[go: up one dir, main page]

WO2025047583A1 - Method for producing cyclic olefin copolymer - Google Patents

Method for producing cyclic olefin copolymer Download PDF

Info

Publication number
WO2025047583A1
WO2025047583A1 PCT/JP2024/029875 JP2024029875W WO2025047583A1 WO 2025047583 A1 WO2025047583 A1 WO 2025047583A1 JP 2024029875 W JP2024029875 W JP 2024029875W WO 2025047583 A1 WO2025047583 A1 WO 2025047583A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
norbornene
olefin copolymer
metal
polymerization
Prior art date
Application number
PCT/JP2024/029875
Other languages
French (fr)
Japanese (ja)
Inventor
智之 多田
尚幸 脇谷
俊亮 小野寺
寛樹 西山
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2025047583A1 publication Critical patent/WO2025047583A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a method for producing a cyclic olefin copolymer that contains structural units derived from norbornene monomer and structural units derived from an olefin selected from ethylene and ⁇ -olefins.
  • Cyclic olefin copolymers have low moisture absorption and high transparency and are used in a variety of applications including optical materials such as optical disk substrates, optical films, and optical fibers.
  • a representative cyclic olefin copolymer is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin.
  • the glass transition temperature (Tg) of the copolymer of cyclic olefin and ethylene can be changed depending on the copolymerization composition of the cyclic olefin and ethylene, so that a copolymer having a glass transition temperature adjusted in a wide temperature range can be produced (see, for example, Non-Patent Document 1).
  • Patent Document 1 when producing a cyclic olefin copolymer by carrying out polymerization in a molten cyclic olefin, it is difficult to obtain a cyclic olefin copolymer having a low glass transition temperature.
  • the present invention has been made in consideration of the above problems, and aims to provide a method for producing a cyclic olefin copolymer that contains constituent units derived from norbornene monomer and constituent units derived from an olefin selected from ethylene and an ⁇ -olefin, and that can produce a cyclic olefin copolymer having a low glass transition temperature.
  • the present inventors have discovered that the above problems can be solved by using a metal-containing catalyst that has a structure in which one or more ligands are coordinated to a central metal and satisfies specific parameters when producing a norbornene copolymer by polymerizing a monomer containing a norbornene monomer and an olefin selected from ethylene and an ⁇ -olefin while the norbornene monomer is in a molten state, and have thus completed the present invention. More specifically, the present invention provides the following.
  • a method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from an olefin selected from ethylene and an ⁇ -olefin comprising the steps of: Charging at least a norbornene monomer and an olefin as monomers into a polymerization vessel; and polymerizing the monomers in the polymerization vessel in a molten state of norbornene monomer in the presence of a metal-containing catalyst having a structure in which one or more ligands are coordinated to a central metal,
  • the ratio of the mass of the norbornene monomer to the mass of the polymerization solution in the polymerization vessel at the start of polymerization is 80 mass% or more
  • the monomer reactivity ratio rN of the metal-containing catalyst at 1 atmosphere and a reaction temperature of 363.15 K is 1.0 ⁇ 10-4 or less;
  • the value of rN is the ratio kNN
  • the present invention provides a method for producing a cyclic olefin copolymer that contains constituent units derived from norbornene monomer and constituent units derived from an olefin selected from ethylene and an ⁇ -olefin, and that has a low glass transition temperature.
  • the method for producing a cyclic olefin copolymer is a method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from an olefin selected from ethylene and an ⁇ -olefin.
  • the method for producing a cyclic olefin copolymer comprises the steps of: Charging at least a norbornene monomer and an olefin as monomers into a polymerization vessel;
  • the method includes polymerizing the monomers in a polymerization vessel in a molten state of norbornene monomer in the presence of a metal-containing catalyst having a structure in which one or more ligands are coordinated to a central metal.
  • the ratio of the mass of norbornene monomer to the mass of the polymerization solution in the polymerization vessel at the start of polymerization is 80 mass% or more.
  • a metal-containing catalyst having a monomer reactivity ratio rN of 1.0 ⁇ 10 ⁇ 4 or less at 1 atmosphere and a reaction temperature of 363.15 K.
  • the value of rN is the ratio kNN / kNE of the insertion rate constant kNN of norbornene into norbornene bound to the metal-containing catalyst to the insertion rate constant kNE of ethylene into norbornene bound to the metal-containing catalyst.
  • Cp is a cyclopentadienyl group which may have a substituent and which may be condensed with an aromatic ring.
  • A is -O-, -S-, -N(R 02 )-, or the above-mentioned Cp.
  • R 02 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • L is an anionic sigma ligand selected from the group consisting of a halogen atom, -OR 03 , an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • the anionic sigma ligand as L may contain one or more Si or Ge.
  • R 03 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • n1 is 1 or 2. However, when Z is N or P, n1 is 1. When Z is C, Si, or Ge, n1 is 2.
  • n2 is an integer from 0 to 4.
  • r is 0 or 1. When r is 0, n2 is 0.
  • p is an integer of 2 to 3. When r is 1, p is equal to (the oxidation state of metal M minus 2). When r is 0, p is equal to (the oxidation state of metal M minus 1).
  • Suitable examples of the divalent bridging group (ZR 01 n1 ) n2 include -C(R 01 ) 2 -, -(C(R 01 ) 2 ) 2 -, -(C(R 01 ) 2 ) 3 -, -Si(R 01 ) 2 -, -Ge(R 01 ) 2 -, -NR 01 -, and -PR 01 -.
  • Preferred specific examples of the divalent bridging group (ZR 01 n1 ) n2 include -Si(CH 3 ) 2 -, -Si(Ph) 2 -, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, and -C(CH 3 ) 2 -.
  • Preferred examples of the ligand Cp that is ⁇ -bonded to the metal M include a cyclopentadienyl group, a methylcyclopentadienyl group, a dimethylcyclopentadienyl group, a trimethylcyclopentadienyl group, and a tetramethylcyclopentadienyl group; a 4-tert-butylcyclopentadienyl group; a 4-adamantylcyclopentadienyl group; an indenyl group, a monomethylindenyl group, a dimethylindenyl group, a trimethylindenyl group, and a tetramethylindenyl group; a 4,5,6,7-tetrahydroindenyl group; a fluorenyl group; a 5,10-dihydroindeno[1,2-b]indol-10-yl group; an N-methyl-5,10-dihydroindeno[ 1,
  • the value of rN tends to be smaller when a bulky group is present near the central metal.
  • the value of rN tends to be smaller when Cp has a substituent on a cyclopentadiene ring or a condensed ring containing a cyclopentadiene ring than when Cp does not have a substituent on the cyclopentadiene ring or a condensed ring containing a cyclopentadiene ring.
  • metal-containing catalysts having a structure corresponding to the structure of the above formula (C) and having an rN value of 1.0 ⁇ 10 ⁇ 4 or less include the following C1 and C2.
  • specific examples of metal-containing catalysts having a structure corresponding to the structure of the above formula (C) but having an rN value of more than 1.0 ⁇ 10 ⁇ 4 include the following C′1 and C′2.
  • the structures of C2 and C'1 are similar. However, the rN values of the two are significantly different. This is believed to be due to the fact that in C2, an electron-donating isopropyl group (iPr) is bonded to the cyclopentadiene ring, resulting in Zr being rich in electrons. In C2, which has electron-rich Zr, it is presumed that norbornene is weakly coordinated, making it difficult for an insertion reaction following coordination to occur.
  • Norbornene monomers include, for example, norbornene and substituted norbornene, with norbornene being preferred. Norbornene monomers can be used alone or in combination of two or more.
  • substituted norbornene is not particularly limited, and examples of the substituents of the substituted norbornene include halogen atoms and monovalent or divalent hydrocarbon groups.
  • substituents of the substituted norbornene include halogen atoms and monovalent or divalent hydrocarbon groups.
  • Specific examples of the substituted norbornene include the compounds represented by the following general formula (I).
  • R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group; R 9 and R 10 , and R 11 and R 12 may combine together to form a divalent hydrocarbon group; R 9 or R 10 and R 11 or R 12 may be joined to form a ring.
  • R 1 to R 12 in the general formula (I) may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 1 to R 8 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; and an alkyl group having 1 to 20 carbon atoms, and these may be different from each other, may be partially different, or may all be the same.
  • R 9 to R 12 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a substituted or unsubstituted aromatic hydrocarbon group such as a phenyl group, a tolyl group, an ethylphenyl group, an isopropylphenyl group, a naphthyl group, or an anthryl group; a benzyl group, a phenethyl group, or an aralkyl group in which an aryl group is substituted on an alkyl group; and the like. These may be different from each other, may be partially different, or may all be the same.
  • divalent hydrocarbon group formed by combining R 9 and R 10 , or R 11 and R 12 together include alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group.
  • the ring formed may be a monocyclic or polycyclic ring, a polycyclic ring having a bridge, a ring having a double bond, or a ring consisting of a combination of these rings. These rings may have a substituent such as a methyl group.
  • substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo[2.2.1]hept-2-ene, 5,5-dimethyl-bicyclo[2.2.1]hept-2-ene, 5-ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-bicyclo[2.2.1]hept-2-ene, 5-ethylidene-bicyclo[2.2.1]hept-2-ene, 5-hexyl- Bicyclic olefins such as bicyclo[2.2.1]hept-2-ene, 5-octyl-bicyclo[2.2.1]hept-2-ene, 5-octadecyl-bicyclo[2.2.1]hept-2-ene, 5-methylidene-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, and 5-propenyl-bicyclo[2.2.1]hept-2-ene; Tri
  • dodec-3-ene also simply called tetracyclododecene
  • 8-methyltetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-ethyltetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • the olefin is selected from ethylene and ⁇ -olefins. Ethylene and ⁇ -olefins will be described below. As the ⁇ -olefin, any known ⁇ -olefin can be used without any particular limitation.
  • the ⁇ -olefin may be substituted with at least one substituent such as a halogen atom.
  • C3 to C12 ⁇ -olefins are preferred.
  • the C3 to C12 ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and 1-dodecene. Of these, 1-hexene, 1-octene, and 1-decene are preferred.
  • the polymerization pressure is preferably 1 to 25 atm as a gauge pressure when the metal-containing catalyst is added to the polymerization vessel.
  • the feeding pressure of the olefin into the polymerization vessel is preferably 1 to 25 atm as the pressure when the catalyst is added into the polymerization vessel.
  • the feeding pressure is a gauge pressure.
  • the temperature at which the monomers are polymerized in the polymerization vessel is preferably from 50 to 150°C, more preferably from 50 to 130°C.
  • the polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the cyclic olefin copolymer increases to a desired level.
  • the polymerization time varies depending on the polymerization temperature, the catalyst composition, and the monomer composition, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and more preferably 0.2 to 10 hours.
  • the cyclic olefin copolymer contains polyethylene-like impurities can be confirmed by visually observing a solution in which the cyclic olefin copolymer is dissolved in toluene at a concentration of 1% by mass. If the solution is cloudy, it can be said that the cyclic olefin copolymer contains polyethylene-like impurities. As can be understood from such a phenomenon, when a cyclic olefin copolymer contains polyethylene-like impurities, there is a concern that the transparency of the cyclic olefin copolymer may decrease.
  • a solvent may be charged into the polymerization vessel together with the norbornene monomer and the olefin, as long as the desired effect is not impaired.
  • solvents include hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclohexane, mineral oil, benzene, toluene, and xylene, and halogenated hydrocarbon solvents such as chloroform, methylene chloride, dichloroethane, and chlorobenzene.
  • aluminoxane As the aluminoxane, various aluminoxanes that have been conventionally used as cocatalysts in the polymerization of various olefins can be used without any particular limitation. Typically, the aluminoxane is an organic aluminoxane. In producing the catalyst composition, the aluminoxane may be used alone or in combination of two or more kinds.
  • alkylaluminoxanes are preferably used.
  • alkylaluminoxanes include compounds represented by the following formula (b1-1) or (b1-2).
  • the alkylaluminoxanes represented by the following formula (b1-1) or (b1-2) are products obtained by reacting trialkylaluminum with water.
  • alkylaluminoxanes examples include methylaluminoxane and modified methylaluminoxanes in which some of the methyl groups of methylaluminoxane are replaced with other alkyl groups.
  • modified methylaluminoxanes having an alkyl group with 2 to 4 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group, or an isobutyl group as the alkyl group after substitution are preferred, and modified methylaluminoxanes in which some of the methyl groups are replaced with isobutyl groups are more preferred.
  • alkylaluminoxanes include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, and methylisobutylaluminoxane, and among these, methylaluminoxane and methylisobutylaluminoxane are preferred.
  • Alkyl aluminoxanes can be prepared by known methods. Commercially available alkyl aluminoxanes may also be used. Commercially available alkyl aluminoxanes include, for example, MMAO-3A, TMAO-200 series, TMAO-340 series (all manufactured by Tosoh Finechem Co., Ltd.) and methyl aluminoxane solution (manufactured by Albemarle Corporation).
  • the amount of aluminoxane used together with the metal-containing catalyst is preferably 10 to 100,000 moles, and more preferably 100 to 10,000 moles, in terms of the number of moles of aluminum atoms per mole of the metal-containing catalyst.
  • Alkyl metal compound As the alkyl metal compound, various alkyl metal compounds which have been conventionally used as cocatalysts or the like in the polymerization of various olefins can be used without any particular limitation.
  • the alkyl metal compound it is preferable to use at least one of an alkyl aluminum compound having at least one alkyl group bonded to an Al atom and an alkyl zinc compound having at least one alkyl group bonded to a Zn atom.
  • the alkyl metal compounds may be used alone or in combination of two or more.
  • alkylaluminum compound any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation.
  • alkylaluminum compound for example, a compound represented by the following general formula (II) can be mentioned.
  • R 11 is an alkyl group having 1 to 15 carbon atoms
  • X is a halogen atom or a hydrogen atom
  • z1 is an integer of 1 to 3.
  • the number of carbon atoms in the alkyl group represented by R 11 is 1 to 15, and from the viewpoint of easily obtaining the desired effect, is preferably 1 to 8, and is further preferably 2 to 8.
  • Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
  • alkylaluminum compounds include trialkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum, tri-n-pentylaluminum, tri-n-hexylaluminum, tri-n-heptylaluminum, and tri-n-octylaluminum; dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, and diisobutylaluminum chloride; dialkylaluminum hydrides such as dimethylaluminum hydride, diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, di
  • alkylzinc compound any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation.
  • alkylzinc compound for example, a compound represented by the following general formula (III) can be mentioned.
  • R 12 is an alkyl group having 1 to 15, preferably 1 to 8, carbon atoms, X is a halogen atom or a hydrogen atom, and z2 is an integer of 1 to 3.
  • the number of carbon atoms in the alkyl group represented by R 12 is 1 to 15, and from the viewpoint of easily obtaining the desired effect, 1 to 8 is more preferable, and 2 to 8 is even more preferable.
  • Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
  • alkyl zinc compounds include dialkyl zincs such as dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-sec-butyl zinc, di-n-pentyl zinc, di-n-hexyl zinc, di-n-heptyl zinc, and di-n-octyl zinc; alkyl zinc halides such as methyl zinc chloride, ethyl zinc chloride, and isobutyl zinc chloride; and alkyl zinc hydrides such as methyl zinc hydride, ethyl zinc hydride, and isobutyl zinc hydride.
  • dialkyl zincs such as dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-sec-butyl zinc, di-n-pentyl zinc, di-
  • alkyl metal compounds one or more selected from the group consisting of trialkylaluminum, dialkylaluminum hydride, and dialkylzinc are preferred, with trialkylaluminum and/or dialkylaluminum hydride being more preferred.
  • the amount of alkyl metal compound used together with the metal-containing catalyst is preferably 10 to 100,000 moles, and more preferably 100 to 10,000 moles, in terms of the number of moles of metal contained in the alkyl metal compound per mole of the metal-containing catalyst.
  • borate compounds As the borate compound, various borate compounds that have been conventionally used as cocatalysts or the like in the polymerization of various olefins can be used without any particular limitation.
  • Preferred specific examples of the borate compound include tetrakis(pentafluorophenyl)trityl borate, dimethylphenylammonium tetrakis(pentafluorophenyl)borate, and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate.
  • the amount of the borate compound used together with the metal-containing catalyst is preferably 1 to 3 mol, more preferably 1 to 2 mol, per 1 mol of the metal-containing catalyst.
