across the saddle. A saddle-type vehicle is a vehicle equipped with a saddle-type seat. A saddle-mounted vehicle is a vehicle in which the driver rides in a riding style. A saddle-mounted vehicle is an example of a vehicle. The saddle-mounted vehicle is, for example, a vehicle that turns in a lean posture, and is configured to lean toward the center of the curve when turning.
The saddle-mounted vehicle is, for example, a motorcycle. The motorcycle is not particularly limited, and examples thereof include a scooter type, a moped type, an off-road type, and an on-road type motorcycle. Further, the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, a tricycle. Further, the saddle-mounted vehicle may be, for example, an ATV (All-Terrain Vehicle) or the like.
鞍乗型車両は例えば自動二輪車である。自動二輪車としては、特に限定されず、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば三輪車であってもよい。また、鞍乗型車両としては、例えば、ATV(All-Terrain Vehicle)等であってもよい。 A saddle-mounted vehicle is a vehicle in which the driver sits across the saddle. A saddle-type vehicle is a vehicle equipped with a saddle-type seat. A saddle-mounted vehicle is a vehicle in which the driver rides in a riding style. A saddle-mounted vehicle is an example of a vehicle. The saddle-mounted vehicle is, for example, a vehicle that turns in a lean posture, and is configured to lean toward the center of the curve when turning.
The saddle-mounted vehicle is, for example, a motorcycle. The motorcycle is not particularly limited, and examples thereof include a scooter type, a moped type, an off-road type, and an on-road type motorcycle. Further, the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, a tricycle. Further, the saddle-mounted vehicle may be, for example, an ATV (All-Terrain Vehicle) or the like.
本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。
本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
本明細書中で使用される場合、用語「取り付けられた」、「結合された」および/またはそれらの等価物は広く使用され、特に指定しない限り直接的および間接的な取り付け、および結合の両方を包含する。
他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
本発明の説明においては、技術および多くの工程が開示されていると理解される。
これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
本明細書では、新しい鞍乗型車両について説明する。
以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。
しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 The terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
As used herein, the term "and / or" includes any or all combinations of one or more related listed components.
As used herein, the use of the terms "including, including,""comprising," or "having," and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
As used herein, the terms "attached", "combined" and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
Unless otherwise defined, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.
Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense.
It is understood that the techniques and many steps are disclosed in the description of the present invention.
Each of these has its own interests, and each may be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
Therefore, for clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps.
Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention and claims.
This specification describes a new saddle-mounted vehicle.
In the following description, for purposes of illustration, a number of specific details are given to provide a complete understanding of the present invention.
However, it will be apparent to those skilled in the art that the present invention can be practiced without these particular details.
The present disclosure should be considered as an example of the invention and is not intended to limit the invention to the particular embodiments set forth in the drawings or description below.
本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
本明細書中で使用される場合、用語「取り付けられた」、「結合された」および/またはそれらの等価物は広く使用され、特に指定しない限り直接的および間接的な取り付け、および結合の両方を包含する。
他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
本発明の説明においては、技術および多くの工程が開示されていると理解される。
これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
本明細書では、新しい鞍乗型車両について説明する。
以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。
しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 The terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
As used herein, the term "and / or" includes any or all combinations of one or more related listed components.
As used herein, the use of the terms "including, including,""comprising," or "having," and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
As used herein, the terms "attached", "combined" and / or their equivalents are widely used and are both direct and indirect attachments and bindings unless otherwise specified. Including.
Unless otherwise defined, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.
Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense.
It is understood that the techniques and many steps are disclosed in the description of the present invention.
Each of these has its own interests, and each may be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
Therefore, for clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps.
Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention and claims.
This specification describes a new saddle-mounted vehicle.
In the following description, for purposes of illustration, a number of specific details are given to provide a complete understanding of the present invention.
However, it will be apparent to those skilled in the art that the present invention can be practiced without these particular details.
The present disclosure should be considered as an example of the invention and is not intended to limit the invention to the particular embodiments set forth in the drawings or description below.
本発明によれば、エンジンを始動する電源としてのキャパシタの活用の頻度を高めることができる鞍乗型車両を実現できる。
According to the present invention, it is possible to realize a saddle-type vehicle capable of increasing the frequency of utilization of a capacitor as a power source for starting an engine.
以下、本発明を、実施形態に基づいて図面を参照しつつ説明する。
Hereinafter, the present invention will be described based on the embodiments with reference to the drawings.
図1は、本発明の一実施形態に係る鞍乗型車両を模式的に示す図である。図1のパート(a)は、鞍乗型車両の側面図である。図1のパート(b)は、パート(a)に示す鞍乗型車両の概略的な電気構成を示すブロック図である。
FIG. 1 is a diagram schematically showing a saddle-type vehicle according to an embodiment of the present invention. Part (a) of FIG. 1 is a side view of a saddle-mounted vehicle. Part (b) of FIG. 1 is a block diagram showing a schematic electrical configuration of the saddle-mounted vehicle shown in Part (a).
図1に示す鞍乗型車両1は、車輪3a,3bと、エンジン10と、永久磁石式発電機20と、インバータ21と、蓄電装置4とを備える。蓄電装置4は、キャパシタ42と、バッテリ41と、充電経路切替回路43とを備える。つまり、車輪3a,3bと、エンジン10と、永久磁石式発電機20と、インバータ21と、キャパシタ42と、バッテリ41と、充電経路切替回路43とを備える。また、鞍乗型車両1は、電動補機Lを備えている。
また、鞍乗型車両1は、車体2を備えている。図1には、鞍乗型車両1の例として、リーン車両が示されている。リーン車両は、左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜する。 The saddle-mounted vehicle 1 shown in FIG. 1 includes wheels 3a and 3b, an engine 10, a permanent magnet generator 20, an inverter 21, and a power storage device 4. The power storage device 4 includes a capacitor 42, a battery 41, and a charging path switching circuit 43. That is, it includes wheels 3a and 3b, an engine 10, a permanent magnet generator 20, an inverter 21, a capacitor 42, a battery 41, and a charging path switching circuit 43. Further, the saddle-mounted vehicle 1 is provided with an electric auxiliary machine L.
Further, the saddle-mounted vehicle 1 includes avehicle body 2. FIG. 1 shows a lean vehicle as an example of the saddle-mounted vehicle 1. The lean vehicle tilts to the left of the vehicle while turning left and tilts to the right of the vehicle while turning right.
また、鞍乗型車両1は、車体2を備えている。図1には、鞍乗型車両1の例として、リーン車両が示されている。リーン車両は、左旋回中に車両左方向に傾斜し右旋回中に車両右方向に傾斜する。 The saddle-mounted vehicle 1 shown in FIG. 1 includes
Further, the saddle-mounted vehicle 1 includes a
鞍乗型車両1に備えられた車輪3a,3bは、前の車輪3aと後ろの車輪3bを含む。後ろの車輪3bは駆動輪である。
The wheels 3a and 3b provided in the saddle-mounted vehicle 1 include a front wheel 3a and a rear wheel 3b. The rear wheel 3b is a driving wheel.
エンジン10は、クランク軸15を備えている。
エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15からの動力を受け、鞍乗型車両1を走行させる。
エンジン10から出力される動力は、例えば、変速機及びクラッチを介して車輪3bに伝達されることができる。 Theengine 10 includes a crankshaft 15.
Theengine 10 outputs power via the crankshaft 15. The engine 10 outputs torque for driving the wheels 3b from the crankshaft 15. The wheels 3b receive power from the crankshaft 15 and drive the saddle-mounted vehicle 1.
The power output from theengine 10 can be transmitted to the wheels 3b via, for example, a transmission and a clutch.
エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15からの動力を受け、鞍乗型車両1を走行させる。
エンジン10から出力される動力は、例えば、変速機及びクラッチを介して車輪3bに伝達されることができる。 The
The
The power output from the
電動補機Lは、鞍乗型車両1に搭載される電動装置である。電動補機Lは、電力の供給を受けて動作する。電動補機Lは、例えば、エンジン10に燃焼を行なわせるよう動作するエンジン用補機である。エンジン用補機は、例えば、燃料噴射装置18及び点火装置19(図5参照)を含む。
The electric auxiliary machine L is an electric device mounted on the saddle-mounted vehicle 1. The electric auxiliary machine L operates by being supplied with electric power. The electric auxiliary machine L is, for example, an engine auxiliary machine that operates so as to cause the engine 10 to perform combustion. Engine accessories include, for example, a fuel injection device 18 and an ignition device 19 (see FIG. 5).
永久磁石式発電機20は、クランク軸15の一端部に設けられる。
永久磁石式発電機20は、永久磁石を有する。より詳細には、永久磁石式発電機20は、永久磁石で構成された永久磁石部37を備えている。
永久磁石式発電機20は、エンジン10を始動するスタータを兼ねる。永久磁石式発電機20は、永久磁石式始動発電機である。永久磁石式発電機20は、クランク軸15を回転させることによりエンジン10を始動する。永久磁石式発電機20はまた、エンジン10に駆動されることにより発電する。 The permanentmagnet type generator 20 is provided at one end of the crankshaft 15.
The permanentmagnet type generator 20 has a permanent magnet. More specifically, the permanent magnet type generator 20 includes a permanent magnet portion 37 composed of a permanent magnet.
The permanentmagnet type generator 20 also serves as a starter for starting the engine 10. The permanent magnet type generator 20 is a permanent magnet type starting generator. The permanent magnet type generator 20 starts the engine 10 by rotating the crankshaft 15. The permanent magnet generator 20 also generates electricity by being driven by the engine 10.
永久磁石式発電機20は、永久磁石を有する。より詳細には、永久磁石式発電機20は、永久磁石で構成された永久磁石部37を備えている。
永久磁石式発電機20は、エンジン10を始動するスタータを兼ねる。永久磁石式発電機20は、永久磁石式始動発電機である。永久磁石式発電機20は、クランク軸15を回転させることによりエンジン10を始動する。永久磁石式発電機20はまた、エンジン10に駆動されることにより発電する。 The permanent
The permanent
The permanent
蓄電装置4は、電気を充電及び放電することができる装置である。蓄電装置4は、電力を蓄える。
蓄電装置4は、充電された電力を外部に出力する。蓄電装置4は、電力を永久磁石式発電機20に供給する。蓄電装置4は、エンジン10の始動時に永久磁石式発電機20に電力を供給する。また、例えばエンジン10の始動後、蓄電装置4は、永久磁石式発電機20で発電された電力によって充電される。 The power storage device 4 is a device capable of charging and discharging electricity. The power storage device 4 stores electric power.
The power storage device 4 outputs the charged electric power to the outside. The power storage device 4 supplies electric power to the permanentmagnet type generator 20. The power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started. Further, for example, after the engine 10 is started, the power storage device 4 is charged by the electric power generated by the permanent magnet type generator 20.
蓄電装置4は、充電された電力を外部に出力する。蓄電装置4は、電力を永久磁石式発電機20に供給する。蓄電装置4は、エンジン10の始動時に永久磁石式発電機20に電力を供給する。また、例えばエンジン10の始動後、蓄電装置4は、永久磁石式発電機20で発電された電力によって充電される。 The power storage device 4 is a device capable of charging and discharging electricity. The power storage device 4 stores electric power.
