[go: up one dir, main page]

WO2017104854A1 - 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法 - Google Patents

近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法 Download PDF

Info

Publication number
WO2017104854A1
WO2017104854A1 PCT/JP2016/087799 JP2016087799W WO2017104854A1 WO 2017104854 A1 WO2017104854 A1 WO 2017104854A1 JP 2016087799 W JP2016087799 W JP 2016087799W WO 2017104854 A1 WO2017104854 A1 WO 2017104854A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared shielding
tungsten oxide
composite tungsten
particle dispersion
ultrafine particles
Prior art date
Application number
PCT/JP2016/087799
Other languages
English (en)
French (fr)
Inventor
裕史 常松
長南 武
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to MX2018007490A priority Critical patent/MX2018007490A/es
Priority to CN201680074497.9A priority patent/CN108779381B/zh
Priority to BR112018012405A priority patent/BR112018012405A2/pt
Priority to KR1020187020228A priority patent/KR102620283B1/ko
Priority to MYPI2018000956A priority patent/MY193170A/en
Priority to US16/063,585 priority patent/US11091655B2/en
Priority to JP2017556493A priority patent/JP6922742B2/ja
Priority to EP16875828.2A priority patent/EP3395924B1/en
Publication of WO2017104854A1 publication Critical patent/WO2017104854A1/ja
Priority to IL260089A priority patent/IL260089B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10376Laminated safety glass or glazing containing metal wires
    • B32B17/10403Laminated safety glass or glazing containing metal wires for radiation shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing tungsten, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/74UV-absorbing coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof

Definitions

  • the present invention relates to a near-infrared shielding ultrafine particle dispersion such as an infrared shielding glass and an infrared shielding film having good visible light transmittance and absorbing light in the near-infrared region, and the near-infrared shielding ultrafine particle dispersion.
  • the present invention relates to a solar radiation shielding intermediate film, an infrared shielding laminated structure, and a method for producing a near-infrared shielding ultrafine particle dispersion.
  • near-infrared shielding technology that has good visible light transmittance and lowers solar radiation transmittance while maintaining transparency.
  • near infrared shielding technology using conductive fine particles that are inorganic is superior to other technologies in terms of near infrared shielding properties, low cost, radio wave transmission, and high weather resistance, etc. There are benefits.
  • Patent Document 1 describes a technique that applies the near-infrared shielding characteristics of tin oxide fine powder, and includes a transparent resin containing tin oxide fine powder in a dispersed state and tin oxide fine powder contained in a dispersed state.
  • a near-infrared shielding synthetic resin molded product obtained by laminating a transparent synthetic resin formed into a sheet or film on a transparent synthetic resin substrate has been proposed.
  • Patent Document 2 includes metals such as Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, and Mo, and the metal Technology that applies the near-infrared shielding properties of oxides of the above, nitrides of the metals, sulfides of the metals, dopes of Sb and F to the metals, or mixtures thereof are described in the medium.
  • a laminated glass in which a dispersed intermediate layer is sandwiched has been proposed.
  • the applicant has proposed a technology applying the near-infrared shielding properties of titanium nitride fine particles and lanthanum boride fine particles, and at least one of these is dispersed in a solvent or a medium.
  • a selectively permeable membrane coating solution and a selectively permeable membrane are disclosed.
  • the near infrared shielding structures such as the near infrared shielding synthetic resin molded products disclosed in Patent Documents 1 to 3 are all near infrared rays when high visible light transmittance is required. There existed a problem that a shielding characteristic was not enough and the function as a near-infrared shielding structure was not enough.
  • the visible light transmittance calculated based on JIS R 3106 (in the present invention, When the visible light transmittance is 70%, the solar transmittance calculated based on JIS R 3106 (in the present invention, it may be simply referred to as “sunlight transmittance”). Is over 50%).
  • Patent Document 4 a general formula M x W y O z in Patent Document 4 (where M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe). Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S , Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, 0.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe).
  • a near-infrared shielding dispersion characterized in that it contains any one or more of composite tungsten oxide fine particles having a cubic crystal structure, and the near-infrared shielding material fine particles have a particle diameter of 1 nm to 800 nm. .
  • the near-infrared shielding fine particle dispersion containing the composite tungsten oxide fine particles represented by the general formula M x W y O z exhibits high near-infrared shielding properties and a visible light transmittance of 70.
  • the solar transmittance was improved to less than 50%.
  • the near-infrared shielding fine particle dispersion using composite tungsten oxide fine particles having at least one selected from specific elements such as Cs, Rb, and Tl as the M element and having a hexagonal crystal structure is an excellent near-infrared ray.
  • the visible light transmittance was 70%, the solar radiation transmittance was improved to be less than 37%. Obtaining this result, adding a hard coat process etc. to the said near-infrared shielding fine particle dispersion
  • these applications require high transparency (low haze value) as well as near-infrared shielding properties, so that the particle size of the composite tungsten oxide fine particles is further refined for the purpose of reducing the haze value. Attempts were made to reduce the haze value by miniaturizing these fine particles.
  • Patent Document 5 a slurry obtained by mixing the composite tungsten oxide powder, the solvent, and the dispersing agent manufactured by the same method as the manufacturing method disclosed in Patent Document 4 with yttria-stabilized zirconia beads.
  • a near-infrared shielding fine particle dispersion, a near-infrared shielding dispersion, etc. in which the blue haze phenomenon is suppressed by putting into a medium stirring mill and carrying out pulverization and dispersion treatment until a predetermined particle size is disclosed.