  • the polymerization of the monomers is also preferably carried out in the presence of a chain transfer agent.
  • chain transfer agents include alcohols, thiols, ketones, aldehydes, amines, and hydrogen. Among these, amines and hydrogen are preferred as chain transfer agents.
  • chain transfer agents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, and pentanol; thiols such as ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 1,1-dimethylethanethiol, 2-butanethiol, 2-methyl-2-propanethiol, n-pentanethiol, 2-pentanethiol, 3-pentanethiol, 2-methyl-2-butanethiol, 3-methyl-2-butanethiol, and n-hexanethiol; ketones such as acetone, methyl ethyl ketone, diethyl ketone, and diamyl ketone; aldehydes such as acetaldehyde, propionaldehyde, butanal, and pentanal; ethylamine,
  • the amount of the chain transfer agent used is preferably 1 to 100,000 mol, and more preferably 10 to 10,000 mol, per mol of the metal-containing catalyst.
  • the amount of hydrogen used is preferably 0.0001 to 1 atm, more preferably 0.001 to 0.1 atm, in terms of the partial pressure of hydrogen in the polymerization vessel at the time of adding the catalyst.
  • the cyclic olefin copolymer obtained by the above production method contains constitutional units derived from a norbornene monomer and constitutional units derived from an olefin selected from ethylene and an ⁇ -olefin.
  • the cyclic olefin copolymer obtained by the above-mentioned production method will be simply referred to as "cyclic olefin copolymer”.
  • a structural unit derived from a norbornene monomer is designated as "N”, and is also referred to as a "structural unit N derived from a norbornene monomer” or "structural unit N".
  • a structural unit derived from an olefin is designated as "O", and is also referred to as an "olefin-derived structural unit O" or "structural unit O".
  • the cyclic olefin copolymer may or may not contain a diad moiety in which two structural units N derived from a norbornene monomer are bonded together.
  • the biadjacent moiety is a meso biadjacent moiety and/or a racemo biadjacent moiety.
  • the cyclic olefin copolymer may or may not contain a triad moiety in which three structural units N derived from norbornene monomers are bonded together.
  • the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all structural units in the cyclic olefin copolymer is preferably 10 mol % or less.
  • the ratio Mm/Mr of the number of moles of the racemo diad moiety Mr to the number of moles of the meso diad moiety Mm is preferably 0.01-30.
  • the ratio of the number of moles of the structural unit N constituting a triad to the number of moles of all structural units in the cyclic olefin copolymer is preferably 1.0 mol % or less.
  • the meso type dyad structure is represented by the following formula (A)
  • the racemo type dyad structure is represented by the following formula (B).
  • the cyclic olefin copolymer contains little or no diad moieties in which two structural units N derived from norbornene monomers are bonded.
  • the cyclic olefin copolymer contains little or no triad moieties in which three structural units N derived from norbornene monomers are bonded. That is, in the molecular chain of the cyclic olefin copolymer, there are few sites where the structural units N derived from norbornene monomer are consecutively present, or there are no consecutive structural units N.
  • the cyclic olefin copolymer has few or no norbornene monomer blocks with consecutive structural units N, and therefore has a smaller free volume than conventional cyclic olefin copolymers containing many norbornene monomer blocks. As a result, the cyclic olefin copolymer exhibits excellent water vapor barrier properties.
  • norbornene monomer blocks with consecutive N structural units have a negative effect on the impact resistance of the cyclic olefin copolymer. For this reason, when norbornene monomer blocks with consecutive N structural units are present in a small amount or are absent in a cyclic olefin copolymer, the cyclic olefin copolymer exhibits excellent impact resistance.
  • cyclic olefin copolymers are less likely to discolor or crack when exposed to high temperatures for long periods of time.
  • the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all structural units of the cyclic olefin copolymer is preferably 10 mol % or less, more preferably 7 mol % or less, even more preferably 5 mol % or less, and particularly preferably 3 mol % or less.
  • the lower limit of the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all the structural units of the cyclic olefin copolymer is not particularly limited as long as the desired effect is not impaired.
  • the lower limit of the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all the structural units of the cyclic olefin copolymer may be, for example, 0 mol% or more, 0.1 mol% or more, 0.3 mol% or more, or 0.5 mol% or more.
  • the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all structural units of the cyclic olefin copolymer may be 0 to 10 mol%, 0.1 to 10 mol%, 0.3 to 10 mol%, 0.5 to 10 mol%, 0 to 7 mol%, 0.1 to 7 mol%, 0.3 to 7 mol%, 0.5 to 7 mol%, 0 to 5 mol%, 0.1 to 5 mol%, 0.3 to 5 mol%, 0.5 to 5 mol%, 0 to 3 mol%, 0.1 to 3 mol%, 0.3 to 3 mol%, or 0.5 to 3 mol%.
  • the ratio of the number of moles of the structural unit N constituting the triad moiety to the number of moles of all structural units of the cyclic olefin copolymer is preferably 1.0 mol % or less, more preferably 0.5 mol % or less, even more preferably 0.3 mol % or less, particularly preferably 0.1 mol % or less, and most preferably 0 mol %.
  • the lower limit of the ratio of the number of moles of the structural unit N constituting the triad moiety to the number of moles of all the structural units of the cyclic olefin copolymer is not particularly limited as long as the desired effect is not impaired.
  • the lower limit of the ratio of the number of moles of the structural unit N constituting the triad moiety to the number of moles of all the structural units of the cyclic olefin copolymer may be, for example, 0 mol% or more, 0.01 mol% or more, 0.03 mol% or more, or 0.05 mol% or more. Therefore, the ratio of the number of moles of the structural unit N constituting the triad portion to the number of moles of all structural units of the cyclic olefin copolymer is 0 to 1.0 mol%, 0.01 to 1.0 mol%, 0.03 to 1.0 mol%, 0.05 to 1.0 mol%, 0 to 0.5 mol%, 0.01 to 0.5 mol%.
  • 0.03 to 0.5 mol% 0.03 to 0.5 mol%, 0.05 to 0.5 mol%, 0 to 0.3 mol%, 0.01 to 0.3 mol%, 0.03 to 0.3 mol%, 0.05 to 0.3 mol%, 0 to 0.1 mol%, 0.01 to 0.1 mol%, 0.03 to 0.1 mol%, or 0.05 to 0.1 mol%.
  • the ratio Mm/Mr of the number of moles of the racemo-type diad sites Mr to the number of moles of the meso-type diad sites Mm is preferably 0.01 to 30, more preferably 0.1 to 27, and even more preferably 0.5 to 25.
  • the cyclic olefin copolymer has excellent water vapor barrier properties.
  • the cyclic olefin copolymer may contain other structural units in addition to the structural unit N derived from a norbornene monomer and the structural unit O derived from an olefin selected from ethylene and an ⁇ -olefin.
  • the monomers which provide the other structural units are not particularly limited as long as they are monomers which are copolymerizable with norbornene monomer, ethylene, and ⁇ -olefin.
  • the content of other structural units in the cyclic olefin copolymer is not particularly limited as long as the desired effects are not impaired, but is preferably 10 mol % or less, more preferably 5 mol % or less, even more preferably 3 mol % or less, particularly preferably 1 mol % or less, and most preferably 0 mol %, based on the number of moles of all structural units in the cyclic olefin copolymer.
  • the content of the structural unit N derived from the norbornene monomer in the cyclic olefin copolymer is not particularly limited as long as the desired effects are not impaired.
  • the content of the structural unit N is preferably 50 mol% or less, more preferably 20 to 50 mol%, further preferably 25 to 50 mol%, and particularly preferably 30 to 50 mol%, based on the number of moles of all structural units in the cyclic olefin copolymer.
  • the content of the structural unit N is 50 mol% or less based on the number of moles of all structural units in the cyclic olefin copolymer, the cyclic olefin copolymer tends to exhibit a low glass transition point, which is preferable.
  • the content of the structural unit O derived from an olefin selected from ethylene and ⁇ -olefins is not particularly limited as long as the desired effects are not impaired.
  • the content of the structural unit O is preferably 50 mol % or more, more preferably 50 to 80 mol %, further preferably 50 to 75 mol %, particularly preferably 50 to 70 mol %, based on the number of moles of all structural units in the cyclic olefin copolymer.
  • the cyclic olefin copolymer produced by the above method has a low glass transition temperature and is therefore excellent in processability.
  • the cyclic olefin copolymer produced by the above method has excellent water vapor barrier properties and transparency.
  • the cyclic olefin copolymer produced by the above method is particularly preferably used as a material for optical films or optical sheets, films or sheets for packaging materials, etc., which require high water vapor barrier properties and high transparency.
  • Examples 1 to 9, Comparative Example 1, and Comparative Example 2 In producing the cyclic olefin copolymer, the following metal-containing catalysts C1 and C2 were used in the examples, and the following metal-containing catalysts C'1 and C'2 were used in the comparative examples.
  • CC1 N-methyldialkylammonium tetrakis(pentafluorophenyl)borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
  • CC2 Triisobutylaluminum (manufactured by Tosoh Finechem Co., Ltd.)
  • CC3 TMAO-211 toluene solution (methylaluminoxane solution, manufactured by Tosoh Finechem Co., Ltd.)
  • CC4 40.6 mass% (as the content of Al atoms) solid MAO toluene solution (average particle size d(0.5) 5.6 ⁇ m (measurement dispersion medium: toluene), slurry concentration 12.2 wt%, manufactured by Tosoh Finechem Co., Ltd.)
  • a well-dried 150 mL stainless steel autoclave including a stirrer was heated to the polymerization temperature (60 to 90°C) shown in Table 1, and 20 mL of a melt of norbornene at 80°C was added using a pre-warmed syringe.
  • the norbornene in the autoclave was stirred for 5 minutes, and then a metal-containing catalyst solution containing 0.1 ⁇ mol of the metal-containing catalyst was added to the autoclave. Thereafter, the cocatalyst solution prepared by the above method was added to the autoclave so that the molar ratio of the amount of cocatalyst to the amount of metal-containing catalyst was the molar ratio shown in Table 1.
  • ethylene pressure was applied to the autoclave to initiate polymerization so that the gauge pressure was 0.9 MPa.
  • the polymerization initiation point was 30 seconds after the pressurization.
  • the total amount of the monomer solution immediately before the application of ethylene pressure was 21 mL. 15 minutes after the start of polymerization, the ethylene supply was stopped, and the pressure was carefully returned to normal pressure.
  • the polymerization solution was immediately poured into a mixed solvent consisting of 50 mL of acetone, 50 mL of methanol, and 1.5 mL of hydrochloric acid to precipitate the cyclic olefin copolymer. The precipitate was collected by suction filtration.
  • Example 4 200 mol of triethylamine was used as a chain transfer agent relative to 1 mol of the metal-containing catalyst.
  • Example 5 500 mol of triethylamine was used as a chain transfer agent relative to 1 mol of the metal-containing catalyst.
  • Example 7 and 9 hydrogen gas equivalent to a partial pressure of 0.01 atm was added to the polymerization vessel as a chain transfer agent.
  • the cyclic olefin copolymers obtained in each of the Examples and Comparative Examples were subjected to the following methods: glass transition temperature, molecular weight measurement by gel permeation chromatography, impurity thermal analysis, and turbidity test. The measurement and test results are shown in Table 1.
  • Tg ⁇ Glass transition temperature (Tg)> The Tg of the cyclic olefin copolymer was measured by a DSC method (the method described in JIS K7121).
  • DSC device differential scanning calorimeter (DSC-Q1000 manufactured by TA Instruments) Measurement atmosphere: nitrogen Temperature rise condition: 20°C/min
  • the ratio of the structural unit N derived from a norbornene monomer, the ratio of the structural unit N constituting a diad moiety in which two structural units N are bonded, and the ratio of the structural unit N constituting a triad moiety in which three structural units N are bonded, relative to the total structural units of the cyclic olefin copolymer, and the meso/racemo ratio for the diad moiety were calculated from the integral values of the spectra observed by 13C -NMR according to the following method.
  • the ratio of the amount of the diad moiety (NN dyad) and the amount of the triad moiety (NN triad) can be calculated from the distribution of the six triads (EEE, EEN, NEN, NNN, NNE, ENE) described in "Maclomol. Chem. Phs. 1999, Vol. 200, Page 1340" using the following formula: N represents a structural unit derived from a norbornene monomer, and E represents a structural unit derived from ethylene.
  • the ratio of the amount of the diad moiety is the ratio of the number of constituent units N derived from norbornene monomers constituting the diad moiety to the total number of constituent units of the cyclic olefin copolymer.
  • the ratio of the amount of triad moieties is the ratio of the number of constituent units N derived from norbornene monomers constituting the triad moieties to the total number of constituent units of the cyclic olefin copolymer.
  • NN dyad (mol%) (2 ⁇ NNN+ENN) ⁇ (2 ⁇ ENN+2 ⁇ ENE+2 ⁇ NNN) ⁇ 100
  • NN triad (mol%) NNN ⁇ (ENN+ENE+NNN) ⁇ 100
  • the mole fraction of the meso form of the NN dyad is calculated from the average value of the sum of the integral of the C5 ENNE-meso peak (28.0-28.5 ppm) and the C6 ENNE-meso peak (31.5-31.8 ppm) divided by the peak of the C5, C6, and ethylene regions (29.4-32.5 ppm) and the integral of the C7 ENNE-meso peak (33.1-33.2 ppm) divided by the composition of the structural unit N derived from norbornene monomer and the integral of the C7 region (32.6-39 ppm).
  • the mole fraction of the racemo species of the NN dyad is calculated from the average of the sum of the integral of the C5 ENNE-racemo species peak (28.0-28.5 ppm) and the C6 ENNE-racemo species peak (31.2-31.4 ppm) divided by the peak in the C5, C6, and ethylene regions (28-32.5 ppm) and the integral of the C7 ENNE-racemo species peak (33.4-33.8 ppm) divided by the norbornene composition and the integral of the C7 region (32.6-39 ppm).
  • sample preparation conditions and measurement conditions is as follows.
  • Solvent 1,1,2,2-tetrachloroethane-d2 (containing 10% by volume of hexamethyldisilane) Concentration: 70mg/mL
  • Apparatus Bruker AVANCE600 (resonance frequency of hydrogen atoms: 600 MHz) Sample tube diameter: 10 mm
  • Measurement method Power gate type Pulse width: 15 ⁇ sec
  • Delay time 2.089 sec
  • Data acquisition time 0.911 sec
  • Observation frequency range 35971.22Hz
  • Decoupling complete decoupling Number of integrations: 18,000
  • Chemical shift reference the peak of hexamethyldisilane is set at ⁇ 2.43 ppm.
  • the ratio of the structural units N derived from norbornene monomer to the total structural units of the cyclic olefin copolymer, the ratio Mr of the structural units N constituting the racemo-type diadjunction portion, the ratio Mm of the structural units N constituting the meso-type diadjunction portion, and Mm/Mr, determined by the above measurements, are shown in Table 2.
  • Example 1 cyclic olefin copolymers obtained in Example 1, Example 6, Comparative Example 1, and Comparative Example 2 were subjected to impact resistance tests and water vapor barrier property tests according to the following methods.
  • ⁇ Impact resistance test> The obtained cyclic olefin copolymer was melted. The molten cyclic olefin copolymer was formed into a film on a glass substrate and then cooled to prepare a film sample having a thickness of 50 ⁇ m.
  • the impact resistance of a specimen cut out from the obtained film sample was evaluated according to ASTM-D3420 using a film impact tester. The results are shown in Table 2. When the measured value of the impact resistance was 0.35 J or less, it was evaluated as ⁇ , and when the measured value of the impact resistance was more than 0.35 J, it was evaluated as ⁇ .
  • ⁇ Water vapor barrier test> The obtained cyclic olefin copolymer was melted. The melted cyclic olefin copolymer was formed into a film on a glass substrate and then cooled to prepare a film sample having a thickness of 100 ⁇ m. The obtained film sample was used to evaluate the water vapor barrier property under conditions of 40° C. and 90% RH according to the method of JIS Z0208. The water vapor barrier property was evaluated in units of g/m 2 /24h.
  • Table 2 shows that the cyclic olefin copolymers obtained in Examples 1 and 6, which were produced by the above-mentioned method and had a small amount of diads formed from the constituent unit N derived from a norbornene monomer and a small amount of triads formed from the constituent unit N derived from a norbornene monomer, not only had excellent water vapor barrier properties but also excellent impact resistance.
  • the cyclic olefin copolymers obtained in Examples 1 and 6 which have a small amount of diads composed of the structural unit N derived from norbornene monomer and a small amount of triads composed of the structural unit N derived from norbornene monomer, have a low glass transition temperature (Tg) and excellent processability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides a method for producing a cyclic olefin copolymer, the method making it possible to produce a cyclic olefin copolymer that has a low glass transition temperature and contains a structural unit derived from a norbornene monomer and a structural unit derived from an olefin selected from ethylene and α-olefins. A metal-containing catalyst that satisfies specific parameters and has a structure in which one or more ligands are coordinated to a central metal is used when producing a norbornene copolymer by polymerizing monomers including a norbornene monomer and an olefin selected from ethylene and α-olefins while the norbornene monomer is in a molten state.