The power storage device 4 outputs the charged electric power to the outside. The power storage device 4 supplies electric power to the permanent
より詳細には、バッテリ41は、インバータ21を介して永久磁石式発電機20から出力される電力を蓄える。バッテリ41は、例えば、12V以上の最大定格電圧を有する。バッテリ41は、例えば、12Vの公称電圧を有するバッテリである。例えば、バッテリ41は、鉛バッテリである。
キャパシタ42は、インバータ21を介して永久磁石式発電機20から出力される電力を蓄える。キャパシタ42の最大定格電圧は、バッテリ41の最大定格電圧以上である。キャパシタ42は、例えば、12V以上の最大定格電圧を有する。キャパシタ42は、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量を有する。
バッテリ41は、キャパシタ42より大きい容量を有する。
また、キャパシタ42は、バッテリ41の最大充電レートより大きい最大充電レートを有する。
充電レートとは、充電のスピードを表す。単位はC[シー]である。電池の容量を1時間で完全充電させる電流の大きさを1Cと定義される。最大充電レートとは、許容する最大の充電レートである。
例えば、バッテリ41は、1C以下の最大充電レートを有し、キャパシタ42は、40C以上の最大充電レートを有する。ただし、バッテリ41とキャパシタ42の仕様はこれに限られない。 More specifically, thebattery 41 stores the electric power output from the permanent magnet generator 20 via the inverter 21. The battery 41 has, for example, a maximum rated voltage of 12 V or more. The battery 41 is, for example, a battery having a nominal voltage of 12 V. For example, the battery 41 is a lead battery.
Thecapacitor 42 stores the electric power output from the permanent magnet generator 20 via the inverter 21. The maximum rated voltage of the capacitor 42 is equal to or higher than the maximum rated voltage of the battery 41. The capacitor 42 has, for example, a maximum rated voltage of 12 V or more. The capacitor 42 has a capacitance capable of charging an amount of electric power that starts the engine 10 at least once.
Thebattery 41 has a capacity larger than that of the capacitor 42.
Further, thecapacitor 42 has a maximum charge rate higher than the maximum charge rate of the battery 41.
The charging rate represents the speed of charging. The unit is C [sea]. The magnitude of the current that fully charges the capacity of the battery in one hour is defined as 1C. The maximum charge rate is the maximum charge rate allowed.
For example, thebattery 41 has a maximum charge rate of 1 C or less, and the capacitor 42 has a maximum charge rate of 40 C or more. However, the specifications of the battery 41 and the capacitor 42 are not limited to this.
キャパシタ42は、インバータ21を介して永久磁石式発電機20から出力される電力を蓄える。キャパシタ42の最大定格電圧は、バッテリ41の最大定格電圧以上である。キャパシタ42は、例えば、12V以上の最大定格電圧を有する。キャパシタ42は、エンジン10を少なくとも1回始動する量の電力を充電可能な静電容量を有する。
バッテリ41は、キャパシタ42より大きい容量を有する。
また、キャパシタ42は、バッテリ41の最大充電レートより大きい最大充電レートを有する。
充電レートとは、充電のスピードを表す。単位はC[シー]である。電池の容量を1時間で完全充電させる電流の大きさを1Cと定義される。最大充電レートとは、許容する最大の充電レートである。
例えば、バッテリ41は、1C以下の最大充電レートを有し、キャパシタ42は、40C以上の最大充電レートを有する。ただし、バッテリ41とキャパシタ42の仕様はこれに限られない。 More specifically, the
The
The
Further, the
The charging rate represents the speed of charging. The unit is C [sea]. The magnitude of the current that fully charges the capacity of the battery in one hour is defined as 1C. The maximum charge rate is the maximum charge rate allowed.
For example, the
インバータ21は、例えばエンジン10が燃焼動作している場合に、永久磁石式発電機20で発電された電力を、キャパシタ42とバッテリ41とに供給する。この場合、インバータ21は、永久磁石式発電機20で発電された電流を整流する。
また、インバータ21は、永久磁石式発電機20に電力を供給することによって、永久磁石式発電機20を回転させる。インバータ21は、永久磁石式発電機20のステータ巻線Wに流れる電流のオン・オフを制御することによって、電流を制御する。 Theinverter 21 supplies the electric power generated by the permanent magnet generator 20 to the capacitor 42 and the battery 41, for example, when the engine 10 is in combustion operation. In this case, the inverter 21 rectifies the current generated by the permanent magnet generator 20.
Further, theinverter 21 rotates the permanent magnet type generator 20 by supplying electric power to the permanent magnet type generator 20. The inverter 21 controls the current by controlling the on / off of the current flowing through the stator winding W of the permanent magnet generator 20.
また、インバータ21は、永久磁石式発電機20に電力を供給することによって、永久磁石式発電機20を回転させる。インバータ21は、永久磁石式発電機20のステータ巻線Wに流れる電流のオン・オフを制御することによって、電流を制御する。 The
Further, the
インバータ21は、スイッチング部211と、制御装置60を含んでいる。制御装置60は、インバータ21と物理的に一体に設けられている。制御装置60は、インバータ21のスイッチング部211の動作を制御することによって、インバータ21から出力される電圧を制御する。制御装置60は、インバータ21のスイッチング部211の動作を制御することによって、永久磁石式発電機20と蓄電装置4との間で流れる電流を制御する。また、制御装置60は、永久磁石式発電機20の動作を制御する。制御装置60は、例えば位相制御方式又はベクトル制御によって、インバータ21から出力される電圧を制御する。制御装置60は、例えば、インバータ21から出力される電圧が、バッテリ41の最大定格電圧、又は、キャパシタ42の最大定格電圧のいずれかよりも小さい電圧を出力するよう、インバータ21を制御する。つまり、制御装置60は、バッテリ41及びキャパシタ42が過電圧とならないようにインバータ21を制御する。
例えば、バッテリ41が12Vの公称電圧と14.5Vの最大定格電圧を有し、キャパシタ42が、バッテリ41の最大定格電圧よりも大きい最大定格電圧を有する場合、制御装置60は、バッテリ41又はキャパシタ42に、14Vの電圧を供給するようインバータ21を制御する。但し、電圧値は理解のための例示であり、特に限定されない。 Theinverter 21 includes a switching unit 211 and a control device 60. The control device 60 is physically provided integrally with the inverter 21. The control device 60 controls the voltage output from the inverter 21 by controlling the operation of the switching unit 211 of the inverter 21. The control device 60 controls the current flowing between the permanent magnet type generator 20 and the power storage device 4 by controlling the operation of the switching unit 211 of the inverter 21. Further, the control device 60 controls the operation of the permanent magnet type generator 20. The control device 60 controls the voltage output from the inverter 21 by, for example, a phase control method or vector control. The control device 60 controls the inverter 21 so that the voltage output from the inverter 21 is smaller than either the maximum rated voltage of the battery 41 or the maximum rated voltage of the capacitor 42, for example. That is, the control device 60 controls the inverter 21 so that the battery 41 and the capacitor 42 do not become overvoltage.
For example, if thebattery 41 has a nominal voltage of 12 V and a maximum rated voltage of 14.5 V and the capacitor 42 has a maximum rated voltage that is greater than the maximum rated voltage of the battery 41, the controller 60 may be the battery 41 or capacitor. The inverter 21 is controlled so as to supply a voltage of 14 V to 42. However, the voltage value is an example for understanding and is not particularly limited.
例えば、バッテリ41が12Vの公称電圧と14.5Vの最大定格電圧を有し、キャパシタ42が、バッテリ41の最大定格電圧よりも大きい最大定格電圧を有する場合、制御装置60は、バッテリ41又はキャパシタ42に、14Vの電圧を供給するようインバータ21を制御する。但し、電圧値は理解のための例示であり、特に限定されない。 The
For example, if the
充電経路切替回路43は、インバータ21を介して永久磁石式発電機20から出力される電流の経路を切替える。充電経路切替回路43は、バッテリスイッチ部431及びキャパシタスイッチ部432を有する。バッテリスイッチ部431及びキャパシタスイッチ部432は、例えばトランジスタで構成される。しかし、バッテリスイッチ部431及びキャパシタスイッチ部432の構造は特に限定されず、例えばリレーでも良い。
バッテリスイッチ部431がオン状態になると、バッテリ41とインバータ21とが電気的に接続される。バッテリスイッチ部431がオフ状態になると、バッテリ41とインバータ21とが電気的に切断される。キャパシタスイッチ部432がオン状態になると、キャパシタ42とインバータ21とが電気的に接続される。キャパシタスイッチ部432がオフ状態になると、キャパシタ42とインバータ21とが電気的に切断される。
バッテリスイッチ部431及びキャパシタスイッチ部432のオン/オフ状態によって、キャパシタ42及びバッテリ41に対する電流の経路が切り替わる。 The chargingpath switching circuit 43 switches the path of the current output from the permanent magnet type generator 20 via the inverter 21. The charging path switching circuit 43 includes a battery switch unit 431 and a capacitor switch unit 432. The battery switch unit 431 and the capacitor switch unit 432 are composed of, for example, transistors. However, the structures of the battery switch unit 431 and the capacitor switch unit 432 are not particularly limited, and may be, for example, a relay.
When thebattery switch unit 431 is turned on, the battery 41 and the inverter 21 are electrically connected. When the battery switch unit 431 is turned off, the battery 41 and the inverter 21 are electrically disconnected. When the capacitor switch unit 432 is turned on, the capacitor 42 and the inverter 21 are electrically connected. When the capacitor switch unit 432 is turned off, the capacitor 42 and the inverter 21 are electrically disconnected.
The current path to thecapacitor 42 and the battery 41 is switched depending on the on / off state of the battery switch unit 431 and the capacitor switch unit 432.
バッテリスイッチ部431がオン状態になると、バッテリ41とインバータ21とが電気的に接続される。バッテリスイッチ部431がオフ状態になると、バッテリ41とインバータ21とが電気的に切断される。キャパシタスイッチ部432がオン状態になると、キャパシタ42とインバータ21とが電気的に接続される。キャパシタスイッチ部432がオフ状態になると、キャパシタ42とインバータ21とが電気的に切断される。
バッテリスイッチ部431及びキャパシタスイッチ部432のオン/オフ状態によって、キャパシタ42及びバッテリ41に対する電流の経路が切り替わる。 The charging
When the
The current path to the
充電経路切替回路43は、制御装置60によって制御される。例えば、充電経路切替回路43は、永久磁石式発電機20が発電することによりインバータ21から出力される電力でバッテリ41が充電される期間の少なくとも一部において、インバータ21とキャパシタ42との電気接続を切断する。例えば図1のパート(b)には、オン状態のバッテリスイッチ部431、及び、オフ状態のキャパシタスイッチ部432が示されている。この状態では、インバータ21から出力される電力でバッテリ41が充電されインバータ21とキャパシタ42との電気接続が切断される。
The charging path switching circuit 43 is controlled by the control device 60. For example, the charging path switching circuit 43 is an electrical connection between the inverter 21 and the capacitor 42 during at least a part of the period in which the battery 41 is charged by the electric power output from the inverter 21 by the permanent magnet type generator 20. To disconnect. For example, part (b) of FIG. 1 shows a battery switch unit 431 in an on state and a capacitor switch unit 432 in an off state. In this state, the battery 41 is charged by the electric power output from the inverter 21, and the electrical connection between the inverter 21 and the capacitor 42 is cut off.
図2は、図1に示す充電経路切替回路43の、図1とは異なる状態を示すブロック図である。
FIG. 2 is a block diagram showing a state different from that of FIG. 1 in the charging path switching circuit 43 shown in FIG.
