[go: up one dir, main page]

WO2020217604A1 - 無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2020217604A1
WO2020217604A1 PCT/JP2020/001450 JP2020001450W WO2020217604A1 WO 2020217604 A1 WO2020217604 A1 WO 2020217604A1 JP 2020001450 W JP2020001450 W JP 2020001450W WO 2020217604 A1 WO2020217604 A1 WO 2020217604A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rolling
cold rolling
hot
final
Prior art date
Application number
PCT/JP2020/001450
Other languages
English (en)
French (fr)
Inventor
祐介 下山
之啓 新垣
善彰 財前
山口 広
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217031209A priority Critical patent/KR102566590B1/ko
Priority to MX2021012533A priority patent/MX2021012533A/es
Priority to EP20795076.7A priority patent/EP3943203B1/en
Priority to JP2020521466A priority patent/JP6954464B2/ja
Priority to US17/603,239 priority patent/US20220186338A1/en
Priority to CN202080025278.8A priority patent/CN113727788B/zh
Publication of WO2020217604A1 publication Critical patent/WO2020217604A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for manufacturing a non-oriented electrical steel sheet having excellent magnetic characteristics used as an iron core material for a motor or a transformer.
  • Non-oriented electrical steel sheets are soft magnetic materials widely used as iron core materials for motors and transformers. In recent years, due to the increasing demand for energy saving, non-oriented electrical steel sheets are strongly required to have lower iron loss and higher magnetic flux density.
  • the crystal plane including the easily magnetized axis is increased in the steel plate surface, specifically, the ⁇ 111 ⁇ azimuth particles not including the easily magnetized axis are reduced in the steel plate surface to magnetize.
  • Methods of increasing ⁇ 110 ⁇ and ⁇ 100 ⁇ orientation grains, including easy axes, are being investigated.
  • Patent Document 1 describes a method in which the Al content is reduced as much as possible and then cold rolling is performed
  • Patent Document 2 describes a method in steel.
  • a method has been proposed in which P is added to the mixture and batch annealing is performed at a low temperature for a long time before cold rolling.
  • Patent Document 3 hot rolling is performed under special conditions to increase the degree of integration in the ⁇ 110 ⁇ ⁇ 001> orientation, specifically, highly integrated in the ⁇ 510 ⁇ ⁇ 001> orientation.
  • a method of developing the ⁇ 110 ⁇ ⁇ 001> orientation by utilizing the accumulated ⁇ 510 ⁇ ⁇ 001> orientation has been proposed.
  • the above-mentioned conventional technology still has the following problems to be solved.
  • the method proposed in Patent Document 1 can obtain a certain degree of magnetic flux density improving effect, further improvement is required in order to meet the strict requirements for magnetic characteristics in recent years.
  • the method proposed in Patent Document 2 requires batch annealing at a low temperature for a long time, and thus has a problem of causing a decrease in productivity and an increase in manufacturing cost.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to stabilize a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss without increasing the manufacturing cost.
  • the purpose is to propose a method for manufacturing non-oriented electrical steel sheets that can be manufactured.
  • the inventors have studied diligently on the method of improving the magnetic properties of non-oriented electrical steel sheets, focusing on the effect of cold rolling on the texture of product sheets.
  • the ⁇ 111 ⁇ orientation which is disadvantageous to the magnetic characteristics
  • turns to the ⁇ 110 ⁇ ⁇ 001> orientation which is advantageous to the magnetic characteristics.
  • they have found that a texture favorable for magnetic properties can be developed in finish annealing, and a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained, and the present invention has been developed.
  • C 0.005 mass% or less
  • Si 1.0 to 5.0 mass%
  • Mn 0.04 to 3.0 mass%
  • a method for producing a non-directional electromagnetic steel sheet consisting of a series of steps of forming a cold-rolled sheet and performing finish annealing
  • at least one pass in the final cold rolling of the cold rolling has a friction coefficient ⁇ of 0.030 or more and a reduction rate.
  • the final cold rolling means the cold rolling when the final plate thickness is obtained by one cold rolling, and the cold rolling is performed twice or more with the intermediate annealing in between.
  • a method for manufacturing a non-directional electromagnetic steel sheet which means the final cold rolling performed after the final intermediate annealing when the final plate thickness is obtained by inter-rolling.
  • rolling oil having a kinematic viscosity ⁇ 50 at 50 ° C. of 40 mm 2 / s or less.
  • Sn 0.005 to 0.2 mass%
  • Sb 0.005 to 0.2 mass%
  • non-oriented electrical steel sheets having a high magnetic flux density and low iron loss can be stably manufactured without increasing the manufacturing cost. Therefore, the non-oriented electrical steel sheet obtained in the present invention can be suitably used as an iron core material for a motor or a transformer.
  • the present invention relates to a method for producing a non-directional electromagnetic steel sheet by cold-rolling a hot-rolled steel sheet for a non-directional electromagnetic steel sheet to obtain a cold-rolled sheet having a final thickness, and finishing and annealing the cold-rolled sheet.
  • a product plate is obtained by rolling in at least one pass of cold rolling (final cold rolling) having the final plate thickness, having a friction coefficient ⁇ of 0.030 or more and a rolling reduction of 15% or more in one pass.
  • the coefficient of friction ⁇ at each stand (pass) was measured when various changes were made in the range of / s.
  • the kinematic viscosity ⁇ 50 of the rolling oil is a value measured by a method based on JIS Z 8803: 2011 using a thin tube viscometer.
  • the friction coefficient ⁇ is a value calculated from the rolling load during rolling.
  • #Nstd (N is a number from 1 to 4) represents the Nth stand from the entrance of the tandem cold rolling mill.
  • # 1std is No.
  • rolling oil having a kinematic viscosity ⁇ 50 at 50 ° C. of 40 mm 2 / s was used, No.
  • the coefficient of friction ⁇ can be set to 0.030 or more only at the 1st and 2nd stands, but when rolling oil having a kinematic viscosity ⁇ 50 at 50 ° C. of 15 mm 2 / s is used for all the stands, No.
  • the coefficient of friction ⁇ can be 0.030 or more in all the stands 1 to 4. Therefore, in order to increase the coefficient of friction and roll, the stand (pass) on the upstream side is more advantageous.
  • the kinematic viscosity ⁇ 50 at 50 ° C. was 50 mm 2 / The rolling oil of s was used so that the friction coefficient ⁇ was 0.022 or less.
  • the cold-rolled plate was subjected to finish annealing at 1000 ° C. for 10 seconds in a dry nitrogen-hydrogen atmosphere, and then an insulating coating was applied to obtain a product plate.