Description

環状オレフィン共重合体の製造方法Method for producing cyclic olefin copolymer

 本発明は、ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含む環状オレフィン共重合体の製造方法に関する。 The present invention relates to a method for producing a cyclic olefin copolymer that contains structural units derived from norbornene monomer and structural units derived from an olefin selected from ethylene and α-olefins.

 環状オレフィン共重合体は、低吸湿性及び高透明性を有し、光ディスク基板、光学フィルム、光学ファイバー等の光学材料の分野をはじめ、様々な用途に使用されている。
 代表的な環状オレフィン共重合体として、透明樹脂として広く使用される、環状オレフィンとエチレンとの共重合体がある。環状オレフィンとエチレンとの共重合体は、そのガラス転移温度(Tg)を環状オレフィンとエチレンとの共重合組成に応じて変えることが可能なため、広い温度領域でガラス転移温度を調整した共重合体を製造することができる(例えば、非特許文献1を参照)。
Cyclic olefin copolymers have low moisture absorption and high transparency and are used in a variety of applications including optical materials such as optical disk substrates, optical films, and optical fibers.
A representative cyclic olefin copolymer is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin. The glass transition temperature (Tg) of the copolymer of cyclic olefin and ethylene can be changed depending on the copolymerization composition of the cyclic olefin and ethylene, so that a copolymer having a glass transition temperature adjusted in a wide temperature range can be produced (see, for example, Non-Patent Document 1).

 近年、種々の業界、特に製造業界に対して、持続可能性(サステイナビリティ)への要求が高まっている。上記の環状オレフィン共重合体の製造に関して、持続可能性への要求に応え得る方法として、溶融した環状オレフィンモノマーを溶媒として用いて重合を行うことにより、環状オレフィン共重合体を製造する方法が提案されている(例えば、特許文献1を参照)。
 環状オレフィン共重合体は、一般的に有機溶媒中で重合を行うことにより製造されている。しかし、特許文献1に記載の方法によれば、有機溶媒を蒸留等の方法によりリサイクルする際のエネルギーが不要であり、廃棄される有機溶媒の量を削減できる。
In recent years, various industries, particularly the manufacturing industry, have been increasingly required to be sustainable. As a method for producing the above-mentioned cyclic olefin copolymer that can meet the demand for sustainability, a method for producing the cyclic olefin copolymer by polymerization using a molten cyclic olefin monomer as a solvent has been proposed (see, for example, Patent Document 1).
Cyclic olefin copolymers are generally produced by polymerization in an organic solvent, but the method described in Patent Document 1 does not require energy for recycling the organic solvent by a method such as distillation, and can reduce the amount of organic solvent to be discarded.

特開平04-268312JP 04-268312 A

Incoronata,Trittoら、Coordination Chemistry Reviews,2006年、第250巻、p.212-241Incoronatta, Tritto et al., Coordination Chemistry Reviews, 2006, Vol. 250, pp. 212-241

 しかしながら、特許文献1に記載されるように、溶融した環状オレフィン中で重合を行って環状オレフィン共重合体を製造する場合、ガラス転移温度が低い環状オレフィン共重合体を得にくかった。 However, as described in Patent Document 1, when producing a cyclic olefin copolymer by carrying out polymerization in a molten cyclic olefin, it is difficult to obtain a cyclic olefin copolymer having a low glass transition temperature.

 本発明は、上記の課題に鑑みなされたものであって、ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含み、低いガラス転移温度を有する環状オレフィン共重合体を製造できる、環状オレフィン共重合体の製造方法を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a method for producing a cyclic olefin copolymer that contains constituent units derived from norbornene monomer and constituent units derived from an olefin selected from ethylene and an α-olefin, and that can produce a cyclic olefin copolymer having a low glass transition temperature.

 本発明者らは、ノルボルネン単量体と、エチレン、及びα-オレフィンから選択されるオレフィンとを含むモノマーを、ノルボルネン単量体が溶融している状態で重合してノルボルネン共重合体を製造する際に、中心金属に1以上の配位子が配位した構造を有し、且つ特定のパラメーターを満たす含金属触媒を用いることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The present inventors have discovered that the above problems can be solved by using a metal-containing catalyst that has a structure in which one or more ligands are coordinated to a central metal and satisfies specific parameters when producing a norbornene copolymer by polymerizing a monomer containing a norbornene monomer and an olefin selected from ethylene and an α-olefin while the norbornene monomer is in a molten state, and have thus completed the present invention. More specifically, the present invention provides the following.

(1)ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含む環状オレフィン共重合体の製造方法であって、
 少なくとも、ノルボルネン単量体と、オレフィンとをモノマーとして重合容器内に仕込むことと、
 重合容器内のモノマーを、ノルボルネン単量体が溶融している状態で、中心金属に1以上の配位子が配位した構造を有する含金属触媒の存在下に重合させることと、を含み、
 重合開始時における、重合容器の重合溶液の質量に対する、ノルボルネン単量体の質量の比率が、80質量%以上であり、
 含金属触媒の1気圧、反応温度363.15Kでのモノマー反応性比rの値が1.0×10-4以下であり、
 rの値は、含金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入速度定数kNNと、含金属触媒が結合したノルボルネンに対する、エチレンの挿入速度定数kNEとの比kNN/kNEの値であって、
 rは、下記式(r1):
=exp(-(G NN-G NE)/RT)・・・(r1)
(式(r1)において、G NNは、含金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入反応の活性化ギブズ自由エネルギーであり、G NEは、含金属触媒が結合したノルボルネンに対するエチレンの挿入反応の活性化ギブズ自由エネルギー、Rは、気体定数であり、Tは、反応温度363.15Kである。)
により算出され、
 G NN、及びG NEは、DFT理論M06-2X、及び基底関数cc-pVDZ-(PP)に基づく、密度汎関数法により算出され、
 含金属触媒が、中心金属として、Ti、Zr、Hf、Ni、Pd、又はPtを含む、製造方法。
(1) A method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from an olefin selected from ethylene and an α-olefin, comprising the steps of:
Charging at least a norbornene monomer and an olefin as monomers into a polymerization vessel;
and polymerizing the monomers in the polymerization vessel in a molten state of norbornene monomer in the presence of a metal-containing catalyst having a structure in which one or more ligands are coordinated to a central metal,
The ratio of the mass of the norbornene monomer to the mass of the polymerization solution in the polymerization vessel at the start of polymerization is 80 mass% or more,
The monomer reactivity ratio rN of the metal-containing catalyst at 1 atmosphere and a reaction temperature of 363.15 K is 1.0 × 10-4 or less;
The value of rN is the ratio kNN / kNE of the insertion rate constant kNN of norbornene into norbornene bound to a metal-containing catalyst to the insertion rate constant kNE of ethylene into norbornene bound to a metal-containing catalyst,
rN is represented by the following formula (r1):
r N = exp(-(G NN -G NE )/RT)...(r1)
(In formula (r1), G NN is the Gibbs free energy of activation of the insertion reaction of norbornene into norbornene having a metal-containing catalyst bound thereto, G NE is the Gibbs free energy of activation of the insertion reaction of ethylene into norbornene having a metal-containing catalyst bound thereto, R is the gas constant, and T is the reaction temperature of 363.15 K.)
It is calculated by
G NN and G NE are calculated by the density functional method based on the DFT theory M06-2X and the basis set cc-pVDZ-(PP),
A production method, wherein the metal-containing catalyst contains Ti, Zr, Hf, Ni, Pd, or Pt as a central metal.

(2)重合開始時における、重合容器の重合溶液が有機溶媒を含まない、(1)に記載の環状オレフィン共重合体の製造方法。 (2) The method for producing a cyclic olefin copolymer according to (1), wherein the polymerization solution in the polymerization vessel does not contain an organic solvent at the start of polymerization.

(3)重合圧力が、含金属触媒を重合容器内に添加した時のゲージ圧として1~25気圧である、(1)、又は(2)に記載の環状オレフィン共重合体の製造方法。 (3) The method for producing a cyclic olefin copolymer according to (1) or (2), wherein the polymerization pressure is 1 to 25 atm as a gauge pressure when the metal-containing catalyst is added to the polymerization vessel.

(4)モノマーの重合を、50~150℃で行う、(1)~(3)のいずれか1つに記載の環状オレフィン共重合体の製造方法。 (4) A method for producing a cyclic olefin copolymer according to any one of (1) to (3), in which the polymerization of the monomers is carried out at 50 to 150°C.

(5)モノマーの重合が、アルミノキサン、アルキル金属化合物、ボレート化合物、及び有機ホスフィン化合物から選択される1種以上の助触媒の存在下に行われる、(1)~(4)のいずれか1つに記載の環状オレフィン共重合体の製造方法。 (5) A method for producing a cyclic olefin copolymer according to any one of (1) to (4), in which the polymerization of the monomers is carried out in the presence of one or more cocatalysts selected from aluminoxanes, alkyl metal compounds, borate compounds, and organic phosphine compounds.

(6)モノマーの重合が、連鎖移動剤の存在下に行われる(1)~(5)に記載の環状オレフィン共重合体の製造方法。 (6) A method for producing a cyclic olefin copolymer according to any one of (1) to (5), in which the polymerization of the monomer is carried out in the presence of a chain transfer agent.

(7)連鎖移動剤が、水素、又はアミン類である、(6)に記載の環状オレフィン共重合体の製造方法。 (7) The method for producing a cyclic olefin copolymer according to (6), wherein the chain transfer agent is hydrogen or an amine.

 本発明によれば、ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含み、低いガラス転移温度を有する環状オレフィン共重合体を製造できる、環状オレフィン共重合体の製造方法を提供することができる。 The present invention provides a method for producing a cyclic olefin copolymer that contains constituent units derived from norbornene monomer and constituent units derived from an olefin selected from ethylene and an α-olefin, and that has a low glass transition temperature.

≪環状オレフィン共重合体の製造方法≫
 環状オレフィン共重合体の製造方法は、ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含む環状オレフィン共重合体の製造方法である。
<Method for producing cyclic olefin copolymer>
The method for producing a cyclic olefin copolymer is a method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from an olefin selected from ethylene and an α-olefin.

 環状オレフィン共重合体の製造方法は、
 少なくとも、ノルボルネン単量体と、オレフィンとをモノマーとして重合容器内に仕込むことと、
 重合容器内のモノマーを、ノルボルネン単量体が溶融している状態で、中心金属に1以上の配位子が配位した構造を有する含金属触媒の存在下に重合させることと、を含む。
The method for producing a cyclic olefin copolymer comprises the steps of:
Charging at least a norbornene monomer and an olefin as monomers into a polymerization vessel;
The method includes polymerizing the monomers in a polymerization vessel in a molten state of norbornene monomer in the presence of a metal-containing catalyst having a structure in which one or more ligands are coordinated to a central metal.

 重合開始時における、重合容器の重合溶液の質量に対する、ノルボルネン単量体の質量の比率が、80質量%以上である。 The ratio of the mass of norbornene monomer to the mass of the polymerization solution in the polymerization vessel at the start of polymerization is 80 mass% or more.

<含金属触媒>
 含金属触媒の1気圧、反応温度363.15Kでのモノマー反応性比rの値が1.0×10-4以下である。
 rの値は、含金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入速度定数kNNと、含金属触媒が結合したノルボルネンに対する、エチレンの挿入速度定数kNEとの比kNN/kNEの値である。
 rは、下記式(r1):
=exp(-(G NN-G NE)/RT)・・・(r1)
(式(r1)において、G NNは、含金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入反応の活性化ギブズ自由エネルギーであり、G NEは、含金属触媒が結合したノルボルネンに対するエチレンの挿入反応の活性化ギブズ自由エネルギーであり、Rは、気体定数であり、Tは、反応温度363.15K(90℃)である。)
により算出される。
 G NN、及びG NEは、DFT理論M06-2X、及び基底関数cc-pVDZ-(PP)に基づく、密度汎関数法により算出される。
 含金属触媒は、中心金属として、Ti、Zr、Hf、Ni、Pd、又はPtを含む。
<Metal-containing catalyst>
The monomer reactivity ratio rN of the metal-containing catalyst at 1 atmospheric pressure and a reaction temperature of 363.15 K is 1.0×10 −4 or less.
The value of rN is the ratio kNN / kNE of the insertion rate constant kNN of norbornene into norbornene bound to a metal-containing catalyst to the insertion rate constant kNE of ethylene into norbornene bound to a metal-containing catalyst.
rN is represented by the following formula (r1):
r N = exp(-(G NN -G NE )/RT)...(r1)
(In formula (r1), G NN is the Gibbs free energy of activation of the insertion reaction of norbornene into norbornene having a metal-containing catalyst bound thereto, G NE is the Gibbs free energy of activation of the insertion reaction of ethylene into norbornene having a metal-containing catalyst bound thereto, R is the gas constant, and T is the reaction temperature of 363.15 K (90° C.).)
It is calculated as follows.
G NN and G NE are calculated by the density functional method based on the DFT theory M06-2X and the basis set cc-pVDZ-(PP).
The metal-containing catalyst contains Ti, Zr, Hf, Ni, Pd, or Pt as a central metal.

 上記の製造方法によれば、ガラス転移温度が低い環状オレフィン共重合体を製造できる。具体的には、得られる環状オレフィン共重合体のガラス転移温度は130℃以下が好ましく、120℃以下がより好ましく、100℃以下がさらに好ましい。 The above manufacturing method makes it possible to produce a cyclic olefin copolymer with a low glass transition temperature. Specifically, the glass transition temperature of the resulting cyclic olefin copolymer is preferably 130°C or lower, more preferably 120°C or lower, and even more preferably 100°C or lower.

 上記の製造方法では、前述の通り、1気圧、反応温度363.15Kでのモノマー反応性比rの値が、1.0×10-4以下である含金属触媒が使用される。rの値は、含金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入速度定数kNNと、含金属触媒が結合したノルボルネンに対する、エチレンの挿入速度定数kNEとの比kNN/kNEの値である。
 モノマー反応性比rの値が、1.0×10-4以下であることにより、重合時に、ノルボルネン単量体由来の構成単位が連続して結合することが抑制され、ガラス転移温度が低い環状オレフィン共重合体を製造できる。
As described above, in the above production method, a metal-containing catalyst is used having a monomer reactivity ratio rN of 1.0×10 −4 or less at 1 atmosphere and a reaction temperature of 363.15 K. The value of rN is the ratio kNN / kNE of the insertion rate constant kNN of norbornene into norbornene bound to the metal-containing catalyst to the insertion rate constant kNE of ethylene into norbornene bound to the metal-containing catalyst.
By setting the value of the monomer reactivity ratio rN to 1.0×10 −4 or less, continuous bonding of constitutional units derived from norbornene monomers during polymerization is suppressed, and a cyclic olefin copolymer having a low glass transition temperature can be produced.

 含金属触媒は、触媒の構造に基づいて上記のrを算出することにより、中心金属に1以上の配位子が配位した構造を有する種々の含金属触媒の中から選択される。
 含金属触媒は、例えば、下記式(C)で表されるメタロセン触媒群の中から選択されるのが好ましい。
(Cp)(ZR01 (A)ML (C)
The metal-containing catalyst is selected from various metal-containing catalysts having a structure in which one or more ligands are coordinated to a central metal by calculating the above rN based on the structure of the catalyst.
The metal-containing catalyst is preferably selected from the group of metallocene catalysts represented by the following formula (C).
(Cp) (ZR 01 m ) n (A) r ML p (C)

 式(C)中、(ZR01 n1n2は、CpとAとを結合する2価の基である。
 Zは、C、Si、Ge、N、又はPである。
 R01は、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のシクロアルケニル基、炭素原子数6~20のアリール基、炭素原子数7~20のアルキルアリール基、又は炭素原子数7~20のアラルキル基である。
 Cpは、置換基を有してもよく、芳香環と縮合していてもよいシクロペンタジエニル基である。
 Aは-O-、-S-、-N(R02)-、又は前述のCpである。R02は、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のシクロアルケニル基、炭素原子数6~20のアリール基、炭素原子数7~20のアルキルアリール基、又は炭素原子数7~20のアラルキル基である。
 Mは、Ti、Zr、又はHfである。
 Lは、ハロゲン原子、-OR03、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のシクロアルケニル基、炭素原子数6~20のアリール基、炭素原子数7~20のアルキルアリール基、及び炭素原子数7~20のアラルキル基からなる群から選択されるアニオンシグマリガンドである。Lとしてのアニオンシグマリガンドは、1以上のSi、又はGeを含んでいてもよい。R03は、水素原子、炭素原子数1~20のアルキル基、炭素原子数1~20のアルケニル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のシクロアルケニル基、炭素原子数6~20のアリール基、炭素原子数7~20のアルキルアリール基、又は炭素原子数7~20のアラルキル基である。
 n1は、1、又は2である。ただし、Zが、N、又はPである場合に、n1は、1である。Zが、C、Si、又はGeである場合に、n1は、2である。
 n2は、0~4の整数である。
 rは、0、又は1である。rが0である場合、n2は、0である。
 pは、2~3の整数である。
 rが1である場合、pは、(金属Mの酸化状態-2)に等しい。rが0である場合、pは、(金属Mの酸化状態-1)に等しい。
In formula (C), (ZR 01 n1 ) n2 is a divalent group that bonds Cp and A.
Z is C, Si, Ge, N, or P.
R 01 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
Cp is a cyclopentadienyl group which may have a substituent and which may be condensed with an aromatic ring.
A is -O-, -S-, -N(R 02 )-, or the above-mentioned Cp. R 02 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
M is Ti, Zr, or Hf.
L is an anionic sigma ligand selected from the group consisting of a halogen atom, -OR 03 , an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. The anionic sigma ligand as L may contain one or more Si or Ge. R 03 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
n1 is 1 or 2. However, when Z is N or P, n1 is 1. When Z is C, Si, or Ge, n1 is 2.
n2 is an integer from 0 to 4.
r is 0 or 1. When r is 0, n2 is 0.
p is an integer of 2 to 3.
When r is 1, p is equal to (the oxidation state of metal M minus 2). When r is 0, p is equal to (the oxidation state of metal M minus 1).

 2価の架橋基である(ZR01 n1n2の好適な例として、-C(R01-、-(C(R01-、-(C(R01-、-Si(R01-、-Ge(R01-、-NR01-、及び-PR01-が挙げられる。 Suitable examples of the divalent bridging group (ZR 01 n1 ) n2 include -C(R 01 ) 2 -, -(C(R 01 ) 2 ) 2 -, -(C(R 01 ) 2 ) 3 -, -Si(R 01 ) 2 -, -Ge(R 01 ) 2 -, -NR 01 -, and -PR 01 -.

 2価の架橋基である(ZR01 n1n2の好ましい具体例として、-Si(CH-、-Si(Ph)-、-CH-、-CHCH-、-CHCHCH-、及び-C(CH-が挙げられる。 Preferred specific examples of the divalent bridging group (ZR 01 n1 ) n2 include -Si(CH 3 ) 2 -, -Si(Ph) 2 -, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, and -C(CH 3 ) 2 -.

 金属Mにπ結合するリガンドCpの好ましい例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、トリメチルシクロペンタジエニル基、及びテトラメチルシクロペンタジエニル基;4-tert-ブチルシクロペンタジエニル基;4-アダマンチルシクロペンタジエニル基;インデニル基、モノメチルインデニル基、ジメチルインデニル基、トリメチルインデニル基、及びテトラメチルインデニル基;4,5,6,7-テトラヒドロインデニル基;フルオレニル基;5,10-ジヒドロインデノ[1,2-b]インドール-10-イル基;N-メチル-5,10-ジヒドロインデノ[1,2-b]インドール-10-イル基、及びN-フェニル-5,10-ジヒドロインデノ[1,2-b]インドール-10-イル基;5,6-ジヒドロインデノ[2,1-b]インドール-6-イル基;N-メチル-5,6-ジヒドロインデノ[2,1-b]インドール-6-イル基、及びN-フェニル-5,6-ジヒドロインデノ[2,1-b]インドール-6-イル基;アザペンタレン-4-イル基;チアペンタレン-4-イル基;アザペンタレン-6-イル基;チアペンタレン-6-イル基;モノメチルアザペンタレン-4-イル基、ジメチルアザペンタレン-4-イル基、及びトリメチルアザペンタレン-4-イルが挙げられる。
 Aは、前述のCpであるのが好ましい。
Preferred examples of the ligand Cp that is π-bonded to the metal M include a cyclopentadienyl group, a methylcyclopentadienyl group, a dimethylcyclopentadienyl group, a trimethylcyclopentadienyl group, and a tetramethylcyclopentadienyl group; a 4-tert-butylcyclopentadienyl group; a 4-adamantylcyclopentadienyl group; an indenyl group, a monomethylindenyl group, a dimethylindenyl group, a trimethylindenyl group, and a tetramethylindenyl group; a 4,5,6,7-tetrahydroindenyl group; a fluorenyl group; a 5,10-dihydroindeno[1,2-b]indol-10-yl group; an N-methyl-5,10-dihydroindeno[ 1,2-b]indol-10-yl group, and N-phenyl-5,10-dihydroindeno[1,2-b]indol-10-yl group; 5,6-dihydroindeno[2,1-b]indol-6-yl group; N-methyl-5,6-dihydroindeno[2,1-b]indol-6-yl group, and N-phenyl-5,6-dihydroindeno[2,1-b]indol-6-yl group; azapentalen-4-yl group; thiapentalen-4-yl group; azapentalen-6-yl group; thiapentalen-6-yl group; monomethylazapentalen-4-yl group, dimethylazapentalen-4-yl group, and trimethylazapentalen-4-yl group.
A is preferably Cp as defined above.

 例えば、含金属触媒において、中心金属の近傍にかさ高い基が存在するほうが、rの値が小さい傾向がある。また、Cpが、シクロペンタジエン環、又はシクロペンタジエン環を含む縮合環上に置換基を有していない場合より、Cpが、シクロペンタジエン環、又はシクロペンタジエン環を含む縮合環上に置換基を有する場合にrの値が小さい傾向がある。さらに、Cpが、シクロペンタジエン環、又はシクロペンタジエン環を含む縮合環上に置換基を有する場合、置換基の数が多い場合に、rの値が小さい傾向がある。 For example, in a metal-containing catalyst, the value of rN tends to be smaller when a bulky group is present near the central metal. In addition, the value of rN tends to be smaller when Cp has a substituent on a cyclopentadiene ring or a condensed ring containing a cyclopentadiene ring than when Cp does not have a substituent on the cyclopentadiene ring or a condensed ring containing a cyclopentadiene ring. Furthermore, when Cp has a substituent on a cyclopentadiene ring or a condensed ring containing a cyclopentadiene ring, the value of rN tends to be smaller when the number of substituents is large.

 上記の式(C)の構造に該当する構造を有し、rの値が、1.0×10-4以下である含金属触媒の具体例としては、下記C1、及びC2が挙げられる。
 他方で、上記の式(C)の構造に該当する構造を有するが、rの値が、1.0×10-4超である含金属触媒の具体例としては、下記C’1、及びC’2が挙げられる。
 なお、下記C2と、下記C’1とは、構造が類似している。しかし、両者のrの値は大きく異なる。これは、C2では、シクロペンタジエン環に電子供与性のイソプロピル基(iPr)が結合していることにより、Zrの電子が豊富であることに起因すると考えられる。電子リッチなZrを有するC2では、ノルボルネンが弱く配位し、配位に続く挿入反応が起こりにくいと推定される。
Specific examples of metal-containing catalysts having a structure corresponding to the structure of the above formula (C) and having an rN value of 1.0×10 −4 or less include the following C1 and C2.
On the other hand, specific examples of metal-containing catalysts having a structure corresponding to the structure of the above formula (C) but having an rN value of more than 1.0×10 −4 include the following C′1 and C′2.
The structures of C2 and C'1 are similar. However, the rN values of the two are significantly different. This is believed to be due to the fact that in C2, an electron-donating isopropyl group (iPr) is bonded to the cyclopentadiene ring, resulting in Zr being rich in electrons. In C2, which has electron-rich Zr, it is presumed that norbornene is weakly coordinated, making it difficult for an insertion reaction following coordination to occur.

Figure JPOXMLDOC01-appb-C000001
(C1:r=2.8×10-7
(C2:r=6.4×10-5
Figure JPOXMLDOC01-appb-C000001
(C1: r N =2.8×10 −7 )
(C2: r N =6.4×10 −5 )

Figure JPOXMLDOC01-appb-C000002
(C’1:r=3.3×10-4
(C’2:r=3.3×10-2
Figure JPOXMLDOC01-appb-C000002
(C'1: r N =3.3×10 -4 )
(C'2: r N =3.3×10 -2 )

<モノマー>
 上記の環状オレフィン共重合体の製造方法では、ノルボルネン単量体と、エチレン、及びα-オレフィンから選択されるオレフィンとを含むモノマーが使用される。
<Monomer>
In the above-mentioned method for producing a cyclic olefin copolymer, a monomer containing a norbornene monomer and an olefin selected from ethylene and an α-olefin is used.

[ノルボルネン単量体]
 以下、ノルボルネン単量体について説明する。
[Norbornene Monomer]
The norbornene monomer will now be described.

 ノルボルネン単量体としては、例えば、ノルボルネン及び置換ノルボルネンが挙げられ、ノルボルネンが好ましい。ノルボルネン単量体は、1種単独で又は2種以上組み合わせて使用することができる。 Norbornene monomers include, for example, norbornene and substituted norbornene, with norbornene being preferred. Norbornene monomers can be used alone or in combination of two or more.

 上記置換ノルボルネンは特に限定されず、この置換ノルボルネンが有する置換基としては、例えば、ハロゲン原子、1価又は2価の炭化水素基が挙げられる。置換ノルボルネンの具体例としては、下記一般式(I)で示される化合物が挙げられる。 The above-mentioned substituted norbornene is not particularly limited, and examples of the substituents of the substituted norbornene include halogen atoms and monovalent or divalent hydrocarbon groups. Specific examples of the substituted norbornene include the compounds represented by the following general formula (I).

Figure JPOXMLDOC01-appb-C000003
(式中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、
 RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
 R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
 また、nは、0又は正の整数を示し、
 nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。
 ただし、n=0の場合、R~R及びR~R12の少なくとも1個は、水素原子ではない。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group;
R 9 and R 10 , and R 11 and R 12 may combine together to form a divalent hydrocarbon group;
R 9 or R 10 and R 11 or R 12 may be joined to form a ring.
In addition, n represents 0 or a positive integer,
When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
However, when n=0, at least one of R 1 to R 4 and R 9 to R 12 is not a hydrogen atom.

 一般式(I)で示される置換ノルボルネンについて説明する。一般式(I)におけるR~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。 The substituted norbornene represented by the general formula (I) will be described below. R 1 to R 12 in the general formula (I) may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.

 R~Rの具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素原子数1~20のアルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 1 to R 8 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; and an alkyl group having 1 to 20 carbon atoms, and these may be different from each other, may be partially different, or may all be the same.

 また、R~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素原子数1~20のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アントリル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 9 to R 12 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a substituted or unsubstituted aromatic hydrocarbon group such as a phenyl group, a tolyl group, an ethylphenyl group, an isopropylphenyl group, a naphthyl group, or an anthryl group; a benzyl group, a phenethyl group, or an aralkyl group in which an aryl group is substituted on an alkyl group; and the like. These may be different from each other, may be partially different, or may all be the same.

 RとR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。 Specific examples of the divalent hydrocarbon group formed by combining R 9 and R 10 , or R 11 and R 12 together, include alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group.

 R又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。 When R9 or R10 and R11 or R12 form a ring together, the ring formed may be a monocyclic or polycyclic ring, a polycyclic ring having a bridge, a ring having a double bond, or a ring consisting of a combination of these rings. These rings may have a substituent such as a methyl group.

 一般式(I)で示される置換ノルボルネンの具体例としては、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン;
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン;
テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン;
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体等の多環の環状オレフィンを挙げることができる。
Specific examples of the substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo[2.2.1]hept-2-ene, 5,5-dimethyl-bicyclo[2.2.1]hept-2-ene, 5-ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-bicyclo[2.2.1]hept-2-ene, 5-ethylidene-bicyclo[2.2.1]hept-2-ene, 5-hexyl- Bicyclic olefins such as bicyclo[2.2.1]hept-2-ene, 5-octyl-bicyclo[2.2.1]hept-2-ene, 5-octadecyl-bicyclo[2.2.1]hept-2-ene, 5-methylidene-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, and 5-propenyl-bicyclo[2.2.1]hept-2-ene;
Tricyclo[4.3.0.1 2,5 ]deca-3,7-diene (common name: dicyclopentadiene), tricyclo[4.3.0.1 2,5 ]deca-3-ene; tricyclo[4.4.0.1 2,5 ]undeca-3,7-diene or tricyclo[4.4.0.1 2,5 ]undeca-3,8-diene, or their partial hydrogenated products (or adducts of cyclopentadiene and cyclohexene), tricyclo[4.4.0.1 2,5 ]undec-3-ene; three-ring cyclic olefins such as 5-cyclopentyl-bicyclo[2.2.1]hept-2-ene, 5-cyclohexyl-bicyclo[2.2.1]hept-2-ene, 5-cyclohexenyl-bicyclo[2.2.1]hept-2-ene, and 5-phenyl-bicyclo[2.2.1]hept-2-ene;
Tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (also simply called tetracyclododecene), 8-methyltetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethyltetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methylidenetetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethylidenetetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyltetracyclo[4,4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-propenyl-tetracyclo[4.4.0.1 2,5 . 4-ring cyclic olefins such as 17,10 ]dodec-3-ene;
8-Cyclopentyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexenyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-phenyl-cyclopentyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene; tetracyclo[7.4.1 3,6 . 0 1,9 . 0 2,7 ] tetradeca-4,9,11,13-tetraene (also called 1,4-methano-1,4,4a,9a-tetrahydrofluorene), tetracyclo[8.4.1 4,7 . 0 1,10 . 0 3,8 ] pentadeca-5,10,12,14-tetraene (also called 1,4-methano-1,4,4a,5,10,10a-hexahydroanthracene); pentacyclo[6.6.1.1 3,6 . 0 2,7 . 0 9,14 ] -4-hexadecene, pentacyclo[6.5.1.1 3,6 . 0 2,7 . 0 9,13 ] -4-pentadecene, pentacyclo[7.4.0.0 2,7 . 1 3,6 . 1 10,13 ] -4-pentadecene; heptacyclo[8.7.0.1 2,9 . 1 4,7 . 1 11,17 . 0 3,8 . cyclo [ 8.7.0.12,9.03,8.14,7.012,17.113,16 ]-5-eicosene, heptacyclo[ 8.7.0.12,9.03,8.14,7.012,17.113,16 ] -14 - eicosene ; and polycyclic olefins such as a tetramer of cyclopentadiene.

 中でも、アルキル置換ノルボルネン(例えば、1個以上のアルキル基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)、アルキリデン置換ノルボルネン(例えば、1個以上のアルキリデン基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)が好ましく、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:5-エチリデン-2-ノルボルネン、又は、単にエチリデンノルボルネン)が特に好ましい。 Among these, alkyl-substituted norbornenes (e.g., bicyclo[2.2.1]hept-2-ene substituted with one or more alkyl groups) and alkylidene-substituted norbornenes (e.g., bicyclo[2.2.1]hept-2-ene substituted with one or more alkylidene groups) are preferred, with 5-ethylidene-bicyclo[2.2.1]hept-2-ene (common name: 5-ethylidene-2-norbornene, or simply ethylidenenorbornene) being particularly preferred.

[オレフィン]
 オレフィンは、エチレン、及びα-オレフィンから選択される。
 以下、エチレン、及びα-オレフィンについて説明する。α-オレフィンとしては、公知のα-オレフィンを特に制限なく用いることができる。α-オレフィンは、ハロゲン原子等の少なくとも1種の置換基で置換されていてもよい。
[Olefin]
The olefin is selected from ethylene and α-olefins.
Ethylene and α-olefins will be described below. As the α-olefin, any known α-olefin can be used without any particular limitation. The α-olefin may be substituted with at least one substituent such as a halogen atom.

 α-オレフィンとしては、C3~C12のα-オレフィンが好ましい。C3~C12のα-オレフィンは特に限定されないが、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、及び1-ドデセン等が挙げられる。中でも、1-ヘキセン、1-オクテン、1-デセンが好ましい。 As the α-olefin, C3 to C12 α-olefins are preferred. There are no particular limitations on the C3 to C12 α-olefins, but examples include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and 1-dodecene. Of these, 1-hexene, 1-octene, and 1-decene are preferred.

 以上説明したモノマーを重合して得られる環状オレフィン共重合体としては、ノルボルネン単量体/エチレン共重合体、ノルボルネン単量体/α-オレフィン共重合体、及びノルボルネン単量体/エチレン/α-オレフィン共重合体が好ましく、ノルボルネン単量体/エチレン共重合体、及びノルボルネン単量体/α-オレフィン共重合体が好ましい。
 ノルボルネン単量体/エチレン/α-オレフィン共重合体としては、5-エチリデン-2-ノルボルネン等のジエン型のノルボルネン単量体、エチレン、及びプロピレンの共重合体が好ましい。5-エチリデン-2-ノルボルネン/エチレン/プロピレン共重合体は、EPDMとして知られている。
As the cyclic olefin copolymer obtained by polymerizing the monomers described above, a norbornene monomer/ethylene copolymer, a norbornene monomer/α-olefin copolymer, and a norbornene monomer/ethylene/α-olefin copolymer are preferred, and a norbornene monomer/ethylene copolymer and a norbornene monomer/α-olefin copolymer are more preferred.
As the norbornene monomer/ethylene/α-olefin copolymer, a copolymer of a diene type norbornene monomer such as 5-ethylidene-2-norbornene, ethylene, and propylene is preferred. The 5-ethylidene-2-norbornene/ethylene/propylene copolymer is known as EPDM.

 上記の重合反応は、溶媒を用いないか、少量の溶媒を用いて行われる。具体的には、重合開始時における、重合容器の重合溶液の質量に対する、ノルボルネン単量体の質量の比率が、80質量%以上である条件で、重合が行われる。
 重合開始時における、重合容器の重合溶液の質量に対する、ノルボルネン単量体の質量の比率は、85質量%以上であってよく、90質量%以上であってもよい。
The polymerization reaction is carried out without using a solvent or with a small amount of a solvent. Specifically, the polymerization is carried out under the condition that the ratio of the mass of the norbornene monomer to the mass of the polymerization solution in the polymerization vessel at the start of the polymerization is 80 mass% or more.
At the start of polymerization, the ratio of the mass of the norbornene monomer to the mass of the polymerization solution in the polymerization vessel may be 85% by mass or more, or may be 90% by mass or more.