図2には、オフ状態のバッテリスイッチ部431、及び、オン状態のキャパシタスイッチ部432が示されている。この状態では、インバータ21から出力される電力でキャパシタ42が充電されインバータ21とバッテリ41との電気接続が切断される。
FIG. 2 shows the battery switch unit 431 in the off state and the capacitor switch unit 432 in the on state. In this state, the capacitor 42 is charged by the electric power output from the inverter 21, and the electrical connection between the inverter 21 and the battery 41 is cut off.
図1及び図2に示す制御装置60は、スタータスイッチ6からの信号に応じて、インバータ21に、蓄電装置4から永久磁石式発電機20に電流を供給させる。これによって、蓄電装置4から永久磁石式発電機20に電力が供給され、エンジン10が始動する。
The control device 60 shown in FIGS. 1 and 2 causes the inverter 21 to supply a current from the power storage device 4 to the permanent magnet generator 20 in response to the signal from the starter switch 6. As a result, electric power is supplied from the power storage device 4 to the permanent magnet type generator 20, and the engine 10 is started.
エンジン10の始動後、即ち燃焼動作開始後、制御装置60は、永久磁石式発電機20からの電流をバッテリ41及びキャパシタ42の少なくとも一方に流すようインバータ21を制御する。これによって、バッテリ41又はキャパシタ42が永久磁石式発電機20の発電電力によって充電される。
また、制御装置60は、エンジン10の始動後、即ち燃焼動作開始後、加速指示部8(図4参照)の操作に応じてインバータ21に、バッテリ41又はキャパシタ42の電力を永久磁石式発電機20に供給させることができる。より詳細には、制御装置60は、鞍乗型車両1の走行中、永久磁石式発電機20にバッテリ41又はキャパシタ42からの電力を供給し、永久磁石式発電機20にクランク軸15の回転を補助させる。これによって、エンジン10による鞍乗型車両1の加速が永久磁石式発電機20でアシストされる。 After starting theengine 10, that is, after starting the combustion operation, the control device 60 controls the inverter 21 so that the current from the permanent magnet generator 20 flows through at least one of the battery 41 and the capacitor 42. As a result, the battery 41 or the capacitor 42 is charged by the generated power of the permanent magnet generator 20.
Further, thecontrol device 60 transfers the electric power of the battery 41 or the capacitor 42 to the inverter 21 in response to the operation of the acceleration indicator 8 (see FIG. 4) after the engine 10 is started, that is, after the combustion operation is started. It can be supplied to 20. More specifically, the control device 60 supplies electric power from the battery 41 or the capacitor 42 to the permanent magnet generator 20 while the saddle-mounted vehicle 1 is traveling, and rotates the crankshaft 15 to the permanent magnet generator 20. To assist. As a result, the acceleration of the saddle-mounted vehicle 1 by the engine 10 is assisted by the permanent magnet generator 20.
また、制御装置60は、エンジン10の始動後、即ち燃焼動作開始後、加速指示部8(図4参照)の操作に応じてインバータ21に、バッテリ41又はキャパシタ42の電力を永久磁石式発電機20に供給させることができる。より詳細には、制御装置60は、鞍乗型車両1の走行中、永久磁石式発電機20にバッテリ41又はキャパシタ42からの電力を供給し、永久磁石式発電機20にクランク軸15の回転を補助させる。これによって、エンジン10による鞍乗型車両1の加速が永久磁石式発電機20でアシストされる。 After starting the
Further, the
制御装置60は、エンジン10への燃料の供給及び燃焼を制御するエンジン制御部の機能も有する。制御装置60は、エンジン用補機として機能する電動補機Lの動作を制御することによって、エンジン10の燃焼を制御する。
制御装置60は、図示しない中央処理装置及びメモリを備えている。制御装置60は、メモリに記憶されたプログラムを実行することによって、エンジン10の燃焼を制御する。
制御装置60は、バッテリ41の電力で動作する。より詳細には、制御装置60は、バッテリ41の電圧から、制御装置60に適用できるようダウンコンバートされた動作電圧で動作する。ダウンコンバータは、例えばインバータ21に設けられている。バッテリ41の電圧変動は例えばキャパシタ42と比べて小さい。このため、制御装置60の動作電圧の変動も抑制される。例えば、エンジン10の始動時に電流が消費されても、制御装置60の動作電圧の変動が抑制される。 Thecontrol device 60 also has a function of an engine control unit that controls the supply and combustion of fuel to the engine 10. The control device 60 controls the combustion of the engine 10 by controlling the operation of the electric auxiliary machine L that functions as an auxiliary machine for the engine.
Thecontrol device 60 includes a central processing unit and a memory (not shown). The control device 60 controls the combustion of the engine 10 by executing a program stored in the memory.
Thecontrol device 60 operates on the electric power of the battery 41. More specifically, the control device 60 operates from the voltage of the battery 41 at an operating voltage down-converted so that it can be applied to the control device 60. The down converter is provided in, for example, the inverter 21. The voltage fluctuation of the battery 41 is smaller than that of the capacitor 42, for example. Therefore, fluctuations in the operating voltage of the control device 60 are also suppressed. For example, even if the current is consumed when the engine 10 is started, the fluctuation of the operating voltage of the control device 60 is suppressed.
制御装置60は、図示しない中央処理装置及びメモリを備えている。制御装置60は、メモリに記憶されたプログラムを実行することによって、エンジン10の燃焼を制御する。
制御装置60は、バッテリ41の電力で動作する。より詳細には、制御装置60は、バッテリ41の電圧から、制御装置60に適用できるようダウンコンバートされた動作電圧で動作する。ダウンコンバータは、例えばインバータ21に設けられている。バッテリ41の電圧変動は例えばキャパシタ42と比べて小さい。このため、制御装置60の動作電圧の変動も抑制される。例えば、エンジン10の始動時に電流が消費されても、制御装置60の動作電圧の変動が抑制される。 The
The
The
図3は、図1及び図2に示すバッテリ41及びキャパシタ42の充電時における電圧変化の概略を示すチャートである。
FIG. 3 is a chart showing an outline of voltage changes during charging of the battery 41 and the capacitor 42 shown in FIGS. 1 and 2.
図3に示す例の時刻0では、バッテリ41及びキャパシタ42の双方が放電した状態である。この状態で、例えばバッテリ41の電圧は約11Vであり、キャパシタ42の電圧は約0Vである。
図3に示す例では、永久磁石式発電機20が発電することによりインバータ21から電力が出力される。インバータ21から電圧が出力されるが、インバータ21と蓄電装置4との間のケーブルの電圧降下により、蓄電装置4の電圧はインバータ21の出力に等しいとは限らない。蓄電装置4の電圧は例えば図3のグラフに示すように変動する。 At time 0 in the example shown in FIG. 3, both thebattery 41 and the capacitor 42 are in a discharged state. In this state, for example, the voltage of the battery 41 is about 11V, and the voltage of the capacitor 42 is about 0V.
In the example shown in FIG. 3, electric power is output from theinverter 21 by generating electric power from the permanent magnet type generator 20. Although the voltage is output from the inverter 21, the voltage of the power storage device 4 is not always equal to the output of the inverter 21 due to the voltage drop of the cable between the inverter 21 and the power storage device 4. The voltage of the power storage device 4 fluctuates as shown in the graph of FIG. 3, for example.
図3に示す例では、永久磁石式発電機20が発電することによりインバータ21から電力が出力される。インバータ21から電圧が出力されるが、インバータ21と蓄電装置4との間のケーブルの電圧降下により、蓄電装置4の電圧はインバータ21の出力に等しいとは限らない。蓄電装置4の電圧は例えば図3のグラフに示すように変動する。 At time 0 in the example shown in FIG. 3, both the
In the example shown in FIG. 3, electric power is output from the
図3の実線V1は、蓄電装置4の電圧を示す。より詳細には、V1は、図1のパート(b)におけるノードN1の電圧を示す。
充電経路切替回路43は、例えば図2に示すように、インバータ21からの電力でキャパシタ42が充電される場合にインバータ21とバッテリ41との接続を切断する。例えば、充電経路切替回路43は、時刻0からt1までの間、インバータ21とバッテリ41との接続を切断する。
キャパシタ42の充電に伴い、キャパシタ42の電圧が上昇する。従って、蓄電装置4の電圧V1が上昇する。キャパシタ42の電圧は、時刻t1でインバータ21の出力電圧(図3の例では14V)にほぼ等しくなる。 The solid line V1 in FIG. 3 shows the voltage of the power storage device 4. More specifically, V1 shows the voltage of node N1 in part (b) of FIG.
As shown in FIG. 2, for example, the chargingpath switching circuit 43 disconnects the inverter 21 and the battery 41 when the capacitor 42 is charged by the electric power from the inverter 21. For example, the charging path switching circuit 43 disconnects the inverter 21 and the battery 41 from time 0 to t1.
As thecapacitor 42 is charged, the voltage of the capacitor 42 rises. Therefore, the voltage V1 of the power storage device 4 rises. The voltage of the capacitor 42 is approximately equal to the output voltage of the inverter 21 (14V in the example of FIG. 3) at time t1.
充電経路切替回路43は、例えば図2に示すように、インバータ21からの電力でキャパシタ42が充電される場合にインバータ21とバッテリ41との接続を切断する。例えば、充電経路切替回路43は、時刻0からt1までの間、インバータ21とバッテリ41との接続を切断する。
キャパシタ42の充電に伴い、キャパシタ42の電圧が上昇する。従って、蓄電装置4の電圧V1が上昇する。キャパシタ42の電圧は、時刻t1でインバータ21の出力電圧(図3の例では14V)にほぼ等しくなる。 The solid line V1 in FIG. 3 shows the voltage of the power storage device 4. More specifically, V1 shows the voltage of node N1 in part (b) of FIG.
As shown in FIG. 2, for example, the charging
As the
充電経路切替回路43は、インバータ21とバッテリ41との接続を切断しつつキャパシタ42を充電させる期間よりも後の期間(0からt1)で、図1のパート(b)に示すように、インバータ21とキャパシタ42との接続を切断しつつバッテリ41を充電させる。例えば、充電経路切替回路43は、時刻t1で、インバータ21とキャパシタ42との接続を切断しつつバッテリ41を充電させる。
The charging path switching circuit 43 is a period (0 to t1) after the period (0 to t1) for charging the capacitor 42 while disconnecting the connection between the inverter 21 and the battery 41, as shown in the part (b) of FIG. The battery 41 is charged while disconnecting the connection between the 21 and the capacitor 42. For example, the charging path switching circuit 43 charges the battery 41 at time t1 while disconnecting the connection between the inverter 21 and the capacitor 42.
より詳細には、充電経路切替回路43は、例えばタイマの動作により、充電開始後の所定時間(例えばt1秒)経過後、接続の切り替えを行なう。充電経路切替回路43は、例えばタイマにより所定時間を計時する。但し、充電経路切替回路43における切換条件は特に限られず、例えば、充電経路切替回路43は、キャパシタ42の端子電圧に応じて切り替えを行なってもよく、また、キャパシタ42に流れる電流に応じて切替えを行なってもよい。
More specifically, the charging path switching circuit 43 switches the connection after a predetermined time (for example, t1 second) has elapsed after the start of charging, for example, by operating a timer. The charging path switching circuit 43 measures a predetermined time by, for example, a timer. However, the switching conditions in the charging path switching circuit 43 are not particularly limited. For example, the charging path switching circuit 43 may be switched according to the terminal voltage of the capacitor 42, or may be switched according to the current flowing through the capacitor 42. May be done.