  • a test piece was collected from the product plate after the finish annealing, and the ⁇ 110 ⁇ ⁇ 001> orientation and ⁇ 111 ⁇ ⁇ in the 1/5 layer thickness.
  • 112> Orientation intensity was measured by X-ray diffraction. Specifically, a sample that has been polished to a thickness of 1/5 layer and reduced in thickness is etched with 10% nitric acid for 30 seconds, and then the (110), (200), and (211) surfaces are subjected to an X-ray Schultz method. The positive point diagram was measured, and ODF (Orientation Distribution Function) analysis was performed from the data to calculate the intensity of each crystal orientation. For the analysis, software Texas of ResMat Co., Ltd. was used, and the calculation was performed by the ADC (Arbitrarily Defined Cell) method.
  • the inventors explain the reason why the strength of the ⁇ 111 ⁇ ⁇ 112> orientation of the rolled steel sheet is reduced and the ⁇ 110 ⁇ ⁇ 001> orientation is increased when the friction coefficient ⁇ during rolling is 0.030 or more as described above. It is considered that, due to the increased coefficient of friction, the ⁇ 111 ⁇ ⁇ 112> orientation, which is disadvantageous to the magnetic characteristics, is rotated to the ⁇ 110 ⁇ ⁇ 001> orientation, which is advantageous to the magnetic characteristics, during cold rolling.
  • the thickness of the hot-rolled plate was adjusted so that only the reduction rate of the two stands could be changed as shown in Table 3.
  • the cold-rolled plate was subjected to finish annealing at 1000 ° C. for 10 seconds in a dry nitrogen-hydrogen atmosphere, and then an insulating coating was applied to obtain a product plate.
  • the magnetic flux density B 50 and the iron loss W 10/400 were measured by the same method as in ⁇ Experiment 2>, and ⁇ 110 in the plate thickness 1/5 layer of the steel sheet after finish annealing. ⁇ ⁇ 001> Orientation, ⁇ 111 ⁇ ⁇ 112> Orientation intensity was calculated.
  • C 0.005 mass% or less If C is contained in excess of 0.005 mass%, magnetic aging occurs in the product plate and iron loss deteriorates. Therefore, the upper limit of the C content is 0.005 mass%. It is preferably 0.003 mass% or less.
  • Si 1.0-5.0 mass% Since Si has the effect of increasing the specific resistance of steel and reducing iron loss, it is added in an amount of 1.0 mass% or more. However, if it is added in excess of 5.0 mass%, the steel becomes brittle and breaks in cold rolling. Therefore, the Si content is in the range of 1.0 to 5.0 mass%. It is preferably in the range of 2.5 to 4.0 mass%.
  • Mn 0.04 to 3.0 mass% Mn forms S and MnS and coarsely precipitates, which has the effect of preventing hot brittleness of steel and improving grain growth. Further, since it has the effect of increasing the specific resistance of steel and reducing the iron loss, 0.04 mass% or more is added. However, even if it is added in excess of 3.0 mass%, the above effect is saturated, which not only increases the cost but also causes a decrease in the magnetic flux density. Therefore, the Mn content is in the range of 0.04 to 3.0 mass%. It is preferably in the range of 0.1 to 1.0 mass%.
  • sol. Al 0.005 mass% or less Al has a content of sol. If Al exceeds 0.005 mass%, fine AlN is precipitated during hot-rolled plate annealing, which inhibits grain growth in hot-rolled plate annealing and / or finish annealing. Therefore, the Al content is determined by sol. Limit to 0.005 mass% or less with Al. It is preferably 0.002 mass% or less.
  • P 0.2 mass% or less
  • P has the effect of increasing the magnetic flux density by segregating at the grain boundaries. It also has the effect of adjusting the hardness of the steel and improving punching performance. However, if it is added in excess of 0.2 mass%, the steel becomes brittle and easily breaks in cold rolling. Therefore, the P content is set to 0.2 mass% or less. It is preferably 0.15 mass% or less.
  • S 0.005 mass% or less
  • the upper limit of the S content is 0.005 mass%. It is preferably 0.003 mass% or less.
  • N 0.005 mass% or less
  • the upper limit of the N content is 0.005 mass%. It is preferably 0.003 mass% or less.
  • the balance other than the above components is Fe and unavoidable impurities.
  • one or more selected from the following components may be contained.
  • REM, Mg, Ca 0.0005 to 0.02 mass% respectively Since REM, Mg and Ca have the effect of forming sulfides and coarsening them to improve grain growth, 0.0005 mass% or more of each can be added. However, if it is added in excess of 0.02 mass%, the grain growth property is rather deteriorated. Therefore, it is preferable that REM, Mg, and Ca are each in the range of 0.0005 to 0.02 mass%. More preferably, they are in the range of 0.001 to 0.01 mass%, respectively.
  • the non-oriented electrical steel sheet of the present invention is generally known to consist of a series of steps of hot rolling, hot rolling plate annealing, cold rolling, and finish annealing of a steel material (slab) having the component composition described above. It can be manufactured by the manufacturing method of.
  • the steel material used for producing the non-oriented electrical steel sheet of the present invention may be any as long as it is produced by a conventionally known method.
  • a molten steel obtained in a converter, an electric furnace, or the like is vacuum degassed.
  • the steel slab can be produced by a continuous casting method or a ingot-lump rolling method.
  • a thin slab having a thickness of 100 mm or less may be formed by a thin slab continuous casting machine.
  • the slab is reheated to a predetermined temperature and then hot-rolled to obtain a hot-rolled plate having a predetermined plate thickness.
  • the rolling conditions in this hot-rolling are generally known. Well, there are no particular restrictions. When a predetermined hot rolling temperature can be secured, the slab after casting may be immediately subjected to hot rolling without reheating. Further, when the thin slab is manufactured by the thin slab continuous casting machine, hot rolling may be performed, or the process may proceed to the next step without hot rolling.
  • the hot-rolled hot-rolled plate is annealed with the hot-rolled plate for the purpose of improving the magnetic properties, but the annealing conditions may also be generally known conditions, and there is no particular limitation.
  • the steel sheet after the hot-rolled sheet is annealed is descaled by pickling or the like and then cold-rolled, which is the most important process in the present invention, to obtain a cold-rolled sheet having a final plate thickness.
  • the final plate thickness may be obtained by one rolling, but the final plate thickness may be obtained by two or more cold rollings sandwiching intermediate annealing.
  • the final cold rolling means the cold rolling when the final plate thickness is obtained by one cold rolling, and the final plate thickness when the final plate thickness is obtained by two or more cold rollings sandwiching intermediate annealing. Refers to the last cold rolling performed after the last intermediate annealing. At this time, in the final cold rolling, the total reduction ratio is preferably 80% or more.
