WO2020129919A1 - 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子 - Google Patents
有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子 Download PDFInfo
- Publication number
- WO2020129919A1 WO2020129919A1 PCT/JP2019/049252 JP2019049252W WO2020129919A1 WO 2020129919 A1 WO2020129919 A1 WO 2020129919A1 JP 2019049252 W JP2019049252 W JP 2019049252W WO 2020129919 A1 WO2020129919 A1 WO 2020129919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared absorbing
- resin
- absorbing particles
- inorganic hybrid
- organic
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 297
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 229920005989 resin Polymers 0.000 claims abstract description 115
- 239000011347 resin Substances 0.000 claims abstract description 115
- 239000006185 dispersion Substances 0.000 claims abstract description 84
- 239000002994 raw material Substances 0.000 claims abstract description 74
- 239000002612 dispersion medium Substances 0.000 claims abstract description 48
- 239000002270 dispersing agent Substances 0.000 claims abstract description 41
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 28
- 239000003505 polymerization initiator Substances 0.000 claims abstract description 28
- 238000003756 stirring Methods 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000002360 preparation method Methods 0.000 claims abstract description 24
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 20
- 239000011259 mixed solution Substances 0.000 claims abstract description 19
- 239000003960 organic solvent Substances 0.000 claims abstract description 13
- 238000001704 evaporation Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims description 81
- 239000011248 coating agent Substances 0.000 claims description 71
- 238000000576 coating method Methods 0.000 claims description 71
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 57
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 53
- 239000002131 composite material Substances 0.000 claims description 41
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 27
- -1 amine compound Chemical class 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 230000009467 reduction Effects 0.000 claims description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 239000010937 tungsten Substances 0.000 claims description 11
- 125000002091 cationic group Chemical group 0.000 claims description 10
- 239000004094 surface-active agent Substances 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 150000001340 alkali metals Chemical class 0.000 claims description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 7
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 229910052738 indium Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229920005990 polystyrene resin Polymers 0.000 claims description 7
- 229910052716 thallium Inorganic materials 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229920006026 co-polymeric resin Polymers 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 6
- 229910052745 lead Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229920005749 polyurethane resin Polymers 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 229910052702 rhenium Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- 229910052790 beryllium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- 229920005668 polycarbonate resin Polymers 0.000 claims description 5
- 239000004431 polycarbonate resin Substances 0.000 claims description 5
- 229920001225 polyester resin Polymers 0.000 claims description 5
- 239000004645 polyester resin Substances 0.000 claims description 5
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 4
- 239000004640 Melamine resin Substances 0.000 claims description 4
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 4
- 239000011354 acetal resin Substances 0.000 claims description 4
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 4
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 4
- 229920000180 alkyd Polymers 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 229920006122 polyamide resin Polymers 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- 229920005672 polyolefin resin Polymers 0.000 claims description 4
- 229920006324 polyoxymethylene Polymers 0.000 claims description 4
- 239000011118 polyvinyl acetate Substances 0.000 claims description 4
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 12
- 239000000243 solution Substances 0.000 abstract description 7
- 239000003513 alkali Substances 0.000 description 29
- 238000003917 TEM image Methods 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 23
- 239000013078 crystal Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 20
- 239000000126 substance Substances 0.000 description 19
- 239000003574 free electron Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 238000002834 transmittance Methods 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 239000008346 aqueous phase Substances 0.000 description 12
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 239000004793 Polystyrene Substances 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000012074 organic phase Substances 0.000 description 9
- 229920002223 polystyrene Polymers 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- XQSGGALXCGUHAZ-UHFFFAOYSA-N 2-[[1-amino-1-(2-hydroxyethylimino)-2-methylpropan-2-yl]diazenyl]-n'-(2-hydroxyethyl)-2-methylpropanimidamide Chemical compound OCCNC(=N)C(C)(C)N=NC(C)(C)C(=N)NCCO XQSGGALXCGUHAZ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 238000003991 Rietveld refinement Methods 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229910052792 caesium Inorganic materials 0.000 description 3
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 2
- OHUPZDRTZNMIJI-UHFFFAOYSA-N [Cs].[W] Chemical compound [Cs].[W] OHUPZDRTZNMIJI-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012874 anionic emulsifier Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- 239000005338 frosted glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012690 ionic polymerization Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- NDAJNMAAXXIADY-UHFFFAOYSA-N 2-methylpropanimidamide Chemical compound CC(C)C(N)=N NDAJNMAAXXIADY-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- WIYVVIUBKNTNKG-UHFFFAOYSA-N 6,7-dimethoxy-3,4-dihydronaphthalene-2-carboxylic acid Chemical compound C1CC(C(O)=O)=CC2=C1C=C(OC)C(OC)=C2 WIYVVIUBKNTNKG-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical class [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/10—Treatment with macromolecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F112/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F112/02—Monomers containing only one unsaturated aliphatic radical
- C08F112/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F112/06—Hydrocarbons
- C08F112/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
- C08F2/06—Organic solvent
- C08F2/08—Organic solvent with the aid of dispersing agents for the polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2258—Oxides; Hydroxides of metals of tungsten
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
Definitions
- the present invention relates to a method for producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles.
- infrared absorbing particles that absorb infrared rays can be used in various applications such as heat ray shielding films, various studies have been made in the past.
- the applicant of the present application discloses in Patent Document 1 that the infrared shielding material particles containing the tungsten oxide fine particles and/or the composite tungsten oxide fine particles have a particle diameter of 1 nm or more and 800 nm or less.
- the infrared ray shielding material fine particle dispersion having excellent optical properties, such as shielding sunlight rays, particularly light in the near infrared region more efficiently, and at the same time maintaining the transmittance in the visible light region. It has been disclosed that can be prepared.
- An object of one aspect of the present invention is to provide a method for producing organic-inorganic hybrid infrared absorbing particles having chemical resistance properties.
- infrared absorbing particles, a dispersant, a dispersion liquid preparation step of preparing a dispersion liquid containing a dispersion medium, A dispersion medium reducing step of evaporating the dispersion medium from the dispersion, Infrared absorbing particles recovered after the dispersion medium reduction step, a coating resin raw material, an organic solvent, an emulsifier, water, and a polymerization initiator are mixed to prepare a raw material mixed liquid preparation step, A stirring step of stirring while cooling the raw material mixture, A method of producing organic-inorganic hybrid infrared absorbing particles, comprising: a polymerization step of performing a polymerization reaction of the coating resin raw material after performing a deoxidation treatment for reducing the amount of oxygen in the raw material mixed liquid.
- FIG. 3 is a schematic diagram of a crystal structure of a composite tungsten oxide having a hexagonal crystal.
- 3 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 1.
- 3 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 1.
- 3 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 2.
- 5 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 3.
- 6 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 4.
- 6 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 4.
- Example 5 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 5.
- 7 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 6.
- 7 is a transmission electron micrograph of the organic-inorganic hybrid infrared particles obtained in Example 7.
- the infrared absorbing particles are usually inorganic materials, and a method of disposing an organic material such as resin on at least a part of the surface thereof has not been known. Therefore, the inventors of the present invention conducted further studies and found a method for producing an organic-inorganic hybrid infrared absorbing particle in which an organic material can be arranged on the surface of the infrared absorbing particle, and completed the present invention.
- the method for producing the organic-inorganic hybrid infrared absorbing particles of this embodiment can include the following steps.
- Dispersion Liquid Preparation Step In the dispersion liquid preparation step, a dispersion liquid containing infrared absorbing particles, a dispersant, and a dispersion medium can be prepared.
- (A) Infrared absorbing particles In the method for producing the organic-inorganic hybrid infrared absorbing particles of the present embodiment, as the infrared absorbing particles, various infrared absorbing particles that are required to have enhanced chemical resistance properties such as acid resistance and alkali resistance are used. You can As the infrared absorbing particles used in the method for producing the organic-inorganic hybrid infrared absorbing particles of the present embodiment, for example, it is preferable to use infrared absorbing particles containing various materials containing free electrons, including various inorganic materials containing free electrons. Infrared absorbing particles can be used more preferably.
- the infrared absorbing particles include, for example, a tungsten oxide represented by the general formula W y O z (W: tungsten, O: oxygen, 2.2 ⁇ z/y ⁇ 2.999), and General formula M x W y O z (element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt.
- Infrared absorbing particles are preferable because, for example, particles smaller than the wavelength of light can reduce geometrical scattering in the visible light region (wavelength 380 nm to 780 nm) and can obtain particularly high transparency in the visible light region. ..
- WO 3 having oxygen deficiency and composite tungsten oxide in which a positive element such as Na is added to WO 3 are conductive materials and have free electrons. Analysis of single crystals of materials having these free electrons has suggested the response of free electrons to light in the infrared region.
- the composition range of the tungsten and oxygen there is a particularly effective range as an infrared absorbing material, it is transparent in the visible light region, and particularly strong in the infrared region.
- a tungsten oxide having absorption and a composite tungsten oxide can be used.
- Tungsten oxide Tungsten oxide is represented by the general formula W y O z (where W is tungsten, O is oxygen, and 2.2 ⁇ z/y ⁇ 2.999).
- the composition range of tungsten and oxygen is preferably such that the composition ratio of oxygen to tungsten (z/y) is less than 3, and 2.2 ⁇ z. It is more preferable that /y ⁇ 2.999. In particular, 2.45 ⁇ z/y ⁇ 2.999 is more preferable.
- z/y is preferably less than 3, and more preferably 2.999 or less, a sufficient amount of free electrons is generated to enhance absorption/reflection characteristics in the infrared region, which is efficient. It may be infrared absorbing particles.
- the so-called “Magnelli phase” having a composition ratio represented by 2.45 ⁇ z/y ⁇ 2.999 is chemically stable and has excellent light absorption characteristics in the near-infrared region. It can be more preferably used as a material. Therefore, it is more preferable that z/y is 2.45 ⁇ z/y ⁇ 2.999 as described above.
- the composite tungsten oxide is obtained by adding the element M described below to WO 3 described above.
- the value of x/y indicating the added amount of the element M is 0.001 or more as described above, a particularly sufficient amount of free electrons is generated in the composite tungsten oxide, and a high infrared absorption effect can be obtained.
- the amount of the element M added increases, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is saturated when the value of x/y is about 1.
- the value of x/y is 1 or less, it is possible to avoid generation of an impurity phase in the infrared absorbing particles containing the composite tungsten oxide, which is preferable.
- the element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au. , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be. , Hf, Os, Bi, and I are preferably selected.
- the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, More preferably, it is at least one element selected from V, Mo, Ta, and Re.
- the element M is selected from alkali metal, alkaline earth metal element, transition metal element, 4B group element and 5B group element. More preferably, it is one or more selected elements.
- the infrared absorption particles containing the composite tungsten oxide have improved transmission of light in the visible light region and improved absorption of light in the infrared region. This will be described with reference to FIG. 1, which is a schematic plan view of the crystal structure of this hexagonal crystal.
- FIG. 1 shows a projection view of a crystal structure of a composite tungsten oxide having a hexagonal crystal structure as viewed from the (001) direction, and a unit cell 10 is shown by a dotted line.
- FIG. 1 six octahedrons 11 formed of WO 6 units are aggregated to form a hexagonal void 12, and an element 121, which is the element M, is arranged in the void 12 to form one unit. And a large number of these single units are assembled to form a hexagonal crystal structure.
- the composite tungsten oxide contains the unit structure described with reference to FIG.
- the composite tungsten oxide may be crystalline or amorphous.
- the hexagonal crystal is likely to be formed.
- elements selected from Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe and Sn are added as the element M, a hexagonal crystal is easily formed.
- other elements may be used as long as the above-mentioned element M exists in the hexagonal void formed by the WO 6 unit, and the elements are not limited to the above-mentioned elements.
- the addition amount of the element M is preferably 0.2 or more and 0.5 or less in the value of x/y in the above-described general formula, 0.33 is more preferable.
- the value of x/y is 0.33, it is considered that the element M described above is arranged in all the hexagonal voids.
- infrared absorption particles containing tetragonal and cubic composite tungsten oxide also have sufficiently effective infrared absorption characteristics.
- the absorption position in the infrared region tends to change depending on the crystal structure, and the absorption position tends to move to the long wavelength side in the order of cubic crystal ⁇ tetragonal crystal ⁇ hexagonal crystal.
- incidental light absorption in the visible light region is small in the order of hexagonal crystal, tetragonal crystal, and cubic crystal. Therefore, it is preferable to use the hexagonal composite tungsten oxide for the purpose of transmitting the light in the visible light region more and blocking the light in the infrared region more.
- the tendency of the optical characteristics described here is only a rough tendency and changes depending on the type of the added element, the added amount, and the oxygen amount, and the present invention is not limited to this.
- Infrared absorbing particles containing tungsten oxide or composite tungsten oxide largely absorb light in the near-infrared region, especially in the wavelength range of about 1000 nm, so that the transmitted color tone is often blue to green.
- the dispersed particle size of the infrared absorbing particles can be selected depending on the purpose of use.
- the infrared absorbing particles when used for applications where transparency is desired to be maintained, preferably have a dispersed particle size of 800 nm or less. This is because particles having a dispersed particle diameter of 800 nm or less do not completely block light due to scattering, maintain visibility in the visible light region, and at the same time efficiently retain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider reduction of scattering by particles.
- the dispersed particle size is preferably 200 nm or less, more preferably 100 nm or less. This is because if the dispersed particle size of the particles is small, the scattering of light in the visible light region of wavelength 400 nm or more and 780 nm or less due to geometrical scattering or Mie scattering is reduced, so that the infrared absorbing film becomes like frosted glass, It is possible to avoid the loss of clear transparency. That is, when the dispersed particle diameter is 200 nm or less, the above geometrical scattering or Mie scattering is reduced, and a Rayleigh scattering region is formed. This is because in the Rayleigh scattering region, the scattered light is reduced in proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased.
- the dispersed particle size is 100 nm or less, scattered light becomes extremely small, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small.
- the lower limit of the dispersed particle size of the infrared absorbing particles is not particularly limited, but for example, the dispersed particle size is preferably 1 nm or more because it can be easily manufactured industrially.
- the infrared absorbing particle dispersion in which the infrared absorbing particles are dispersed in the medium may have a visible light transmittance of 85% or less and a haze of 30% or less. it can.
- the haze By setting the haze to 30% or less, it is possible to prevent the infrared absorbing particle dispersion from becoming a frosted glass and obtain particularly clear transparency.
- the dispersed particle size of the infrared absorbing particles can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd., which uses the dynamic light scattering method as a principle.
- the crystallite diameter of the infrared absorbing particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and 10 nm or more and 70 nm or less. More preferable.
- the measurement of the crystallite diameter the measurement of the X-ray diffraction pattern by the powder X-ray diffraction method ( ⁇ -2 ⁇ method) and the analysis by the Rietveld method can be used.
- the X-ray diffraction pattern can be measured using, for example, a powder X-ray diffractometer "X'Pert-PRO/MPD" manufactured by Spectris KK PAnalytical.
- the dispersant is used for the purpose of hydrophobizing the surface of the infrared absorbing particles.
- the dispersant can be selected according to the dispersion system which is a combination of the infrared absorbing particles, the dispersion medium, the coating resin raw material and the like. Among them, a dispersant having at least one selected from an amino group, a hydroxyl group, a carboxyl group, a sulfo group, a phospho group and an epoxy group as a functional group can be preferably used.
- the infrared absorbing particles are tungsten oxide or composite tungsten oxide, the dispersant more preferably has an amino group as a functional group.
- the dispersant more preferably has an amino group as a functional group as described above, that is, an amine compound. Further, the amine compound is more preferably a tertiary amine.
- the dispersant since the dispersant is used for the purpose of hydrophobizing the surface of the infrared absorbing particles, it is preferably a polymer material. Therefore, the dispersant preferably has, for example, one or more kinds selected from a long-chain alkyl group and a benzene ring, and styrene which is also usable as a coating resin raw material in the side chain and methacrylic acid 2- which is a tertiary amine. A polymer dispersant having a (dimethylamino)ethyl copolymer can be more preferably used.
- the long-chain alkyl group preferably has 8 or more carbon atoms. Note that, for example, a dispersant that is a polymer material and an amine compound can also be used.
- the amount of the dispersant added is not particularly limited and can be arbitrarily selected.
- the suitable addition amount of the dispersant can be selected according to the types of the dispersant and the infrared absorbing particles, the specific surface area of the infrared absorbing particles, and the like.
- the addition amount of the dispersant is more preferably 10 parts by mass or more and 100 parts by mass or less, and further preferably 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the infrared absorbing particles.
- the dispersion medium may be any one that can disperse the infrared absorbing particles and the dispersant described above to form a dispersion liquid, and for example, various organic compounds can be used.
- the dispersion medium for example, one or more selected from aromatic hydrocarbons such as toluene and xylene can be preferably used.
- the dispersion liquid can be prepared by mixing the infrared absorbing particles, the dispersant, and the dispersion medium, but the dispersion particle diameter of the infrared absorbing particles is reduced and the dispersion liquid is uniformly distributed in the dispersion liquid. In order to disperse the particles, it is preferable to pulverize the infrared absorbing particles at the time of mixing.
- the mixing means used when the infrared absorbing particles, the dispersant, and the dispersion medium are mixed and pulverized is not particularly limited, but for example, one or more kinds selected from a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer and the like. Can be used.
- a medium stirring mill such as a bead mill, a ball mill, a sand mill or a paint shaker, which uses a medium medium such as beads, balls or Ottawa sand.
- dispersion medium reduction step In the dispersion medium reduction step, the dispersion medium can be evaporated and dried from the dispersion liquid.
- the dispersion medium can be sufficiently evaporated from the dispersion liquid to collect the infrared absorbing particles.
- the specific means for evaporating the dispersion medium is not particularly limited, but, for example, a dryer such as an oven, a vacuum fluidized dryer such as an evaporator or a vacuum crusher, a spray dryer such as a spray dryer may be used. it can.
- the degree of evaporating the dispersion medium is not particularly limited, but it is preferable that the content ratio thereof can be sufficiently reduced so that powdery infrared absorbing particles can be obtained after the dispersion medium reduction step, for example.
- the dispersion medium By evaporating the dispersion medium, it is possible to obtain infrared absorbing particles in which a dispersant is arranged around the infrared absorbing particles and the surface is hydrophobized. Therefore, it becomes possible to enhance the adhesion between the hydrophobically treated infrared absorbing particles and the coating resin in which the coating resin raw material is polymerized, and at least the surface of the infrared absorbing particles is subjected to the polymerization step and the like described later. It becomes possible to dispose the coating resin in part.