切替えにより、蓄電装置4の電圧V1は、時刻t1以降バッテリ41の電圧V12を反映する。図2において、時刻t1以降の蓄電装置4の電圧V1は、バッテリ41の電圧V12と等しい。
破線V11は、時刻t1以降のキャパシタ42の端子電圧を示す。接続が切断されたキャパシタ42の端子電圧は、時刻t1における電圧V1の値(例えば14V)を維持する。つまり、キャパシタ42は、接続が切断された時の電圧V11を維持する。図3の例では、キャパシタ42は、インバータ21から出力された電圧とほぼ等しい電圧V11を維持する。
バッテリ41の充電に伴い、バッテリ41の電圧V12が上昇する。しかし、バッテリ41の電圧V12の変化率は、キャパシタ42と比べて小さい。つまり、バッテリ41の電圧V12が、インバータ21から出力された電圧とほぼ等しくなるには、長い時間が掛かる。 By switching, the voltage V1 of the power storage device 4 reflects the voltage V12 of thebattery 41 after the time t1. In FIG. 2, the voltage V1 of the power storage device 4 after the time t1 is equal to the voltage V12 of the battery 41.
The broken line V11 indicates the terminal voltage of thecapacitor 42 after the time t1. The terminal voltage of the disconnected capacitor 42 maintains the value of voltage V1 at time t1 (eg 14V). That is, the capacitor 42 maintains the voltage V11 when the connection is broken. In the example of FIG. 3, the capacitor 42 maintains a voltage V11 that is substantially equal to the voltage output from the inverter 21.
As thebattery 41 is charged, the voltage V12 of the battery 41 rises. However, the rate of change of the voltage V12 of the battery 41 is smaller than that of the capacitor 42. That is, it takes a long time for the voltage V12 of the battery 41 to become substantially equal to the voltage output from the inverter 21.
破線V11は、時刻t1以降のキャパシタ42の端子電圧を示す。接続が切断されたキャパシタ42の端子電圧は、時刻t1における電圧V1の値(例えば14V)を維持する。つまり、キャパシタ42は、接続が切断された時の電圧V11を維持する。図3の例では、キャパシタ42は、インバータ21から出力された電圧とほぼ等しい電圧V11を維持する。
バッテリ41の充電に伴い、バッテリ41の電圧V12が上昇する。しかし、バッテリ41の電圧V12の変化率は、キャパシタ42と比べて小さい。つまり、バッテリ41の電圧V12が、インバータ21から出力された電圧とほぼ等しくなるには、長い時間が掛かる。 By switching, the voltage V1 of the power storage device 4 reflects the voltage V12 of the
The broken line V11 indicates the terminal voltage of the
As the
図3における破線V12’は、バッテリ41及びキャパシタ42の双方が、インバータ21と常時接続された参考例の蓄電装置4の電圧を示す。蓄電装置4の電圧はキャパシタ42の電圧とほぼ等しい。
キャパシタ42はバッテリ41と接続されているため、キャパシタ42の電圧はバッテリ41の電圧の制約を受ける。時刻t1でも、キャパシタ42の電圧(V12’)は制約を受ける。 The broken line V12'in FIG. 3 indicates the voltage of the power storage device 4 of the reference example in which both thebattery 41 and the capacitor 42 are always connected to the inverter 21. The voltage of the power storage device 4 is substantially equal to the voltage of the capacitor 42.
Since thecapacitor 42 is connected to the battery 41, the voltage of the capacitor 42 is restricted by the voltage of the battery 41. Even at time t1, the voltage (V12') of the capacitor 42 is constrained.
キャパシタ42はバッテリ41と接続されているため、キャパシタ42の電圧はバッテリ41の電圧の制約を受ける。時刻t1でも、キャパシタ42の電圧(V12’)は制約を受ける。 The broken line V12'in FIG. 3 indicates the voltage of the power storage device 4 of the reference example in which both the
Since the
これに対し、本実施形態の充電経路切替回路43は、永久磁石式発電機20が発電することによりインバータ21から出力される電力でバッテリ41が充電される期間において、インバータ21とキャパシタ42との電気接続を切断する。このため、キャパシタ42の電圧が、バッテリ41の電圧の制約を受けない。少なくとも時刻t1以降、キャパシタ42の電圧V11が、バッテリ41の電圧(V12)を上回る状態を維持することができる。
On the other hand, in the charging path switching circuit 43 of the present embodiment, the inverter 21 and the capacitor 42 are charged during a period in which the battery 41 is charged by the electric power output from the inverter 21 by generating electricity from the permanent magnet type generator 20. Disconnect the electrical connection. Therefore, the voltage of the capacitor 42 is not restricted by the voltage of the battery 41. At least after time t1, the voltage V11 of the capacitor 42 can be maintained in a state of exceeding the voltage (V12) of the battery 41.
エンジン10の始動が実施される場合、蓄電装置4はインバータ21に電力を出力する。
例えば図3に示す時刻t1からt2の間でエンジン10の始動が実施される場合、高い電圧を有するキャパシタ42から永久磁石式発電機20に電力が供給される。
このため、例えば蓄電装置の充電時にバッテリとキャパシタが常時接続されている参考例の場合と比べて、キャパシタ42からより多くの電力を供給することができる。 When theengine 10 is started, the power storage device 4 outputs electric power to the inverter 21.
For example, when theengine 10 is started between the times t1 and t2 shown in FIG. 3, power is supplied to the permanent magnet generator 20 from the capacitor 42 having a high voltage.
Therefore, for example, more power can be supplied from thecapacitor 42 than in the case of the reference example in which the battery and the capacitor are always connected when charging the power storage device.
例えば図3に示す時刻t1からt2の間でエンジン10の始動が実施される場合、高い電圧を有するキャパシタ42から永久磁石式発電機20に電力が供給される。
このため、例えば蓄電装置の充電時にバッテリとキャパシタが常時接続されている参考例の場合と比べて、キャパシタ42からより多くの電力を供給することができる。 When the
For example, when the
Therefore, for example, more power can be supplied from the
従って、エンジン10を始動する電源としてのキャパシタ42の活用の頻度を高めることができる。
Therefore, the frequency of utilization of the capacitor 42 as a power source for starting the engine 10 can be increased.
エンジン10の始動が実施される場合、例えば、充電経路切替回路43は、バッテリ41とインバータ21とを電気的に切断しつつ、キャパシタ42からインバータ21に電力を出力する。
この場合、図3のV11に示すような高い電圧を有するキャパシタ42から永久磁石式発電機20に電力が供給される。このため、さらに多くの電力をキャパシタ42から供給することができる。 When theengine 10 is started, for example, the charging path switching circuit 43 outputs electric power from the capacitor 42 to the inverter 21 while electrically disconnecting the battery 41 and the inverter 21.
In this case, power is supplied to thepermanent magnet generator 20 from the capacitor 42 having a high voltage as shown in V11 of FIG. Therefore, more power can be supplied from the capacitor 42.
この場合、図3のV11に示すような高い電圧を有するキャパシタ42から永久磁石式発電機20に電力が供給される。このため、さらに多くの電力をキャパシタ42から供給することができる。 When the
In this case, power is supplied to the
[適用例]
続いて、図4を参照して、実施形態の適用例を説明する。 [Application example]
Subsequently, an application example of the embodiment will be described with reference to FIG.
続いて、図4を参照して、実施形態の適用例を説明する。 [Application example]
Subsequently, an application example of the embodiment will be described with reference to FIG.
図4は、図1に示す実施形態の適用例である鞍乗型車両1及び電気系統を模式的に示す図である。図4のパート(a)は、鞍乗型車両1の平面図である。図4のパート(b)は、鞍乗型車両1の側面図である。図4のパート(c)は、鞍乗型車両1の電気系統の接続を模式的に示す実体配線図である。
図4以降に示す適用例において、図1に示す実施形態に対応する要素は、図1と同じ符号を付して説明を行う。 FIG. 4 is a diagram schematically showing a saddle-mounted vehicle 1 and an electric system, which are application examples of the embodiment shown in FIG. Part (a) of FIG. 4 is a plan view of the saddle-mounted vehicle 1. Part (b) of FIG. 4 is a side view of the saddle-mounted vehicle 1. Part (c) of FIG. 4 is a physical wiring diagram schematically showing the connection of the electric system of the saddle-mounted vehicle 1.
In the application examples shown in FIGS. 4 and 4 onward, the elements corresponding to the embodiments shown in FIG. 1 will be described with the same reference numerals as those in FIG.
図4以降に示す適用例において、図1に示す実施形態に対応する要素は、図1と同じ符号を付して説明を行う。 FIG. 4 is a diagram schematically showing a saddle-mounted vehicle 1 and an electric system, which are application examples of the embodiment shown in FIG. Part (a) of FIG. 4 is a plan view of the saddle-mounted vehicle 1. Part (b) of FIG. 4 is a side view of the saddle-mounted vehicle 1. Part (c) of FIG. 4 is a physical wiring diagram schematically showing the connection of the electric system of the saddle-mounted vehicle 1.
In the application examples shown in FIGS. 4 and 4 onward, the elements corresponding to the embodiments shown in FIG. 1 will be described with the same reference numerals as those in FIG.
図4に示す鞍乗型車両1は、車体2を備えている。車体2には、運転者が着座するためのシート2aが備えられている。運転者は、シート2aに跨がるようにして着座する。図4には、鞍乗型車両1の一例として自動二輪車が示されている。
The saddle-mounted vehicle 1 shown in FIG. 4 includes a vehicle body 2. The vehicle body 2 is provided with a seat 2a for the driver to sit on. The driver sits so as to straddle the seat 2a. FIG. 4 shows a motorcycle as an example of the saddle-mounted vehicle 1.
鞍乗型車両1は、前の車輪3aと後ろの車輪3bを備えている。鞍乗型車両1の車輪3a,3bのトレッド面は、路面と接触しない状態で円弧状の断面形状を有する。
The saddle-mounted vehicle 1 is provided with front wheels 3a and rear wheels 3b. The tread surfaces of the wheels 3a and 3b of the saddle-mounted vehicle 1 have an arcuate cross-sectional shape in a state where they do not come into contact with the road surface.
エンジン10は、エンジンユニットEUを構成する。即ち、鞍乗型車両1は、エンジンユニットEUを備えている。
エンジンユニットEUは、エンジン10と、永久磁石式発電機20とを含む。
エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15からの動力を受け、鞍乗型車両1を走行させる。エンジン10は、例えば100mL以上の排気量を有する。エンジン10は、例えば、400mL未満の排気量を有する。
また、鞍乗型車両1は、変速機CVT及びクラッチCLを備えている。エンジン10から出力される動力は、変速機CVT及びクラッチCLを介して車輪3bに伝達される。 Theengine 10 constitutes an engine unit EU. That is, the saddle-mounted vehicle 1 includes an engine unit EU.
The engine unit EU includes anengine 10 and a permanent magnet generator 20.
Theengine 10 outputs power via the crankshaft 15. The engine 10 outputs torque for driving the wheels 3b from the crankshaft 15. The wheels 3b receive power from the crankshaft 15 and drive the saddle-mounted vehicle 1. The engine 10 has, for example, a displacement of 100 mL or more. The engine 10 has, for example, a displacement of less than 400 mL.
Further, the saddle-mounted vehicle 1 includes a transmission CVT and a clutch CL. The power output from theengine 10 is transmitted to the wheels 3b via the transmission CVT and the clutch CL.
