WO2020204188A1 - Production method for cyclic olefin copolymer - Google Patents
Production method for cyclic olefin copolymer Download PDFInfo
- Publication number
- WO2020204188A1 WO2020204188A1 PCT/JP2020/015411 JP2020015411W WO2020204188A1 WO 2020204188 A1 WO2020204188 A1 WO 2020204188A1 JP 2020015411 W JP2020015411 W JP 2020015411W WO 2020204188 A1 WO2020204188 A1 WO 2020204188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- bond
- atom
- cyclic olefin
- olefin copolymer
- Prior art date
Links
- 229920000089 Cyclic olefin copolymer Polymers 0.000 title claims abstract description 61
- 239000004713 Cyclic olefin copolymer Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 71
- 239000000178 monomer Substances 0.000 claims abstract description 53
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000005977 Ethylene Substances 0.000 claims abstract description 46
- 239000012968 metallocene catalyst Substances 0.000 claims abstract description 46
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims abstract description 34
- 239000012535 impurity Substances 0.000 claims abstract description 31
- 230000009477 glass transition Effects 0.000 claims abstract description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 22
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 239000003446 ligand Substances 0.000 claims abstract description 15
- 229910052723 transition metal Chemical group 0.000 claims abstract description 15
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical group C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 150000003624 transition metals Chemical group 0.000 claims abstract description 14
- 230000000737 periodic effect Effects 0.000 claims abstract description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 68
- 150000002430 hydrocarbons Chemical group 0.000 claims description 35
- 125000005842 heteroatom Chemical group 0.000 claims description 34
- 125000001424 substituent group Chemical group 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 25
- 125000005843 halogen group Chemical group 0.000 claims description 22
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 15
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 150000008040 ionic compounds Chemical class 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 125000004429 atom Chemical group 0.000 claims description 11
- 229910003849 O-Si Inorganic materials 0.000 claims description 7
- 229910003872 O—Si Inorganic materials 0.000 claims description 7
- 229910007991 Si-N Inorganic materials 0.000 claims description 7
- 229910008045 Si-Si Inorganic materials 0.000 claims description 7
- 229910006294 Si—N Inorganic materials 0.000 claims description 7
- 229910006411 Si—Si Inorganic materials 0.000 claims description 7
- 125000005234 alkyl aluminium group Chemical group 0.000 claims description 7
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 6
- 238000001938 differential scanning calorimetry curve Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910014299 N-Si Inorganic materials 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- -1 Cyclic olefin Chemical class 0.000 description 190
- 239000003054 catalyst Substances 0.000 description 37
- 125000000217 alkyl group Chemical group 0.000 description 26
- 239000000203 mixture Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- WLTSXAIICPDFKI-UHFFFAOYSA-N 3-dodecene Chemical compound CCCCCCCCC=CCC WLTSXAIICPDFKI-UHFFFAOYSA-N 0.000 description 11
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 125000000753 cycloalkyl group Chemical group 0.000 description 9
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 150000002848 norbornenes Chemical class 0.000 description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 8
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 7
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 6
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- OTTZHAVKAVGASB-UHFFFAOYSA-N hept-2-ene Chemical compound CCCCC=CC OTTZHAVKAVGASB-UHFFFAOYSA-N 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000001905 inorganic group Chemical group 0.000 description 4
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 150000003623 transition metal compounds Chemical class 0.000 description 4
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 2
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 2
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- KGCRXHYTNRMHCF-UHFFFAOYSA-N 6-methyl-2-(2-methylpropyl)oxaluminane Chemical compound CC(C)C[Al]1CCCC(C)O1 KGCRXHYTNRMHCF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 2
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000001118 alkylidene group Chemical group 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000012986 chain transfer agent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000005185 naphthylcarbonyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- WCFQIFDACWBNJT-UHFFFAOYSA-N $l^{1}-alumanyloxy(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]O[Al] WCFQIFDACWBNJT-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- LCSLWNXVIDKVGD-KQQUZDAGSA-N (3e,7e)-deca-3,7-diene Chemical compound CC\C=C\CC\C=C\CC LCSLWNXVIDKVGD-KQQUZDAGSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004343 1-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- SKDGWNHUETZZCS-UHFFFAOYSA-N 2,3-ditert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(O)=C1C(C)(C)C SKDGWNHUETZZCS-UHFFFAOYSA-N 0.000 description 1
- GDGDLBOVIAWEAD-UHFFFAOYSA-N 2,4-ditert-butyl-6-(3,5-ditert-butyl-2-hydroxyphenyl)phenol Chemical group CC(C)(C)C1=CC(C(C)(C)C)=CC(C=2C(=C(C=C(C=2)C(C)(C)C)C(C)(C)C)O)=C1O GDGDLBOVIAWEAD-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical group CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- 125000003890 2-phenylbutyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- OLGHJTHQWQKJQQ-UHFFFAOYSA-N 3-ethylhex-1-ene Chemical compound CCCC(CC)C=C OLGHJTHQWQKJQQ-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SUJVAMIXNUAJEY-UHFFFAOYSA-N 4,4-dimethylhex-1-ene Chemical compound CCC(C)(C)CC=C SUJVAMIXNUAJEY-UHFFFAOYSA-N 0.000 description 1
- KLCNJIQZXOQYTE-UHFFFAOYSA-N 4,4-dimethylpent-1-ene Chemical compound CC(C)(C)CC=C KLCNJIQZXOQYTE-UHFFFAOYSA-N 0.000 description 1
- XUFPYLQWLKKGDQ-UHFFFAOYSA-N 4,4a,9,9a-tetrahydro-1,4-methano-1h-fluorene Chemical compound C12CC3=CC=CC=C3C1C1C=CC2C1 XUFPYLQWLKKGDQ-UHFFFAOYSA-N 0.000 description 1
- OPMUAJRVOWSBTP-UHFFFAOYSA-N 4-ethyl-1-hexene Chemical compound CCC(CC)CC=C OPMUAJRVOWSBTP-UHFFFAOYSA-N 0.000 description 1
- SUWJESCICIOQHO-UHFFFAOYSA-N 4-methylhex-1-ene Chemical compound CCC(C)CC=C SUWJESCICIOQHO-UHFFFAOYSA-N 0.000 description 1
- BSFWGXOMEGLIPL-UHFFFAOYSA-N 4-prop-1-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C=CC1(C=CC)C2 BSFWGXOMEGLIPL-UHFFFAOYSA-N 0.000 description 1
- JGLIHSMBVDZMSA-UHFFFAOYSA-N 5-(cyclohexen-1-yl)bicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1=CCCCC1 JGLIHSMBVDZMSA-UHFFFAOYSA-N 0.000 description 1
- YSWATWCBYRBYBO-UHFFFAOYSA-N 5-butylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCC)CC1C=C2 YSWATWCBYRBYBO-UHFFFAOYSA-N 0.000 description 1
- DGBJYYFKBCUCNY-UHFFFAOYSA-N 5-cyclopentylbicyclo[2.2.1]hept-2-ene Chemical compound C1CCCC1C1C(C=C2)CC2C1 DGBJYYFKBCUCNY-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- QHJIJNGGGLNBNJ-UHFFFAOYSA-N 5-ethylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CC)CC1C=C2 QHJIJNGGGLNBNJ-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-UHFFFAOYSA-N 5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CC)CC1C=C2 OJOWICOBYCXEKR-UHFFFAOYSA-N 0.000 description 1
- WMWDGZLDLRCDRG-UHFFFAOYSA-N 5-hexylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCC)CC1C=C2 WMWDGZLDLRCDRG-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- GOLQZWYZZWIBCA-UHFFFAOYSA-N 5-octylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCCCC)CC1C=C2 GOLQZWYZZWIBCA-UHFFFAOYSA-N 0.000 description 1
- PGNNHYNYFLXKDZ-UHFFFAOYSA-N 5-phenylbicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1=CC=CC=C1 PGNNHYNYFLXKDZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 0 C*(C(C)(C)C)NC1C2C=CC=CC2C2C=CC=CC12 Chemical compound C*(C(C)(C)C)NC1C2C=CC=CC2C2C=CC=CC12 0.000 description 1
- 101150096839 Fcmr gene Proteins 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000006269 biphenyl-2-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C(*)C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000006268 biphenyl-3-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C([H])C(*)=C([H])C([H])=C1[H] 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- HQMRIBYCTLBDAK-UHFFFAOYSA-M bis(2-methylpropyl)alumanylium;chloride Chemical compound CC(C)C[Al](Cl)CC(C)C HQMRIBYCTLBDAK-UHFFFAOYSA-M 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004850 cyclobutylmethyl group Chemical group C1(CCC1)C* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000006622 cycloheptylmethyl group Chemical group 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000006623 cyclooctylmethyl group Chemical group 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- GVRWIAHBVAYKIZ-UHFFFAOYSA-N dec-3-ene Chemical compound CCCCCCC=CCC GVRWIAHBVAYKIZ-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-O dimethyl(phenyl)azanium Chemical compound C[NH+](C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-O 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- JFNLZVQOOSMTJK-UHFFFAOYSA-N norbornene Chemical group C1C2CCC1C=C2 JFNLZVQOOSMTJK-UHFFFAOYSA-N 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- MNBIQZQDQOPSKO-UHFFFAOYSA-N pentadeca-1,3,5,10-tetraene Chemical compound CCCCC=CCCCC=CC=CC=C MNBIQZQDQOPSKO-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- PMTPAGVGEXGVNI-UHFFFAOYSA-N tetracyclo[10.2.1.02,11.04,9]pentadeca-2,4,6,13-tetraene Chemical compound C12=CC3=CC=CCC3CC2C2CC1C=C2 PMTPAGVGEXGVNI-UHFFFAOYSA-N 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- OUZWXMBUAMCJMH-UHFFFAOYSA-N tetradeca-1,3,5,10-tetraene Chemical compound CCCC=CCCCC=CC=CC=C OUZWXMBUAMCJMH-UHFFFAOYSA-N 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- NDUUEFPGQBSFPV-UHFFFAOYSA-N tri(butan-2-yl)alumane Chemical compound CCC(C)[Al](C(C)CC)C(C)CC NDUUEFPGQBSFPV-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- SDTYFWAQLSIEBH-UHFFFAOYSA-N undec-3-ene Chemical compound CCCCCCCC=CCC SDTYFWAQLSIEBH-UHFFFAOYSA-N 0.000 description 1
- LMISWUPDWKMCIH-UHFFFAOYSA-N undeca-3,7-diene Chemical compound CCCC=CCCC=CCC LMISWUPDWKMCIH-UHFFFAOYSA-N 0.000 description 1
- AZGPUOZQDCSPRB-UHFFFAOYSA-N undeca-3,8-diene Chemical compound CCC=CCCCC=CCC AZGPUOZQDCSPRB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
Definitions
- the present invention relates to a method for producing a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene.
- Cyclic olefin homopolymers and cyclic olefin copolymers have low moisture absorption and high transparency, and are used in various applications including the field of optical materials such as optical disk substrates, optical films, and optical fibers.
- a typical cyclic olefin copolymer there is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin. Since the glass transition temperature of the copolymer of cyclic olefin and ethylene can be changed according to the copolymerization composition of cyclic olefin and ethylene, the copolymer weight in which the glass transition temperature (Tg) is adjusted in a wide temperature range. Copolymerization can be produced (see, for example, Non-Patent Document 1).
- a low glass transition temperature of 130 ° C. or lower is often desired because it is easy to process various molded products such as films and sheets.
- the activity of the catalyst tends to decrease. Therefore, there is a tendency that the production efficiency of the cyclic olefin copolymer is lowered. Therefore, from this point as well, it is often desired to produce a cyclic olefin copolymer having a low glass transition temperature.
- the present invention has been made in view of the above problems, and even if a norbornene monomer and a monomer containing ethylene are polymerized at a high temperature at which polyethylene-like impurities are likely to be generated, the formation of polyethylene-like impurities is suppressed. It is an object of the present invention to provide a method for producing a cyclic olefin copolymer capable of efficiently producing a cyclic olefin copolymer having a low glass transition temperature (Tg) and excellent processability.
- Tg glass transition temperature
- the present inventors polymerize a monomer containing norbornene monomer and ethylene at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst to obtain a cyclic olefin copolymer having a glass transition temperature of 130 ° C. or lower.
- the pressure for charging ethylene into the polymerization vessel was set to 0.3 MPa or more, and the ligand containing the cyclopentadiene ring and the nitrogen atom were bonded to the transition metal of Group IV of the periodic table and the silicon atom.
- the metallocene catalyst has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom.
- a DSC curve obtained by measuring a sample of a cyclic olefin copolymer with a differential scanning calorimeter under a nitrogen atmosphere and a heating rate of 20 ° C./min according to the method described in JIS K7121 is obtained.
- the metallocene catalyst has the following formula (a1):
- R a1 to R a3 are hydrocarbon groups having 1 to 20 carbon atoms which may be the same or different and may contain a hetero atom.
- R a4 is a hydrocarbon group.
- R a1 and R a2 are C—Si bond, O—Si bond, Si—Si bond, or N, respectively. -Si bond to a silicon atom.
- R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
- R a4 contains a hetero atom.
- Ra 4 is bonded to the metal atom M by a CM bond.
- R a5 to Ra 8 may be independently the same or different, and hydrogen. It is an organic substituent or an inorganic substituent having 1 to 20 carbon atoms which may contain an atom or a hetero atom. Two groups adjacent to each other on the 5-membered ring of R a5 to R a8 are bonded to each other.
- M may be Ti, Zr, or Hf.
- the metallocene compound represented by the formula (a1) is the following formula (a2): (In the formula (a2), R a1 to R a4 , and M are the same as those in the formula (a1).
- R a1 to R a3 may be independently the same or different, and contain heteroatoms. It may be a hydrocarbon group having 1 to 20 carbon atoms.
- R a4 is a hydrocarbon group or a halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
- R a1 and Ra 2 are. , C—Si bond, O—Si bond, Si—Si bond, or N—Si bond to the silicon atom.
- RA3 is CN bond, ON bond, Si—N bond, or N— It is bonded to a nitrogen atom by an N bond.
- R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom
- R a4 is bonded to a metal atom M by a CM bond.
- a10 and Ra11 are organic substituents having 1 to 20 carbon atoms or inorganic substituents, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively.
- P and q. Are independently integers from 0 to 4.
- R a10 and R a11 are each plural, the plurality of R a10 and R a11 may be different groups.
- Two of the plurality of R a10 . group, or when two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring may also form a ring such two groups are bonded to each other .
- M is, Ti, Zr , Or Hf.
- the glass transition temperature (Tg) is increased while suppressing the formation of polyethylene-like impurities. It is possible to provide a method for producing a cyclic olefin copolymer capable of efficiently producing a cyclic olefin copolymer having low workability and excellent processability.
- a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene and having a glass transition temperature of 130 ° C. or lower is produced.
- the manufacturing method is At least, the norbornene monomer and ethylene are charged as monomers in the polymerization vessel. It comprises polymerizing the monomer in the polymerization vessel in the presence of a metallocene catalyst at a temperature of 50 ° C. or higher.
- charging the norbornene monomer and ethylene as monomers into the polymerization vessel is also referred to as a charging step.
- polymerizing the monomer in the polymerization vessel at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst is also referred to as a polymerization step.
- the pressure for charging ethylene into the polymerization vessel is 0.3 MPa or more.
- the charging pressure is a gauge pressure.
- the monomer in the polymerization vessel is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst.
- the metallocene catalyst used for the polymerization has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom.
- ⁇ Preparation process> In the charging step, norbornene monomer and ethylene are charged into the polymerization vessel as monomers.
- the polymerization vessel may be charged with a norbornene monomer and a monomer other than ethylene as long as the object of the present invention is not impaired.
- the total of the ratio of the structural units derived from the norbornene monomer and the ratio of the structural units derived from ethylene in the cyclic olefin copolymer is typically 80% by mass or more with respect to all the structural units. Preferably, 95% by mass or more is more preferable. 98% by mass or more is more preferable.
- the norbornene monomer and monomers other than ethylene are not particularly limited as long as they can be copolymerized with the norbornene monomer and ethylene.
- Typical examples of such other monomers include ⁇ -olefins.
- the ⁇ -olefin may be substituted with at least one substituent such as a halogen atom.
- C3 to C12 ⁇ -olefins are preferable.
- the ⁇ -olefins of C3 to C12 are not particularly limited, but for example, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1.
- 1-hexene, 1-octene, and 1-decene are preferable.
- Ethylene is charged into the polymerization vessel so that the ethylene charging pressure in the polymerization vessel is 0.3 MPa or more.
- the ethylene charging pressure is preferably 0.4 MPa or more, more preferably 0.5 MPa or more.
- Increasing the ethylene charging pressure can reduce the amount of catalyst used per produced polymer.
- the ethylene charging pressure is, for example, preferably 10 MPa or less, more preferably 5 MPa or less, and even more preferably 3 MPa or less.
- a solvent may be charged in the polymerization vessel together with the norbornene monomer and ethylene.
- the solvent is not particularly limited as long as it does not inhibit the polymerization reaction.
- solvents include hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, decahydronaphthalene (decalin), benzene, toluene, and xylene, and chloroform, methylene chloride.
- Dichloromethane, dichloroethane, and halogenated hydrocarbon solvents such as chlorobenzene.
- the lower limit of the concentration of the norbornene monomer is preferably, for example, 0.5% by mass or more, and more preferably 10% by mass or more.
- the upper limit for example, 50% by mass or less is preferable, and 35% by mass or less is more preferable.
- the norbornene monomer will be described below.
- norbornene monomer examples include norbornene and substituted norbornene, and norbornene is preferable.
- the norbornene monomer can be used alone or in combination of two or more.
- substituted norbornene is not particularly limited, and examples of the substituent contained in this substituted norbornene include a halogen atom and a monovalent or divalent hydrocarbon group.
- substituent contained in this substituted norbornene include a halogen atom and a monovalent or divalent hydrocarbon group.
- Specific examples of the substituted norbornene include those represented by the following general formula (I).
- R 1 to R 12 may be the same or different from each other, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
- R 9 and R 10 and R 11 and R 12 may be integrated to form a divalent hydrocarbon group.
- R 9 or R 10 and R 11 or R 12 may form a ring with each other.
- n indicates 0 or a positive integer.
- R 1 to R 12 in the general formula (I) may be the same or different from each other, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
- R 1 to R 8 include hydrogen atoms; halogen atoms such as fluorine, chlorine, and bromine; alkyl groups having 1 to 20 carbon atoms, and the like, which may be different from each other. , Partially different, or all may be the same.
- R 9 to R 12 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a phenyl group and a trill.
- Substituent or unsubstituted aromatic hydrocarbon groups such as groups, ethylphenyl groups, isopropylphenyl groups, naphthyl groups and anthryl groups; benzyl group, phenethyl group and other alkyl groups substituted with aryl groups and the like. Yes, they may be different, partially different, or all identical.
- R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group
- a divalent hydrocarbon group include, for example, an alkylidene group such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
- the formed ring may be a monocyclic ring, a polycyclic ring, or a polycyclic ring having a crosslink. , It may be a ring having a double bond, or it may be a ring composed of a combination of these rings. Further, these rings may have a substituent such as a methyl group.
- substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo [2.2.1] hepta-2-ene and 5,5-dimethyl-bicyclo [2.2.1] hepta-. 2-ene, 5-ethyl-bicyclo [2.2.1] hepta-2-ene, 5-butyl-bicyclo [2.2.1] hepta-2-ene, 5-ethylidene-bicyclo [2.2.
- Cyclic olefin of the ring Tetracyclo [4.4.0.1 2,5 . 17 and 10 ]
- Dodeca-3-ene also simply referred to as tetracyclododecene
- 8-methyltetracyclo 4.4.0.1 2,5 . 1 7, 10
- Dodeca-3-ene, 8-ethyltetracyclo 4.4.0.1 2,5 . 1 7, 10
- Dodeca-3-ene, 8-ethylidenetetracyclo 4.4.0.1 2,5 .
- 4-ring cyclic olefins such as dodeca-3-ene; 8-Cyclopentyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ]
- Tetradeca-4,9,11,13-tetraene also called 1,4-methano-1,4,4a, 9a-tetrahydrofluorene
- tetracyclo 8.4.1, 4,7 . 0 1,10 1 .
- Pentadeca-5,10,12,14-tetraene also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene
- pentacyclo [6.6.1. 1 3, 6 . 0 2,7 . 09,14 ] -4-hexadecene
- pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene
- alkyl-substituted norbornene for example, bicyclo [2.2.1] hepta-2-ene substituted with one or more alkyl groups
- alkylidene-substituted norbornene for example, bicyclo substituted with one or more alkylidene groups
- [2.2.1] hepta-2-ene) is preferred, 5-ethylidene-bicyclo [2.2.1] hepta-2-ene (common name: 5-ethylidene-2-norbornene, or simply ethylidene norbornene). ) Is particularly preferable.
- the monomer in the polymerization vessel is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst.
- a metallocene catalyst a catalyst having a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom is used.
- a substituent may be bonded to the above-mentioned nitrogen atom and silicon atom, but the substituent bonded to the nitrogen atom and the silicon atom is not particularly limited as long as the object of the present invention is not impaired.
- Ti As the Group IV transition metal of the periodic table in the metallocene catalyst, Ti, Zr, or Hf is preferable, and Ti is more preferable.
- the ligand containing the cyclopentadiene ring contained in the metallocene catalyst will be described in detail as a ligand for the formulas (a1) and (a2) described later.
- a preferred example of such a metallocene catalyst is a metallocene compound represented by the following formula (a1).
- Ra1 to Ra3 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, and may contain heteroatoms, respectively.
- R a4 is a hydrocarbon group or halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
- R a1 and R a2 are bonded to a silicon atom by a C—Si bond, an O—Si bond, a Si—Si bond, or an N—Si bond, respectively.
- R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
- R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom
- R a4 is bonded to the metal atom M by a CM bond.
- R a5 to R a8 are organic substituents or inorganic substituents having 1 to 20 carbon atoms, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively. Two adjacent groups on the 5-membered ring of R a5 to R a8 may be bonded to each other to form a ring.
- M is a Group IV transition metal of the Periodic Table, and Ti, Zr, or Hf is preferable.
- R a1 to Ra3 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, and may contain heteroatoms, respectively.
- R a4 is a hydrocarbon group or halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
- the type of the hetero atom is not particularly limited as long as the object of the present invention is not impaired.
- the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, a halogen atom and the like.
- R a1 and R a2 are bonded to a silicon atom by a C—Si bond, an O—Si bond, a Si—Si bond, or an N—Si bond, respectively.
- Preferable examples of R a1 and R a2 bonded to a silicon atom by a Si—Si bond are ⁇ SiR a9 3 , ⁇ Si (OR a9 ) R a92 2 , ⁇ Si (OR a9 ) 2 R a9 , and ⁇ Si.
- the group represented by (OR a9 ) 3 can be mentioned. Suitable examples of R a1 and R a2 bonded to the silicon atom by N-Si bonds, -NHR a9, and include groups represented by -NR a9 2. Here, all of the above Ra 9s are hydrocarbon groups.