 重合圧力は、含金属触媒を重合容器内に添加した時のゲージ圧として1~25気圧であるのが好ましい。
 特に、オレフィンが仕込み条件下で気体である場合、重合容器内へのオレフィンの仕込み圧力は、重合容器内への触媒添加時の圧力として、1~25気圧が好ましい。仕込み圧力はゲージ圧力である。
The polymerization pressure is preferably 1 to 25 atm as a gauge pressure when the metal-containing catalyst is added to the polymerization vessel.
In particular, when the olefin is in a gaseous state under the feeding conditions, the feeding pressure of the olefin into the polymerization vessel is preferably 1 to 25 atm as the pressure when the catalyst is added into the polymerization vessel. The feeding pressure is a gauge pressure.

 重合容器内のモノマーを重合する温度は、50~150℃が好ましく、50~130℃がより好ましい。
 重合時間は特に限定されず、所望する収率に達するか、環状オレフィン共重合体の分子量が所望する程度に上昇するまで重合が行われる。
 重合時間は、重合温度や、触媒の組成や、単量体組成によっても異なるが、典型的には0.01~120時間であり、0.1~80時間が好ましく、0.2~10時間がより好ましい。
The temperature at which the monomers are polymerized in the polymerization vessel is preferably from 50 to 150°C, more preferably from 50 to 130°C.
The polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the cyclic olefin copolymer increases to a desired level.
The polymerization time varies depending on the polymerization temperature, the catalyst composition, and the monomer composition, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and more preferably 0.2 to 10 hours.

 一般的に、高圧で仕込まれたエチレンと、ノルボルネン単量体とを、高活性な触媒の存在下に、50℃以上のような高温で共重合させる場合、エチレン同士の重合が進行しやすく、ポリエチレン様の不純物が生成しやすい。
 環状オレフィン共重合体にポリエチレン様の不純物が含まれると、環状オレフィン共重合体を溶媒に溶解させた場合に濁りが生じる。
 このため、環状オレフィン共重合体が、ポリエチレン様の不純物を含んでいるか否かは、環状オレフィン共重合体を、濃度1質量%でトルエンに溶解した溶液を目視観察することにより確認できる。溶液が濁っている場合、環状オレフィン共重合体が、ポリエチレン様の不純物を含んでいると言える。
 このような現象からも理解できる通り、環状オレフィン共重合体にポリエチレン様の不純物が含まれると、環状オレフィン共重合体の透明性の低下が懸念される。そのため、環状オレフィン共重合体の製造時にポリエチレン様の不純物が生成した場合、不要なポリエチレン様の不純物をろ過・除去するという製造コストの増大を招くプロセスが必要である。
 しかし、オレフィンとしてエチレンを用いる場合に、上記の方法でノルボルネン単量体と、エチレンとを共重合することにより、ポリエチレン様の不純物の生成を抑制できる。
In general, when ethylene charged at high pressure and norbornene monomer are copolymerized at a high temperature, such as 50° C. or higher, in the presence of a highly active catalyst, polymerization of ethylene units tends to proceed, and polyethylene-like impurities are likely to be produced.
If the cyclic olefin copolymer contains polyethylene-like impurities, turbidity occurs when the cyclic olefin copolymer is dissolved in a solvent.
Therefore, whether or not the cyclic olefin copolymer contains polyethylene-like impurities can be confirmed by visually observing a solution in which the cyclic olefin copolymer is dissolved in toluene at a concentration of 1% by mass. If the solution is cloudy, it can be said that the cyclic olefin copolymer contains polyethylene-like impurities.
As can be understood from such a phenomenon, when a cyclic olefin copolymer contains polyethylene-like impurities, there is a concern that the transparency of the cyclic olefin copolymer may decrease. Therefore, when polyethylene-like impurities are generated during the production of a cyclic olefin copolymer, a process is required to filter and remove the unnecessary polyethylene-like impurities, which increases the production cost.
However, when ethylene is used as the olefin, the production of polyethylene-like impurities can be suppressed by copolymerizing norbornene monomer with ethylene by the above-mentioned method.

 また、環状オレフィン共重合体について示差操作熱量計(DSC)による測定を行うことによっても、ポリエチレン様の不純物の含有を確認できる。
 具体的には、環状オレフィン共重合体を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件でDSCにより測定してDSC曲線を得る。次いで、得られたDSC曲線における、ポリエチレン様不純物に由来する融点(融解エンタルピー)のピークの有無を確認する。環状オレフィン共重合体中にポリエチレン様不純物が含まれている場合、DSC曲線上のポリエチレン様不純物に由来する融点のピークは、一般的に100℃~140℃の範囲内に検出される。
Furthermore, the presence of polyethylene-like impurities can also be confirmed by measuring the cyclic olefin copolymer with a differential scanning calorimeter (DSC).
Specifically, the cyclic olefin copolymer is measured by DSC under a nitrogen atmosphere at a temperature increase rate of 20°C/min according to the method described in JIS K7121 to obtain a DSC curve. Then, the presence or absence of a melting point (melting enthalpy) peak due to polyethylene-like impurities is confirmed in the obtained DSC curve. When the cyclic olefin copolymer contains polyethylene-like impurities, the melting point peak due to polyethylene-like impurities on the DSC curve is generally detected within the range of 100°C to 140°C.

 所望する効果が損なわれない限りにおいて、重合容器内には、ノルボルネン単量体、及びオレフィンとともに、溶媒が仕込まれてもよい。溶媒としては、重合反応を阻害しない溶媒であれば特に限定されない。溶媒の例としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ミネラルオイル、ベンゼン、トルエン、及びキシレン等の炭化水素溶媒や、クロロホルム、メチレンクロライド、ジクロロエタン、及びクロロベンゼン等のハロゲン化炭化水素溶媒が挙げられる。 A solvent may be charged into the polymerization vessel together with the norbornene monomer and the olefin, as long as the desired effect is not impaired. There are no particular limitations on the solvent, so long as it does not inhibit the polymerization reaction. Examples of solvents include hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclohexane, mineral oil, benzene, toluene, and xylene, and halogenated hydrocarbon solvents such as chloroform, methylene chloride, dichloroethane, and chlorobenzene.

 モノマーの重合は、アルミノキサン、アルキル金属化合物、ボレート化合物、及び有機ホスフィン化合物から選択される1種以上の助触媒の存在下に行われるのが好ましい。 The polymerization of the monomers is preferably carried out in the presence of one or more cocatalysts selected from aluminoxanes, alkyl metal compounds, borate compounds, and organic phosphine compounds.

[アルミノキサン]
 アルミノキサンとしては、従来より種々のオレフィンの重合において助触媒等として使用されている種々のアルミノキサンを特に制限なく用いることができる。典型的には、アルミノキサンは有機アルミノキサンである。
 触媒組成物の製造に際して、アルミノキサンは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Aluminoxane]
As the aluminoxane, various aluminoxanes that have been conventionally used as cocatalysts in the polymerization of various olefins can be used without any particular limitation. Typically, the aluminoxane is an organic aluminoxane.
In producing the catalyst composition, the aluminoxane may be used alone or in combination of two or more kinds.

 アルミノキサンとしては、アルキルアルミノキサンが好ましく用いられる。アルキルアルミノキサンとしては、例えば、下記式(b1-1)又は(b1-2)で表される化合物が挙げられる。下記式(b1-1)又は(b1-2)で表されるアルキルアルミノキサンは、トリアルキルアルミニウムと水との反応により得られる生成物である。 As the aluminoxane, alkylaluminoxanes are preferably used. Examples of alkylaluminoxanes include compounds represented by the following formula (b1-1) or (b1-2). The alkylaluminoxanes represented by the following formula (b1-1) or (b1-2) are products obtained by reacting trialkylaluminum with water.

Figure JPOXMLDOC01-appb-C000004
(式(b1-1)及び式(b1-2)中、Rは炭素原子数1~4のアルキル基、nは0~40、好ましくは2~30の整数を示す。)
Figure JPOXMLDOC01-appb-C000004
(In formula (b1-1) and formula (b1-2), R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 40, preferably 2 to 30.)

 アルキルアルミノキサンとしては、メチルアルミノキサン及びメチルアルミノキサンのメチル基の一部を他のアルキル基で置換した修飾メチルアルミノキサンが挙げられる。修飾メチルアルミノキサンとしては、例えば、置換後のアルキル基として、エチル基、プロピル基、イソプロピル基、ブチル基、及びイソブチル基等の炭素原子数2~4のアルキル基を有する修飾メチルアルミノキサンが好ましく、特に、メチル基の一部をイソブチル基で置換した修飾メチルアルミノキサンがより好ましい。アルキルアルミノキサンの具体例としては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、イソブチルアルミノキサン、メチルエチルアルミノキサン、メチルブチルアルミノキサン、及びメチルイソブチルアルミノキサン等が挙げられ、中でも、メチルアルミノキサン及びメチルイソブチルアルミノキサンが好ましい。 Examples of alkylaluminoxanes include methylaluminoxane and modified methylaluminoxanes in which some of the methyl groups of methylaluminoxane are replaced with other alkyl groups. For example, modified methylaluminoxanes having an alkyl group with 2 to 4 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group, or an isobutyl group as the alkyl group after substitution are preferred, and modified methylaluminoxanes in which some of the methyl groups are replaced with isobutyl groups are more preferred. Specific examples of alkylaluminoxanes include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, and methylisobutylaluminoxane, and among these, methylaluminoxane and methylisobutylaluminoxane are preferred.

 アルキルアルミノキサンは、公知の方法で調製することができる。また、アルキルアルミノキサンとしては、市販品を用いてもよい。アルキルアルミノキサンの市販品としては、例えば、MMAO-3A、TMAO-200シリーズ、TMAO-340シリーズ(いずれも東ソー・ファインケム(株)製)やメチルアルミノキサン溶液(アルベマール社製)等が挙げられる。 Alkyl aluminoxanes can be prepared by known methods. Commercially available alkyl aluminoxanes may also be used. Commercially available alkyl aluminoxanes include, for example, MMAO-3A, TMAO-200 series, TMAO-340 series (all manufactured by Tosoh Finechem Co., Ltd.) and methyl aluminoxane solution (manufactured by Albemarle Corporation).

 含金属触媒とともに使用されるアルミノキサンの使用量は、含金属触媒1モルに対するアルミニウム原子のモル数として、10~100000モルが好ましく、100~10000モルがより好ましい。 The amount of aluminoxane used together with the metal-containing catalyst is preferably 10 to 100,000 moles, and more preferably 100 to 10,000 moles, in terms of the number of moles of aluminum atoms per mole of the metal-containing catalyst.

[アルキル金属化合物]
 アルキル金属化合物としては、従来より種々のオレフィンの重合において助触媒等として使用されている種々のアルキル金属化合物を特に制限なく用いることができる。
 アルキル金属化合物としては、Al原子に結合するアルキル基を少なくとも1つ有するアルキルアルミニウム化合物、及びZn原子に結合するアルキル基を少なくとも1つ有するアルキル亜鉛化合物の少なくとも一方を用いるのが好ましい。
 アルキル金属化合物は、1種を単独で使用されてもよく、2種以上を組み合わせて使用されてもよい。
[Alkyl metal compound]
As the alkyl metal compound, various alkyl metal compounds which have been conventionally used as cocatalysts or the like in the polymerization of various olefins can be used without any particular limitation.
As the alkyl metal compound, it is preferable to use at least one of an alkyl aluminum compound having at least one alkyl group bonded to an Al atom and an alkyl zinc compound having at least one alkyl group bonded to a Zn atom.
The alkyl metal compounds may be used alone or in combination of two or more.

 アルキルアルミニウム化合物としては、オレフィン類の重合等に従来より用いられている化合物を特に限定なく使用できる。アルキルアルミニウム化合物としては、例えば、下記一般式(II)で示される化合物が挙げられる。
(R11z1AlX3-z1 (II)
(式(II)中、R11は炭素原子数が1~15のアルキル基であり、Xはハロゲン原子又は水素原子であり、z1は1~3の整数である。)
As the alkylaluminum compound, any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation. As the alkylaluminum compound, for example, a compound represented by the following general formula (II) can be mentioned.
(R 11 ) z1 AlX 3-z1 (II)
(In formula (II), R 11 is an alkyl group having 1 to 15 carbon atoms, X is a halogen atom or a hydrogen atom, and z1 is an integer of 1 to 3.)

 R11としてのアルキル基の炭素原子数は1~15であり、所望する効果を得やすい点から1~8がより好ましく、2~8がさらに好ましい。アルキル基の好ましい具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、及びn-オクチル基等が挙げられる。 The number of carbon atoms in the alkyl group represented by R 11 is 1 to 15, and from the viewpoint of easily obtaining the desired effect, is preferably 1 to 8, and is further preferably 2 to 8. Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.

 アルキルアルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-プロピルアルミニウム、トリイソプロピルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリn-ペンチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-ヘプチルアルミニウム、及びトリn-オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、及びジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジn-プロピルアルミニウムハイドライド、ジイソプロピルアルミニウムハイドライド、ジn-ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジsec-ブチルアルミニウムハイドライド、ジn-ペンチルアルミニウムハイドライド、ジn-ヘキシルアルミニウムハイドライド、ジn-ヘプチルアルミニウムハイドライド、及びジn-オクチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;ジメチルアルミニウムメトキシド等のジアルキルアルミニウムアルコキシドが挙げられる。 Specific examples of alkylaluminum compounds include trialkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum, tri-n-pentylaluminum, tri-n-hexylaluminum, tri-n-heptylaluminum, and tri-n-octylaluminum; dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, and diisobutylaluminum chloride; dialkylaluminum hydrides such as dimethylaluminum hydride, diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, disec-butylaluminum hydride, di-n-pentylaluminum hydride, di-n-hexylaluminum hydride, di-n-heptylaluminum hydride, and di-n-octylaluminum hydride; and dialkylaluminum alkoxides such as dimethylaluminum methoxide.

 アルキル亜鉛化合物としては、オレフィン類の重合等に従来より用いられている化合物を特に限定なく使用できる。アルキル亜鉛化合物としては、例えば、下記一般式(III)で示される化合物が挙げられる。
(R12z2ZnX2-z2 (III)
(式(III)中、R12は炭素原子数が1~15、好ましくは1~8のアルキル基であり、Xはハロゲン原子又は水素原子であり、z2は1~3の整数である。)
As the alkylzinc compound, any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation. As the alkylzinc compound, for example, a compound represented by the following general formula (III) can be mentioned.
(R 12 ) z2 ZnX 2-z2 (III)
(In formula (III), R 12 is an alkyl group having 1 to 15, preferably 1 to 8, carbon atoms, X is a halogen atom or a hydrogen atom, and z2 is an integer of 1 to 3.)

 R12としてのアルキル基の炭素原子数は1~15であり、所望する効果を得やすい点から1~8がより好ましく、2~8がさらに好ましい。アルキル基の好ましい具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、及びn-オクチル基等が挙げられる。 The number of carbon atoms in the alkyl group represented by R 12 is 1 to 15, and from the viewpoint of easily obtaining the desired effect, 1 to 8 is more preferable, and 2 to 8 is even more preferable. Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.

 アルキル亜鉛化合物の具体例としては、ジメチル亜鉛、ジエチル亜鉛、ジn-プロピル亜鉛、ジイソプロピル亜鉛、ジn-ブチル亜鉛、ジイソブチル亜鉛、ジsec-ブチル亜鉛、ジn-ペンチル亜鉛、ジn-ヘキシル亜鉛、ジn-ヘプチル亜鉛、及びジn-オクチル亜鉛等のジアルキル亜鉛;メチル亜鉛クロリド、エチル亜鉛クロリド、及びイソブチル亜鉛クロリド等のアルキル亜鉛ハライド;メチル亜鉛ハイドライド、エチル亜鉛ハイドライド、及びイソブチル亜鉛ハイドライド等のアルキル亜鉛ハイドライドが挙げられる。 Specific examples of alkyl zinc compounds include dialkyl zincs such as dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-sec-butyl zinc, di-n-pentyl zinc, di-n-hexyl zinc, di-n-heptyl zinc, and di-n-octyl zinc; alkyl zinc halides such as methyl zinc chloride, ethyl zinc chloride, and isobutyl zinc chloride; and alkyl zinc hydrides such as methyl zinc hydride, ethyl zinc hydride, and isobutyl zinc hydride.

 アルキル金属化合物の中では、トリアルキルアルミニウム、ジアルキルアルミニウムハイドライド、及びジアルキル亜鉛からなる群より選択される1種以上が好ましく、トリアルキルアルミニウム、及び/又はジアルキルアルミニウムハイドライドがより好ましい。 Among the alkyl metal compounds, one or more selected from the group consisting of trialkylaluminum, dialkylaluminum hydride, and dialkylzinc are preferred, with trialkylaluminum and/or dialkylaluminum hydride being more preferred.

 含金属触媒とともに使用されるアルキル金属化合物の使用量は、含金属触媒1モルに対するアルキル金属化合物に含まれる金属のモル数として、10~100000モルが好ましく、100~10000モルがより好ましい。 The amount of alkyl metal compound used together with the metal-containing catalyst is preferably 10 to 100,000 moles, and more preferably 100 to 10,000 moles, in terms of the number of moles of metal contained in the alkyl metal compound per mole of the metal-containing catalyst.