エンジンユニットEUは、エンジン10と、永久磁石式発電機20とを含む。
エンジン10は、クランク軸15を介して動力を出力する。エンジン10は、車輪3bを駆動するためのトルクをクランク軸15から出力する。車輪3bは、クランク軸15からの動力を受け、鞍乗型車両1を走行させる。エンジン10は、例えば100mL以上の排気量を有する。エンジン10は、例えば、400mL未満の排気量を有する。
また、鞍乗型車両1は、変速機CVT及びクラッチCLを備えている。エンジン10から出力される動力は、変速機CVT及びクラッチCLを介して車輪3bに伝達される。 The
The engine unit EU includes an
The
Further, the saddle-mounted vehicle 1 includes a transmission CVT and a clutch CL. The power output from the
永久磁石式発電機20は、エンジン10に駆動されて発電する。図4に示す永久磁石式発電機20は、磁石式始動発電機である。
永久磁石式発電機20は、ロータ30及びステータ40(図6参照)を有する。ロータ30は、永久磁石で構成された永久磁石部37を備えている。ロータ30は、クランク軸15から出力される動力で回転する。ステータ40は、ロータ30と対向するように配置されている。 The permanentmagnet type generator 20 is driven by the engine 10 to generate electricity. The permanent magnet type generator 20 shown in FIG. 4 is a magnet type start generator.
Thepermanent magnet generator 20 has a rotor 30 and a stator 40 (see FIG. 6). The rotor 30 includes a permanent magnet portion 37 composed of a permanent magnet. The rotor 30 rotates with the power output from the crankshaft 15. The stator 40 is arranged so as to face the rotor 30.
永久磁石式発電機20は、ロータ30及びステータ40(図6参照)を有する。ロータ30は、永久磁石で構成された永久磁石部37を備えている。ロータ30は、クランク軸15から出力される動力で回転する。ステータ40は、ロータ30と対向するように配置されている。 The permanent
The
蓄電装置4は、充電及び放電することができる装置である。蓄電装置4は、充電された電力を外部に出力する。蓄電装置4は、電力を永久磁石式発電機20及び電動補機Lに供給する。蓄電装置4は、エンジン10の始動時に永久磁石式発電機20に電力を供給する。また、蓄電装置4は、永久磁石式発電機20で発電された電力によって充電される。
The power storage device 4 is a device that can be charged and discharged. The power storage device 4 outputs the charged electric power to the outside. The power storage device 4 supplies electric power to the permanent magnet type generator 20 and the electric auxiliary machine L. The power storage device 4 supplies electric power to the permanent magnet generator 20 when the engine 10 is started. Further, the power storage device 4 is charged by the electric power generated by the permanent magnet type generator 20.
鞍乗型車両1は、インバータ21を備えている。インバータ21は、永久磁石式発電機20と蓄電装置4との間を流れる電流を制御する複数のスイッチング部211を備えている。
The saddle-mounted vehicle 1 is equipped with an inverter 21. The inverter 21 includes a plurality of switching units 211 that control the current flowing between the permanent magnet type generator 20 and the power storage device 4.
永久磁石式発電機20は、蓄電装置4の電力によってクランク軸15を回転させる。これによって永久磁石式発電機20はエンジン10を始動する。
The permanent magnet type generator 20 rotates the crankshaft 15 by the electric power of the power storage device 4. As a result, the permanent magnet generator 20 starts the engine 10.
鞍乗型車両1は、メインスイッチ5を備えている。メインスイッチ5は、操作に応じて鞍乗型車両1に備えられた電動補機L(図4参照)に電力を供給するためのスイッチである。電動補機Lは、永久磁石式発電機20を除いて、電力を消費しながら動作する装置を包括的に表したものである。電動補機Lは、例えば、前照灯9、燃料噴射装置18、及び点火装置19(図5参照)を含む。
鞍乗型車両1は、スタータスイッチ6を備えている。スタータスイッチ6は、操作に応じてエンジン10を始動するためのスイッチである。鞍乗型車両1は、メインリレー75を備えている。メインリレー75は、メインスイッチ5からの信号に応じて、電動補機Lを含む回路を開閉する。
鞍乗型車両1は、加速指示部8を備えている。加速指示部8は、操作に応じて鞍乗型車両1の加速を指示するための操作子である。加速指示部8は、詳細には、アクセルグリップである。 The saddle-mounted vehicle 1 includes amain switch 5. The main switch 5 is a switch for supplying electric power to the electric auxiliary machine L (see FIG. 4) provided in the saddle-mounted vehicle 1 according to the operation. The electric auxiliary machine L comprehensively represents a device that operates while consuming electric power, except for the permanent magnet type generator 20. The electric auxiliary machine L includes, for example, a headlight 9, a fuel injection device 18, and an ignition device 19 (see FIG. 5).
The saddle-mounted vehicle 1 includes astarter switch 6. The starter switch 6 is a switch for starting the engine 10 in response to an operation. The saddle-mounted vehicle 1 includes a main relay 75. The main relay 75 opens and closes a circuit including the electric auxiliary machine L in response to a signal from the main switch 5.
The saddle-mounted vehicle 1 includes an acceleration indicator 8. The acceleration instruction unit 8 is an operator for instructing the acceleration of the saddle-mounted vehicle 1 according to the operation. The acceleration indicator 8 is, in detail, an accelerator grip.
鞍乗型車両1は、スタータスイッチ6を備えている。スタータスイッチ6は、操作に応じてエンジン10を始動するためのスイッチである。鞍乗型車両1は、メインリレー75を備えている。メインリレー75は、メインスイッチ5からの信号に応じて、電動補機Lを含む回路を開閉する。
鞍乗型車両1は、加速指示部8を備えている。加速指示部8は、操作に応じて鞍乗型車両1の加速を指示するための操作子である。加速指示部8は、詳細には、アクセルグリップである。 The saddle-mounted vehicle 1 includes a
The saddle-mounted vehicle 1 includes a
The saddle-mounted vehicle 1 includes an acceleration indicator 8. The acceleration instruction unit 8 is an operator for instructing the acceleration of the saddle-mounted vehicle 1 according to the operation. The acceleration indicator 8 is, in detail, an accelerator grip.
蓄電装置4は、例えば、バッテリ41と、キャパシタ42と、充電経路切替回路43とを有する。バッテリ41は、例えば鉛バッテリである。キャパシタ42は、例えば電気二重層キャパシタ(Electric Double Layer Capacitor, EDLC)である。
The power storage device 4 includes, for example, a battery 41, a capacitor 42, and a charging path switching circuit 43. The battery 41 is, for example, a lead battery. The capacitor 42 is, for example, an electric double layer capacitor (Electric Double Layer Capacitor, EDLC).
図4のパート(c)に示すように、永久磁石式発電機20、蓄電装置4、メインリレー75、インバータ21、及び電動補機Lは、配線Jで電気的に接続されている。符号の見やすさのため、配線の符号(J)は、図4のパート(c)に示す配線の一部に付している。
配線Jは、例えばリード線で構成される。配線Jは、繋ぎ合わされた複数のリード線で構成される場合もある。また、配線Jは、リード線を中継するコネクタ、ヒューズ、及び接続端子を含む場合もある。コネクタ、ヒューズ、及び接続端子の図示は省略する。また、図4のパート(c)の実体配線図では、正極領域の接続が示されている。負極領域即ちグランド領域は、車体2を介して電気的に接続されている。より詳細には、負極領域は、車体2の図示しない金属製フレームを介して電気的に接続されている。車体2を介した各装置の電気的な接続の距離は、通常、リード線等による正極領域の接続と同等であるか、より短い。そこで、図4のパート(c)において、車体2による負極領域の接続の図示を省略し、主として、正極領域の配線について説明する。
図4に示す配線Jは、車両に設けられた他の配線と組み合わされて図示しないワイヤハーネスを構成する。図4のパート(c)では、図に示された装置を電気的に接続する配線Jのみを示す。
図4のパート(c)には、各装置間の配線Jの接続関係、及び配線Jの距離が概略的に示されている。 As shown in part (c) of FIG. 4, the permanentmagnet type generator 20, the power storage device 4, the main relay 75, the inverter 21, and the electric auxiliary machine L are electrically connected by wiring J. For the sake of legibility of the code, the code (J) of the wiring is attached to a part of the wiring shown in the part (c) of FIG.
The wiring J is composed of, for example, a lead wire. The wiring J may be composed of a plurality of connected lead wires. Further, the wiring J may include a connector for relaying a lead wire, a fuse, and a connection terminal. The illustration of connectors, fuses, and connection terminals is omitted. Further, in the physical wiring diagram of the part (c) of FIG. 4, the connection of the positive electrode region is shown. The negative electrode region, that is, the ground region is electrically connected via thevehicle body 2. More specifically, the negative electrode region is electrically connected via a metal frame (not shown) of the vehicle body 2. The distance of electrical connection of each device via the vehicle body 2 is usually equal to or shorter than the connection of the positive electrode region by a lead wire or the like. Therefore, in the part (c) of FIG. 4, the connection of the negative electrode region by the vehicle body 2 is not shown, and the wiring of the positive electrode region will be mainly described.
The wiring J shown in FIG. 4 is combined with other wiring provided in the vehicle to form a wire harness (not shown). Part (c) of FIG. 4 shows only the wiring J that electrically connects the devices shown in the figure.
Part (c) of FIG. 4 schematically shows the connection relationship of the wiring J between the devices and the distance of the wiring J.
配線Jは、例えばリード線で構成される。配線Jは、繋ぎ合わされた複数のリード線で構成される場合もある。また、配線Jは、リード線を中継するコネクタ、ヒューズ、及び接続端子を含む場合もある。コネクタ、ヒューズ、及び接続端子の図示は省略する。また、図4のパート(c)の実体配線図では、正極領域の接続が示されている。負極領域即ちグランド領域は、車体2を介して電気的に接続されている。より詳細には、負極領域は、車体2の図示しない金属製フレームを介して電気的に接続されている。車体2を介した各装置の電気的な接続の距離は、通常、リード線等による正極領域の接続と同等であるか、より短い。そこで、図4のパート(c)において、車体2による負極領域の接続の図示を省略し、主として、正極領域の配線について説明する。
図4に示す配線Jは、車両に設けられた他の配線と組み合わされて図示しないワイヤハーネスを構成する。図4のパート(c)では、図に示された装置を電気的に接続する配線Jのみを示す。
図4のパート(c)には、各装置間の配線Jの接続関係、及び配線Jの距離が概略的に示されている。 As shown in part (c) of FIG. 4, the permanent
The wiring J is composed of, for example, a lead wire. The wiring J may be composed of a plurality of connected lead wires. Further, the wiring J may include a connector for relaying a lead wire, a fuse, and a connection terminal. The illustration of connectors, fuses, and connection terminals is omitted. Further, in the physical wiring diagram of the part (c) of FIG. 4, the connection of the positive electrode region is shown. The negative electrode region, that is, the ground region is electrically connected via the
The wiring J shown in FIG. 4 is combined with other wiring provided in the vehicle to form a wire harness (not shown). Part (c) of FIG. 4 shows only the wiring J that electrically connects the devices shown in the figure.
Part (c) of FIG. 4 schematically shows the connection relationship of the wiring J between the devices and the distance of the wiring J.
[エンジンユニット]
図5は、図4に示すエンジンユニットEUの概略構成を模式的に示す部分断面図である。 [Engine unit]
FIG. 5 is a partial cross-sectional view schematically showing a schematic configuration of the engine unit EU shown in FIG.
図5は、図4に示すエンジンユニットEUの概略構成を模式的に示す部分断面図である。 [Engine unit]
FIG. 5 is a partial cross-sectional view schematically showing a schematic configuration of the engine unit EU shown in FIG.