- R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
- Preferable examples of R a3 that binds to a nitrogen atom by a Si—N bond are -SiR a9 3 , -Si (OR a9 ) R a9 2 , -Si (OR a9 ) 2 R a9 , and -Si (OR a9).
- the group represented by 3 is mentioned.
- all of the above Ra 9s are hydrocarbon groups.
- Hydrocarbon group as R a9 is described below for R a1 ⁇ R a4, it is the same as the hydrocarbon groups that do not contain heteroatoms.
- R a1 and R a2 are the same group.
- R a4 is a halogen atom
- examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
- R a1 to R a3 hydrocarbon groups containing no heteroatom are preferable because they are excellent in chemical stability.
- R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom
- a hydrocarbon group containing no hetero atom is preferable as in R a1 to R a3 .
- Examples of such hydrocarbon groups include linear or branched alkyl groups, linear or branched unsaturated aliphatic hydrocarbon groups which may have double bonds and / or triple bonds, and cycloalkyl. Groups, cycloalkylalkyl groups, aromatic hydrocarbon groups, and aralkyl groups are preferred.
- linear or branched alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-.
- Pentyl group isopentyl group, tert-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group.
- N-tridecyl group N-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecil group, and n-icosyl group.
- linear or branched unsaturated aliphatic hydrocarbon group which may have a double bond and / or a triple bond
- examples of the group include a group in which one or more single bonds are replaced with double bonds and / or triple bonds. More preferably, vinyl group, allyl group, 1-propenyl group, 3-butenyl group, 2-butenyl group, 1-butenyl group, ethenyl group, and propargyl group can be mentioned.
- cycloalkyl group examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotridecyl group, Examples thereof include a cyclotetradecyl group, a cyclopentadecyl group, a cyclohexadecyl group, a cycloheptadecyl group, a cyclooctadecyl group, a cyclononadecil group, and a cycloicosyl group.
- cycloalkylalkyl group examples include cyclopropylmethyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclohexylmethyl group, cycloheptylmethyl group, cyclooctylmethyl group, cyclononylmethyl group, cyclodecylmethyl group and cycloun.
- Decylmethyl group cyclododecylmethyl group, cyclotridecylmethyl group, cyclotetradecylmethyl group, cyclopentadecylmethyl group, cyclohexadecylmethyl group, cycloheptadecylmethyl group, cyclooctadecylmethyl group, cyclononadecilmethyl group, 2-Cyclopropylethyl group, 2-cyclobutylethyl group, 2-cyclopentylethyl group, 2-cyclohexylethyl group, 2-cycloheptylethyl group, 2-cyclooctylethyl group, 2-cyclononylethyl group, 2-cyclo Decylethyl group, 2-cycloundecylethyl group, 2-cyclododecylethyl group, 2-cyclotridecylethyl group, 2-cyclotetradecylethyl group, 2-cyclopenta
- aromatic hydrocarbon group examples include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group and 2,5-dimethyl.
- aralkyl group examples include benzyl group, phenethyl group, 1-phenylethyl group, 3-phenylpropyl group, 2-phenylpropyl group, 1-phenylpropyl group, 2-phenyl-1-methylethyl group and 1-.
- Phenyl-1-methylethyl group (cumyl group), 4-phenylbutyl group, 3-phenylbutyl group, 2-phenylbutyl group, 1-phenylbutyl group, 3-phenyl-2-methylpropyl group, 3-phenyl- 1-Methylpropyl group, 2-phenyl-1-methylpropyl group, 2-methyl-1-phenylpropyl group, 2-phenyl-1,1-dimethylethyl group, 2-phenyl-2,2-dimethylethyl group, Examples thereof include ⁇ -naphthylmethyl group, ⁇ -naphthylmethyl group, 2- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylethyl group, and 1- ⁇ -naphthylethyl group.
- R a1 preferably an alkyl group and aromatic hydrocarbon group having 6 to 20 carbon atoms having 1 to 20 carbon atoms, an alkyl group and 6 to 10 carbon atoms having 1 to 10 carbon atoms
- the aromatic hydrocarbon group of is more preferable, an alkyl group having 1 to 6 carbon atoms and a phenyl group are further preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.
- R a3 includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. preferable.
- R a4 includes an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
- An aralkyl group having 7 to 20 carbon atoms or a halogen atom is preferable.
- R a5 to R a8 may be independently the same or different, and may contain a hydrogen atom and a hetero atom.
- the organic substituent is not particularly limited as long as it is an organic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a1). ..
- an alkyl group having 1 to 6 carbon atoms an alkoxy group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an aliphatic acyl having 2 to 6 carbon atoms.
- Groups, benzoyl groups, phenyl groups, benzyl groups, and phenethyl groups are preferred.
- Isobutyloxy group, n-butyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group, acetyl group, propionyl group, butanoyl group, and phenyl group are more preferable.
- the inorganic substituent is not particularly limited as long as it is an inorganic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a1). ..
- Specific examples of the inorganic group include a halogen atom, a nitro group, a cyano group and the like.
- Preferable examples of the ligand containing a cyclopentadiene ring in the formula (a1) include a cyclopentadienyl group, a methylcyclopentadienyl group, a dimethylcyclopentadienyl group, a trimethylcyclopentadienyl group, and a tetra.
- a ligand having a fluorene skeleton is also preferable.
- the ligand having a fluorene skeleton will be described later in the formula (a2).
- the metallocene compound having the following structure is preferable because it is easy to prepare and obtain and has high activity.
- a metallocene compound containing a ligand having a fluorene skeleton represented by the following formula (a2) is also preferable.
- Ra1 to Ra4 and M are the same as those in the formula (a1).
- R a10 and R a11 are organic substituents or inorganic substituents having 1 to 20 carbon atoms, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively, and p and q is an independently integer of 0 to 4.
- the plurality of R a10 and R a11 may be different groups. If two groups of the plurality of R a10, or two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring, to form a ring the two groups are bonded to each other May be good.
- M is a Group IV transition metal of the Periodic Table, and Ti, Zr, or Hf is preferable.
- R a10 and R a11 are each independently, may be the same or different, a hydrogen atom, an organic substituent contain a heteroatom have carbon atoms which may 1 to 20, or inorganic substituent It is a group, and p and q are independently integers of 0 to 4.
- the plurality of R a10 and R a11 may be different groups.
- the organic substituent is not particularly limited as long as it is an organic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a2). ..
- an alkyl group having 1 to 6 carbon atoms an alkoxy group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an aliphatic acyl having 2 to 6 carbon atoms.
- Groups, benzoyl groups, phenyl groups, benzyl groups, and phenethyl groups are preferred.
- Isobutyloxy group, n-butyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group, acetyl group, propionyl group, butanoyl group, and phenyl group are more preferable.
- the inorganic substituent is not particularly limited as long as it is an inorganic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a2). ..
- Specific examples of the inorganic group include a halogen atom, a nitro group, a cyano group and the like.
- Such a ring is a fused ring that condenses with the aromatic ring contained in the fluorene skeleton in the formula (a2).
- the fused ring may be an aromatic ring or an aliphatic ring, and an aliphatic ring is preferable.
- the fused ring may have a hetero atom such as an oxygen atom, a nitrogen atom, and a sulfur atom in the ring.
- fluorene skeleton with a fused ring formed by two R a10 and / or two R a11 include the skeleton of the following formula.
- a preferred example of the metallocene compound represented by the formula (a2) described above is a metallocene compound having the following structure.
- the following metallocene compounds are preferable because they have high catalytic activity and are easily available and synthesized.
- the metallocene catalyst is preferably mixed with aluminoxane and / or an ionic compound to form a catalyst composition.
- the ionic compound is a compound that produces a cationic transition metal compound by reacting with a metallocene catalyst.
- the catalyst composition is preferably prepared using a solution of a metallocene catalyst.
- the solvent contained in the metallocene catalyst solution is not particularly limited.
- Preferred solvents include hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, decahydronaphthalene (decalin), mineral oil, benzene, toluene, and xylene, and chloroform, Examples thereof include halogenated hydrocarbon solvents such as methylene chloride, dichloromethane, dichloroethane, and chlorobenzene.
- the amount of the solvent used is not particularly limited as long as the catalyst composition having the desired performance can be produced.
- the concentrations of the metallocene catalyst, aluminoxane, and the ionic compound are preferably 0.00000001 to 100 mol / L, more preferably 0.00000005 to 50 mol / L, and particularly preferably 0.000000001 to 20 mol / L.
- a quantity of solvent is used.
- the value of (M b1 + M b2) / M a is preferably 1 to 200000 and more preferably 100 to 100,000, as particularly preferably at from 1000 to 80000, the liquid is mixed containing raw materials of the catalyst composition It is preferable to be done.
- the temperature at which the liquid containing the raw material of the catalyst composition is mixed is not particularly limited, but is preferably -100 to 100 ° C, more preferably -50 to 50 ° C.
- the mixing of the metallocene catalyst solution for preparing the catalyst composition with the aluminoxane and / or the ionic compound may be carried out in a device separate from the polymerization vessel before the polymerization, and the polymerization is carried out in the polymerization vessel. It may be done before or during polymerization.
- aluminoxane As the alminoxane, various aluminoxanes conventionally used as cocatalysts in the polymerization of various olefins can be used without particular limitation.
- the aluminoxane is an organic aluminoxane.
- one type of aluminoxane may be used alone, or two or more types may be used in combination.
- alkyl aluminoxane is preferably used as the aluminoxane.
- alkylaluminoxane examples include compounds represented by the following formulas (b1-1) or (b1-2).
- the alkylaluminoxane represented by the following formula (b1-1) or (b1-2) is a product obtained by reacting trialkylaluminum with water.
- R represents an alkyl group having 1 to 4 carbon atoms
- n represents an integer of 0 to 40, preferably 2 to 30.
- alkylaluminoxane examples include methylaluminoxane and modified methylaluminoxane in which a part of the methyl group of the methylaluminoxane is replaced with another alkyl group.
- modified methylaluminoxane for example, as the substituted alkyl group, a modified methylaluminoxane having an alkyl group having 2 to 4 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group and an isobutyl group is preferable, and particularly A modified methylaluminoxane in which a part of the methyl group is replaced with an isobutyl group is more preferable.
- alkylaluminoxane examples include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, methylisobutylaluminoxan and the like, and among them, methylaluminoxane and methylisobutylaluminoxane are preferable.
- Alkyl aluminoxane can be prepared by a known method. Further, as the alkylaluminoxane, a commercially available product may be used. Examples of commercially available alkylaluminoxane products include MMAO-3A, TMAO-200 series, TMAO-340 series, solid MAO (all manufactured by Tosoh Finechem Co., Ltd.), methylaminenoxane solution (manufactured by Albemarle Corporation), and the like. ..
- the ionic compound is a compound that produces a cationic transition metal compound by reacting with a metallocene catalyst.
- examples of such an ionic compound include an anion of tetrakis (pentafluorophenyl) borate, an amine cation having an active proton such as dimethylphenylammonium cation ((CH 3 ) 2 N (C 6 H 5 ) H + ), and (C 6 H). 5) 3 C + trisubstituted carbonium cation such as, carborane cation, can be used an ionic compound containing ions such as ferrocenium cation having metal carborane cation, a transition metal.
- a suitable example of an ionic compound is borate.
- Preferred specific examples of borate are tetrakis (pentafluorophenyl) trityl borate, dimethylphenylammonium tetrakis (pentafluorophenyl) borate, and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N-methyldinormal decyl.
- Examples thereof include N-methyldialkylammonium tetrakis (pentafluorophenyl) borate such as ammonium tetrakis (pentafluorophenyl) borate.
- an aluminoxane, an alkylaluminum compound, or one or more thereof is added into the polymerization vessel before adding a metallocene catalyst or a catalyst composition containing a metallocene catalyst. It is preferable to have one or more selected from aromatic compounds having a phenolic hydroxyl group and one or more halogen atoms on an aromatic ring, and hindered phenol.
- the phenolic hydroxyl group and the halogen atom are bonded on the same aromatic ring which may be a monocyclic ring or a fused ring.
- Hindered phenols are phenols having a bulky substituent at at least one of the two adjacent positions of the phenolic hydroxyl group.
- Examples of the bulky substituent include an alkyl group other than the methyl group such as an isopropyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and an alkoxy group. , Aryloxy group, substituted amino group, alkylthio group, arylthio group and the like.
- Specific examples of hindered phenol include, for example, 2,6-di-tert-butyl-p-cresol (BHT), 2,6-di-tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-.
- BHT 2,6-di-tert-butyl-p-cresol
- Di-tert-butylphenol is preferred.
- Hindered phenol contributes to an increase in the yield of the cyclic olefin copolymer by reacting with the alkylaluminum compound in the polymerization system. For this reason, hindered phenol is preferably used with alkylaluminum.
- hindered phenol may be used by mixing with alkylaluminum in a polymerization machine. A mixture obtained by mixing alkylaluminum and hindered phenol before polymerization may be introduced into the polymerization machine.
- Alminoxane is as described in the method for producing the catalyst composition.
- the alkylaluminum compound those conventionally used for polymerization of olefins and the like can be used without particular limitation.
- the alkylaluminum compound include compounds represented by the following general formula (II). (R 10 ) z AlX 3-z (II) (In formula (II), R 10 is an alkyl group having 1 to 15, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and z is an integer of 1 to 3.)
- alkyl group having 1 to 15 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-octyl group and the like.
- alkylaluminum compound examples include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, trin-butylaluminum, triisobutylaluminum, trisec-butylaluminum and trin-octylaluminum; dimethylaluminum chloride, Examples thereof include dialkylaluminum halides such as diisobutylaluminum chloride; dialkylaluminum hydrides such as diisobutylaluminum hydride; and dialkylaluminum alkoxides such as dimethylaluminummethoxyde.
- trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, trin-butylaluminum, triisobutylaluminum, trisec-butylaluminum and trin-octylaluminum
- the alkylaluminum compound acts as a chain transfer agent and promotes chain polymerization catalyzed by the catalyst composition described above.
- the chain transfer agent hydrogen is preferably used in addition to the alkylaluminum compound.
- the amount used is preferably 10 to 1,000,000 mol as the number of moles of aluminum in the aluminoxane with respect to 1 mol of the transition metal compound. , 100-100,000 mol is more preferred.
- the amount used is preferably 5 to 500,000 mol as the number of moles of aluminum per 1 mol of the transition metal compound. More preferably, 50,000 to 50,000 mol.
- the polymerization is preferably carried out in the presence of a metallocene catalyst, aluminoxane and hindered phenol, or in the presence of a metallocene catalyst, an ionic compound and alkylaluminum.
- a metallocene catalyst an ionic compound and alkylaluminum
- the polymerization conditions are not particularly limited as long as the polymerization temperature is 50 ° C. or higher and a cyclic olefin copolymer having a glass transition temperature of 130 ° C. or lower can be obtained, and known conditions can be used.
- the amount of catalyst used is derived from the amount of transition metal compound used in its preparation.
- the amount of the catalyst composition used is preferably 0.000000001 to 0.005 mol, preferably 0.00000001 mol to 0.0005 mol, based on 1 mol of the norbornene monomer, as the mass of the transition metal compound used in the preparation thereof. Is more preferable.
- the polymerization temperature is 50 ° C. or higher.
- the polymerization temperature is more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher, because the yield of the cyclic olefin copolymer is good.
- the upper limit of the temperature at the time of polymerization is not particularly limited.
- the upper limit of the temperature at the time of polymerization may be, for example, 200 ° C. or lower, 140 ° C. or lower, or 120 ° C. or lower.
- the polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the polymer is increased to a desired degree.
- the polymerization time varies depending on the temperature, the composition of the catalyst, and the composition of the monomer, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and 0.2 to 10 hours. More preferred.
- the catalyst composition is continuously added to the polymerization vessel.
- the cyclic olefin copolymer can be continuously produced, and the production cost of the cyclic olefin copolymer can be reduced.
- the glass transition temperature (Tg) is suppressed while suppressing the formation of polyethylene-like impurities.
- the glass transition temperature of the cyclic olefin copolymer is 130 ° C. or lower, preferably 120 ° C. or lower, and particularly preferably 100 ° C. or lower.
- the cyclic olefin copolymer produced by the above method is measured by a differential operating calorimeter (DSC) under a nitrogen atmosphere and a heating rate of 20 ° C./min according to the method described in JIS K7121. It is preferable that the obtained DSC curve does not have a peak of melting point (melting enthalpy) derived from polyethylene-like impurities. This means that the polyethylene-like impurities in the cyclic olefin copolymer are absent or extremely low. When the cyclic olefin copolymer contains polyethylene-like impurities, the peak of the melting point derived from the polyethylene-like impurities on the DSC curve is generally detected in the range of 100 ° C. to 140 ° C.
- the cyclic olefin copolymer produced by the above method has a low content of polyethylene-like impurities and is excellent in transparency. Therefore, the cyclic olefin-based copolymer produced by the above method is required to have a high degree of transparency in terms of optical function and aesthetics, such as an optical film or an optical sheet, a film for a packaging material, or a packaging material. It is particularly preferably used as a material for sheets.
- CC1 6.5% by mass (as Al atom content) MMAO-3A toluene solution ([ (CH 3 ) 0.7 (iso-C 4 H 9 ) 0.3 AlO]
- n methylisobutylaluminoxane represented by n , manufactured by Tosoh Finechem Co., Ltd., and 6 mol% trimethylaluminum based on total Al.
- CC2 9.0% by mass (as Al atom content) TMAO-211 toluene solution (solution of methylaluminoxane, manufactured by Toso Finechem Co., Ltd., still containing 26 mol% of trimethylaluminum with respect to total Al)
- CC3 2,6-di-tert-butyl-p-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.)
- CC4 Tetrakis (pentafluorophenyl) trityl borate (manufactured by Tokyo Chemical Industry Co., Ltd.)
- CC5 N-Methyldialkylammonium tetrakis (pentafluorophenyl) borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
- CC6 Triisobutylaluminum (manufactured by Tosoh Finechem Co.,
- the polymerization solvent shown in Table 2 and 90 mmol of 2-norbornene were added to a well-dried 150 mL stainless steel autoclave containing a stir bar.
- the cocatalysts listed in Table 1 were then added as described below.
- Examples 1 to 6 Examples 10 to 12 and Comparative Examples 1 to 4, CC1 or CC2 was added.
- Examples 3 and 11 CC1 was added, and then CC3 was further added.
- CC6 was added in Examples 7 to 9 and Examples 13 to 15, and CC3 was further added in Examples 9 and 15.
- CC4 or CC5 was added after the catalyst solution was added, as described later.
- the catalyst solution was prepared using the same solvent as the polymerization solvent shown in Table 2.
- the autoclave was heated to the polymerization temperature shown in Table 2, and then the catalyst solution was added so that the amount of the catalyst was the amount shown in Table 1.
- the catalyst solution was added so that the amount of the catalyst was as shown in Table 1, and then the solution of CC4 or CC5 prepared by using the polymerization solvent shown in Table 2 was added.
- an ethylene pressure with a gauge pressure of 0.7 MPa was applied. In Comparative Example 1, the ethylene pressure was 0.2 MPa.
- the total volume of the monomer solution immediately before applying ethylene pressure was 80 mL. After 15 minutes from the start of the polymerization, the ethylene supply was stopped, the pressure was carefully returned to normal pressure, and then isopropyl alcohol was added to the reaction solution to stop the reaction. Then, the polymerization solution was added to a mixed solvent of 300 mL of acetone, 200 mL of methanol or isopropyl alcohol, and 5 mL of hydrochloric acid to precipitate the copolymer. The copolymer was recovered by suction filtration, washed with acetone and methanol, and vacuum dried at 110 ° C. for 12 hours to obtain a copolymer of norbornene and ethylene. Table 1 shows the copolymer yield (kg) per 1 g of the catalyst, which is calculated from the amount of the catalyst used and the amount of the copolymer obtained.
- Tg ⁇ Glass transition temperature (Tg)> The Tg of the cyclic olefin copolymer was measured by the DSC method (method described in JIS K7121).
- DSC device Differential scanning calorimetry (DSC-Q1000 manufactured by TA Instrument) Measurement atmosphere: Nitrogen temperature rise condition: 20 ° C / min
- the calorific value (mJ / mg) was calculated from the peak area of the melting point derived from the polyethylene-like impurities observed in the range of 100 ° C. to 140 ° C. The larger the calculated calorific value, the higher the content of polyethylene-like impurities.
- ND in Table 2 indicates that a peak derived from polyethylene-like impurities is not detected on the DSC curve.
- a monomer containing a norbornene monomer and polyethylene is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst, and the glass transition temperature is 130 ° C. or lower.
- the pressure of polyethylene charged into the polymerization vessel is set to 0.3 MPa or more, and the ligand containing the cyclopentadiene ring and the nitrogen atom are the transition metal (Ti) of Group IV of the periodic table and silicon.
- the glass transition temperature (Tg) can be increased while suppressing the formation of polyethylene-like impurities even when polymerized at a high temperature at which polyethylene-like impurities are likely to be generated. It can be seen that a cyclic olefin copolymer having low workability and excellent workability can be efficiently produced. It is practically preferable because a cyclic olefin copolymer yield of 0.5 kg or more can be obtained per 1 g of catalyst.
- Comparative Examples 2 to 4 using a metallocene compound having no structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom, the formation of polyethylene-like impurities could not be suppressed. It was. Further, even when the same catalyst as in Example was used, in Comparative Example 1 in which the pressure for charging ethylene into the polymerization vessel was less than 0.3 MPa, the yield of the cyclic olefin copolymer per 1 g catalyst was as large as 0.5 kg. Below that, it was not possible to efficiently produce a cyclic olefin copolymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Provided is a production method for a cyclic olefin copolymer. The production method makes it possible to produce a cyclic olefin copolymer that has a low glass transition temperature (Tg) and excellent workability while also suppressing the generation of polyethylene-like impurities, even when monomers that include norbornene monomers and ethylene are polymerized at a high temperature that is conducive to the generation of polyethylene-like impurities. According to the present invention, monomers that include norbornene monomers and ethylene are polymerized in the presence of a metallocene catalyst at a temperature of at least 50°C to produce a cyclic olefin copolymer that has a glass transition temperature of no more than 130°C. The pressure at which the ethylene is added to a polymerization vessel is at least 0.3 MPa. The metallocene catalyst has: a ligand that includes a cyclopentadiene ring; and a structure in which a nitrogen atom is bonded to a silicon atom and a transition metal that is in group IV of the periodic table.
Description
本発明は、ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含む環状オレフィン共重合体の製造方法に関する。
The present invention relates to a method for producing a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene.