  • the total reduction rate By setting the total reduction rate to 80% or more, the sharpness of the texture can be enhanced and the magnetic properties can be improved.
  • the upper limit of the total reduction rate is not particularly regulated, but if it exceeds 98%, the rolling cost increases remarkably, so it is preferably 98% or less. More preferably, it is in the range of 85 to 95%.
  • the rolling mill used for the final cold rolling described above may be either a tandem rolling mill or a Zendimia rolling mill as long as it rolls in one pass or more, but from the viewpoint of increasing productivity and reducing manufacturing costs. , It is preferable to use a tandem type cold rolling mill.
  • the most important thing in the present invention is, as described above, cold with a high friction coefficient of 15% or more and a friction coefficient ⁇ of 0.030 or more in at least one pass of final cold rolling. It means that it is necessary to perform inter-rolling. In the case of a tandem rolling mill, the above-mentioned pass corresponds to a stand, but in the following description, the "pass" will be used.
  • the reduction rate is 25% or more
  • the friction coefficient ⁇ is 0.04 or more.
  • the friction coefficient ⁇ when adjusting the friction coefficient via the kinematic viscosity of the rolling oil, it is preferable to use a rolling oil having a kinematic viscosity ⁇ 50 at 50 ° C. of 40 mm 2 / s or less. This is because when rolling with a 4-stand tandem rolling mill, the friction coefficient ⁇ can be set to 0.030 or more with 1 or more stands. Further, the kinematic viscosity ⁇ 50 is preferably 15 mm 2 / s or less, which allows the friction coefficient ⁇ to be 0.030 or more at all stands.
  • any pass may be used for rolling with a high pressure reduction rate and a high coefficient of friction, but preferably 2 passes or later to the final pass. It is preferable to carry out with the (n-1) pass immediately before. Since the hot-rolled annealed sheet and the steel sheet after intermediate annealing have few ⁇ 111 ⁇ azimuth structures that serve as the base material for the ⁇ 110 ⁇ ⁇ 001> azimuth recrystallized nuclei, the first pass is ⁇ 110 ⁇ ⁇ even if high friction rolling is performed. This is because the effect of 001> orientation grain formation is small, and it is necessary to ensure rollability in the final path in order to control the shape. In particular, from the viewpoint of increasing the friction coefficient ⁇ via the kinematic viscosity ⁇ 50 of the rolling oil, it is preferably applied to the upstream stand, for example, when the number of passes is small.
  • the method of increasing the friction coefficient during rolling in addition to the method of reducing the kinematic viscosity of rolling oil described above, there are methods such as increasing the work roll roughness and decelerating the rolling speed. Any method may be used as long as it can be stably adjusted in a wide range.
  • the rolling temperature in the final cold rolling is not particularly limited, but the adoption of warm rolling in which the steel sheet temperature is raised to 100 to 250 ° C. is used to further improve the magnetic properties through the improvement of the texture. It is preferable to apply it because it is effective.
  • the cold-rolled plate whose final plate thickness was obtained by the above-mentioned final cold rolling is then subjected to finish annealing under generally known conditions, and then coated with an insulating film as necessary to obtain a product plate.
  • the insulating coating may be appropriately used from known inorganic coatings, organic coatings, inorganic-organic mixed coatings, etc. according to the required characteristics and purpose, and is not particularly limited.
  • hot-rolled sheet was annealed to cool at 25 ° C./sec, pickled to remove scale, and cold-rolled to obtain a cold-rolled sheet with a final plate thickness of 0.18 mm. ..
  • the rolling oil and the reduction ratio distribution in the cold rolling were the conditions shown in Table 5.
  • the cold-rolled plate was subjected to finish annealing at 1000 ° C. for 10 seconds in a dry nitrogen-hydrogen atmosphere, and then an insulating coating was applied to obtain a product plate.
  • a ring (annular) sample having an outer diameter of 45 mm and an inner diameter of 33 mm is punched out, 10 sheets thereof are laminated, and then the primary winding and the secondary winding are wound for 100 turns each to obtain a magnetic flux density.
  • B 50 and iron loss W 10/400 were measured.
  • the intensities of the ⁇ 110 ⁇ ⁇ 001> orientation and the ⁇ 111 ⁇ ⁇ 112> orientation in the 1/5 layer of the steel sheet after finish annealing were analyzed.
  • a sample that has been polished to a thickness of 1/5 and reduced in thickness is etched with 10% nitric acid for 30 seconds, and then subjected to the X-ray Schultz method on the surfaces (110), (200), and (211).
  • the positive point diagram was measured, and ODF (Orientation Distribution Function) analysis was performed from the data to calculate the intensity of each crystal orientation.
  • ODF Orientation Distribution Function
  • software Texas of ResMat Co., Ltd. was used, and the calculation was performed by the ADC (Arbitrarily Defined Cell) method.
  • a steel slab containing Al: 0.0008 mass%, N: 0.0018 mass% and Sn: 0.06 mass% and having a component composition in which the balance is composed of Fe and unavoidable impurities is reheated at 1100 ° C. for 30 minutes. It is hot-rolled to obtain a hot-rolled plate with a plate thickness of 1.6 mm, soaked in a continuous annealing furnace at 1050 ° C for 60 seconds, then annealed with a hot-rolled plate cooled at 25 ° C / sec, and then pickled.
  • the cold-rolled plate After removing the scale, it was cold-rolled using a 4-stand tandem rolling mill to obtain a cold-rolled plate having a final plate thickness of 0.18 mm.
  • the cold rolling is No. 1 to No.
  • the kinematic viscosity ⁇ 50 of the rolling oil supplied to each stand was adjusted so that the friction coefficient of each stand would be the value shown in Table 6, and the reduction rate of each stand was also distributed as shown in Table 6. ..
  • the cold-rolled plate was subjected to finish annealing at 1000 ° C. for 10 seconds in a dry nitrogen-hydrogen atmosphere, and then an insulating coating was applied to obtain a product plate.
  • the magnetic flux density B 50 and the iron loss W 10/400 were measured by the same method as in Example 1 described above, and ⁇ 110 ⁇ ⁇ in the 1/5 layer of the steel plate after finish annealing.
  • the intensities of 001> orientation and ⁇ 111 ⁇ ⁇ 112> orientation were calculated.
  • the results are also shown in Table 6. From this result, by setting the friction coefficient of any one or more stands (passes) to 0.030 or more and the reduction rate to 15% or more, the ⁇ 111 ⁇ ⁇ 112> directional strength is 3 or less and ⁇ 110 ⁇ ⁇ 001. > It can be seen that the orientation strength is 0.45 or more, and an electromagnetic steel sheet having excellent magnetic characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)