エンジンユニットEUは、エンジン10を備えている。エンジン10は、クランクケース11と、シリンダ12と、ピストン13と、コネクティングロッド14と、クランク軸15とを備えている。ピストン13は、シリンダ12内に往復動可能に設けられている。
クランク軸15は、クランクケース11内に回転可能に設けられている。クランク軸15は、コネクティングロッド14を介して、ピストン13と連結されている。シリンダ12の上部には、シリンダヘッド16が取り付けられている。シリンダ12とシリンダヘッド16とピストン13とによって、燃焼室が形成される。クランク軸15は、クランクケース11に、回転自在な態様で支持されている。クランク軸15の一端部15aには、永久磁石式発電機20が取り付けられている。クランク軸15の他端部15bには、変速機CVTが取り付けられている。変速機CVTは、入力の回転速度に対する出力の回転速度の比である変速比を変更することができる。変速機CVTは、クランク軸15の回転速度に対する、車輪の回転速度に対応する変速比を変更することができる。 The engine unit EU includes anengine 10. The engine 10 includes a crankcase 11, a cylinder 12, a piston 13, a connecting rod 14, and a crankshaft 15. The piston 13 is provided in the cylinder 12 so as to be reciprocating.
Thecrankshaft 15 is rotatably provided in the crankcase 11. The crankshaft 15 is connected to the piston 13 via a connecting rod 14. A cylinder head 16 is attached to the upper part of the cylinder 12. A combustion chamber is formed by the cylinder 12, the cylinder head 16, and the piston 13. The crankshaft 15 is supported by the crankcase 11 in a rotatable manner. A permanent magnet type generator 20 is attached to one end portion 15a of the crankshaft 15. A transmission CVT is attached to the other end 15b of the crankshaft 15. The transmission CVT can change the gear ratio, which is the ratio of the rotation speed of the output to the rotation speed of the input. The transmission CVT can change the gear ratio corresponding to the rotation speed of the wheels with respect to the rotation speed of the crankshaft 15.
クランク軸15は、クランクケース11内に回転可能に設けられている。クランク軸15は、コネクティングロッド14を介して、ピストン13と連結されている。シリンダ12の上部には、シリンダヘッド16が取り付けられている。シリンダ12とシリンダヘッド16とピストン13とによって、燃焼室が形成される。クランク軸15は、クランクケース11に、回転自在な態様で支持されている。クランク軸15の一端部15aには、永久磁石式発電機20が取り付けられている。クランク軸15の他端部15bには、変速機CVTが取り付けられている。変速機CVTは、入力の回転速度に対する出力の回転速度の比である変速比を変更することができる。変速機CVTは、クランク軸15の回転速度に対する、車輪の回転速度に対応する変速比を変更することができる。 The engine unit EU includes an
The
エンジンユニットEUには、燃料噴射装置18が備えられている。燃料噴射装置18は、燃料を噴射することによって、燃焼室に燃料を供給する。吸気通路Ipを通って流れる空気に対し、燃料噴射装置18が燃料を噴射する。空気と燃料の混合気が、エンジン10の燃焼室に供給される。
また、エンジンユニットEUには、点火装置19が設けられている。点火装置19は、点火プラグ19a及び点火電圧生成回路19bを有する。点火プラグ19aは、エンジン10に設けられている。点火プラグ19aは、点火電圧生成回路19bと電気的に接続される。
燃料噴射装置18及び点火装置19は、図1に示す電動補機Lの一例である。燃料噴射装置18及び点火装置19は、エンジン用補機の一例である。燃料噴射装置18及び点火装置19は、18V系統電圧で動作する。 The engine unit EU is provided with afuel injection device 18. The fuel injection device 18 supplies fuel to the combustion chamber by injecting fuel. The fuel injection device 18 injects fuel into the air flowing through the intake passage Ip. A mixture of air and fuel is supplied to the combustion chamber of the engine 10.
Further, the engine unit EU is provided with anignition device 19. The ignition device 19 has a spark plug 19a and an ignition voltage generation circuit 19b. The spark plug 19a is provided in the engine 10. The spark plug 19a is electrically connected to the ignition voltage generation circuit 19b.
Thefuel injection device 18 and the ignition device 19 are examples of the electric auxiliary machine L shown in FIG. The fuel injection device 18 and the ignition device 19 are examples of auxiliary equipment for an engine. The fuel injection device 18 and the ignition device 19 operate at an 18V system voltage.
また、エンジンユニットEUには、点火装置19が設けられている。点火装置19は、点火プラグ19a及び点火電圧生成回路19bを有する。点火プラグ19aは、エンジン10に設けられている。点火プラグ19aは、点火電圧生成回路19bと電気的に接続される。
燃料噴射装置18及び点火装置19は、図1に示す電動補機Lの一例である。燃料噴射装置18及び点火装置19は、エンジン用補機の一例である。燃料噴射装置18及び点火装置19は、18V系統電圧で動作する。 The engine unit EU is provided with a
Further, the engine unit EU is provided with an
The
エンジン10は、内燃機関である。エンジン10は、燃料の供給を受ける。エンジン10は、混合気を燃焼する燃焼動作によって動力を出力する。即ち、ピストン13が、燃焼室に供給された燃料を含む混合気の燃焼によって往復動する。ピストン13の往復動に連動してクランク軸15が回転する。動力は、クランク軸15を介してエンジン10の外部に出力される。
燃料噴射装置18は、供給燃料の量を調整することによって、エンジン10から出力される動力を調節する。燃料噴射装置18は、制御装置60によって制御される。燃料噴射装置18は、エンジン10に供給される空気の量に基づいた量の燃料を供給するよう制御される。点火装置19は、燃料と空気が混合されたガスに点火する。燃料噴射装置18及び点火装置19は、エンジン10に燃焼を行なわせるよう動作するエンジン用補機である。
エンジン10は、クランク軸15を介して動力を出力する。クランク軸15の動力は、変速機CVT及びクラッチCL(図4のパート(b)参照)を介して、車輪3bに伝達される。 Theengine 10 is an internal combustion engine. The engine 10 is supplied with fuel. The engine 10 outputs power by a combustion operation that burns the air-fuel mixture. That is, the piston 13 reciprocates by burning the air-fuel mixture containing the fuel supplied to the combustion chamber. The crankshaft 15 rotates in conjunction with the reciprocating movement of the piston 13. The power is output to the outside of the engine 10 via the crankshaft 15.
Thefuel injection device 18 adjusts the power output from the engine 10 by adjusting the amount of fuel to be supplied. The fuel injection device 18 is controlled by the control device 60. The fuel injection device 18 is controlled to supply an amount of fuel based on the amount of air supplied to the engine 10. The igniter 19 ignites a gas in which fuel and air are mixed. The fuel injection device 18 and the ignition device 19 are engine auxiliary machines that operate to cause the engine 10 to perform combustion.
Theengine 10 outputs power via the crankshaft 15. The power of the crankshaft 15 is transmitted to the wheels 3b via the transmission CVT and the clutch CL (see part (b) of FIG. 4).
燃料噴射装置18は、供給燃料の量を調整することによって、エンジン10から出力される動力を調節する。燃料噴射装置18は、制御装置60によって制御される。燃料噴射装置18は、エンジン10に供給される空気の量に基づいた量の燃料を供給するよう制御される。点火装置19は、燃料と空気が混合されたガスに点火する。燃料噴射装置18及び点火装置19は、エンジン10に燃焼を行なわせるよう動作するエンジン用補機である。
エンジン10は、クランク軸15を介して動力を出力する。クランク軸15の動力は、変速機CVT及びクラッチCL(図4のパート(b)参照)を介して、車輪3bに伝達される。 The
The
The
クランクケース11は、オイルで内部が潤滑されるように構成されている。永久磁石式発電機20は、オイルと接触する位置に設けられている。
The crankcase 11 is configured so that the inside is lubricated with oil. The permanent magnet type generator 20 is provided at a position where it comes into contact with oil.
エンジン10は、4ストロークの間に、クランク軸15を回転させる負荷が大きい高負荷領域と、クランク軸15を回転させる負荷が高負荷領域の負荷より小さい低負荷領域とを有する。高負荷領域とは、エンジン10の1燃焼サイクルにおいて、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも高い領域をいう。また、低負荷領域とは、エンジン10の1燃焼サイクルにおいて、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも低い領域をいう。クランク軸15の回転角度を基準として見ると、低負荷領域は高負荷領域よりも広い。より詳細には、エンジン10は、吸気行程、圧縮行程、膨張行程、及び排気行程の4行程を繰返しながら正回転する。圧縮行程は、高負荷領域との重なりを有する。エンジン10は、単気筒エンジンである。
The engine 10 has a high load region in which the load for rotating the crankshaft 15 is large and a low load region in which the load for rotating the crankshaft 15 is smaller than the load in the high load region during the four strokes. The high load region means a region in which the load torque is higher than the average value of the load torque in one combustion cycle in one combustion cycle of the engine 10. Further, the low load region means a region in which the load torque is lower than the average value of the load torque in one combustion cycle in one combustion cycle of the engine 10. Looking at the rotation angle of the crankshaft 15 as a reference, the low load region is wider than the high load region. More specifically, the engine 10 rotates forward while repeating four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. The compression stroke has an overlap with the high load region. The engine 10 is a single cylinder engine.
図6は、図5に示す永久磁石式発電機20の回転軸線に垂直な断面を示す断面図である。
図5及び図6を参照して永久磁石式発電機20を説明する。 FIG. 6 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the permanentmagnet type generator 20 shown in FIG.
The permanentmagnet type generator 20 will be described with reference to FIGS. 5 and 6.
図5及び図6を参照して永久磁石式発電機20を説明する。 FIG. 6 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the permanent
The permanent
永久磁石式発電機20は、ロータ30と、ステータ40とを有する。本適用例の永久磁石式発電機20は、ラジアルギャップ型である。永久磁石式発電機20は、アウタロータ型である。即ち、ロータ30はアウタロータである。ステータ40はインナーステータである。
ロータ30は、ロータ本体部31を有する。ロータ本体部31は、例えば強磁性材料からなる。ロータ本体部31は、有底筒状を有する。ロータ本体部31は、筒状ボス部32と、円板状の底壁部33と、筒状のバックヨーク部34とを有する。底壁部33及びバックヨーク部34は一体的に形成されている。なお、底壁部33とバックヨーク部34とは別体に構成されていてもよい。底壁部33及びバックヨーク部34は筒状ボス部32を介してクランク軸15に固定されている。ロータ30には、電流が供給される巻線が設けられていない。 The permanentmagnet type generator 20 has a rotor 30 and a stator 40. The permanent magnet type generator 20 of this application example is a radial gap type. The permanent magnet type generator 20 is an outer rotor type. That is, the rotor 30 is an outer rotor. The stator 40 is an inner stator.
Therotor 30 has a rotor main body 31. The rotor body 31 is made of, for example, a ferromagnetic material. The rotor main body 31 has a bottomed tubular shape. The rotor main body 31 has a tubular boss portion 32, a disk-shaped bottom wall portion 33, and a tubular back yoke portion 34. The bottom wall portion 33 and the back yoke portion 34 are integrally formed. The bottom wall portion 33 and the back yoke portion 34 may be configured separately. The bottom wall portion 33 and the back yoke portion 34 are fixed to the crankshaft 15 via the tubular boss portion 32. The rotor 30 is not provided with a winding to which a current is supplied.