環状オレフィン単独重合体及び環状オレフィン共重合体は、低吸湿性及び高透明性を有し、光ディスク基板、光学フィルム、光学ファイバー等の光学材料の分野をはじめ、様々な用途に使用されている。
代表的な環状オレフィン共重合体として、透明樹脂として広く使用される、環状オレフィンとエチレンとの共重合体がある。環状オレフィンとエチレンとの共重合体は、そのガラス転移温度を環状オレフィンとエチレンとの共重合組成に応じて変えることが可能なため、広い温度領域でガラス転移温度(Tg)を調整した共重合体を製造することができる(例えば、非特許文献1を参照)。 Cyclic olefin homopolymers and cyclic olefin copolymers have low moisture absorption and high transparency, and are used in various applications including the field of optical materials such as optical disk substrates, optical films, and optical fibers.
As a typical cyclic olefin copolymer, there is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin. Since the glass transition temperature of the copolymer of cyclic olefin and ethylene can be changed according to the copolymerization composition of cyclic olefin and ethylene, the copolymer weight in which the glass transition temperature (Tg) is adjusted in a wide temperature range. Copolymerization can be produced (see, for example, Non-Patent Document 1).
代表的な環状オレフィン共重合体として、透明樹脂として広く使用される、環状オレフィンとエチレンとの共重合体がある。環状オレフィンとエチレンとの共重合体は、そのガラス転移温度を環状オレフィンとエチレンとの共重合組成に応じて変えることが可能なため、広い温度領域でガラス転移温度(Tg)を調整した共重合体を製造することができる(例えば、非特許文献1を参照)。 Cyclic olefin homopolymers and cyclic olefin copolymers have low moisture absorption and high transparency, and are used in various applications including the field of optical materials such as optical disk substrates, optical films, and optical fibers.
As a typical cyclic olefin copolymer, there is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin. Since the glass transition temperature of the copolymer of cyclic olefin and ethylene can be changed according to the copolymerization composition of cyclic olefin and ethylene, the copolymer weight in which the glass transition temperature (Tg) is adjusted in a wide temperature range. Copolymerization can be produced (see, for example, Non-Patent Document 1).
環状オレフィン共重合体について、フィルム、シート等の種々の成形品への加工が容易である点から、例えば、130℃以下の低いガラス転移温度が望まれることが多い。また、ガラス転移温度が高い環状オレフィン共重合体を製造する重合では、触媒の活性が低下する傾向がある。このため、環状オレフィン共重合体の製造効率が低くなる懸念が生じやすい。従ってこの点からも、低いガラス転移温度の環状オレフィン共重合体の製造が望まれることが多い。この点、エチレンの仕込み圧力を高めることで、ガラス転移温度が低い環状オレフィン共重合体を製造しやすい。しかしながら、エチレンの仕込み圧力が高い条件で、環状オレフィン共重合体の製造効率を高める目的で、活性の高い触媒を用いて高温で重合を行うと、ポリエチレン様の不純物が生成しやすい。環状オレフィン共重合体にポリエチレン様の不純物が含まれると、環状オレフィン共重合体を溶媒に溶解させた場合に濁りが生じる。このような現象からも理解できる通り、環状オレフィン共重合体にポリエチレン様の不純物が含まれると、環状オレフィン共重合体の透明性の低下が懸念される。そのため、ガラス転移温度が低い環状オレフィン共重合体を製造する一般的な製造プロセスにおいては、不溶なポリエチレン様の不純物をろ過・除去するという製造コストの増大を招くプロセスが必要である。
For the cyclic olefin copolymer, for example, a low glass transition temperature of 130 ° C. or lower is often desired because it is easy to process various molded products such as films and sheets. Further, in the polymerization for producing a cyclic olefin copolymer having a high glass transition temperature, the activity of the catalyst tends to decrease. Therefore, there is a tendency that the production efficiency of the cyclic olefin copolymer is lowered. Therefore, from this point as well, it is often desired to produce a cyclic olefin copolymer having a low glass transition temperature. In this respect, by increasing the ethylene charging pressure, it is easy to produce a cyclic olefin copolymer having a low glass transition temperature. However, when polymerization is carried out at a high temperature using a highly active catalyst for the purpose of increasing the production efficiency of the cyclic olefin copolymer under the condition of high ethylene charging pressure, polyethylene-like impurities are likely to be generated. When the cyclic olefin copolymer contains polyethylene-like impurities, turbidity occurs when the cyclic olefin copolymer is dissolved in a solvent. As can be understood from such a phenomenon, if the cyclic olefin copolymer contains polyethylene-like impurities, there is a concern that the transparency of the cyclic olefin copolymer may decrease. Therefore, in a general production process for producing a cyclic olefin copolymer having a low glass transition temperature, a process that increases the production cost by filtering and removing insoluble polyethylene-like impurities is required.
本発明は、上記の課題に鑑みなされたものであって、ノルボルネン単量体と、エチレンとを含むモノマーを、ポリエチレン様不純物が生成しやすい高温で重合しても、ポリエチレン様不純物の生成を抑制しつつ、ガラス転移温度(Tg)が低く加工性に優れる環状オレフィン共重合体を効率良く製造できる、環状オレフィン共重合体の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and even if a norbornene monomer and a monomer containing ethylene are polymerized at a high temperature at which polyethylene-like impurities are likely to be generated, the formation of polyethylene-like impurities is suppressed. It is an object of the present invention to provide a method for producing a cyclic olefin copolymer capable of efficiently producing a cyclic olefin copolymer having a low glass transition temperature (Tg) and excellent processability.
本発明者らは、ノルボルネン単量体と、エチレンとを含むモノマーを、メタロセン触媒の存在下に、50℃以上の温度で重合させ、ガラス転移温度が130℃以下である環状オレフィン共重合体を製造する際に、重合容器内へのエチレンの仕込み圧力を0.3MPa以上とし、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合している構造と、を有するメタロセン触媒を用いることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。
The present inventors polymerize a monomer containing norbornene monomer and ethylene at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst to obtain a cyclic olefin copolymer having a glass transition temperature of 130 ° C. or lower. At the time of production, the pressure for charging ethylene into the polymerization vessel was set to 0.3 MPa or more, and the ligand containing the cyclopentadiene ring and the nitrogen atom were bonded to the transition metal of Group IV of the periodic table and the silicon atom. We have found that the above-mentioned problems can be solved by using a metallocene catalyst having such a structure, and have completed the present invention. More specifically, the present invention provides the following.
(1)ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含み、ガラス転移温度が130℃以下である環状オレフィン共重合体の製造方法であって、
少なくとも、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることと、を含み、
重合容器内へのエチレンの仕込み圧力が、0.3MPa以上であり、
メタロセン触媒が、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有している、製造方法。 (1) A method for producing a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene and having a glass transition temperature of 130 ° C. or lower.
At least, the norbornene monomer and ethylene are charged as monomers in the polymerization vessel.
Including the polymerization of the monomer in the polymerization vessel in the presence of a metallocene catalyst at a temperature of 50 ° C. or higher.
The pressure of ethylene charged into the polymerization vessel is 0.3 MPa or more.
A production method, wherein the metallocene catalyst has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom.
少なくとも、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることと、を含み、
重合容器内へのエチレンの仕込み圧力が、0.3MPa以上であり、
メタロセン触媒が、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有している、製造方法。 (1) A method for producing a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene and having a glass transition temperature of 130 ° C. or lower.
At least, the norbornene monomer and ethylene are charged as monomers in the polymerization vessel.
Including the polymerization of the monomer in the polymerization vessel in the presence of a metallocene catalyst at a temperature of 50 ° C. or higher.
The pressure of ethylene charged into the polymerization vessel is 0.3 MPa or more.
A production method, wherein the metallocene catalyst has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom.
(2)環状オレフィン共重合体の試料を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差走査熱量計による測定を行って得られたDSC曲線が、100℃~140℃の範囲内にポリエチレン様不純物に由来する融点ピークを有さない、(1)に記載の環状オレフィン共重合体の製造方法。
(2) A DSC curve obtained by measuring a sample of a cyclic olefin copolymer with a differential scanning calorimeter under a nitrogen atmosphere and a heating rate of 20 ° C./min according to the method described in JIS K7121 is obtained. The method for producing a cyclic olefin copolymer according to (1), which does not have a melting point peak derived from a polyethylene-like impurity in the range of 100 ° C. to 140 ° C.
(3)メタロセン触媒が、下記式(a1):
(式(a1)中、Ra1~Ra3は、それぞれ独立に、同一でも異なっていてもよく、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である。Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。Ra1及びRa2は、それぞれC-Si結合、O-Si結合、Si-Si結合、又はN-Si結合によりケイ素原子に結合する。Ra3はC-N結合、O-N結合、Si-N結合、又はN-N結合により窒素原子に結合する。Ra4がヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である場合、Ra4はC-M結合により金属原子Mに結合する。Ra5~Ra8は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。Ra5~Ra8のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよい。Mは、Ti、Zr、又はHfである。)
で表されるメタロセン化合物である、(1)又は(2)に記載の環状オレフィン共重合体の製造方法。 (3) The metallocene catalyst has the following formula (a1):
(In the formula (a1), R a1 to R a3 are hydrocarbon groups having 1 to 20 carbon atoms which may be the same or different and may contain a hetero atom. R a4 is a hydrocarbon group. , A hydrocarbon group or a halogen atom having 1 to 20 carbon atoms which may contain a hetero atom. R a1 and R a2 are C—Si bond, O—Si bond, Si—Si bond, or N, respectively. -Si bond to a silicon atom. R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond. Even if R a4 contains a hetero atom. In the case of a good hydrocarbon group having 1 to 20 carbon atoms, Ra 4 is bonded to the metal atom M by a CM bond. R a5 to Ra 8 may be independently the same or different, and hydrogen. It is an organic substituent or an inorganic substituent having 1 to 20 carbon atoms which may contain an atom or a hetero atom. Two groups adjacent to each other on the 5-membered ring of R a5 to R a8 are bonded to each other. M may be Ti, Zr, or Hf.)
The method for producing a cyclic olefin copolymer according to (1) or (2), which is a metallocene compound represented by.
で表されるメタロセン化合物である、(1)又は(2)に記載の環状オレフィン共重合体の製造方法。 (3) The metallocene catalyst has the following formula (a1):
The method for producing a cyclic olefin copolymer according to (1) or (2), which is a metallocene compound represented by.
(4)式(a1)で表されるメタロセン化合物が、下記式(a2):
(式(a2)中、Ra1~Ra4、及びMは、式(a1)と同様である。Ra1~Ra3は、それぞれ独立に、同一でも異なっていてもよく、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である。Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。Ra1及びRa2は、それぞれC-Si結合、O-Si結合、Si-Si結合、又はN-Si結合によりケイ素原子に結合する。Ra3はC-N結合、O-N結合、Si-N結合、又はN-N結合により窒素原子に結合する。Ra4がヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である場合、Ra4はC-M結合により金属原子Mに結合する。Ra10及びRa11は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。p及びqは、それぞれ独立に0~4の整数である。Ra10及びRa11がそれぞれ複数である場合、複数のRa10及びRa11は異なる基であってもよい。複数のRa10のうちの2つの基、又は複数のRa11のうちの2つの基が芳香環上の隣接する位置に結合する場合、当該2つの基が相互に結合して環を形成してもよい。Mは、Ti、Zr、又はHfである。)
で表されるメタロセン化合物である、(3)に記載の環状オレフィン共重合体の製造方法。 The metallocene compound represented by the formula (a1) is the following formula (a2):
(In the formula (a2), R a1 to R a4 , and M are the same as those in the formula (a1). R a1 to R a3 may be independently the same or different, and contain heteroatoms. It may be a hydrocarbon group having 1 to 20 carbon atoms. R a4 is a hydrocarbon group or a halogen atom having 1 to 20 carbon atoms which may contain a hetero atom. R a1 and Ra 2 are. , C—Si bond, O—Si bond, Si—Si bond, or N—Si bond to the silicon atom. RA3 is CN bond, ON bond, Si—N bond, or N— It is bonded to a nitrogen atom by an N bond. When R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, R a4 is bonded to a metal atom M by a CM bond. a10 and Ra11 are organic substituents having 1 to 20 carbon atoms or inorganic substituents, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively. P and q. Are independently integers from 0 to 4. When R a10 and R a11 are each plural, the plurality of R a10 and R a11 may be different groups. Two of the plurality of R a10 . group, or when two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring may also form a ring such two groups are bonded to each other .M is, Ti, Zr , Or Hf.)
The method for producing a cyclic olefin copolymer according to (3), which is a metallocene compound represented by.
(式(a2)中、Ra1~Ra4、及びMは、式(a1)と同様である。Ra1~Ra3は、それぞれ独立に、同一でも異なっていてもよく、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である。Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。Ra1及びRa2は、それぞれC-Si結合、O-Si結合、Si-Si結合、又はN-Si結合によりケイ素原子に結合する。Ra3はC-N結合、O-N結合、Si-N結合、又はN-N結合により窒素原子に結合する。Ra4がヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である場合、Ra4はC-M結合により金属原子Mに結合する。Ra10及びRa11は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。p及びqは、それぞれ独立に0~4の整数である。Ra10及びRa11がそれぞれ複数である場合、複数のRa10及びRa11は異なる基であってもよい。複数のRa10のうちの2つの基、又は複数のRa11のうちの2つの基が芳香環上の隣接する位置に結合する場合、当該2つの基が相互に結合して環を形成してもよい。Mは、Ti、Zr、又はHfである。)
で表されるメタロセン化合物である、(3)に記載の環状オレフィン共重合体の製造方法。 The metallocene compound represented by the formula (a1) is the following formula (a2):
(In the formula (a2), R a1 to R a4 , and M are the same as those in the formula (a1). R a1 to R a3 may be independently the same or different, and contain heteroatoms. It may be a hydrocarbon group having 1 to 20 carbon atoms. R a4 is a hydrocarbon group or a halogen atom having 1 to 20 carbon atoms which may contain a hetero atom. R a1 and Ra 2 are. , C—Si bond, O—Si bond, Si—Si bond, or N—Si bond to the silicon atom. RA3 is CN bond, ON bond, Si—N bond, or N— It is bonded to a nitrogen atom by an N bond. When R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, R a4 is bonded to a metal atom M by a CM bond. a10 and Ra11 are organic substituents having 1 to 20 carbon atoms or inorganic substituents, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively. P and q. Are independently integers from 0 to 4. When R a10 and R a11 are each plural, the plurality of R a10 and R a11 may be different groups. Two of the plurality of R a10 . group, or when two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring may also form a ring such two groups are bonded to each other .M is, Ti, Zr , Or Hf.)
The method for producing a cyclic olefin copolymer according to (3), which is a metallocene compound represented by.
(5)周期律表第IV族遷移金属がTiである、(1)~(4)のいずれか1つに記載の環状オレフィン共重合体の製造方法。
(5) The method for producing a cyclic olefin copolymer according to any one of (1) to (4), wherein the transition metal of Group IV of the Periodic Table is Ti.
(6)重合を、メタロセン触媒と、アルミノキサンと、ヒンダードフェノールとの存在下、又はメタロセン触媒と、イオン化合物と、アルキルアルミニウムとの存在下に行う、(1)~(5)のいずれか1つに記載の環状オレフィン共重合体の製造方法。
(6) Any one of (1) to (5), wherein the polymerization is carried out in the presence of a metallocene catalyst, aluminoxane and hindered phenol, or in the presence of a metallocene catalyst, an ionic compound and alkylaluminum. The method for producing a cyclic olefin copolymer according to 1.
本発明によれば、ノルボルネン単量体と、エチレンとを含むモノマーを、ポリエチレン様不純物が生成しやすい高温で重合しても、ポリエチレン様不純物の生成を抑制しつつ、ガラス転移温度(Tg)が低く加工性に優れる環状オレフィン共重合体を効率良く製造できる、環状オレフィン共重合体の製造方法を提供することができる。
According to the present invention, even if a norbornene monomer and a monomer containing ethylene are polymerized at a high temperature at which polyethylene-like impurities are likely to be generated, the glass transition temperature (Tg) is increased while suppressing the formation of polyethylene-like impurities. It is possible to provide a method for producing a cyclic olefin copolymer capable of efficiently producing a cyclic olefin copolymer having low workability and excellent processability.
≪環状オレフィン共重合体の製造方法≫
環状オレフィン共重合体の製造方法では、ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含み、ガラス転移温度が130℃以下である環状オレフィン共重合体を製造する。
当該製造方法は、
少なくとも、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることと、を含む。
以下、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことを仕込み工程とも称する。また、重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることを重合工程とも称する。 << Method for producing cyclic olefin copolymer >>
In the method for producing a cyclic olefin copolymer, a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene and having a glass transition temperature of 130 ° C. or lower is produced.
The manufacturing method is
At least, the norbornene monomer and ethylene are charged as monomers in the polymerization vessel.
It comprises polymerizing the monomer in the polymerization vessel in the presence of a metallocene catalyst at a temperature of 50 ° C. or higher.
Hereinafter, charging the norbornene monomer and ethylene as monomers into the polymerization vessel is also referred to as a charging step. Further, polymerizing the monomer in the polymerization vessel at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst is also referred to as a polymerization step.
環状オレフィン共重合体の製造方法では、ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含み、ガラス転移温度が130℃以下である環状オレフィン共重合体を製造する。
当該製造方法は、
少なくとも、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることと、を含む。
以下、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことを仕込み工程とも称する。また、重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることを重合工程とも称する。 << Method for producing cyclic olefin copolymer >>
In the method for producing a cyclic olefin copolymer, a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene and having a glass transition temperature of 130 ° C. or lower is produced.
The manufacturing method is
At least, the norbornene monomer and ethylene are charged as monomers in the polymerization vessel.
It comprises polymerizing the monomer in the polymerization vessel in the presence of a metallocene catalyst at a temperature of 50 ° C. or higher.
Hereinafter, charging the norbornene monomer and ethylene as monomers into the polymerization vessel is also referred to as a charging step. Further, polymerizing the monomer in the polymerization vessel at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst is also referred to as a polymerization step.
重合容器内へのエチレンの仕込み圧力は、0.3MPa以上である。なお、仕込み圧力はゲージ圧力である。
重合容器内のモノマーは、メタロセン触媒の存在下に、50℃以上の温度で重合される。
重合に使用されるメタロセン触媒が、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有する。 The pressure for charging ethylene into the polymerization vessel is 0.3 MPa or more. The charging pressure is a gauge pressure.
The monomer in the polymerization vessel is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst.
The metallocene catalyst used for the polymerization has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom.
重合容器内のモノマーは、メタロセン触媒の存在下に、50℃以上の温度で重合される。
重合に使用されるメタロセン触媒が、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有する。 The pressure for charging ethylene into the polymerization vessel is 0.3 MPa or more. The charging pressure is a gauge pressure.
The monomer in the polymerization vessel is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst.
The metallocene catalyst used for the polymerization has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom.
一般的に、高圧で仕込まれたエチレンと、ノルボルネン単量体とを、高活性な触媒の存在下に、50℃以上のような高温で共重合させる場合、エチレン同士の重合が進行しやすく、ポリエチレン様の不純物が生成しやすい。
Generally, when ethylene charged at high pressure and norbornene monomer are copolymerized at a high temperature such as 50 ° C. or higher in the presence of a highly active catalyst, the polymerization of ethylene tends to proceed. Polyethylene-like impurities are likely to be generated.
しかし、反応容器中に高圧で仕込まれたエチレンと、ノルボルネン単量体とを50℃以上の高温で重合する際に、上記の所定の構造を有するメタロセン触媒を用いると、ポリエチレン様の不純物の生成を抑制しつつ、130℃以下の低いガラス転移温度を有する環状オレフィン共重合体を良好な収率で製造しやすい。
However, when ethylene charged at high pressure in a reaction vessel and norbornene monomer are polymerized at a high temperature of 50 ° C. or higher, if a metallocene catalyst having the above-mentioned predetermined structure is used, polyethylene-like impurities are generated. It is easy to produce a cyclic olefin copolymer having a low glass transition temperature of 130 ° C. or lower in a good yield while suppressing the above.
<仕込み工程>
仕込み工程では、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込む。重合容器には、本発明の目的を阻害しない範囲で、ノルボルネン単量体、及びエチレン以外の他の単量体が仕込まれてもよい。環状オレフィン共重合体における、ノルボルネン単量体に由来する構成単位の比率と、エチレンに由来する構成単位の比率との合計は、典型的には、全構成単位に対して、80質量%以上が好ましく、95質量%以上がより好ましく。98質量%以上がさらに好ましい。 <Preparation process>
In the charging step, norbornene monomer and ethylene are charged into the polymerization vessel as monomers. The polymerization vessel may be charged with a norbornene monomer and a monomer other than ethylene as long as the object of the present invention is not impaired. The total of the ratio of the structural units derived from the norbornene monomer and the ratio of the structural units derived from ethylene in the cyclic olefin copolymer is typically 80% by mass or more with respect to all the structural units. Preferably, 95% by mass or more is more preferable. 98% by mass or more is more preferable.
仕込み工程では、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込む。重合容器には、本発明の目的を阻害しない範囲で、ノルボルネン単量体、及びエチレン以外の他の単量体が仕込まれてもよい。環状オレフィン共重合体における、ノルボルネン単量体に由来する構成単位の比率と、エチレンに由来する構成単位の比率との合計は、典型的には、全構成単位に対して、80質量%以上が好ましく、95質量%以上がより好ましく。98質量%以上がさらに好ましい。 <Preparation process>
In the charging step, norbornene monomer and ethylene are charged into the polymerization vessel as monomers. The polymerization vessel may be charged with a norbornene monomer and a monomer other than ethylene as long as the object of the present invention is not impaired. The total of the ratio of the structural units derived from the norbornene monomer and the ratio of the structural units derived from ethylene in the cyclic olefin copolymer is typically 80% by mass or more with respect to all the structural units. Preferably, 95% by mass or more is more preferable. 98% by mass or more is more preferable.
ノルボルネン単量体、及びエチレン以外の他の単量体は、ノルボルネン単量体、及びエチレンと共重合可能である限り特に限定されない。かかる他の単量体の、典型的な例としては、α-オレフィンが挙げられる。α-オレフィンは、ハロゲン原子等の少なくとも1種の置換基で置換されていてもよい。
The norbornene monomer and monomers other than ethylene are not particularly limited as long as they can be copolymerized with the norbornene monomer and ethylene. Typical examples of such other monomers include α-olefins. The α-olefin may be substituted with at least one substituent such as a halogen atom.
α-オレフィンとしては、C3~C12のα-オレフィンが好ましい。C3~C12のα-オレフィンは特に限定されないが、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、及び1-ドデセン等が挙げられる。中でも、1-ヘキセン、1-オクテン、1-デセンが好ましい。
As the α-olefin, C3 to C12 α-olefins are preferable. The α-olefins of C3 to C12 are not particularly limited, but for example, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1. -Pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl -1-Hexene, 1-octene, 1-decene, 1-dodecene and the like can be mentioned. Of these, 1-hexene, 1-octene, and 1-decene are preferable.
エチレンは、重合容器内でのエチレンの仕込み圧力が、0.3MPa以上であるように重合容器に仕込まれる。エチレンの仕込み圧力は、0.4MPa以上が好ましく、0.5MPa以上がより好ましい。エチレンの仕込み圧力を高くすると、生成ポリマーあたりの触媒の使用量を少なくすることができる。上限について、エチレンの仕込み圧力は、例えば、10MPa以下が好ましく、5MPa以下がより好ましく、3MPa以下がさらに好ましい。
Ethylene is charged into the polymerization vessel so that the ethylene charging pressure in the polymerization vessel is 0.3 MPa or more. The ethylene charging pressure is preferably 0.4 MPa or more, more preferably 0.5 MPa or more. Increasing the ethylene charging pressure can reduce the amount of catalyst used per produced polymer. Regarding the upper limit, the ethylene charging pressure is, for example, preferably 10 MPa or less, more preferably 5 MPa or less, and even more preferably 3 MPa or less.
重合容器内には、ノルボルネン単量体、及びエチレンとともに、溶媒が仕込まれてもよい。溶媒としては、重合反応を阻害しない溶媒であれば特に限定されない。溶媒の例としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカン、ミネラルオイル、シクロヘキサン、メチルシクロヘキサン、デカヒドロナフタレン(デカリン)、ベンゼン、トルエン、及びキシレン等の炭化水素溶媒や、クロロホルム、メチレンクロライド、ジクロロメタン、ジクロロエタン、及びクロロベンゼン等のハロゲン化炭化水素溶媒が挙げられる。
A solvent may be charged in the polymerization vessel together with the norbornene monomer and ethylene. The solvent is not particularly limited as long as it does not inhibit the polymerization reaction. Examples of solvents include hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, decahydronaphthalene (decalin), benzene, toluene, and xylene, and chloroform, methylene chloride. , Dichloromethane, dichloroethane, and halogenated hydrocarbon solvents such as chlorobenzene.
溶媒中にノルボルネン単量体を仕込む場合の、ノルボルネン単量体の濃度は、下限については、例えば0.5質量%以上が好ましく、10質量%以上がより好ましい。上限については、例えば、50質量%以下が好ましく、35質量%以下がさらに好ましい。
When the norbornene monomer is charged in the solvent, the lower limit of the concentration of the norbornene monomer is preferably, for example, 0.5% by mass or more, and more preferably 10% by mass or more. As for the upper limit, for example, 50% by mass or less is preferable, and 35% by mass or less is more preferable.
以下、ノルボルネン単量体について説明する。
The norbornene monomer will be described below.
[ノルボルネン単量体]
ノルボルネン単量体としては、例えば、ノルボルネン及び置換ノルボルネンが挙げられ、ノルボルネンが好ましい。ノルボルネン単量体は、1種単独で又は2種以上組み合わせて使用することができる。 [Norbornene monomer]
Examples of the norbornene monomer include norbornene and substituted norbornene, and norbornene is preferable. The norbornene monomer can be used alone or in combination of two or more.
ノルボルネン単量体としては、例えば、ノルボルネン及び置換ノルボルネンが挙げられ、ノルボルネンが好ましい。ノルボルネン単量体は、1種単独で又は2種以上組み合わせて使用することができる。 [Norbornene monomer]
Examples of the norbornene monomer include norbornene and substituted norbornene, and norbornene is preferable. The norbornene monomer can be used alone or in combination of two or more.
上記置換ノルボルネンは特に限定されず、この置換ノルボルネンが有する置換基としては、例えば、ハロゲン原子、1価又は2価の炭化水素基が挙げられる。置換ノルボルネンの具体例としては、下記一般式(I)で示されるものが挙げられる。
The above-mentioned substituted norbornene is not particularly limited, and examples of the substituent contained in this substituted norbornene include a halogen atom and a monovalent or divalent hydrocarbon group. Specific examples of the substituted norbornene include those represented by the following general formula (I).
R9とR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
R9又はR10と、R11又はR12とは、互いに環を形成していてもよい。
また、nは、0又は正の整数を示し、
nが2以上の場合には、R5~R8は、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。
ただし、n=0の場合、R1~R4及びR9~R12の少なくとも1個は、水素原子ではない。)
R 9 and R 10 and R 11 and R 12 may be integrated to form a divalent hydrocarbon group.
R 9 or R 10 and R 11 or R 12 may form a ring with each other.
Further, n indicates 0 or a positive integer.
When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
However, when n = 0, at least one of R 1 to R 4 and R 9 to R 12 is not a hydrogen atom. )
一般式(I)で示される置換ノルボルネンについて説明する。一般式(I)におけるR1~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。
The substituted norbornene represented by the general formula (I) will be described. R 1 to R 12 in the general formula (I) may be the same or different from each other, and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
R1~R8の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素原子数1~20のアルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。
Specific examples of R 1 to R 8 include hydrogen atoms; halogen atoms such as fluorine, chlorine, and bromine; alkyl groups having 1 to 20 carbon atoms, and the like, which may be different from each other. , Partially different, or all may be the same.
また、R9~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素原子数1~20のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アントリル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。
Specific examples of R 9 to R 12 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a phenyl group and a trill. Substituent or unsubstituted aromatic hydrocarbon groups such as groups, ethylphenyl groups, isopropylphenyl groups, naphthyl groups and anthryl groups; benzyl group, phenethyl group and other alkyl groups substituted with aryl groups and the like. Yes, they may be different, partially different, or all identical.
R9とR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。
Specific examples of the case where R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group include, for example, an alkylidene group such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
R9又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。
When R 9 or R 10 and R 11 or R 12 form a ring with each other, the formed ring may be a monocyclic ring, a polycyclic ring, or a polycyclic ring having a crosslink. , It may be a ring having a double bond, or it may be a ring composed of a combination of these rings. Further, these rings may have a substituent such as a methyl group.
一般式(I)で示される置換ノルボルネンの具体例としては、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン;
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン;
テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン;
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体等の多環の環状オレフィンを挙げることができる。 Specific examples of the substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo [2.2.1] hepta-2-ene and 5,5-dimethyl-bicyclo [2.2.1] hepta-. 2-ene, 5-ethyl-bicyclo [2.2.1] hepta-2-ene, 5-butyl-bicyclo [2.2.1] hepta-2-ene, 5-ethylidene-bicyclo [2.2. 1] Hepta-2-ene, 5-hexyl-bicyclo [2.2.1] hepta-2-ene, 5-octyl-bicyclo [2.2.1] hepta-2-ene, 5-octadecil-bicyclo [ 2.2.1] Hepta-2-ene, 5-methylidene-bicyclo [2.2.1] hepta-2-ene, 5-vinyl-bicyclo [2.2.1] hepta-2-ene, 5- Bicyclic olefins such as propenyl-bicyclo [2.2.1] hepta-2-ene;
Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] deca-3-ene; tricyclo [ 4.4.0.1 2,5 ] Undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] Undeca-3,8-diene or a partial hydrogenation of these (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undeca-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hepta-2-ene, 5-cyclohexyl-bicyclo 3 such as [2.2.1] hepta-2-ene, 5-cyclohexenylbicyclo [2.2.1] hepta-2-ene, 5-phenyl-bicyclo [2.2.1] hepta-2-ene. Cyclic olefin of the ring;
Tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene (also simply referred to as tetracyclododecene), 8-methyltetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-methylidenetetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-vinyltetracyclo [4,4.0.1, 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] 4-ring cyclic olefins such as dodeca-3-ene;
8-Cyclopentyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-cyclohexyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-cyclohexenyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-phenyl-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene; Tetracyclo [7.4.1 3,6 . 0 1,9 1 . 0 2,7 ] Tetradeca-4,9,11,13-tetraene (also called 1,4-methano-1,4,4a, 9a-tetrahydrofluorene), tetracyclo [8.4.1, 4,7 . 0 1,10 1 . 0 3,8 ] Pentadeca-5,10,12,14-tetraene (also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene); pentacyclo [6.6.1. 1 3, 6 . 0 2,7 . 09,14 ] -4-hexadecene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene, pentacyclo [7.4.0.0 2,7. 1 3, 6 . 1 10, 13 ] -4-pentadecene; heptacyclo [8.7.0.1 2,9 . 1 4, 7 . 1 11, 17 . 0 3,8 . 0 12,16 ] -5-eikosen, heptacyclo [8.7.0.1 2,9 . 0 3,8 . 1 4, 7 . 0 12,17 . 11 13, l6 ] -14-eicosene ; polycyclic cyclic olefins such as cyclopentadiene tetramer can be mentioned.
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン;
テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン;
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体等の多環の環状オレフィンを挙げることができる。 Specific examples of the substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo [2.2.1] hepta-2-ene and 5,5-dimethyl-bicyclo [2.2.1] hepta-. 2-ene, 5-ethyl-bicyclo [2.2.1] hepta-2-ene, 5-butyl-bicyclo [2.2.1] hepta-2-ene, 5-ethylidene-bicyclo [2.2. 1] Hepta-2-ene, 5-hexyl-bicyclo [2.2.1] hepta-2-ene, 5-octyl-bicyclo [2.2.1] hepta-2-ene, 5-octadecil-bicyclo [ 2.2.1] Hepta-2-ene, 5-methylidene-bicyclo [2.2.1] hepta-2-ene, 5-vinyl-bicyclo [2.2.1] hepta-2-ene, 5- Bicyclic olefins such as propenyl-bicyclo [2.2.1] hepta-2-ene;
Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] deca-3-ene; tricyclo [ 4.4.0.1 2,5 ] Undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] Undeca-3,8-diene or a partial hydrogenation of these (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undeca-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hepta-2-ene, 5-cyclohexyl-bicyclo 3 such as [2.2.1] hepta-2-ene, 5-cyclohexenylbicyclo [2.2.1] hepta-2-ene, 5-phenyl-bicyclo [2.2.1] hepta-2-ene. Cyclic olefin of the ring;
Tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene (also simply referred to as tetracyclododecene), 8-methyltetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-methylidenetetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-vinyltetracyclo [4,4.0.1, 2,5 . 1 7, 10 ] Dodeca-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] 4-ring cyclic olefins such as dodeca-3-ene;
8-Cyclopentyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-cyclohexyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-cyclohexenyl-tetracyclo [4.4.0.1 2,5 . 17 and 10 ] Dodeca-3-ene, 8-phenyl-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] Dodeca-3-ene; Tetracyclo [7.4.1 3,6 . 0 1,9 1 . 0 2,7 ] Tetradeca-4,9,11,13-tetraene (also called 1,4-methano-1,4,4a, 9a-tetrahydrofluorene), tetracyclo [8.4.1, 4,7 . 0 1,10 1 . 0 3,8 ] Pentadeca-5,10,12,14-tetraene (also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene); pentacyclo [6.6.1. 1 3, 6 . 0 2,7 . 09,14 ] -4-hexadecene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene, pentacyclo [7.4.0.0 2,7. 1 3, 6 . 1 10, 13 ] -4-pentadecene; heptacyclo [8.7.0.1 2,9 . 1 4, 7 . 1 11, 17 . 0 3,8 . 0 12,16 ] -5-eikosen, heptacyclo [8.7.0.1 2,9 . 0 3,8 . 1 4, 7 . 0 12,17 . 11 13, l6 ] -14-eicosene ; polycyclic cyclic olefins such as cyclopentadiene tetramer can be mentioned.
中でも、アルキル置換ノルボルネン(例えば、1個以上のアルキル基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)、アルキリデン置換ノルボルネン(例えば、1個以上のアルキリデン基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)が好ましく、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:5-エチリデン-2-ノルボルネン、又は、単にエチリデンノルボルネン)が特に好ましい。
Among them, alkyl-substituted norbornene (for example, bicyclo [2.2.1] hepta-2-ene substituted with one or more alkyl groups) and alkylidene-substituted norbornene (for example, bicyclo substituted with one or more alkylidene groups). [2.2.1] hepta-2-ene) is preferred, 5-ethylidene-bicyclo [2.2.1] hepta-2-ene (common name: 5-ethylidene-2-norbornene, or simply ethylidene norbornene). ) Is particularly preferable.
<重合工程>
重合工程では、重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させる。
メタロセン触媒としては、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有する触媒を用いる。かかる触媒を用いることにより、エチレンの仕込み圧力が高く、且つ50℃以上の高温で重合を行う、ポリエチレン様不純物が生成しやすい条件であっても、ポリエチレン様不純物の生成を抑制しつつ、良好に環状オレフィン共重合体を製造することができる。 <Polymerization process>
In the polymerization step, the monomer in the polymerization vessel is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst.
As the metallocene catalyst, a catalyst having a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom is used. By using such a catalyst, even under conditions where the ethylene charging pressure is high and polymerization is carried out at a high temperature of 50 ° C. or higher, and polyethylene-like impurities are likely to be generated, the formation of polyethylene-like impurities is suppressed and the polymerization is good. A cyclic olefin copolymer can be produced.
重合工程では、重合容器内のモノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させる。
メタロセン触媒としては、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有する触媒を用いる。かかる触媒を用いることにより、エチレンの仕込み圧力が高く、且つ50℃以上の高温で重合を行う、ポリエチレン様不純物が生成しやすい条件であっても、ポリエチレン様不純物の生成を抑制しつつ、良好に環状オレフィン共重合体を製造することができる。 <Polymerization process>
In the polymerization step, the monomer in the polymerization vessel is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst.
As the metallocene catalyst, a catalyst having a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom is used. By using such a catalyst, even under conditions where the ethylene charging pressure is high and polymerization is carried out at a high temperature of 50 ° C. or higher, and polyethylene-like impurities are likely to be generated, the formation of polyethylene-like impurities is suppressed and the polymerization is good. A cyclic olefin copolymer can be produced.
メタロセン触媒において、上記の窒素原子とケイ素原子とには置換基が結合し得るが、窒素原子及びケイ素原子に結合する置換基は本発明の目的を阻害しない範囲で特に限定されない。
In the metallocene catalyst, a substituent may be bonded to the above-mentioned nitrogen atom and silicon atom, but the substituent bonded to the nitrogen atom and the silicon atom is not particularly limited as long as the object of the present invention is not impaired.
メタロセン触媒における周期律表第IV族遷移金属としては、Ti、Zr、又はHfが好ましく、Tiがより好ましい。
As the Group IV transition metal of the periodic table in the metallocene catalyst, Ti, Zr, or Hf is preferable, and Ti is more preferable.
メタロセン触媒が有するシクロペンタジエン環を含む配位子については、後述する式(a1)及び式(a2)についての配位子として詳細に説明する。
The ligand containing the cyclopentadiene ring contained in the metallocene catalyst will be described in detail as a ligand for the formulas (a1) and (a2) described later.
このようなメタロセン触媒の好適な例としては、下記式(a1)で表されるメタロセン化合物が挙げられる。
A preferred example of such a metallocene catalyst is a metallocene compound represented by the following formula (a1).
式(a1)中、Ra1~Ra3は、それぞれ独立に、同一でも異なっていてもよく、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である。
Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。
Ra1及びRa2は、それぞれC-Si結合、O-Si結合、Si-Si結合、又はN-Si結合によりケイ素原子に結合する。
Ra3はC-N結合、O-N結合、Si-N結合、又はN-N結合により窒素原子に結合する。
Ra4がヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である場合、Ra4はC-M結合により金属原子Mに結合する。
Ra5~Ra8は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。
Ra5~Ra8のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよい。
Mは、周期律表第IV族遷移金属であり、Ti、Zr、又はHfが好ましい。 In the formula (a1), Ra1 to Ra3 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, and may contain heteroatoms, respectively.
R a4 is a hydrocarbon group or halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
R a1 and R a2 are bonded to a silicon atom by a C—Si bond, an O—Si bond, a Si—Si bond, or an N—Si bond, respectively.
R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
When R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, R a4 is bonded to the metal atom M by a CM bond.
R a5 to R a8 are organic substituents or inorganic substituents having 1 to 20 carbon atoms, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively.
Two adjacent groups on the 5-membered ring of R a5 to R a8 may be bonded to each other to form a ring.
M is a Group IV transition metal of the Periodic Table, and Ti, Zr, or Hf is preferable.
Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。
Ra1及びRa2は、それぞれC-Si結合、O-Si結合、Si-Si結合、又はN-Si結合によりケイ素原子に結合する。
Ra3はC-N結合、O-N結合、Si-N結合、又はN-N結合により窒素原子に結合する。
Ra4がヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である場合、Ra4はC-M結合により金属原子Mに結合する。
Ra5~Ra8は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。
Ra5~Ra8のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよい。
Mは、周期律表第IV族遷移金属であり、Ti、Zr、又はHfが好ましい。 In the formula (a1), Ra1 to Ra3 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, and may contain heteroatoms, respectively.
R a4 is a hydrocarbon group or halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
R a1 and R a2 are bonded to a silicon atom by a C—Si bond, an O—Si bond, a Si—Si bond, or an N—Si bond, respectively.
R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
When R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, R a4 is bonded to the metal atom M by a CM bond.
R a5 to R a8 are organic substituents or inorganic substituents having 1 to 20 carbon atoms, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively.
Two adjacent groups on the 5-membered ring of R a5 to R a8 may be bonded to each other to form a ring.
M is a Group IV transition metal of the Periodic Table, and Ti, Zr, or Hf is preferable.
Ra1~Ra3は、それぞれ独立に、同一でも異なっていてもよく、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である。
Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。 R a1 to Ra3 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, and may contain heteroatoms, respectively.
R a4 is a hydrocarbon group or halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
Ra4は、ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基又はハロゲン原子である。 R a1 to Ra3 are hydrocarbon groups having 1 to 20 carbon atoms, which may be the same or different, and may contain heteroatoms, respectively.
R a4 is a hydrocarbon group or halogen atom having 1 to 20 carbon atoms which may contain a hetero atom.
ヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基については、炭化水素基がヘテロ原子を含む場合、ヘテロ原子の種類は本発明の目的を阻害しない範囲で特に限定されない。ヘテロ原子の具体例としては、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、及びハロゲン原子等が挙げられる。
Regarding a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, when the hydrocarbon group contains a hetero atom, the type of the hetero atom is not particularly limited as long as the object of the present invention is not impaired. Specific examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, a halogen atom and the like.
Ra1及びRa2は、それぞれC-Si結合、O-Si結合、Si-Si結合、又はN-Si結合によりケイ素原子に結合する。
O-Si結合によりケイ素原子に結合するRa1及びRa2の好適な例としては、-ORa9、及び-O-C(=O)-Ra9で表される基が挙げられる。
Si-Si結合によりケイ素原子に結合するRa1及びRa2の好適な例としては、-SiRa9 3、-Si(ORa9)Ra9 2、-Si(ORa9)2Ra9、及び-Si(ORa9)3で表される基が挙げられる。
N-Si結合によりケイ素原子に結合するRa1及びRa2の好適な例としては、-NHRa9、及び-NRa9 2で表される基が挙げられる。
ここで、上記のRa9はいずれも炭化水素基である。 R a1 and R a2 are bonded to a silicon atom by a C—Si bond, an O—Si bond, a Si—Si bond, or an N—Si bond, respectively.
Preferable examples of R a1 and R a2 bonded to a silicon atom by an O—Si bond include groups represented by −OR a9 and —OC (= O) —R a9 .
Preferable examples of R a1 and R a2 bonded to a silicon atom by a Si—Si bond are −SiR a9 3 , −Si (OR a9 ) R a92 2 , −Si (OR a9 ) 2 R a9 , and −Si. The group represented by (OR a9 ) 3 can be mentioned.
Suitable examples of R a1 and R a2 bonded to the silicon atom by N-Si bonds, -NHR a9, and include groups represented by -NR a9 2.
Here, all of the above Ra 9s are hydrocarbon groups.
O-Si結合によりケイ素原子に結合するRa1及びRa2の好適な例としては、-ORa9、及び-O-C(=O)-Ra9で表される基が挙げられる。
Si-Si結合によりケイ素原子に結合するRa1及びRa2の好適な例としては、-SiRa9 3、-Si(ORa9)Ra9 2、-Si(ORa9)2Ra9、及び-Si(ORa9)3で表される基が挙げられる。
N-Si結合によりケイ素原子に結合するRa1及びRa2の好適な例としては、-NHRa9、及び-NRa9 2で表される基が挙げられる。
ここで、上記のRa9はいずれも炭化水素基である。 R a1 and R a2 are bonded to a silicon atom by a C—Si bond, an O—Si bond, a Si—Si bond, or an N—Si bond, respectively.
Preferable examples of R a1 and R a2 bonded to a silicon atom by an O—Si bond include groups represented by −OR a9 and —OC (= O) —R a9 .
Preferable examples of R a1 and R a2 bonded to a silicon atom by a Si—Si bond are −SiR a9 3 , −Si (OR a9 ) R a92 2 , −Si (OR a9 ) 2 R a9 , and −Si. The group represented by (OR a9 ) 3 can be mentioned.
Suitable examples of R a1 and R a2 bonded to the silicon atom by N-Si bonds, -NHR a9, and include groups represented by -NR a9 2.
Here, all of the above Ra 9s are hydrocarbon groups.
Ra3は、C-N結合、O-N結合、Si-N結合、又はN-N結合により窒素原子に結合する。
O-N結合により窒素原子に結合するRa3の好適な例としては、-ORa9、及び-O-C(=O)-Ra9で表される基が挙げられる。
Si-N結合により窒素原子に結合するRa3の好適な例としては、-SiRa9 3、-Si(ORa9)Ra9 2、-Si(ORa9)2Ra9、及び-Si(ORa9)3で表される基が挙げられる。
N-N結合により窒素原子に結合するRa3の好適な例としては、-NHRa9、及び-NRa9 2で表される基が挙げられる。
ここで、上記のRa9はいずれも炭化水素基である。 R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
Preferable examples of R a3 bonded to a nitrogen atom by an ON bond include groups represented by -OR a9 and -OC (= O) -R a9 .
Preferable examples of R a3 that binds to a nitrogen atom by a Si—N bond are -SiR a9 3 , -Si (OR a9 ) R a9 2 , -Si (OR a9 ) 2 R a9 , and -Si (OR a9). ) The group represented by 3 is mentioned.
Preferable examples of R a3 bound to the nitrogen atom by N-N bonds, -NHR a9, and include groups represented by -NR a9 2.
Here, all of the above Ra 9s are hydrocarbon groups.
O-N結合により窒素原子に結合するRa3の好適な例としては、-ORa9、及び-O-C(=O)-Ra9で表される基が挙げられる。
Si-N結合により窒素原子に結合するRa3の好適な例としては、-SiRa9 3、-Si(ORa9)Ra9 2、-Si(ORa9)2Ra9、及び-Si(ORa9)3で表される基が挙げられる。
N-N結合により窒素原子に結合するRa3の好適な例としては、-NHRa9、及び-NRa9 2で表される基が挙げられる。
ここで、上記のRa9はいずれも炭化水素基である。 R a3 is bonded to a nitrogen atom by a CN bond, an ON bond, a Si—N bond, or an NN bond.
Preferable examples of R a3 bonded to a nitrogen atom by an ON bond include groups represented by -OR a9 and -OC (= O) -R a9 .
Preferable examples of R a3 that binds to a nitrogen atom by a Si—N bond are -SiR a9 3 , -Si (OR a9 ) R a9 2 , -Si (OR a9 ) 2 R a9 , and -Si (OR a9). ) The group represented by 3 is mentioned.
Preferable examples of R a3 bound to the nitrogen atom by N-N bonds, -NHR a9, and include groups represented by -NR a9 2.
Here, all of the above Ra 9s are hydrocarbon groups.
Ra9としての炭化水素基は、Ra1~Ra4について後述する、ヘテロ原子を含まない炭化水素基と同様である。
Hydrocarbon group as R a9 is described below for R a1 ~ R a4, it is the same as the hydrocarbon groups that do not contain heteroatoms.
配位子として使用する化合物の調製や入手が容易であることから、Ra1とRa2とは同一の基であるのが好ましい。
Since the preparation and availability of the compound used as a ligand is easy, preferably the R a1 and R a2 are the same group.
Ra4がハロゲン原子である場合、ハロゲン原子の例としては塩素原子、フッ素原子、臭素原子、及びヨウ素原子が挙げられ、塩素原子及び臭素原子が好ましい。
When R a4 is a halogen atom, examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
Ra1~Ra3としては、化学的な安定性に優れることから、ヘテロ原子を含まない炭化水素基が好ましい。また、Ra4がヘテロ原子を含んでいてもよい炭素原子数1~20の炭化水素基である場合、Ra1~Ra3と同様に、ヘテロ原子を含まない炭化水素基が好ましい。
かかる炭化水素基としては、直鎖状又は分岐鎖状のアルキル基、二重結合及び/又は三重結合を有してもよい直鎖状又は分岐鎖状の不飽和脂肪族炭化水素基、シクロアルキル基、シクロアルキルアルキル基、芳香族炭化水素基、及びアラルキル基が好ましい。 As R a1 to R a3 , hydrocarbon groups containing no heteroatom are preferable because they are excellent in chemical stability. When R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, a hydrocarbon group containing no hetero atom is preferable as in R a1 to R a3 .
Examples of such hydrocarbon groups include linear or branched alkyl groups, linear or branched unsaturated aliphatic hydrocarbon groups which may have double bonds and / or triple bonds, and cycloalkyl. Groups, cycloalkylalkyl groups, aromatic hydrocarbon groups, and aralkyl groups are preferred.
かかる炭化水素基としては、直鎖状又は分岐鎖状のアルキル基、二重結合及び/又は三重結合を有してもよい直鎖状又は分岐鎖状の不飽和脂肪族炭化水素基、シクロアルキル基、シクロアルキルアルキル基、芳香族炭化水素基、及びアラルキル基が好ましい。 As R a1 to R a3 , hydrocarbon groups containing no heteroatom are preferable because they are excellent in chemical stability. When R a4 is a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, a hydrocarbon group containing no hetero atom is preferable as in R a1 to R a3 .
Examples of such hydrocarbon groups include linear or branched alkyl groups, linear or branched unsaturated aliphatic hydrocarbon groups which may have double bonds and / or triple bonds, and cycloalkyl. Groups, cycloalkylalkyl groups, aromatic hydrocarbon groups, and aralkyl groups are preferred.
直鎖状又は分岐鎖状のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、及びn-イコシル基が挙げられる。
Specific examples of the linear or branched alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-. Pentyl group, isopentyl group, tert-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group. , N-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecil group, and n-icosyl group.
二重結合及び/又は三重結合を有してもよい直鎖状又は分岐鎖状の不飽和脂肪族炭化水素基の好ましい例としては、直鎖状又は分岐鎖状のアルキル基の具体例として挙げた基において、1以上の単結合を二重結合及び/又は三重結合に置き換えた基が挙げられる。
より好ましくは、ビニル基、アリル基、1-プロペニル基、3-ブテニル基、2-ブテニル基、1-ブテニル基、エテニル基、及びプロパルギル基が挙げられる。 Preferred examples of the linear or branched unsaturated aliphatic hydrocarbon group which may have a double bond and / or a triple bond include specific examples of the linear or branched alkyl group. Examples of the group include a group in which one or more single bonds are replaced with double bonds and / or triple bonds.
More preferably, vinyl group, allyl group, 1-propenyl group, 3-butenyl group, 2-butenyl group, 1-butenyl group, ethenyl group, and propargyl group can be mentioned.
より好ましくは、ビニル基、アリル基、1-プロペニル基、3-ブテニル基、2-ブテニル基、1-ブテニル基、エテニル基、及びプロパルギル基が挙げられる。 Preferred examples of the linear or branched unsaturated aliphatic hydrocarbon group which may have a double bond and / or a triple bond include specific examples of the linear or branched alkyl group. Examples of the group include a group in which one or more single bonds are replaced with double bonds and / or triple bonds.
More preferably, vinyl group, allyl group, 1-propenyl group, 3-butenyl group, 2-butenyl group, 1-butenyl group, ethenyl group, and propargyl group can be mentioned.
シクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリデシル基、シクロテトラデシル基、シクロペンタデシル基、シクロヘキサデシル基、シクロヘプタデシル基、シクロオクタデシル基、シクロノナデシル基、及びシクロイコシル基が挙げられる。
Specific examples of the cycloalkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, cyclotridecyl group, Examples thereof include a cyclotetradecyl group, a cyclopentadecyl group, a cyclohexadecyl group, a cycloheptadecyl group, a cyclooctadecyl group, a cyclononadecil group, and a cycloicosyl group.
シクロアルキルアルキル基の具体例としては、シクロプロピルメチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘプチルメチル基、シクロオクチルメチル基、シクロノニルメチル基、シクロデシルメチル基、シクロウンデシルメチル基、シクロドデシルメチル基、シクロトリデシルメチル基、シクロテトラデシルメチル基、シクロペンタデシルメチル基、シクロヘキサデシルメチル基、シクロヘプタデシルメチル基、シクロオクタデシルメチル基、シクロノナデシルメチル基、2-シクロプロピルエチル基、2-シクロブチルエチル基、2-シクロペンチルエチル基、2-シクロヘキシルエチル基、2-シクロヘプチルエチル基、2-シクロオクチルエチル基、2-シクロノニルエチル基、2-シクロデシルエチル基、2-シクロウンデシルエチル基、2-シクロドデシルエチル基、2-シクロトリデシルエチル基、2-シクロテトラデシルエチル基、2-シクロペンタデシルエチル基、2-シクロヘキサデシルエチル基、2-シクロヘプタデシルエチル基、2-シクロオクタエチルデシル基、3-シクロプロピルプロピル基、3-シクロブチルプロピル基、3-シクロペンチルプロピル基、3-シクロヘキシルプロピル基、3-シクロヘプチルプロピル基、3-シクロオクチルプロピル基、3-シクロノニルプロピル基、3-シクロデシルプロピル基、3-シクロウンデシルプロピル基、3-シクロドデシルプロピル基、3-シクロトリデシルプロピル基、3-シクロテトラデシルプロピル基、3-シクロペンタデシルプロピル基、3-シクロヘキサデシルプロピル基、3-シクロヘプタデシルプロピル基、4-シクロプロピルブチル基、4-シクロブチルブチル基、4-シクロペンチルブチル基、4-シクロヘキシルブチル基、4-シクロヘプチルブチル基、4-シクロオクチルブチル基、4-シクロノニルブチル基、4-シクロデシルブチル基、4-シクロドデシルブチル基、4-シクロトリデシルブチル基、4-シクロテトラデシルブチル基、4-シクロペンタデシルブチル基、及び4-シクロヘキサデシルブチル基が挙げられる。
Specific examples of the cycloalkylalkyl group include cyclopropylmethyl group, cyclobutylmethyl group, cyclopentylmethyl group, cyclohexylmethyl group, cycloheptylmethyl group, cyclooctylmethyl group, cyclononylmethyl group, cyclodecylmethyl group and cycloun. Decylmethyl group, cyclododecylmethyl group, cyclotridecylmethyl group, cyclotetradecylmethyl group, cyclopentadecylmethyl group, cyclohexadecylmethyl group, cycloheptadecylmethyl group, cyclooctadecylmethyl group, cyclononadecilmethyl group, 2-Cyclopropylethyl group, 2-cyclobutylethyl group, 2-cyclopentylethyl group, 2-cyclohexylethyl group, 2-cycloheptylethyl group, 2-cyclooctylethyl group, 2-cyclononylethyl group, 2-cyclo Decylethyl group, 2-cycloundecylethyl group, 2-cyclododecylethyl group, 2-cyclotridecylethyl group, 2-cyclotetradecylethyl group, 2-cyclopentadecylethyl group, 2-cyclohexadecylethyl group , 2-Cycloheptadecylethyl group, 2-cyclooctaethyldecyl group, 3-cyclopropylpropyl group, 3-cyclobutylpropyl group, 3-cyclopentylpropyl group, 3-cyclohexylpropyl group, 3-cycloheptylpropyl group, 3-Cyclooctylpropyl group, 3-cyclononylpropyl group, 3-cyclodecylpropyl group, 3-cycloundecylpropyl group, 3-cyclododecylpropyl group, 3-cyclotridecylpropyl group, 3-cyclotetradecylpropyl group Group, 3-cyclopentadecylpropyl group, 3-cyclohexadecylpropyl group, 3-cycloheptadecylpropyl group, 4-cyclopropylbutyl group, 4-cyclobutylbutyl group, 4-cyclopentylbutyl group, 4-cyclohexylbutyl Group, 4-cycloheptylbutyl group, 4-cyclooctylbutyl group, 4-cyclononylbutyl group, 4-cyclodecylbutyl group, 4-cyclododecylbutyl group, 4-cyclotridecylbutyl group, 4-cyclotetradecyl Examples thereof include a butyl group, a 4-cyclopentadecylbutyl group, and a 4-cyclohexadecylbutyl group.
芳香族炭化水素基の具体例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、o-エチルフェニル基、m-エチルフェニル基、p-エチルフェニル基、o-イソプロピルフェニル基、m-イソプロピルフェニル基、p-イソプロピルフェニル基、o-tert-ブチルフェニル基、2,3-ジイソプロピルフェニル基、2,4-ジイソプロピルフェニル基、2,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,4-ジイソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジ-tert-ブチルフェニル基、2,6-ジ-tert-ブチル-4-メチルフェニル基、α-ナフチル基、β-ナフチル基、ビフェニル-4-イル基、ビフェニル-3-イル基、ビフェニル-2-イル基、アントラセン-1-イル基、アントラセン-2-イル基、アントラセン-9-イル基、フェナントレン-1-イル基、フェナントレン-2-イル基、フェナントレン-3-イル基、フェナントレン-4-イル基、フェナントレン-9-イル基、ピレン-1-イル基、ピレン-2-イル基、ピレン-3-イル基、及びピレン-4-イル基が挙げられる。
Specific examples of the aromatic hydrocarbon group include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group and 2,5-dimethyl. Phenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3 , 6-trimethylphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, o-ethylphenyl group, m-ethylphenyl group, p -Ethylphenyl group, o-isopropylphenyl group, m-isopropylphenyl group, p-isopropylphenyl group, o-tert-butylphenyl group, 2,3-diisopropylphenyl group, 2,4-diisopropylphenyl group, 2,5 -Diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,4-diisopropylphenyl group, 3,5-diisopropylphenyl group, 2,6-di-tert-butylphenyl group, 2,6-di-tert-butyl -4-Methylphenyl group, α-naphthyl group, β-naphthyl group, biphenyl-4-yl group, biphenyl-3-yl group, biphenyl-2-yl group, anthracene-1-yl group, anthracene-2-yl Group, anthracene-9-yl group, phenylentren-1-yl group, phenylentren-2-yl group, phenylentren-3-yl group, phenylentren-4-yl group, phenylentren-9-yl group, pyrene-1-yl group , Pyrene-2-yl group, Pyrene-3-yl group, and Pyrene-4-yl group.
アラルキル基の具体例としては、ベンジル基、フェネチル基、1-フェニルエチル基、3-フェニルプロピル基、2-フェニルプロピル基、1-フェニルプロピル基、2-フェニル-1-メチルエチル基、1-フェニル-1-メチルエチル基(クミル基)、4-フェニルブチル基、3-フェニルブチル基、2-フェニルブチル基、1-フェニルブチル基、3-フェニル-2-メチルプロピル基、3-フェニル-1-メチルプロピル基、2-フェニル-1-メチルプロピル基、2-メチル-1-フェニルプロピル基、2-フェニル-1,1-ジメチルエチル基、2-フェニル-2,2-ジメチルエチル基、α-ナフチルメチル基、β-ナフチルメチル基、2-α-ナフチルエチル基、2-β-ナフチルエチル基、1-α-ナフチルエチル基、及び1-β-ナフチルエチル基が挙げられる。
Specific examples of the aralkyl group include benzyl group, phenethyl group, 1-phenylethyl group, 3-phenylpropyl group, 2-phenylpropyl group, 1-phenylpropyl group, 2-phenyl-1-methylethyl group and 1-. Phenyl-1-methylethyl group (cumyl group), 4-phenylbutyl group, 3-phenylbutyl group, 2-phenylbutyl group, 1-phenylbutyl group, 3-phenyl-2-methylpropyl group, 3-phenyl- 1-Methylpropyl group, 2-phenyl-1-methylpropyl group, 2-methyl-1-phenylpropyl group, 2-phenyl-1,1-dimethylethyl group, 2-phenyl-2,2-dimethylethyl group, Examples thereof include α-naphthylmethyl group, β-naphthylmethyl group, 2-α-naphthylethyl group, 2-β-naphthylethyl group, 1-α-naphthylethyl group, and 1-β-naphthylethyl group.
Ra1、及びRa2としては、炭素原子数1~20のアルキル基及び炭素原子数6~20の芳香族炭化水素基が好ましく、炭素原子数1~10のアルキル基及び炭素原子数6~10の芳香族炭化水素基がより好ましく、炭素原子数1~6のアルキル基及びフェニル基がさらに好ましく、炭素原子数1~4のアルキル基が特に好ましい。
R a1, and as the R a2, preferably an alkyl group and aromatic hydrocarbon group having 6 to 20 carbon atoms having 1 to 20 carbon atoms, an alkyl group and 6 to 10 carbon atoms having 1 to 10 carbon atoms The aromatic hydrocarbon group of is more preferable, an alkyl group having 1 to 6 carbon atoms and a phenyl group are further preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.
Ra3としては、炭素原子数1~20のアルキル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20の芳香族炭化水素基、及び炭素原子数7~20のアラルキル基が好ましい。
R a3 includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. preferable.
Ra4としては、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20の芳香族炭化水素基、及び炭素原子数7~20のアラルキル基、又はハロゲン原子が好ましい。
R a4 includes an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms. An aralkyl group having 7 to 20 carbon atoms or a halogen atom is preferable.
式(a1)中、Ra5~Ra8は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。
In the formula (a1), R a5 to R a8 may be independently the same or different, and may contain a hydrogen atom and a hetero atom. Organic substituents having 1 to 20 carbon atoms or inorganic substituents. It is the basis.
有機置換基としては、従来芳香環上に置換し得ることが知られている有機基であって、上記式(a1)で表されるメタロセン化合物の生成反応を阻害しない基であれば特に限定されない。例えば、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数2~20の脂肪族アシル基、ベンゾイル基、α-ナフチルカルボニル基、β-ナフチルカルボニル基、炭素原子数6~20の芳香族炭化水素基、及び炭素原子数7~20のアラルキル基が挙げられる。
The organic substituent is not particularly limited as long as it is an organic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a1). .. For example, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aliphatic acyl group having 2 to 20 carbon atoms, a benzoyl group, α- Examples thereof include a naphthylcarbonyl group, a β-naphthylcarbonyl group, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
これらの有機置換基の中では、炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、炭素原子数3~8のシクロアルキル基、炭素原子数2~6の脂肪族アシル基、ベンゾイル基、フェニル基、ベンジル基、及びフェネチル基が好ましい。
Among these organic substituents, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an aliphatic acyl having 2 to 6 carbon atoms. Groups, benzoyl groups, phenyl groups, benzyl groups, and phenethyl groups are preferred.
有機置換基の中では、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、アセチル基、プロピオニル基、ブタノイル基、及びフェニル基がより好ましい。
Among the organic substituents, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, methoxy group, ethoxy group and n-propyloxy group. , Isobutyloxy group, n-butyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group, acetyl group, propionyl group, butanoyl group, and phenyl group are more preferable.
無機置換基としては、従来芳香環上に置換し得ることが知られている無機基であって、上記式(a1)で表されるメタロセン化合物の生成反応を阻害しない基であれば特に限定されない。
無機基の具体例としては、ハロゲン原子、ニトロ基、及びシアノ基等が挙げられる。 The inorganic substituent is not particularly limited as long as it is an inorganic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a1). ..
Specific examples of the inorganic group include a halogen atom, a nitro group, a cyano group and the like.
無機基の具体例としては、ハロゲン原子、ニトロ基、及びシアノ基等が挙げられる。 The inorganic substituent is not particularly limited as long as it is an inorganic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a1). ..
Specific examples of the inorganic group include a halogen atom, a nitro group, a cyano group and the like.
式(a1)中の、シクロペンタジエン環を含む配位子の好適な例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、トリメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、4-tert-ブチルシクロペンタジエニル基、4-アダマンチルシクロペンタジエニル基、モノメチルインデニル基、ジメチルインデニル基、トリメチルインデニル基、テトラメチルインデニル基、4,5,6,7-テトラヒドロインデニル基、フルオレニル基、5,10-ジヒドロインデノ[1,2-b]インドール-10-イル基、N-メチル-5,10-ジヒドロインデノ[1,2-b]インドール-10-イル基、N-フェニル-5,10-ジヒドロインデノ[1,2-b]インドール-10-イル基、5,6-ジヒドロインデノ[2,1-b]インドール-6-イル基、N-メチル-5,6-ジヒドロインデノ[2,1-b]インドール-6-イル基、及びN-フェニル-5,6-ジヒドロインデノ[2,1-b]インドール-6-イル基が挙げられる。
Preferable examples of the ligand containing a cyclopentadiene ring in the formula (a1) include a cyclopentadienyl group, a methylcyclopentadienyl group, a dimethylcyclopentadienyl group, a trimethylcyclopentadienyl group, and a tetra. Methylcyclopentadienyl group, 4-tert-butylcyclopentadienyl group, 4-adamantylcyclopentadienyl group, monomethylindenyl group, dimethylindenyl group, trimethylindenyl group, tetramethylindenyl group, 4, 5,6,7-Tetrahydroindenyl group, fluorenyl group, 5,10-dihydroindeno [1,2-b] indol-10-yl group, N-methyl-5,10-dihydroindeno [1,2 -B] Indol-10-yl group, N-phenyl-5,10-dihydroindeno [1,2-b] indol-10-yl group, 5,6-dihydroindeno [2,1-b] indol -6-yl group, N-methyl-5,6-dihydroindeno [2,1-b] indol-6-yl group, and N-phenyl-5,6-dihydroindeno [2,1-b] Indol-6-yl group is mentioned.
シクロペンタジエン環を含む配位子としては、フルオレン骨格を有する配位子も好ましい。フルオレン骨格を有する配位子については、式(a2)について後述する。
As the ligand containing the cyclopentadiene ring, a ligand having a fluorene skeleton is also preferable. The ligand having a fluorene skeleton will be described later in the formula (a2).
式(a1)で表されるメタロセン化合物の中では、調製や入手が容易であることや、活性が高いことから下記構造のメタロセン化合物が好ましい。
Among the metallocene compounds represented by the formula (a1), the metallocene compound having the following structure is preferable because it is easy to prepare and obtain and has high activity.
式(a1)で表されるメタロセン化合物の中では、下記式(a2)で表される、フルオレン骨格を有する配位子を含むメタロセン化合物も好ましい。
Among the metallocene compounds represented by the formula (a1), a metallocene compound containing a ligand having a fluorene skeleton represented by the following formula (a2) is also preferable.
式(a2)中、Ra1~Ra4、及びMは、式(a1)と同様である。
Ra10及びRa11は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、p及びqは、それぞれ独立に0~4の整数である。
Ra10及びRa11がそれぞれ複数である場合、複数のRa10及びRa11は異なる基であってもよい。
複数のRa10のうちの2つの基、又は複数のRa11のうちの2つの基が芳香環上の隣接する位置に結合する場合、当該2つの基が相互に結合して環を形成してもよい。
Mは、周期律表第IV族遷移金属であり、Ti、Zr、又はHfが好ましい。 In the formula (a2), Ra1 to Ra4 and M are the same as those in the formula (a1).
R a10 and R a11 are organic substituents or inorganic substituents having 1 to 20 carbon atoms, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively, and p and q is an independently integer of 0 to 4.
When there are a plurality of R a10 and R a11 respectively, the plurality of R a10 and R a11 may be different groups.
If two groups of the plurality of R a10, or two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring, to form a ring the two groups are bonded to each other May be good.
M is a Group IV transition metal of the Periodic Table, and Ti, Zr, or Hf is preferable.
Ra10及びRa11は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、p及びqは、それぞれ独立に0~4の整数である。
Ra10及びRa11がそれぞれ複数である場合、複数のRa10及びRa11は異なる基であってもよい。
複数のRa10のうちの2つの基、又は複数のRa11のうちの2つの基が芳香環上の隣接する位置に結合する場合、当該2つの基が相互に結合して環を形成してもよい。
Mは、周期律表第IV族遷移金属であり、Ti、Zr、又はHfが好ましい。 In the formula (a2), Ra1 to Ra4 and M are the same as those in the formula (a1).
R a10 and R a11 are organic substituents or inorganic substituents having 1 to 20 carbon atoms, which may be the same or different, and may contain a hydrogen atom and a hetero atom, respectively, and p and q is an independently integer of 0 to 4.
When there are a plurality of R a10 and R a11 respectively, the plurality of R a10 and R a11 may be different groups.
If two groups of the plurality of R a10, or two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring, to form a ring the two groups are bonded to each other May be good.
M is a Group IV transition metal of the Periodic Table, and Ti, Zr, or Hf is preferable.
式(a2)中、Ra10及びRa11は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、p及びqは、それぞれ独立に0~4の整数である。
Ra10及びRa11がそれぞれ複数である場合、複数のRa10及びRa11は異なる基であってもよい。 Wherein (a2), R a10 and R a11 are each independently, may be the same or different, a hydrogen atom, an organic substituent contain a heteroatom have carbon atoms which may 1 to 20, or inorganic substituent It is a group, and p and q are independently integers of 0 to 4.
When there are a plurality of R a10 and R a11 respectively, the plurality of R a10 and R a11 may be different groups.
Ra10及びRa11がそれぞれ複数である場合、複数のRa10及びRa11は異なる基であってもよい。 Wherein (a2), R a10 and R a11 are each independently, may be the same or different, a hydrogen atom, an organic substituent contain a heteroatom have carbon atoms which may 1 to 20, or inorganic substituent It is a group, and p and q are independently integers of 0 to 4.
When there are a plurality of R a10 and R a11 respectively, the plurality of R a10 and R a11 may be different groups.
有機置換基としては、従来芳香環上に置換し得ることが知られている有機基であって、上記式(a2)で表されるメタロセン化合物の生成反応を阻害しない基であれば特に限定されない。例えば、炭素原子数1~20のアルキル基、炭素原子数1~20のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数2~20の脂肪族アシル基、ベンゾイル基、α-ナフチルカルボニル基、β-ナフチルカルボニル基、炭素原子数6~20の芳香族炭化水素基、及び炭素原子数7~20のアラルキル基が挙げられる。
The organic substituent is not particularly limited as long as it is an organic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a2). .. For example, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aliphatic acyl group having 2 to 20 carbon atoms, a benzoyl group, α- Examples thereof include a naphthylcarbonyl group, a β-naphthylcarbonyl group, an aromatic hydrocarbon group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
これらの有機置換基の中では、炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、炭素原子数3~8のシクロアルキル基、炭素原子数2~6の脂肪族アシル基、ベンゾイル基、フェニル基、ベンジル基、及びフェネチル基が好ましい。
Among these organic substituents, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an aliphatic acyl having 2 to 6 carbon atoms. Groups, benzoyl groups, phenyl groups, benzyl groups, and phenethyl groups are preferred.
有機置換基の中では、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、アセチル基、プロピオニル基、ブタノイル基、及びフェニル基がより好ましい。
Among the organic substituents, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, methoxy group, ethoxy group and n-propyloxy group. , Isobutyloxy group, n-butyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group, acetyl group, propionyl group, butanoyl group, and phenyl group are more preferable.
無機置換基としては、従来芳香環上に置換し得ることが知られている無機基であって、上記式(a2)で表されるメタロセン化合物の生成反応を阻害しない基であれば特に限定されない。
無機基の具体例としては、ハロゲン原子、ニトロ基、及びシアノ基等が挙げられる。 The inorganic substituent is not particularly limited as long as it is an inorganic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a2). ..
Specific examples of the inorganic group include a halogen atom, a nitro group, a cyano group and the like.
無機基の具体例としては、ハロゲン原子、ニトロ基、及びシアノ基等が挙げられる。 The inorganic substituent is not particularly limited as long as it is an inorganic group conventionally known to be capable of substituting on an aromatic ring and does not inhibit the formation reaction of the metallocene compound represented by the above formula (a2). ..
Specific examples of the inorganic group include a halogen atom, a nitro group, a cyano group and the like.
複数のRa10のうちの2つの基、又は複数のRa11のうちの2つの基が芳香環上の隣接する位置に結合する場合、当該2つの基が相互に結合して環を形成してもよい。かかる環は、式(a2)中のフルオレン骨格に含まれる芳香環と縮合する、縮合環である。縮合環は、芳香環でもよく、脂肪族環でもよく、脂肪族環が好ましい。縮合環は、酸素原子、窒素原子、及び硫黄原子等のヘテロ原子を環中に有していてもよい。
If two groups of the plurality of R a10, or two groups of the plurality of R a11 are bonded to adjacent positions on the aromatic ring, to form a ring the two groups are bonded to each other May be good. Such a ring is a fused ring that condenses with the aromatic ring contained in the fluorene skeleton in the formula (a2). The fused ring may be an aromatic ring or an aliphatic ring, and an aliphatic ring is preferable. The fused ring may have a hetero atom such as an oxygen atom, a nitrogen atom, and a sulfur atom in the ring.
2つのRa10及び/又は2つのRa11により形成された縮合環を備えるフルオレン骨格の具体例は、下式の骨格が挙げられる。
Specific examples of the fluorene skeleton with a fused ring formed by two R a10 and / or two R a11 include the skeleton of the following formula.
以上説明した式(a2)で表されるメタロセン化合物の好適な例としては、以下の構造のメタロセン化合物が挙げられる。
A preferred example of the metallocene compound represented by the formula (a2) described above is a metallocene compound having the following structure.
以上説明した式(a2)で表されるメタロセン化合物の中でも、触媒活性が高く、入手や合成が容易であることから、下記のメタロセン化合物が好ましい。
Among the metallocene compounds represented by the formula (a2) described above, the following metallocene compounds are preferable because they have high catalytic activity and are easily available and synthesized.
メタロセン触媒は、アルミノキサン、及び/又はイオン化合物と混合して、触媒組成物とされるのが好ましい。
ここで、イオン化合物は、メタロセン触媒との反応によりカチオン性遷移金属化合物を生成させる化合物である。 The metallocene catalyst is preferably mixed with aluminoxane and / or an ionic compound to form a catalyst composition.
Here, the ionic compound is a compound that produces a cationic transition metal compound by reacting with a metallocene catalyst.
ここで、イオン化合物は、メタロセン触媒との反応によりカチオン性遷移金属化合物を生成させる化合物である。 The metallocene catalyst is preferably mixed with aluminoxane and / or an ionic compound to form a catalyst composition.
Here, the ionic compound is a compound that produces a cationic transition metal compound by reacting with a metallocene catalyst.
触媒組成物は、メタロセン触媒の溶液を用いて調製されるのが好ましい。メタロセン触媒の溶液に含まれる溶媒は、特に限定されない。好ましい溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカン、ミネラルオイル、シクロヘキサン、メチルシクロヘキサン、デカヒドロナフタレン(デカリン)、ミネラルオイル、ベンゼン、トルエン、及びキシレン等の炭化水素溶媒や、クロロホルム、メチレンクロライド、ジクロロメタン、ジクロロエタン、及びクロロベンゼン等のハロゲン化炭化水素溶媒が挙げられる。
The catalyst composition is preferably prepared using a solution of a metallocene catalyst. The solvent contained in the metallocene catalyst solution is not particularly limited. Preferred solvents include hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, decahydronaphthalene (decalin), mineral oil, benzene, toluene, and xylene, and chloroform, Examples thereof include halogenated hydrocarbon solvents such as methylene chloride, dichloromethane, dichloroethane, and chlorobenzene.
溶媒の使用量は、所望する性能の触媒組成物を製造できる限り特に限定されない。典型的には、メタロセン触媒、アルミノキサン、及びイオン化合物の濃度が、好ましくは0.00000001~100mol/L、より好ましくは0.00000005~50mol/L、特に好ましくは0.0000001~20mol/Lである量の溶媒が使用される。
The amount of the solvent used is not particularly limited as long as the catalyst composition having the desired performance can be produced. Typically, the concentrations of the metallocene catalyst, aluminoxane, and the ionic compound are preferably 0.00000001 to 100 mol / L, more preferably 0.00000005 to 50 mol / L, and particularly preferably 0.000000001 to 20 mol / L. A quantity of solvent is used.
触媒組成物の原料を含む液を混合する際、メタロセン触媒中の遷移金属元素のモル数をMaとし、アルミノキサン中のアルミニウムのモル数をMb1とし、イオン化合物のモル数をMb2とする場合において、(Mb1+Mb2)/Maの値が、好ましくは1~200000、より好ましくは100~100000、特に好ましくは1000~80000であるように、触媒組成物の原料を含む液が混合されるのが好ましい。
When mixing the liquid containing the raw material of the catalyst composition, the number of moles of transition metal elements in the metallocene catalysts and M a, the number of moles of aluminum in the aluminoxane and M b1, to the number of moles of ionic compound M b2 in case, the value of (M b1 + M b2) / M a is preferably 1 to 200000 and more preferably 100 to 100,000, as particularly preferably at from 1000 to 80000, the liquid is mixed containing raw materials of the catalyst composition It is preferable to be done.
触媒組成物の原料を含む液を混合する温度は特に限定されないが、―100~100℃が好ましく、-50~50℃がより好ましい。
The temperature at which the liquid containing the raw material of the catalyst composition is mixed is not particularly limited, but is preferably -100 to 100 ° C, more preferably -50 to 50 ° C.
触媒組成物を調製するためのメタロセン触媒の溶液と、アルミノキサン、及び/又はイオン化合物との混合は、重合前に、重合容器とは別の装置内で行われてもよく、重合容器において、重合前、又は重合中に行われてもよい。
The mixing of the metallocene catalyst solution for preparing the catalyst composition with the aluminoxane and / or the ionic compound may be carried out in a device separate from the polymerization vessel before the polymerization, and the polymerization is carried out in the polymerization vessel. It may be done before or during polymerization.
以下、触媒組成物の調製に使用される材料や、触媒組成物の調製条件について説明する。
Hereinafter, the materials used for the preparation of the catalyst composition and the preparation conditions of the catalyst composition will be described.
[アルミノキサン]
アルミノキサンとしては、従来より種々のオレフィンの重合において助触媒等として使用されている種々のアルミノキサンを特に制限なく用いることができる。典型的には、アルミノキサンは有機アルミノキサンである。
触媒組成物の製造に際して、アルミノキサンは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 [Aluminoxane]
As the alminoxane, various aluminoxanes conventionally used as cocatalysts in the polymerization of various olefins can be used without particular limitation. Typically, the aluminoxane is an organic aluminoxane.
In the production of the catalyst composition, one type of aluminoxane may be used alone, or two or more types may be used in combination.
アルミノキサンとしては、従来より種々のオレフィンの重合において助触媒等として使用されている種々のアルミノキサンを特に制限なく用いることができる。典型的には、アルミノキサンは有機アルミノキサンである。
触媒組成物の製造に際して、アルミノキサンは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 [Aluminoxane]
As the alminoxane, various aluminoxanes conventionally used as cocatalysts in the polymerization of various olefins can be used without particular limitation. Typically, the aluminoxane is an organic aluminoxane.
In the production of the catalyst composition, one type of aluminoxane may be used alone, or two or more types may be used in combination.
アルミノキサンとしては、アルキルアルミノキサンが好ましく用いられる。アルキルアルミノキサンとしては、例えば、下記式(b1-1)又は(b1-2)で表される化合物が挙げられる。下記式(b1-1)又は(b1-2)で表されるアルキルアルミノキサンは、トリアルキルアルミニウムと水との反応により得られる生成物である。
As the aluminoxane, alkyl aluminoxane is preferably used. Examples of the alkylaluminoxane include compounds represented by the following formulas (b1-1) or (b1-2). The alkylaluminoxane represented by the following formula (b1-1) or (b1-2) is a product obtained by reacting trialkylaluminum with water.
アルキルアルミノキサンとしては、メチルアルミノキサン及びメチルアルミノキサンのメチル基の一部を他のアルキル基で置換した修飾メチルアルミノキサンが挙げられる。修飾メチルアルミノキサンとしては、例えば、置換後のアルキル基として、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素原子数2~4のアルキル基を有する修飾メチルアルミノキサンが好ましく、特に、メチル基の一部をイソブチル基で置換した修飾メチルアルミノキサンがより好ましい。アルキルアルミノキサンの具体例としては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、イソブチルアルミノキサン、メチルエチルアルミノキサン、メチルブチルアルミノキサン、メチルイソブチルアルミノキサン等が挙げられ、中でも、メチルアルミノキサン及びメチルイソブチルアルミノキサンが好ましい。
Examples of the alkylaluminoxane include methylaluminoxane and modified methylaluminoxane in which a part of the methyl group of the methylaluminoxane is replaced with another alkyl group. As the modified methylaluminoxane, for example, as the substituted alkyl group, a modified methylaluminoxane having an alkyl group having 2 to 4 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group and an isobutyl group is preferable, and particularly A modified methylaluminoxane in which a part of the methyl group is replaced with an isobutyl group is more preferable. Specific examples of the alkylaluminoxane include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, methylisobutylaluminoxan and the like, and among them, methylaluminoxane and methylisobutylaluminoxane are preferable.
アルキルアルミノキサンは、公知の方法で調製することができる。また、アルキルアルミノキサンとしては、市販品を用いてもよい。アルキルアルミノキサンの市販品としては、例えば、MMAO-3A、TMAO-200シリーズ、TMAO-340シリーズ、固体MAO(いずれも東ソー・ファインケム(株)製)やメチルアルミノキサン溶液(アルベマール社製)等が挙げられる。
Alkyl aluminoxane can be prepared by a known method. Further, as the alkylaluminoxane, a commercially available product may be used. Examples of commercially available alkylaluminoxane products include MMAO-3A, TMAO-200 series, TMAO-340 series, solid MAO (all manufactured by Tosoh Finechem Co., Ltd.), methylaminenoxane solution (manufactured by Albemarle Corporation), and the like. ..
[イオン化合物]
イオン化合物は、メタロセン触媒との反応によりカチオン性遷移金属化合物を生成する化合物である。
かかるイオン化合物としては、テトラキス(ペンタフルオロフェニル)ボレートのアニオン、ジメチルフェニルアンモニウムカチオン((CH3)2N(C6H5)H+)のような活性プロトンを有するアミンカチオン、(C6H5)3C+のような三置換カルボニウムカチオン、カルボランカチオン、メタルカルボランカチオン、遷移金属を有するフェロセニウムカチオン等のイオンを含むイオン性化合物を用いることができる。 [Ionic compound]
The ionic compound is a compound that produces a cationic transition metal compound by reacting with a metallocene catalyst.
Examples of such an ionic compound include an anion of tetrakis (pentafluorophenyl) borate, an amine cation having an active proton such as dimethylphenylammonium cation ((CH 3 ) 2 N (C 6 H 5 ) H + ), and (C 6 H). 5) 3 C + trisubstituted carbonium cation such as, carborane cation, can be used an ionic compound containing ions such as ferrocenium cation having metal carborane cation, a transition metal.
イオン化合物は、メタロセン触媒との反応によりカチオン性遷移金属化合物を生成する化合物である。
かかるイオン化合物としては、テトラキス(ペンタフルオロフェニル)ボレートのアニオン、ジメチルフェニルアンモニウムカチオン((CH3)2N(C6H5)H+)のような活性プロトンを有するアミンカチオン、(C6H5)3C+のような三置換カルボニウムカチオン、カルボランカチオン、メタルカルボランカチオン、遷移金属を有するフェロセニウムカチオン等のイオンを含むイオン性化合物を用いることができる。 [Ionic compound]
The ionic compound is a compound that produces a cationic transition metal compound by reacting with a metallocene catalyst.
Examples of such an ionic compound include an anion of tetrakis (pentafluorophenyl) borate, an amine cation having an active proton such as dimethylphenylammonium cation ((CH 3 ) 2 N (C 6 H 5 ) H + ), and (C 6 H). 5) 3 C + trisubstituted carbonium cation such as, carborane cation, can be used an ionic compound containing ions such as ferrocenium cation having metal carborane cation, a transition metal.
イオン化合物の好適な例としては、ボレートが挙げられる。ボレートの好ましい具体例としては、テトラキス(ペンタフルオロフェニル)トリチルボレート、ジメチルフェニルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、及びN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N-メチルジノルマルデシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート等のN-メチルジアルキルアンモニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。
A suitable example of an ionic compound is borate. Preferred specific examples of borate are tetrakis (pentafluorophenyl) trityl borate, dimethylphenylammonium tetrakis (pentafluorophenyl) borate, and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N-methyldinormal decyl. Examples thereof include N-methyldialkylammonium tetrakis (pentafluorophenyl) borate such as ammonium tetrakis (pentafluorophenyl) borate.
また、良好な収率で環状オレフィン共重合体を製造しやすい点から、重合容器内には、メタロセン触媒、又はメタロセン触媒を含む触媒組成物を加える前に、アルミノキサン、アルキルアルミニウム化合物、1又は複数のフェノール性水酸基と1又は複数のハロゲン原子とを芳香環上に有する芳香族化合物、及びヒンダードフェノールから選択される1種以上を存在させるのが好ましい。
フェノール性水酸基とハロゲン原子とを有する上記の芳香族化合物において、フェノール性水酸基とハロゲン原子とは、単環であっても縮合環であってもよい同一の芳香環上に結合する。
ヒンダードフェノールとは、フェノール性水酸基の2つの隣接位の少なくとも一方に、かさ高い置換基を有するフェノール類である。かさ高い置換基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、及びtert-ブチル基等のメチル基以外のアルキル基、アルケニル基、アルキニル基、アリール基、複素環式基、アルコキシ基、アリールオキシ基、置換アミノ基、アルキルチオ基、並びにアリールチオ基等が挙げられる。
ヒンダードフェノールの具体例としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール(BHT)、2,6-ジ-tert-ブチルフェノール、2-tert-ブチルフェノール、2-tert-ブチル-p-クレゾール、3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラ-tert-ブチル-2,2’-ジヒドロキシビフェニル、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、4,4’,4”-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)、及び1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)2,4,6-トリメチルベンゼン等が挙げられる。
これらの中では、分子量が小さく、少量の使用によりヒンダードフェノールの使用による所望する効果を得やすいことから、2,6-ジ-tert-ブチル-p-クレゾール(BHT)、及び2,6-ジ-tert-ブチルフェノールが好ましい。
ヒンダードフェノールは、重合系内でアルキルアルミニウム化合物と反応することにより、環状オレフィン共重合体の収量増に寄与する。このため、ヒンダードフェノールは、アルキルアルミニウムとともに使用されるのが好ましい。また、ヒンダードフェノールは、重合機内でアルキルアルミニウムと混合させて用いられてもよい。重合前にアルキルアルミニウムとヒンダードフェノールとを混合して得た混合物を、重合機内に導入してよい。 Further, from the viewpoint that it is easy to produce a cyclic olefin copolymer in a good yield, an aluminoxane, an alkylaluminum compound, or one or more thereof is added into the polymerization vessel before adding a metallocene catalyst or a catalyst composition containing a metallocene catalyst. It is preferable to have one or more selected from aromatic compounds having a phenolic hydroxyl group and one or more halogen atoms on an aromatic ring, and hindered phenol.
In the above aromatic compound having a phenolic hydroxyl group and a halogen atom, the phenolic hydroxyl group and the halogen atom are bonded on the same aromatic ring which may be a monocyclic ring or a fused ring.
Hindered phenols are phenols having a bulky substituent at at least one of the two adjacent positions of the phenolic hydroxyl group. Examples of the bulky substituent include an alkyl group other than the methyl group such as an isopropyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and an alkoxy group. , Aryloxy group, substituted amino group, alkylthio group, arylthio group and the like.
Specific examples of hindered phenol include, for example, 2,6-di-tert-butyl-p-cresol (BHT), 2,6-di-tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-. p-cresol, 3,3', 5,5'-tetra-tert-butyl-4,4'-dihydroxybiphenyl, 3,3', 5,5'-tetra-tert-butyl-2,2'-dihydroxy Biphenyl, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (6-tert-butyl-4-methylphenol), 4,4', 4 "-(1-) Methylpropanol-3-iriden) tris (6-tert-butyl-m-cresol), and 1,3,5-tris (3,5-di-tert-butyl-4-hydroxyphenylmethyl) 2,4 Examples include 6-trimethylbenzene.
Among these, 2,6-di-tert-butyl-p-cresol (BHT) and 2,6--due to the fact that the molecular weight is small and the desired effect due to the use of hindered phenol can be easily obtained by using a small amount. Di-tert-butylphenol is preferred.
Hindered phenol contributes to an increase in the yield of the cyclic olefin copolymer by reacting with the alkylaluminum compound in the polymerization system. For this reason, hindered phenol is preferably used with alkylaluminum. Moreover, hindered phenol may be used by mixing with alkylaluminum in a polymerization machine. A mixture obtained by mixing alkylaluminum and hindered phenol before polymerization may be introduced into the polymerization machine.
フェノール性水酸基とハロゲン原子とを有する上記の芳香族化合物において、フェノール性水酸基とハロゲン原子とは、単環であっても縮合環であってもよい同一の芳香環上に結合する。
ヒンダードフェノールとは、フェノール性水酸基の2つの隣接位の少なくとも一方に、かさ高い置換基を有するフェノール類である。かさ高い置換基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、及びtert-ブチル基等のメチル基以外のアルキル基、アルケニル基、アルキニル基、アリール基、複素環式基、アルコキシ基、アリールオキシ基、置換アミノ基、アルキルチオ基、並びにアリールチオ基等が挙げられる。
ヒンダードフェノールの具体例としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール(BHT)、2,6-ジ-tert-ブチルフェノール、2-tert-ブチルフェノール、2-tert-ブチル-p-クレゾール、3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラ-tert-ブチル-2,2’-ジヒドロキシビフェニル、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、4,4’,4”-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)、及び1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)2,4,6-トリメチルベンゼン等が挙げられる。
これらの中では、分子量が小さく、少量の使用によりヒンダードフェノールの使用による所望する効果を得やすいことから、2,6-ジ-tert-ブチル-p-クレゾール(BHT)、及び2,6-ジ-tert-ブチルフェノールが好ましい。
ヒンダードフェノールは、重合系内でアルキルアルミニウム化合物と反応することにより、環状オレフィン共重合体の収量増に寄与する。このため、ヒンダードフェノールは、アルキルアルミニウムとともに使用されるのが好ましい。また、ヒンダードフェノールは、重合機内でアルキルアルミニウムと混合させて用いられてもよい。重合前にアルキルアルミニウムとヒンダードフェノールとを混合して得た混合物を、重合機内に導入してよい。 Further, from the viewpoint that it is easy to produce a cyclic olefin copolymer in a good yield, an aluminoxane, an alkylaluminum compound, or one or more thereof is added into the polymerization vessel before adding a metallocene catalyst or a catalyst composition containing a metallocene catalyst. It is preferable to have one or more selected from aromatic compounds having a phenolic hydroxyl group and one or more halogen atoms on an aromatic ring, and hindered phenol.
In the above aromatic compound having a phenolic hydroxyl group and a halogen atom, the phenolic hydroxyl group and the halogen atom are bonded on the same aromatic ring which may be a monocyclic ring or a fused ring.
Hindered phenols are phenols having a bulky substituent at at least one of the two adjacent positions of the phenolic hydroxyl group. Examples of the bulky substituent include an alkyl group other than the methyl group such as an isopropyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, and an alkoxy group. , Aryloxy group, substituted amino group, alkylthio group, arylthio group and the like.
Specific examples of hindered phenol include, for example, 2,6-di-tert-butyl-p-cresol (BHT), 2,6-di-tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-. p-cresol, 3,3', 5,5'-tetra-tert-butyl-4,4'-dihydroxybiphenyl, 3,3', 5,5'-tetra-tert-butyl-2,2'-dihydroxy Biphenyl, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (6-tert-butyl-4-methylphenol), 4,4', 4 "-(1-) Methylpropanol-3-iriden) tris (6-tert-butyl-m-cresol), and 1,3,5-tris (3,5-di-tert-butyl-4-hydroxyphenylmethyl) 2,4 Examples include 6-trimethylbenzene.
Among these, 2,6-di-tert-butyl-p-cresol (BHT) and 2,6--due to the fact that the molecular weight is small and the desired effect due to the use of hindered phenol can be easily obtained by using a small amount. Di-tert-butylphenol is preferred.
Hindered phenol contributes to an increase in the yield of the cyclic olefin copolymer by reacting with the alkylaluminum compound in the polymerization system. For this reason, hindered phenol is preferably used with alkylaluminum. Moreover, hindered phenol may be used by mixing with alkylaluminum in a polymerization machine. A mixture obtained by mixing alkylaluminum and hindered phenol before polymerization may be introduced into the polymerization machine.
アルミノキサンについては、触媒組成物の製造方法において説明した通りである。
アルキルアルミニウム化合物としては、オレフィン類の重合等に従来より用いられているものを特に限定なく使用できる。アルキルアルミニウム化合物としては、例えば、下記一般式(II)で示される化合物が挙げられる。
(R10)zAlX3-z (II)
(式(II)中、R10は炭素原子数が1~15、好ましくは1~8のアルキル基であり、Xはハロゲン原子又は水素原子であり、zは1~3の整数である。) Alminoxane is as described in the method for producing the catalyst composition.
As the alkylaluminum compound, those conventionally used for polymerization of olefins and the like can be used without particular limitation. Examples of the alkylaluminum compound include compounds represented by the following general formula (II).
(R 10 ) z AlX 3-z (II)
(In formula (II), R 10 is an alkyl group having 1 to 15, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and z is an integer of 1 to 3.)
アルキルアルミニウム化合物としては、オレフィン類の重合等に従来より用いられているものを特に限定なく使用できる。アルキルアルミニウム化合物としては、例えば、下記一般式(II)で示される化合物が挙げられる。
(R10)zAlX3-z (II)
(式(II)中、R10は炭素原子数が1~15、好ましくは1~8のアルキル基であり、Xはハロゲン原子又は水素原子であり、zは1~3の整数である。) Alminoxane is as described in the method for producing the catalyst composition.
As the alkylaluminum compound, those conventionally used for polymerization of olefins and the like can be used without particular limitation. Examples of the alkylaluminum compound include compounds represented by the following general formula (II).
(R 10 ) z AlX 3-z (II)
(In formula (II), R 10 is an alkyl group having 1 to 15, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and z is an integer of 1 to 3.)
炭素原子数が1~15のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基等が挙げられる。
Examples of the alkyl group having 1 to 15 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-octyl group and the like.
アルキルアルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリn-オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;ジイソブチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;ジメチルアルミニウムメトキシド等のジアルキルアルミニウムアルコキシドが挙げられる。
Specific examples of the alkylaluminum compound include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, trin-butylaluminum, triisobutylaluminum, trisec-butylaluminum and trin-octylaluminum; dimethylaluminum chloride, Examples thereof include dialkylaluminum halides such as diisobutylaluminum chloride; dialkylaluminum hydrides such as diisobutylaluminum hydride; and dialkylaluminum alkoxides such as dimethylaluminummethoxyde.
かかるアルキルアルミニウム化合物は連鎖移動剤として作用し、前述の触媒組成物により触媒される連鎖重合を促進させる。連鎖移動剤はアルキルアルミニウム化合物の他、水素も好適に使用される。
The alkylaluminum compound acts as a chain transfer agent and promotes chain polymerization catalyzed by the catalyst composition described above. As the chain transfer agent, hydrogen is preferably used in addition to the alkylaluminum compound.
メタロセン触媒、又はメタロセン触媒を含む触媒組成物を加える前に、重合容器内にアルミノキサンを加える場合の使用量は、遷移金属化合物1モルに対するアルミノキサン中のアルミニウムのモル数として、10~1000000モルが好ましく、100~100000モルがより好ましい。
メタロセン触媒、又はメタロセン触媒を含む触媒組成物を加える前に、重合容器内にアルキルアルミニウム化合物を加える場合の使用量は、遷移金属化合物1モルに対するアルミニウムのモル数として、5~500000モルが好ましく、50~50000モルがより好ましい。 When aluminoxane is added into the polymerization vessel before adding the metallocene catalyst or the catalyst composition containing the metallocene catalyst, the amount used is preferably 10 to 1,000,000 mol as the number of moles of aluminum in the aluminoxane with respect to 1 mol of the transition metal compound. , 100-100,000 mol is more preferred.
When the alkylaluminum compound is added into the polymerization vessel before adding the metallocene catalyst or the catalyst composition containing the metallocene catalyst, the amount used is preferably 5 to 500,000 mol as the number of moles of aluminum per 1 mol of the transition metal compound. More preferably, 50,000 to 50,000 mol.
メタロセン触媒、又はメタロセン触媒を含む触媒組成物を加える前に、重合容器内にアルキルアルミニウム化合物を加える場合の使用量は、遷移金属化合物1モルに対するアルミニウムのモル数として、5~500000モルが好ましく、50~50000モルがより好ましい。 When aluminoxane is added into the polymerization vessel before adding the metallocene catalyst or the catalyst composition containing the metallocene catalyst, the amount used is preferably 10 to 1,000,000 mol as the number of moles of aluminum in the aluminoxane with respect to 1 mol of the transition metal compound. , 100-100,000 mol is more preferred.
When the alkylaluminum compound is added into the polymerization vessel before adding the metallocene catalyst or the catalyst composition containing the metallocene catalyst, the amount used is preferably 5 to 500,000 mol as the number of moles of aluminum per 1 mol of the transition metal compound. More preferably, 50,000 to 50,000 mol.
重合は、メタロセン触媒と、アルミノキサンと、ヒンダードフェノールとの存在下、又はメタロセン触媒と、イオン化合物と、アルキルアルミニウムとの存在下に行われるのが好ましい。メタロセン触媒と、イオン化合物と、アルキルアルミニウムとの存在下に重合を行う場合、さらに重合系にヒンダードフェノールを存在させるのも好ましい。
The polymerization is preferably carried out in the presence of a metallocene catalyst, aluminoxane and hindered phenol, or in the presence of a metallocene catalyst, an ionic compound and alkylaluminum. When the polymerization is carried out in the presence of a metallocene catalyst, an ionic compound and alkylaluminum, it is also preferable to further add hindered phenol to the polymerization system.
重合条件は、重合温度が50℃以上であって、ガラス転移温度が130℃以下の環状オレフィン共重合体が得られる条件であれば、特に限定されず、公知の条件を用いることができる。
触媒の使用量は、その調製に用いられる遷移金属化合物の使用量から導出される。触媒組成物の使用量は、その調製に用いられた遷移金属化合物の質量として、ノルボルネン単量体1モルに対し、0.000000001~0.005モルが好ましく、0.00000001モル~0.0005モルがより好ましい。 The polymerization conditions are not particularly limited as long as the polymerization temperature is 50 ° C. or higher and a cyclic olefin copolymer having a glass transition temperature of 130 ° C. or lower can be obtained, and known conditions can be used.
The amount of catalyst used is derived from the amount of transition metal compound used in its preparation. The amount of the catalyst composition used is preferably 0.000000001 to 0.005 mol, preferably 0.00000001 mol to 0.0005 mol, based on 1 mol of the norbornene monomer, as the mass of the transition metal compound used in the preparation thereof. Is more preferable.
触媒の使用量は、その調製に用いられる遷移金属化合物の使用量から導出される。触媒組成物の使用量は、その調製に用いられた遷移金属化合物の質量として、ノルボルネン単量体1モルに対し、0.000000001~0.005モルが好ましく、0.00000001モル~0.0005モルがより好ましい。 The polymerization conditions are not particularly limited as long as the polymerization temperature is 50 ° C. or higher and a cyclic olefin copolymer having a glass transition temperature of 130 ° C. or lower can be obtained, and known conditions can be used.
The amount of catalyst used is derived from the amount of transition metal compound used in its preparation. The amount of the catalyst composition used is preferably 0.000000001 to 0.005 mol, preferably 0.00000001 mol to 0.0005 mol, based on 1 mol of the norbornene monomer, as the mass of the transition metal compound used in the preparation thereof. Is more preferable.
重合温度は、50℃以上である。重合温度は、環状オレフィン共重合体の収率が良好であること等から、60℃以上がより好ましく、70℃以上が特に好ましい。
重合時の温度の上限は特に限定されない。重合時の温度の上限は、例えば200℃以下であってよく、140℃以下であってもよく、120℃以下であってもよい。
重合時間は特に限定されず、所望する収率に達するか、重合体の分子量が所望する程度に上昇するまで重合が行われる。
重合時間は、温度や、触媒の組成や、単量体組成によっても異なるが、典型的には0.01~120時間であり、0.1~80時間が好ましく、0.2~10時間がより好ましい。 The polymerization temperature is 50 ° C. or higher. The polymerization temperature is more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher, because the yield of the cyclic olefin copolymer is good.
The upper limit of the temperature at the time of polymerization is not particularly limited. The upper limit of the temperature at the time of polymerization may be, for example, 200 ° C. or lower, 140 ° C. or lower, or 120 ° C. or lower.
The polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the polymer is increased to a desired degree.
The polymerization time varies depending on the temperature, the composition of the catalyst, and the composition of the monomer, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and 0.2 to 10 hours. More preferred.
重合時の温度の上限は特に限定されない。重合時の温度の上限は、例えば200℃以下であってよく、140℃以下であってもよく、120℃以下であってもよい。
重合時間は特に限定されず、所望する収率に達するか、重合体の分子量が所望する程度に上昇するまで重合が行われる。
重合時間は、温度や、触媒の組成や、単量体組成によっても異なるが、典型的には0.01~120時間であり、0.1~80時間が好ましく、0.2~10時間がより好ましい。 The polymerization temperature is 50 ° C. or higher. The polymerization temperature is more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher, because the yield of the cyclic olefin copolymer is good.
The upper limit of the temperature at the time of polymerization is not particularly limited. The upper limit of the temperature at the time of polymerization may be, for example, 200 ° C. or lower, 140 ° C. or lower, or 120 ° C. or lower.
The polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the polymer is increased to a desired degree.
The polymerization time varies depending on the temperature, the composition of the catalyst, and the composition of the monomer, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and 0.2 to 10 hours. More preferred.
触媒組成物の少なくとも一部、好ましくは全部は、重合容器に連続的に添加されるのが好ましい。
触媒組成物を連続的に添加することにより、環状オレフィン共重合体の連続製造が可能になり、環状オレフィン共重合体の製造コストを低減させることが可能になる。 It is preferable that at least a part, preferably all of the catalyst composition is continuously added to the polymerization vessel.
By continuously adding the catalyst composition, the cyclic olefin copolymer can be continuously produced, and the production cost of the cyclic olefin copolymer can be reduced.
触媒組成物を連続的に添加することにより、環状オレフィン共重合体の連続製造が可能になり、環状オレフィン共重合体の製造コストを低減させることが可能になる。 It is preferable that at least a part, preferably all of the catalyst composition is continuously added to the polymerization vessel.
By continuously adding the catalyst composition, the cyclic olefin copolymer can be continuously produced, and the production cost of the cyclic olefin copolymer can be reduced.
以上説明した方法によれば、ノルボルネン単量体と、エチレンとを含むモノマーを、ポリエチレン様不純物が生成しやすい高温で重合しても、ポリエチレン様不純物の生成を抑制しつつ、ガラス転移温度(Tg)が低く加工性に優れる環状オレフィン共重合体を製造できる。
環状オレフィン共重合体のガラス転移温度は130℃以下であり、120℃以下が好ましく、100℃以下が特に好ましい。
また、上記の方法により製造される環状オレフィン系共重合体を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差操作熱量計(DSC)により測定した場合、得られたDSC曲線が、ポリエチレン様不純物に由来する融点(融解エンタルピー)のピークを有さないことが好ましい。このことは、環状オレフィン共重合体中のポリエチレン様不純物が存在しないか極めて少ないことを意味する。なお、環状オレフィン共重合体中にポリエチレン様不純物が含まれている場合、DSC曲線上のポリエチレン様不純物に由来する融点のピークは、一般的に100℃~140℃の範囲内に検出される。 According to the method described above, even if the norbornene monomer and the monomer containing ethylene are polymerized at a high temperature at which polyethylene-like impurities are likely to be generated, the glass transition temperature (Tg) is suppressed while suppressing the formation of polyethylene-like impurities. ) Is low and the cyclic olefin copolymer is excellent in processability.
The glass transition temperature of the cyclic olefin copolymer is 130 ° C. or lower, preferably 120 ° C. or lower, and particularly preferably 100 ° C. or lower.
Further, when the cyclic olefin copolymer produced by the above method is measured by a differential operating calorimeter (DSC) under a nitrogen atmosphere and a heating rate of 20 ° C./min according to the method described in JIS K7121. It is preferable that the obtained DSC curve does not have a peak of melting point (melting enthalpy) derived from polyethylene-like impurities. This means that the polyethylene-like impurities in the cyclic olefin copolymer are absent or extremely low. When the cyclic olefin copolymer contains polyethylene-like impurities, the peak of the melting point derived from the polyethylene-like impurities on the DSC curve is generally detected in the range of 100 ° C. to 140 ° C.
環状オレフィン共重合体のガラス転移温度は130℃以下であり、120℃以下が好ましく、100℃以下が特に好ましい。
また、上記の方法により製造される環状オレフィン系共重合体を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差操作熱量計(DSC)により測定した場合、得られたDSC曲線が、ポリエチレン様不純物に由来する融点(融解エンタルピー)のピークを有さないことが好ましい。このことは、環状オレフィン共重合体中のポリエチレン様不純物が存在しないか極めて少ないことを意味する。なお、環状オレフィン共重合体中にポリエチレン様不純物が含まれている場合、DSC曲線上のポリエチレン様不純物に由来する融点のピークは、一般的に100℃~140℃の範囲内に検出される。 According to the method described above, even if the norbornene monomer and the monomer containing ethylene are polymerized at a high temperature at which polyethylene-like impurities are likely to be generated, the glass transition temperature (Tg) is suppressed while suppressing the formation of polyethylene-like impurities. ) Is low and the cyclic olefin copolymer is excellent in processability.
The glass transition temperature of the cyclic olefin copolymer is 130 ° C. or lower, preferably 120 ° C. or lower, and particularly preferably 100 ° C. or lower.
Further, when the cyclic olefin copolymer produced by the above method is measured by a differential operating calorimeter (DSC) under a nitrogen atmosphere and a heating rate of 20 ° C./min according to the method described in JIS K7121. It is preferable that the obtained DSC curve does not have a peak of melting point (melting enthalpy) derived from polyethylene-like impurities. This means that the polyethylene-like impurities in the cyclic olefin copolymer are absent or extremely low. When the cyclic olefin copolymer contains polyethylene-like impurities, the peak of the melting point derived from the polyethylene-like impurities on the DSC curve is generally detected in the range of 100 ° C. to 140 ° C.
上記の方法により製造される環状オレフィン系共重合体は、ポリエチレン様不純物の含有量が少なく透明性に優れる。このため、上記の方法により製造される環状オレフィン系共重合体は、光学的な機能面や美観の点から高度な透明性が要求される、光学フィルム又は光学シートや、包装材料用のフィルム又はシートの材料等に特に好ましく使用される。
The cyclic olefin copolymer produced by the above method has a low content of polyethylene-like impurities and is excellent in transparency. Therefore, the cyclic olefin-based copolymer produced by the above method is required to have a high degree of transparency in terms of optical function and aesthetics, such as an optical film or an optical sheet, a film for a packaging material, or a packaging material. It is particularly preferably used as a material for sheets.
以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[実施例1~15、及び比較例1~4]
環状オレフィン樹脂組成物を製造するに際し、実施例及び比較例1では、メタロセン触媒として下記のC1又はC2を用いた。 [Examples 1 to 15 and Comparative Examples 1 to 4]
In producing the cyclic olefin resin composition, the following C1 or C2 was used as the metallocene catalyst in Examples and Comparative Example 1.
環状オレフィン樹脂組成物を製造するに際し、実施例及び比較例1では、メタロセン触媒として下記のC1又はC2を用いた。 [Examples 1 to 15 and Comparative Examples 1 to 4]
In producing the cyclic olefin resin composition, the following C1 or C2 was used as the metallocene catalyst in Examples and Comparative Example 1.
比較例2~4では、メタロセン触媒として下記のC3を用いた。
(C3)
In Comparative Examples 2 to 4, the following C3 was used as the metallocene catalyst.
(C3)
(C3)
(C3)
実施例、及び比較例において以下の助触媒を用いた。
CC1:6.5質量%(Al原子の含有量として)MMAO-3Aトルエン溶液([
(CH3)0.7(iso-C4H9)0.3AlO]nで表されるメチルイソブチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して6mol%のトリメチルアルミニウムを含有する)
CC2:9.0質量%(Al原子の含有量として)TMAO-211トルエン溶液(メチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して26mol%のトリメチルアルミニウムを含有する)
CC3:2,6-ジ-tert-ブチル-p-クレゾール(東京化成工業(株)製)
CC4:テトラキス(ペンタフルオロフェニル)トリチルボレート(東京化成工業(株)製)
CC5:N-メチルジアルキルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート(アルキル:C14~C18(平均:C17.5)(東ソー・ファインケム(株)製)
CC6:トリイソブチルアルミニウム(東ソー・ファインケム(株)製) The following cocatalysts were used in Examples and Comparative Examples.
CC1: 6.5% by mass (as Al atom content) MMAO-3A toluene solution ([
(CH 3 ) 0.7 (iso-C 4 H 9 ) 0.3 AlO] A solution of methylisobutylaluminoxane represented by n , manufactured by Tosoh Finechem Co., Ltd., and 6 mol% trimethylaluminum based on total Al. Contains)
CC2: 9.0% by mass (as Al atom content) TMAO-211 toluene solution (solution of methylaluminoxane, manufactured by Toso Finechem Co., Ltd., still containing 26 mol% of trimethylaluminum with respect to total Al)
CC3: 2,6-di-tert-butyl-p-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.)
CC4: Tetrakis (pentafluorophenyl) trityl borate (manufactured by Tokyo Chemical Industry Co., Ltd.)
CC5: N-Methyldialkylammonium tetrakis (pentafluorophenyl) borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
CC6: Triisobutylaluminum (manufactured by Tosoh Finechem Co., Ltd.)
CC1:6.5質量%(Al原子の含有量として)MMAO-3Aトルエン溶液([
(CH3)0.7(iso-C4H9)0.3AlO]nで表されるメチルイソブチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して6mol%のトリメチルアルミニウムを含有する)
CC2:9.0質量%(Al原子の含有量として)TMAO-211トルエン溶液(メチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して26mol%のトリメチルアルミニウムを含有する)
CC3:2,6-ジ-tert-ブチル-p-クレゾール(東京化成工業(株)製)
CC4:テトラキス(ペンタフルオロフェニル)トリチルボレート(東京化成工業(株)製)
CC5:N-メチルジアルキルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート(アルキル:C14~C18(平均:C17.5)(東ソー・ファインケム(株)製)
CC6:トリイソブチルアルミニウム(東ソー・ファインケム(株)製) The following cocatalysts were used in Examples and Comparative Examples.
CC1: 6.5% by mass (as Al atom content) MMAO-3A toluene solution ([
(CH 3 ) 0.7 (iso-C 4 H 9 ) 0.3 AlO] A solution of methylisobutylaluminoxane represented by n , manufactured by Tosoh Finechem Co., Ltd., and 6 mol% trimethylaluminum based on total Al. Contains)
CC2: 9.0% by mass (as Al atom content) TMAO-211 toluene solution (solution of methylaluminoxane, manufactured by Toso Finechem Co., Ltd., still containing 26 mol% of trimethylaluminum with respect to total Al)
CC3: 2,6-di-tert-butyl-p-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.)
CC4: Tetrakis (pentafluorophenyl) trityl borate (manufactured by Tokyo Chemical Industry Co., Ltd.)
CC5: N-Methyldialkylammonium tetrakis (pentafluorophenyl) borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
CC6: Triisobutylaluminum (manufactured by Tosoh Finechem Co., Ltd.)
よく乾燥させた、撹拌子を含む150mLステンレス製オートクレーブに、表2に記載の重合溶媒及び90mmolの2-ノルボルネンを加えた。次いで、表1に記載した助触媒を、以下の説明のように加えた。
実施例1~6、実施例10~12及び比較例1~4では、CC1又はCC2を加えた。
実施例3、実施例11では、CC1を加えた後、さらにCC3を加えた。
実施例7~9及び実施例13~15ではCC6を加え、実施例9、実施例15ではさらにその後CC3を加えた。なお、実施例7~9及び実施例13~15では、後述するように、触媒溶液を添加した後にCC4又はCC5を加えた。触媒溶液は表2に記載の重合溶媒と同一の溶媒を用いて調製した。
上記のように助触媒を添加した後、表2に記載した重合温度になるまでオートクレーブを加熱した後、触媒溶液を、触媒量が表1に記載した量となるように添加した。次いでゲージ圧0.7MPaのエチレン圧をかけた後、30秒後を重合開始点とした。ただし、CC4又はCC5を併用した実施例では、触媒溶液を触媒量が表1に記載した量となるように添加した後、表2に記載の重合溶媒を用いて調製したCC4又はCC5の溶液を加えてから、ゲージ圧0.7MPaのエチレン圧をかけた。比較例1では、ゲージ圧0.2MPaのエチレン圧とした。
なお、エチレン圧をかける直前のモノマー溶液の全量は、80mLとした。
重合開始から15分後、エチレン供給を停止し、注意深く圧力を常圧に戻した後、反応溶液中にイソプロピルアルコールを加えて反応を停止させた。その後、アセトン300mL、メタノール又はイソプロピルアルコール200mL、塩酸5mLの混合溶媒に重合溶液を投入して共重合体を沈殿化させた。共重合体を吸引濾過にて回収し、アセトン、メタノールで洗浄後、共重合体を110℃で12時間真空乾燥を行い、ノルボルネンとエチレンとの共重合体を得た。
触媒の使用量と、共重合体の取得量とから算出される、触媒1g当たりの共重合体収量(kg)を、表1に記す。 The polymerization solvent shown in Table 2 and 90 mmol of 2-norbornene were added to a well-dried 150 mL stainless steel autoclave containing a stir bar. The cocatalysts listed in Table 1 were then added as described below.
In Examples 1 to 6, Examples 10 to 12 and Comparative Examples 1 to 4, CC1 or CC2 was added.
In Examples 3 and 11, CC1 was added, and then CC3 was further added.
CC6 was added in Examples 7 to 9 and Examples 13 to 15, and CC3 was further added in Examples 9 and 15. In Examples 7 to 9 and 13 to 15, CC4 or CC5 was added after the catalyst solution was added, as described later. The catalyst solution was prepared using the same solvent as the polymerization solvent shown in Table 2.
After adding the co-catalyst as described above, the autoclave was heated to the polymerization temperature shown in Table 2, and then the catalyst solution was added so that the amount of the catalyst was the amount shown in Table 1. Next, after applying an ethylene pressure with a gauge pressure of 0.7 MPa, 30 seconds later was set as the polymerization initiation point. However, in the example in which CC4 or CC5 was used in combination, the catalyst solution was added so that the amount of the catalyst was as shown in Table 1, and then the solution of CC4 or CC5 prepared by using the polymerization solvent shown in Table 2 was added. After the addition, an ethylene pressure with a gauge pressure of 0.7 MPa was applied. In Comparative Example 1, the ethylene pressure was 0.2 MPa.
The total volume of the monomer solution immediately before applying ethylene pressure was 80 mL.