  • the particle diameter of the composite tungsten oxide produced in Patent Document 5 is as large as 1 to 5 ⁇ m. Therefore, in order to obtain a near-infrared shielding fine particle dispersion capable of suppressing the blue haze phenomenon, it has been necessary to pulverize the composite tungsten oxide for a long time using a medium stirring mill to refine the particles. This long pulverization process significantly lowered the productivity of the near-infrared shielding fine particle dispersion.
  • Patent Document 6 composite tungsten oxide ultrafine particles having a particle size of 100 nm or less manufactured by using a plasma reaction.
  • Patent Document 7 also describes a method for producing composite tungsten oxide ultrafine particles using a plasma reaction.
  • the composite tungsten oxide ultrafine particles produced by the method disclosed in Patent Document 6 have a low crystallinity, so that it is close to the dispersion using the composite tungsten oxide ultrafine particles. Infrared shielding properties were not sufficient.
  • the composite tungsten oxide ultrafine particles produced by using the plasma reaction described in Patent Document 7 include binary tungsten oxide (that is, a phase substantially consisting of tungsten and oxygen) in addition to the composite tungsten oxide ultrafine particles. And a compound containing tungsten metal. For this reason, the near-infrared shielding property was not sufficient.
  • the present invention has been made under the above-mentioned circumstances, and the problems to be solved are transparent in the visible light region, have excellent near-infrared shielding properties, and suppress the blue haze phenomenon.
  • the inventors of the present invention have made extensive studies to achieve the above object. Then, in the X-ray diffraction pattern (may be described as “XRD” in the present invention) of the composite tungsten oxide ultrafine particles, the composite tungsten oxide ultrafine particles having a predetermined peak top intensity ratio value are obtained. I found out. Specifically, the value of the ratio of the XRD peak top intensity of the composite tungsten oxide ultrafine particles when the value of the XRD peak intensity relating to the (220) plane of the silicon powder standard sample (manufactured by NIST, 640c) is 1. Is a composite tungsten oxide ultrafine particle having a particle size of 0.13 or more.
  • the composite tungsten oxide ultrafine particles were transparent in the visible light region and had excellent near-infrared shielding properties due to high crystallinity. And it was the versatile composite tungsten oxide ultrafine particle which can manufacture the dispersion liquid containing the said composite tungsten oxide ultrafine particle with high productivity. Furthermore, it has also been found that in the dispersion using the composite tungsten oxide ultrafine particles, the blue haze phenomenon can be suppressed if the dispersed particle diameter of the composite tungsten oxide ultrafine particles is 200 nm or less.
  • the composite tungsten oxide ultrafine particles are dispersed in a solid medium, and the solid medium is provided as a coating layer on at least one surface of a transparent substrate such as a transparent film substrate or a transparent glass substrate, thereby being transparent in the visible light region. It has been conceived that an infrared shielding glass and an infrared shielding film having excellent near infrared shielding properties can be obtained.
  • the composite tungsten oxide ultrafine particles are dispersed in a solid medium and processed into a sheet, board or film, so that the sheet or board is transparent in the visible light region and has excellent near-infrared shielding properties.
  • the present invention was completed by conceiving that a near-infrared shielding ultrafine particle dispersion in the form of a film or film can be obtained.
  • the first invention for solving the above-described problem is A near-infrared shielding ultrafine particle dispersion in which ultrafine particles having near-infrared shielding properties are dispersed in a solid medium,
  • the ultrafine particles are composite tungsten oxide ultrafine particles, and the XRD peak of the composite tungsten oxide ultrafine particles when the XRD peak intensity value of the (220) plane of a silicon powder standard sample (manufactured by NIST, 640c) is 1.
  • the second invention is The composite tungsten oxide ultrafine particles have the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir). Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti One or more elements selected from Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1.
  • the near-infrared shielding ultrafine particle dispersion according to the first aspect of the invention wherein the composite tungsten oxide ultrafine particles are represented by 1, 2.0 ⁇ z / y ⁇ 3.0).
  • the third invention is The near-infrared shielding ultrafine particle dispersion according to the first or second invention, wherein the composite tungsten oxide ultrafine particles have a crystallite diameter of 1 nm or more and 200 nm or less.
  • the fourth invention is: The near-infrared shielding ultrafine particle dispersion according to any one of the first to third inventions, wherein the composite tungsten oxide ultrafine particles include a hexagonal crystal structure.
  • the fifth invention is: The near-infrared shielding ultrafine particle dispersion according to any one of the first to fifth inventions, wherein a content of a volatile component of the composite tungsten oxide ultrafine particles is 2.5% by mass or less.
  • the sixth invention is: The near-infrared shielding ultrafine particle dispersion according to any one of the first to fifth inventions, wherein the solid medium is a medium resin.
  • the medium resin is polyethylene terephthalate resin, polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, fluororesin, ethylene / vinyl acetate copolymer resin, polyvinyl One resin selected from the resin group called acetal resin, a mixture of two or more resins selected from the resin group, or a copolymer of two or more resins selected from the resin group,
  • the near-infrared shielding ultrafine particle dispersion according to the sixth invention wherein the dispersion is a medium resin selected from any one of the above.
  • the eighth invention The near-infrared shielding ultrafine particle dispersion according to the sixth aspect, wherein the medium resin is a UV curable resin binder.
  • the ninth invention The near-infrared shielding ultrafine particle dispersion according to any one of the first to eighth aspects, wherein the composite tungsten oxide ultrafine particles are contained in an amount of 0.001% by mass to 80% by mass.
  • the tenth invention is The near-infrared shielding ultrafine particle dispersion according to any one of the first to ninth inventions, wherein the near-infrared shielding ultrafine particle dispersion is in a sheet shape, a board shape, or a film shape. is there.