ロータ30は、ロータ本体部31を有する。ロータ本体部31は、例えば強磁性材料からなる。ロータ本体部31は、有底筒状を有する。ロータ本体部31は、筒状ボス部32と、円板状の底壁部33と、筒状のバックヨーク部34とを有する。底壁部33及びバックヨーク部34は一体的に形成されている。なお、底壁部33とバックヨーク部34とは別体に構成されていてもよい。底壁部33及びバックヨーク部34は筒状ボス部32を介してクランク軸15に固定されている。ロータ30には、電流が供給される巻線が設けられていない。 The permanent
The
ロータ30は、永久磁石部37を有する。ロータ30は、複数の磁極部37aを有する。複数の磁極部37aは永久磁石部37により形成されている。複数の磁極部37aは、バックヨーク部34の内周面に、設けられている。本適用例において、永久磁石部37は、複数の永久磁石を有する。即ち、ロータ30は、複数の永久磁石を有する。複数の磁極部37aは、複数の永久磁石のそれぞれに設けられている。
なお、永久磁石部37は、1つの環状の永久磁石によって形成されることも可能である。この場合、1つの永久磁石は、複数の磁極部37aが内周面に並ぶように着磁される。 Therotor 30 has a permanent magnet portion 37. The rotor 30 has a plurality of magnetic pole portions 37a. The plurality of magnetic pole portions 37a are formed by the permanent magnet portions 37. The plurality of magnetic pole portions 37a are provided on the inner peripheral surface of the back yoke portion 34. In this application example, the permanent magnet portion 37 has a plurality of permanent magnets. That is, the rotor 30 has a plurality of permanent magnets. The plurality of magnetic pole portions 37a are provided on each of the plurality of permanent magnets.
Thepermanent magnet portion 37 can also be formed by one annular permanent magnet. In this case, one permanent magnet is magnetized so that a plurality of magnetic pole portions 37a are lined up on the inner peripheral surface.
なお、永久磁石部37は、1つの環状の永久磁石によって形成されることも可能である。この場合、1つの永久磁石は、複数の磁極部37aが内周面に並ぶように着磁される。 The
The
複数の磁極部37aは、永久磁石式発電機20の周方向にN極とS極とが交互に配置されるように設けられている。本適用例では、ステータ40と対向するロータ30の磁極数が24個である。ロータ30の磁極数とは、ステータ40と対向する磁極数をいう。磁極部37aとステータ40との間には磁性体が設けられていない。
磁極部37aは、永久磁石式発電機20の径方向におけるステータ40よりも外方に設けられている。バックヨーク部34は、径方向における磁極部37aよりも外方に設けられている。永久磁石式発電機20は、歯部45の数よりも多い磁極部37aを有している。
なお、ロータ30は、磁極部37aが磁性材料に埋め込まれた埋込磁石型(IPM型)であってもよいが、本適用例のように、磁極部37aが磁性材料から露出した表面磁石型(SPM型)であることが好ましい。 The plurality ofmagnetic pole portions 37a are provided so that the north pole and the south pole are alternately arranged in the circumferential direction of the permanent magnet type generator 20. In this application example, the number of magnetic poles of the rotor 30 facing the stator 40 is 24. The number of magnetic poles of the rotor 30 means the number of magnetic poles facing the stator 40. No magnetic material is provided between the magnetic pole portion 37a and the stator 40.
Themagnetic pole portion 37a is provided outside the stator 40 in the radial direction of the permanent magnet type generator 20. The back yoke portion 34 is provided outside the magnetic pole portion 37a in the radial direction. The permanent magnet type generator 20 has more magnetic pole portions 37a than the number of tooth portions 45.
Therotor 30 may be of an embedded magnet type (IPM type) in which the magnetic pole portion 37a is embedded in a magnetic material, but as in this application example, the magnetic pole portion 37a is a surface magnet type exposed from the magnetic material. (SPM type) is preferable.
磁極部37aは、永久磁石式発電機20の径方向におけるステータ40よりも外方に設けられている。バックヨーク部34は、径方向における磁極部37aよりも外方に設けられている。永久磁石式発電機20は、歯部45の数よりも多い磁極部37aを有している。
なお、ロータ30は、磁極部37aが磁性材料に埋め込まれた埋込磁石型(IPM型)であってもよいが、本適用例のように、磁極部37aが磁性材料から露出した表面磁石型(SPM型)であることが好ましい。 The plurality of
The
The
ステータ40は、ステータコアSTと複数のステータ巻線Wとを有する。ステータコアSTは、周方向に間隔を空けて設けられた複数の歯部(ティース)45を有する。複数の歯部45は、ステータコアSTから径方向外方に向かって一体的に延びている。本適用例においては、合計18個の歯部45が周方向に間隔を空けて設けられている。換言すると、ステータコアSTは、周方向に間隔を空けて形成された合計18個のスロットSLを有する。歯部45は周方向に等間隔で配置されている。
The stator 40 has a stator core ST and a plurality of stator windings W. The stator core ST has a plurality of teeth 45 provided at intervals in the circumferential direction. The plurality of tooth portions 45 integrally extend radially outward from the stator core ST. In this application example, a total of 18 tooth portions 45 are provided at intervals in the circumferential direction. In other words, the stator core ST has a total of 18 slots SL formed at intervals in the circumferential direction. The tooth portions 45 are arranged at equal intervals in the circumferential direction.
ロータ30は、歯部45の数より多い数の磁極部37aを有する。磁極部の数は、スロット数の4/3である。
The rotor 30 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 45. The number of magnetic poles is 4/3 of the number of slots.
各歯部45の周囲には、ステータ巻線Wが巻回している。つまり、複数相のステータ巻線Wは、スロットSLを通るように設けられている。図6には、ステータ巻線Wが、スロットSLの中にある状態が示されている。
A stator winding W is wound around each tooth portion 45. That is, the multi-phase stator winding W is provided so as to pass through the slot SL. FIG. 6 shows a state in which the stator winding W is in the slot SL.
永久磁石式発電機20は、三相発電機である。ステータ巻線Wのそれぞれは、U相、V相、W相の何れかに属する。ステータ巻線Wは、例えば、U相、V相、W相の順に並ぶように配置される。
The permanent magnet type generator 20 is a three-phase generator. Each of the stator windings W belongs to any of U phase, V phase, and W phase. The stator windings W are arranged so as to be arranged in the order of, for example, U phase, V phase, and W phase.
鞍乗型車両1が走行中にエンジン10が動作状態している場合、永久磁石式発電機20で発電される電力によって、蓄電装置4が充電される。蓄電装置4が満充電になると、永久磁石式発電機20で発電される電力は、充電に用いられることなく例えば巻線の短絡によって熱として消費される。また、インバータ21から蓄電装置4に出力される電圧が定格値に抑えられない程度にクランク軸15の回転速度が大きくなる場合、インバータ21は、永久磁石式発電機20のステータ巻線Wを短絡するようにスイッチング部211を制御する。蓄電装置4を充電することができるクランク軸15の上限回転速度は、高い値に設定することができる。
発電機が発電する場合、ステータ巻線Wを流れる電流は、ステータ巻線W自体に生じるインピーダンスの影響を受ける。インピーダンスはステータ巻線Wを流れる電流を妨げる要素である。インピーダンスは、回転速度ωとインダクタンスの積を含む。ここで、回転速度ωは、実際には、単位時間に歯部近傍を通過する磁極部の数に相当する。即ち、回転速度ωは、発電機における歯部の数に対する磁極部の数の比と、ロータの回転速度とに比例する。 When theengine 10 is operating while the saddle-mounted vehicle 1 is running, the power storage device 4 is charged by the electric power generated by the permanent magnet generator 20. When the power storage device 4 is fully charged, the electric power generated by the permanent magnet generator 20 is consumed as heat by, for example, a short circuit of the windings, without being used for charging. Further, when the rotation speed of the crankshaft 15 becomes so large that the voltage output from the inverter 21 to the power storage device 4 cannot be suppressed to the rated value, the inverter 21 short-circuits the stator winding W of the permanent magnet generator 20. The switching unit 211 is controlled so as to do so. The upper limit rotation speed of the crankshaft 15 capable of charging the power storage device 4 can be set to a high value.
When the generator generates electricity, the current flowing through the stator winding W is affected by the impedance generated in the stator winding W itself. Impedance is an element that hinders the current flowing through the stator winding W. Impedance includes the product of rotational speed ω and inductance. Here, the rotation speed ω actually corresponds to the number of magnetic poles passing near the tooth portion in a unit time. That is, the rotation speed ω is proportional to the ratio of the number of magnetic poles to the number of teeth in the generator and the rotation speed of the rotor.
発電機が発電する場合、ステータ巻線Wを流れる電流は、ステータ巻線W自体に生じるインピーダンスの影響を受ける。インピーダンスはステータ巻線Wを流れる電流を妨げる要素である。インピーダンスは、回転速度ωとインダクタンスの積を含む。ここで、回転速度ωは、実際には、単位時間に歯部近傍を通過する磁極部の数に相当する。即ち、回転速度ωは、発電機における歯部の数に対する磁極部の数の比と、ロータの回転速度とに比例する。 When the
When the generator generates electricity, the current flowing through the stator winding W is affected by the impedance generated in the stator winding W itself. Impedance is an element that hinders the current flowing through the stator winding W. Impedance includes the product of rotational speed ω and inductance. Here, the rotation speed ω actually corresponds to the number of magnetic poles passing near the tooth portion in a unit time. That is, the rotation speed ω is proportional to the ratio of the number of magnetic poles to the number of teeth in the generator and the rotation speed of the rotor.
図6に示す永久磁石式発電機20は、歯部45の数より多い数の磁極部37aを有する。即ち、永久磁石式発電機20は、スロットSLの数より多い数の磁極部37aを有する。このため、ステータ巻線Wが大きなインピーダンスを有する。従って、蓄電装置4に掛かる電圧が、例えば歯部の数より少ない数の磁極部を有する場合と比べ、減少する。このため、クランク軸15の上限回転速度は、例えば12Vの場合と比べて高い値に設定することができる。このため、永久磁石式発電機20において始動時のトルクを増大するため、電気抵抗の小さい太い巻線を採用することができる。
The permanent magnet type generator 20 shown in FIG. 6 has a number of magnetic pole portions 37a that is larger than the number of tooth portions 45. That is, the permanent magnet type generator 20 has a number of magnetic pole portions 37a that is larger than the number of slots SL. Therefore, the stator winding W has a large impedance. Therefore, the voltage applied to the power storage device 4 is reduced as compared with the case where the number of magnetic poles is smaller than the number of teeth, for example. Therefore, the upper limit rotation speed of the crankshaft 15 can be set to a higher value than in the case of, for example, 12V. Therefore, in order to increase the torque at the time of starting in the permanent magnet type generator 20, a thick winding having a small electric resistance can be adopted.
また、永久磁石式発電機20では、ステータ巻線Wの温度が潤滑オイルの温度よりも高くならない又は高くなり難いため、永久磁石式発電機20が潤滑オイルと接触するように配置されても、潤滑オイルの蒸発を抑制できる。従って、潤滑オイルの冷却機構の大型化を抑制乃至回避できる。
Further, in the permanent magnet type generator 20, the temperature of the stator winding W does not become higher than the temperature of the lubricating oil or is unlikely to become higher than the temperature of the lubricating oil. Therefore, even if the permanent magnet type generator 20 is arranged so as to come into contact with the lubricating oil, Evaporation of lubricating oil can be suppressed. Therefore, it is possible to suppress or avoid an increase in the size of the lubricating oil cooling mechanism.