[ボレート化合物]
 ボレート化合物としては、従来より種々のオレフィンの重合において助触媒等として使用されている種々のボレート化合物を特に制限なく用いることができる。
 ボレート化合物の好ましい具体例としては、テトラキス(ペンタフルオロフェニル)トリチルボレート、ジメチルフェニルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、及びN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。
 含金属触媒とともに使用されるボレート化合物の使用量は、含金属触媒1モルに対して、1~3モルが好ましく、1~2モルがより好ましい。
[Borate compounds]
As the borate compound, various borate compounds that have been conventionally used as cocatalysts or the like in the polymerization of various olefins can be used without any particular limitation.
Preferred specific examples of the borate compound include tetrakis(pentafluorophenyl)trityl borate, dimethylphenylammonium tetrakis(pentafluorophenyl)borate, and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate.
The amount of the borate compound used together with the metal-containing catalyst is preferably 1 to 3 mol, more preferably 1 to 2 mol, per 1 mol of the metal-containing catalyst.

 また、モノマーの重合は、連鎖移動剤の存在下に行われるのも好ましい。連鎖移動剤としては、例えば、アルコール、チオール、ケトン、アルデヒド、アミン、及び水素が挙げられる。これらの中では、アミン、及び水素が連鎖移動剤として好ましい。 The polymerization of the monomers is also preferably carried out in the presence of a chain transfer agent. Examples of chain transfer agents include alcohols, thiols, ketones, aldehydes, amines, and hydrogen. Among these, amines and hydrogen are preferred as chain transfer agents.

 連鎖移動剤の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、及びペンタノール等のアルコール;エタンチオール、n-プロパンチオール、2-プロパンチオール、n-ブタンチオール、1,1-ジメチルエタンチオール、2-ブタンチオール、2-メチル-2-プロパンチオール、n-ペンタンチオール、2-ペンタンチオール、3-ペンタンチオール、2-メチル-2-ブタンチオール、3-メチル-2-ブタンチオール、及びn-ヘキサンチオール等のチオール;アセトン、メチルエチルケトン、ジエチルケトン、及びジアミルケトン等のケトン;アセトアルデヒド、プロピオンアルデヒド、ブタナール、及びペンタナール等のアルデヒド;エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、トリプロピルアミン、ジプロピルアミン、ブチルアミン、ジブチルアミン、及びトリブチルアミン;水素が挙げられる。 Specific examples of chain transfer agents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, and pentanol; thiols such as ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 1,1-dimethylethanethiol, 2-butanethiol, 2-methyl-2-propanethiol, n-pentanethiol, 2-pentanethiol, 3-pentanethiol, 2-methyl-2-butanethiol, 3-methyl-2-butanethiol, and n-hexanethiol; ketones such as acetone, methyl ethyl ketone, diethyl ketone, and diamyl ketone; aldehydes such as acetaldehyde, propionaldehyde, butanal, and pentanal; ethylamine, diethylamine, triethylamine, propylamine, tripropylamine, dipropylamine, butylamine, dibutylamine, and tributylamine; and hydrogen.

 連鎖移動剤の使用量は、含金属触媒1モルに対して、1~100000モルが好ましく、10~10000モルがより好ましい。
 連鎖移動剤が水素である場合、水素の使用量は、触媒添加時の重合容器内の水素の分圧として、0.0001~1気圧が好ましく、0.001~0.1気圧がより好ましい。
The amount of the chain transfer agent used is preferably 1 to 100,000 mol, and more preferably 10 to 10,000 mol, per mol of the metal-containing catalyst.
When the chain transfer agent is hydrogen, the amount of hydrogen used is preferably 0.0001 to 1 atm, more preferably 0.001 to 0.1 atm, in terms of the partial pressure of hydrogen in the polymerization vessel at the time of adding the catalyst.

≪環状オレフィン共重合体≫
 上記の製造方法により得られる環状オレフィン共重合体は、ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含む。
 以下、上記の製造方法により得られる環状オレフィン共重合体について、単に「環状オレフィン共重合体」と記す。
 また、ノルボルネン単量体由来の構成単位を「N」とし、「ノルボルネン単量体由来の構成単位N」、「構成単位N」とも呼ぶ。また、オレフィン由来の構成単位を「O」とし、「オレフィン由来の構成単位O」、「構成単位O」とも呼ぶ。
 環状オレフィン共重合体は、ノルボルネン単量体由来の構成単位Nが2つ結合した二連子部位を含むか、又は含まない。
 二連子部位は、メソ型二連子部位、及び/又はラセモ型二連子部位である。
 環状オレフィン共重合体は、ノルボルネン単量体由来の構成単位Nが3つ結合した三連子部位を含むか、又は含まない。
 環状オレフィン共重合体の全構成単位のモル数に対する、二連子部位を構成する構成単位Nのモル数の比率は、10モル%以下であるのが好ましい。
 環状オレフィン共重合体が二連子部位を含む場合、ラセモ型二連子部位のモル数Mrと、メソ型二連子部位のモル数Mmとの比率Mm/Mrが、0.01~30であるのが好ましい。
 環状オレフィン共重合体の全構成単位のモル数に対する、三連子を構成する構成単位Nのモル数の比率は、1.0モル%以下であるのが好ましい。
<Cyclic olefin copolymer>
The cyclic olefin copolymer obtained by the above production method contains constitutional units derived from a norbornene monomer and constitutional units derived from an olefin selected from ethylene and an α-olefin.
Hereinafter, the cyclic olefin copolymer obtained by the above-mentioned production method will be simply referred to as "cyclic olefin copolymer".
Furthermore, a structural unit derived from a norbornene monomer is designated as "N", and is also referred to as a "structural unit N derived from a norbornene monomer" or "structural unit N". Further, a structural unit derived from an olefin is designated as "O", and is also referred to as an "olefin-derived structural unit O" or "structural unit O".
The cyclic olefin copolymer may or may not contain a diad moiety in which two structural units N derived from a norbornene monomer are bonded together.
The biadjacent moiety is a meso biadjacent moiety and/or a racemo biadjacent moiety.
The cyclic olefin copolymer may or may not contain a triad moiety in which three structural units N derived from norbornene monomers are bonded together.
The ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all structural units in the cyclic olefin copolymer is preferably 10 mol % or less.
When the cyclic olefin copolymer contains a diad moiety, the ratio Mm/Mr of the number of moles of the racemo diad moiety Mr to the number of moles of the meso diad moiety Mm is preferably 0.01-30.
The ratio of the number of moles of the structural unit N constituting a triad to the number of moles of all structural units in the cyclic olefin copolymer is preferably 1.0 mol % or less.

 ノルボルネン単量体がノルボルネンである場合、メソ型二連子の構造は下記式(A)で表され、ラセモ型二連子の構造は下記式(B)で表される。

Figure JPOXMLDOC01-appb-C000005
When the norbornene monomer is norbornene, the meso type dyad structure is represented by the following formula (A), and the racemo type dyad structure is represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000005

 環状オレフィン共重合体は、ノルボルネン単量体由来の構成単位Nが2つ結合した二連子部位を少量しか含まないか、含まない。環状オレフィン共重合体は、ノルボルネン単量体由来の構成単位Nが3つ結合した三連子部位を少量しか含まないか、含まない。
 つまり、環状オレフィン共重合体の分子鎖中では、ノルボルネン単量体由来の構成単位Nが連続して存在する部位が少ないか、構成単位Nが連続して存在しない。このため、環状オレフィン共重合体では、構成単位Nが連続するノルボルネン単量体ブロックが少ないか、存在しないことにより、ノルボルネン単量体ブロックを多く含む従来の環状オレフィン共重合体よりも自由体積が小さい。
 その結果、環状オレフィン共重合体は、優れた水蒸気バリア性を示す。
The cyclic olefin copolymer contains little or no diad moieties in which two structural units N derived from norbornene monomers are bonded. The cyclic olefin copolymer contains little or no triad moieties in which three structural units N derived from norbornene monomers are bonded.
That is, in the molecular chain of the cyclic olefin copolymer, there are few sites where the structural units N derived from norbornene monomer are consecutively present, or there are no consecutive structural units N. For this reason, the cyclic olefin copolymer has few or no norbornene monomer blocks with consecutive structural units N, and therefore has a smaller free volume than conventional cyclic olefin copolymers containing many norbornene monomer blocks.
As a result, the cyclic olefin copolymer exhibits excellent water vapor barrier properties.

 また、構成単位Nが連続するノルボルネン単量体ブロックは、環状オレフィン共重合体の耐衝撃性に悪影響を及ぼす。このため、環状オレフィン共重合体では、構成単位Nが連続するノルボルネン単量体ブロックが少ないか、存在しないことにより、環状オレフィン共重合体は、優れた耐衝撃性を示す。 Furthermore, norbornene monomer blocks with consecutive N structural units have a negative effect on the impact resistance of the cyclic olefin copolymer. For this reason, when norbornene monomer blocks with consecutive N structural units are present in a small amount or are absent in a cyclic olefin copolymer, the cyclic olefin copolymer exhibits excellent impact resistance.

 さらに、環状オレフィン共重合体は、長時間高温にさらされた場合に、変色したり、クラック等を発生させたりしにくい。 Furthermore, cyclic olefin copolymers are less likely to discolor or crack when exposed to high temperatures for long periods of time.

 環状オレフィン共重合体の全構成単位のモル数に対する、二連子部位を構成する構成単位Nのモル数の比率は、10モル%以下が好ましく、7モル%以下がより好ましく、5モル%以下がさらに好ましく、3モル%以下が特に好ましい。
 環状オレフィン共重合体の全構成単位のモル数に対する、二連子部位を構成する構成単位Nのモル数の比率の下限は、所望する効果が損なわれない限り、特に限定されない。環状オレフィン共重合体の全構成単位のモル数に対する、二連子部位を構成する構成単位Nのモル数の比率の下限は、例えば0モル%以上、0.1モル%以上、0.3モル%以上、又は0.5モル%以上であってよい。
 従って、例えば、環状オレフィン共重合体の全構成単位のモル数に対する、二連子部位を構成する構成単位Nのモル数の比率は、0~10モル%、0.1~10モル%、0.3~10モル%、0.5~10モル%、0~7モル%、0.1~7モル%、0.3~7モル%、0.5~7モル%、0~5モル%、0.1~5モル%、0.3~5モル%、0.5~5モル%、0~3モル%、0.1~3モル%、0.3~3モル%、又は0.5~3モル%であってよい。
The ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all structural units of the cyclic olefin copolymer is preferably 10 mol % or less, more preferably 7 mol % or less, even more preferably 5 mol % or less, and particularly preferably 3 mol % or less.
The lower limit of the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all the structural units of the cyclic olefin copolymer is not particularly limited as long as the desired effect is not impaired. The lower limit of the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all the structural units of the cyclic olefin copolymer may be, for example, 0 mol% or more, 0.1 mol% or more, 0.3 mol% or more, or 0.5 mol% or more.
Therefore, for example, the ratio of the number of moles of the structural unit N constituting the diad moiety to the number of moles of all structural units of the cyclic olefin copolymer may be 0 to 10 mol%, 0.1 to 10 mol%, 0.3 to 10 mol%, 0.5 to 10 mol%, 0 to 7 mol%, 0.1 to 7 mol%, 0.3 to 7 mol%, 0.5 to 7 mol%, 0 to 5 mol%, 0.1 to 5 mol%, 0.3 to 5 mol%, 0.5 to 5 mol%, 0 to 3 mol%, 0.1 to 3 mol%, 0.3 to 3 mol%, or 0.5 to 3 mol%.

 環状オレフィン共重合体の全構成単位のモル数に対する、三連子部位を構成する構成単位Nのモル数の比率は、1.0モル%以下が好ましく、0.5モル%以下がより好ましく、0.3モル%以下がさらに好ましく、0.1モル%以下が特に好ましく、0モル%が最も好ましい。
 環状オレフィン共重合体の全構成単位のモル数に対する、三連子部位を構成する構成単位Nのモル数の比率の下限は、所望する効果が損なわれない限り、特に限定されない。環状オレフィン共重合体の全構成単位のモル数に対する、三連子部位を構成する構成単位Nのモル数の比率の下限は、例え0モル%以上、0.01モル%以上、0.03モル%以上、又は0.05モル%以上であってよい。
 従って、環状オレフィン共重合体の全構成単位のモル数に対する、三連子部位を構成する構成単位Nのモル数の比率は、0~1.0モル%、0.01~1.0モル%、0.03~1.0モル%、0.05~1.0モル%、0~0.5モル%、0.01~0.5モル%
、0.03~0.5モル%、0.05~0.5モル%、0~0.3モル%、0.01~0.3モル%、0.03~0.3モル%、0.05~0.3モル%、0~0.1モル%、0.01~0.1モル%、0.03~0.1モル%、又は0.05~0.1モル%であってよい。
The ratio of the number of moles of the structural unit N constituting the triad moiety to the number of moles of all structural units of the cyclic olefin copolymer is preferably 1.0 mol % or less, more preferably 0.5 mol % or less, even more preferably 0.3 mol % or less, particularly preferably 0.1 mol % or less, and most preferably 0 mol %.
The lower limit of the ratio of the number of moles of the structural unit N constituting the triad moiety to the number of moles of all the structural units of the cyclic olefin copolymer is not particularly limited as long as the desired effect is not impaired. The lower limit of the ratio of the number of moles of the structural unit N constituting the triad moiety to the number of moles of all the structural units of the cyclic olefin copolymer may be, for example, 0 mol% or more, 0.01 mol% or more, 0.03 mol% or more, or 0.05 mol% or more.
Therefore, the ratio of the number of moles of the structural unit N constituting the triad portion to the number of moles of all structural units of the cyclic olefin copolymer is 0 to 1.0 mol%, 0.01 to 1.0 mol%, 0.03 to 1.0 mol%, 0.05 to 1.0 mol%, 0 to 0.5 mol%, 0.01 to 0.5 mol%.
, 0.03 to 0.5 mol%, 0.05 to 0.5 mol%, 0 to 0.3 mol%, 0.01 to 0.3 mol%, 0.03 to 0.3 mol%, 0.05 to 0.3 mol%, 0 to 0.1 mol%, 0.01 to 0.1 mol%, 0.03 to 0.1 mol%, or 0.05 to 0.1 mol%.

 環状オレフィン共重合体における、ラセモ型二連子部位のモル数Mrと、メソ型二連子部位のモル数Mmとの比率Mm/Mrは、0.01~30が好ましく、0.1~27がより好ましく、0.5~25がさらに好ましい。上記の比率Mm/Mrが0.01~30である場合、環状オレフィン共重合体の水蒸気バリア性が優れる。 In the cyclic olefin copolymer, the ratio Mm/Mr of the number of moles of the racemo-type diad sites Mr to the number of moles of the meso-type diad sites Mm is preferably 0.01 to 30, more preferably 0.1 to 27, and even more preferably 0.5 to 25. When the above ratio Mm/Mr is 0.01 to 30, the cyclic olefin copolymer has excellent water vapor barrier properties.

 環状オレフィン共重合体は、ノルボルネン単量体由来の構成単位N、並びにエチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位O以外に、その他の構成単位を含んでいてもよい。
 その他の構成単位を与える単量体は、ノルボルネン単量体、エチレン、及びα-オレフィンと共重合可能な単量体であれば特に限定されない。
 環状オレフィン共重合体における、その他の構成単位の含有量は、所望する効果が損なわれない範囲で特に限定されないが、環状オレフィン共重合体の全構成単位のモル数に対して10モル%以下が好ましく、5モル%以下がより好ましく、3モル%以下がさらに好ましく、1モル%以下が特に好ましく、0モル%が最も好ましい。
The cyclic olefin copolymer may contain other structural units in addition to the structural unit N derived from a norbornene monomer and the structural unit O derived from an olefin selected from ethylene and an α-olefin.
The monomers which provide the other structural units are not particularly limited as long as they are monomers which are copolymerizable with norbornene monomer, ethylene, and α-olefin.
The content of other structural units in the cyclic olefin copolymer is not particularly limited as long as the desired effects are not impaired, but is preferably 10 mol % or less, more preferably 5 mol % or less, even more preferably 3 mol % or less, particularly preferably 1 mol % or less, and most preferably 0 mol %, based on the number of moles of all structural units in the cyclic olefin copolymer.

 環状オレフィン共重合体における、ノルボルネン単量体由来の構成単位Nの含有量は、所望する効果が損なわれない限り、特に限定されない。
 構成単位Nの含有量は、環状オレフィン共重合体の全構成単位のモル数に対して50モル%以下が好ましく、20~50モル%がより好ましく、25~50モル%がさらに好ましく、30~50モル%が特に好ましい。構成単位Nの含有量が、環状オレフィン共重合体の全構成単位のモル数に対して50モル%以下であると、環状オレフィン共重合体が低いガラス転移点を示す傾向があるため、好ましい。
The content of the structural unit N derived from the norbornene monomer in the cyclic olefin copolymer is not particularly limited as long as the desired effects are not impaired.
The content of the structural unit N is preferably 50 mol% or less, more preferably 20 to 50 mol%, further preferably 25 to 50 mol%, and particularly preferably 30 to 50 mol%, based on the number of moles of all structural units in the cyclic olefin copolymer. When the content of the structural unit N is 50 mol% or less based on the number of moles of all structural units in the cyclic olefin copolymer, the cyclic olefin copolymer tends to exhibit a low glass transition point, which is preferable.