  • the eleventh invention is The near-infrared shielding ultrafine particle dispersion according to any one of the first to tenth inventions, wherein the near-infrared shielding ultrafine particle dispersion is provided as a coating layer having a thickness of 1 ⁇ m or more and 10 ⁇ m or less on a transparent substrate.
  • the twelfth invention is The near-infrared shielding ultrafine particle dispersion according to the eleventh invention, wherein the transparent substrate is a polyester film.
  • the thirteenth invention is The near-infrared shielding ultrafine particle dispersion according to the eleventh invention, wherein the transparent substrate is glass.
  • the fourteenth invention is In the infrared shielding laminated structure, the near-infrared shielding ultrafine particle according to any one of the first to eleventh inventions, which is an intermediate film for solar radiation shielding that constitutes an intermediate layer sandwiched between two or more transparent substrates. It is an intermediate film for solar radiation shielding characterized by using a dispersion.
  • the fifteenth invention An infrared shielding laminated structure comprising two or more transparent substrates and an intermediate layer sandwiched between the two or more transparent substrates,
  • the intermediate layer is composed of one or more intermediate films, At least one layer of the intermediate film is the solar radiation shielding intermediate film according to the fourteenth invention,
  • the infrared shielding laminated structure is characterized in that the transparent substrate is any one selected from plate glass, plastic, and plastic containing fine particles having solar radiation shielding function.
  • the sixteenth invention is A method for producing a near-infrared shielding ultrafine particle dispersion in which ultrafine particles having near-infrared shielding properties are dispersed in a solid medium,
  • the ultrafine particles having the near-infrared shielding property when the XRD peak intensity value of the (220) plane of the silicon powder standard sample (manufactured by NIST, 640c) is 1, the ratio value of the XRD peak top intensity is 0.13.
  • This is a method for producing a near-infrared shielding ultrafine particle dispersion, wherein the composite tungsten oxide ultrafine particles as described above are dispersed in the solid medium.
  • the seventeenth invention The composite tungsten oxide ultrafine particles have the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir).
  • One or more elements selected from Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇
  • the composite tungsten oxide ultrafine particles represented by 1, 2.0 ⁇ z / y ⁇ 3.0) is there.
  • the eighteenth invention The method for producing a near-infrared shielding ultrafine particle dispersion according to the sixteenth or seventeenth invention, wherein the composite tungsten oxide ultrafine particles have a dispersed particle diameter of 1 nm to 200 nm.
  • the nineteenth invention 19.
  • the twentieth invention is The near-infrared shielding ultrafine particle dispersion according to any one of the sixteenth to nineteenth inventions, wherein a content of a volatile component in the composite tungsten oxide ultrafine particles is 2.5% by mass or less. Is the method.
  • the present invention it is possible to obtain a near-infrared shielding ultrafine particle dispersion that is transparent in the visible light region, has excellent infrared shielding properties, suppresses the blue haze phenomenon, and can be manufactured with high productivity.
  • FIG. 2 is an X-ray diffraction pattern of ultrafine particles according to Example 1.
  • FIG. It is the profile of the transmittance
  • FIG. 1 is the profile of the transmittance
  • Ratio of XRD peak top intensity The composite tungsten oxide ultrafine particles according to the present invention have a near-infrared shielding property, and the value of the XRD peak intensity related to the (220) plane of a silicon powder standard sample (manufactured by NIST, 640c). The value of the ratio of the XRD peak top intensity of the composite tungsten oxide ultrafine particles with respect to 1 is 0.13 or more.
  • the powder X-ray diffraction method is used to measure the XRD peak top intensity of the composite tungsten oxide ultrafine particles described above.
  • a standard sample is determined, the peak intensity of the standard sample is measured, and the peak intensity of the standard sample is measured.
  • the value of the ratio of the XRD peak top intensity of the ultrafine particle sample to the value was expressed as the XRD peak top intensity of each ultrafine particle sample.
  • the standard sample is a silicon powder standard sample (manufactured by NIST, 640c) that is universal in the industry, and does not overlap with the XRD peak of the composite tungsten oxide ultrafine particles.
  • the (220) plane was used as a reference.
  • a sample holder having a depth of 1.0 mm is filled with an ultrafine particle sample by a known operation in X-ray diffraction measurement. Specifically, in order to avoid the occurrence of the preferred orientation (crystal orientation) in the ultrafine particle sample, it is preferable to pack randomly and gradually and as densely as possible without unevenness.
  • an X-ray source an X-ray tube whose anode target material is Cu is used with an output setting of 45 kV / 40 mA, step scan mode (step size: 0.0165 ° (2 ⁇ ) and counting time: 0.022 seconds.
  • the X-ray tube expected lifetime of a commercially available X-ray apparatus is several thousand hours or more and the measurement time per sample is almost several hours or less, the X-ray can be obtained by performing the above-described desirable measurement method.
  • the influence on the ratio of the XRD peak top intensity by the tube usage time can be made small enough to be ignored.
  • the XRD peak top intensity of the composite tungsten oxide ultrafine particles described above is closely related to the crystallinity of the ultrafine particles, and further closely related to the free electron density in the ultrafine particles.
  • the present inventors have found that the XRD peak top intensity greatly affects the near-infrared shielding properties of the composite tungsten oxide ultrafine particles. Specifically, it has been found that when the value of the XRD peak top intensity ratio is 0.13 or more, the free electron density in the ultrafine particles is secured, and a desired near-infrared shielding property can be obtained. .
  • the value of the XRD peak top intensity ratio may be 0.13 or more, preferably 0.7 or less.
  • the XRD peak top intensity is a peak intensity at 2 ⁇ having the highest peak count in the X-ray diffraction pattern.