1 鞍乗型車両
3a,3b 車輪
41 バッテリ
42 キャパシタ
43 充電経路切替回路
10 エンジン
15 クランク軸
20 永久磁石式発電機
21 インバータ 1 Saddle- type vehicle 3a, 3b Wheels 41 Battery 42 Capacitor 43 Charging path switching circuit 10 Engine 15 Crankshaft 20 Permanent magnet generator 21 Inverter
3a,3b 車輪
41 バッテリ
42 キャパシタ
43 充電経路切替回路
10 エンジン
15 クランク軸
20 永久磁石式発電機
21 インバータ 1 Saddle-
Claims (6)
- 鞍乗型車両であって、
前記鞍乗型車両は、
車輪と、
クランク軸を有し、ガスの燃焼動作によって生じた前記車輪を駆動するためのトルクを前記クランク軸から出力するエンジンと、
前記クランク軸の一端部に設けられ、永久磁石を有し、前記クランク軸を回転させることにより前記エンジンを始動するとともに、前記エンジンに駆動されることにより発電する永久磁石式発電機と、
前記永久磁石式発電機から出力される電流を制御する複数のスイッチング部を備えたインバータと、
前記エンジンを少なくとも1回始動する量の電力を充電可能な静電容量を有し、前記インバータを介して前記永久磁石式発電機から出力される電力を蓄えるキャパシタと、
前記インバータを介して前記永久磁石式発電機から出力される電力を蓄えるバッテリと、
前記インバータ、前記永久磁石式発電機、及び蓄電装置と電気的に接続され、前記永久磁石式発電機が発電することにより前記インバータから出力される電力で前記バッテリが充電される期間の少なくとも一部において、前記インバータと前記キャパシタとの電気接続を切断する充電経路切替回路を備える。 It ’s a saddle-mounted vehicle,
The saddle-mounted vehicle is
With wheels
An engine that has a crankshaft and outputs torque for driving the wheels generated by the combustion operation of gas from the crankshaft.
A permanent magnet generator provided at one end of the crankshaft, having a permanent magnet, starting the engine by rotating the crankshaft, and generating electricity by being driven by the engine.
An inverter equipped with a plurality of switching units for controlling the current output from the permanent magnet generator, and
A capacitor having a capacitance capable of charging an amount of electric power for starting the engine at least once and storing electric power output from the permanent magnet generator via the inverter.
A battery that stores electric power output from the permanent magnet generator via the inverter,
At least a part of the period in which the battery is charged by the electric power output from the inverter by being electrically connected to the inverter, the permanent magnet generator, and the power storage device and generating electricity by the permanent magnet generator. A charging path switching circuit for disconnecting the electrical connection between the inverter and the capacitor is provided. - 請求項1記載の鞍乗型車両であって、
前記充電経路切替回路は、前記永久磁石式発電機が発電することにより前記インバータから出力される電力で前記キャパシタが充電される場合に前記インバータと前記バッテリとの接続を切断する。 The saddle-mounted vehicle according to claim 1.
The charging path switching circuit disconnects the inverter from the battery when the capacitor is charged by the electric power output from the inverter by generating electricity from the permanent magnet generator. - 請求項2記載の鞍乗型車両であって、
前記充電経路切替回路は、前記インバータと前記バッテリとの接続を切断しつつ前記キャパシタを充電させる期間よりも後の期間で、前記インバータと前記キャパシタとの接続を切断しつつ前記バッテリを充電させる。 The saddle-mounted vehicle according to claim 2.
The charging path switching circuit charges the battery while disconnecting the connection between the inverter and the capacitor in a period after the period during which the capacitor is charged while disconnecting the connection between the inverter and the battery. - 請求項1記載の鞍乗型車両であって、
永久磁石式発電機は、前記永久磁石で構成された複数の磁極部を有するロータと、
複数のスロットが前記永久磁石式発電機の周方向に間隔を空けて形成されたステータコア及び前記スロットを通るように設けられた巻線を有するステータと、を備え、
前記磁極部の数は前記複数のティースの数より多い。 The saddle-mounted vehicle according to claim 1.
The permanent magnet type generator includes a rotor having a plurality of magnetic poles composed of the permanent magnets and a rotor.
A stator core having a plurality of slots formed at intervals in the circumferential direction of the permanent magnet generator and a stator having windings provided so as to pass through the slots are provided.
The number of magnetic poles is larger than the number of the plurality of teeth. - 請求項1記載の鞍乗型車両であって、
前記エンジンは、オイルで内部が潤滑されるように構成されたクランクケースを更に備え、
前記永久磁石式発電機は、前記オイルと接触する位置に設けられる。 The saddle-mounted vehicle according to claim 1.
The engine further comprises a crankcase configured to lubricate the interior with oil.
The permanent magnet type generator is provided at a position where it comes into contact with the oil. - 請求項1記載の鞍乗型車両であって、
前記インバータは、前記鞍乗型車両の走行中、前記永久磁石式発電機に前記蓄電装置からの電力を供給し、永久磁石式発電機にクランク軸の回転を補助する。 The saddle-mounted vehicle according to claim 1.
The inverter supplies electric power from the power storage device to the permanent magnet generator while the saddle-mounted vehicle is traveling, and assists the permanent magnet generator in rotation of the crank shaft.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/048901 WO2021117217A1 (en) | 2019-12-13 | 2019-12-13 | Straddled vehicle |
JP2021563983A JP7340035B2 (en) | 2019-12-13 | 2020-12-08 | straddled vehicle |
PCT/JP2020/045726 WO2021117739A1 (en) | 2019-12-13 | 2020-12-08 | Straddled vehicle |
TW109143868A TWI764427B (en) | 2019-12-13 | 2020-12-11 | straddle vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/048901 WO2021117217A1 (en) | 2019-12-13 | 2019-12-13 | Straddled vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117217A1 true WO2021117217A1 (en) | 2021-06-17 |
Family
ID=76329865
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/048901 WO2021117217A1 (en) | 2019-12-13 | 2019-12-13 | Straddled vehicle |
PCT/JP2020/045726 WO2021117739A1 (en) | 2019-12-13 | 2020-12-08 | Straddled vehicle |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045726 WO2021117739A1 (en) | 2019-12-13 | 2020-12-08 | Straddled vehicle |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7340035B2 (en) |
TW (1) | TWI764427B (en) |
WO (2) | WO2021117217A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6194535A (en) * | 1984-10-15 | 1986-05-13 | Yamaha Motor Co Ltd | Cooling device for magneto-generator |
JPH04271209A (en) * | 1991-02-25 | 1992-09-28 | Hino Motors Ltd | Power supply regulation circuit for vehicle |
JPH0998514A (en) * | 1995-09-29 | 1997-04-08 | Fuji Heavy Ind Ltd | Power unit for vehicle |
JP2005269828A (en) * | 2004-03-19 | 2005-09-29 | Yanmar Co Ltd | Hybrid system |
JP2011031837A (en) * | 2009-08-05 | 2011-02-17 | Kokusan Denki Co Ltd | Motorcycle |
JP2012125050A (en) * | 2010-12-08 | 2012-06-28 | Daimler Ag | Power supply control device of electric vehicle |
JP2015074296A (en) * | 2013-10-07 | 2015-04-20 | 株式会社デンソー | Vehicle drive system |
JP2015107689A (en) * | 2013-12-03 | 2015-06-11 | いすゞ自動車株式会社 | Hybrid vehicle and control method for the same |
JP2017131042A (en) * | 2016-01-20 | 2017-07-27 | ヤマハ発動機株式会社 | Vehicle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005102425A (en) * | 2003-09-25 | 2005-04-14 | Toyota Motor Corp | Vehicle drive device |
JP2011073643A (en) * | 2009-10-01 | 2011-04-14 | Toyota Motor Corp | Control device for vehicle |
JP2014227924A (en) * | 2013-05-23 | 2014-12-08 | ヤマハ発動機株式会社 | Internal combustion engine and motorcycle having the same |
JP2017036666A (en) * | 2013-12-20 | 2017-02-16 | ヤマハ発動機株式会社 | Engine unit |
JP6194535B1 (en) | 2017-03-15 | 2017-09-13 | 幸一 横田 | Real estate utilization support apparatus, method, and computer program |
-
2019
- 2019-12-13 WO PCT/JP2019/048901 patent/WO2021117217A1/en active Application Filing
-
2020
- 2020-12-08 WO PCT/JP2020/045726 patent/WO2021117739A1/en active Application Filing
- 2020-12-08 JP JP2021563983A patent/JP7340035B2/en active Active
- 2020-12-11 TW TW109143868A patent/TWI764427B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6194535A (en) * | 1984-10-15 | 1986-05-13 | Yamaha Motor Co Ltd | Cooling device for magneto-generator |
JPH04271209A (en) * | 1991-02-25 | 1992-09-28 | Hino Motors Ltd | Power supply regulation circuit for vehicle |
JPH0998514A (en) * | 1995-09-29 | 1997-04-08 | Fuji Heavy Ind Ltd | Power unit for vehicle |
JP2005269828A (en) * | 2004-03-19 | 2005-09-29 | Yanmar Co Ltd | Hybrid system |
JP2011031837A (en) * | 2009-08-05 | 2011-02-17 | Kokusan Denki Co Ltd | Motorcycle |
JP2012125050A (en) * | 2010-12-08 | 2012-06-28 | Daimler Ag | Power supply control device of electric vehicle |
JP2015074296A (en) * | 2013-10-07 | 2015-04-20 | 株式会社デンソー | Vehicle drive system |
JP2015107689A (en) * | 2013-12-03 | 2015-06-11 | いすゞ自動車株式会社 | Hybrid vehicle and control method for the same |
JP2017131042A (en) * | 2016-01-20 | 2017-07-27 | ヤマハ発動機株式会社 | Vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP7340035B2 (en) | 2023-09-06 |
WO2021117739A1 (en) | 2021-06-17 |
JPWO2021117739A1 (en) | 2021-06-17 |
TW202128472A (en) | 2021-08-01 |
TWI764427B (en) | 2022-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105052034B (en) | The control method of electricity generation and electromotion unit and generator motor | |
US8492914B2 (en) | Crank-web mounted linearly segmented starter generator system | |
EP3640079A1 (en) | Vehicle | |
JP7235897B2 (en) | straddled vehicle | |
WO2021117215A1 (en) | Straddled vehicle | |
JP6847140B2 (en) | Saddle-type vehicle | |
WO2021117217A1 (en) | Straddled vehicle | |
EP3767778B1 (en) | Battery control system for nickel-metal hydride battery | |
WO2017126165A1 (en) | Engine-equipped vehicle | |
WO2020262225A1 (en) | Leaning vehicle | |
TWI624585B (en) | Vehicle | |
JP2024009992A (en) | Leaning vehicle | |
JP2024009993A (en) | Leaning vehicle | |
WO2020261478A1 (en) | Leaning vehicle | |
JP3945253B2 (en) | Engine starter | |
WO2020261477A1 (en) | Leaning vehicle | |
JP2023131296A (en) | vehicle | |
TW202500457A (en) | Straddle-type vehicle | |
WO2025004482A1 (en) | Straddled vehicle | |
OA20566A (en) | Leaning vehicle. | |
WO2019064817A1 (en) | Vehicle control device | |
JP2019044643A (en) | Control device | |
JP2010142100A (en) | Electrical system for self-propelled vehicle | |
JP2011109747A (en) | Ac generator for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19955944 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19955944 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |