WO2020179084A1 - コバルト基合金製造物、およびコバルト基合金物品 - Google Patents
コバルト基合金製造物、およびコバルト基合金物品 Download PDFInfo
- Publication number
- WO2020179084A1 WO2020179084A1 PCT/JP2019/009209 JP2019009209W WO2020179084A1 WO 2020179084 A1 WO2020179084 A1 WO 2020179084A1 JP 2019009209 W JP2019009209 W JP 2019009209W WO 2020179084 A1 WO2020179084 A1 WO 2020179084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- based alloy
- cobalt
- alloy product
- Prior art date
Links
- 229910000531 Co alloy Inorganic materials 0.000 title claims description 55
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 39
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 37
- 238000005204 segregation Methods 0.000 claims abstract description 35
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000000126 substance Substances 0.000 claims abstract description 24
- 239000012535 impurity Substances 0.000 claims abstract description 17
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 54
- 239000010936 titanium Substances 0.000 claims description 53
- 239000010955 niobium Substances 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 44
- 239000011651 chromium Substances 0.000 claims description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 25
- 229910052735 hafnium Inorganic materials 0.000 claims description 24
- 229910052720 vanadium Inorganic materials 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 18
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 17
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 17
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 15
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 3
- -1 niobium and tantalum Chemical compound 0.000 claims 3
- 239000000956 alloy Substances 0.000 abstract description 185
- 229910045601 alloy Inorganic materials 0.000 abstract description 145
- 239000000843 powder Substances 0.000 description 63
- 239000000047 product Substances 0.000 description 58
- 210000004027 cell Anatomy 0.000 description 34
- 238000000034 method Methods 0.000 description 30
- 238000001556 precipitation Methods 0.000 description 29
- 230000008018 melting Effects 0.000 description 27
- 238000010438 heat treatment Methods 0.000 description 25
- 238000002844 melting Methods 0.000 description 25
- 238000004519 manufacturing process Methods 0.000 description 21
- 238000005728 strengthening Methods 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 230000006872 improvement Effects 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010309 melting process Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 210000002421 cell wall Anatomy 0.000 description 5
- 239000011362 coarse particle Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007712 rapid solidification Methods 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000000110 selective laser sintering Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- LGLOITKZTDVGOE-UHFFFAOYSA-N boranylidynemolybdenum Chemical compound [Mo]#B LGLOITKZTDVGOE-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/64—Treatment of workpieces or articles after build-up by thermal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/22—Manufacture essentially without removing material by sintering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
- F05D2230/234—Laser welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/204—Heat transfer, e.g. cooling by the use of microcircuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/132—Chromium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00018—Manufacturing combustion chamber liners or subparts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a cobalt-based alloy material having excellent mechanical properties, and particularly to a cobalt-based alloy product and a cobalt-based alloy article using the additive manufacturing method.
- Co-based alloy materials are typical heat-resistant alloy materials together with nickel (Ni)-based alloy materials, and are also called superalloys, and are called high-temperature members (members used in high-temperature environments, such as gas turbines and steam turbines). It is widely used for turbine components). Co-based alloy materials have been used as turbine stationary blades and turbine combustor members because they have higher material cost than Ni-based alloy materials, but have excellent corrosion resistance and wear resistance, and are easily solid-dissolved and strengthened. ..
- Ni-based alloy materials are strengthened by precipitation of the ⁇ 'phase (for example, Ni 3 (Al,Ti) phase). It has been developed and is now mainstream.
- ⁇ 'phase for example, Ni 3 (Al,Ti) phase
- Co-based alloy materials it is difficult to precipitate an intermetallic compound phase that greatly contributes to the improvement of mechanical properties such as the ⁇ ′ phase of Ni-based alloy materials, and therefore precipitation strengthening by a carbide phase has been studied.
- Patent Document 1 Japanese Patent Laid-Open No. 61-243143
- a bulk or granular carbide having a grain size of 0.5 to 10 ⁇ m is deposited on a base of a cobalt-based alloy having a grain size of 10 ⁇ m or less.
- a Co-based superplastic alloy characterized by the following is disclosed.
- the cobalt-based alloy has a weight ratio of C: 0.15 to 1%, Cr: 15 to 40%, W and/or Mo: 3 to 15%, B: 1% or less, Ni: 0 to 20%, Nb: It is disclosed that 0 to 1.0%, Zr: 0 to 1.0%, Ta: 0 to 1.0%, Ti: 0 to 3%, Al: 0 to 3%, and the balance Co.
- Co-based superplasticity showing superplasticity even in a low temperature region (for example, 950 ° C.), having an elongation rate of 70% or more, and capable of producing a complicated shape by plastic working such as forging. It is said that it can provide alloys.
- Patent Document 2 JP-A-7-17967
- Cr 21-29%
- Mo 15-24%
- B 0.5-2%
- Si 0.1% or more and less than 0.5%
- C by weight% A Co-based alloy having excellent corrosion resistance, wear resistance, and high temperature strength, which comprises more than 1% and 2% or less, Fe: 2% or less, Ni: 2% or less, and the balance substantially Co, is disclosed.
- the Co-based alloy has a complex structure in which molybdenum boride and chromium carbide are relatively finely dispersed in a quaternary alloy phase of Co, Cr, Mo, and Si, and has good corrosion resistance and corrosion resistance. It is said to have wear resistance and high strength.
- 3D printing such as additive manufacturing (AM method)
- AM method additive manufacturing
- Patent Document 3 Japanese Patent Publication No. 2016-535169 supplies a raw material of a powdery or suspension granular composite material having a porosity of less than 20%: a layer forming method including the following steps: B) depositing a first portion of the composite material on a target surface, c) applying energy to the composite material of the first portion to sinter, fuse, or fuse the composite material of the first portion. Melting to form a first layer, d) depositing a second portion of the composite material on the first layer, e) energizing the composite material of the second portion, and Sintering, fusing or melting a second portion of the composite material to form a second layer, wherein the energy is provided by a laser.
- selective laser melting SLM
- DMLM direct metal laser melting
- SLS selective laser sintering
- DMLS direct metal laser sintering
- Co-based alloy materials described in Patent Documents 1 and 2 are considered to have higher mechanical properties than the Co-based alloy materials before them, but when compared with the recent precipitation strengthened Ni-based alloy materials. Unfortunately, it does not have sufficient mechanical properties. For this reason, at present, most of the research on additive-molded products (AM products) for high-temperature members is aimed at precipitation-strengthened Ni-based alloy materials.
- AM products additive-molded products
- the Co-based alloy materials described in Patent Documents 1 and 2 are not premised on the precipitation of an intermetallic compound phase such as the ⁇ ′ phase of the Ni-based alloy material, and therefore Al and Ti, which are easily oxidized, It does not contain much, and the melting and casting process in the atmosphere can be used. Therefore, it is considered to be advantageous for the production of alloy powder for the AM method and the production of AM bodies. Further, the Co-based alloy material has an advantage of having corrosion resistance and wear resistance equal to or higher than that of the Ni-based alloy material.
- the conventional Co-based alloy material has a weak point that it has lower mechanical properties than the ⁇ 'phase precipitation strengthened Ni-based alloy material. In other words, it achieves mechanical properties equal to or higher than those of the ⁇ 'phase precipitation-strengthened Ni-based alloy material (for example, creep rupture time of 1100 hours or more when a creep test is performed under conditions of temperature 900 ° C and stress 98 MPa). If so, the Co-based alloy AM body can be a very attractive high temperature member.
- the present invention has been made in view of the above problems, and an object thereof is a Co-based alloy product having mechanical properties equal to or higher than that of a precipitation-strengthened Ni-based alloy material, and an article as a base thereof. To provide.
- Co-based alloy is Carbon (C) of 0.08 mass% or more and 0.25 mass% or less, 0.1% by mass or less of boron (B), Contains 10% by mass or more and 30% by mass or less of chromium (Cr), Iron (Fe) is 5 mass% or less and nickel (Ni) is contained in 30 mass% or less, and the total of Fe and Ni is 30 mass% or less, Contains tungsten (W) and/or molybdenum (Mo), and the total of W and Mo is 5% by mass or more and 12% by mass or less, Titanium (Ti), niobium (Nb) and tantalum (Ta) are included, and the total of Ti, Nb and Ta is 0.5% by mass or more and 2% by mass or less, 0.5% by mass or less of silicon (Si), 0.5% by mass or less of manganese (Mn), Contains 0.003 mass% or more and 0.04 mass%
- the present invention can make the following improvements and modifications to the above-mentioned Co-based alloy product (I).
- (I) In the product, the MC type carbide phase particles are deposited on the boundary region of the segregation cell.
- Another aspect of the present invention is a product comprising a Co-based alloy
- the Co-based alloy is C of 0.08 mass% or more and 0.25 mass% or less, B of 0.1% by mass or less and Contains 10% by mass or more and 30% by mass or less of Cr, Fe in 5 mass% or less and Ni in 30 mass% or less, the total of the Fe and the Ni is 30 mass% or less, W and/or Mo is included, and the total of W and Mo is 5% by mass or more and 12% by mass or less, Including Ti, Nb and Ta, the sum of the Ti, Nb and Ta is 0.5 mass% or more and 2 mass% or less, Si of 0.5% by mass or less and 0.5% by mass or less of Mn, Including 0.003 mass% or more and 0.04 mass% or less N, The balance consists of Co and impurities, The impurities are 0.5% by mass or less of Al, Zr less than 0.05% by mass, Having a chemical composition containing 0.04% by mass or less of O, The
- the chemical composition of the Co-based alloy is The Ti is 0.01% by mass or more and 1% by mass or less, The Nb is 0.02 mass% or more and 1 mass% or less, The Ta is 0.05% by mass or more and 1.5% by mass or less.
- the chemical composition of the Co-based alloy is Hafnium (Hf) and/or vanadium (V) is further included, and the total of Hf, V, Ti, Nb and Ta is 0.5% by mass or more and 2% by mass or less,
- the MC-type carbide phase contains the Hf, the V, the Ti, the Nb, and/or the Ta.
- the chemical composition of the Co-based alloy is When the Hf is contained, the Hf is 0.01% by mass or more and 0.5% by mass or less. When the V is included, the V is 0.01% by mass or more and 0.5% by mass or less.
- the product has a creep rupture time of 1100 hours or more when subjected to a creep test under the conditions of a temperature of 900° C. and a stress of 98 MPa.
- the product is a high temperature member.
- the high temperature member is a turbine vane, a turbine rotor blade, a turbine combustor nozzle or a heat exchanger.
- FIG. 1 is a schematic sectional view showing an example of a gas turbine equipped with a Co-based alloy product according to the present invention.
- the Ti, Hf, V, Nb, and Ta components and the C component, which is indispensable for forming the carbide phase, are formed in the final solidification part (eg, dendrite boundary or grain boundary) during the melt solidification of the Co-based alloy. It has the property of being easily segregated. Therefore, in the conventional Co-based alloy material, the carbide phase particles are precipitated along the dendrite boundaries and the crystal grain boundaries of the matrix phase.
- the average spacing and average grain size of dendrite boundaries are usually on the order of 10 1 to 10 2 ⁇ m, so the average spacing of carbide phase particles is also on the order of 10 1 to 10 2 ⁇ m. Become. Even in a process such as laser welding in which the solidification rate is relatively high, the average spacing of the carbide phase particles in the solidified portion is about 5 ⁇ m.
- precipitation strengthening in an alloy is inversely proportional to the average spacing between precipitates, and precipitation strengthening is said to be effective when the average spacing between precipitates is about 2 ⁇ m or less.
- the average spacing between the precipitates does not reach that level, and the effect of sufficient precipitation strengthening cannot be obtained.
- Cr carbide phase is another carbide phase that can precipitate in Co-based alloys. Since the Cr component has a high solid solubility in the Co-based alloy matrix and is difficult to segregate, the Cr carbide phase can be dispersed and precipitated in the matrix crystal grains. However, it is known that the Cr carbide phase has low lattice consistency with the Co-based alloy matrix crystal and is not so effective as a precipitation strengthening phase.
- the present inventors in the Co-based alloy material, if it is possible to disperse and precipitate the carbide phase particles that contribute to precipitation strengthening in the matrix crystal grains, it is possible to dramatically improve the mechanical properties of the Co-based alloy material. I thought I could do it. In addition, it was thought that when combined with the good corrosion resistance and wear resistance originally possessed by Co-based alloy materials, it is possible to provide heat-resistant alloy materials that outperform precipitation-strengthened Ni-based alloy materials.
- the present inventors have diligently studied the alloy composition and the manufacturing method for obtaining such a Co-based alloy material.
- the AM method in particular, selective laser melting method
- a minute size segregation cell in which a specific component (a component forming a carbide phase that contributes to alloy strengthening) is segregated is formed in the matrix grain of the alloy material (AM body).
- a predetermined heat treatment particles of the MC-type carbide phase can be dispersed and precipitated on the boundary of the segregation cell.
- the present invention has been completed based on this finding.
- FIG. 1 is a flow chart showing a process example of a method for producing a Co-based alloy product according to the present invention.
- the method for producing a Co-based alloy product according to the present invention roughly uses an alloy powder preparation step (S1) of preparing a Co-based alloy powder and the prepared Co-based alloy powder. And a selective laser melting step (S2) of forming an AM body having a desired shape, and a carbide formation heat treatment step (S3) of subjecting the AM body to a carbide formation heat treatment.
- S1 alloy powder preparation step
- S2 selective laser melting step
- S3 carbide formation heat treatment step
- the Co-based alloy product of the present invention may use the AM body obtained by the selective laser melting step S2 as it is or the AM-heat treated article obtained by the carbide formation heat treatment step S3. May be. Further, a surface finishing step (not shown in FIG. 1) may be further performed on the AM body and the AM-heat treated article obtained by those steps, if necessary.
- the Co-based alloy powder obtained in the alloy powder preparation step S1 can be a Co-based alloy article according to the present invention.
- This step S1 is a step of preparing a Co-based alloy powder having a predetermined chemical composition.
- the chemical composition includes 0.08 mass% or more and 0.25 mass% or less C, 0.1 mass% or less B, and 10 mass% or more and 30 mass% or less Cr, and Fe is 5 mass% or less and Ni is 30 mass% or less. % Or less, the total of Fe and Ni is 30% by mass or less, W and/or Mo is included, the total of W and Mo is 5% by mass or more and 12% by mass or less, and Ti, Nb and Ta are included.
- Ti, Nb and Ta are 0.5% by mass or more and 2% by mass or less, 0.5% by mass or less of Si, 0.5% by mass or less of Mn, and 0.003% by mass or more and 0.04% by mass or less of N,
- the balance preferably consists of Co and impurities.
- Hf and/or V may be further contained so that the total of Ti, Nb, Ta, Hf, and V is 0.5% by mass or more and 2% by mass or less.
- C component is a MC type carbide phase (Ti, Nb, Ta, Hf and/or V carbide phase, which is a precipitation strengthening phase, and may hereinafter be referred to as a precipitation strengthening carbide phase. ) Is an important ingredient that constitutes.
- the content of the C component is preferably 0.08% by mass or more and 0.25% by mass or less, more preferably 0.1% by mass or more and 0.2% by mass or less, and further preferably 0.12% by mass or more and 0.18% by mass or less.
- the C content is less than 0.08% by mass, the precipitation amount of the precipitation-strengthened carbide phase becomes insufficient, and the effect of improving the mechanical properties cannot be sufficiently obtained.
- the C content exceeds 0.25% by mass, the carbide phases other than the MC-type carbide phase are excessively precipitated or excessively hardened, so that the ductility and toughness of the alloy material are lowered.
- the B component is a component that contributes to improving the bondability of grain boundaries (so-called grain boundary strengthening). Although the B component is not an essential component, when it is contained, it is preferably 0.1% by mass or less, more preferably 0.005% by mass or more and 0.05% by mass or less. When the B content exceeds 0.1% by mass, cracks (for example, solidification cracks) are likely to occur during AM body formation.
- the Cr component is a component that contributes to the improvement of corrosion resistance and oxidation resistance.
- the content of the Cr component is preferably 10% by mass or more and 30% by mass or less, and more preferably 15% by mass or more and 27% by mass or less.
- the Cr content is more preferably 10% by mass or more and 18% by mass or less. If the Cr content is less than 10% by mass, the action effect (improvement of corrosion resistance and oxidation resistance) cannot be sufficiently obtained.
- Ni 30% by mass or less Since the Ni component has characteristics similar to the Co component and is cheaper than Co, it is a component that can be contained by replacing a part of the Co component.
- the Ni component is not an essential component, but when contained, it is preferably 30% by mass or less, more preferably 20% by mass or less, further preferably 5% by mass or more and 15% by mass or less.
- the wear resistance and resistance to local stress which are the characteristics of Co-based alloys, decrease. This is considered to be due to the difference between the stacking fault energy of Co and that of Ni.
- Fe 5% by mass or less Since the Fe component is much cheaper than Ni and has properties similar to those of the Ni component, it is a component that can be contained by partially replacing the Ni component. That is, the total content of Fe and Ni is preferably 30 mass% or less, more preferably 20 mass% or less, and further preferably 5 mass% or more and 15 mass% or less.
- the Fe component is not an essential component, but when contained, it is preferably 5% by mass or less, and more preferably 3% by mass or less within a range smaller than the Ni content. When the Fe content exceeds 5% by mass, it becomes a factor of deterioration of corrosion resistance and mechanical properties.
- W and/or Mo 5 mass% or more and 12 mass% or less in total W component and Mo component are components that contribute to solid solution strengthening of the matrix phase.
- the total content of W component and/or Mo component (one or more of W component and Mo component) is preferably 5% by mass or more and 12% by mass or less, more preferably 7% by mass or more and 10% by mass or less.
- solid solution strengthening of the matrix becomes insufficient.
- the total content of the W component and the Mo component exceeds 12% by mass, a brittle ⁇ phase is likely to be formed, and mechanical properties (toughness, ductility) are deteriorated.
- the Re component is a component that contributes to the strengthening of the solid solution of the matrix and the improvement of corrosion resistance.
- the Re component is not an essential component, but when it is contained, it is preferably 2% by mass or less, more preferably 0.5% by mass or more and 1.5% by mass or less in the form of partially replacing the W component or the Mo component. If the Re content exceeds 2% by mass, not only the action and effect of the Re component will be saturated, but also the material cost will increase.
- Ti, Nb and Ta 0.5% by mass or more and 2% by mass or less in total Ti component, Nb component and Ta component are important components constituting the precipitation strengthened carbide phase (MC type carbide phase), and all three components must be included. Is preferable.
- the total content of Ti, Nb, and Ta components is preferably 0.5% by mass or more and 2% by mass or less, and more preferably 0.5% by mass or more and 1.8% by mass or less. If the total content is less than 0.5% by mass, the precipitation amount of the precipitation-strengthened carbide phase becomes insufficient, and the effect of improving the mechanical properties cannot be sufficiently obtained.
- the precipitation-strengthened carbide phase particles may be coarsened or may promote the formation of a brittle phase (for example, ⁇ phase) or may generate oxide phase particles that do not contribute to precipitation strengthening. Mechanical properties deteriorate.
- the Ti content is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.8% by mass or less.
- the Nb content is preferably 0.02% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.8% by mass or less.
- the Ta content is preferably 0.05% by mass or more and 1.5% by mass or less, and more preferably 0.1% by mass or more and 1.2% by mass or less.
- Hf and / or V The Hf component and/or V component is also a component that forms a precipitation-strengthened carbide phase (MC-type carbide phase), and can be contained in addition to the above Ti, Nb, and Ta components.
- Hf and V are not essential components, but when Hf and/or V is contained, the total content of Ti, Nb, Ta, Hf and V is adjusted to 0.5% by mass or more and 2% by mass or less.
- the content when Hf is contained is preferably 0.01% by mass or more and 0.5% by mass or less, more preferably 0.02% by mass or more and 0.1% by mass or less.
- the content rate is preferably 0.01% by mass or more and 0.5% by mass or less, and more preferably 0.02% by mass or more and 0.1% by mass or less.
- the Si component plays a role of deoxidizing and contributes to the improvement of mechanical properties.
- the Si component is not an essential component, but when it is contained, it is preferably 0.5% by mass or less, more preferably 0.01% by mass or more and 0.3% by mass or less. When the Si content exceeds 0.5% by mass, coarse particles of oxide (for example, SiO 2 ) are formed, which causes deterioration of mechanical properties.
- the Mn component is a component that plays a role of desulfurization and deoxygenation and contributes to improvement of mechanical properties and corrosion resistance.
- the Mn component is not an essential component, but when contained, it is preferably 0.5 mass% or less, more preferably 0.01 mass% or more and 0.3 mass% or less. If the Mn content exceeds 0.5% by mass, coarse particles of sulfide (for example, MnS) are formed, which causes a decrease in mechanical properties and corrosion resistance.
- the N component is a component that contributes to the stable formation of the precipitation-strengthened carbide phase.
- the content of the N component is preferably 0.003% by mass or more and 0.04% by mass or less, more preferably 0.005% by mass or more and 0.03% by mass or less, and further preferably 0.007% by mass or more and 0.025% by mass or less. If the N content is less than 0.003% by mass, the action and effect of the N component cannot be sufficiently obtained. On the other hand, if the N content exceeds 0.04 mass %, coarse particles of nitride (eg, Cr nitride) are formed, which causes a decrease in mechanical properties.
- nitride eg, Cr nitride
- Co component + impurities Co component is one of the main components of the present alloy, and is the component with the maximum content.
- the Co-based alloy material has an advantage of having corrosion resistance and wear resistance equal to or higher than that of the Ni-based alloy material.
- the Al component is one of the impurities of the present alloy and is not a component intentionally included. However, if the Al content is 0.5% by mass or less, it is acceptable because it does not significantly adversely affect the mechanical properties of the Co-based alloy product. If the Al content exceeds 0.5% by mass, coarse particles of oxides or nitrides (for example, Al 2 O 3 and AlN) are formed, which causes deterioration of mechanical properties.
- the Zr component is one of the impurities in this alloy and is not a component that is intentionally included. However, a Zr content of less than 0.05% by mass is acceptable. When the Zr content is 0.05% by mass or more, the mechanical strength of the Co-based alloy product may be improved, but it tends to be a factor of decreasing the manufacturing yield. In other words, it is preferable not to include the Zr component from the viewpoint of manufacturing yield (cost reduction due to it).
- the O component is also one of the impurities in this alloy and is not a component that is intentionally included. However, an O content of 0.04% by mass or less is acceptable because it does not significantly adversely affect the mechanical properties of the Co-based alloy product. If the O content exceeds 0.04 mass %, coarse particles of various oxides (for example, Ti oxide, Al oxide, Fe oxide, Si oxide) are formed, which causes a decrease in mechanical properties.
- various oxides for example, Ti oxide, Al oxide, Fe oxide, Si oxide
- the atomizing process (S1b) may be performed.
- the atomizing method is not particularly limited, and the conventional method/method can be used.
- a gas atomizing method or a centrifugal atomizing method that can obtain high-purity, spherical particles can be preferably used.
- the particle size of the alloy powder is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of handleability and filling property of the alloy powder bed in the selective laser melting step S2 of the next step. More preferable. If the particle size of the alloy powder is less than 5 ⁇ m, the fluidity of the alloy powder will be reduced in the next step S2 (the formability of the alloy powder bed will be reduced), and this will be a factor of reducing the shape accuracy of the AM body.
- the particle size of the alloy powder exceeds 100 ⁇ m, it becomes difficult to control the local melting/rapid solidification of the alloy powder bed in the next step S2, the melting of the alloy powder becomes insufficient, and the surface roughness of the AM body increases. Will be a factor.
- the alloy powder classifying step (S1c) for classifying the particle size of the alloy powder in the range of 5 ⁇ m or more and 100 ⁇ m or less.
- the particle size distribution of the alloy powder produced in the atomizing elementary step S1b is within a desired range as a result of measuring the particle size distribution, it is considered that the present elementary step S1c has been performed.
- This step S2 is a step of forming an AM body having a desired shape by a selective laser melting (SLM) method using the prepared Co-based alloy powder.
- SLM selective laser melting
- an alloy powder bed preparation step (S2a) in which a Co-based alloy powder is spread to prepare an alloy powder bed having a predetermined thickness, and a predetermined region of the alloy powder bed is irradiated with laser light to prepare the alloy powder bed in the region.
- This is a step of forming an AM body by repeating a laser melting and solidifying element step (S2b) of locally melting and rapidly solidifying Co-based alloy powder.
- a desirable microstructure in the final Co-based alloy product (a microstructure in which segregation cells in which the components forming the MC type carbide phase are segregated in the boundary region are formed in the matrix crystal grains, and
- the fine structure of the AM body that is the precursor of the product is controlled.
- local melting/rapid solidification of the alloy powder bed is controlled.
- the thickness h (unit: ⁇ m) of the alloy powder bed, the laser beam output P (unit: W), and the laser beam scanning speed S (unit: mm/s)
- “15 The thickness h of the alloy powder bed, the laser light output P, and the laser light scanning speed S so as to satisfy ⁇ h ⁇ 150 "and” 67 (P / S) -3.5 ⁇ h ⁇ 2222 (P / S) +13 ". Is preferably controlled. If the control conditions are not satisfied, an AM body having a desired fine structure cannot be obtained.
- the AM body obtained in this step S2 may be a finished product of the Co-based alloy product according to the present invention.
- the output P of the laser beam and the scanning speed S of the laser beam basically depend on the configuration of the laser device, but should be selected within the range of, for example, "10 ⁇ P ⁇ 1000" and "10 ⁇ S ⁇ 7000". Good. Further, when the AM body obtained in step S2 is used as a finished product of a Co-based alloy product, annealing for relaxing the residual internal strain of the AM body that may occur during rapid solidification of the SLM method (for example, 400 It is preferable to perform an anneal at a temperature of not less than 0°C and less than 600°C.
- FIG. 2 is a scanning electron microscope (SEM) observation image showing an example of the microstructure of the Co-based alloy AM body obtained in the SLM step S2. As shown in FIG. 2, the Co-based alloy AM body of the present invention has an extremely specific microstructure that has never been seen before.
- the AM body is a polycrystal of a matrix crystal, and a segregation cell with an average size of 0.13 ⁇ m or more and 2 ⁇ m or less is formed in the crystal grains of the polycrystal.
- the average size of the segregated cell is more preferably 0.15 ⁇ m or more and 1.5 ⁇ m or less from the viewpoint of mechanical strength. It is confirmed that particles of the precipitation-strengthened carbide phase may precipitate on a part of the boundary region of the segregation cell.
- the average crystal grain size of the matrix crystal is preferably 5 ⁇ m or more and 150 ⁇ m or less.
- the size of the segregation cell is basically defined as the average of the major axis and the minor axis, but when the aspect ratio of the major axis and the minor axis is 3 or more, twice the minor axis is adopted. It shall be. Further, the average spacing of the particles of the precipitation-strengthened carbide phase in the present invention is defined as being represented by the size of the segregation cell because the particles are precipitated on the boundary region of the segregation cell.
- This step S3 is a step of subjecting the formed Co-based alloy AM body to a predetermined heat treatment to generate carbide phase particles in the parent phase crystal grains.
- heat treatment in a temperature range of 600° C. or higher and lower than 1100° C. is preferable.
- the heat treatment temperature is more preferably 700°C or higher and 1050°C or lower, further preferably 800°C or higher and 1000°C or lower.
- the holding time in the heat treatment may be appropriately set in the range of 0.5 hours or more and 20 hours or less in consideration of the temperature.
- the cooling method after the heat treatment is not particularly limited, and for example, any of oil cooling, water cooling, air cooling, and furnace cooling may be used.
- FIG. 3 is an SEM observation image showing an example of the microstructure of the Co-based alloy product obtained in the carbide formation heat treatment step S3. As shown in FIG. 3, the Co-based alloy product subjected to the heat treatment for carbide formation also has a very specific microstructure that has never been seen before.
- the shape of the post-segregation cell is considered to remain almost the same, and the average size of the post-segregation cell is 0.13 to 2 ⁇ m. That is, in the present invention, the average interparticle distance of the precipitation strengthened carbide phase particles is also considered to be 0.13 to 2 ⁇ m. Further, the precipitated precipitation-strengthened carbide phase particles can serve as a pinning point for the grain boundary movement of the parent phase crystal grains, so that the coarsening of the parent phase crystal grains is suppressed.
- the residual internal strain of the AM body that may occur during the rapid solidification of the SLM process S2 can be relaxed, and unwanted deformation during subsequent processes and during the use of alloy products can be prevented. Can be prevented.
- post-segregation cells having an average crystal grain size of 5 ⁇ m or more and 150 ⁇ m or less and an average size of 0.13 to 2 ⁇ m are formed in each crystal grain, along the boundary of the post-segregation cell.
- a Co-based alloy product having a fine structure in which precipitation strengthened carbide phase particles are dispersed and precipitated is obtained.
- the precipitation-strengthened carbide phase particles are naturally dispersed and precipitated on the grain boundaries of the parent phase crystal grains.
- FIG. 4 is an example of a Co-based alloy product according to the present invention, and is a schematic perspective view showing a turbine vane as a high temperature member.
- the turbine stationary blade 100 is roughly composed of an inner ring side end wall 101, a blade portion 102, and an outer ring side end wall 103. Cooling structures are often formed inside the wings.
- the turbine vane 100 since the turbine vane 100 has a very complicated shape and structure, the technical significance of the alloy product based on the AM body formed by the near net shape is great.
- the length of the blade portion of the turbine vane (distance between both end walls) is about 170 mm.
- the Co-based alloy product of the present invention may of course be used as a turbine rotor blade.
- FIG. 5 is a schematic cross-sectional view showing an example of a gas turbine equipped with the Co-based alloy product according to the present invention.
- the gas turbine 200 is roughly configured by a compressor unit 210 that compresses intake air and a turbine unit 220 that blows combustion gas of fuel to turbine blades to obtain rotational power.
- the high temperature member of the present invention can be suitably used as the turbine nozzle 221 in the turbine section 220 or the turbine vane 100.
- the high temperature member of the present invention is not limited to gas turbine applications, but may be used for other turbine applications (for example, steam turbine applications), or is a member used in a high temperature environment in other machines / devices. It may be.
- FIG. 6 is a perspective schematic view showing a heat exchanger as a high temperature member, which is an example of the Co-based alloy product according to the present invention.
- the heat exchanger 300 shown in FIG. 6 is an example of a plate fin type heat exchanger, and basically has a structure in which separate layers 301 and fin layers 302 are alternately laminated. Both ends of the fin layer 302 in the flow channel width direction are sealed by side bar portions 303. By alternately circulating the high temperature fluid and the low temperature fluid through the adjacent fin layers 302, heat exchange is performed between the high temperature fluid and the low temperature fluid.
- the heat exchanger 300 according to the present invention is integrally formed without brazing or welding the components of the conventional heat exchanger (for example, the separate plate, the corrugated fin, the side bar), It can be made more heat resistant and lighter than a heat exchanger. Further, by forming an appropriate uneven shape on the surface of the flow path, the fluid can be turbulent and the heat transfer efficiency can be improved. Improvement of heat transfer efficiency leads to miniaturization of the heat exchanger.
- alloy powder preparation step S1 Preparation of alloy powder IA-1 to IA-5 and CA-1 to CA-5) Co-based alloy powders having the chemical compositions shown in Table 1 were prepared (alloy powder preparation step S1). Specifically, first, after mixing the raw materials, a master alloy ingot production step S1a for producing a master alloy ingot (mass: about 2 kg) by melting and casting by a vacuum high frequency induction melting method was performed. Next, an atomizing element step S1b of remelting the mother alloy ingot and forming an alloy powder by a gas atomizing method in an argon gas atmosphere was performed.
- an alloy powder classifying step S1c for controlling the particle size of the alloy powder was performed to classify the powder particle size to the range of 5 to 25 ⁇ m.
- the invention alloy powders IA-1 to IA-5 are alloy powders having a chemical composition satisfying the regulations of the present invention.
- the comparative alloy powder CA-1 has a C content and a Cr content outside the provisions of the present invention.
- the C content rate, the Ni content rate, and the total content rate of “Ti+Nb+Ta+Hf+V” are out of the regulation of the present invention.
- the C content rate, the N content rate, and the total content rate of “Ti+Nb+Ta+Hf+V” are out of the regulation of the present invention.
- the total content of “Ti+Nb+Ta+Hf+V” is outside the regulation of the present invention.
- the W content and the total content of “Ti+Nb+Ta+Hf+V” are outside the scope of the present invention.
- Example 2 (Examination of SLM conditions in the selective laser melting process) An AM body (diameter 8 mm x length 10 mm) was formed by the SLM method using the IA-4 alloy powder prepared in Experiment 1 (selective laser melting step S2).
- the control of the local heat input amount corresponds to the control of the cooling rate.
- the average size of the segregated cells was measured by observing the microstructure of each AM body prepared above. The microstructure was observed by SEM. The average size of the segregation cells was measured on the obtained SEM observation image by image analysis using image processing software (ImageJ, public domain software developed by National Institutes of Health (NIH) in the United States).
- FIG. 7 is an example of SLM conditions in the selective laser melting step S2, and is a graph showing the relationship between the thickness of the alloy powder bed and the amount of local heat input.
- FIG. 7 as a result of observing the microstructure of the formed AM body, those having an average size of the segregation cells in the range of 0.15 to 1.5 ⁇ m were judged as “pass” and indicated by “ ⁇ ” in the figure, and other Those were judged as "failed” and indicated by "x” in the figure.
- the SLM conditions in the selective laser melting step S2 are as follows: the thickness h of the alloy powder bed (unit: ⁇ m), the laser light output P (unit: W), and the laser light scanning speed S (unit: It is confirmed that it is preferable to control so that the relationship with (mm/s) satisfies “15 ⁇ h ⁇ 150” and “67(P/S)-3.5 ⁇ h ⁇ 2222(P/S)+13”. .. That is, the hatched area is the area for acceptance determination.
- Example 3 (Examination of heat treatment conditions in the carbide formation heat treatment process) Using the alloy powders of IA-1 and IA-2 prepared in Experiment 1, an AM body (diameter 10 mm ⁇ length 50 mm) was formed by the SLM method (selective laser melting step S2).
- the AM body produced above is subjected to a heat treatment of holding it at 300 to 1200°C for 2 to 20 hours (carbide forming heat treatment step S3), and a Co-based alloy product using IA-1 powder and IA-2 powder (IAP-1a to IAP-1g, IAP-2a to IAP-2g) were prepared.
- Test pieces for mechanical property testing were collected from each of the produced alloy products and subjected to mechanical property testing.
- a creep test was performed under the conditions of a temperature of 900°C and a stress of 98 MPa, and the creep rupture time was measured. From the required characteristics for the high temperature member targeted by the present invention, a creep rupture time of 1100 hours or more was determined as "pass”, and a creep rupture time of less than 1100 hours was determined as "fail". It can be said that this creep characteristic is equivalent to that of the Ni-based alloy material.
- the mechanical properties of all the samples under the condition that the heat treatment temperature was 600°C or higher and lower than 1100°C were acceptable. It is considered that this is because the precipitation strengthened carbide phase particles (Ti, Nb, Ta, Hf and/or V MC type carbide phase particles) were finely dispersed and precipitated in a preferable form.
- Each of the AM bodies produced above is heat-treated at 850° C. for 1 hour (carbide formation heat treatment step S3), and a Co-based alloy product IAP-1-using IA-1 to IA-5 powders is produced.
- Co-based alloy products CAP-1-1 to CAP-5-1 were prepared using 1 to IAP-5-1 and CA-1 to CA-5 powders.
- Microstructure observation and mechanical property test From the Co-based alloy products IAP-1-1 to IAP-5-1 and CAP-1-1 to CAP-5-1 produced above, sample pieces for microstructural observation and mechanical property test were collected. Then, microstructure observation and mechanical property test were performed.
- the precipitation strengthening carbide phase particles are dispersed and precipitated in the crystal grains of the matrix phase, and the post segregation cell It was confirmed that the average size was within the range of 0.15 to 1.5 ⁇ m. Moreover, it was confirmed that all of these samples passed the mechanical properties.
- IA-1 to IA-5 having the chemical composition specified in the present invention are preferable as the starting powder of the Co-based alloy product. Further, by forming a post-segregation cell of a suitable average size in the matrix crystal grains, by dispersing and precipitating precipitation-strengthened carbide phase particles along the boundaries of the post-segregation cell, the creep characteristics of the Co-based alloy product It was confirmed that it could be improved.
- Turbine stationary blade 101... Inner ring side end wall, 102... Blade section, 103... Outer ring side end wall, 200... Gas turbine, 210... Compressor section, 220... Turbine section, 221... Turbine nozzle, 300... Heat exchange Container, 301... Separate layer, 302... Fin layer, 303... Sidebar part.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Automation & Control Theory (AREA)
- Combustion & Propulsion (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
前記Co基合金は、
0.08質量%以上0.25質量%以下の炭素(C)と、
0.1質量%以下のホウ素(B)と、
10質量%以上30質量%以下のクロム(Cr)とを含み、
鉄(Fe)を5質量%以下でニッケル(Ni)を30質量%以下で含み、前記Feおよび前記Niの合計が30質量%以下であり、
タングステン(W)および/またはモリブデン(Mo)を含み、前記Wおよび前記Moの合計が5質量%以上12質量%以下であり、
チタン(Ti)、ニオブ(Nb)およびタンタル(Ta)を含み、前記Ti、前記Nbおよび前記Taの合計が0.5質量%以上2質量%以下であり、
0.5質量%以下のケイ素(Si)と、
0.5質量%以下のマンガン(Mn)と、
0.003質量%以上0.04質量%以下の窒素(N)とを含み、
残部がCoと不純物とからなり、
前記不純物は、
0.5質量%以下のアルミニウム(Al)と、
0.05質量%未満のジルコニウム(Zr)と、
0.04質量%以下の酸素(O)とを含む、化学組成を有し、
前記製造物は、母相結晶の多結晶体であり、
前記多結晶体の結晶粒内には、前記Ti、前記Nbおよび/または前記Taを含むMC型炭化物相を形成する成分が境界領域に偏析していて平均サイズが0.13μm以上2μm以下の偏析セルが形成している、
ことを特徴とするCo基合金製造物を提供するものである。
(i)前記製造物は、前記偏析セルの前記境界領域上に前記MC型炭化物相の粒子が析出している。
前記Co基合金は、
0.08質量%以上0.25質量%以下のCと、
0.1質量%以下のBと、
10質量%以上30質量%以下のCrとを含み、
Feを5質量%以下でNiを30質量%以下で含み、前記Feおよび前記Niの合計が30質量%以下であり、
Wおよび/またはMoを含み、前記Wおよび前記Moの合計が5質量%以上12質量%以下であり、
Ti、NbおよびTaを含み、前記Ti、前記Nbおよび前記Taの合計が0.5質量%以上2質量%以下であり、
0.5質量%以下のSiと、
0.5質量%以下のMnと、
0.003質量%以上0.04質量%以下のNとを含み、
残部がCoと不純物とからなり、
前記不純物は、
0.5質量%以下のAlと、
0.05質量%未満のZrと、
0.04質量%以下のOとを含む、化学組成を有し、
前記製造物は、母相結晶の多結晶体であり、
前記多結晶体の結晶粒内には、平均サイズが0.13μm以上2μm以下のポスト偏析セルが形成しており、該ポスト偏析セル間の境界上に、前記Ti、前記Nbおよび/または前記Taを含むMC型炭化物相の粒子が分散析出している、
ことを特徴とするCo基合金製造物を提供するものである。
(ii)前記Co基合金の前記化学組成は、
前記Tiが0.01質量%以上1質量%以下であり、
前記Nbが0.02質量%以上1質量%以下であり、
前記Taが0.05質量%以上1.5質量%以下である。
(iii)前記Co基合金の前記化学組成は、
ハフニウム(Hf)および/またはバナジウム(V)を更に含み、前記Hf、前記V、前記Ti、前記Nbおよび前記Taの合計が0.5質量%以上2質量%以下であり、
前記MC型炭化物相は、前記Hf、前記V、前記Ti、前記Nbおよび/または前記Taを含む。
(iv)前記Co基合金の前記化学組成は、
前記Hfを含む場合、該Hfは0.01質量%以上0.5質量%以下であり、
前記Vを含む場合、該Vは0.01質量%以上0.5質量%以下である。
(v)前記製造物は、温度900℃、応力98 MPaの条件下でクリープ試験を行った場合のクリープ破断時間が1100時間以上である。
(vi)前記製造物は、高温部材である。
(vii)前記高温部材は、タービン静翼、タービン動翼、タービン燃焼器ノズルまたは熱交換器である。
前述したように、Co基合金材では、炭化物相の析出による強化が種々研究開発されてきた。析出強化に寄与する炭化物相としては、例えば、Ti、Hf、V、Nb、TaのMC型炭化物相、およびそれら金属元素の複合炭化物相が挙げられる。
図1は、本発明に係るCo基合金製造物の製造方法の工程例を示すフロー図である。図1に示したように、本発明に係るCo基合金製造物の製造方法は、概略的に、Co基合金粉末を用意する合金粉末用意工程(S1)と、用意したCo基合金粉末を用いて所望形状のAM体を形成する選択的レーザ溶融工程(S2)とを有し、AM体に対して炭化物生成熱処理を施す炭化物生成熱処理工程(S3)を更に有してもよい。
本工程S1は、所定の化学組成を有するCo基合金粉末を用意する工程である。該化学組成は、0.08質量%以上0.25質量%以下のCと、0.1質量%以下のBと、10質量%以上30質量%以下のCrとを含み、Feを5質量%以下でNiを30質量%以下で含み、FeおよびNiの合計が30質量%以下であり、Wおよび/またはMoを含み、WおよびMoの合計が5質量%以上12質量%以下であり、Ti、NbおよびTaを含み、Ti、NbおよびTaの合計が0.5質量%以上2質量%以下であり、0.5質量%以下のSiと、0.5質量%以下のMnと、0.003質量%以上0.04質量%以下のNとを含み、残部がCoと不純物とからなることが好ましい。Ti、Nb、Ta、HfおよびVの合計が0.5質量%以上2質量%以下となるように、Hfおよび/またはVを更に含んでもよい。
C成分は、析出強化相となるMC型炭化物相(Ti、Nb、Ta、Hfおよび/またはVの炭化物相、以下、析出強化炭化物相と称する場合がある)を構成する重要な成分である。C成分の含有率は、0.08質量%以上0.25質量%以下が好ましく、0.1質量%以上0.2質量%以下がより好ましく、0.12質量%以上0.18質量%以下が更に好ましい。C含有率が0.08質量%未満になると、析出強化炭化物相の析出量が不足し、機械的特性向上の作用効果が十分に得られない。一方、C含有率が0.25質量%超になると、MC型炭化物相以外の炭化物相が過剰析出したり、過度に硬化したりすることで、合金材の延性や靱性が低下する。
B成分は、結晶粒界の接合性の向上(いわゆる粒界強化)に寄与する成分である。B成分は必須成分ではないが、含有させる場合、0.1質量%以下が好ましく、0.005質量%以上0.05質量%以下がより好ましい。B含有率が0.1質量%超になると、AM体形成時に割れ(例えば、凝固割れ)が発生し易くなる。
Cr成分は、耐食性や耐酸化性の向上に寄与する成分である。Cr成分の含有率は、10質量%以上30質量%以下が好ましく、15質量%以上27質量%以下がより好ましい。Co基合金製造物の最表面に耐食性被覆層を別途設けるような場合は、Cr成分の含有率は、10質量%以上18質量%以下が更に好ましい。Cr含有率が10質量%未満になると、作用効果(耐食性や耐酸化性の向上)が十分に得られない。一方、Cr含有率が30質量%超になると、脆性のσ相が生成したりCr炭化物相が過剰生成したりして機械的特性(靱性、延性、強さ)が低下する。なお、本発明においては、Cr炭化物相の生成自体を拒否する(好ましくないものとする)ものではない。
Ni成分は、Co成分と類似した特性を有しかつCoに比して安価なことから、Co成分の一部を置き換えるかたちで含有させることができる成分である。Ni成分は必須成分ではないが、含有させる場合、30質量%以下が好ましく、20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。Ni含有率が30質量%超になると、Co基合金の特徴である耐摩耗性や局所応力への耐性が低下する。これは、Coの積層欠陥エネルギーとNiのそれとの差異に起因すると考えられる。
Fe成分は、Niよりもはるかに安価でありかつNi成分と類似した性状を有することから、Ni成分の一部を置き換えるかたちで含有させることができる成分である。すなわち、FeおよびNiの合計含有率は30質量%以下が好ましく、20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。Fe成分は必須成分ではないが、含有させる場合、Ni含有率よりも少ない範囲で5質量%以下が好ましく、3質量%以下がより好ましい。Fe含有率が5質量%超になると、耐食性や機械的特性の低下要因になる。
W成分およびMo成分は、母相の固溶強化に寄与する成分である。W成分および/またはMo成分(W成分およびMo成分の1種以上)の合計含有率は、5質量%以上12質量%以下が好ましく、7質量%以上10質量%以下がより好ましい。W成分とMo成分との合計含有率が5質量%未満になると、母相の固溶強化が不十分になる。一方、W成分とMo成分との合計含有率が12質量%超になると、脆性のσ相が生成し易くなって機械的特性(靱性、延性)が低下する。
Re成分は、母相の固溶強化に寄与すると共に、耐食性の向上に寄与する成分である。Re成分は必須成分ではないが、含有させる場合、W成分またはMo成分の一部を置き換えるかたちで2質量%以下が好ましく、0.5質量%以上1.5質量%以下がより好ましい。Re含有率が2質量%超になると、Re成分の作用効果が飽和するのに加えて、材料コストの増加がデメリットになる。
Ti成分、Nb成分およびTa成分は、析出強化炭化物相(MC型炭化物相)を構成する重要な成分であり、3成分を全て含むことが好ましい。Ti、NbおよびTa成分の合計含有率は、0.5質量%以上2質量%以下が好ましく、0.5質量%以上1.8質量%以下がより好ましい。合計含有率が0.5質量%未満になると、析出強化炭化物相の析出量が不足し、機械的特性向上の作用効果が十分に得られない。一方、当該合計含有率が2質量%超になると、析出強化炭化物相粒子が粗大化したり脆性相(例えばσ相)の生成を促進したり析出強化に寄与しない酸化物相粒子を生成したりして機械的特性が低下する。
Hf成分および/またはV成分も、析出強化炭化物相(MC型炭化物相)を形成する成分であり、上記Ti、NbおよびTa成分に加えて含有させることができる。HfおよびVは必須成分ではないが、Hfおよび/またはVを含有させる場合、Ti、Nb、Ta、HfおよびVの合計が0.5質量%以上2質量%以下となるように調整する。
Si成分は、脱酸素の役割を担って機械的特性の向上に寄与する成分である。Si成分は必須成分ではないが、含有させる場合、0.5質量%以下が好ましく、0.01質量%以上0.3質量%以下がより好ましい。Si含有率が0.5質量%超になると、酸化物(例えばSiO2)の粗大粒子を形成して機械的特性の低下要因になる。
Mn成分は、脱硫・脱酸素の役割を担って機械的特性の向上や耐腐食性の向上に寄与する成分である。Mn成分は必須成分ではないが、含有させる場合、0.5質量%以下が好ましく、0.01質量%以上0.3質量%以下がより好ましい。Mn含有率が0.5質量%超になると、硫化物(例えばMnS)の粗大粒子を形成して機械的特性や耐食性の低下要因になる。
N成分は、析出強化炭化物相の安定生成に寄与する成分である。N成分の含有率は、0.003質量%以上0.04質量%以下が好ましく、0.005質量%以上0.03質量%以下がより好ましく、0.007質量%以上0.025質量%以下が更に好ましい。N含有率が0.003質量%未満になると、N成分の作用効果が十分に得られない。一方、N含有率が0.04質量%超になると、窒化物(例えばCr窒化物)の粗大粒子を形成して機械的特性の低下要因になる。
Co成分は、本合金の主要成分の一つであり、最大含有率の成分である。前述したように、Co基合金材は、Ni基合金材と同等以上の耐食性や耐摩耗性を有する利点がある。
本工程S2は、用意したCo基合金粉末を用いて選択的レーザ溶融(SLM)法により所望形状のAM体を形成する工程である。具体的には、Co基合金粉末を敷き詰めて所定厚さの合金粉末床を用意する合金粉末床用意素工程(S2a)と、合金粉末床の所定の領域にレーザ光を照射して該領域のCo基合金粉末を局所溶融・急速凝固させるレーザ溶融凝固素工程(S2b)と、を繰り返してAM体を形成する工程である。
図2は、SLM工程S2で得られるCo基合金AM体の微細組織の一例を示す走査型電子顕微鏡(SEM)観察像である。図2に示したように、本発明のCo基合金AM体は、今までに見たことのないような極めて特異的な微細組織を有している。
本工程S3は、形成したCo基合金AM体に対して所定の熱処理を施して母相結晶粒内に炭化物相粒子を生成させる工程である。当該熱処理の条件としては、600℃以上1100℃未満の温度範囲の熱処理が好ましい。熱処理温度は、700℃以上1050℃以下がより好ましく、800℃以上1000℃以下が更に好ましい。熱処理における保持時間は、温度を考慮しながら0.5時間以上20時間以下の範囲で適宜設定すればよい。熱処理後の冷却方法に特段の限定はなく、例えば、油冷、水冷、空冷、炉冷のいずれでも構わない。
図4は、本発明に係るCo基合金製造物の一例であり、高温部材としてのタービン静翼を示す斜視模式図である。図4に示したように、タービン静翼100は、概略的に、内輪側エンドウォール101と翼部102と外輪側エンドウォール103とから構成される。翼部の内部には、しばしば冷却構造が形成される。このように、タービン静翼100は非常に複雑な形状・構造を有することから、ニアネットシェイプで形成されるAM体を基にした合金製造物の技術的意義は大きい。
(合金粉末IA-1~IA-5およびCA-1~CA-5の用意)
表1に示す化学組成を有するCo基合金粉末を用意した(合金粉末用意工程S1)。具体的には、まず、原料を混合した後、真空高周波誘導溶解法により溶解・鋳造して母合金塊(質量:約2 kg)を作製する母合金塊作製素工程S1aを行った。次に、該母合金塊を再溶解して、アルゴンガス雰囲気中のガスアトマイズ法により合金粉末を形成するアトマイズ素工程S1bを行った。
(選択的レーザ溶融工程におけるSLM条件の検討)
実験1で用意したIA-4の合金粉末を用いてSLM法によりAM体(直径8 mm×長さ10 mm)を形成した(選択的レーザ溶融工程S2)。SLM条件は、レーザ光の出力Pを85 Wとし、合金粉末床の厚さhおよびレーザ光の走査速度S(mm/s)を種々変更することによって局所入熱量P/S(単位:W・s/mm=J/mm)を制御した。局所入熱量の制御は、冷却速度の制御に相当する。
(炭化物生成熱処理工程における熱処理条件の検討)
実験1で用意したIA-1およびIA-2の合金粉末を用いてSLM法によりAM体(直径10 mm×長さ50 mm)を形成した(選択的レーザ溶融工程S2)。SLM条件は、合金粉末床の厚さhを100μmとし、レーザ光の出力Pを100 Wとし、レーザ光の走査速度S(mm/s)を制御することによって局所入熱量P/S(単位:W・s/mm=J/mm)を制御して、実験2の合格条件を満たすように調整した。
(IA-1~IA-7粉末を用いた発明合金製造物IAP-1-1~IAP-5-1、およびCA-1~CA-5粉末を用いた比較合金製造物CAP-1-1~CAP-5-1の作製)
実験1で用意したIA-1~IA-5およびCA-1~CA-5の合金粉末を用いて、実験3と同様にしてSLM法によりAM体(直径10 mm×長さ50 mm)を形成した(選択的レーザ溶融工程S2)。
上記で作製したCo基合金製造物IAP-1-1~IAP-5-1およびCAP-1-1~CAP-5-1から、微細組織観察用および機械的特性試験用の試験片をそれぞれ採取し、微細組織観察および機械的特性試験を行った。
Claims (19)
- コバルト基合金からなる製造物であって、
前記コバルト基合金は、
0.08質量%以上0.25質量%以下の炭素と、
0.1質量%以下のホウ素と、
10質量%以上30質量%以下のクロムとを含み、
鉄を5質量%以下でニッケルを30質量%以下で含み、前記鉄および前記ニッケルの合計が30質量%以下であり、
タングステンおよび/またはモリブデンを含み、前記タングステンおよび前記モリブデンの合計が5質量%以上12質量%以下であり、
チタン、ニオブおよびタンタルを含み、前記チタン、前記ニオブおよび前記タンタルの合計が0.5質量%以上2質量%以下であり、
0.5質量%以下のケイ素と、
0.5質量%以下のマンガンと、
0.003質量%以上0.03質量%以下の窒素とを含み、
残部がコバルトと不純物とからなり、
前記不純物は、
0.5質量%以下のアルミニウムと、
0.05質量%未満のジルコニウムと、
0.04質量%以下の酸素とを含む、化学組成を有し、
前記製造物は、母相結晶の多結晶体であり、
前記多結晶体の結晶粒内には、前記チタン、前記ニオブおよび/または前記タンタルを含むMC型炭化物相を形成する成分が境界領域に偏析していて平均サイズが0.13μm以上2μm以下の偏析セルが形成している、
ことを特徴とするコバルト基合金製造物。 - 請求項1に記載のコバルト基合金製造物において、
前記製造物は、前記偏析セルの前記境界領域上に前記MC型炭化物相の粒子が析出している、
ことを特徴とするコバルト基合金製造物。 - 請求項1又は請求項2に記載のコバルト基合金製造物において、
前記コバルト基合金の前記化学組成は、
前記チタンが0.01質量%以上1質量%以下であり、
前記ニオブが0.02質量%以上1質量%以下であり、
前記タンタルが0.05質量%以上1.5質量%以下である、
ことを特徴とするコバルト基合金製造物。 - 請求項1乃至請求項3のいずれか一項に記載のコバルト基合金製造物において、
前記コバルト基合金の前記化学組成は、
ハフニウムおよび/またはバナジウムを更に含み、前記ハフニウム、前記バナジウム、前記チタン、前記ニオブおよび前記タンタルの合計が0.5質量%以上2質量%以下であり、
前記MC型炭化物相は、前記ハフニウム、前記バナジウム、前記チタン、前記ニオブおよび/または前記タンタルを含む、
ことを特徴とするコバルト基合金製造物。 - 請求項4に記載のコバルト基合金製造物において、
前記コバルト基合金の前記化学組成は、
前記ハフニウムを含む場合、該ハフニウムは0.01質量%以上0.5質量%以下であり、
前記バナジウムを含む場合、該バナジウムは0.01質量%以上0.5質量%以下である、
ことを特徴とするコバルト基合金製造物。 - 請求項1乃至請求項5のいずれか一項に記載のコバルト基合金製造物において、
前記製造物は、温度900℃、応力98 MPaの条件下でクリープ試験を行った場合のクリープ破断時間が1100時間以上であることを特徴とするコバルト基合金製造物。 - 請求項1乃至請求項6のいずれか一項に記載のコバルト基合金製造物において、
前記製造物は、高温部材であることを特徴とするコバルト基合金製造物。 - 請求項7に記載のコバルト基合金製造物において、
前記高温部材は、タービン静翼、タービン動翼、タービン燃焼器ノズルまたは熱交換器であることを特徴とするコバルト基合金製造物。 - コバルト基合金からなる製造物であって、
前記コバルト基合金は、
0.08質量%以上0.25質量%以下の炭素と、
0.1質量%以下のホウ素と、
10質量%以上30質量%以下のクロムとを含み、
鉄を5質量%以下でニッケルを30質量%以下で含み、前記鉄および前記ニッケルの合計が30質量%以下であり、
タングステンおよび/またはモリブデンを含み、前記タングステンおよび前記モリブデンの合計が5質量%以上12質量%以下であり、
チタン、ニオブおよびタンタルを含み、前記チタン、前記ニオブおよび前記タンタルの合計が0.5質量%以上2質量%以下であり、
0.5質量%以下のケイ素と、
0.5質量%以下のマンガンと、
0.003質量%以上0.03質量%以下の窒素とを含み、
残部がコバルトと不純物とからなり、
前記不純物は、
0.5質量%以下のアルミニウムと、
0.05質量%未満のジルコニウムと、
0.04質量%以下の酸素とを含む、化学組成を有し、
前記製造物は、母相結晶の多結晶体であり、
前記多結晶体の結晶粒内には、平均サイズが0.13μm以上2μm以下のポスト偏析セルが形成しており、該ポスト偏析セルの境界に沿って、前記チタン、前記ニオブおよび/または前記タンタルを含むMC型炭化物相の粒子が分散析出している、
ことを特徴とするコバルト基合金製造物。 - 請求項9に記載のコバルト基合金製造物において、
前記コバルト基合金の前記化学組成は、
前記チタンが0.01質量%以上1質量%以下であり、
前記ニオブが0.02質量%以上1質量%以下であり、
前記タンタルが0.05質量%以上1.5質量%以下である、
ことを特徴とするコバルト基合金製造物。 - 請求項9又は請求項10に記載のコバルト基合金製造物において、
前記コバルト基合金の前記化学組成は、
ハフニウムおよび/またはバナジウムを更に含み、前記ハフニウム、前記バナジウム、前記チタン、前記ニオブおよび前記タンタルの合計が0.5質量%以上2質量%以下であり、
前記MC型炭化物相は、前記ハフニウム、前記バナジウム、前記チタン、前記ニオブおよび/または前記タンタルを含む、
ことを特徴とするコバルト基合金製造物。 - 請求項11に記載のコバルト基合金製造物において、
前記コバルト基合金の前記化学組成は、
前記ハフニウムを含む場合、該ハフニウムは0.01質量%以上0.5質量%以下であり、
前記バナジウムを含む場合、該バナジウムは0.01質量%以上0.5質量%以下である、
ことを特徴とするコバルト基合金製造物。 - 請求項9乃至請求項12のいずれか一項に記載のコバルト基合金製造物において、
前記製造物は、温度900℃、応力98 MPaの条件下でクリープ試験を行った場合のクリープ破断時間が1100時間以上であることを特徴とするコバルト基合金製造物。 - 請求項9乃至請求項13のいずれか一項に記載のコバルト基合金製造物において、
前記製造物は、高温部材であることを特徴とするコバルト基合金製造物。 - 請求項14に記載のコバルト基合金製造物において、
前記高温部材は、タービン静翼、タービン動翼、タービン燃焼器ノズルまたは熱交換器であることを特徴とするコバルト基合金製造物。 - コバルト基合金からなる物品であって、
前記コバルト基合金は、
0.08質量%以上0.25質量%以下の炭素と、
0.1質量%以下のホウ素と、
10質量%以上30質量%以下のクロムとを含み、
鉄を5質量%以下でニッケルを30質量%以下で含み、前記鉄および前記ニッケルの合計が30質量%以下であり、
タングステンおよび/またはモリブデンを含み、前記タングステンおよび前記モリブデンの合計が5質量%以上12質量%以下であり、
チタン、ニオブおよびタンタルを含み、前記チタン、前記ニオブおよび前記タンタルの合計が0.5質量%以上2質量%以下であり、
0.5質量%以下のケイ素と、
0.5質量%以下のマンガンと、
0.003質量%以上0.03質量%以下の窒素とを含み、
残部がコバルトと不純物とからなり、
前記不純物は、
0.5質量%以下のアルミニウムと、
0.05質量%未満のジルコニウムと、
0.04質量%以下の酸素とを含む、化学組成を有する、
ことを特徴とするコバルト基合金物品。 - 請求項16に記載のコバルト基合金物品において、
前記コバルト基合金の前記化学組成は、
前記チタンが0.01質量%以上1質量%以下であり、
前記ニオブが0.02質量%以上1質量%以下であり、
前記タンタルが0.05質量%以上1.5質量%以下である、
ことを特徴とするコバルト基合金物品。 - 請求項16又は請求項17に記載のコバルト基合金物品において、
前記コバルト基合金の前記化学組成は、
ハフニウムおよび/またはバナジウムを更に含み、前記ハフニウム、前記バナジウム、前記チタン、前記ニオブおよび前記タンタルの合計が0.5質量%以上2質量%以下である、
ことを特徴とするコバルト基合金物品。 - 請求項18に記載のコバルト基合金物品において、
前記コバルト基合金の前記化学組成は、
前記ハフニウムを含む場合、該ハフニウムは0.01質量%以上0.5質量%以下であり、
前記バナジウムを含む場合、該バナジウムは0.01質量%以上0.5質量%以下である、
ことを特徴とするコバルト基合金物品。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217002574A KR102436209B1 (ko) | 2019-03-07 | 2019-03-07 | 코발트기 합금 제조물 및 코발트기 합금 물품 |
SG11202012650YA SG11202012650YA (en) | 2019-03-07 | 2019-03-07 | Cobalt based alloy product and cobalt based alloy article |
EP19797977.6A EP3936632A4 (en) | 2019-03-07 | 2019-03-07 | COBALT-BASED ALLOY PRODUCT AND COBALT-BASED ALLOY ARTICLE |
PCT/JP2019/009209 WO2020179084A1 (ja) | 2019-03-07 | 2019-03-07 | コバルト基合金製造物、およびコバルト基合金物品 |
CN201980002628.6A CN112004950B (zh) | 2019-03-07 | 2019-03-07 | 钴基合金制造物以及钴基合金物品 |
JP2020508062A JP6935577B2 (ja) | 2019-03-07 | 2019-03-07 | コバルト基合金製造物 |
US16/617,372 US20210332460A1 (en) | 2019-03-07 | 2019-03-07 | Cobalt based alloy product and cobalt based alloy article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/009209 WO2020179084A1 (ja) | 2019-03-07 | 2019-03-07 | コバルト基合金製造物、およびコバルト基合金物品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179084A1 true WO2020179084A1 (ja) | 2020-09-10 |
Family
ID=72338483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009209 WO2020179084A1 (ja) | 2019-03-07 | 2019-03-07 | コバルト基合金製造物、およびコバルト基合金物品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210332460A1 (ja) |
EP (1) | EP3936632A4 (ja) |
JP (1) | JP6935577B2 (ja) |
KR (1) | KR102436209B1 (ja) |
CN (1) | CN112004950B (ja) |
SG (1) | SG11202012650YA (ja) |
WO (1) | WO2020179084A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020179083A1 (ja) * | 2019-03-07 | 2021-03-11 | 三菱パワー株式会社 | コバルト基合金製造物およびその製造方法 |
JPWO2020179081A1 (ja) * | 2019-03-07 | 2021-04-30 | 三菱パワー株式会社 | コバルト基合金製造物 |
JPWO2020179080A1 (ja) * | 2019-03-07 | 2021-04-30 | 三菱パワー株式会社 | コバルト基合金製造物、該製造物の製造方法、およびコバルト基合金物品 |
US11306372B2 (en) | 2019-03-07 | 2022-04-19 | Mitsubishi Power, Ltd. | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body |
US11325189B2 (en) | 2017-09-08 | 2022-05-10 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
US11427893B2 (en) | 2019-03-07 | 2022-08-30 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022049716A1 (ja) * | 2020-09-04 | 2022-03-10 | 三菱パワー株式会社 | コバルト基合金材料およびコバルト基合金製造物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61243143A (ja) * | 1984-11-06 | 1986-10-29 | Agency Of Ind Science & Technol | Co基超塑性合金およびその製造方法 |
JPH09157780A (ja) * | 1995-12-05 | 1997-06-17 | Hitachi Ltd | 高耐食性Co基合金 |
JP2016102229A (ja) * | 2014-11-27 | 2016-06-02 | 山陽特殊製鋼株式会社 | 造形用金属粉末 |
JP2017186620A (ja) * | 2016-04-06 | 2017-10-12 | セイコーエプソン株式会社 | 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品 |
CN107513642A (zh) * | 2017-10-17 | 2017-12-26 | 广州纳联材料科技有限公司 | 钴基合金粉末及其制备方法和应用 |
WO2019031577A1 (ja) * | 2017-08-09 | 2019-02-14 | 日立金属株式会社 | 合金部材、該合金部材の製造方法、および該合金部材を用いた製造物 |
JP2019049022A (ja) * | 2017-09-08 | 2019-03-28 | 三菱日立パワーシステムズ株式会社 | コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5576038A (en) * | 1978-12-04 | 1980-06-07 | Hitachi Ltd | High strength high toughness cobalt-base alloy |
DE3535477C2 (de) * | 1985-10-04 | 1996-05-02 | Stihl Maschf Andreas | Motorkettensäge oder ähnliche handgeführte Antriebsmaschine |
JPH01252751A (ja) * | 1988-03-31 | 1989-10-09 | Nkk Corp | 耐溶融炭酸塩腐食性に優れたCo基合金 |
DE69307686T2 (de) * | 1993-03-31 | 1997-05-15 | Sgs Thomson Microelectronics | Thermischer Schutzschaltung |
JPH06287666A (ja) * | 1993-04-02 | 1994-10-11 | Toshiba Corp | 耐熱鋳造Co基合金 |
JP2837798B2 (ja) | 1993-12-24 | 1998-12-16 | 株式会社クボタ | 耐食性、耐摩耗性及び高温強度にすぐれるコバルト基合金 |
FR2809387B1 (fr) * | 2000-05-23 | 2002-12-20 | Saint Gobain Isover | Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations |
JP4693170B2 (ja) * | 2006-03-07 | 2011-06-01 | 日立粉末冶金株式会社 | 耐摩耗性焼結合金およびその製造方法 |
CN102021559B (zh) * | 2009-09-09 | 2012-07-25 | 沈阳大陆激光技术有限公司 | 用于汽轮机末级叶片激光熔覆的钴基合金粉末 |
CN104233281B (zh) * | 2013-06-20 | 2017-03-08 | 沈阳大陆激光技术有限公司 | 一种用于内燃机增压器喷嘴环修复的钴基合金粉末 |
US10207327B2 (en) | 2013-08-20 | 2019-02-19 | The Trustees Of Princeton University | Density enhancement methods and compositions |
EP3153253B1 (en) * | 2015-10-05 | 2021-01-13 | Ansaldo Energia IP UK Limited | Method for treatment of metallic powder for selective laser melting |
CN105603260A (zh) * | 2015-12-24 | 2016-05-25 | 宁波天阁汽车零部件有限公司 | 一种耐高温的涡轮增压器涡轮 |
JP6372498B2 (ja) * | 2016-02-19 | 2018-08-15 | セイコーエプソン株式会社 | 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品 |
CN112004951B (zh) * | 2019-03-07 | 2022-02-18 | 三菱动力株式会社 | 钴基合金制造物及其制造方法 |
SG11202012575WA (en) * | 2019-03-07 | 2021-09-29 | Mitsubishi Power Ltd | Cobalt based alloy product |
KR102422684B1 (ko) * | 2019-03-07 | 2022-07-20 | 미츠비시 파워 가부시키가이샤 | 코발트기 합금 제조물, 해당 제조물의 제조 방법, 및 코발트기 합금 물품 |
-
2019
- 2019-03-07 WO PCT/JP2019/009209 patent/WO2020179084A1/ja active Application Filing
- 2019-03-07 SG SG11202012650YA patent/SG11202012650YA/en unknown
- 2019-03-07 JP JP2020508062A patent/JP6935577B2/ja active Active
- 2019-03-07 US US16/617,372 patent/US20210332460A1/en not_active Abandoned
- 2019-03-07 KR KR1020217002574A patent/KR102436209B1/ko active Active
- 2019-03-07 EP EP19797977.6A patent/EP3936632A4/en not_active Withdrawn
- 2019-03-07 CN CN201980002628.6A patent/CN112004950B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61243143A (ja) * | 1984-11-06 | 1986-10-29 | Agency Of Ind Science & Technol | Co基超塑性合金およびその製造方法 |
JPH09157780A (ja) * | 1995-12-05 | 1997-06-17 | Hitachi Ltd | 高耐食性Co基合金 |
JP2016102229A (ja) * | 2014-11-27 | 2016-06-02 | 山陽特殊製鋼株式会社 | 造形用金属粉末 |
JP2017186620A (ja) * | 2016-04-06 | 2017-10-12 | セイコーエプソン株式会社 | 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品 |
WO2019031577A1 (ja) * | 2017-08-09 | 2019-02-14 | 日立金属株式会社 | 合金部材、該合金部材の製造方法、および該合金部材を用いた製造物 |
JP2019049022A (ja) * | 2017-09-08 | 2019-03-28 | 三菱日立パワーシステムズ株式会社 | コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法 |
CN107513642A (zh) * | 2017-10-17 | 2017-12-26 | 广州纳联材料科技有限公司 | 钴基合金粉末及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3936632A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11325189B2 (en) | 2017-09-08 | 2022-05-10 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same |
JPWO2020179083A1 (ja) * | 2019-03-07 | 2021-03-11 | 三菱パワー株式会社 | コバルト基合金製造物およびその製造方法 |
JPWO2020179081A1 (ja) * | 2019-03-07 | 2021-04-30 | 三菱パワー株式会社 | コバルト基合金製造物 |
JPWO2020179080A1 (ja) * | 2019-03-07 | 2021-04-30 | 三菱パワー株式会社 | コバルト基合金製造物、該製造物の製造方法、およびコバルト基合金物品 |
US11306372B2 (en) | 2019-03-07 | 2022-04-19 | Mitsubishi Power, Ltd. | Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body |
US11414728B2 (en) | 2019-03-07 | 2022-08-16 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product, method for manufacturing same, and cobalt based alloy article |
US11427893B2 (en) | 2019-03-07 | 2022-08-30 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger |
US11499208B2 (en) | 2019-03-07 | 2022-11-15 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product |
US11613795B2 (en) | 2019-03-07 | 2023-03-28 | Mitsubishi Heavy Industries, Ltd. | Cobalt based alloy product and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
EP3936632A4 (en) | 2022-11-02 |
JPWO2020179084A1 (ja) | 2021-03-11 |
KR102436209B1 (ko) | 2022-08-26 |
US20210332460A1 (en) | 2021-10-28 |
CN112004950A (zh) | 2020-11-27 |
SG11202012650YA (en) | 2021-09-29 |
JP6935577B2 (ja) | 2021-09-15 |
KR20210027391A (ko) | 2021-03-10 |
CN112004950B (zh) | 2022-06-28 |
EP3936632A1 (en) | 2022-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6935580B2 (ja) | コバルト基合金製造物およびその製造方法 | |
JP6935579B2 (ja) | コバルト基合金製造物および該製造物の製造方法 | |
JP6509290B2 (ja) | コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法 | |
JP6935578B2 (ja) | コバルト基合金製造物 | |
JP6713071B2 (ja) | コバルト基合金積層造形体の製造方法 | |
WO2020121367A1 (ja) | コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法 | |
JP7076581B2 (ja) | コバルト基合金製造物 | |
JP6935577B2 (ja) | コバルト基合金製造物 | |
JP6924874B2 (ja) | コバルト基合金材料 | |
JP6994564B2 (ja) | 熱交換器 | |
WO2022049716A1 (ja) | コバルト基合金材料およびコバルト基合金製造物 | |
JP2023105829A (ja) | コバルト基合金材料およびコバルト基合金製造物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020508062 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19797977 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217002574 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019797977 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019797977 Country of ref document: EP Effective date: 20211007 |