- Raw Material Mixture Preparation Step In the raw material mixture preparation step, the infrared absorbing particles recovered after the dispersion medium reduction step, the coating resin raw material, the organic solvent, the emulsifier, the water, and the polymerization initiator are mixed. A raw material mixed solution can be prepared.
- the infrared absorbing particles recovered after the dispersion medium reducing step may be the dispersant-containing infrared absorbing particles by adhering the dispersant supplied in the dispersion liquid preparing step to the surface of the particles. Therefore, when the dispersant is attached to the infrared absorbing particles in this way, in the raw material mixture preparing step, use the dispersant-containing infrared absorbing particles collected after the dispersion medium reducing step as the infrared absorbing particles. become.
- (A) Coating Resin Raw Material The coating resin raw material is polymerized in the polymerization step described below to become a coating resin arranged on at least a part of the surface of the infrared absorbing particles. Therefore, various monomers that can form a desired coating resin by polymerization can be selected as the coating resin raw material.
- the coating resin after polymerization is not particularly limited, and may be, for example, one or more kinds of resin selected from a thermoplastic resin, a thermosetting resin, a photocuring resin and the like.
- thermoplastic resin for example, polyester resin, polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, vinyl chloride resin, olefin resin, fluorine resin, polyvinyl acetate resin, thermoplastic polyurethane resin, acrylonitrile butadiene styrene resin, polyvinyl resin Examples thereof include acetal resin, acrylonitrile/styrene copolymer resin, ethylene/vinyl acetate copolymer resin and the like.
- thermosetting resin examples include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyurethane resin, polyimide resin and silicone resin.
- the photo-curable resin may be, for example, a resin that is cured by irradiation with any one of ultraviolet rays, visible rays, and infrared rays.
- polyester resin polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, vinyl chloride resin, olefin resin, fluororesin, polyvinyl acetate resin, polyurethane resin, acrylonitrile butadiene styrene resin, polyvinyl acetal resin, acrylonitrile - contains at least one selected from styrene copolymer resin, ethylene-vinyl acetate copolymer resin, phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, and silicone resin.
- the polyurethane resin either thermoplastic polyurethane or thermosetting polyurethane can be used.
- a photocurable resin can also be preferably used, and as the photocurable resin, a resin which is cured by irradiation with any one of ultraviolet rays, visible rays, and infrared rays as described above is preferably used. be able to.
- the coating resin is preferably a resin to which the mini-emulsion polymerization method can be applied, and more preferably contains a polystyrene resin, for example.
- the coating resin is polystyrene
- styrene can be used as the coating resin raw material.
- Organic solvent is also not particularly limited, but may be any water-insoluble solvent and is not particularly limited. Among them, those having a low molecular weight are preferable, for example, long-chain alkyl compounds such as hexadecane, dodecyl methacrylate, stearyl methacrylate, and the like, alkyl moieties having long-chain alkyl methacrylates, higher alcohols such as cetyl alcohol, olive oil, etc. One or more kinds selected from the oils, and the like.
- Emulsifier that is, the surfactant may be any of cationic, anionic, nonionic and the like, and is not particularly limited.
- cationic emulsifiers examples include alkylamine salts and quaternary ammonium salts.
- anionic emulsifier examples include acid salt or ester salt.
- nonionic emulsifiers include various esters, various ethers, various ester ethers, and alkanolamides.
- the emulsifier for example, one or more selected from the above materials can be used.
- a cationic emulsifying agent that is, a surfactant showing a cationic property, from the viewpoint that the infrared absorbing particles particularly easily form the organic-inorganic hybrid infrared absorbing particles.
- a cationic compound selected from dodecyltrimethylammonium chloride (DTAC), cetyltrimethylammonium chloride (CTAC), etc. as the emulsifier.
- DTAC dodecyltrimethylammonium chloride
- CAC cetyltrimethylammonium chloride
- the emulsifier can be added as an aqueous solution, for example, by adding it to water to be added at the same time. At this time, it is preferable to add it as an aqueous solution adjusted to have a concentration of 1 to 10 times the critical micelle concentration (CMC).
- CMC critical micelle concentration
- radical polymerization initiators examples include azo compounds, dihalogens, organic peroxides and the like. Further, a redox initiator in which an oxidizing agent and a reducing agent are combined, such as hydrogen peroxide and iron (II) salt, persulfate salt and sodium bisulfite, and the like can also be mentioned.
- ionic polymerization initiator examples include a nucleophile such as n-butyllithium, an electrophile such as a protonic acid, a Lewis acid, a halogen molecule and a carbocation.
- polymerization initiator examples include 2,2′-azobisisobutyronitrile (AIBN), potassium peroxodisulfate (KPS), 2,2′-azobis(2-methylpropionamidine) dihydrochloride (V-50). ), 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamidine) (VA-086) and the like can be preferably used.
- AIBN 2,2′-azobisisobutyronitrile
- KPS potassium peroxodisulfate
- V-50 2,2′-azobis(2-methylpropionamidine) dihydrochloride
- VA-086 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamidine)
- the polymerization initiator can be added to the organic phase or the aqueous phase depending on the kind thereof.
- AIBN 2,2′-azobisisobutyronitrile
- KPS Potassium peroxodisulfate
- V-50 2,2′-azobis(2-methylpropionamidine) dihydrochloride
- the infrared absorbing particles recovered after the dispersion medium reduction step, the coating resin raw material, the organic solvent, the emulsifier, water, and the polymerization initiator may be mixed to prepare the raw material mixture. .. Therefore, the preparation procedure of the raw material mixed solution is not particularly limited, but for example, a mixed solution containing an emulsifier can be prepared in advance as an aqueous phase. Further, as the organic phase, a mixed liquid in which the coating resin raw material and the infrared absorbing particles recovered after the dispersion medium reducing step are dispersed in an organic solvent can be prepared.
- the polymerization initiator can be added to the aqueous phase or the organic phase depending on the type of the polymerization initiator used as described above.
- the raw material mixture can be prepared by adding and mixing the organic phase to the aqueous phase.
- the organic phase is added to the water phase and then sufficiently stirred so that the coating resin can be more uniformly arranged on the surface of the infrared absorbing particles. That is, the raw material mixed liquid preparing step, in addition to the infrared absorbing particles recovered after the dispersion medium reducing step, the coating resin raw material, the organic solvent, the emulsifier, water, in addition to the mixing step of mixing the polymerization initiator, It is preferable to further include a stirring step of stirring the obtained mixed liquid.
- stirring can be performed using a stirrer, for example.
- the degree of stirring is not particularly limited, but for example, it is preferable to carry out the stirring so that the infrared absorbing particles included in the coating resin raw material are dispersed in the aqueous phase to form oil-in-water droplets. ..
- the addition amount of the polymerization initiator is not particularly limited and can be arbitrarily selected.
- the addition amount of the polymerization initiator can be selected according to the types of the coating resin raw material and the polymerization initiator, the size of oil droplets as a mini-emulsion, the ratio of the coating resin raw material and the infrared absorbing particles, and the like.
- the addition amount of the polymerization initiator is 0.01 mol% or more and 1000 mol% or less with respect to the coating resin raw material, it is easy to obtain the organic-inorganic hybrid infrared absorbing particles in which the infrared absorbing particles are sufficiently covered with the coating resin. Therefore, it is preferable.
- the addition amount of the polymerization initiator is more preferably 0.1 mol% or more and 200 mol% or less, and further preferably 0.2 mol% or more and 100 mol% or less with respect to the coating resin raw material.
- the stirring step the raw material mixed solution obtained in the raw material mixed solution preparing step can be stirred while being cooled.
- the degree of stirring in the stirring process is not particularly limited and can be arbitrarily selected.
- stirring is performed so as to form a mini-emulsion having a size of oil-in-water that is an O/W type emulsion in which infrared absorbing particles included in a coating resin raw material are dispersed in an aqueous phase, that is, a diameter of 50 nm or more and 500 nm or less. It is preferable to carry out.
- Mini-emulsion is obtained by adding a substance that is almost insoluble in water, namely hydrophob, to the organic phase and applying strong shearing force.
- hydrophob for example, the organic solvent described above in the raw material mixture preparation step described above can be mentioned.
- a strong shearing force for example, a method of applying ultrasonic vibration to the raw material mixture by a homogenizer or the like can be mentioned.
- the stirring step it is preferable to perform stirring while cooling the raw material mixed solution as described above. This is because by cooling the raw material mixed liquid, it is possible to form a mini-emulsion while suppressing the progress of the polymerization reaction.
- the degree to which the raw material mixture is cooled is not particularly limited, but it is preferable to cool the raw material mixed solution by using a refrigerant at 0° C. or lower in an ice bath or the like.
- a polymerization reaction of the coating resin raw material can be performed after deoxidation treatment for reducing the amount of oxygen in the raw material mixed liquid.
- the coating resin raw material can be polymerized to place the coating resin on at least a part of the surface of the infrared absorbing particles.
- the conditions in the polymerization process are not particularly limited, but deoxidation treatment can be performed to reduce the amount of oxygen in the raw material mixture before starting the polymerization.
- the specific method of the deoxidation treatment is not particularly limited, and examples thereof include a method of performing ultrasonic irradiation and a method of blowing an inert gas into the raw material mixed solution.
- the specific conditions for carrying out the polymerization reaction are not particularly limited because they can be arbitrarily selected according to the coating resin raw material added to the raw material mixed solution, and for example, heating the raw material mixed solution.
- the polymerization reaction can be advanced by irradiating with light having a predetermined wavelength.