Abstract

モータや変圧器等の鉄心材料として使用される磁気特性に優れた無方向性電磁鋼板の製造方法であって、質量%で、C:0.005%以下、Si:1.0~5.0%、Mn:0.04~3.0%、sol.Al:0.005%以下、P:0.2%以下、S:0.005%以下およびN:0.005%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、仕上焼鈍を施して無方向性電磁鋼板を製造する際、前記冷間圧延の最終冷間圧延における少なくとも1パスを、摩擦係数μが0.030以上かつ圧下率が15%以上の圧延とする。

Description

無方向性電磁鋼板の製造方法
 本発明は、モータや変圧器の鉄心材料に用いられる磁気特性に優れた無方向性電磁鋼板の製造方法に関するものである。
 無方向性電磁鋼板は、モータや変圧器の鉄心材料等に広く用いられている軟磁性材料である。近年、省エネルギーに対する要請の高まりから、無方向性電磁鋼板には、より低鉄損かつ高磁束密度であることが強く求められるようになってきている。
 低鉄損化のためには、鋼の電気抵抗を高めるSiやAl等の含有量を増大することが有効である。電気抵抗が大きくなると、鋼板が磁化されることによって生じる渦電流損が減少するからである。しかし、SiやAlの多量の添加は、磁束密度の低下を招くことから、モータのトルクが低下したり、銅損が増加したりするという新たな問題を引き起こす。
 そこで、上記方法とは別に、鋼板の集合組織を改善して磁束密度を高める研究開発が、従来から積極的になされている。たとえば、磁束密度を高める方法として、鋼板面内において、磁化容易軸を含む結晶面を増加させる、具体的には、鋼板面内において、磁化容易軸を含まない{111}方位粒を減らし、磁化容易軸を含む{110}および{100}方位粒を増加させる方法が検討されている。
 このような集合組織を発達させる方法として、たとえば、特許文献1には、Al含有量を極力低減した上で、冷間圧延で温間圧延する方法が、また、特許文献2には、鋼中にPを添加し、かつ、冷間圧延前に低温・長時間のバッチ焼鈍を施す方法が提案されている。また、特許文献3には、特殊な条件で熱間圧延することにより、{110}<001>方位の集積度を高める、具体的には、{510}<001>方位に高度に集積させ、この集積した{510}<001>方位を利用して、{110}<001>方位を発達させる方法が提案されている。
特開2002-003944号公報 特開2005-200756号公報 特開2000-160248号公報
 しかしながら、上記従来の技術には、未だ解決すべき以下のような問題があった。例えば、特許文献1に提案された方法は、ある程度の磁束密度向上効果は得られるものの、近年の磁気特性に対する厳しい要求に応えるには、さらなる改善が必要である。また、特許文献2に提案された方法は、低温・長時間のバッチ焼鈍が必要となるため、生産性の低下や製造コストの上昇を招くという問題がある。また、特許文献3に提案された方法は、実施例に開示されるように、熱間圧延の仕上げ厚を0.8mmと薄くする必要がある。このような板厚の熱延板を製造するには、コイル全長に亘って所定の温度を確保し、かつ、大きな圧延負荷にも耐え得る特殊な熱延設備が必要であり、製造コストを高め、さらには、生産性を低下させる。そのため、これらの製造技術を実操業に適用するには問題が多い。
 本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、高磁束密度かつ低鉄損の無方向性電磁鋼板を、製造コストの上昇を招くことなく安定して製造することができる無方向性電磁鋼板の製造方法を提案することにある。
 発明者らは、無方向性電磁鋼板の磁気特性を改善する方法について、製品板の集合組織に及ぼす冷間圧延の影響に着目して鋭意検討を重ねた。その結果、圧延時の摩擦係数μを0.030以上に高めて最終冷間圧延することで、磁気特性に不利な{111}方位が磁気特性に有利な{110}<001>方位へ結晶回転し、仕上焼鈍において磁気特性に好ましい集合組織を発達させることができ、高磁束密度かつ低鉄損の無方向性電磁鋼板を得ることができることを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.005mass%以下、Si:1.0~5.0mass%、Mn:0.04~3.0mass%、sol.Al:0.005mass%以下、P:0.2mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、仕上焼鈍を施す一連の工程からなる無方向性電磁鋼板の製造方法において、前記冷間圧延の最終冷間圧延における少なくとも1パスを、摩擦係数μが0.030以上かつ圧下率が15%以上の圧延とする、ここで、最終冷間圧延とは、1回の冷間圧延で最終板厚とする場合にはその冷間圧延をいい、中間焼鈍を挟む2回以上の冷間圧延で最終板厚とする場合には、最後の中間焼鈍の後に行う最後の冷間圧延をいう、ことを特徴とする無方向性電磁鋼板の製造方法を提案する。
 本発明の無方向性電磁鋼板の製造方法における上記最終冷間圧延では、50℃における動粘度ν50が40mm/s以下の圧延油を用いることが好ましい。
 また、本発明の無方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Sn:0.005~0.2mass%、Sb:0.005~0.2mass%、REM:0.0005~0.02mass%、Mg:0.0005~0.02mass%およびCa:0.0005~0.02mass%のうちから選ばれる1種または2種以上を含有することが好ましい。
 本発明によれば、製造コストの上昇を招くことなく、高い磁束密度で低鉄損の無方向性電磁鋼板を安定して製造することができる。したがって、本発明で得られる無方向性電磁鋼板は、モータや変圧器の鉄心材料等として好適に用いることができる。
4スタンドのタンデム式冷間圧延機に供給する圧延油の動粘度ν50が各スタンドの摩擦係数μに及ぼす影響を示すグラフである。
 本発明は、無方向性電磁鋼板用の熱延鋼板を、冷間圧延して最終板厚の冷延板とし、該冷延板に仕上焼鈍して無方向性電磁鋼板を製造する方法において、上記最終板厚とする冷間圧延(最終冷間圧延)における少なくとも1パスで、摩擦係数μが0.030以上、かつ、1パスの圧下率が15%以上の圧延を施すことにより、製品板において磁気特性に不利な{111}<112>方位粒の存在比率を減少させ、磁気特性に有利な{110}<001>方位粒の比率を増加させることで、磁気特性に優れる無方向性電磁鋼板を製造する技術である。
 以下、上記本発明を開発するに至った実験について説明する。
 まず、発明者らは、無方向性電磁鋼板の磁気特性を改善するため、冷間圧延条件、特に、最終板厚とする最終冷間圧延の圧延時の摩擦係数が製品板の集合組織に及ぼす影響を調査するため、下記の実験を行った。
<実験1>
 まず、冷間圧延に用いる圧延油の特性が圧延時の摩擦係数に及ぼす影響を調査するため、4スタンドのタンデム式冷間圧延機を用いて、Siを3.2mass%含有する板厚1.6mmの熱延板を、下記表1に示したパススケジュールで板厚0.18mmの冷延板に圧延する際、各スタンドに供給する圧延油の50℃における動粘度ν50を10~50mm/sの範囲で種々に変化させたときの、各スタンド(パス)における摩擦係数μを測定した。ここで、上記圧延油の動粘度ν50は細管粘度計を用いて、JIS Z 8803:2011に準拠した方法で測定した値である。また、上記摩擦係数μは、圧延時の圧延荷重から算出した値である。
Figure JPOXMLDOC01-appb-T000001
 上記測定の結果を図1に示した。図1中、#Nstd(Nは1~4の数字)は、タンデム式冷間圧延機の入口からN番目のスタンドを表す。例えば、#1stdはNo.1スタンドに相当する。この図から、圧延時の摩擦係数μと圧延油の動粘度ν50とは極めてよい負の相関があり、動粘度ν50を低くすることによって、摩擦係数μを高めることができることがわかる。例えば、50℃における動粘度ν50が40mm/sの圧延油を使用した場合には、No.1、2スタンドでのみ摩擦係数μを0.030以上とすることができるが、50℃における動粘度ν50が15mm/sの圧延油を全スタンドに使用した場合には、No.1~4の全スタンドで摩擦係数μを0.030以上とすることができる。したがって、摩擦係数を高めて圧延するには、上流側のスタンド(パス)の方が有利である。
<実験2>
 次いで、冷間圧延時の摩擦係数が、製品板の磁気特性に及ぼす影響を確認するため、C:0.0015mass%、Si:3.2mass%、Mn:0.18mass%、P:0.07mass%、S:0.0015mass%、sol.Al:0.0008mass%、N:0.0018mass%およびSn:0.06mass%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブに1100℃×30分の再加熱を施し、熱間圧延して板厚1.6mmの熱延板とし、連続焼鈍炉で1050℃×60秒の均熱処理後、25℃/secで冷却する熱延板焼鈍を施した後、酸洗してスケールを除去し、4スタンドのタンデム式圧延機を用いて、前述の表1に示したパススケジュールで冷間圧延して最終板厚0.18mmの冷延板とした。この際、摩擦係数を高めるのに有利なNo.2スタンドにおいて、圧延油の動粘度ν50を調節して圧延時の摩擦係数μを表2に示したように種々に変化させ、その他のスタンドは、50℃における動粘度ν50が50mm/sの圧延油を使用し、摩擦係数μが0.022以下となるようにした。次いで、上記冷延板に、乾燥窒素-水素雰囲気中で1000℃×10秒の仕上焼鈍を施した後、絶縁コーティングを塗布して製品板とした。
 斯くして得た製品板から、外径45mm、内径33mmのリング(環状)試料を打ち抜き、これを10枚積層した後、1次巻線および2次巻線をそれぞれ100ターン巻いて、磁束密度B50および鉄損W10/400を測定し、その結果を表2に併記した。この結果から、No.2スタンドの圧延時の摩擦係数μを高めた鋼板、特に、摩擦係数μを0.030以上にして圧延した鋼板は、優れた磁気特性を有していることがわかった。
Figure JPOXMLDOC01-appb-T000002
 そこで、上記のように磁気特性が変化した原因を調査するため、上記仕上焼鈍後の製品板から試験片を採取し、板厚1/5層における{110}<001>方位、{111}<112>方位の強度をX線回折で測定した。具体的には、板厚1/5層まで研磨して減厚したサンプルを10%硝酸で30秒間エッチングした後、X線シュルツ法にて、(110)、(200)および(211)面の正極点図を測定し、そのデータからODF(Orientation Distribution Function:結晶方位分布関数)解析を行い、各結晶方位の強度を算出した。解析には、ResMat社のソフトウェアTextoolsを用い、ADC(Arbitrarily Defined Cell)法で算出した。
 上記解析結果を表2に併記した。この結果から、No.2スタンドの圧延時の摩擦係数μを0.030以上にして圧延した鋼板は、磁気特性に不利な{111}<112>方位の強度が3以下に減少し、磁気特性に有利な{110}<001>方位の強度が0.45以上に増加しており、その結果、磁束密度B50が高くて鉄損W10/400が低い、優れた磁気特性が得られたものと考えられる。
 上記のように圧延時の摩擦係数μを0.030以上にして圧延した鋼板の{111}<112>方位の強度が減少し、{110}<001>方位が増加する理由について、発明者らは、摩擦係数を高くしたことにより、冷間圧延時に磁気特性に不利な{111}<112>方位が磁気特性に有利な{110}<001>方位へ結晶回転したためと考えている。
<実験3>
 次いで、摩擦係数を高めることによる磁気特性向上効果に及ぼす圧下率の影響を調査するため、上記<実験2>で作製した鋼スラブに1100℃×30分の再加熱を施し、熱間圧延して表3のNo.1スタンド入側板厚に示す板厚の熱延板とし、酸洗してスケールを除去した後、4スタンドのタンデム式圧延機を用いて冷間圧延し、最終板厚0.18mmの冷延板とした。この際、圧延機のNo.1、2、3および4スタンドにおける摩擦係数は全条件でそれぞれ、0.022、0.030、0.015および0.010に調整し、そのうえで、No.2スタンドの圧下率のみを表3に示すように変化させられるように熱延板の板厚を調整した。次いで、上記冷延板に、乾燥窒素-水素雰囲気中で1000℃×10秒の仕上焼鈍を施した後、絶縁コーティングを塗布して製品板とした。
Figure JPOXMLDOC01-appb-T000003
 斯くして得た上記製品板について、<実験2>と同じ方法で、磁束密度B50および鉄損W10/400を測定するとともに、仕上焼鈍後の鋼板の板厚1/5層における{110}<001>方位、{111}<112>方位の強度を計算した。
 その結果を表3に併記した。この結果から、No.2スタンドの摩擦係数を0.030に調整しても、当該パスの圧下率を15%以上にしなければ、{111}<112>方位強度を3以下、{110}<001>方位強度を0.45以上にできず、したがって、本発明の磁気特性向上効果が得られないことがわかった。この理由は、圧下率が低い場合には、上述した{111}<112>方位の{110}<001>方位への結晶回転が不十分となるためと考えられる。
 本発明は、上記した新規な知見に基づき、更なる検討を重ねて開発したものである。
 次に、本発明の無方向性電磁鋼板の製造に用いる鋼素材の成分組成について説明する。
C:0.005mass%以下
 Cは、0.005mass%を超えて含有すると、製品板において磁気時効が起こり、鉄損が劣化する。よって、C含有量の上限は0.005mass%とする。好ましくは0.003mass%以下である。
Si:1.0~5.0mass%
 Siは、鋼の比抵抗を高め、鉄損を低減する効果があるので、1.0mass%以上添加する。しかし、5.0mass%を超えて添加すると、鋼が脆くなり、冷間圧延で破断を起こすようになる。したがって、Si含有量は1.0~5.0mass%の範囲とする。好ましくは2.5~4.0mass%の範囲である。
Mn:0.04~3.0mass%
 Mnは、SとMnSを形成して粗大析出し、鋼の熱間脆性を防止するとともに、粒成長性を改善する効果がある。さらに、鋼の比抵抗を高めて鉄損を低減する効果があるので、0.04mass%以上添加する。しかし、3.0mass%超えて添加しても、上記の効果が飽和し、コストアップとなるだけでなく、磁束密度の低下を招く。よって、Mn含有量は0.04~3.0mass%の範囲とする。好ましくは0.1~1.0mass%の範囲である。
sol.Al:0.005mass%以下
 Alは、含有量がsol.Alで0.005mass%を超えると、熱延板焼鈍時に微細なAlNが析出し、熱延板焼鈍および/または仕上焼鈍における粒成長性を阻害する。よって、Alの含有量は、sol.Alで0.005mass%以下に制限する。好ましくは0.002mass%以下である。
P:0.2mass%以下
 Pは、粒界に偏析して磁束密度を高める効果がある。また、鋼の硬さを調整し、打抜性を改善する効果もある。しかしながら、0.2mass%を超えて添加すると、鋼が脆化して冷間圧延で破断を起こし易くなる。よって、P含有量は0.2mass%以下とする。好ましくは0.15mass%以下である。
S:0.005mass%以下
 Sは、含有量が0.005mass%を超えると、MnS等の析出物が増加し、粒成長性を阻害する。したがって、S含有量の上限は0.005mass%とする。好ましくは0.003mass%以下である。
N:0.005mass%以下
 Nは、含有量が0.005mass%を超えると、AlN等の析出物が増加し、粒成長性を阻害する。したがって、N含有量の上限は0.005mass%とする。好ましくは0.003mass%以下である。
 本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、磁気特性等の向上を目的として、上記の必須成分に加えて、以下の成分のうちから選ばれる1種または2種以上を含有していてもよい。
Sn、Sb:それぞれ0.005~0.2mass%
 SnおよびSbは、再結晶集合組織の{111}方位粒を低減して磁束密度を高める効果があるので、それぞれ0.005mass%以上添加することができる。しかし、0.2mass%を超えて添加しても、上記効果が飽和する。よって、SnおよびSbの含有量は、それぞれ0.005~0.2mass%の範囲とするのが好ましい。より好ましくは、それぞれ0.01~0.15mass%の範囲である。
REM、Mg、Ca:それぞれ0.0005~0.02mass%
 REM,MgおよびCaは、硫化物を形成して粗大化し、粒成長性を改善する効果があるので、それぞれ0.0005mass%以上添加することができる。しかし、0.02mass%を超えて添加すると、却って粒成長性が悪化するため、REM、Mg、Caは、それぞれ0.0005~0.02mass%の範囲とするのが好ましい。より好ましくは、それぞれ0.001~0.01mass%の範囲である。
 次に、本発明に係る無方向性電磁鋼板の製造方法について説明する。
 本発明の無方向性電磁鋼板は、上記に説明した成分組成を有する鋼素材(スラブ)を熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍する一連の工程からなる通常公知の製造方法で製造することができる。
 ここで、本発明の無方向性電磁鋼板の製造に用いる鋼素材は、従来公知の方法で製造されたものであればよく、例えば、転炉や電気炉等で得た溶鋼を真空脱ガス装置等で二次精錬する常法の精錬プロセスで前述した所望の成分組成に調整した後、連続鋳造法あるいは造塊-分塊圧延法で鋼スラブとする方法で製造することができる。また、薄スラブ連鋳機で厚さが100mm以下の薄スラブとしてもよい。
 次いで、上記スラブは、所定の温度に再加熱した後、熱間圧延して所定の板厚の熱延板とするが、この熱間圧延における圧延条件は、通常公知の条件に準じて行えばよく、特に制限はない。なお、所定の熱間圧延温度を確保できるときは、鋳造後のスラブを再加熱することなく直ちに熱間圧延に供してもよい。また、薄スラブ連鋳機で薄スラブを製造するときは、熱間圧延してもよいし、熱間圧延せずに、次工程に進めてもよい。
 次いで、上記熱間圧延した熱延板は、磁気特性の改善を目的として、熱延板焼鈍を施すが、その焼鈍条件も、通常公知の条件で施せばよく、特に制限はない。
 次いで、上記熱延板焼鈍後の鋼板は、酸洗等で脱スケールした後、本発明において最も重要な工程である冷間圧延を施して最終板厚の冷延板とする。なお、この冷間圧延は、1回の圧延で最終板厚としてもよいが、中間焼鈍を挟む2回以上の冷間圧延で最終板厚としてもよい。ここで、最終冷間圧延とは、1回の冷間圧延で最終板厚とする場合にはその冷間圧延をいい、中間焼鈍を挟む2回以上の冷間圧延で最終板厚とする場合には、最後の中間焼鈍の後に行う最後の冷間圧延をいう。この際、最終冷間圧延は、全圧下率が80%以上とすることが好ましい。全圧下率を80%以上とすることで、集合組織の先鋭性を高め、磁気特性を改善することができる。なお、全圧下率の上限は特に規制しないが、98%を超えると、圧延コストが顕著に増加するので、98%以下とすることが好ましい。より好ましくは85~95%の範囲である。
 上記した最終冷間圧延に用いる圧延機は、1パス以上で圧延するものであれば、タンデム圧延機やゼンジミア圧延機のいずれでもよいが、生産性を高めて、製造コストを低減する観点からは、タンデム式の冷間圧延機を用いることが好ましい。
 ここで、本発明において最も重要なことは、上述したように、最終冷間圧延の少なくとも1パスにおいて、圧下率が15%以上、かつ、摩擦係数μが0.030以上の高摩擦係数の冷間圧延を施す必要があるということである。なお、上記パスは、タンデム圧延機の場合、スタンドに相当するが、以降の説明では、「パス」を用いて説明する。上記した高圧下率かつ高摩擦係数の冷間圧延を施すことで、{111}繊維組織に高い剪断歪を導入し、{110}<001>方位粒の形成を促進することができる。好ましくは、上記圧下率は25%以上、摩擦係数μは0.04以上である。
 なお、図1に示したように、圧延油の動粘度を介して摩擦係数を調整する場合には、50℃における動粘度ν50を40mm/s以下の圧延油を用いることが好ましい。これにより、4スタンドのタンデム圧延機で圧延する場合、1スタンド以上で摩擦係数μを0.030以上とすることができるからである。さらに、動粘度ν50は、全スタンドで摩擦係数μを0.030以上とすることができる15mm/s以下であることが好ましい。
 また、上記最終冷間圧延を2パス以上のnパスで行う場合、高圧下率かつ高摩擦係数の圧延を行うパスは、いずれのパスで行ってもよいが、好ましくは2パス以降~最終パスの1つ手前の(n-1)パスで実施するのが好ましい。熱延焼鈍板や中間焼鈍後の鋼板には{110}<001>方位再結晶核の素地となる{111}方位組織が少ないため、1パス目は高摩擦圧延を施しても{110}<001>方位粒形成の効果は小さく、また、最終パスは、形状制御を行うため圧延性を確保する必要があるからである。特に、圧延油の動粘度ν50を介して摩擦係数μを高める観点からは、パス数が少ないとき、たとえば、上流側スタンドに適用するのが好ましい。
 また、圧延時の摩擦係数を高める方法については、前述した圧延油の動粘度を低減する方法の他に、ワークロール粗度の上昇、圧延速度の減速などの方法があるが、高摩擦係数を広範囲に安定して調整できる方法であれば、いずれの方法を用いてもよい。
 なお、最終冷間圧延における圧延温度は、特に限定しないが、鋼板温度を100~250℃に高めて圧延する温間圧延を採用することは、集合組織の改善を介して磁気特性をより向上する効果があるので、適用することが好ましい。
 上記の最終冷間圧延で最終板厚とした冷延板は、その後、通常公知の条件で仕上焼鈍を施した後、必要に応じて絶縁被膜を被成して製品板とする。ここで、上記絶縁被膜は、公知の無機コーティング、有機コーティング、無機-有機混合コーティングなどの中から、要求される特性や目的に応じて適宜使い分ければよく、特に限定しない。
 C:0.0015mass%、Si:3.2mass%、Mn:0.18mass%、P:0.07mass%、S:0.0015mass%、sol.Al:0.0008mass%およびN:0.0018mass%を含有し、その他の成分として、Sn、Sb、REM、MgおよびCaを表4に示す組成で含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を溶製し、鋼スラブとした後、1100℃×30分の再加熱後、熱間圧延して板厚1.6mmの熱延板とした後、連続焼鈍炉で、1050℃×60秒の均熱処理後、25℃/secで冷却する熱延板焼鈍を施した後、酸洗してスケールを除去し、冷間圧延して最終板厚0.18mmの冷延板とした。この際、上記冷間圧延における圧延油および圧下率配分は表5に示した条件とした。次いで、上記冷延板に、乾燥窒素-水素雰囲気中で1000℃×10秒の仕上焼鈍を施した後、絶縁コーティングを塗布して製品板とした。
 斯くして得た製品板から、外径45mm、内径33mmのリング(環状)試料を打ち抜き、これを10枚積層した後、1次巻線および2次巻線をそれぞれ100ターン巻いて、磁束密度B50および鉄損W10/400を測定した。また、X線回折を用いて、仕上焼鈍後の鋼板の板厚1/5層における{110}<001>方位、{111}<112>方位の強度を解析した。具体的には、板厚1/5層まで研磨して減厚したサンプルを10%硝酸で30秒間エッチングした後、X線シュルツ法にて、(110)、(200)、(211)面の正極点図を測定し、そのデータからODF(Orientation Distribution Function:結晶方位分布関数)解析を行い、各結晶方位の強度を算出した。解析には、ResMat社のソフトウェアTextoolsを用い、ADC(Arbitrarily Defined Cell)法で算出した。
 上記測定の結果を表4に併記した。この結果から、Sn、Sb、REM、MgおよびCaのいずれか1種以上を添加した鋼板(鋼No.B~I)は、添加していない鋼板(鋼No.A)より磁気特性がより向上していることがわかる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 C:0.0015mass%、Si:3.2mass%、Mn:0.18mass%、P:0.07mass%、S:0.0015mass%、sol.Al:0.0008mass%、N:0.0018mass%およびSn:0.06mass%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼スラブに1100℃×30分の再加熱を施し、熱間圧延して板厚1.6mmの熱延板とし、連続焼鈍炉で1050℃×60秒の均熱処理後、25℃/secで冷却する熱延板焼鈍を施した後、酸洗してスケールを除去した後、4スタンドのタンデム式圧延機を用いて冷間圧延し、最終板厚0.18mmの冷延板とした。ここで、上記冷間圧延はNo.1~No.4スタンドの摩擦係数が表6に示した値となるよう各スタンドに供給する圧延油の動粘度ν50を調整し、併せて、各スタンドの圧下率を同じく表6に示したように配分した。次いで、上記冷延板に、乾燥窒素-水素雰囲気中で1000℃×10秒の仕上焼鈍を施した後、絶縁コーティングを塗布して製品板とした。
 その後、上記製品板について、上記した実施例1と同じ方法で、磁束密度B50および鉄損W10/400を測定するとともに、仕上焼鈍後の鋼板の板厚1/5層における{110}<001>方位、{111}<112>方位の強度を計算した。その結果を表6に併記した。この結果から、いずれか1以上のスタンド(パス)の摩擦係数を0.030以上かつ圧下率を15%以上とすることで、{111}<112>方位強度が3以下、{110}<001>方位強度が0.45以上となり、磁気特性に優れる電磁鋼板が得られることがわかる。
Figure JPOXMLDOC01-appb-T000006