 環状オレフィン共重合体における、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位Oの含有量は、所望する効果が損なわれない限り、特に限定されない。
 構成単位Oの含有量は、環状オレフィン共重合体の全構成単位のモル数に対して50モル%以上が好ましく、50~80モル%がより好ましく、50~75モル%がさらに好ましく、50~70モル%が特に好ましい。
In the cyclic olefin copolymer, the content of the structural unit O derived from an olefin selected from ethylene and α-olefins is not particularly limited as long as the desired effects are not impaired.
The content of the structural unit O is preferably 50 mol % or more, more preferably 50 to 80 mol %, further preferably 50 to 75 mol %, particularly preferably 50 to 70 mol %, based on the number of moles of all structural units in the cyclic olefin copolymer.

 上記の方法により製造される環状オレフィン系共重合体は、低いガラス転移温度を有するため加工性に優れる。また、上記の方法により製造される環状オレフィン系共重合体は、水蒸気バリア性、及び透明性に優れる。このため、上記の方法により製造される環状オレフィン系共重合体は、高度な水蒸気バリア性や高度な透明性が要求される、光学フィルム又は光学シートや、包装材料用のフィルム又はシートの材料等に特に好ましく使用される。 The cyclic olefin copolymer produced by the above method has a low glass transition temperature and is therefore excellent in processability. In addition, the cyclic olefin copolymer produced by the above method has excellent water vapor barrier properties and transparency. For this reason, the cyclic olefin copolymer produced by the above method is particularly preferably used as a material for optical films or optical sheets, films or sheets for packaging materials, etc., which require high water vapor barrier properties and high transparency.

 以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be explained in detail below with examples, but the present invention is not limited to these examples.

[実施例1~9、比較例1、及び比較例2]
 環状オレフィン共重合体を製造するに際し、実施例では、含金属触媒として下記のC1、及びC2を用いた。また、比較例では、含金属触媒として、下記のC’1、及びC’2を用いた。
[Examples 1 to 9, Comparative Example 1, and Comparative Example 2]
In producing the cyclic olefin copolymer, the following metal-containing catalysts C1 and C2 were used in the examples, and the following metal-containing catalysts C'1 and C'2 were used in the comparative examples.

Figure JPOXMLDOC01-appb-C000006
(C1:r=2.8×10-7
(C2:r=6.4×10-5
Figure JPOXMLDOC01-appb-C000006
(C1: r N =2.8×10 −7 )
(C2: r N =6.4×10 −5 )

Figure JPOXMLDOC01-appb-C000007
(C’1:r=3.3×10-4
(C’2:r=3.3×10-2
Figure JPOXMLDOC01-appb-C000007
(C'1: r N =3.3×10 -4 )
(C'2: r N =3.3×10 -2 )

 実施例、及び比較例において、助触媒として下記CC1~CC4を用いた。
CC1:N-メチルジアルキルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート(アルキル:C14~C18(平均:C17.5)(東ソー・ファインケム(株)製)
CC2:トリイソブチルアルミニウム(東ソー・ファインケム(株)製)
CC3:TMAO-211トルエン溶液(メチルアルミノキサンの溶液、東ソー・ファインケム(株)製)
CC4:40.6質量%(Al原子の含有量として)固体MAOトルエン溶液(平均粒径d(0.5)5.6μm(測定分散媒:トルエン)、スラリー濃度12.2wt%、東ソー・ファインケム(株)製)
In the examples and comparative examples, the following cocatalysts CC1 to CC4 were used.
CC1: N-methyldialkylammonium tetrakis(pentafluorophenyl)borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
CC2: Triisobutylaluminum (manufactured by Tosoh Finechem Co., Ltd.)
CC3: TMAO-211 toluene solution (methylaluminoxane solution, manufactured by Tosoh Finechem Co., Ltd.)
CC4: 40.6 mass% (as the content of Al atoms) solid MAO toluene solution (average particle size d(0.5) 5.6 μm (measurement dispersion medium: toluene), slurry concentration 12.2 wt%, manufactured by Tosoh Finechem Co., Ltd.)

 すべての操作は不活性ガス雰囲気下で実施した。よく乾燥させた20mLシュレンク管を2本用意した。一方のシュレンク管には表1に記載の含金属触媒、及びトリイソブチルアルミニウムを、物質量比が1:1000となるように加えた。もう一方のシュレンク管には表1に記載の助触媒を加えた。各シュレンク管にトルエンを加え、含金属触媒溶液、及び助触媒溶液を得た。よく乾燥させた、撹拌子を含む150mLステンレス製オートクレーブを表1に記載の重合温度(60~90℃)に加熱した状態で、80℃のノルボルネンの融液20mLを、事前に温められたシリンジで加えた。オートクレーブ内のノルボルネンを5分間撹拌した後、0.1μmolの含金属触媒を含む含金属触媒溶液をオートクレーブ内に添加した。その後、上記方法で調製した助触媒溶液を、含金属触媒の使用量に対する助触媒の使用量のモル比が、表1に記載のモル比となるように、オートクレーブ内に添加した。次いで、ゲージ圧として0.9MPaとなるようにオートクレーブ内にエチレン圧をかけて重合を開始した。加圧から30秒後を重合開始点とした。なお、エチレン圧をかける直前のモノマー溶液の全量は、21mLとした。重合開始から15分後、エチレン供給を停止し、注意深く圧力を常圧に戻した。その後、アセトン50mL、メタノール50mL、塩酸1.5mLからなる混合溶媒に、直ちに重合溶液を投入して生成した環状オレフィン共重合体を沈殿させた。生成した沈殿を吸引濾過にて回収した。回収された沈殿を、アセトン、メタノールで洗浄した後、洗浄された沈殿を110℃で12時間真空乾燥して、環状オレフィン共重合体としてノルボルネンとエチレンとの共重合体を得た。
 触媒の使用量と、環状オレフィン共重合体の取得量とから算出される、触媒1μg当たりの共重合体収量(g)を、表1に記す。
 なお、実施例4では、含金属触媒1モルに対して200モルのトリエチルアミンを連鎖移動剤として用いた。実施例5では、含金属触媒1モルに対して500モルのトリエチルアミンを連鎖移動剤として用いた。実施例7、及び実施例9では、分圧として0.01気圧相当の水素ガスを、連鎖移動剤として重合容器内に加えた。
All operations were carried out under an inert gas atmosphere. Two well-dried 20 mL Schlenk flasks were prepared. A metal-containing catalyst and triisobutylaluminum shown in Table 1 were added to one Schlenk flask so that the substance ratio was 1:1000. A cocatalyst shown in Table 1 was added to the other Schlenk flask. Toluene was added to each Schlenk flask to obtain a metal-containing catalyst solution and a cocatalyst solution. A well-dried 150 mL stainless steel autoclave including a stirrer was heated to the polymerization temperature (60 to 90°C) shown in Table 1, and 20 mL of a melt of norbornene at 80°C was added using a pre-warmed syringe. The norbornene in the autoclave was stirred for 5 minutes, and then a metal-containing catalyst solution containing 0.1 μmol of the metal-containing catalyst was added to the autoclave. Thereafter, the cocatalyst solution prepared by the above method was added to the autoclave so that the molar ratio of the amount of cocatalyst to the amount of metal-containing catalyst was the molar ratio shown in Table 1. Next, ethylene pressure was applied to the autoclave to initiate polymerization so that the gauge pressure was 0.9 MPa. The polymerization initiation point was 30 seconds after the pressurization. The total amount of the monomer solution immediately before the application of ethylene pressure was 21 mL. 15 minutes after the start of polymerization, the ethylene supply was stopped, and the pressure was carefully returned to normal pressure. Then, the polymerization solution was immediately poured into a mixed solvent consisting of 50 mL of acetone, 50 mL of methanol, and 1.5 mL of hydrochloric acid to precipitate the cyclic olefin copolymer. The precipitate was collected by suction filtration. The collected precipitate was washed with acetone and methanol, and the washed precipitate was vacuum dried at 110 ° C. for 12 hours to obtain a copolymer of norbornene and ethylene as a cyclic olefin copolymer.
The copolymer yield (g) per 1 μg of catalyst, calculated from the amount of catalyst used and the amount of cyclic olefin copolymer obtained, is shown in Table 1.
In Example 4, 200 mol of triethylamine was used as a chain transfer agent relative to 1 mol of the metal-containing catalyst. In Example 5, 500 mol of triethylamine was used as a chain transfer agent relative to 1 mol of the metal-containing catalyst. In Examples 7 and 9, hydrogen gas equivalent to a partial pressure of 0.01 atm was added to the polymerization vessel as a chain transfer agent.

 得られた各実施例、及び各比較例の環状オレフィン共重合体について、以下の方法に従って、ガラス転移温度、ゲルパーミエーションクロマトグラフィーによる分子量測定と、不純物熱分析と、濁り試験とを行った。これらの測定結果、及び試験結果を、表1に記す。 The cyclic olefin copolymers obtained in each of the Examples and Comparative Examples were subjected to the following methods: glass transition temperature, molecular weight measurement by gel permeation chromatography, impurity thermal analysis, and turbidity test. The measurement and test results are shown in Table 1.

<ガラス転移温度(Tg)>
 DSC法(JIS K7121に記載の方法)によって、環状オレフィン共重合体のTgを測定した。
DSC装置:示差走査熱量計(TA Instrument社製 DSC-Q1000)
測定雰囲気:窒素
昇温条件:20℃/分
<Glass transition temperature (Tg)>
The Tg of the cyclic olefin copolymer was measured by a DSC method (the method described in JIS K7121).
DSC device: differential scanning calorimeter (DSC-Q1000 manufactured by TA Instruments)
Measurement atmosphere: nitrogen Temperature rise condition: 20°C/min

<不純物熱分析>
 ガラス転移温度の測定により得られたDSC曲線において、100℃~140℃の範囲内に観察されるポリエチレン様不純物に由来の融点のピーク面積から発熱量(mJ/mg)を算出した。算出された発熱量が大きいほど、ポリエチレン様不純物の含有量が多い。
 なお、表1中のNDは、DSC曲線上においてポリエチレン様不純物に由来するピークが検出されないことを示す。
<Impurity Thermal Analysis>
In the DSC curve obtained by measuring the glass transition temperature, the calorific value (mJ/mg) was calculated from the peak area of the melting point derived from the polyethylene-like impurity observed in the range of 100° C. to 140° C. The larger the calculated calorific value, the higher the content of the polyethylene-like impurity.
In Table 1, ND indicates that no peak derived from polyethylene-like impurities was detected on the DSC curve.

<濁り試験>
 得られた環状オレフィン共重合体0.5gを、トルエン45gに溶解させた後、溶液における濁りの有無を観察した。濁りが認められた場合を×と判定し、濁りが認められなかった場合を○と判定した。
<Turbidity test>
0.5 g of the obtained cyclic olefin copolymer was dissolved in 45 g of toluene, and the presence or absence of turbidity in the solution was observed. When turbidity was observed, it was judged as ×, and when no turbidity was observed, it was judged as ◯.

Figure JPOXMLDOC01-appb-T000008
*触媒1μg当たりの環状オレフィン共重合体収量(g)
Figure JPOXMLDOC01-appb-T000008
*Cyclic olefin copolymer yield (g) per 1 μg of catalyst

 表1によれば、前述の所定の方法により製造された実施例の環状オレフィン共重合体はガラス転移温度(Tg)が低く、加工性に優れることが分かる。 From Table 1, it can be seen that the cyclic olefin copolymer of the embodiment produced by the above-mentioned specified method has a low glass transition temperature (Tg) and excellent processability.

 また、実施例1、実施例6、比較例1、及び比較例2で得られた環状オレフィン共重合体について、以下の方法に従って、環状オレフィン共重合体の全構成単位に対する、ノルボルネン単量体由来の構成単位Nの比率、構成単位Nが2つ結合した二連子部位を構成する構成単位Nの比率、及び構成単位Nが3つ結合した三連子部位を構成する構成単位Nの比率と、二連子部位についてのメソ/ラセモ比とを、13C-NMRによって観測されたスペクトルの積分値より算出した。 For the cyclic olefin copolymers obtained in Example 1, Example 6, Comparative Example 1, and Comparative Example 2, the ratio of the structural unit N derived from a norbornene monomer, the ratio of the structural unit N constituting a diad moiety in which two structural units N are bonded, and the ratio of the structural unit N constituting a triad moiety in which three structural units N are bonded, relative to the total structural units of the cyclic olefin copolymer, and the meso/racemo ratio for the diad moiety were calculated from the integral values of the spectra observed by 13C -NMR according to the following method.

 それぞれのスペクトルにより同定されるポリマーの一次構造は、「Maclomol.Chem.Phs.1999,Vol.200,Page 1340」、「Macromolecules 2004,Vol.37,Page 9681」、「Macromolecules 2000,Vol.33,Page 8931」等に記載されている。 The primary structures of the polymers identified by each spectrum are described in "Macromol. Chem. Phs. 1999, Vol. 200, Page 1340", "Macromolecules 2004, Vol. 37, Page 9681", "Macromolecules 2000, Vol. 33, Page 8931", etc.

 ノルボルネン単量体がノルボルネンであり、オレフィンがエチレンである場合における、具体的なパラメーターの算出方法について説明する。 This section explains how to calculate specific parameters when the norbornene monomer is norbornene and the olefin is ethylene.

 まず、組成の算出について説明する。
 組成は、13C&#8212;NMRによって得られたスペクトルチャートのケミカルシフト値44.5-56.0ppmで観測される積分値:IC2,C3(ノルボルネン環の2,3位に由来)、ケミカルシフト値37.0-44.0ppmで観測される積分値:IC1,C4(ノルボルネン環の1,4位の炭素に由来)、ケミカルシフト値36.5-33.0ppmで観測される積分値:IC7(ノルボルネン環の7位の炭素に由来)、ケミカルシフト値44.5-56.0ppmで観測される積分:IC5,C6+I(ノルボルネン環の5,6位の炭素及びエチレン部の炭素に由来)より、下記式:
構成単位Nの組成(モル%)=1/3×(IC2,C3+IC1,C4+2×IC7)÷(IC5,C6+I)×100
から、ノルボルネン単量体に由来する構成単位Nの割合を求めることができる。
 また、100%から構成単位Nの組成を引くことで、オレフィンに由来する構成単位Oの割合を算出することができる。
First, the calculation of the composition will be described.
The composition is determined from the integrals observed at chemical shift values of 44.5-56.0 ppm in a spectrum chart obtained by 13 C-NMR: I C2,C3 (derived from the 2nd and 3rd positions of the norbornene ring), I C1,C4 (derived from the 1st and 4th carbons of the norbornene ring), I C7 (derived from the 7th carbon of the norbornene ring) and I C5,C6 +I E (derived from the 5th and 6th carbons of the norbornene ring and the carbon of the ethylene moiety).
Composition of structural unit N (mol %)=1/3×(I C2,C3 +I C1,C4 +2×I C7 )÷(I C5,C6 +I E )×100
From this, the proportion of the structural unit N derived from the norbornene monomer can be calculated.
In addition, the proportion of the structural unit O derived from an olefin can be calculated by subtracting the composition of the structural unit N from 100%.

 二連子部位(NNダイアド)、三連子部位(NNトリアド)の量の比率は、「Maclomol.Chem.Phs.1999,Vol.200,Page 1340」に記載されている6つのトリアド(EEE、EEN、NEN、NNN、NNE、ENE)の分布を求め、以下の式から算出できる。なお、Nはノルボルネン単量体由来の構成単位、Eはエチレン由来の構成単位を表す。
 なお、二連子部位(NNダイアド)の量の比率は、環状オレフィン共重合体の全構成単位に対する、二連子部位を構成するノルボルネン単量体由来の構成単位Nの数の比率である。
 三連子部位(NNトリアド)の量の比率は、環状オレフィン共重合体の全構成単位に対する、三連子部位を構成するノルボルネン単量体由来の構成単位Nの数の比率である。
NNダイアド(モル%)=(2×NNN+ENN)÷(2×ENN+2×ENE+2×NNN)×100
NNトリアド(モル%)=NNN÷(ENN+ENE+NNN)×100
The ratio of the amount of the diad moiety (NN dyad) and the amount of the triad moiety (NN triad) can be calculated from the distribution of the six triads (EEE, EEN, NEN, NNN, NNE, ENE) described in "Maclomol. Chem. Phs. 1999, Vol. 200, Page 1340" using the following formula: N represents a structural unit derived from a norbornene monomer, and E represents a structural unit derived from ethylene.
The ratio of the amount of the diad moiety (NN dyad) is the ratio of the number of constituent units N derived from norbornene monomers constituting the diad moiety to the total number of constituent units of the cyclic olefin copolymer.
The ratio of the amount of triad moieties (NN triads) is the ratio of the number of constituent units N derived from norbornene monomers constituting the triad moieties to the total number of constituent units of the cyclic olefin copolymer.
NN dyad (mol%)=(2×NNN+ENN)÷(2×ENN+2×ENE+2×NNN)×100
NN triad (mol%)=NNN÷(ENN+ENE+NNN)×100

 NNダイアドのメソ体のモル分率は、C5のENNE-メソ体のピーク(28.0-28.5ppm)の積分値と、C6のENNE-メソ体のピーク(31.5-31.8ppm)の合計を、C5、C6、エチレン部分の領域のピーク(29.4-32.5ppm)で除した値と、C7のENNE-メソ体のピーク(33.1-33.2ppm)の積分値をノルボルネン単量体に由来する構成単位Nの組成及びC7領域(32.6-39ppm)の積分値で除した値との平均値から求められる。 The mole fraction of the meso form of the NN dyad is calculated from the average value of the sum of the integral of the C5 ENNE-meso peak (28.0-28.5 ppm) and the C6 ENNE-meso peak (31.5-31.8 ppm) divided by the peak of the C5, C6, and ethylene regions (29.4-32.5 ppm) and the integral of the C7 ENNE-meso peak (33.1-33.2 ppm) divided by the composition of the structural unit N derived from norbornene monomer and the integral of the C7 region (32.6-39 ppm).

 同様にしてNNダイアドのラセモ体のモル分率は、C5のENNE-ラセモ体のピーク(28.0-28.5ppm)の積分値とC6のENNE-ラセモ体のピーク(31.2-31.4ppm)の合計をC5、C6、エチレン部分の領域のピーク(28-32.5ppm)で除した値と、C7のENNE-ラセモ体のピーク(33.4-33.8ppm)の積分値をノルボルネンの組成及びC7領域(32.6-39ppm)の積分値で除した値との平均値から求められる。 Similarly, the mole fraction of the racemo species of the NN dyad is calculated from the average of the sum of the integral of the C5 ENNE-racemo species peak (28.0-28.5 ppm) and the C6 ENNE-racemo species peak (31.2-31.4 ppm) divided by the peak in the C5, C6, and ethylene regions (28-32.5 ppm) and the integral of the C7 ENNE-racemo species peak (33.4-33.8 ppm) divided by the norbornene composition and the integral of the C7 region (32.6-39 ppm).

 なお、サンプル調製条件、及び測定条件の一例は以下の通りである。
溶媒:1,1,2,2-テトラクロロエタン-d2(10容量%ヘキサメチルジシラン含有)
濃度:70mg/mL
装置:Bruker AVANCE600(水素原子の共鳴周波数:600MHz)
サンプルチューブ径:10mm
測定方法:パワーゲート式
パルス幅:15μsec
遅延時間:2.089sec
データ取り込み時間:0.911sec
観測周波数幅:35971.22Hz
デカップリング:完全デカップリング
積算回数:18000回
ケミカルシフトのリファレンス:ヘキサメチルジシランのピークを-2.43ppmとする。
An example of sample preparation conditions and measurement conditions is as follows.
Solvent: 1,1,2,2-tetrachloroethane-d2 (containing 10% by volume of hexamethyldisilane)
Concentration: 70mg/mL
Apparatus: Bruker AVANCE600 (resonance frequency of hydrogen atoms: 600 MHz)
Sample tube diameter: 10 mm
Measurement method: Power gate type Pulse width: 15 μsec
Delay time: 2.089 sec
Data acquisition time: 0.911 sec
Observation frequency range: 35971.22Hz
Decoupling: complete decoupling Number of integrations: 18,000 Chemical shift reference: the peak of hexamethyldisilane is set at −2.43 ppm.

 以上の測定により求められた、環状オレフィン共重合体の全構成単位に対する、ノルボルネン単量体由来の構成単位Nの比率と、ラセモ型二連子部位を構成する構成単位Nの比率Mrと、メソ型二連子部位を構成する構成単位Nの比率Mmと、Mm/Mrとを表2に記す。 The ratio of the structural units N derived from norbornene monomer to the total structural units of the cyclic olefin copolymer, the ratio Mr of the structural units N constituting the racemo-type diadjunction portion, the ratio Mm of the structural units N constituting the meso-type diadjunction portion, and Mm/Mr, determined by the above measurements, are shown in Table 2.

 また、実施例1、実施例6、比較例1、及び比較例2で得られた環状オレフィン共重合体について、以下の方法に従って、耐衝撃性試験と、水蒸気バリア性試験とを行った。 In addition, the cyclic olefin copolymers obtained in Example 1, Example 6, Comparative Example 1, and Comparative Example 2 were subjected to impact resistance tests and water vapor barrier property tests according to the following methods.

<耐衝撃性試験>
 得られた環状オレフィン共重合体を溶融させた。溶融した環状オレフィン共重合体を、ガラス基板上で製膜した後に冷却し、厚さ50μmのフィルムサンプルを調製した。得られたフィルムサンプルから切り出した試料を用いて、フィルムインパクトテスターを用い、ASTM-D3420に従い、耐衝撃性を評価した。結果を表2に示す。耐衝撃性の測定値が0.35J以下の場合を×とし、耐衝撃性の測定値が0.35Jを超える場合を○とした。
<Impact resistance test>
The obtained cyclic olefin copolymer was melted. The molten cyclic olefin copolymer was formed into a film on a glass substrate and then cooled to prepare a film sample having a thickness of 50 μm. The impact resistance of a specimen cut out from the obtained film sample was evaluated according to ASTM-D3420 using a film impact tester. The results are shown in Table 2. When the measured value of the impact resistance was 0.35 J or less, it was evaluated as ×, and when the measured value of the impact resistance was more than 0.35 J, it was evaluated as ◯.

<水蒸気バリア性試験>
 得られた環状オレフィン共重合体を溶融させた。溶融した環状オレフィン共重合体を、ガラス基板上で製膜した後に冷却し、厚さ100μmのフィルムサンプルを調製した。得られたフィルムサンプルを用いて、JIS Z0208の方法に従い、40℃、90%RHの条件において水蒸気バリア性を評価した。水蒸気バリア性は、g/m/24hの単位で評価した。水蒸気バリア性の測定値が4g/m/24h以下である場合を○とし、水蒸気バリア性の測定値が4g/m/24hを超える場合を×とした。結果を表2に示す。
<Water vapor barrier test>
The obtained cyclic olefin copolymer was melted. The melted cyclic olefin copolymer was formed into a film on a glass substrate and then cooled to prepare a film sample having a thickness of 100 μm. The obtained film sample was used to evaluate the water vapor barrier property under conditions of 40° C. and 90% RH according to the method of JIS Z0208. The water vapor barrier property was evaluated in units of g/m 2 /24h. When the measured value of the water vapor barrier property was 4 g/m 2 /24h or less, it was evaluated as ○, and when the measured value of the water vapor barrier property was more than 4 g/m 2 /24h, it was evaluated as ×. The results are shown in Table 2.

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

 表2によれば、前述の方法で製造され、ノルボルネン単量体に由来する構成単位Nからなる二連子の量、及びノルボルネン単量体に由来する構成単位Nからなる三連子の量が少ない、実施例1、及び実施例6で得られた環状オレフィン共重合体は、水蒸気バリア性に優れるだけでなく、耐衝撃性に優れることが分かる。
 他方、ノルボルネン単量体に由来する構成単位Nからなる二連子の量、及びノルボルネン単量体に由来する構成単位Nからなる三連子の量が多い、比較例1、及び比較例2で得られた環状オレフィン共重合体は、水蒸気バリア性、及び衝撃性に劣る。
[0113] Table 2 shows that the cyclic olefin copolymers obtained in Examples 1 and 6, which were produced by the above-mentioned method and had a small amount of diads formed from the constituent unit N derived from a norbornene monomer and a small amount of triads formed from the constituent unit N derived from a norbornene monomer, not only had excellent water vapor barrier properties but also excellent impact resistance.
On the other hand, the cyclic olefin copolymers obtained in Comparative Example 1 and Comparative Example 2, in which the amount of diads composed of the structural unit N derived from a norbornene monomer and the amount of triads composed of the structural unit N derived from a norbornene monomer are large, are inferior in water vapor barrier property and impact resistance.

 また、表1、及び表2によれば、ノルボルネン単量体に由来する構成単位Nからなる二連子の量、及びノルボルネン単量体に由来する構成単位Nからなる三連子の量が少ない、実施例1、及び実施例6で得られた環状オレフィン共重合体は、ガラス転移温度(Tg)が低く、加工性に優れることが分かる。 In addition, according to Tables 1 and 2, the cyclic olefin copolymers obtained in Examples 1 and 6, which have a small amount of diads composed of the structural unit N derived from norbornene monomer and a small amount of triads composed of the structural unit N derived from norbornene monomer, have a low glass transition temperature (Tg) and excellent processability.

Claims (7)

 ノルボルネン単量体由来の構成単位と、エチレン、及びα-オレフィンから選択されるオレフィン由来の構成単位とを含む環状オレフィン共重合体の製造方法であって、
 少なくとも、前記ノルボルネン単量体と、前記オレフィンとをモノマーとして重合容器内に仕込むことと、
 前記重合容器内の前記モノマーを、前記ノルボルネン単量体が溶融している状態で、中心金属に1以上の配位子が配位した構造を有する含金属触媒の存在下に重合させることと、を含み、
 重合開始時における、前記重合容器の重合溶液の質量に対する、前記ノルボルネン単量体の質量の比率が、80質量%以上であり、
 前記含金属触媒の1気圧、反応温度363.15Kでのモノマー反応性比rの値が1.0×10-4以下であり、
 前記rの値は、前記含金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入速度定数kNNと、前記含金属触媒が結合したノルボルネンに対する、エチレンの挿入速度定数kNEとの比kNN/kNEの値であって、
 前記rは、下記式(r1):
=exp(-(G NN-G NE)/RT)・・・(r1)
(式(r1)において、G NNは、前記金属触媒が結合したノルボルネンに対する、ノルボルネンの挿入反応の活性化ギブズ自由エネルギーであり、G NEは、前記金属触媒が結合したノルボルネンに対するエチレンの挿入反応の活性化ギブズ自由エネルギー、Rは、気体定数であり、Tは、反応温度363.15Kである。)
により算出され、
 前記G NN、及び前記G NEは、DFT理論M06-2X、及び基底関数cc-pVDZ-(PP)に基づく、密度汎関数法により算出され、
 前記含金属触媒が、前記中心金属として、Ti、Zr、Hf、Ni、Pd、又はPtを含む、製造方法。
A method for producing a cyclic olefin copolymer comprising a norbornene monomer-derived structural unit and an olefin-derived structural unit selected from ethylene and an α-olefin, comprising the steps of:
charging at least the norbornene monomer and the olefin as monomers into a polymerization vessel;
and polymerizing the monomer in the polymerization vessel in a molten state of the norbornene monomer in the presence of a metal-containing catalyst having a structure in which one or more ligands are coordinated to a central metal,
A ratio of the mass of the norbornene monomer to the mass of the polymerization solution in the polymerization vessel at the start of polymerization is 80 mass% or more;
The metal-containing catalyst has a monomer reactivity ratio rN of 1.0× 10-4 or less at 1 atmosphere and a reaction temperature of 363.15 K;
The value of rN is a ratio kNN/kNE of the insertion rate constant kNN of norbornene into norbornene bound to the metal-containing catalyst to the insertion rate constant kNE of ethylene into norbornene bound to the metal- containing catalyst,
The rN is represented by the following formula (r1):
r N = exp(-(G NN -G NE )/RT)...(r1)
(In formula (r1), G NN is the Gibbs free energy of activation of the insertion reaction of norbornene into the norbornene bound to the metal catalyst, G NE is the Gibbs free energy of activation of the insertion reaction of ethylene into the norbornene bound to the metal catalyst, R is the gas constant, and T is the reaction temperature of 363.15 K.)
It is calculated by
The G NN and the G NE are calculated by a density functional method based on the DFT theory M06-2X and the basis set cc-pVDZ-(PP);
The production method, wherein the metal-containing catalyst contains Ti, Zr, Hf, Ni, Pd, or Pt as the central metal.
 重合開始時における、前記重合容器の重合溶液が有機溶媒を含まない、請求項1に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 1, wherein the polymerization solution in the polymerization vessel does not contain an organic solvent at the start of polymerization.  重合圧力が、含金属触媒を重合容器内に添加した時のゲージ圧として1~25気圧である、請求項1又は2に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 1 or 2, wherein the polymerization pressure is 1 to 25 atm as a gauge pressure when the metal-containing catalyst is added to the polymerization vessel.  前記モノマーの重合を、50~150℃で行う、請求項1又は2に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 1 or 2, wherein the polymerization of the monomer is carried out at 50 to 150°C.  前記モノマーの重合が、アルミノキサン、アルキル金属化合物、ボレート化合物、及び有機ホスフィン化合物から選択される1種以上の助触媒の存在下に行われる、請求項1又は2に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 1 or 2, wherein the polymerization of the monomer is carried out in the presence of one or more cocatalysts selected from aluminoxanes, alkyl metal compounds, borate compounds, and organic phosphine compounds.  前記モノマーの重合が、連鎖移動剤の存在下に行われる請求項1又は2に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 1 or 2, wherein the polymerization of the monomer is carried out in the presence of a chain transfer agent.  前記連鎖移動剤が、水素、又はアミン類である、請求項6に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 6, wherein the chain transfer agent is hydrogen or an amine.
PCT/JP2024/029875 2023-08-31 2024-08-22 Method for producing cyclic olefin copolymer WO2025047583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023140805 2023-08-31
JP2023-140805 2023-08-31

Publications (1)

Publication Number Publication Date
WO2025047583A1 true WO2025047583A1 (en) 2025-03-06

Family

ID=94819139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/029875 WO2025047583A1 (en) 2023-08-31 2024-08-22 Method for producing cyclic olefin copolymer

Country Status (1)

Country Link
WO (1) WO2025047583A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204120A (en) * 1999-01-18 2000-07-25 Mitsui Chemicals Inc Production of norbornene-based polymer
JP2001226533A (en) * 2000-02-16 2001-08-21 Idemitsu Petrochem Co Ltd Resin for high-frequency welder forming, resin composition, and molded article
WO2020204188A1 (en) * 2019-04-04 2020-10-08 ポリプラスチックス株式会社 Production method for cyclic olefin copolymer
WO2022070959A1 (en) * 2020-10-02 2022-04-07 ポリプラスチックス株式会社 Cyclic olefin copolymer production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204120A (en) * 1999-01-18 2000-07-25 Mitsui Chemicals Inc Production of norbornene-based polymer
JP2001226533A (en) * 2000-02-16 2001-08-21 Idemitsu Petrochem Co Ltd Resin for high-frequency welder forming, resin composition, and molded article
WO2020204188A1 (en) * 2019-04-04 2020-10-08 ポリプラスチックス株式会社 Production method for cyclic olefin copolymer
WO2022070959A1 (en) * 2020-10-02 2022-04-07 ポリプラスチックス株式会社 Cyclic olefin copolymer production method

Similar Documents

Publication Publication Date Title
EP0719803B1 (en) Process for the production of cycloolefin random copolymer
KR930009208B1 (en) Olefin copolymer and production thereof
JP2693517B2 (en) Method for producing benzene-insoluble organoaluminum oxy compound
JP7125569B2 (en) Method for producing cyclic olefin copolymer and catalyst composition for copolymerization of norbornene monomer and ethylene
EP0678530B1 (en) Process for production of cyclic olefin copolymers and copolymers produced by said process
JP7702101B2 (en) Method for producing norbornane skeleton-containing polymer, and norbornane skeleton-containing polymer
JPWO2019026839A1 (en) Copolymer and process for producing copolymer
WO2020204188A1 (en) Production method for cyclic olefin copolymer
KR920001232B1 (en) Catalyst for olefin polymerization and polymerization method of olefin
CN106232641A (en) The manufacture method of cyclic olefin copolymer
JP2007314806A (en) Production method of cycloolefin copolymer and copolymer produced thereby
EP0729983A2 (en) Process for the production of cycloolefin random copolymer
WO2020204187A1 (en) Cyclic olefin copolymer production method
WO2025047583A1 (en) Method for producing cyclic olefin copolymer
WO2025047582A1 (en) Cyclic olefin copolymer, resin composition, and molded article
JP7257595B2 (en) Method for producing cyclic olefin copolymer
JP7329720B1 (en) Method for producing cyclic olefin copolymer and catalyst composition
JP7383853B1 (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
JP7361239B1 (en) Method for producing cyclic olefin copolymer
JP7073467B2 (en) Method for Producing Cyclic Olefin Copolymer
JP7383852B1 (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
WO2024177062A1 (en) Method for producing cyclic olefin copolymer
WO2024177063A1 (en) Method for producing cyclic olefin copolymer
JP2022060007A (en) A method for producing a cyclic olefin copolymer, a molded product, and a cyclic olefin copolymer.
WO2021153478A1 (en) Olefin copolymer and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24859616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2501003231

Country of ref document: TH