- an organic-inorganic hybrid infrared absorbing particle of the present embodiment According to the method for producing an organic-inorganic hybrid infrared absorbing particle of the present embodiment described above, it has been difficult in the past to dispose an organic material such as a resin on at least a part of the surface of the infrared-absorbing particle, and the organic-inorganic hybrid Infrared absorbing particles can be obtained. Therefore, even when exposed to a high temperature environment of chemicals such as acids or alkalis, it is possible to prevent the infrared absorbing particles from directly contacting chemical components such as acids or alkalis, excellent chemical resistance characteristics, and infrared absorption characteristics deteriorate. Can be suppressed. [Organic-inorganic hybrid infrared absorbing particles] The organic-inorganic hybrid infrared absorbing particles of this embodiment will be described. The organic-inorganic hybrid infrared absorbing particles of the present embodiment can be manufactured by the above-described method for manufacturing organic-inorganic hybrid infrared absorbing particles. Therefore
- the organic-inorganic hybrid infrared absorbing particles of the present embodiment can have infrared absorbing particles and a coating resin that covers at least a part of the surface of the infrared absorbing particles.
- the organic-inorganic hybrid infrared absorbing particles of the present embodiment it is possible to suppress the deterioration of the infrared absorbing characteristics by being excellent in the chemical resistance characteristics.
- the infrared absorbing particles since it has already been described in the manufacturing method of the organic-inorganic hybrid infrared absorbing particles, description thereof will be omitted here, for example, it is preferable to use infrared absorbing particles containing various materials containing free electrons, Infrared absorbing particles containing various inorganic materials containing free electrons can be more preferably used.
- the infrared absorbing particles include, for example, a tungsten oxide represented by the general formula W y O z (W: tungsten, O: oxygen, 2.2 ⁇ z/y ⁇ 2.999), and General formula M x W y O z (element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt.
- the coating resin has already been described in the method for producing the organic-inorganic hybrid infrared absorbing particles, and thus the description thereof will be omitted here.
- polyester resin polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, vinyl chloride resin, olefin resin, fluororesin, polyvinyl acetate resin, polyurethane resin, acrylonitrile butadiene styrene resin, polyvinyl acetal resin, acrylonitrile - contains at least one selected from styrene copolymer resin, ethylene-vinyl acetate copolymer resin, phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyimide resin, and silicone resin.
- the polyurethane resin either thermoplastic polyurethane or thermosetting polyurethane can be used.
- a photocurable resin can also be preferably used, and as the photocurable resin, a resin which is cured by irradiation with any one of ultraviolet rays, visible rays, and infrared rays as described above is preferably used. be able to.
- the coating resin is preferably a resin to which the mini-emulsion polymerization method can be applied, and more preferably contains a polystyrene resin, for example.
- the coating resin which is an organic material, is disposed on at least a part of the surface of the infrared absorbing particles, which has been difficult in the past. Therefore, even when exposed to a high temperature chemical environment such as acid or alkali, since it is possible to suppress the infrared absorbing particles from directly contacting the chemical components such as acid or alkali, excellent chemical resistance characteristics, infrared absorption characteristics decrease Can be suppressed.
- an organic-inorganic hybrid infrared absorbing particle dispersion can be obtained by dispersing the particles in an appropriate medium. That is, the organic-inorganic hybrid infrared absorbing particle dispersion of the present embodiment can have the above-mentioned organic-inorganic hybrid infrared absorbing particles and a medium, and can have a form in which the particles are dispersed in the medium.
- UV curable resin thermosetting resin, electron beam curable resin, room temperature curable resin, thermoplastic resin, etc.
- polyethylene resin polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluororesin, polycarbonate resin, acrylic resin , And polyvinyl butyral resin.
- resins may be used alone or in combination.
- glass can be used instead of resin.
- the above dispersion can be applied to various base materials for use. Further, it is also possible to use the above dispersion alone or as a base material.
- organic-inorganic hybrid infrared absorbing particles of the present embodiment are covered with a resin even when exposed to the outdoors such as being applied to windows, building materials, outer walls of buildings, materials for agriculture, forestry and fisheries, etc. Therefore, it is difficult for water or the like to permeate the organic-inorganic hybrid infrared absorbing particles, and the alkali and acid components are not introduced by the water, so that the infrared absorbing characteristics of the infrared absorbing particles can be prevented from being deteriorated.
- the organic-inorganic hybrid infrared absorbing particles of the present embodiment by incorporating or kneading fibers such as clothes, structures such as outdoor windows and outer walls of buildings, materials of the agriculture, forestry and fisheries industry, etc. It can also be used for infrared shielding by infrared absorption and photothermal conversion by infrared absorption.
- Example 1 Organic-inorganic hybrid infrared absorbing particles were manufactured by the following procedure and evaluated. (Dispersion liquid preparation process) In the dispersion liquid preparation step, a dispersion liquid containing infrared absorbing particles, a dispersant, and a dispersion medium was prepared.
- a composite tungsten oxide powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) containing ⁇ z ⁇ 3.0) was prepared.
- a polymer dispersant that is a copolymer of styrene and 2-(dimethylamino)ethyl methacrylate was prepared.
- toluene was prepared as the dispersion medium.
- the mixed liquid obtained by mixing 10% by mass of the infrared absorbing particles, 3% by mass of the dispersant, and 87% by mass of the dispersion medium was loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads.
- the mixture was pulverized and dispersed for 10 hours to obtain a dispersion liquid of Cs 0.33 WO z particles according to Example 1.
- Toluene as a dispersion medium was removed from the dispersion liquid of Cs 0.33 WO z particles obtained in the dispersion liquid preparation step using an evaporator to collect infrared absorbing particles.
- the collected infrared absorbing particles become a dry powder of Cs 0.33 WO z particles containing a polymer dispersant. That is, the recovered infrared absorbing particles are the dispersant-containing infrared absorbing particles with the dispersant supplied in the dispersion liquid preparation step attached to the surface of the particles.
- the crystallite diameter of the collected infrared absorbing particles that is, Cs 0.33 WO z particles, was 16 nm.
- an X-ray diffraction pattern ( ⁇ -2 ⁇ method) is used to obtain an X-ray diffraction pattern by a powder X-ray diffractometer (X'Pert-PRO/MPD manufactured by Spectris Co., Ltd. PANalytical). It was measured. Then, the crystal structure contained in the infrared absorbing particles was specified from the obtained X-ray diffraction pattern, and the crystallite diameter was calculated using the Rietveld method.
- dodecyltrimethylammonium chloride which is an emulsifier
- water was mixed with water to form 10 g of an aqueous phase.
- dodecyltrimethylammonium chloride as an emulsifier was added to water so that the concentration was 1.5 times the critical micelle concentration.
- the raw material mixture was prepared by adding the organic phase to the aqueous phase.
- the raw material mixed solution prepared in the raw material mixed solution preparing step was irradiated with high-power ultrasonic waves for 15 minutes while being cooled in an ice bath to obtain a mini-emulsion.
- Polymerization process After the stirring step, the raw material mixed solution was deoxygenated by bubbling nitrogen for 15 minutes in an ice bath.
- the obtained dispersion liquid containing organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was performed.
- the TEM image is shown in FIG. 2A. From the TEM image, the particles 21 containing the composite tungsten oxide that appears in black as infrared absorbing particles are included in the polystyrene coating 22 that appears in gray as the coating resin to form organic-inorganic hybrid infrared absorbing particles 23. It was confirmed.
- FIG. 2B shows the results obtained by diluting the dispersion liquid containing the organic-inorganic hybrid infrared absorbing particles after the alkali resistance test, transferring the diluted dispersion liquid to a microgrid for TEM observation, and performing TEM observation of the transferred product.
- the particles 21 containing the composite tungsten oxide that appears in black as infrared absorbing particles are included in the polystyrene coating 22 that appears in gray as the coating resin, and It was confirmed that the hybrid infrared absorbing particles 23 were formed.
- Example 2 Example 2 was repeated in the same manner as in Example 1 except that the addition amount of the polymerization initiator 2,2′-azobisisobutyronitrile was changed to 2.0 mol% with respect to styrene.
- the organic-inorganic hybrid infrared absorbing particle dispersion liquid was obtained.
- the obtained dispersion liquid containing the organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was carried out.
- the TEM image is shown in FIG. From the TEM image, it was confirmed that the particles 31 containing the composite tungsten oxide as the infrared absorbing particles were included in the coating film 32 of polystyrene as the coating resin to form the organic-inorganic hybrid infrared absorbing particles 33.
- the micro grid 34 is also shown in FIG. 3, this does not constitute an organic-inorganic hybrid infrared absorbing particle.
- Example 3 As a polymerization initiator, 2,2'-azobis(2-methylpropionamidine)dihydrochloride (V-50) was added to styrene instead of 0.5 mol% of 2,2'-azobisisobutyronitrile.
- V-50 2,2'-azobis(2-methylpropionamidine)dihydrochloride
- the organic-inorganic hybrid infrared absorbing particle dispersion liquid according to Example 3 was obtained in the same manner as in Example 1 except that 0.5 mol% was used. In this case, the polymerization initiator was added to the aqueous phase.
- the obtained dispersion liquid containing organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was performed.
- the TEM image is shown in FIG. From the TEM image, it was confirmed that the particles 41 containing the composite tungsten oxide as the infrared absorbing particles were included in the coating film 42 of polystyrene as the coating resin to form the organic-inorganic hybrid infrared absorbing particles 43.
- the micro grid 44 is also shown in FIG. 4, this does not constitute an organic-inorganic hybrid infrared absorbing particle.
- the obtained organic-inorganic hybrid infrared absorbing particle dispersion liquid was diluted 50 times with pure water and the optical characteristics were measured. As a result, the transmittance of light having a wavelength of 550 nm in the visible light region was 29%, and that of light having a wavelength of 1000 nm was measured. The transmittance was 50%, and the transmittance of light having a wavelength of 1300 nm was 49%.
- organic-inorganic hybrid infrared absorbing particle dispersion liquid 1 g was added to 4 g of a 0.01 mol/L sodium hydroxide solution kept at 50° C., and the mixture was stirred for 60 minutes to conduct an alkali resistance test.
- the organic-inorganic hybrid infrared absorbing particle dispersion liquid after the alkali resistance test was diluted 10 times with pure water to the same concentration as that measured before the alkali resistance test, and the optical characteristics were measured.
- the light transmittance was 26%, the light transmittance at a wavelength of 1000 nm was 52%, and the light transmittance at a wavelength of 1300 nm was 50%, confirming that the infrared absorption characteristics were retained.
- the optical characteristics of the organic-inorganic hybrid infrared absorbing particle dispersion liquid are as follows: The diluted organic-inorganic hybrid infrared absorbing particle dispersion liquid is put in a glass cell for measurement with an optical path of 10 mm and a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.) is used. Was measured using. The incident direction of the light of the spectrophotometer was perpendicular to the measuring glass cell. In addition, a blank liquid in which only pure water as a main solvent was put in the measurement glass cell was used as a baseline of light transmittance.
- Example 4 Example 3 except that the addition amount of the polymerization initiator 2′-azobis(2-methylpropionamidine)dihydrochloride (V-50) was changed to 2.0 mol% with respect to styrene.
- An organic-inorganic hybrid infrared absorbing particle dispersion liquid according to Example 4 was obtained in the same manner as in.
- the obtained dispersion liquid containing organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was performed.
- the TEM image is shown in FIG. 5A. From the TEM image, it was confirmed that the particles 51 containing the composite tungsten oxide as the infrared absorbing particles were included in the polystyrene coating 52 as the coating resin to form the organic-inorganic hybrid infrared absorbing particles 53.
- the micro grid 54 is also shown in FIG. 5A, this does not constitute an organic-inorganic hybrid infrared absorbing particle.
- FIG. 5B shows the results of TEM observation of the transferred product by diluting the dispersion liquid containing the organic-inorganic hybrid infrared absorbing particles after the alkali resistance test, transferring the diluted liquid to a TEM observation microgrid.
- the particles 51 containing the composite tungsten oxide that appears in black as infrared absorbing particles are encapsulated in the polystyrene coating 52 that appears in gray as the coating resin, and It was confirmed that the hybrid infrared absorbing particles 53 were formed.
- the micro grid 54 is also shown, but this does not constitute an organic-inorganic hybrid infrared absorbing particle.
- Example 5 When cetyl trimethyl ammonium chloride is used as an emulsifier, and when the emulsifier and water are mixed to form 10 g of an aqueous phase, the emulsifier cetyl trimethyl ammonium chloride is added to water so that the concentration becomes 6.0 times the critical micelle concentration. Was added.
- An organic-inorganic hybrid infrared absorbing particle dispersion liquid according to Example 5 was obtained in the same manner as in Example 4 except for the above points.
- the obtained dispersion liquid containing organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was performed.
- the TEM image is shown in FIG. From the TEM image, it was confirmed that the particles 61 containing the composite tungsten oxide as the infrared absorbing particles were included in the polystyrene coating 62 as the coating resin to form the organic-inorganic hybrid infrared absorbing particles 63.
- the micro grid 64 is also shown in FIG. 6, this does not constitute an organic-inorganic hybrid infrared absorbing particle.
- Example 6 As the polymerization initiator, 2,2′-azobis(2-methyl-N-(2-hydroxyethyl)propionamidine) (VA-086) was used instead of 2,2′-azobis(2-methylpropionamidine)dihydrochloride. ) was used in the same manner as in Example 3 except that 0.5 mol% of styrene was used, to obtain an organic-inorganic hybrid infrared absorbing particle dispersion liquid according to Example 6.
- the obtained dispersion liquid containing the organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was carried out.
- the TEM image is shown in FIG. 7. From the TEM image, it was confirmed that the particles 71 containing the composite tungsten oxide as the infrared absorbing particles were included in the polystyrene coating 72 as the coating resin to form the organic-inorganic hybrid infrared absorbing particles 73.
- Example 7 Organic-inorganic hybrid infrared absorbing particles according to Example 7 in the same manner as in Example 5, except that a mixture of 0.8 g of styrene and 0.2 g of divinylbenzene was used as the coating resin raw material instead of 1.0 g of styrene. A dispersion was obtained.
- the obtained dispersion liquid containing the organic-inorganic hybrid infrared absorbing particles was diluted, transferred to a microgrid for TEM observation, and TEM observation of the transferred product was carried out.
- the TEM image is shown in FIG. From the TEM image, the particles 81 containing the composite tungsten oxide which is an infrared absorbing particle are included in the coating film 82 of poly(styrene-divinylbenzene) which is a coating resin to form the organic-inorganic hybrid infrared absorbing particles 83. It was confirmed.
- a dispersion liquid containing infrared absorbing particles and a dispersion medium was prepared.
- a composite tungsten oxide powder (YM-01 manufactured by Sumitomo Metal Mining Co., Ltd.) containing ⁇ z ⁇ 3.0) was prepared.
- Pure water as a dispersion medium was removed from the dispersion liquid of Cs 0.33 WO z particles obtained in the raw material mixed liquid preparation step using an evaporator to collect infrared absorbing particles.
- the collected infrared absorbing particles become a dry powder of Cs 0.33 WO z particles.
- the crystallite diameter of the collected infrared absorbing particles that is, Cs 0.33 WO z particles, was 16 nm.
- an X-ray diffraction pattern ( ⁇ -2 ⁇ method) was used to obtain an X-ray diffraction pattern by a powder X-ray diffraction device (X'Pert-PRO/MPD manufactured by Spectris PANalytical). It was measured. Then, the crystal structure contained in the infrared absorbing particles was specified from the obtained X-ray diffraction pattern, and the crystallite diameter was calculated using the Rietveld method.
- the dispersion liquid of Cs 0.33 WO z particles according to Comparative Example 1 was directly used as the infrared absorbing particle dispersion liquid according to Comparative Example 1, and the alkali resistance test and the evaluation of the optical properties before and after the alkali resistance test were performed as in Example 3. It was carried out.
- the obtained infrared absorbing particle dispersion liquid was diluted 2500 times with pure water and the optical characteristics were measured.
- the transmittance of light having a wavelength of 550 nm in the visible light region was 96%
- the transmittance of light having a wavelength of 1000 nm was The transmittance of light having a wavelength of 55% and a wavelength of 1300 nm was 44%.
- the infrared absorbing particle dispersion liquid according to Comparative Example 1 was diluted 50 times with pure water, and 1 g of the obtained infrared absorbing particle dispersion liquid was maintained at 50° C. and 4 g of a 0.01 mol/L sodium hydroxide solution. Was added to the mixture and stirred for 60 minutes to carry out an alkali resistance test.
- the infrared absorbing particle dispersion liquid after the alkali resistance test was diluted 10 times with pure water to the same concentration as that measured before the alkali resistance test, and the optical characteristics were measured.
- the transmittance was 99%, the transmittance of light having a wavelength of 1000 nm was 97%, the transmittance of light having a wavelength of 1300 nm was 96%, and it was confirmed that the infrared absorption characteristics were significantly lowered.
- Comparative example 2 An operation of obtaining an organic-inorganic hybrid infrared absorbing particle dispersion liquid according to Comparative Example 2 was performed in the same manner as in Example 3 except that sodium dodecyl sulfate was used instead of dodecyltrimethylammonium chloride as an emulsifier. However, a salt was deposited in the raw material mixture preparation step, a mini-emulsion could not be obtained in the stirring step, and the organic-inorganic hybrid infrared absorbing particles could not be prepared.
- the coating resin was disposed on at least a part of the surface of the infrared absorbing particles. It was confirmed that in the dispersion liquid using the organic-inorganic hybrid infrared absorbing particles of No. 5, there was no significant change in light absorption and transmission characteristics before and after the immersion in the sodium hydroxide solution. Therefore, it was confirmed that the organic-inorganic hybrid infrared absorbing particles of Examples 3 to 5 were excellent in alkali resistance, that is, chemical resistance and infrared absorption characteristics. Although only the alkali resistance test was performed here, these organic-inorganic hybrid infrared absorbing particles also have acid resistance characteristics because the coating resin is disposed on at least a part of the surface of the infrared particles.
- the organic-inorganic hybrid infrared absorbing particles of Examples 1 and 2 and Examples 6 and 7 also have the same chemical resistance property because the coating resin is disposed on at least a part of the surface of the infrared absorbing particles. It can be said that it is excellent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
Description
前記分散液から前記分散媒を蒸発させる分散媒低減工程と、
前記分散媒低減工程後に回収した赤外線吸収粒子と、被覆用樹脂原料と、有機溶媒と、乳化剤と、水と、重合開始剤とを混合し、原料混合液を調製する原料混合液調製工程と、
前記原料混合液を冷却しつつ、攪拌する攪拌工程と、
前記原料混合液中の酸素量を低減する脱酸素処理を行った後、前記被覆用樹脂原料の重合反応を行う重合工程と、を有する有機無機ハイブリッド赤外線吸収粒子の製造方法を提供する。
本発明の発明者らは、耐薬品特性を備えた赤外線吸収粒子とするための方法について、鋭意検討を行った。その結果、赤外線吸収粒子の表面の少なくとも一部に直接樹脂等の有機材料を配置し、有機無機ハイブリッド赤外線吸収粒子とすることで、耐薬品特性を付与できることを見出した。
分散液から分散媒を蒸発させる分散媒低減工程。
分散媒低減工程後に回収した赤外線吸収粒子と、被覆用樹脂原料と、有機溶媒と、乳化剤と、水と、重合開始剤とを混合し、原料混合液を調製する原料混合液調製工程。
原料混合液を冷却しつつ、攪拌する攪拌工程。
原料混合液中の酸素量を低減する脱酸素処理を行った後、被覆用樹脂原料の重合反応を行う重合工程。
(1)分散液調製工程
分散液調製工程では、赤外線吸収粒子と、分散剤と、分散媒とを含む分散液を調製することができる。
(a)赤外線吸収粒子
本実施形態の有機無機ハイブリッド赤外線吸収粒子の製造方法においては、赤外線吸収粒子として、耐薬品特性、例えば耐酸性や耐アルカリ性を高めることが求められる各種赤外線吸収粒子を用いることができる。本実施形態の有機無機ハイブリッド赤外線吸収粒子の製造方法で用いる赤外線吸収粒子としては、例えば自由電子を含有する各種材料を含む赤外線吸収粒子を用いることが好ましく、自由電子を含有する各種無機材料を含む赤外線吸収粒子をより好ましく用いることができる。
(タングステン酸化物)
タングステン酸化物は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記される。
(複合タングステン酸化物)
複合タングステン酸化物は、上述したWO3へ、後述する元素Mを添加したものである。
(b)分散剤
分散剤は、赤外線吸収粒子の表面を疎水化処理する目的で用いられる。分散剤は、赤外線吸収粒子、分散媒、被覆用樹脂原料等の組み合わせである分散系に合わせて選定可能である。中でも、アミノ基、ヒドロキシル基、カルボキシル基、スルホ基、ホスホ基、エポキシ基から選択された1種類以上を官能基として有する分散剤を好適に用いることができる。赤外線吸収粒子がタングステン酸化物や複合タングステン酸化物である場合は、分散剤は、アミノ基を官能基として有することがより好ましい。
(c)分散媒
分散媒は、既述の赤外線吸収粒子、および分散剤を分散し、分散液とすることができるものであれば良く、例えば各種有機化合物を用いることができる。
(2)分散媒低減工程
分散媒低減工程では、分散液から分散媒を蒸発、乾燥させることができる。
(3)原料混合液調製工程
原料混合液調製工程では、分散媒低減工程後に回収した赤外線吸収粒子と、被覆用樹脂原料と、有機溶媒と、乳化剤と、水と、重合開始剤とを混合し、原料混合液を調製することができる。
(a)被覆用樹脂原料
被覆用樹脂原料は、後述する重合工程で重合し、赤外線吸収粒子の表面の少なくとも一部に配置される被覆用樹脂となる。このため、被覆用樹脂原料としては、重合することにより、所望の被覆用樹脂を形成できる各種モノマー等を選択することができる。
(b)有機溶媒
有機溶媒についても特に限定されないが、非水溶性のものであれば何でも良く、特に限定されない。中でも、低分子量であるものが好ましく、例えば、ヘキサデカン等の長鎖アルキル化合物、メタクリル酸ドデシル、メタクリル酸ステアリル等の、アルキル部分が長鎖のメタクリル酸アルキルエステル、セチルアルコール等の高級アルコール、オリーブ油等の油、等から選択された1種類以上が挙げられる。
(c)乳化剤
乳化剤、すなわち界面活性剤については、カチオン性のもの、アニオン性のもの、ノニオン性のもの等のいずれでもよく、特に限定されない。
(d)重合開始剤
重合開始剤としては、ラジカル重合開始剤、イオン重合開始剤等の各種重合開始剤から選択された1種類以上を用いることができ、特に限定されない。
(4)攪拌工程
攪拌工程では、原料混合液調製工程で得られた原料混合液を冷却しつつ、攪拌することができる。
(5)重合工程
重合工程では、原料混合液中の酸素量を低減する脱酸素処理を行った後、被覆用樹脂原料の重合反応を行うことができる。
[有機無機ハイブリッド赤外線吸収粒子]
本実施形態の有機無機ハイブリッド赤外線吸収粒子について説明する。本実施形態の有機無機ハイブリッド赤外線吸収粒子は、既述の有機無機ハイブリッド赤外線吸収粒子の製造方法により製造することができる。このため、既に説明した事項の一部については説明を省略する。
[有機無機ハイブリッド赤外線吸収粒子分散体]
本実施形態の有機無機ハイブリッド赤外線吸収粒子の適用方法としては、該粒子を適宜な媒体中に分散することで有機無機ハイブリッド赤外線吸収粒子分散体を得ることができる。すなわち、本実施形態の有機無機ハイブリッド赤外線吸収粒子分散体は、既述の有機無機ハイブリッド赤外線吸収粒子と、媒体とを有することができ、該粒子を媒体中に分散した形態を有することができる。
本実施形態の有機無機ハイブリッド赤外線吸収粒子は、窓や建材さらには建築物の外壁等や農林水産業の資材等に塗布されるなどして屋外に曝されても、赤外線吸収粒子が樹脂で覆われているので、有機無機ハイブリッド赤外線吸収粒子に水などが浸透し難く、水によりアルカリや酸成分が導かれないので、赤外線吸収粒子の赤外線吸収特性が低下することを抑制できる。そして、本実施形態の有機無機ハイブリッド赤外線吸収粒子を、衣類等の繊維、屋外の窓や建築物の外壁等の構造物、農林水産業の資材に塗布したり又は練り込むなどして組み込むことで、赤外線吸収による赤外線遮蔽や赤外線吸収による光熱変換などに活用することもできる。
[実施例1]
以下の手順により有機無機ハイブリッド赤外線吸収粒子を製造し、その評価を行った。
(分散液調製工程)
分散液調製工程では、赤外線吸収粒子と、分散剤と、分散媒とを含む分散液を調製した。
(分散媒低減工程)
分散液調製工程で得られたCs0.33WOz粒子の分散液からエバポレーターを用いて分散媒のトルエンを除去し、赤外線吸収粒子を回収した。回収した赤外線吸収粒子は、高分子分散剤を含有するCs0.33WOz粒子の乾粉となる。すなわち、回収した赤外線吸収粒子は、その粒子の表面に、分散液調製工程で供給した分散剤が付着し、分散剤含有赤外線吸収粒子となっている。
(原料混合液調製工程)
分散媒低減工程で得られた赤外線吸収粒子0.05gと、被覆用樹脂原料であるスチレン1.0gと、有機溶媒であるヘキサデカン0.065gと、重合開始剤である2,2'-アゾビスイソブチロニトリル0.0079gとを混合し、有機相を形成した。なお、重合開始剤は、スチレンに対して0.5mol%となるように添加した。
(攪拌工程)
原料混合液調製工程で調製した原料混合液に対して、氷浴下で冷却しながら高出力超音波を15分間照射し、ミニエマルションを得た。
(重合工程)
攪拌工程後、原料混合液に対して、氷浴下で窒素バブリングを15分間行い脱酸素処理を行った。
[実施例2]
重合開始剤である2,2'-アゾビスイソブチロニトリルの添加量をスチレンに対して、2.0mol%相当の割合に変更したこと以外は、実施例1と同様にして実施例2に係る有機無機ハイブリッド赤外線吸収粒子分散液を得た。
[実施例3]
重合開始剤として、2,2'-アゾビスイソブチロニトリル0.5mol%相当の代わりに2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V-50)を、スチレンに対して0.5mol%相当の割合で用いたこと以外は、実施例1と同様にして実施例3に係る有機無機ハイブリッド赤外線吸収粒子分散液を得た。なお、この場合、重合開始剤は水相に添加した。
[実施例4]
重合開始剤である2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V-50)の添加量をスチレンに対して、2.0mol%相当の割合に変更したこと以外は、実施例3と同様にして実施例4に係る有機無機ハイブリッド赤外線吸収粒子分散液を得た。
[実施例5]
乳化剤としてセチルトリメチルアンモニウムクロライドを用い、該乳化剤と水とを混合して水相10gを形成する際、臨界ミセル濃度の6.0倍濃度となるように、乳化剤であるセチルトリメチルアンモニウムクロライドを水に添加した。以上の点以外は実施例4と同様にして実施例5に係る有機無機ハイブリッド赤外線吸収粒子分散液を得た。
[実施例6]
重合開始剤として、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩の代わりに2,2'-アゾビス(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミジン)(VA-086)を、スチレンに対して0.5mol%相当の割合で用いたこと以外は、実施例3と同様にして実施例6に係る有機無機ハイブリッド赤外線吸収粒子分散液を得た。
[実施例7]
被覆用樹脂原料として、スチレン1.0gの代わりにスチレン0.8gおよびジビニルベンゼン0.2gの混合物を用いたこと以外は、実施例5と同様にして実施例7に係る有機無機ハイブリッド赤外線吸収粒子分散液を得た。
[比較例1]
分散液調製工程では、赤外線吸収粒子と、分散媒とを含む分散液を調製した。
[比較例2]
乳化剤としてドデシルトリメチルアンモニウムクロライドの代わりに、ドデシル硫酸ナトリウムを用いたこと以外は、実施例3と同様にして比較例2に係る有機無機ハイブリッド赤外線吸収粒子分散液を得る操作を行った。しかし、原料混合液調製工程において塩が析出し、攪拌工程でミニエマルションを得ることができず、有機無機ハイブリッド赤外線吸収粒子を作製することができなかった。
以上の表1に示した有機無機ハイブリッド赤外線吸収粒子分散液の耐アルカリ性試験前後の光学特性の評価の結果から、赤外線吸収粒子の表面の少なくとも一部に被覆用樹脂を配置した、実施例3~5の有機無機ハイブリッド赤外線吸収粒子を用いた分散液では、水酸化ナトリウム溶液に浸漬の前後で光の吸収、透過特性に大きな変化がないことを確認できた。このため、実施例3~5の有機無機ハイブリッド赤外線吸収粒子は、耐アルカリ性、すなわち耐薬品特性に優れ、かつ赤外線吸収特性に優れることを確認できた。ここでは耐アルカリ性試験のみを実施したが、これらの有機無機ハイブリッド赤外線吸収粒子は、赤外線粒子の表面の少なくとも一部に被覆用樹脂が配置されているため、同様に耐酸性特性も備えている。
Claims (17)
- 赤外線吸収粒子と、分散剤と、分散媒とを含む分散液を調製する分散液調製工程と、
前記分散液から前記分散媒を蒸発させる分散媒低減工程と、
前記分散媒低減工程後に回収した赤外線吸収粒子と、被覆用樹脂原料と、有機溶媒と、乳化剤と、水と、重合開始剤とを混合し、原料混合液を調製する原料混合液調製工程と、
前記原料混合液を冷却しつつ、攪拌する攪拌工程と、
前記原料混合液中の酸素量を低減する脱酸素処理を行った後、前記被覆用樹脂原料の重合反応を行う重合工程と、を有する有機無機ハイブリッド赤外線吸収粒子の製造方法。 - 前記分散剤がアミン化合物である請求項1に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記アミン化合物が三級アミンである請求項2に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記分散剤が長鎖アルキル基およびベンゼン環から選択された1種類以上を有する請求項1に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記分散剤が長鎖アルキル基およびベンゼン環から選択された1種類以上を有する請求項2に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記分散剤が長鎖アルキル基およびベンゼン環から選択された1種類以上を有する請求項3に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記乳化剤が、カチオン性を示す界面活性剤である請求項1に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記乳化剤が、カチオン性を示す界面活性剤である請求項2に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記乳化剤が、カチオン性を示す界面活性剤である請求項3に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記乳化剤が、カチオン性を示す界面活性剤である請求項4に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記乳化剤が、カチオン性を示す界面活性剤である請求項5に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記乳化剤が、カチオン性を示す界面活性剤である請求項6に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 前記赤外線吸収粒子が、一般式WyOz(W:タングステン、O:酸素、2.2≦z/y≦2.999)で表されるタングステン酸化物、および一般式MxWyOz(元素MはH、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択された1種類以上、0.001≦x/y≦1、2.0≦z/y≦3.0)で表される複合タングステン酸化物から選択された1種類以上を含有する請求項1~請求項12のいずれか1項に記載の有機無機ハイブリッド赤外線吸収粒子の製造方法。
- 赤外線吸収粒子と、前記赤外線吸収粒子の表面の少なくとも一部を覆う被覆用樹脂とを有する有機無機ハイブリッド赤外線吸収粒子。
- 前記被覆用樹脂が、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、フッ素樹脂、ポリ酢酸ビニル樹脂、ポリウレタン樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリビニルアセタール樹脂、アクリロニトリル・スチレン共重合体樹脂、エチレン・酢酸ビニル共重合体樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリイミド樹脂、シリコーン樹脂から選択された1種類以上を含有する請求項14に記載の有機無機ハイブリッド赤外線吸収粒子。
- 前記被覆用樹脂が、光硬化樹脂であり、該光硬化樹脂が紫外線、可視光線、赤外線のいずれかの光の照射により硬化する樹脂を含有する請求項14に記載の有機無機ハイブリッド赤外線吸収粒子。
- 前記赤外線吸収粒子が、一般式WyOz(W:タングステン、O:酸素、2.2≦z/y≦2.999)で表されるタングステン酸化物、および一般式MxWyOz(元素MはH、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択された1種類以上、0.001≦x/y≦1、2.0≦z/y≦3.0)で表される複合タングステン酸化物から選択された1種類以上を含有する請求項14~請求項16のいずれか1項に記載の有機無機ハイブリッド赤外線吸収粒子。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020561422A JP7361341B2 (ja) | 2018-12-18 | 2019-12-16 | 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子 |
AU2019404697A AU2019404697A1 (en) | 2018-12-18 | 2019-12-16 | Organic-inorganic hybrid infrared beam absorbing particle production method and organic-inorganic hybrid infrared beam absorbing particle |
US17/413,653 US11912878B2 (en) | 2018-12-18 | 2019-12-16 | Method of producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles |
EP19899884.1A EP3901098A4 (en) | 2018-12-18 | 2019-12-16 | PRODUCTION PROCESS FOR ORGANIC-INORGANIC HYBRID INFRARED RAY ABSORPTION PARTICLES AND ORGANIC-INORGANIC HYBRID INFRARED RAY ABSORPTION PARTICLES |
KR1020217017784A KR102690865B1 (ko) | 2018-12-18 | 2019-12-16 | 유기 무기 하이브리드 적외선 흡수 입자 제조 방법, 유기 무기 하이브리드 적외선 흡수 입자 |
CN201980082856.9A CN113195410B (zh) | 2018-12-18 | 2019-12-16 | 有机无机混合红外线吸收颗粒的制造方法和有机无机混合红外线吸收颗粒 |
US18/413,502 US20240376319A1 (en) | 2016-12-18 | 2024-01-16 | Method of Producing Organic-Inorganic Hybrid Infrared Absorbing Particles and Organic-Inorganic Hybrid Infrared Absorbing Particles |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-236796 | 2018-12-18 | ||
JP2018236796 | 2018-12-18 | ||
JP2019094032 | 2019-05-17 | ||
JP2019-094032 | 2019-05-17 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/413,653 A-371-Of-International US11912878B2 (en) | 2018-12-18 | 2019-12-16 | Method of producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles |
US18/413,502 Division US20240376319A1 (en) | 2016-12-18 | 2024-01-16 | Method of Producing Organic-Inorganic Hybrid Infrared Absorbing Particles and Organic-Inorganic Hybrid Infrared Absorbing Particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020129919A1 true WO2020129919A1 (ja) | 2020-06-25 |
Family
ID=71101787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/049252 WO2020129919A1 (ja) | 2016-12-18 | 2019-12-16 | 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11912878B2 (ja) |
EP (1) | EP3901098A4 (ja) |
JP (1) | JP7361341B2 (ja) |
KR (1) | KR102690865B1 (ja) |
CN (1) | CN113195410B (ja) |
AU (1) | AU2019404697A1 (ja) |
WO (1) | WO2020129919A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022219808A1 (ja) * | 2021-04-16 | 2022-10-20 | 住友金属鉱山株式会社 | 赤外線吸収繊維、繊維製品 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113681200B (zh) * | 2021-09-27 | 2023-12-26 | 烟台佳隆纳米产业有限公司 | 铯钨青铜吸热剂及其制备、在透明abs红外焊接中应用 |
JP2023067261A (ja) * | 2021-10-29 | 2023-05-16 | 住友金属鉱山株式会社 | 分子膜、分子膜集積体、赤外線遮蔽膜、および構造体 |
CN117402481B (zh) * | 2023-11-24 | 2024-07-26 | 江苏羿色节能科技有限公司 | 一种玻璃上专用的特种复合防晒隔热膜 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005037932A1 (ja) | 2003-10-20 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子 |
JP2008024902A (ja) * | 2006-07-25 | 2008-02-07 | Sumitomo Metal Mining Co Ltd | 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体 |
JP2011012233A (ja) * | 2009-07-06 | 2011-01-20 | Dowa Electronics Materials Co Ltd | 赤外線遮蔽材料、赤外線遮蔽用塗料、赤外線遮蔽膜、並びに、赤外線遮蔽基材 |
WO2015107939A1 (ja) * | 2014-01-15 | 2015-07-23 | 株式会社クレハ | 近赤外線硬化型組成物およびその用途 |
WO2016052091A1 (ja) * | 2014-10-03 | 2016-04-07 | 富士フイルム株式会社 | 近赤外線吸収組成物、硬化性組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、加工色素および加工色素の製造方法 |
WO2016104375A1 (ja) * | 2014-12-25 | 2016-06-30 | 住友化学株式会社 | 熱線吸収性ランプカバー |
JP2019094032A (ja) | 2017-11-28 | 2019-06-20 | Ntn株式会社 | 転舵機能付ハブユニットおよびこれを備えた車両 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1338482A (zh) * | 2001-09-10 | 2002-03-06 | 何长杰 | 一种用于高分子聚合物的红外线阻隔剂 |
CN1219817C (zh) * | 2003-07-02 | 2005-09-21 | 北京倍爱康生物技术股份有限公司 | 一种超顺磁性聚合物微球的制备方法 |
BRPI0406534B1 (pt) | 2004-03-16 | 2016-04-05 | Sumitomo Metal Mining Co | estrutura laminada para proteção contra radiação solar |
JP4355945B2 (ja) | 2004-11-08 | 2009-11-04 | 住友金属鉱山株式会社 | 近赤外線吸収繊維およびこれを用いた繊維製品 |
JP4853710B2 (ja) | 2006-11-22 | 2012-01-11 | 住友金属鉱山株式会社 | レーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法 |
JP5228376B2 (ja) * | 2007-05-24 | 2013-07-03 | 住友金属鉱山株式会社 | 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 |
CN102070920A (zh) * | 2009-11-23 | 2011-05-25 | 中国科学院福建物质结构研究所 | 一种纳米氧化钛表面处理方法 |
JP5257626B2 (ja) | 2010-07-14 | 2013-08-07 | 住友金属鉱山株式会社 | 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体 |
JP5588847B2 (ja) * | 2010-11-30 | 2014-09-10 | 富士フイルム株式会社 | 重合性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法 |
JP5673466B2 (ja) | 2011-09-15 | 2015-02-18 | 住友金属鉱山株式会社 | 熱線遮蔽膜とその製造方法、および熱線遮蔽合わせ透明基材 |
WO2013187350A1 (ja) | 2012-06-11 | 2013-12-19 | 住友金属鉱山株式会社 | 熱線遮蔽用合わせ構造体 |
KR20150112002A (ko) | 2013-03-14 | 2015-10-06 | 후지필름 가부시키가이샤 | 고체 촬상 소자 및 그 제조 방법, 적외광 커트필터 형성용 경화성 조성물, 카메라 모듈 |
JP6136819B2 (ja) | 2013-09-27 | 2017-05-31 | 住友金属鉱山株式会社 | 熱線遮蔽用合わせ構造体 |
CN104877582B (zh) * | 2014-02-28 | 2017-09-29 | 上海沪正纳米科技有限公司 | 高性能pvb隔热胶膜及其制备方法 |
TW201609923A (zh) | 2014-09-10 | 2016-03-16 | 台虹科技股份有限公司 | 紅外線吸收膜、紅外線吸收膜的製作方法及包含該紅外線吸收膜的相機模組 |
JP2018124300A (ja) * | 2015-06-12 | 2018-08-09 | コニカミノルタ株式会社 | 赤外遮蔽体 |
CN105001583B (zh) * | 2015-07-03 | 2018-02-06 | 福州大学 | 一种有机‑无机复合上转换光致发光薄膜及其制备方法 |
CN106367031B (zh) * | 2015-07-20 | 2019-05-07 | 天津城建大学 | 一种高热导率复合相变微胶囊及其制备方法 |
WO2017026211A1 (ja) * | 2015-08-11 | 2017-02-16 | コニカミノルタ株式会社 | 機能性シート |
TW201715091A (zh) * | 2015-10-30 | 2017-05-01 | Rainbow Pigment Co Ltd | 氧化鎢塑膠色母粒及其製備方法 |
WO2017104854A1 (ja) * | 2015-12-18 | 2017-06-22 | 住友金属鉱山株式会社 | 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法 |
US20170363788A1 (en) * | 2016-06-20 | 2017-12-21 | Sumitomo Metal Mining Co., Ltd. | Heat-ray shielding particle dispersing liquid, heat-ray shielding particle dispersing body, heat-ray shielding laminated transparent substrate and heat-ray shielding transparent substrate |
US20200283586A1 (en) * | 2017-07-24 | 2020-09-10 | Sumitomo Metal Mining Co., Ltd. | Pulverized masterbatch products containing infrared absorbing fine particles, dispersion liquid containing pulverized masterbatch products containing infrared absorbing fine particles, ink containing infrared absorbing material, and anti-counterfeit ink and anti-counterfeit printed matter using them, and method for producing the pulverized masterbatch products containing infrared absorbing fine particles |
CN107573725B (zh) | 2017-08-21 | 2019-07-05 | 福耀玻璃工业集团股份有限公司 | 能够吸收紫外线和红外线的涂布液、玻璃及其制造方法 |
TWI847964B (zh) * | 2017-11-13 | 2024-07-11 | 日商住友金屬礦山股份有限公司 | 長期安定性優異之吸收微粒子分散液及吸收微粒子分散體暨該等之製造方法 |
-
2019
- 2019-12-16 JP JP2020561422A patent/JP7361341B2/ja active Active
- 2019-12-16 US US17/413,653 patent/US11912878B2/en active Active
- 2019-12-16 CN CN201980082856.9A patent/CN113195410B/zh active Active
- 2019-12-16 KR KR1020217017784A patent/KR102690865B1/ko active Active
- 2019-12-16 WO PCT/JP2019/049252 patent/WO2020129919A1/ja unknown
- 2019-12-16 EP EP19899884.1A patent/EP3901098A4/en active Pending
- 2019-12-16 AU AU2019404697A patent/AU2019404697A1/en active Pending
-
2024
- 2024-01-16 US US18/413,502 patent/US20240376319A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005037932A1 (ja) | 2003-10-20 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子 |
JP2008024902A (ja) * | 2006-07-25 | 2008-02-07 | Sumitomo Metal Mining Co Ltd | 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体 |
JP2011012233A (ja) * | 2009-07-06 | 2011-01-20 | Dowa Electronics Materials Co Ltd | 赤外線遮蔽材料、赤外線遮蔽用塗料、赤外線遮蔽膜、並びに、赤外線遮蔽基材 |
WO2015107939A1 (ja) * | 2014-01-15 | 2015-07-23 | 株式会社クレハ | 近赤外線硬化型組成物およびその用途 |
WO2016052091A1 (ja) * | 2014-10-03 | 2016-04-07 | 富士フイルム株式会社 | 近赤外線吸収組成物、硬化性組成物、硬化膜、近赤外線カットフィルタ、固体撮像素子、赤外線センサ、カメラモジュール、加工色素および加工色素の製造方法 |
WO2016104375A1 (ja) * | 2014-12-25 | 2016-06-30 | 住友化学株式会社 | 熱線吸収性ランプカバー |
JP2019094032A (ja) | 2017-11-28 | 2019-06-20 | Ntn株式会社 | 転舵機能付ハブユニットおよびこれを備えた車両 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022219808A1 (ja) * | 2021-04-16 | 2022-10-20 | 住友金属鉱山株式会社 | 赤外線吸収繊維、繊維製品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020129919A1 (ja) | 2021-11-04 |
EP3901098A4 (en) | 2022-03-16 |
US11912878B2 (en) | 2024-02-27 |
AU2019404697A1 (en) | 2021-07-01 |
CN113195410B (zh) | 2023-11-24 |
KR102690865B1 (ko) | 2024-08-05 |
JP7361341B2 (ja) | 2023-10-16 |
US20240376319A1 (en) | 2024-11-14 |
TW202035294A (zh) | 2020-10-01 |
EP3901098A1 (en) | 2021-10-27 |
CN113195410A (zh) | 2021-07-30 |
KR20210102253A (ko) | 2021-08-19 |
US20220049105A1 (en) | 2022-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7361341B2 (ja) | 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子 | |
TWI722334B (zh) | 表面處理紅外線吸收微粒子、表面處理紅外線吸收微粒子粉末、使用該表面處理紅外線吸收微粒子之紅外線吸收微粒子分散液、紅外線吸收微粒子分散體及該等之製造方法 | |
WO2020246299A1 (ja) | 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物 | |
TW201838922A (zh) | 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽膜用塗佈液,暨使用該等之熱射線遮蔽膜、熱射線遮蔽樹脂薄膜、熱射線遮蔽微粒子分散體 | |
US20150072134A1 (en) | Magnesium fluoride particles, method for producing magnesium fluoride particles, dispersion solution of magnesium fluoride particles, method for producing dispersion solution of magnesium fluoride particles, composition for forming low refractive index layer, method for producing composition for forming a low refractive index layer, substrate with low refractive index layer, and method for manufacturing substrate with low refractive index layer | |
JPWO2019155996A1 (ja) | 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体 | |
JP7151712B2 (ja) | 農園芸用覆土フィルムおよびその製造方法 | |
WO2023017826A1 (ja) | 有機無機ハイブリッド赤外線吸収粒子、赤外線吸収粒子分散体、有機無機ハイブリッド赤外線吸収粒子の製造方法 | |
CN116601240B (zh) | 钨系红外线吸收性颜料分散液、染色液、纤维制品和纤维制品的处理方法 | |
WO2022168838A1 (ja) | 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 | |
JP2022118578A (ja) | 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 | |
WO2024090360A1 (ja) | 偽造防止インク用組成物および偽造防止用印刷物 | |
WO2022168837A1 (ja) | 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 | |
JP2019089939A (ja) | 赤外線吸収体 | |
WO2022249730A1 (ja) | フッ化物粒子の分散液、光学膜形成用組成物及び光学膜 | |
JP2022118576A (ja) | 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 | |
JP2022118577A (ja) | 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 | |
TW202130584A (zh) | 近紅外線吸收材料粒子、近紅外線吸收材料粒子分散液、近紅外線吸收材料粒子分散體 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19899884 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020561422 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019404697 Country of ref document: AU Date of ref document: 20191216 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019899884 Country of ref document: EP Effective date: 20210719 |