Claims (3)

  1. C:0.005mass%以下、Si:1.0~5.0mass%、Mn:0.04~3.0mass%、sol.Al:0.005mass%以下、P:0.2mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、仕上焼鈍を施す一連の工程からなる無方向性電磁鋼板の製造方法において、
    前記冷間圧延の最終冷間圧延における少なくとも1パスを、摩擦係数μが0.030以上かつ圧下率が15%以上の圧延とする、ここで、最終冷間圧延とは、1回の冷間圧延で最終板厚とする場合にはその冷間圧延をいい、中間焼鈍を挟む2回以上の冷間圧延で最終板厚とする場合には、最後の中間焼鈍の後に行う最後の冷間圧延をいう、ことを特徴とする無方向性電磁鋼板の製造方法。
  2. 前記最終冷間圧延では、50℃における動粘度ν50が40mm/s以下の圧延油を用いることを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
  3. 前記鋼素材は、前記成分組成に加えてさらに、Sn:0.005~0.2mass%、Sb:0.005~0.2mass%、REM:0.0005~0.02mass%、Mg:0.0005~0.02mass%およびCa:0.0005~0.02mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。
PCT/JP2020/001450 2019-04-22 2020-01-17 無方向性電磁鋼板の製造方法 WO2020217604A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217031209A KR102566590B1 (ko) 2019-04-22 2020-01-17 무방향성 전자 강판의 제조 방법
MX2021012533A MX2021012533A (es) 2019-04-22 2020-01-17 Metodo para producir una hoja de acero electrico no orientado.
EP20795076.7A EP3943203B1 (en) 2019-04-22 2020-01-17 Method for producing non-oriented electrical steel sheet
JP2020521466A JP6954464B2 (ja) 2019-04-22 2020-01-17 無方向性電磁鋼板の製造方法
US17/603,239 US20220186338A1 (en) 2019-04-22 2020-01-17 Method for producing non-oriented electrical steel sheet
CN202080025278.8A CN113727788B (zh) 2019-04-22 2020-01-17 无取向性电磁钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081033 2019-04-22
JP2019081033 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020217604A1 true WO2020217604A1 (ja) 2020-10-29

Family

ID=72942424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001450 WO2020217604A1 (ja) 2019-04-22 2020-01-17 無方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US20220186338A1 (ja)
EP (1) EP3943203B1 (ja)
JP (1) JP6954464B2 (ja)
KR (1) KR102566590B1 (ja)
CN (1) CN113727788B (ja)
MX (1) MX2021012533A (ja)
TW (1) TWI732507B (ja)
WO (1) WO2020217604A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210955A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 回転電機、ステータの鉄心およびロータの鉄心のセット、回転電機の製造方法、無方向性電磁鋼板の製造方法、回転電機のロータおよびステータの製造方法並びに無方向性電磁鋼板のセット
TWI823314B (zh) * 2021-03-31 2023-11-21 日商日本製鐵股份有限公司 轉子鐵芯、轉子及旋轉電機
TWI823313B (zh) * 2021-03-31 2023-11-21 日商日本製鐵股份有限公司 轉子鐵芯、轉子及旋轉電機
EP4296381A4 (en) * 2021-02-17 2024-08-14 Nippon Steel Corporation NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR MANUFACTURING SAME

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231134B1 (ja) * 2022-10-26 2023-03-01 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294211A (ja) * 1997-04-22 1998-11-04 Nippon Steel Corp 磁束密度が高く、鉄損が低く、異方性の少ない無方向性電磁鋼板の製造方法
JP2000160248A (ja) 1998-11-26 2000-06-13 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼熱延板の製造方法
JP2002003944A (ja) 2000-06-16 2002-01-09 Kawasaki Steel Corp 磁気特性に優れた無方向性電磁鋼板の製造方法
JP2005200756A (ja) 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JP2009203520A (ja) * 2008-02-27 2009-09-10 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2012017933A1 (ja) * 2010-08-04 2012-02-09 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP2012132070A (ja) * 2010-12-22 2012-07-12 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751241B2 (ja) * 1988-11-07 1995-06-05 川崎製鉄株式会社 ステンレス冷延鋼帯の製造方法
KR930010323B1 (ko) * 1990-04-12 1993-10-16 신닛뽄 세이데쓰 가부시끼가이샤 고자속밀도를 가지고 있는 이방향성 전자강판의 제조방법
CN1039352C (zh) * 1991-10-22 1998-07-29 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制法
JP3333794B2 (ja) * 1994-09-29 2002-10-15 川崎製鉄株式会社 無方向性電磁鋼板の製造方法
EP0875586A1 (en) * 1995-12-05 1998-11-04 Nippon Steel Corporation Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JPH11189850A (ja) * 1997-12-24 1999-07-13 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
EP1193004B1 (en) * 2000-03-09 2006-08-23 JFE Steel Corporation Rolling oil supplying method for cold rolling
JP2003251401A (ja) * 2002-02-27 2003-09-09 Jfe Steel Kk 冷延鋼板の製造方法および溶融亜鉛めっき鋼板の製造方法
CN1258608C (zh) * 2003-10-27 2006-06-07 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
JP5573175B2 (ja) * 2010-01-14 2014-08-20 Jfeスチール株式会社 方向性電磁鋼板の製造方法
PL2634288T3 (pl) * 2010-10-29 2018-05-30 Nippon Steel & Sumitomo Metal Corporation Blacha ze stali elektrotechnicznej oraz sposób jej wytwarzania
JP5263363B2 (ja) * 2011-10-11 2013-08-14 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR101598312B1 (ko) * 2011-11-11 2016-02-26 신닛테츠스미킨 카부시키카이샤 무방향성 전자 강판 및 그 제조 방법
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR20150093807A (ko) * 2013-02-21 2015-08-18 제이에프이 스틸 가부시키가이샤 자기 특성이 우수한 세미프로세스 무방향성 전기 강판의 제조 방법
JP6260800B2 (ja) * 2014-07-31 2018-01-17 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法
WO2016111088A1 (ja) * 2015-01-07 2016-07-14 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6020863B2 (ja) * 2015-01-07 2016-11-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN105803333A (zh) * 2015-01-20 2016-07-27 日立金属株式会社 Fe-Ni系合金薄板的制造方法
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6451730B2 (ja) * 2016-01-15 2019-01-16 Jfeスチール株式会社 無方向性電磁鋼板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294211A (ja) * 1997-04-22 1998-11-04 Nippon Steel Corp 磁束密度が高く、鉄損が低く、異方性の少ない無方向性電磁鋼板の製造方法
JP2000160248A (ja) 1998-11-26 2000-06-13 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼熱延板の製造方法
JP2002003944A (ja) 2000-06-16 2002-01-09 Kawasaki Steel Corp 磁気特性に優れた無方向性電磁鋼板の製造方法
JP2005200756A (ja) 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JP2009203520A (ja) * 2008-02-27 2009-09-10 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2012017933A1 (ja) * 2010-08-04 2012-02-09 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP2012132070A (ja) * 2010-12-22 2012-07-12 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEO, N.H.: "Role of cold rolling texture and heating rate on final texture and magnetic induction in electrical steels", MATERIALS LETTERS, vol. 59, no. 17, 31 July 2005 (2005-07-31), pages 2170 - 2173, XP025257366, DOI: 10.1016/j.matlet.2005.02.057 *
YANG, H.P . ET AL.: "Through-thickness shear strain control in cold rolled silicon steel by the coupling effect of roll gap geometry and friction", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, vol. 210, no. 12, 1 September 2010 (2010-09-01), pages 1545 - 1550, XP027118262 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296381A4 (en) * 2021-02-17 2024-08-14 Nippon Steel Corporation NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR MANUFACTURING SAME
WO2022210955A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 回転電機、ステータの鉄心およびロータの鉄心のセット、回転電機の製造方法、無方向性電磁鋼板の製造方法、回転電機のロータおよびステータの製造方法並びに無方向性電磁鋼板のセット
JP7184226B1 (ja) * 2021-03-31 2022-12-06 日本製鉄株式会社 回転電機、ステータの鉄心およびロータの鉄心のセット、回転電機の製造方法、無方向性電磁鋼板の製造方法、回転電機のロータおよびステータの製造方法並びに無方向性電磁鋼板のセット
KR20230053716A (ko) * 2021-03-31 2023-04-21 닛폰세이테츠 가부시키가이샤 회전 전기 기기, 스테이터의 철심 및 로터의 철심의 세트, 회전 전기 기기의 제조 방법, 무방향성 전자 강판의 제조 방법, 회전 전기 기기의 로터 및 스테이터의 제조 방법 그리고 무방향성 전자 강판의 세트
KR102571587B1 (ko) 2021-03-31 2023-08-29 닛폰세이테츠 가부시키가이샤 회전 전기 기기, 스테이터의 철심 및 로터의 철심의 세트, 회전 전기 기기의 제조 방법, 무방향성 전자 강판의 제조 방법, 회전 전기 기기의 로터 및 스테이터의 제조 방법 그리고 무방향성 전자 강판의 세트
TWI823314B (zh) * 2021-03-31 2023-11-21 日商日本製鐵股份有限公司 轉子鐵芯、轉子及旋轉電機
TWI823313B (zh) * 2021-03-31 2023-11-21 日商日本製鐵股份有限公司 轉子鐵芯、轉子及旋轉電機
US12009709B2 (en) 2021-03-31 2024-06-11 Nippon Steel Corporation Rotating electrical machine, stator core and rotor core set, method for manufacturing rotating electrical machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and non-oriented electrical steel sheet set
EP4317476A4 (en) * 2021-03-31 2025-03-12 Nippon Steel Corp ROTATING ELECTRIC MACHINE, STATOR CORE AND ROTOR CORE ASSEMBLY, METHOD FOR MANUFACTURING ROTATING ELECTRIC MACHINE, METHOD FOR MANUFACTURING NON-ORIENTED ELECTROMAGNETIC STEEL PLATE, METHOD FOR MANUFACTURING ROTOR AND STATOR OF ROTATING ELECTRIC MACHINE, AND NON-ORIENTED ELECTROMAGNETIC STEEL PLATE ASSEMBLY

Also Published As

Publication number Publication date
TW202039871A (zh) 2020-11-01
JP6954464B2 (ja) 2021-10-27
KR20210132166A (ko) 2021-11-03
EP3943203A4 (en) 2022-05-04
KR102566590B1 (ko) 2023-08-11
US20220186338A1 (en) 2022-06-16
TWI732507B (zh) 2021-07-01
CN113727788B (zh) 2023-09-01
JPWO2020217604A1 (ja) 2021-05-06
CN113727788A (zh) 2021-11-30
MX2021012533A (es) 2021-11-12
EP3943203B1 (en) 2024-09-11
EP3943203A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP6954464B2 (ja) 無方向性電磁鋼板の製造方法
US11718891B2 (en) Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
WO2020153387A1 (ja) 無方向性電磁鋼板とその製造方法
TWI575075B (zh) A non-oriented electrical steel sheet, a manufacturing method thereof, and an electric motor core and a manufacturing method thereof
WO2021205880A1 (ja) 無方向性電磁鋼板、コア、冷間圧延鋼板、無方向性電磁鋼板の製造方法および冷間圧延鋼板の製造方法
JP6236470B2 (ja) 磁気特性に優れる無方向性電磁鋼板
WO2013058239A1 (ja) 方向性電磁鋼板およびその製造方法
WO2018135414A1 (ja) 無方向性電磁鋼板およびその製造方法
JP6388092B1 (ja) 無方向性電磁鋼板およびその製造方法
WO2017022360A1 (ja) 磁気特性に優れる無方向性電磁鋼板の製造方法
CN113165033A (zh) 无取向性电磁钢板的制造方法
WO2019225529A1 (ja) 無方向性電磁鋼板およびその製造方法
JP2022514793A (ja) 無方向性電磁鋼板およびその製造方法
CN116802328A (zh) 取向性电磁钢板的制造方法和电磁钢板制造用轧制设备
WO2022004752A1 (ja) 方向性電磁鋼板の製造方法
JP2014173103A (ja) 方向性電磁鋼板の製造方法
WO2024172115A1 (ja) 無方向性電磁鋼板、モータコアおよびモータ
WO2024089827A1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
CN116848271A (zh) 无取向电工钢板及其制造方法
WO2022186299A1 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板用熱延鋼板
JPS61238916A (ja) 薄手方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020521466

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031209

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795076

Country of ref document: EP

Effective date: 20211022