After 15 minutes from the start of the polymerization, the ethylene supply was stopped, the pressure was carefully returned to normal pressure, and then isopropyl alcohol was added to the reaction solution to stop the reaction. Then, the polymerization solution was added to a mixed solvent of 300 mL of acetone, 200 mL of methanol or isopropyl alcohol, and 5 mL of hydrochloric acid to precipitate the copolymer. The copolymer was recovered by suction filtration, washed with acetone and methanol, and vacuum dried at 110 ° C. for 12 hours to obtain a copolymer of norbornene and ethylene.
Table 1 shows the copolymer yield (kg) per 1 g of the catalyst, which is calculated from the amount of the catalyst used and the amount of the copolymer obtained.
実施例1~6、実施例10~12及び比較例1~4では、CC1又はCC2を加えた。
実施例3、実施例11では、CC1を加えた後、さらにCC3を加えた。
実施例7~9及び実施例13~15ではCC6を加え、実施例9、実施例15ではさらにその後CC3を加えた。なお、実施例7~9及び実施例13~15では、後述するように、触媒溶液を添加した後にCC4又はCC5を加えた。触媒溶液は表2に記載の重合溶媒と同一の溶媒を用いて調製した。
上記のように助触媒を添加した後、表2に記載した重合温度になるまでオートクレーブを加熱した後、触媒溶液を、触媒量が表1に記載した量となるように添加した。次いでゲージ圧0.7MPaのエチレン圧をかけた後、30秒後を重合開始点とした。ただし、CC4又はCC5を併用した実施例では、触媒溶液を触媒量が表1に記載した量となるように添加した後、表2に記載の重合溶媒を用いて調製したCC4又はCC5の溶液を加えてから、ゲージ圧0.7MPaのエチレン圧をかけた。比較例1では、ゲージ圧0.2MPaのエチレン圧とした。
なお、エチレン圧をかける直前のモノマー溶液の全量は、80mLとした。
重合開始から15分後、エチレン供給を停止し、注意深く圧力を常圧に戻した後、反応溶液中にイソプロピルアルコールを加えて反応を停止させた。その後、アセトン300mL、メタノール又はイソプロピルアルコール200mL、塩酸5mLの混合溶媒に重合溶液を投入して共重合体を沈殿化させた。共重合体を吸引濾過にて回収し、アセトン、メタノールで洗浄後、共重合体を110℃で12時間真空乾燥を行い、ノルボルネンとエチレンとの共重合体を得た。
触媒の使用量と、共重合体の取得量とから算出される、触媒1g当たりの共重合体収量(kg)を、表1に記す。 The polymerization solvent shown in Table 2 and 90 mmol of 2-norbornene were added to a well-dried 150 mL stainless steel autoclave containing a stir bar. The cocatalysts listed in Table 1 were then added as described below.
In Examples 1 to 6, Examples 10 to 12 and Comparative Examples 1 to 4, CC1 or CC2 was added.
In Examples 3 and 11, CC1 was added, and then CC3 was further added.
CC6 was added in Examples 7 to 9 and Examples 13 to 15, and CC3 was further added in Examples 9 and 15. In Examples 7 to 9 and 13 to 15, CC4 or CC5 was added after the catalyst solution was added, as described later. The catalyst solution was prepared using the same solvent as the polymerization solvent shown in Table 2.
After adding the co-catalyst as described above, the autoclave was heated to the polymerization temperature shown in Table 2, and then the catalyst solution was added so that the amount of the catalyst was the amount shown in Table 1. Next, after applying an ethylene pressure with a gauge pressure of 0.7 MPa, 30 seconds later was set as the polymerization initiation point. However, in the example in which CC4 or CC5 was used in combination, the catalyst solution was added so that the amount of the catalyst was as shown in Table 1, and then the solution of CC4 or CC5 prepared by using the polymerization solvent shown in Table 2 was added. After the addition, an ethylene pressure with a gauge pressure of 0.7 MPa was applied. In Comparative Example 1, the ethylene pressure was 0.2 MPa.
The total volume of the monomer solution immediately before applying ethylene pressure was 80 mL.
After 15 minutes from the start of the polymerization, the ethylene supply was stopped, the pressure was carefully returned to normal pressure, and then isopropyl alcohol was added to the reaction solution to stop the reaction. Then, the polymerization solution was added to a mixed solvent of 300 mL of acetone, 200 mL of methanol or isopropyl alcohol, and 5 mL of hydrochloric acid to precipitate the copolymer. The copolymer was recovered by suction filtration, washed with acetone and methanol, and vacuum dried at 110 ° C. for 12 hours to obtain a copolymer of norbornene and ethylene.
Table 1 shows the copolymer yield (kg) per 1 g of the catalyst, which is calculated from the amount of the catalyst used and the amount of the copolymer obtained.
また、以下の方法に従い、ガラス転移温度の測定と、ポリエチレン様不純物の熱分析と、濁り試験とを行った。これらの測定又は試験の結果を、表2に記す。
In addition, the glass transition temperature was measured, the polyethylene-like impurities were thermally analyzed, and the turbidity test was performed according to the following method. The results of these measurements or tests are shown in Table 2.
<ガラス転移温度(Tg)>
DSC法(JIS K7121記載の方法)によって、環状オレフィン共重合体のTgを測定した。
DSC装置:示差走査熱量計(TA Instrument社製 DSC-Q1000)
測定雰囲気:窒素
昇温条件:20℃/分 <Glass transition temperature (Tg)>
The Tg of the cyclic olefin copolymer was measured by the DSC method (method described in JIS K7121).
DSC device: Differential scanning calorimetry (DSC-Q1000 manufactured by TA Instrument)
Measurement atmosphere: Nitrogen temperature rise condition: 20 ° C / min
DSC法(JIS K7121記載の方法)によって、環状オレフィン共重合体のTgを測定した。
DSC装置:示差走査熱量計(TA Instrument社製 DSC-Q1000)
測定雰囲気:窒素
昇温条件:20℃/分 <Glass transition temperature (Tg)>
The Tg of the cyclic olefin copolymer was measured by the DSC method (method described in JIS K7121).
DSC device: Differential scanning calorimetry (DSC-Q1000 manufactured by TA Instrument)
Measurement atmosphere: Nitrogen temperature rise condition: 20 ° C / min
<不純物熱分析>
ガラス転移温度の測定により得られたDSC曲線において、100℃~140℃の範囲内に観察されるポリエチレン様不純物に由来の融点のピーク面積から発熱量(mJ/mg)を算出した。算出された発熱量が大きいほど、ポリエチレン様不純物の含有量が多い。
なお、表2中のNDは、DSC曲線上においてポリエチレン様不純物に由来するピークが検出されないことを示す。 <Impurity thermal analysis>
In the DSC curve obtained by measuring the glass transition temperature, the calorific value (mJ / mg) was calculated from the peak area of the melting point derived from the polyethylene-like impurities observed in the range of 100 ° C. to 140 ° C. The larger the calculated calorific value, the higher the content of polyethylene-like impurities.
In addition, ND in Table 2 indicates that a peak derived from polyethylene-like impurities is not detected on the DSC curve.
ガラス転移温度の測定により得られたDSC曲線において、100℃~140℃の範囲内に観察されるポリエチレン様不純物に由来の融点のピーク面積から発熱量(mJ/mg)を算出した。算出された発熱量が大きいほど、ポリエチレン様不純物の含有量が多い。
なお、表2中のNDは、DSC曲線上においてポリエチレン様不純物に由来するピークが検出されないことを示す。 <Impurity thermal analysis>
In the DSC curve obtained by measuring the glass transition temperature, the calorific value (mJ / mg) was calculated from the peak area of the melting point derived from the polyethylene-like impurities observed in the range of 100 ° C. to 140 ° C. The larger the calculated calorific value, the higher the content of polyethylene-like impurities.
In addition, ND in Table 2 indicates that a peak derived from polyethylene-like impurities is not detected on the DSC curve.
<濁り試験>
得られた環状オレフィン共重合体0.1gを、トルエン10gに溶解させた後、溶液における濁りの有無を観察した。濁りが認められた場合を×と判定し、濁りが認められなかった場合を○と判定した。 <Muddy test>
After dissolving 0.1 g of the obtained cyclic olefin copolymer in 10 g of toluene, the presence or absence of turbidity in the solution was observed. When turbidity was observed, it was judged as x, and when turbidity was not observed, it was judged as ◯.
得られた環状オレフィン共重合体0.1gを、トルエン10gに溶解させた後、溶液における濁りの有無を観察した。濁りが認められた場合を×と判定し、濁りが認められなかった場合を○と判定した。 <Muddy test>
After dissolving 0.1 g of the obtained cyclic olefin copolymer in 10 g of toluene, the presence or absence of turbidity in the solution was observed. When turbidity was observed, it was judged as x, and when turbidity was not observed, it was judged as ◯.
表1及び表2によれば、ノルボルネン単量体と、エチレンとを含むモノマーを、メタロセン触媒の存在下に、50℃以上の温度で重合させ、ガラス転移温度が130℃以下である環状オレフィン共重合体を製造する際に、重合容器内へのエチレンの仕込み圧力を0.3MPa以上とし、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属(Ti)とケイ素原子とに結合している構造と、を有するメタロセン触媒を用いることにより、ポリエチレン様不純物が生成しやすい高温で重合しても、ポリエチレン様不純物の生成を抑制しつつ、ガラス転移温度(Tg)が低く加工性に優れる環状オレフィン共重合体を効率よく製造できることが分かる。1g触媒あたり0.5kg以上の環状オレフィン共重合体収量を得ることができることから、実用的に好ましい。
他方、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合している構造を有しないメタロセン化合物を用いた比較例2~4では、ポリエチレン様不純物の生成を抑制することができなかった。
また、実施例と同じ触媒を用いた場合でも、重合容器内へのエチレンの仕込み圧力を0.3MPa未満とした比較例1では、1g触媒あたりの環状オレフィン共重合体収量が0.5kgを大きく下回り、環状オレフィン共重合体を効率よく製造できることができなかった。 According to Tables 1 and 2, a monomer containing a norbornene monomer and polyethylene is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst, and the glass transition temperature is 130 ° C. or lower. When producing a polymer, the pressure of polyethylene charged into the polymerization vessel is set to 0.3 MPa or more, and the ligand containing the cyclopentadiene ring and the nitrogen atom are the transition metal (Ti) of Group IV of the periodic table and silicon. By using a metallocene catalyst having a structure bonded to an atom, the glass transition temperature (Tg) can be increased while suppressing the formation of polyethylene-like impurities even when polymerized at a high temperature at which polyethylene-like impurities are likely to be generated. It can be seen that a cyclic olefin copolymer having low workability and excellent workability can be efficiently produced. It is practically preferable because a cyclic olefin copolymer yield of 0.5 kg or more can be obtained per 1 g of catalyst.
On the other hand, in Comparative Examples 2 to 4 using a metallocene compound having no structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom, the formation of polyethylene-like impurities could not be suppressed. It was.
Further, even when the same catalyst as in Example was used, in Comparative Example 1 in which the pressure for charging ethylene into the polymerization vessel was less than 0.3 MPa, the yield of the cyclic olefin copolymer per 1 g catalyst was as large as 0.5 kg. Below that, it was not possible to efficiently produce a cyclic olefin copolymer.
他方、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合している構造を有しないメタロセン化合物を用いた比較例2~4では、ポリエチレン様不純物の生成を抑制することができなかった。
また、実施例と同じ触媒を用いた場合でも、重合容器内へのエチレンの仕込み圧力を0.3MPa未満とした比較例1では、1g触媒あたりの環状オレフィン共重合体収量が0.5kgを大きく下回り、環状オレフィン共重合体を効率よく製造できることができなかった。 According to Tables 1 and 2, a monomer containing a norbornene monomer and polyethylene is polymerized at a temperature of 50 ° C. or higher in the presence of a metallocene catalyst, and the glass transition temperature is 130 ° C. or lower. When producing a polymer, the pressure of polyethylene charged into the polymerization vessel is set to 0.3 MPa or more, and the ligand containing the cyclopentadiene ring and the nitrogen atom are the transition metal (Ti) of Group IV of the periodic table and silicon. By using a metallocene catalyst having a structure bonded to an atom, the glass transition temperature (Tg) can be increased while suppressing the formation of polyethylene-like impurities even when polymerized at a high temperature at which polyethylene-like impurities are likely to be generated. It can be seen that a cyclic olefin copolymer having low workability and excellent workability can be efficiently produced. It is practically preferable because a cyclic olefin copolymer yield of 0.5 kg or more can be obtained per 1 g of catalyst.
On the other hand, in Comparative Examples 2 to 4 using a metallocene compound having no structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom, the formation of polyethylene-like impurities could not be suppressed. It was.
Further, even when the same catalyst as in Example was used, in Comparative Example 1 in which the pressure for charging ethylene into the polymerization vessel was less than 0.3 MPa, the yield of the cyclic olefin copolymer per 1 g catalyst was as large as 0.5 kg. Below that, it was not possible to efficiently produce a cyclic olefin copolymer.
Claims (6)
- ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含み、ガラス転移温度が130℃以下である環状オレフィン共重合体の製造方法であって、
少なくとも、前記ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
前記重合容器内の前記モノマーをメタロセン触媒の存在下に、50℃以上の温度で重合させることと、を含み、
前記重合容器内へのエチレンの仕込み圧力が、0.3MPa以上であり、
前記メタロセン触媒が、シクロペンタジエン環を含む配位子と、窒素原子が周期律表第IV族遷移金属とケイ素原子とに結合した構造と、を有している、製造方法。 A method for producing a cyclic olefin copolymer containing a structural unit derived from norbornene monomer and a structural unit derived from ethylene and having a glass transition temperature of 130 ° C. or lower.
At least, the norbornene monomer and ethylene are charged into the polymerization vessel as monomers, and
Including the polymerization of the monomer in the polymerization vessel in the presence of a metallocene catalyst at a temperature of 50 ° C. or higher.
The pressure for charging ethylene into the polymerization vessel is 0.3 MPa or more.
A production method, wherein the metallocene catalyst has a ligand containing a cyclopentadiene ring and a structure in which a nitrogen atom is bonded to a transition metal of Group IV of the periodic table and a silicon atom. - 前記環状オレフィン共重合体の試料を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差走査熱量計による測定を行って得られたDSC曲線が、100℃~140℃の範囲内にポリエチレン様不純物に由来する融点ピークを有さない、請求項1に記載の環状オレフィン共重合体の製造方法。 The DSC curve obtained by measuring the cyclic olefin copolymer sample with a differential scanning calorimeter under a nitrogen atmosphere and a heating rate of 20 ° C./min according to the method described in JIS K7121 is 100 ° C. The method for producing a cyclic olefin copolymer according to claim 1, which does not have a melting point peak derived from a polyethylene-like impurity in the range of about 140 ° C.
- 前記メタロセン触媒が、下記式(a1):
で表されるメタロセン化合物である、請求項1又は2に記載の環状オレフィン共重合体の製造方法。 The metallocene catalyst has the following formula (a1):
The method for producing a cyclic olefin copolymer according to claim 1 or 2, which is a metallocene compound represented by. - 前記式(a1)で表されるメタロセン化合物が、下記式(a2):
で表されるメタロセン化合物である、請求項3に記載の環状オレフィン共重合体の製造方法。 The metallocene compound represented by the formula (a1) is the following formula (a2):
The method for producing a cyclic olefin copolymer according to claim 3, which is a metallocene compound represented by. - 前記周期律表第IV族遷移金属がTiである、請求項1~4のいずれか1項に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to any one of claims 1 to 4, wherein the Group IV transition metal of the periodic table is Ti.
- 重合を、前記メタロセン触媒と、アルミノキサンと、ヒンダードフェノールとの存在下、又は前記メタロセン触媒と、イオン化合物と、アルキルアルミニウムとの存在下に行う、請求項1~5のいずれか1項に記載の環状オレフィン共重合体の製造方法。 The invention according to any one of claims 1 to 5, wherein the polymerization is carried out in the presence of the metallocene catalyst, aluminoxane and hindered phenol, or in the presence of the metallocene catalyst, an ionic compound and alkylaluminum. Method for producing a cyclic olefin copolymer of.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-072340 | 2019-04-04 | ||
JP2019072340 | 2019-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020204188A1 true WO2020204188A1 (en) | 2020-10-08 |
Family
ID=72669122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015411 WO2020204188A1 (en) | 2019-04-04 | 2020-04-03 | Production method for cyclic olefin copolymer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020204188A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022070758A1 (en) * | 2020-10-02 | 2022-04-07 | ポリプラスチックス株式会社 | Transparent article |
WO2023149505A1 (en) * | 2022-02-02 | 2023-08-10 | ポリプラスチックス株式会社 | Cyclic olefin copolymer, and method for manufacturing cyclic olefin copolymer |
WO2023149506A1 (en) * | 2022-02-02 | 2023-08-10 | ポリプラスチックス株式会社 | Cyclic olefin copolymer and production method of cyclic olefin copolymer |
WO2025047583A1 (en) * | 2023-08-31 | 2025-03-06 | ポリプラスチックス株式会社 | Method for producing cyclic olefin copolymer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05194641A (en) * | 1991-06-24 | 1993-08-03 | Dow Chem Co:The | Homogeneous olefin polymerization catalyst by abstraction with Lewis acid |
JPH072917A (en) * | 1992-12-18 | 1995-01-06 | Idemitsu Kosan Co Ltd | Polymerization catalyst and method for producing polymer using the catalyst system |
JPH0912618A (en) * | 1995-06-27 | 1997-01-14 | Idemitsu Kosan Co Ltd | Olefin polymerization catalyst and method for producing olefin polymer using the same |
JPH09255711A (en) * | 1996-03-27 | 1997-09-30 | Mitsui Petrochem Ind Ltd | Olefin polymerization catalyst and olefin polymerization method |
JPH11246617A (en) * | 1998-02-27 | 1999-09-14 | Nippon Zeon Co Ltd | Method for producing norbornene-based polymer and catalyst |
JP3795072B2 (en) * | 1993-11-18 | 2006-07-12 | 出光興産株式会社 | Transition metal compound, catalyst for olefin polymerization, and method for producing olefin polymer using the catalyst |
JP2020007413A (en) * | 2018-07-04 | 2020-01-16 | ポリプラスチックス株式会社 | Method for testing catalytic activity of metallocene catalyst, method for producing catalyst composition for olefin monomer polymerization, and method for producing polymer |
JP2020059779A (en) * | 2018-10-05 | 2020-04-16 | ポリプラスチックス株式会社 | Manufacturing method of cyclic olefin polymer |
-
2020
- 2020-04-03 WO PCT/JP2020/015411 patent/WO2020204188A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05194641A (en) * | 1991-06-24 | 1993-08-03 | Dow Chem Co:The | Homogeneous olefin polymerization catalyst by abstraction with Lewis acid |
JPH072917A (en) * | 1992-12-18 | 1995-01-06 | Idemitsu Kosan Co Ltd | Polymerization catalyst and method for producing polymer using the catalyst system |
JP3795072B2 (en) * | 1993-11-18 | 2006-07-12 | 出光興産株式会社 | Transition metal compound, catalyst for olefin polymerization, and method for producing olefin polymer using the catalyst |
JPH0912618A (en) * | 1995-06-27 | 1997-01-14 | Idemitsu Kosan Co Ltd | Olefin polymerization catalyst and method for producing olefin polymer using the same |
JPH09255711A (en) * | 1996-03-27 | 1997-09-30 | Mitsui Petrochem Ind Ltd | Olefin polymerization catalyst and olefin polymerization method |
JPH11246617A (en) * | 1998-02-27 | 1999-09-14 | Nippon Zeon Co Ltd | Method for producing norbornene-based polymer and catalyst |
JP2020007413A (en) * | 2018-07-04 | 2020-01-16 | ポリプラスチックス株式会社 | Method for testing catalytic activity of metallocene catalyst, method for producing catalyst composition for olefin monomer polymerization, and method for producing polymer |
JP2020059779A (en) * | 2018-10-05 | 2020-04-16 | ポリプラスチックス株式会社 | Manufacturing method of cyclic olefin polymer |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022070758A1 (en) * | 2020-10-02 | 2022-04-07 | ポリプラスチックス株式会社 | Transparent article |
WO2023149505A1 (en) * | 2022-02-02 | 2023-08-10 | ポリプラスチックス株式会社 | Cyclic olefin copolymer, and method for manufacturing cyclic olefin copolymer |
WO2023149506A1 (en) * | 2022-02-02 | 2023-08-10 | ポリプラスチックス株式会社 | Cyclic olefin copolymer and production method of cyclic olefin copolymer |
JP7383852B1 (en) * | 2022-02-02 | 2023-11-20 | ポリプラスチックス株式会社 | Cyclic olefin copolymer and method for producing cyclic olefin copolymer |
JP7383853B1 (en) * | 2022-02-02 | 2023-11-20 | ポリプラスチックス株式会社 | Cyclic olefin copolymer and method for producing cyclic olefin copolymer |
WO2025047583A1 (en) * | 2023-08-31 | 2025-03-06 | ポリプラスチックス株式会社 | Method for producing cyclic olefin copolymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020204188A1 (en) | Production method for cyclic olefin copolymer | |
KR102509512B1 (en) | Method for producing cyclic olefin copolymer, and catalyst composition for copolymerization of norbornene monomer and ethylene | |
JP2018145425A (en) | Cyclic olefin resin composition, method for producing the same, and molding | |
JP7702101B2 (en) | Method for producing norbornane skeleton-containing polymer, and norbornane skeleton-containing polymer | |
JPWO2019026839A1 (en) | Copolymer and process for producing copolymer | |
CN106232641B (en) | Process for producing cyclic olefin copolymer | |
WO2020204187A1 (en) | Cyclic olefin copolymer production method | |
JP2022030194A (en) | Cyclic olefin copolymer and method for producing cyclic olefin copolymer | |
JP7175426B2 (en) | Method for producing cyclic olefin copolymer | |
JP7257595B2 (en) | Method for producing cyclic olefin copolymer | |
JP7127231B1 (en) | transparent goods | |
JP7073467B2 (en) | Method for Producing Cyclic Olefin Copolymer | |
JP7101063B2 (en) | A method for verifying the catalytic activity of a metallocene catalyst, a method for producing a catalyst composition for olefin monomer polymerization, and a method for producing a polymer. | |
CN118475627A (en) | Cyclic olefin copolymer, resin composition, and film-shaped or sheet-shaped molded product | |
JP7329720B1 (en) | Method for producing cyclic olefin copolymer and catalyst composition | |
JP7361239B1 (en) | Method for producing cyclic olefin copolymer | |
WO2024084974A1 (en) | Method for producing cyclic olefin copolymer | |
JP7383852B1 (en) | Cyclic olefin copolymer and method for producing cyclic olefin copolymer | |
JP2022060007A (en) | A method for producing a cyclic olefin copolymer, a molded product, and a cyclic olefin copolymer. | |
US20250129192A1 (en) | Cyclic olefin copolymer, and method for producing cyclic olefin copolymer | |
WO2024177062A1 (en) | Method for producing cyclic olefin copolymer | |
WO2025047582A1 (en) | Cyclic olefin copolymer, resin composition, and molded article | |
WO2025088975A1 (en) | Method for producing cyclic olefin copolymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20785211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20785211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |