[go: up one dir, main page]

WO2020217634A1 - 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物 - Google Patents

熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物 Download PDF

Info

Publication number
WO2020217634A1
WO2020217634A1 PCT/JP2020/004274 JP2020004274W WO2020217634A1 WO 2020217634 A1 WO2020217634 A1 WO 2020217634A1 JP 2020004274 W JP2020004274 W JP 2020004274W WO 2020217634 A1 WO2020217634 A1 WO 2020217634A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
thermally conductive
component
parts
Prior art date
Application number
PCT/JP2020/004274
Other languages
English (en)
French (fr)
Inventor
俊晴 森村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2020217634A1 publication Critical patent/WO2020217634A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention has a heat conductive silicone composition useful as a heat transfer material interposed at an interface between a heat interface of a heat generating electronic part and a heat radiating member such as a heat sink or a circuit board, particularly for cooling an electronic part by heat conduction.
  • the present invention relates to a product, a method for producing the product, and a heat conductive silicone cured product.
  • CPUs used in electronic devices such as personal computers, digital video discs, and mobile phones
  • LSI chips such as driver ICs and memories
  • Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipation methods and heat dissipation members used for suppressing the temperature rise of the chip during operation have been proposed.
  • a heat sink using a metal plate having high thermal conductivity such as aluminum or copper has been used in order to suppress a temperature rise of a chip during operation.
  • This heat sink conducts the heat generated by the chip and releases the heat from the surface due to the temperature difference from the outside air.
  • a flexible sheet or grease should be used. It is interposed between the chip and the heat sink, and heat conduction from the chip to the heat sink is realized through this sheet or grease.
  • Patent Document 1 contains 100 to 800 parts by mass of at least one metal oxide selected from beryllium oxide, aluminum oxide, hydrated aluminum oxide, magnesium oxide, and zinc oxide in 100 parts by mass of synthetic rubber such as silicone rubber.
  • the insulating composition is disclosed.
  • a method is used in which a natural cooling type or forced cooling type heat radiating component is installed in the vicinity of the integrated circuit element, and the heat generated by the element is transferred to the heat radiating component. If the element and the heat radiating component are brought into direct contact with each other by this method, heat transfer will be poor due to the unevenness of the surface, and even if the element is attached via the heat radiating insulation sheet, the flexibility of the heat radiating insulation sheet will be slightly inferior. Stress is applied between the substrate and the substrate, which may cause damage. In addition, if it is attempted to attach a heat radiating component to each circuit element, an extra space is required and it becomes difficult to miniaturize the device. Therefore, a method of cooling by combining several elements into one heat radiating component may be adopted. .. In particular, the BGA type CPU used in a notebook personal computer has a lower height than other elements and a large amount of heat generation, so it is necessary to fully consider the cooling method.
  • Patent Document 2 describes a sheet formed by mixing a heat conductive material such as a metal oxide with a silicone resin, and is soft and easily deformed on a silicone resin layer having strength necessary for handling. A sheet on which a silicone layer is laminated is disclosed.
  • Patent Document 3 describes the thermal conductivity of a combination of a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having holes having a diameter of 0.3 mm or more.
  • the composite sheet is disclosed.
  • Patent Document 4 discloses a sheet in which the skeletal lattice surface of a flexible three-dimensional network or foam is coated with a thermally conductive silicone rubber.
  • Patent Document 5 contains a reinforcing sheet or cloth, and has adhesiveness on at least one surface, and has an Asker C hardness of 5 to 50.
  • a heat conductive composite silicone having a thickness of 0.4 mm or less. The sheet is disclosed.
  • Patent Document 6 describes a heat dissipation spacer containing an addition reaction type liquid silicone rubber and a heat conductive insulating ceramic powder, and having an Asker C hardness of 25 or less and a thermal resistance of 3.0 ° C / W or less of the cured product. It is disclosed.
  • alumina aluminum oxide
  • amorphous alumina has a higher effect of improving thermal conductivity than spherical alumina, but has a drawback that the filling property with respect to silicone is poor, the material viscosity is increased by filling, and the processability is deteriorated. ..
  • alumina has a Mohs hardness of 9 which is very hard so that it can be used as an abrasive.
  • the thermally conductive silicone composition using amorphous alumina having a particle size of 10 ⁇ m or more has a problem that the inner wall of the reaction kettle and the stirring blade are scraped if a share is applied during production. Then, the components of the reaction kettle and the stirring blade are mixed in the heat conductive silicone composition, and the insulating property of the heat conductive silicone composition and the cured product using the same is lowered. In addition, the clearance between the reaction kettle and the stirring blade is widened, the stirring efficiency is lowered, and a certain quality cannot be obtained even if the product is manufactured under the same conditions. In addition, there is a problem that parts need to be replaced frequently in order to prevent it.
  • JP-A-47-32400 Japanese Unexamined Patent Publication No. 2-196453 Japanese Unexamined Patent Publication No. 7-266356 Japanese Unexamined Patent Publication No. 8-238707 Japanese Unexamined Patent Publication No. 9-1738 Japanese Unexamined Patent Publication No. 9-296114
  • the present invention has been made in view of the above circumstances, and is excellent in compressibility, insulation, thermal conductivity, and workability, and particularly has a thermal conductivity of 6.5 W / mK or more, for example, a heat-generating component in an electronic device. It is an object of the present invention to provide a thermally conductive silicone composition and a cured product thereof, which are installed between the heat-dissipating component and a thermally conductive resin molded body which is used for heat dissipation.
  • components (A) are organopolysiloxanes having at least two alkenyl groups in one molecule: 100 parts by mass, (B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to the silicon atom: The number of moles of the hydrogen atom directly bonded to the silicon atom is 0.1 of the number of moles of the alkenyl group derived from the component (A).
  • (C-4) 0 to 2,200 parts by mass of a spherical alumina filler having an average particle size of more than 5 ⁇ m and 30 ⁇ m or less.
  • (C-5) 1,000 to 4,500 parts by mass of amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less.
  • (C-6) 0 to 450 parts by mass of a spherical alumina filler having an average particle size of more than 0.2 ⁇ m and 0.85 ⁇ m or less.
  • (D) Platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group element mass with respect to the component (A). Provided is a thermally conductive silicone composition containing.
  • This thermally conductive silicone composition is excellent in compressibility, insulation, thermal conductivity, and processability, and gives a thermally conductive silicone cured product having a thermal conductivity of 6.5 W / mK or more.
  • This thermally conductive silicone composition further contains, as a component (F).
  • F-1) The following general formula (1) R 1 a R 2 b Si (OR 3 ) 4-ab (1) (In the formula, R 1 is an independently alkyl group having 6 to 15 carbon atoms, R 2 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independent.
  • the alkoxysilane compound represented by (F-2) and the following general formula (2) (In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.) At least one selected from the group consisting of dimethylpolysiloxane in which one end of the molecular chain represented by is sealed with a trialkoxysilyl group: 0.01 to 300 parts by mass with respect to 100 parts by mass of the component (A). It is preferable that it is one.
  • this thermally conductive silicone composition contains at least one selected from the group consisting of the alkoxysilane compound and the dimethylpolysiloxane
  • the (C) thermally conductive filler is added to the (A) organopolysiloxane. It can be uniformly dispersed.
  • This thermally conductive silicone composition further contains the following general formula (3) as the component (G).
  • R 5 is an independently monovalent hydrocarbon group having 1 to 12 carbon atoms and does not contain an aliphatic unsaturated bond, and d is an integer of 5 to 2,000.
  • the organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s is contained in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the component (A).
  • this thermally conductive silicone composition contains an organopolysiloxane represented by the above general formula (3), the flexibility of the cured product of the thermally conductive silicone, which is a cured product of this composition, is further improved.
  • the absolute viscosity of this thermally conductive silicone composition at 23 ° C. is preferably 800 Pa ⁇ s or less.
  • the absolute viscosity of this thermally conductive silicone composition is as described above, the moldability of this composition becomes higher.
  • the present invention provides a cured product of the heat conductive silicone composition, which is a cured product of the heat conductive silicone composition.
  • This thermally conductive silicone cured product is excellent in compressibility, insulation, thermal conductivity, and processability, and has a thermal conductivity of 6.5 W / mK or more.
  • the thermal conductivity of this thermally conductive silicone cured product is preferably 6.5 W / mK or more.
  • the thermal conductivity of this thermally conductive silicone cured product is as described above, the cured product has higher thermal conductivity.
  • the hardness of this thermally conductive silicone cured product is preferably 60 or less on an Asker C hardness tester.
  • the hardness of the heat conductive silicone cured product is as described above, the cured product is deformed to follow the shape of the heat radiated body and exhibits better heat radiating characteristics without applying stress to the heat radiated body. It becomes a thing.
  • the dielectric breakdown voltage of this thermally conductive silicone cured product is preferably 10 kV / mm or more.
  • the dielectric breakdown voltage of the heat conductive silicone cured product is as described above, the cured product can secure more stable insulation during use.
  • the present invention provides a method for producing the thermally conductive silicone composition, which comprises a step of stirring the components (A), (C) and (F) while heating them.
  • the thermally conductive silicone composition of the present invention comprises an amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less, and a spherical alumina filler having an average particle size of more than 0.2 ⁇ m and 100 ⁇ m or less, if necessary.
  • a spherical alumina filler having an average particle size of more than 100 ⁇ m and 150 ⁇ m or less in a specific blending amount, the large particle size spherical alumina filler compensates for the drawbacks of the amorphous alumina filler having a small particle size, and the large particles are used.
  • the radial spherical alumina filler By compensating for the drawbacks of the radial spherical alumina filler with the amorphous alumina filler with a small particle size, it is excellent in compressibility, insulation, thermal conductivity, and workability, and in particular, heat having a thermal conductivity of 6.5 W / mK or more. It is possible to provide a thermally conductive silicone composition that provides a cured conductive silicone product. Further, in the step of producing the above composition, the bubbles generated on the surface of the cured product after molding can be reduced by stirring while heating.
  • heat conduction which is excellent in compressibility, insulation, heat conductivity, and workability, and is preferably used for a heat conductive resin molded body which is installed between heat generating parts and heat radiating parts and used for heat radiating. Development of a sex silicone composition and a cured product thereof has been required.
  • the present inventor has made an amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less, and if necessary, an average particle size of more than 0.2 ⁇ m. It has been found that the above problem can be solved by using a spherical alumina filler of 100 ⁇ m or less and a spherical alumina filler having an average particle size of more than 100 ⁇ m and 150 ⁇ m or less in a specific blending amount.
  • a spherical alumina filler having a specific surface area of more than 100 ⁇ m and 150 ⁇ m or less it is possible to effectively improve the thermal conductivity, and the silicone composition having low viscosity and excellent workability and The cured product can be provided. Further, by using an amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less and, if necessary, a spherical alumina filler having an average particle size of more than 0.2 ⁇ m and 100 ⁇ m or less, the composition is formed. The fluidity is improved and the workability is improved.
  • spherical alumina filler is used as the particles having a particle size of 10 ⁇ m or more and amorphous alumina filler having a large polishing effect is not used, wear of the reaction kettle and the stirring blade is suppressed, and the insulating property is improved.
  • the defects of the amorphous alumina filler with a small particle size are compensated for by the large particle size spherical alumina filler, and the defects of the large particle size spherical alumina filler are compensated for by the amorphous alumina filler with a small particle size.
  • an organopolysiloxane having at least two alkenyl groups in one molecule of the following components (A) to (D) (A): 100 parts by mass, (B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to the silicon atom: The number of moles of the hydrogen atom directly bonded to the silicon atom is 0.1 of the number of moles of the alkenyl group derived from the component (A).
  • (C-4) 0 to 2,200 parts by mass of a spherical alumina filler having an average particle size of more than 5 ⁇ m and 30 ⁇ m or less.
  • (C-5) 1,000 to 4,500 parts by mass of amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less.
  • (C-6) 0 to 450 parts by mass of a spherical alumina filler having an average particle size of more than 0.2 ⁇ m and 0.85 ⁇ m or less.
  • (D) Platinum group metal-based curing catalyst: 0.1 to 2,000 ppm in terms of platinum group element mass with respect to the component (A). It is a heat conductive silicone composition containing.
  • the thermally conductive silicone composition of the present invention comprises (A) an alkenyl group-containing organopolysiloxane, (B) an organohydrogenpolysiloxane, (C) a thermally conductive filler, and (D) a platinum group metal-based curing catalyst. contains.
  • the alkenyl group-containing organopolysiloxane as the component (A) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is the main agent of the thermally conductive silicone cured product of the present invention.
  • the main chain portion basically consists of repeating diorganosiloxane units, but this may include a branched structure as part of the molecular structure, or it may be cyclic. Although it may be a body, a linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as the mechanical strength of the cured product.
  • the functional group other than the alkenyl group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl.
  • Alkyl group such as group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, trill group.
  • Aryl groups such as xylyl group, naphthyl group and biphenylyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group and methylbenzyl group, and some hydrogen atoms having carbon atoms bonded to these groups.
  • a group entirely substituted with a halogen atom such as fluorine, chlorine, bromine, a cyano group, etc., for example, a chloromethyl group, a 2-bromoethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, Examples thereof include a chlorophenyl group, a fluorophenyl group, a cyanoethyl group, a 3,3,4,4,5,5,6,6,6-nonafluorohexyl group.
  • a halogen atom such as fluorine, chlorine, bromine, a cyano group, etc.
  • Typical ones have 1 to 10 carbon atoms, and particularly typical ones have 1 to 6 carbon atoms, preferably methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3 , 3,3-Trifluoropropyl group, cyanoethyl group and other unsubstituted or substituted alkyl groups having 1 to 3 carbon atoms, and phenyl group, chlorophenyl group, fluorophenyl group and other unsubstituted or substituted phenyl groups. ..
  • the functional groups other than the alkenyl group bonded to the silicon atom are not limited to being all the same.
  • alkenyl group examples include those having a normal carbon atom number of about 2 to 8, such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, and a cyclohexenyl group, and among them, vinyl.
  • a lower alkenyl group such as a group or an allyl group is preferable, and a vinyl group is more preferable. It is preferable that two or more alkenyl groups are present in the molecule, but it is preferable that the alkenyl group is present only at the silicon atom at the end of the molecular chain in order to improve the flexibility of the obtained cured product.
  • the kinematic viscosity of this organopolysiloxane at 23 ° C. is usually preferably in the range of 10 to 100,000 mm 2 / s, more preferably 500 to 50,000 mm 2 / s.
  • the viscosity is 10 mm 2 / s or more, the storage stability of the obtained composition is improved, and when the viscosity is 100,000 mm 2 / s or less, the extensibility of the obtained composition is high.
  • the kinematic viscosity is a value when an Ostwald viscometer is used (hereinafter, the same applies).
  • the organopolysiloxane of the component (A) may be used alone or in combination of two or more having different viscosities.
  • the organohydrogenpolysiloxane of the component (B) is an organohydrogenpolysiloxane having an average of 2 or more hydrogen atoms (Si—H groups) directly bonded to 2 to 100 silicon atoms in one molecule. It is a component that acts as a cross-linking agent for the component (A). That is, the Si—H group in the component (B) and the alkenyl group in the component (A) are added and crosslinked by a hydrosilylation reaction promoted by a platinum group metal-based curing catalyst of the component (D) described later. A three-dimensional network structure having a structure is given. If the number of Si—H groups is less than 2, it will not be cured.
  • organohydrogenpolysiloxane those represented by the following average structural formula (4) are used, but the organohydrogenpolysiloxane is not limited thereto.
  • R 6 is an unsubstituted or substituted monovalent hydrocarbon group independently containing no hydrogen atom or an aliphatic unsaturated bond, but at least two, preferably 2 to 10 hydrogen atoms.
  • e is an integer of 1 or more, preferably an integer of 10 to 200.
  • Aryl groups such as groups, phenyl groups, trill groups, xsilyl groups, naphthyl groups and biphenylyl groups, aralkyl groups such as benzyl groups, phenylethyl groups, phenylpropyl groups and methylbenzyl groups, and carbon atoms of these groups are bonded.
  • a group in which a part or all of the hydrogen atoms are substituted with a halogen atom such as fluorine, chlorine or bromine or a cyano group for example, a chloromethyl group, a 2-bromoethyl group, a 3-chloropropyl group, 3,3 Examples thereof include 3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group.
  • Typical ones have 1 to 10 carbon atoms, and particularly typical ones have 1 to 6 carbon atoms, preferably methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3 , 3,3-Trifluoropropyl group, cyanoethyl group and other unsubstituted or substituted alkyl groups having 1 to 3 carbon atoms, and phenyl group, chlorophenyl group, fluorophenyl group and other unsubstituted or substituted phenyl groups. .. Further, R 6 does not limit that all are the same.
  • the amount of the component (B) added is such that the Si—H group derived from the component (B) is 0.1 to 5.0 mol with respect to 1 mol of the alkenyl group derived from the component (A), preferably 0.3.
  • the amount is up to 2.0 mol, more preferably 0.5 to 1.0 mol. If the amount of Si—H groups derived from the component (B) is less than 0.1 mol with respect to 1 mol of the alkenyl group derived from the component (A), the thermally conductive silicone composition does not cure, or the strength of the cured product is high. Insufficient, it may not be possible to maintain the shape of the molded product and handle it. If it exceeds 5.0 mol, the cured product loses its flexibility and the cured product becomes brittle.
  • the thermally conductive filler which is the component (C) is composed of the following components (C-1) to (C-6).
  • C-1) A spherical alumina filler having an average particle size of more than 100 ⁇ m and 150 ⁇ m or less.
  • C-2) Spherical alumina filler having an average particle size of more than 65 ⁇ m and 100 ⁇ m or less.
  • C-3) Spherical alumina filler having an average particle size of more than 35 ⁇ m and 65 ⁇ m or less
  • (C-5) Amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less.
  • (C-6) Spherical alumina filler having an average particle size of more than 0.2 ⁇ m and 0.85 ⁇ m or less
  • the average particle size is, for example, Microtrac, which is a particle size analyzer manufactured by Nikkiso Co., Ltd. It is a value of the cumulative average particle size (median diameter) based on the volume measured by MT3300EX.
  • the spherical alumina filler of the component (C-1) can significantly improve the thermal conductivity.
  • the average particle size of the spherical alumina filler of the component (C-1) is more than 100 ⁇ m and 150 ⁇ m or less, preferably 105 to 140 ⁇ m.
  • the average particle size of the spherical alumina filler of the component (C-1) is larger than 150 ⁇ m, the reaction kettle and the stirring blade are significantly worn, and the insulating property of the composition is lowered.
  • the spherical alumina filler of the component (C-1) one kind or two or more kinds may be used in combination.
  • the spherical alumina fillers of the components (C-2) to (C-4) improve the thermal conductivity of the composition and suppress the contact between the amorphous alumina filler of the component (C-5) and the reaction kettle or the stirring blade. It provides a barrier effect that suppresses wear.
  • the component (C-2) is more than 65 ⁇ m and 100 ⁇ m or less, preferably 70 to 95 ⁇ m
  • the component (C-3) is more than 35 ⁇ m and 65 ⁇ m or less, 40 to 60 ⁇ m.
  • the component (C-4) is preferably more than 5 ⁇ m and 30 ⁇ m or less, and preferably 7 to 25 ⁇ m.
  • the spherical alumina filler of the components (C-2) to (C-4) one kind or two or more kinds may be used in combination.
  • the amorphous alumina filler of the component (C-5) also plays a role of improving the thermal conductivity of the composition, but its main role is to adjust the viscosity of the composition, improve the smoothness, and improve the filling property.
  • the average particle size of the component (C-5) is more than 0.85 ⁇ m and 5 ⁇ m or less, preferably 0.9 to 4 ⁇ m for the above-mentioned characteristic expression.
  • the main role of the spherical alumina filler of the component (C-6) is to adjust the viscosity of the composition, improve the smoothness, and improve the filling property.
  • the average particle size of the component (C-6) is more than 0.2 ⁇ m and 0.85 ⁇ m or less. When the average particle size is less than 0.2 ⁇ m, the viscosity of the composition becomes remarkably large, and the moldability is greatly impaired.
  • the blending amount of the component (C-1) is 1,400 to 5,500 parts by mass, preferably 1,800 to 4,000 parts by mass with respect to 100 parts by mass of the component (A). If the amount of the component (C-1) is too small, it is difficult to improve the thermal conductivity, and if it is too large, the reaction kettle and the stirring blade are significantly worn, and the insulating property of the composition is lowered.
  • the blending amount of the components (C-2) to (C-4) is 0 to 2,200 parts by mass, preferably 900 to 1,600 parts by mass, respectively, with respect to 100 parts by mass of the component (A). ..
  • the thermal conductivity of the cured product is improved, and when the amount is too large, the fluidity of the composition is lost and the moldability is impaired.
  • the blending amount of the component (C-5) is 1,000 to 4,000 parts by mass, preferably 2,000 to 2,800 parts by mass with respect to 100 parts by mass of the component (A). If the amount of the component (C-5) is too small, the fluidity of the composition is lost and the moldability is impaired. It is difficult to improve the thermal conductivity of the cured product even if the component (C-5) is blended in an amount of more than 4,000 parts by mass.
  • the blending amount of the component (C-6) is 0 to 450 parts by mass, preferably 250 to 400 parts by mass with respect to 100 parts by mass of the component (A).
  • the component (C-6) is blended, the effect of improving the fluidity of the composition is exhibited.
  • the blending amount of the component (C) (that is, the total blending amount of the components (C-1) to (C-6) above) is 7,500 to 11,500 mass with respect to 100 parts by mass of the component (A). It is a part, preferably 7,600 to 9,000 parts by mass. If the blending amount is less than 7,500 parts by mass, the thermal conductivity of the obtained cured product deteriorates, and if it exceeds 11,500 parts by mass, the fluidity of the composition is lost and the moldability becomes poor. It is impaired.
  • the above-mentioned effect of the present invention can be achieved more advantageously and surely.
  • the platinum group metal-based curing catalyst of the component (D) is a catalyst for promoting the addition reaction of the alkenyl group derived from the component (A) and the Si—H group derived from the component (B), and is used in the hydrosilylation reaction.
  • the catalyst to be used include well-known catalysts. Specific examples thereof include platinum (including platinum black), rhodium, palladium and other platinum group metals alone, H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaH PtCl 6 ⁇ nH 2 O.
  • n is an integer of 0 to 6, preferably 0 or 6) and the like platinum chloride, platinum chloride and platinum chloride, alcohol-modified platinum chloride (US Pat. No. 3,220,972). (See), Platinum Chloropate and Olefin Complex (see US Pat. Nos.
  • Platinum Black Platinum group metal such as palladium supported on a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, platinum chloride acid or platinum chloride acid.
  • a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, platinum chloride acid or platinum chloride acid.
  • Examples thereof include a complex of a salt and a vinyl group-containing siloxane, particularly a vinyl group-containing cyclic siloxane.
  • the amount of the component (D) used is 0.1 to 2,000 ppm, preferably 50 to 1000 ppm, in terms of mass of the platinum group metal element with respect to the component (A).
  • an addition reaction control agent in the heat conductive silicone composition of the present invention, an addition reaction control agent can be further used as the component (E).
  • the addition reaction control agent all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butin-1-ol, and ethynylmethyldencarbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.
  • the amount used when the component (E) is blended is preferably 0.01 to 1 part by mass, more preferably about 0.1 to 0.8 parts by mass with respect to 100 parts by mass of the component (A).
  • the blending amount of the component (E) is not more than the upper limit, the curing reaction proceeds and the molding efficiency is not impaired.
  • the heat conductive filler which is the component (C) is hydrophobized at the time of preparing the composition to improve the wettability with the organopolysiloxane which is the component (A).
  • the surface treatment agent of the component (F) can be blended for the purpose of uniformly dispersing the thermally conductive filler as the component (C) in the matrix composed of the component (A).
  • the components (F-1) and (F-2) shown below are particularly preferable.
  • the component (F-1) is an alkoxysilane compound represented by the following general formula (1).
  • R 1 is an independently alkyl group having 6 to 15 carbon atoms
  • R 2 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 3 is independent. It is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3.
  • examples of the alkyl group represented by R 1 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group and the like.
  • the number of carbon atoms of the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low temperature characteristics of the composition are good. Become.
  • the unsubstituted or substituted monovalent hydrocarbon group represented by R 2 for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert- butyl group, a pentyl group, a neopentyl group, Alkyl group such as hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, trill group, xsilyl group, naphthyl group, biphenylyl Aluryl groups such as groups, benzyl groups, phenylethyl groups, phenylpropyl groups, aralkyl groups such as methylbenzyl groups, and some or all of the
  • halogen atom such as chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl Groups, 3,3,4,4,5,5,6,6,6-nonafluorohexyl groups and the like are mentioned, and typical ones have 1 to 10 carbon atoms, and particularly typical ones have carbon atoms.
  • the number is 1 to 6, preferably 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group and cyanoethyl group.
  • Examples thereof include an unsubstituted or substituted alkyl group and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group and a fluorophenyl group.
  • R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and the like.
  • the component (F-2) is a dimethylpolysiloxane in which one end of the molecular chain represented by the following general formula (2) is sealed with a trialkoxysilyl group.
  • R 4 is an independently alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably 5 to 70, and more preferably 10 to 50.
  • either one of the component (F-1) and the component (F-2) may be blended in combination.
  • the blending amount is preferably 0.01 to 300 parts by mass, more preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the component (A). .. If the blending amount of the component (F) is not more than the above upper limit, oil separation is not induced.
  • the heat conductive silicone composition of the present invention contains the following general formula (3) as a component (G) for the purpose of imparting characteristics such as a viscosity modifier of the heat conductive silicone composition.
  • R 5 is an independently monovalent hydrocarbon group having 1 to 12 carbon atoms and does not contain an aliphatic unsaturated bond, and d is an integer of 5 to 2,000.
  • Organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 / s at 23 ° C. represented by 2 can be added.
  • the component (G) may be used alone or in combination of two or more.
  • R 5 is a monovalent hydrocarbon group containing no aliphatic unsaturated bonds unsubstituted or substituted having 1 to 12 carbon atoms independently.
  • the R 5, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert- butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group , Alkyl group such as dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, aryl group such as phenyl group, trill group, xsilyl group, naphthyl group, biphenylyl group, benzyl group,
  • Examples thereof include 6,6,6-nonafluorohexyl groups, and typical ones have 1 to 10 carbon atoms, and particularly typical ones have 1 to 6 carbon atoms, preferably methyl groups.
  • d is preferably an integer of 5 to 2,000, and more preferably an integer of 10 to 1,000.
  • kinematic viscosity at 23 ° C. of component (G) is preferably 10 ⁇ 100,000mm 2 / s, more preferably 100 ⁇ 10,000mm 2 / s.
  • the kinematic viscosity is 10 mm 2 / s or more, the obtained thermally conductive silicone cured product does not generate oil bleed.
  • the kinematic viscosity is 100,000 mm 2 / s or less, the flexibility of the obtained thermally conductive silicone cured product is sufficient.
  • the blending amount is not particularly limited as long as the desired effect can be obtained, but with respect to 100 parts by mass of the component (A). It is preferably 0.1 to 100 parts by mass, and more preferably 1 to 50 parts by mass. When the blending amount is in this range, it is easy to maintain good fluidity and workability in the heat conductive silicone composition before curing, and the heat conductive filler of the component (C) is filled in the composition. Is easy.
  • thermally conductive silicone composition of the present invention may be further added to the thermally conductive silicone composition of the present invention.
  • a heat resistance improver such as iron oxide and cerium oxide
  • a viscosity modifier such as silica
  • a colorant such as a colorant
  • a mold release agent can be blended.
  • the absolute viscosity of the thermally conductive silicone composition of the present invention is preferably 800 Pa ⁇ s or less, more preferably 700 Pa ⁇ s or less at 23 ° C. When the viscosity is 800 Pa ⁇ s or less, the moldability of the composition is not impaired.
  • the lower limit is not particularly limited, but the absolute viscosity can be, for example, 100 Pa ⁇ s or more. In the present invention, this viscosity is based on the measurement by a B-type viscometer.
  • thermally conductive silicone composition of the present invention can be prepared by uniformly mixing each of the above-mentioned components according to a conventional method.
  • the component (F) it is preferable to stir the components (A), (C) and (F) while heating.
  • the heating temperature is preferably 50 to 200 ° C, more preferably 80 to 170 ° C.
  • the curing conditions for molding the thermally conductive silicone composition may be the same as those of the known addition reaction-curable silicone rubber composition. For example, it is sufficiently cured at room temperature, but may be heated if necessary. It is preferable to carry out additional curing at 100 to 120 ° C. for 8 to 12 minutes. Such a cured silicone product of the present invention has excellent thermal conductivity.
  • the thermal conductivity of the heat conductive silicone cured product of the present invention is preferably 6.5 W / mK or more, and more preferably 7.0 W / mK or more, as measured by the hot disk method at 23 ° C. preferable.
  • the upper limit is not particularly limited, but the thermal conductivity can be, for example, 8.0 W / mK or less.
  • the hardness of the heat conductive silicone cured product in the present invention is preferably 60 or less, more preferably 40 or less, still more preferably 30 or less, and 5 or more, as measured by an Asker C hardness tester at 23 ° C. Is preferable.
  • the hardness is 60 or less, it is deformed to follow the shape of the heat-dissipated body, and good heat-dissipating characteristics can be exhibited without applying stress to the heat-dissipated body.
  • such hardness can be adjusted by changing the ratio of the component (A) and the component (B) and adjusting the cross-linking density.
  • the breakdown voltage of the heat conductive silicone cured product of the present invention is preferably 10 kV or more, more preferably 13 kV or more, as a measured value when the breakdown voltage of a 1 mm thick molded product is measured in accordance with JIS K 6249. is there. In the case of a sheet having a breakdown voltage of 10 kV / mm or more, stable insulation can be ensured during use.
  • the upper limit is not particularly limited, but the dielectric breakdown voltage can be, for example, 25 kV / mm or less. The dielectric breakdown voltage can be adjusted by adjusting the type and purity of the filler.
  • the kinematic viscosity was measured at 23 ° C. with an Ostwald viscometer.
  • the average particle size is a volume-based cumulative average particle size (median diameter) measured by a microtrack MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • Component (A) component The following two types of organopolysiloxane (A-1) component: Organopolysiloxane (A-2) component having a kinematic viscosity of 400 mm 2 / s represented by the following formula (5): the following formula (5) Organopolysiloxane with kinematic viscosity of 30,000 mm 2 / s (In the formula, X is a vinyl group and f is a number that gives the above viscosity.)
  • Examples 1 to 4 Comparative Examples 1 to 2>
  • a composition was prepared as follows using the predetermined amounts of the above components (A) to (G) shown in Table 1 below, and the composition was prepared according to the following method. The viscosity was measured. The composition was molded and cured, and the thermal conductivity, hardness, breakdown voltage, specific gravity and bubbles on the surface of the cured product of the obtained cured product were measured or observed according to the following methods. The results are shown in Table 1.
  • thermo conductivity The compositions obtained in Examples 1 to 4 were poured into a mold of 60 mm ⁇ 60 mm ⁇ 6 mm and cured into a 6 mm thick sheet at 120 ° C. for 10 minutes using a press molding machine, and the sheet was cured into a sheet of 6 mm thickness. Using the sheet, the thermal conductivity of the sheet was measured with a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Denshi Kogyo Co., Ltd.).
  • compositions obtained in Examples 1 to 4 were cured into a sheet having a thickness of 6 mm in the same manner as described above, and two sheets thereof were stacked and the hardness of the sheet was measured with an Asker C hardness tester.
  • H / Vi is the number of moles of hydrogen atom bonded to the silicon atom of component (B) / the number of moles of alkenyl group derived from component (A).
  • the blending amount of the component (C) is in the range of 7,500 to 11,500 parts by mass with respect to 100 parts by mass of the component (A), and the component (C) is.
  • C-1 1,400 to 5,500 parts by mass of a spherical alumina filler having an average particle size of more than 100 ⁇ m and 150 ⁇ m or less.
  • C-2) 0 to 2,200 parts by mass of a spherical alumina filler having an average particle size of more than 65 ⁇ m and 100 ⁇ m or less.
  • C-3) 0 to 2,200 parts by mass of a spherical alumina filler having an average particle size of more than 35 ⁇ m and 65 ⁇ m or less.
  • (C-4) 0 to 2,200 parts by mass of a spherical alumina filler having an average particle size of more than 5 ⁇ m and 30 ⁇ m or less.
  • (C-5) 1,000 to 4,000 parts by mass of an amorphous alumina filler having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less.
  • (C-6) A spherical alumina filler having an average particle size of more than 0.2 ⁇ m and 0.85 ⁇ m or less is composed of 0 to 450 parts by mass, and the components (A), (C) and (F) are heated during stirring. By the treatment, the viscosity of the composition, the thermal conductivity of the cured product, the hardness, the breakdown voltage and the specific gravity were all good, and no bubbles were observed on the surface of the cured product after molding.
  • Example 4 is the same as in Example 1 except that the components (A), (C) and (F) are not heated during stirring, and the viscosity of the composition, the thermal conductivity of the cured product, the hardness, the breakdown voltage and the insulation breakdown voltage.
  • the specific gravity was also the same as that of Examples 1 to 3. However, bubbles were observed on the surface of the cured product of Example 4.
  • the blending amount of the component (C) exceeds 11,500 parts by mass with respect to 100 parts by mass of the component (A) as in Comparative Example 1, the wettability of the composition is insufficient, and a paste-like uniform composition is obtained. I can't get it.
  • the blending amount of amorphous alumina having an average particle size of more than 0.85 ⁇ m and 5 ⁇ m or less, which is the component (C-5) is less than 1,000 parts by mass with respect to 100 parts by mass of the component (A). If there is, the filling property of the composition is remarkably deteriorated, and a paste-like uniform composition cannot be obtained.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、(C-1)平均粒径が100μmを超えて150μm以下である球状アルミナフィラー、(C-5)平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラー、及び(D)白金族金属系硬化触媒を特定の配合量で含むことを特徴とする熱伝導性シリコーン組成物である。本発明により、圧縮性、絶縁性、熱伝導性、加工性に優れた、発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体用として好適に用いられる熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物が提供される。

Description

熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物
 本発明は、特に熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料として有用な熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物に関する。
 パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。
 従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。
 チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。
 シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。
 特許文献1には、シリコーンゴム等の合成ゴム100質量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を100~800質量部配合した絶縁性組成物が開示されている。
 一方、パーソナルコンピューター、ワードプロセッサ、CD-ROMドライブ等の電子機器の高集積化が進み、装置内のLSI、CPU等の集積回路素子の発熱量が増加したため、従来の冷却方法では不十分な場合がある。特に、携帯用ノート型パーソナルコンピューターの場合、機器内部の空間が狭いため大きなヒートシンクや冷却ファンを取り付けることができない。更に、これらの機器では、プリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられるので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。
 そこで、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で素子と放熱部品を直接接触させると、表面の凹凸のため熱の伝わりが悪くなり、更に放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり、破損するおそれがある。
 また、各回路素子に放熱部品を取り付けようとすると余分なスペースが必要となり、機器の小型化が難しくなるので、いくつかの素子をひとつの放熱部品に組み合わせて冷却する方式が採られることもある。
 特にノート型パーソナルコンピューターで用いられているBGAタイプのCPUは、高さが他の素子に比べて低く発熱量が大きいため、冷却方式を十分考慮する必要がある。
 そこで、素子ごとに高さが異なることにより生じる種々の隙間を埋めることができる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが要望される。
 この場合、特許文献2には、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、取り扱いに必要な強度を持たせたシリコーン樹脂層の上に柔らかく変形し易いシリコーン層が積層されたシートが開示されている。また、特許文献3には、熱伝導性充填材を含有し、アスカーC硬度が5~50であるシリコーンゴム層と直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている。特許文献4には、可とう性の三次元網状体又はフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートが開示されている。特許文献5には、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有してアスカーC硬度が5~50である厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている。特許文献6には、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーが開示されている。
 これら熱伝導性シリコーン硬化物は、絶縁性も要求されることが多いため、熱伝導率が0.5~6W/mKの範囲では、熱伝導性充填材として酸化アルミニウム(アルミナ)が主に用いられることが多い。一般的に、不定形のアルミナは球状のアルミナに比べ、熱伝導率を向上させる効果が高いが、シリコーンに対する充填性が悪く、充填により材料粘度が上昇し、加工性が悪くなるという欠点がある。また、アルミナは研磨剤に用いられるようにモース硬度が9と非常に硬い。そのために、特に粒子径が10μm以上である不定形アルミナを用いた熱伝導性シリコーン組成物は、製造時にシェアがかかると、反応釜の内壁や撹拌羽を削ってしまうという問題があった。すると、熱伝導性シリコーン組成物に反応釜や撹拌羽の成分が混入し、熱伝導性シリコーン組成物、及びこれを用いた硬化物の絶縁性が低下する。また、反応釜と撹拌羽のクリアランスが広がり、撹拌効率が落ちてしまい、同条件で製造しても一定の品質が得られなくなる。また、それを防ぐためには部品を頻繁に交換する必要がある、というような問題があった。
 この問題を解決するために、球状アルミナ粉のみを使用する方法もあるが、高熱伝導化のためには、不定形アルミナに比べ、大量に充填する必要があり、組成物の粘度が上昇し、加工性が悪化する。また、相対的に組成物及びその硬化物におけるシリコーンの存在量が減少するため、硬度が上昇してしまい、圧縮性に劣るものになる。
 また、熱伝導率を上げるためには、一般的に熱伝導率の高い熱伝導性充填材、例えば窒化アルミニウムや窒化ホウ素等の熱伝導性充填材を使用する方法があるが、コストが高く、加工も難しい、というような問題があった。
特開昭47-32400号公報 特開平2-196453号公報 特開平7-266356号公報 特開平8-238707号公報 特開平9-1738号公報 特開平9-296114号公報
 本発明は、上記事情に鑑みなされたもので、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に6.5W/mK以上の熱伝導率を有する、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体用として好適に用いられる熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。
 上記課題を達成するために、本発明では、下記(A)~(D)成分
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-6)からなる熱伝導性充填材:7,500~11,500質量部、
 (C-1)平均粒径が100μmを超えて150μm以下である球状アルミナフィラーを1,400~5,500質量部、
 (C-2)平均粒径が65μmを超えて100μm以下である球状アルミナフィラーを0~2,200質量部、
 (C-3)平均粒径が35μmを超えて65μm以下である球状アルミナフィラーを0~2,200質量部、
 (C-4)平均粒径が5μmを超えて30μm以下である球状アルミナフィラーを0~2,200質量部、
 (C-5)平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラーを1,000~4,500質量部、
 (C-6)平均粒径が0.2μmを超えて0.85μm以下である球状アルミナフィラーを0~450質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族元素質量換算で0.1~2,000ppm、
を含む熱伝導性シリコーン組成物を提供する。
 この熱伝導性シリコーン組成物は、圧縮性、絶縁性、熱伝導性、加工性に優れ、6.5W/mK以上の熱伝導率を有する熱伝導性シリコーン硬化物を与えるものである。
 この熱伝導性シリコーン組成物は、更に、(F)成分として、
(F-1)下記一般式(1)
  R Si(OR4-a-b     (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
で表されるアルコキシシラン化合物、及び
(F-2)下記一般式(2)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンからなる群から選ばれる少なくとも1種:前記(A)成分100質量部に対し0.01~300質量部を含有するものであることが好ましい。
 この熱伝導性シリコーン組成物が、前記アルコキシシラン化合物及び前記ジメチルポリシロキサンからなる群から選ばれる少なくとも1種を含有すると、前記(C)熱伝導性充填材を前記(A)オルガノポリシロキサン中により均一に分散させることができる。
 この熱伝導性シリコーン組成物は、更に、(G)成分として、下記一般式(3)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは独立に炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。)
で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを前記(A)成分100質量部に対し0.1~100質量部含有するものであることが好ましい。
 この熱伝導性シリコーン組成物が上記一般式(3)で表されるオルガノポリシロキサンを含有すると、この組成物の硬化物である熱伝導性シリコーン硬化物の柔軟性がより向上する。
 この熱伝導性シリコーン組成物の23℃における絶対粘度は800Pa・s以下であることが好ましい。
 この熱伝導性シリコーン組成物の絶対粘度が上記されるとおりであると、この組成物の成形性がより高くなる。
 また、本発明では、上記熱伝導性シリコーン組成物の硬化物である熱伝導性シリコーン硬化物を提供する。
 この熱伝導性シリコーン硬化物は、圧縮性、絶縁性、熱伝導性、加工性に優れ、6.5W/mK以上の熱伝導率を有するものである。
 この熱伝導性シリコーン硬化物の熱伝導率は6.5W/mK以上であることが好ましい。
 この熱伝導性シリコーン硬化物の熱伝導率が上記されるとおりであると、この硬化物はより高い熱伝導性を有するものとなる。
 この熱伝導性シリコーン硬化物の硬度はアスカーC硬度計で60以下であることが好ましい。
 この熱伝導性シリコーン硬化物の硬度が上記されるとおりであると、この硬化物は被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなくより良好な放熱特性を示すものとなる。
 この熱伝導性シリコーン硬化物の絶縁破壊電圧は10kV/mm以上であることが好ましい。
 この熱伝導性シリコーン硬化物の絶縁破壊電圧が上記されるとおりであると、この硬化物は使用時により安定的に絶縁を確保できるものとなる。
 さらに、本発明では、前記(A)、(C)及び(F)成分を加熱しながら攪拌する工程を有する前記熱伝導性シリコーン組成物の製造方法が提供される。
 この熱伝導性シリコーン組成物の製造方法により、表面での気泡の発生が低減された硬化物を与える熱伝導性シリコーン組成物を製造できる。
 本発明の熱伝導性シリコーン組成物は、平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラー、必要に応じて平均粒径が0.2μmを超えて100μm以下の球状アルミナフィラーと、平均粒径が100μmを超えて150μm以下の球状アルミナフィラーとを特定の配合量で併用することで、粒径が小さい不定形アルミナフィラーの欠点を大粒径球状アルミナフィラーが補い、大粒径球状アルミナフィラーの欠点を粒径が小さい不定形アルミナフィラーが補うことで、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に6.5W/mK以上の熱伝導率を有する熱伝導性シリコーン硬化物を与える熱伝導性シリコーン組成物を提供することができる。
 また、上記組成物を製造する工程において、加熱しながら撹拌することにより、成型後の硬化物表面に発生する気泡を低減することができる。
 上述のように、圧縮性、絶縁性、熱伝導性、加工性に優れた、発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体用として好適に用いられる熱伝導性シリコーン組成物及びその硬化物の開発が求められていた。
 本発明者は、上記目的を達成するため鋭意検討を行った結果、平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラー、必要に応じて平均粒径が0.2μmを超えて100μm以下の球状アルミナフィラーと、平均粒径が100μmを超えて150μm以下の球状アルミナフィラーとを特定の配合量で併用することで上記問題を解決することができることを見出した。即ち、比表面積が小さい100μmを超えて150μm以下の球状アルミナフィラーを配合することで、効果的に熱伝導性を向上させることが可能であり、かつ粘度が低く加工性に優れたシリコーン組成物及びその硬化物を提供できる。
 また、平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラー、必要に応じて平均粒径が0.2μmを超えて100μm以下の球状アルミナフィラーを併用することにより、組成物の流動性が向上し、加工性が改善する。更に、粒径10μm以上の粒子としては球状アルミナフィラーを使用し、研磨効果大きい不定形アルミナフィラーを使用しないため、反応釜や撹拌羽の磨耗が抑えられ、絶縁性が向上する。
 つまり、粒径が小さい不定形アルミナフィラーの欠点を大粒径球状アルミナフィラーが補い、大粒径球状アルミナフィラーの欠点を粒径が小さい不定形アルミナフィラーが補うことで、圧縮性、絶縁性、熱伝導性、加工性に優れた、特に6.5W/mK以上の熱伝導率を有するコストの低い熱伝導性シリコーン組成物及びその硬化物を与えることができることを見出し、本発明をなすに至った。
 即ち、本発明は、下記(A)~(D)成分
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
(C)下記(C-1)~(C-6)からなる熱伝導性充填材:7,500~11,500質量部、
 (C-1)平均粒径が100μmを超えて150μm以下である球状アルミナフィラーを1,400~5,500質量部、
 (C-2)平均粒径が65μmを超えて100μm以下である球状アルミナフィラーを0~2,200質量部、
 (C-3)平均粒径が35μmを超えて65μm以下である球状アルミナフィラーを0~2,200質量部、
 (C-4)平均粒径が5μmを超えて30μm以下である球状アルミナフィラーを0~2,200質量部、
 (C-5)平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラーを1,000~4,500質量部、
 (C-6)平均粒径が0.2μmを超えて0.85μm以下である球状アルミナフィラーを0~450質量部、
(D)白金族金属系硬化触媒:前記(A)成分に対して白金族元素質量換算で0.1~2,000ppm、
を含む熱伝導性シリコーン組成物である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の熱伝導性シリコーン組成物は、(A)アルケニル基含有オルガノポリシロキサン、(B)オルガノハイドロジェンポリシロキサン、(C)熱伝導性充填材、及び(D)白金族金属系硬化触媒を含有する。
[アルケニル基含有オルガノポリシロキサン]
 (A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の熱伝導性シリコーン硬化物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
 ケイ素原子に結合するアルケニル基以外の官能基としては、非置換又は置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部がフッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることに限定するものではない。
 また、アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数が2~8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、より好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在することが好ましいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。
 このオルガノポリシロキサンの23℃における動粘度は、通常、好ましくは10~100,000mm/s、より好ましくは500~50,000mm/sの範囲である。前記粘度が10mm/s以上であると、得られる組成物の保存安定性が良くなり、また前記粘度が100,000mm/s以下であると得られる組成物の伸展性が高くなる。なお、動粘度はオストワルド粘度計を用いた場合の値である(以下、同じ)。
 この(A)成分のオルガノポリシロキサンは、1種単独でも、粘度が異なる2種以上を組み合わせて用いてもよい。
[オルガノハイドロジェンポリシロキサン]
 (B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に平均で2個以上、好ましくは2~100個のケイ素原子に直接結合する水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のSi-H基と(A)成分中のアルケニル基とが、後述する(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、Si-H基の数が2個未満の場合、硬化しない。
 オルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは独立に水素原子又は脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であるが、少なくとも2個、好ましくは2~10個は水素原子であり、eは1以上の整数、好ましくは10~200の整数である。)
 式(4)中、Rの水素原子以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部がフッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、Rは全てが同一であることを限定するものではない。
 (B)成分の添加量は、(B)成分由来のSi-H基が(A)成分由来のアルケニル基1モルに対して0.1~5.0モルとなる量、好ましくは0.3~2.0モルとなる量、更に好ましくは0.5~1.0モルとなる量である。(B)成分由来のSi-H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると熱伝導性シリコーン組成物が硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5.0モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなる。
[熱伝導性充填材]
 (C)成分である熱伝導性充填材は、下記(C-1)~(C-6)成分からなるものである。
(C-1)平均粒径が100μmを超えて150μm以下である球状アルミナフィラー、
(C-2)平均粒径が65μmを超えて100μm以下である球状アルミナフィラー、
(C-3)平均粒径が35μmを超えて65μm以下である球状アルミナフィラー、
(C-4)平均粒径が5μmを超えて30μm以下である球状アルミナフィラー、
(C-5)平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラー、
(C-6)平均粒径が0.2μmを超えて0.85μm以下である球状アルミナフィラー
 なお、本発明において、上記平均粒径は、例えば日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
 (C-1)成分の球状アルミナフィラーは、熱伝導率を優位に向上させることができる。(C-1)成分の球状アルミナフィラーの平均粒径は100μmを超えて150μm以下であり、105~140μmであることが好ましい。(C-1)成分の球状アルミナフィラーの平均粒径が150μmより大きいと、反応釜や撹拌羽の磨耗が顕著となり、組成物の絶縁性が低下する。(C-1)成分の球状アルミナフィラーとしては1種又は2種以上を複合して用いてもよい。
 (C-2)~(C-4)成分の球状アルミナフィラーは、組成物の熱伝導率を向上させるとともに、(C-5)成分の不定形アルミナフィラーと反応釜や攪拌羽の接触を抑制し、磨耗を抑えるバリア効果を提供する。平均粒径については、(C-2)成分は65μmを超えて100μm以下であり、70~95μmであることが好ましく、(C-3)成分は35μmを超えて65μm以下であり、40~60μmであることが好ましく、(C-4)成分は5μmを超えて30μm以下であり、7~25μmであることが好ましい。(C-2)~(C-4)成分の球状アルミナフィラーとしては1種又は2種以上を複合して用いてもよい。
 (C-5)成分の不定形アルミナフィラーは、組成物の熱伝導率を向上させる役割も担うが、その主な役割は組成物の粘度調整、滑らかさ向上、充填性向上である。(C-5)成分の平均粒径は0.85μmを超えて5μm以下であり、0.9~4μmであることが、上記した特性発現のために好ましい。
(C-6)成分の球状アルミナフィラーの主な役割は組成物の粘度調整、滑らかさ向上、充填性向上である。(C-6)成分の平均粒径は0.2μmを超えて0.85μm以下である。平均粒径が0.2μm未満であると、組成物の粘度が顕著に大きくなり、成形性が大きく損なわれる。
 (C-1)成分の配合量は、(A)成分100質量部に対して1,400~5,500質量部であり、好ましくは1,800~4,000質量部である。(C-1)成分の配合量が少なすぎると熱伝導率の向上が困難であり、多すぎると反応釜や撹拌羽の磨耗が顕著となり、組成物の絶縁性が低下する。
 (C-2)~(C-4)成分の配合量は、(A)成分100質量部に対して、それぞれ0~2,200質量部であり、好ましくは900~1,600質量部である。(C-2)~(C-4)成分のそれぞれが配合されると硬化物の熱伝導率が向上し、多すぎると組成物の流動性が失われ、成形性が損なわれる。
 (C-5)成分の配合量は、(A)成分100質量部に対して1,000~4,000質量部であり、好ましくは2,000~2,800質量部である。(C-5)成分の配合量が少なすぎると組成物の流動性が失われ、成形性が損なわれる。(C-5)成分を4,000質量部より多く配合しても硬化物の熱伝導率の向上は困難である。
 (C-6)成分の配合量は、(A)成分100質量部に対して0~450質量部であり、好ましくは250~400質量部である。(C-6)成分が配合されると組成物の流動性改善効果が発揮される。
 更に、(C)成分の配合量(即ち、上記(C-1)~(C-6)成分の合計配合量)は、(A)成分100質量部に対して7,500~11,500質量部であり、好ましくは7,600~9,000質量部である。この配合量が7,500質量部未満の場合には、得られる硬化物の熱伝導率が悪くなり、11,500質量部を超える場合には、組成物の流動性が失われ、成形性が損なわれる。
 上記配合量で(C)成分を用いることで、上記した本発明の効果がより有利にかつ確実に達成できる。
[白金族金属系硬化触媒]
 (D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のSi-H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(但し、式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
 (D)成分の使用量は、(A)成分に対する白金族金属元素の質量換算で0.1~2,000ppmであり、好ましくは50~1000ppmである。
[付加反応制御剤]
 本発明の熱伝導性シリコーン組成物には、更に(E)成分として付加反応制御剤を使用することができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オール、エチニルメチリデンカルビノール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 (E)成分を配合する場合の使用量としては、(A)成分100質量部に対して0.01~1質量部が好ましく、0.1~0.8質量部程度がより好ましい。前記(E)成分の配合量が前記上限以下であると硬化反応が進み、成形効率が損なわれない。
[表面処理剤]
 本発明の熱伝導性シリコーン組成物には、組成物調製時に(C)成分である熱伝導性充填材を疎水化処理し、(A)成分であるオルガノポリシロキサンとの濡れ性を向上させ、(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(F)成分の表面処理剤を配合することができる。該(F)成分としては、特に下記に示す(F-1)成分及び(F-2)成分が好ましい。
 (F-1)成分は、下記一般式(1)で表されるアルコキシシラン化合物である。
  R Si(OR4-a-b          (1)
(式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
 上記一般式(1)において、Rで表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このRで表されるアルキル基の炭素原子数が6~15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。
 Rで表される非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部がフッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。Rとしては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。
 (F-2)成分は、下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100、好ましくは5~70、より好ましくは10~50の整数である。)
 (F)成分の表面処理剤としては、(F-1)成分と(F-2)成分のいずれか一方でも両者を組み合わせて配合しても差し支えない。
 (F)成分を配合する場合の配合量としては、(A)成分100質量部に対して0.01~300質量部であることが好ましく、0.1~200質量部であることがより好ましい。(F)成分の配合量が前記上限以下であるとオイル分離を誘発しない。
[オルガノポリシロキサン]
 本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整剤等の特性付与を目的として、(G)成分として、下記一般式(3)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは独立に炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。)
で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを添加することができる。(G)成分は、1種単独で用いても、2種以上を併用してもよい。
 上記一般式(3)において、Rは独立に非置換又は置換の炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基である。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部がフッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられるが、メチル基、フェニル基がより好ましい。
 上記dは要求される粘度の観点から、好ましくは5~2,000の整数で、より好ましくは10~1,000の整数である。
 また、(G)成分の23℃における動粘度は、好ましくは10~100,000mm/sであり、100~10,000mm/sであることがより好ましい。該動粘度が10mm/s以上であると、得られる熱伝導性シリコーン硬化物がオイルブリードを発生させない。該動粘度が100,000mm/s以下であると、得られる熱伝導性シリコーン硬化物の柔軟性が十分である。
 (G)成分を本発明の熱伝導性シリコーン組成物に配合する場合、その配合量は特に限定されず、所望の効果が得られる量であればよいが、(A)成分100質量部に対して、好ましくは0.1~100質量部、より好ましくは1~50質量部である。該配合量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を該組成物に充填するのが容易である。
[その他の成分]
 本発明の熱伝導性シリコーン組成物には、更に他の成分を配合しても差し支えない。例えば、酸化鉄、酸化セリウム等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[熱伝導性シリコーン組成物の粘度]
 本発明の熱伝導性シリコーン組成物の絶対粘度は、23℃において好ましくは800Pa・s以下、より好ましくは700Pa・s以下である。粘度が800Pa・s以下であると組成物の成形性が損なわれない。下限値は特に限定されないが、当該絶対粘度は、例えば100Pa・s以上とすることができる。なお、本発明において、この粘度はB型粘度計による測定に基づく。
[熱伝導性シリコーン組成物の調製]
 本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができる。(F)成分を使用する場合、(A)、(C)及び(F)成分を加熱しながら攪拌することが好ましい。加熱温度は好ましくは50~200℃、より好ましくは80~170℃である。
[熱伝導性シリコーン硬化物の製造方法]
 熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100~120℃で8~12分で付加硬化させるのがよい。このような本発明のシリコーン硬化物は熱伝導性に優れる。
[熱伝導性シリコーン硬化物の熱伝導率]
 本発明の熱伝導性シリコーン硬化物の熱伝導率は、ホットディスク法により測定した23℃における測定値が6.5W/mK以上であることが好ましく、7.0W/mK以上であることがより好ましい。上限値は特に制限されないが、当該熱伝導率は、例えば8.0W/mK以下とすることができる。
[熱伝導性シリコーン硬化物の硬度]
 本発明における熱伝導性シリコーン硬化物の硬度は、アスカーC硬度計で測定した23℃における測定値が好ましくは60以下、より好ましくは40以下、更に好ましくは30以下であり、また5以上であることが好ましい。硬度が60以下である場合、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことができる。なお、このような硬度は、(A)成分と(B)成分の比率を変えて、架橋密度を調節することにより、調整することができる。
[熱伝導性シリコーン硬化物の絶縁破壊電圧]
 本発明の熱伝導性シリコーン硬化物の絶縁破壊電圧は、1mm厚の成形体の絶縁破壊電圧をJIS K 6249に準拠して測定したときの測定値として好ましくは10kV以上、より好ましくは13kV以上である。絶縁破壊電圧が10kV/mm以上のシートの場合、使用時に安定的に絶縁を確保することができる。上限値は特に制限されないが、当該絶縁破壊電圧は、例えば25kV/mm以下とすることができる。なお、このような絶縁破壊電圧は、フィラーの種類や純度を調節することにより、調整することができる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度は23℃においてオストワルド粘度計により測定した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
 下記実施例及び比較例に用いられる(A)~(F)成分を下記に示す。
(A)成分:下記の2種類のオルガノポリシロキサン
(A-1)成分:下記式(5)で示される動粘度400mm/sのオルガノポリシロキサン
(A-2)成分:下記式(5)で示される動粘度30,000mm/sのオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000008
(式中、Xはビニル基であり、fは上記粘度を与える数である。)
(B)成分:下記式(6)で示されるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000009
(式中、gは27、hは3である。)
(C)成分:平均粒径が下記の通りである球状アルミナ、不定形アルミナ
(C-1)平均粒径が124.2μmの球状アルミナ
(C-2)平均粒径が88.6μmの球状アルミナ
(C-3)平均粒径が48.7μmの球状アルミナ
(C-4)平均粒径が16.7μmの球状アルミナ
(C-5)平均粒径が2.4μmの不定形アルミナ
(C-6)平均粒径が0.8μmの球状アルミナ
(D)成分:5質量%塩化白金酸2-エチルヘキサノール溶液
(E)成分:付加反応制御剤としてエチニルメチリデンカルビノール
(F)成分:下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000010
(G)成分:可塑剤として下記式(8)で示されるジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000011
(式中、jは80である。)
<実施例1~4、比較例1~2>
 実施例1~4及び比較例1~2において、上記(A)~(G)成分を下記表1に示す所定の量を用いて下記のように組成物を調製し、下記方法に従って組成物の粘度を測定した。組成物を成形、硬化させ、得られた硬化物の熱伝導率、硬度、絶縁破壊電圧、比重及び硬化物表面の気泡を下記方法に従って測定又は観察した。結果を表1に示す。
[組成物の調製]
 (A)、(C)、(F)成分を下記表1の実施例1~4及び比較例1~2に示す所定の配合量で加え、プラネタリーミキサーで30分間混練した後、145℃で60分間加熱しながら又は加熱せずに混練した。充分に冷却した後、そこに(D)成分と(G)成分を下記表1の実施例1~4及び比較例1~2に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤として、信越化学製のフェニル変性シリコーンオイルであるKF-54を有効量加え、30分間混練した。
 そこに更に(B)、(E)成分を下記表1の実施例1~4及び比較例1~2に示す所定の配合量で加え、30分間混練し、組成物を得た。
[粘度]
 実施例1~4で得られた組成物の粘度を、B型粘度計にて23℃環境下で測定した。
[熱伝導率]
 実施例1~4で得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成型機を用いて120℃、10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPS-2500S、京都電子工業(株)製)により該シートの熱伝導率を測定した。
[硬度]
 実施例1~4で得られた組成物を上記と同様にして6mm厚のシート状に硬化させ、そのシートを2枚重ねて該シートの硬度をアスカーC硬度計で測定した。
[絶縁破壊電圧]
 実施例1~4で得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成型機を用いて120℃、10分間の条件で1mm厚のシート状に硬化させ、JIS K 6249に準拠して絶縁破壊電圧を測定した。
[比重]
 実施例1~4で得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成型機を用いて120℃、10分間の条件で1mm厚のシート状に硬化させ、硬化物の比重を水中置換法により測定した。
[硬化物表面の気泡]
 実施例1~4で得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成型機を用いて120℃、10分間の条件で2mm厚のシート状に硬化させ、硬化物表面の気泡の有無を観察した。
Figure JPOXMLDOC01-appb-T000012
H/Viは、(B)成分のケイ素原子に結合した水素原子のモル数/(A)成分由来のアルケニル基のモル数である。
 実施例1~3では、(C)成分の配合量が、(A)成分100質量部に対して7,500~11,500質量部の範囲であり、かつ、(C)成分が、
(C-1)平均粒径が100μmを超えて150μm以下である球状アルミナフィラーを1,400~5,500質量部、
(C-2)平均粒径が65μmを超えて100μm以下である球状アルミナフィラーを0~2,200質量部、
(C-3)平均粒径が35μmを超えて65μm以下である球状アルミナフィラーを0~2,200質量部、
(C-4)平均粒径が5μmを超えて30μm以下である球状アルミナフィラーを0~2,200質量部、
(C-5)平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラーを1,000~4,000質量部、
(C-6)平均粒径が0.2μmを超えて0.85μm以下である球状アルミナフィラーを0~450質量部
からなり、(A)、(C)及び(F)成分を撹拌中に加熱処理することにより、組成物の粘度、硬化物の熱伝導率、硬度、絶縁破壊電圧及び比重とも良好な結果となり、成型後の硬化物の表面に気泡は観察されなかった。
 実施例4では、(A)、(C)及び(F)成分を撹拌中に加熱されない以外実施例1と同様であり、組成物の粘度、硬化物の熱伝導率、硬度、絶縁破壊電圧及び比重とも、実施例1~3のものと同等であった。しかし、実施例4の硬化物の表面に気泡が観察された。
 比較例1のように(C)成分の配合量が(A)成分100質量部に対して11,500質量部を超えると、組成物の濡れ性が不足し、ペースト状の均一な組成物を得ることができない。比較例2のように(C-5)成分である平均粒径0.85μmを超えて5μm以下の不定形アルミナの配合量が(A)成分100質量部に対して1,000質量部未満であると、組成物の充填性が著しく悪くなり、ペースト状の均一な組成物を得ることができない。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (9)

  1.  下記(A)~(D)成分
    (A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
    (B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1~5.0倍量となる量、
    (C)下記(C-1)~(C-6)からなる熱伝導性充填材:7,500~11,500質量部、
     (C-1)平均粒径が100μmを超えて150μm以下である球状アルミナフィラーを1,400~5,500質量部、
     (C-2)平均粒径が65μmを超えて100μm以下である球状アルミナフィラーを0~2,200質量部、
     (C-3)平均粒径が35μmを超えて65μm以下である球状アルミナフィラーを0~2,200質量部、
     (C-4)平均粒径が5μmを超えて30μm以下である球状アルミナフィラーを0~2,200質量部、
     (C-5)平均粒径が0.85μmを超えて5μm以下である不定形アルミナフィラーを1,000~4,500質量部、
     (C-6)平均粒径が0.2μmを超えて0.85μm以下である球状アルミナフィラーを0~450質量部、
    (D)白金族金属系硬化触媒:前記(A)成分に対して白金族元素質量換算で0.1~2,000ppm、
    を含むものであることを特徴とする熱伝導性シリコーン組成物。
  2.  更に、(F)成分として、
    (F-1)下記一般式(1)
      R Si(OR4-a-b     (1)
    (式中、Rは独立に炭素原子数6~15のアルキル基であり、Rは独立に非置換又は置換の炭素原子数1~12の1価炭化水素基であり、Rは独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
    で表されるアルコキシシラン化合物、及び
    (F-2)下記一般式(2)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
    で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンからなる群から選ばれる少なくとも1種:前記(A)成分100質量部に対し0.01~300質量部を含有するものであることを特徴とする請求項1に記載の熱伝導性シリコーン組成物。
  3.  更に、(G)成分として、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは独立に炭素原子数1~12の脂肪族不飽和結合を含まない1価炭化水素基、dは5~2,000の整数である。)
    で表される23℃における動粘度が10~100,000mm/sのオルガノポリシロキサンを前記(A)成分100質量部に対し0.1~100質量部含有するものであることを特徴とする請求項1又は2に記載の熱伝導性シリコーン組成物。
  4.  23℃における絶対粘度が800Pa・s以下であることを特徴とする請求項1から3のいずれか1項に記載の熱伝導性シリコーン組成物。
  5.  請求項1から4のいずれか1項に記載の熱伝導性シリコーン組成物の硬化物であることを特徴とする熱伝導性シリコーン硬化物。
  6.  熱伝導率が6.5W/mK以上であることを特徴とする請求項5に記載の熱伝導性シリコーン硬化物。
  7.  硬度がアスカーC硬度計で60以下であることを特徴とする請求項5又は6に記載の熱伝導性シリコーン硬化物。
  8.  絶縁破壊電圧が10kV/mm以上であることを特徴とする請求項5から7のいずれか1項に記載の熱伝導性シリコーン硬化物。
  9.  請求項2に記載された熱伝導性シリコーン組成物の製造方法であって、前記(A)、(C)及び(F)成分を加熱しながら攪拌する工程を有することを特徴とする熱伝導性シリコーン組成物の製造方法。
PCT/JP2020/004274 2019-04-24 2020-02-05 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物 WO2020217634A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019083342A JP7116703B2 (ja) 2019-04-24 2019-04-24 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物
JP2019-083342 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020217634A1 true WO2020217634A1 (ja) 2020-10-29

Family

ID=72942389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004274 WO2020217634A1 (ja) 2019-04-24 2020-02-05 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物

Country Status (3)

Country Link
JP (1) JP7116703B2 (ja)
TW (1) TWI822954B (ja)
WO (1) WO2020217634A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403022A (zh) * 2021-06-24 2021-09-17 上海珏晟新材料科技有限公司 一种有机硅导热灌封胶及其制备方法
CN113998927A (zh) * 2021-11-26 2022-02-01 深圳市鸿富诚屏蔽材料有限公司 一种低回弹、不掉粉硅胶导热垫片及其制备方法
WO2022239519A1 (ja) * 2021-05-11 2022-11-17 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2022255004A1 (ja) * 2021-06-01 2022-12-08 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023164332A (ja) * 2022-04-28 2023-11-10 住友化学株式会社 樹脂組成物およびそれに用いるアルミナ粉末
JP2023164333A (ja) * 2022-04-28 2023-11-10 住友化学株式会社 樹脂組成物およびそれに用いるアルミナ粉末
WO2024111496A1 (ja) * 2022-11-22 2024-05-30 信越化学工業株式会社 シート状放熱部材及び熱伝導性複合体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277406A (ja) * 2006-04-06 2007-10-25 Micron:Kk 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
CN105315414A (zh) * 2015-10-28 2016-02-10 苏州天脉导热科技有限公司 一种相变导热硅胶片的制备方法
JP2017005166A (ja) * 2015-06-12 2017-01-05 信越化学工業株式会社 放熱パテシート
WO2018088416A1 (ja) * 2016-11-09 2018-05-17 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法
US20190092993A1 (en) * 2017-09-27 2019-03-28 Momentive Performance Materials Inc. Thermal interface composition comprising ionically modified siloxane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705426B2 (ja) 2017-05-09 2020-06-03 信越化学工業株式会社 熱伝導性シリコーン組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277406A (ja) * 2006-04-06 2007-10-25 Micron:Kk 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP2017005166A (ja) * 2015-06-12 2017-01-05 信越化学工業株式会社 放熱パテシート
CN105315414A (zh) * 2015-10-28 2016-02-10 苏州天脉导热科技有限公司 一种相变导热硅胶片的制备方法
WO2018088416A1 (ja) * 2016-11-09 2018-05-17 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法
US20190092993A1 (en) * 2017-09-27 2019-03-28 Momentive Performance Materials Inc. Thermal interface composition comprising ionically modified siloxane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239519A1 (ja) * 2021-05-11 2022-11-17 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2022174600A (ja) * 2021-05-11 2022-11-24 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP7485634B2 (ja) 2021-05-11 2024-05-16 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2022255004A1 (ja) * 2021-06-01 2022-12-08 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP2022184636A (ja) * 2021-06-01 2022-12-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP7496800B2 (ja) 2021-06-01 2024-06-07 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
CN113403022A (zh) * 2021-06-24 2021-09-17 上海珏晟新材料科技有限公司 一种有机硅导热灌封胶及其制备方法
CN113998927A (zh) * 2021-11-26 2022-02-01 深圳市鸿富诚屏蔽材料有限公司 一种低回弹、不掉粉硅胶导热垫片及其制备方法

Also Published As

Publication number Publication date
TW202104442A (zh) 2021-02-01
TWI822954B (zh) 2023-11-21
JP7116703B2 (ja) 2022-08-10
JP2020180200A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5304588B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5418298B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI822954B (zh) 導熱性矽氧組成物及其製造方法、以及導熱性矽氧硬化物
JP6075261B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7285231B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6202475B2 (ja) 熱伝導性複合シリコーンゴムシート
JP7033047B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5131648B2 (ja) 熱伝導性シリコーン組成物およびそれを用いた熱伝導性シリコーン成形物
JP7136065B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーンシート
WO2019198424A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2020002236A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
JP2020090584A (ja) 熱伝導性シリコーン組成物の硬化物
WO2021131681A1 (ja) 熱伝導性シリコーン樹脂組成物
JP7264850B2 (ja) 熱伝導性シリコーン組成物、その硬化物、及び放熱シート
JP7485634B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6957435B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7496800B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2024125630A (ja) シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795307

Country of ref document: EP

Kind code of ref document: A1