  • the peak count 2 ⁇ in the X-ray diffraction pattern appears in the range of 25 ° to 31 °.
  • the XRD peak top intensity of the composite tungsten oxide ultrafine particles will also be described from different viewpoints.
  • a value of the XRD peak top intensity ratio of the composite tungsten oxide ultrafine particles of 0.13 or more indicates that composite tungsten oxide ultrafine particles having good crystallinity containing almost no heterogeneous phase are obtained. . That is, it is considered that the obtained composite tungsten oxide ultrafine particles are not amorphous.
  • a liquid medium such as an organic solvent that transmits visible light or a solid medium such as a resin that transmits visible light
  • the heterogeneous phase refers to a phase of a compound other than the composite tungsten oxide. Further, by analyzing the XRD pattern obtained when the XRD peak top intensity is measured, the crystal structure and crystallite diameter of the composite tungsten oxide ultrafine particles can be obtained.
  • the composite tungsten oxide ultrafine particles according to the present invention have a general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, One or more elements selected from Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb, W is tungsten, O is oxygen, 0 .001 ⁇ x / y ⁇ 1, 2.0 ⁇ z / y ⁇ 3.0), which is preferably a composite tungsten oxide ultrafine particle.
  • MxWyOz where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr,
  • the composite tungsten oxide ultrafine particles represented by the general formula MxWyOz will be described.
  • the element M, x, y, z in the general formula MxWyOz and the crystal structure thereof are closely related to the free electron density of the composite tungsten oxide ultrafine particles, and have a great influence on the near-infrared shielding characteristics.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se,
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Z
  • the element M has been found to be effective as a near-infrared shielding material having excellent weather resistance
  • M elements include Cs, Rb, K, Tl, Ba, Cu, Al, Mn, and In.
  • the composite tungsten oxide easily takes a hexagonal crystal structure, and transmits visible light and absorbs and blocks near infrared rays. It has also been found preferable.
  • the present inventors' knowledge about the value of x which shows the addition amount of M element is demonstrated. If the value of x / y is 0.001 or more, a sufficient amount of free electrons are generated, and the desired near-infrared shielding characteristics can be obtained. As the amount of M element added increases, the supply amount of free electrons increases and the near-infrared shielding characteristics also increase. However, when the value of x / y is about 1, the effect is saturated. Moreover, if the value of x / y is 1 or less, it is preferable since an impurity phase can be prevented from being generated in the composite tungsten ultrafine particles.
  • the present inventors' knowledge about the value of z indicating the control of the oxygen amount will be described.
  • the value of z / y is preferably 2.0 ⁇ z / y ⁇ 3.0, more preferably 2.2 ⁇ z / y ⁇ 3. 0, more preferably 2.6 ⁇ z / y ⁇ 3.0, and most preferably 2.7 ⁇ z / y ⁇ 3.0. If the value of z / y is 2.0 or more, it is possible to avoid the appearance of a crystal phase of WO 2 which is a compound other than the target compound in the composite tungsten oxide, and the chemistry as the material.
  • the composite tungsten oxide ultrafine particles have a tetragonal or cubic tungsten bronze structure in addition to the hexagonal crystal, any structure is effective as an infrared shielding material.
  • the absorption position in the near infrared region tends to change depending on the crystal structure taken by the composite tungsten oxide ultrafine particles. That is, the absorption position in the near-infrared region tends to move to the longer wavelength side when it is tetragonal than the cubic crystal, and to move toward the longer wavelength side when it is hexagonal than when it is tetragonal.
  • the absorption in the visible light region is the smallest in the hexagonal crystal, the next is the tetragonal crystal, and the cubic is the largest among them.
  • hexagonal tungsten bronze for the purpose of transmitting more light in the visible region and shielding light in the infrared region.
  • the composite tungsten oxide ultrafine particles have a monoclinic crystal structure similar to WO 2.72, which is referred to as a magnetic phase, or when an orthorhombic crystal structure is taken, infrared absorption is also possible. It is excellent and may be effective as a near-field shielding material.
  • the composite tungsten oxide ultrafine particles are preferably single crystals having a volume ratio of 50% or more. In other words, they are single crystals having a volume ratio of the amorphous phase of less than 50%. preferable.
  • the crystallite diameter can be reduced to 200 nm or less while maintaining the XRD peak top strength.
  • the dispersed particle size can be set to 1 nm or more and 200 nm or less.
  • the dispersed particle diameter is 1 nm or more and 200 nm or less
  • the amorphous phase is present in a volume ratio of 50% or more, or in the case of polycrystal
  • the XRD peak top of the composite tungsten ultrafine particles The value of the intensity ratio is less than 0.13, and as a result, the near-infrared absorption characteristics may be insufficient and the near-infrared shielding characteristics may be insufficiently expressed.
  • the crystallite diameter of the composite tungsten oxide ultrafine particles is more preferably 200 nm or less and 10 nm or more.
  • the X-ray diffraction pattern of the composite tungsten oxide ultrafine particles in the composite tungsten oxide ultrafine particle dispersion after pulverization, pulverization, or dispersion, which will be described later, is a near-infrared shielding ultrafine particle dispersion or a solar radiation shielding laminated structure. It is also maintained in the X-ray diffraction pattern of the composite tungsten oxide ultrafine particles contained therein.
  • the composite tungsten oxide ultrafine particles contained in the near-infrared shielding ultrafine particle dispersion have a crystalline state such as an XRD pattern, an XRD peak top intensity, and a crystallite diameter that can be used in the present invention.
  • the effect of the present invention is exhibited as long as the fine particles are in a crystalline state.
  • the composite tungsten oxide ultrafine particles are single crystals because, in an electron microscope image such as a transmission electron microscope, crystal grain boundaries are not observed inside each fine particle, and only uniform lattice fringes are observed. Can be confirmed. Also, in the composite tungsten oxide ultrafine particles, the volume ratio of the amorphous phase is less than 50%. Similarly, in the transmission electron microscope image, uniform lattice fringes are observed throughout the particles, and there are almost no places where the lattice fringes are unclear. This can be confirmed from the fact that it is not observed. Since the amorphous phase often exists in the outer periphery of the particle, the volume ratio of the amorphous phase can often be calculated by paying attention to the outer periphery of the particle.
  • the composite tungsten oxide in the case of a true spherical composite tungsten oxide ultrafine particle, when an amorphous phase with unclear lattice fringes is present in a layered manner on the outer periphery of the particle, the composite tungsten oxide has a thickness of 20% or less of the particle diameter.
  • the volume ratio of the amorphous phase in the ultrafine particles is less than 50%.
  • the crystallite diameter is calculated from the average particle diameter of the dispersed composite tungsten oxide ultrafine particles.
  • the composite tungsten oxide ultrafine particles are single crystals having an amorphous phase volume ratio of less than 50%.
  • the average particle diameter of the composite tungsten oxide ultrafine particles was determined by measuring the particle diameter of 100 composite tungsten oxide ultrafine particles using an image processing apparatus from a transmission electron microscope image of the composite tungsten oxide ultrafine particle dispersion. The average value can be calculated.
  • the synthesis process of the composite tungsten oxide ultrafine particles so that the difference between the average particle diameter and the crystallite diameter of the composite tungsten oxide ultrafine particles dispersed in the composite tungsten oxide ultrafine particle dispersion is 20% or less, What is necessary is just to adjust a grinding
  • the BET specific surface area of the composite tungsten oxide ultrafine particles according to the present invention is closely related to the particle size distribution of the ultrafine particles. This greatly affects the manufacturing cost and productivity of the fine particle dispersion, the near-infrared shielding characteristics of the ultrafine particles themselves, and the light resistance that suppresses light coloring.
  • the small BET specific surface area of the ultrafine particles indicates that the crystallite size of the ultrafine particles is large. Therefore, if the BET specific surface area of the ultrafine particles is equal to or greater than a predetermined value, a medium agitation is used to produce a near-infrared shielding ultrafine particle dispersion that is transparent in the visible light region and can suppress the above-described blue haze phenomenon. There is no need to pulverize ultrafine particles for a long time with a mill, and the production cost and productivity of the near infrared shielding ultrafine particle dispersion can be reduced.
  • the BET specific surface area of the ultrafine particles is a predetermined value or less, for example, 200 m 2 / g or less, indicates that the BET particle size is 2 nm or more when the particle shape is assumed to be a true sphere, This means that there are almost no ultrafine particles having a crystallite diameter of 1 nm or less that do not contribute to the near-infrared shielding property. Therefore, when the BET specific surface area of the ultrafine particles is a predetermined value or less, the near-infrared shielding characteristics and light resistance of the ultrafine particles are ensured.
  • the crystallite diameter of 1 nm that does not contribute to the near-infrared shielding characteristics when the above-mentioned XRD peak top intensity ratio value is a predetermined value or more. Since the following ultrafine particles are scarcely present and ultrafine particles with good crystallinity are present, it is considered that the near-infrared shielding properties and light resistance of the ultrafine particles are ensured.
  • Nitrogen gas, argon gas, krypton gas, xenon gas, or the like is used as a gas used for adsorption in the measurement of the BET specific surface area of the composite tungsten oxide ultrafine particles described above.
  • the specific surface area is 0.1 m 2 / g or more like the composite tungsten oxide ultrafine particles according to the present invention, a relatively easy to handle and low-cost nitrogen gas is used. It is desirable to do.
  • BET specific surface area of the composite tungsten oxide nanoparticles may have to the 30.0 m 2 / g or more 120.0m 2 / g or less, more preferably, 30.0 m 2 / g or more 90.0m 2 / g or less , more preferably it is better to less 35.0 m 2 / g or more 70.0m 2 / g.
  • the BET specific surface area of the composite tungsten oxide ultrafine particles is desirably the above-mentioned value even before and after pulverization and dispersion when obtaining the composite tungsten oxide ultrafine particle dispersion.
  • the dispersion particle diameter of the composite tungsten oxide ultrafine particles is preferably 200 nm or less, and more preferably, the dispersion particle diameter is 200 nm or less and 10 nm or more.
  • the composite tungsten oxide ultrafine particles in the composite tungsten oxide ultrafine particle dispersion in which the dispersed particle diameter of the composite tungsten oxide ultrafine particles is preferably 200 nm or less. This is because the crystallite diameter of the composite tungsten oxide ultrafine particles is preferably 200 nm or less at the maximum.
  • the crystal grain size is preferably 1 nm or more, and more preferably 10 nm or more.
  • the composite tungsten oxide ultrafine particles according to the present invention may contain a component that volatilizes by heating (may be described as “volatile component” in the present invention).
  • the volatile component is caused by a substance adsorbed when the composite tungsten oxide ultrafine particles are exposed to a storage atmosphere or the atmosphere or during the synthesis process.
  • the volatile component there are a case where it is water and a case where it is a solvent of a dispersion described later. And it is a component which volatilizes from the said composite tungsten oxide ultrafine particle by the heating of 150 degreeC or less, for example.
  • the volatile component and the content of the composite tungsten oxide ultrafine particles are related to the amount of water adsorbed when the ultrafine particles are exposed to the atmosphere and the residual amount of solvent in the drying process of the ultrafine particles. ing.
  • the volatile component and the content thereof may greatly affect dispersibility when the ultrafine particles are dispersed in a resin (medium resin) or the like.
  • a resin medium resin
  • the ultrafine particle has a high content of the volatile component.
  • the near-infrared shielding ultrafine particle dispersion produced may cause haze generation (transparency deterioration).
  • the composite tungsten oxide ultrafine particles are detached from the near-infrared shielding ultrafine particle dispersion. Or peeling of the film may occur.
  • the compatibility deterioration between the ultrafine particles and the resin causes deterioration of the near-infrared shielding ultrafine particle dispersion to be produced.
  • the composite tungsten oxide ultrafine particles having a volatile component content of a predetermined amount or less do not depend on whether the dispersion of the ultrafine particles is good or not depending on the compatibility with the dispersion medium used in the dispersion system. . Therefore, if the volatile component content in the composite tungsten oxide ultrafine particles according to the present invention is not more than a predetermined amount, wide versatility is exhibited.
  • the ultrafine particles are used in the dispersion medium used in most dispersion systems. It was found that the composite tungsten oxide ultrafine particles can be dispersed and have versatility. On the other hand, it was also found that there is no particular limitation on the lower limit of the content of the volatile component.
  • the ultrafine particles having a volatile component content of 2.5% by mass or less are not excessively agglomerated, a mixer such as a tumbler, Nauter mixer, Henschel mixer, super mixer, planetary mixer,
  • a mixer such as a tumbler, Nauter mixer, Henschel mixer, super mixer, planetary mixer
  • the ultrafine particles can be dispersed in a medium resin, etc. Become.
  • the content of volatile components in the composite tungsten oxide ultrafine particles can be measured by thermal analysis. Specifically, the weight loss may be measured by holding the composite tungsten oxide ultrafine particle sample at a temperature lower than the temperature at which the composite tungsten oxide ultrafine particles are thermally decomposed and higher than the volatile component is volatilized. . Moreover, what is necessary is just to analyze the said volatile component using a gas mass spectrometer together, when specifying a volatile component.
  • the XRD peak top strength and BET specific surface area of the composite tungsten oxide ultrafine particles described in detail above can be controlled by predetermined manufacturing conditions.
  • the temperature at which the ultrafine particles are produced by a thermal plasma method or a solid phase reaction method (firing temperature), a production time (firing time), a production atmosphere (firing atmosphere), a precursor raw material form
  • the content of the volatile component of the composite tungsten oxide ultrafine particles is determined appropriately according to the production conditions such as the storage method and storage atmosphere of the ultrafine particles, the temperature when drying the ultrafine particle dispersion, the drying time, and the drying method.
  • the content of volatile components in the composite tungsten oxide ultrafine particles depends on the crystal structure of the composite tungsten oxide ultrafine particles and the method for synthesizing the composite tungsten oxide ultrafine particles such as the thermal plasma method and solid phase reaction described later. do not do.
  • Thermal Plasma Method The thermal plasma method will be described in the order of (i) raw materials used in the thermal plasma method and (ii) the thermal plasma method and its conditions.
  • tungsten oxide ultrafine particles according to the present invention are synthesized by the thermal plasma method
  • a mixed powder of a tungsten compound and an M element compound can be used as a raw material.
  • the tungsten compound tungsten hydrate obtained by adding water to tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hexachloride dissolved in alcohol and hydrolyzing it, and then evaporating the solvent, It is preferable that it is 1 or more types chosen from.
  • M element compound it is preferable to use one or more selected from M element oxides, hydroxides, nitrates, sulfates, chlorides, and carbonates.
  • An aqueous solution containing the above-described tungsten compound and the above-described M element compound has a ratio of M element to W element of MxWyOz (where M is the M element, W is tungsten, O is oxygen, 0.001 ⁇ x /Y ⁇ 1.0, 2.0 ⁇ z / y ⁇ 3.0).
  • the wet mixing is performed so that the ratio of the M element to the W element is satisfied.
  • the mixed powder of M element compound and a tungsten compound is obtained by drying the obtained mixed liquid, And the said mixed powder can be used as the raw material of a thermal plasma method.
  • the mixed powder is obtained by using a composite tungsten oxide obtained by firing in the first stage in an inert gas alone or in a mixed gas atmosphere of an inert gas and a reducing gas as a raw material for the thermal plasma method. You can also. In addition, it is fired in a mixed gas atmosphere of an inert gas and a reducing gas in the first stage, and the fired product in the first stage is fired in an inert gas atmosphere in the second stage.
  • the composite tungsten oxide obtained by the stage firing can also be used as a raw material for the thermal plasma method.
  • thermal plasma method for example, one of DC arc plasma, high frequency plasma, microwave plasma, low frequency AC plasma, or a superposition of these plasmas, or Plasma generated by an electric method in which a magnetic field is applied to DC plasma, plasma generated by irradiation with a high-power laser, plasma generated by a high-power electron beam or ion beam can be applied.
  • thermal plasma is a thermal plasma having a high temperature part of 10,000 to 15000 K, and particularly preferably a plasma capable of controlling the generation time of ultrafine particles.
  • the raw material supplied into the thermal plasma having the high temperature part instantly evaporates in the high temperature part.
  • the evaporated raw material is condensed in the process of reaching the plasma tail flame part, and rapidly solidified outside the plasma flame to produce composite tungsten oxide ultrafine particles.
  • the inside of the reaction system constituted by the water-cooled quartz double tube and the reaction vessel 6 is evacuated to about 0.1 Pa (about 0.001 Torr) by a vacuum exhaust device.
  • the inside of the reaction system is filled with argon gas, and an argon gas circulation system of 1 atm is formed. Thereafter, any gas selected from argon gas, a mixed gas of argon and helium (Ar—He mixed gas), or a mixed gas of argon and nitrogen (Ar—N 2 mixed gas) as a plasma gas in the reaction vessel At a flow rate of 30 to 45 L / min.
  • an Ar—He mixed gas is introduced at a flow rate of 60 to 70 L / min as a sheath gas that flows just outside the plasma region. Then, an alternating current is applied to the high frequency coil 2 to generate thermal plasma by a high frequency electromagnetic field (frequency 4 MHz). At this time, the plate power is 30 to 40 kW.
  • a mixed powder of the M element compound and the tungsten compound obtained by the above synthesis method or a raw material of the composite tungsten oxide particle oxide is supplied from the gas supply device 11 to 6 to 98 L / min.
  • the argon gas is introduced as a carrier gas at a supply rate of 25 to 50 g / min into the thermal plasma and reacted for a predetermined time. After the reaction, the produced composite tungsten oxide ultrafine particles are deposited on the filter 8 and are collected.
  • the carrier gas flow rate and the raw material supply speed greatly affect the generation time of ultrafine particles. Therefore, it is preferable to set the carrier gas flow rate to 6 L / min or more and 9 L / min or less and the raw material supply rate to 25 to 50 g / min. Further, it is preferable that the plasma gas flow rate is 30 L / min or more and 45 L / min or less, and the sheath gas flow rate is 60 L / min or more and 70 L / min or less.
  • the plasma gas has a function of maintaining a thermal plasma region having a high temperature portion of 10,000 to 15000K, and the sheath gas has a function of cooling the inner wall surface of the quartz torch in the reaction vessel and preventing the quartz torch from melting.
  • the flow rates of these gases are important parameters for controlling the shape of the plasma region.
  • the shape of the plasma region extends in the gas flow direction and the temperature gradient of the plasma tail flame part becomes gentler, so the generation time of the generated ultrafine particles is lengthened and ultrafine particles with high crystallinity Can be generated.
  • the shape of the plasma region shrinks in the gas flow direction and the temperature gradient of the plasma tail flame portion becomes steep, so the generation time of the generated ultrafine particles is shortened and the BET ratio Ultrafine particles with a large surface area can be generated.
  • the value of the ratio of the XRD peak top intensity of the composite tungsten oxide ultrafine particles according to the present invention can be set to a predetermined value.
  • the composite tungsten oxide synthesized by the thermal plasma method has a crystallite diameter exceeding 200 nm, or in the composite tungsten oxide ultrafine particle dispersion obtained from the composite tungsten oxide synthesized by the thermal plasma method.
  • the dispersed particle diameter of the composite tungsten oxide exceeds 200 nm, pulverization / dispersion treatment described later can be performed.
  • the plasma conditions and the subsequent pulverization / dispersion treatment conditions are appropriately selected so that the value of the XRD peak top intensity ratio is 0.13 or more, If the difference between the average particle diameter and the crystallite diameter of the composite tungsten oxide ultrafine particles in the near-infrared shielding fine particle dispersion is 20% or less, the effect of the present invention is exhibited.
  • Solid Phase Reaction Method The solid phase reaction method will be described in the order of (i) raw materials used for the solid phase reaction method, (ii) firing in the solid phase reaction method and its conditions.
  • the tungsten compound is a tungsten hydrate obtained by adding water to tungstic acid (H 2 WO 4 ), ammonium tungstate, tungsten hexachloride, tungsten hexachloride dissolved in alcohol and hydrolyzing it, and then evaporating the solvent. It is preferable that it is 1 or more types chosen from.
  • M element compound used for the production of the raw material of the composite tungsten oxide ultrafine particles includes M element oxide, hydroxide, nitrate, sulfate, chloride, carbonate, It is preferable that it is 1 or more types chosen from.
  • the composite tungsten oxide ultrafine particles according to the present invention include a compound containing one or more impurity elements selected from Si, Al, and Zr (may be referred to as “impurity element compound” in the present invention).
  • the impurity element compound does not react with the composite tungsten compound in the subsequent firing step, and functions to prevent crystal coarsening by suppressing the crystal growth of the composite tungsten oxide.
  • the compound containing an impurity element is preferably at least one selected from oxides, hydroxides, nitrates, sulfates, chlorides, carbonates, and colloidal silica or colloidal alumina having a particle size of 500 nm or less. Particularly preferred.
  • the above tungsten compound and an aqueous solution containing the M element compound have a ratio of M element to W element of MxWyOz (where M is the M element, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ Wet mixing is performed so that the ratio of M element to W element is 1.0, 2.0 ⁇ z / y ⁇ 3.0).
  • wet mixing is performed so that the impurity element compound is 0.5 mass% or less. Then, by drying the obtained mixed liquid, a mixed powder of the M element compound and the tungsten compound or a mixed powder of the M element compound containing the impurity element compound and the tungsten compound is obtained.
  • (Ii) Firing and its conditions in the solid phase reaction method A mixed powder of M element compound and tungsten compound produced by the wet mixing or a mixed powder of M element compound and tungsten compound containing an impurity element compound is not used. Baking is performed in one stage in an atmosphere of a single active gas or a mixed gas of an inert gas and a reducing gas. At this time, the firing temperature is preferably close to the temperature at which the composite tungsten oxide ultrafine particles begin to crystallize. Specifically, the firing temperature is preferably 1000 ° C. or lower, more preferably 800 ° C. or lower, and further preferably a temperature range of 800 ° C. or lower and 500 ° C. or higher.
  • the value of the ratio of the XRD peak top intensity of the composite tungsten oxide ultrafine particles according to the present invention can be set to a predetermined value.
  • tungsten trioxide may be used instead of the tungsten compound.
  • the composite tungsten oxide ultrafine particles according to the present invention exhibits excellent near-infrared shielding properties.
  • the composite tungsten oxide ultrafine particles according to the present invention may contain a volatile component. It is preferable that it is 2.5 mass% or less. However, when the composite tungsten oxide ultrafine particles are exposed to the atmosphere and the content of volatile components exceeds 2.5% by mass, the content of the volatile components may be reduced by drying treatment. I can do it.
  • the composite tungsten oxide synthesized by the above-described method is pulverized and dispersed into fine particles to produce a composite tungsten oxide ultrafine particle dispersion (pulverization / dispersion processing step), and
  • the composite tungsten oxide ultrafine particles according to the present invention can be manufactured through a step of drying the composite tungsten oxide ultrafine particle dispersion and removing the solvent (drying step).
  • the pulverization and dispersion step will be described in detail in the item of “[d] composite tungsten oxide ultrafine particle dispersion” described later, the step of the drying treatment will be described here.
  • the composite tungsten oxide ultrafine particle dispersion obtained in the pulverization and dispersion process described later is dried to remove volatile components in the dispersion, and the composite tungsten oxide ultrafine particle according to the present invention is used. Is what you get.
  • an air dryer As drying equipment, heating and / or decompression is possible, and from the viewpoint of easy mixing and recovery of the ultrafine particles, an air dryer, a universal mixer, a ribbon mixer, a vacuum fluidized dryer, an oscillatory fluid flow A dryer, a freeze dryer, a ribocorn, a rotary kiln, a spray dryer, a pulcon dryer, and the like are preferable, but not limited thereto.
  • a drying process using an air dryer (2) a drying process using a vacuum fluidized dryer, and (3) a drying process using a spray dryer will be described.
  • each drying process is demonstrated in order.
  • Drying treatment by an air dryer This is a treatment method in which a composite tungsten oxide ultrafine particle dispersion obtained by a method described later is dried by an air dryer to remove volatile components in the dispersion.
  • the drying treatment is desirably performed at a temperature higher than that at which the volatile component is volatilized from the composite tungsten oxide ultrafine particles and at a temperature at which the element M is not desorbed, and is desirably 150 ° C. or lower.
  • the composite tungsten oxide ultrafine particles produced by drying with the air dryer are weak secondary aggregates. Even in this state, it is possible to disperse the composite tungsten oxide ultrafine particles in a resin or the like. However, in order to facilitate dispersion, it is also preferable to crush the ultrafine particles with a crusher or the like. .
  • Drying process using a vacuum fluidized dryer This is a processing method for removing volatile components in the composite tungsten oxide ultrafine particle dispersion by performing a drying process using a vacuum fluidized dryer.
  • the drying and pulverization processes are simultaneously performed in a reduced-pressure atmosphere, so that the drying speed is high and the agglomerates as seen in the above-mentioned dried products in the atmospheric dryer are not formed.
  • the drying temperature is such that the element M does not desorb from the composite tungsten oxide ultrafine particles, and is higher than the volatile component volatilizes, and is preferably 150 ° C. or lower.
  • the composite tungsten oxide ultrafine particles subjected to the drying treatment according to the above (1) to (3) are dispersed in a resin or the like by an appropriate method, so that a high visible light transmittance and a low infrared absorption function are exhibited.
  • a composite tungsten oxide ultrafine particle dispersion which is a near-infrared shielding material fine particle dispersion having an optical characteristic of having a low haze value while having solar radiation transmittance, can be formed.
  • the composite tungsten oxide ultrafine particle dispersion is composed of the composite tungsten oxide ultrafine particles obtained by the above synthesis method, water, an organic solvent, a liquid resin, a liquid plasticizer for plastics, a polymer monomer, or a mixture thereof.
  • a liquid medium of a selected mixed slurry and an appropriate amount of a dispersant, a coupling agent, a surfactant, and the like are pulverized and dispersed by a medium stirring mill.
  • the dispersion state of the fine particles in the solvent is good, and the dispersed particle diameter is 1 to 200 nm.
  • the content of the composite tungsten oxide ultrafine particles contained in the composite tungsten oxide ultrafine particle dispersion is preferably 0.01% by mass or more and 80% by mass or less.
  • (1) solvent, (2) dispersant, (3) dispersion method, (4) dispersed particle diameter, (5) binder, other additives, Will be described in the order.
  • liquid solvent used in the composite tungsten oxide ultrafine particle dispersion is not particularly limited, and the coating conditions and application environment of the composite tungsten oxide ultrafine particle dispersion, and an appropriately added inorganic binder, What is necessary is just to select suitably according to a resin binder.
  • the liquid solvent is water, an organic solvent, an oil or fat, a liquid resin, a liquid plasticizer for a medium resin, a polymer monomer, or a mixture thereof.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol; ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone Ester solvents such as 3-methyl-methoxy-propionate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene Glycol derivatives such as glycol ethyl ether acetate; , N- methyl formamide, dimethylformamide, dimethylace
  • chlorobenzene can be used.
  • organic solvents dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate and the like are particularly preferable.
  • Vegetable oils include dry oils such as linseed oil, sunflower oil, tung oil, eno oil, semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil, rice bran oil, poppy oil, olive oil, coconut oil, palm oil, dehydrated castor oil
  • Non-drying oils such as are used.
  • examples of the vegetable oil-derived compound include fatty acid monoesters and ethers obtained by directly esterifying a fatty acid of a vegetable oil with a monoalcohol.
  • oils Commercially available petroleum solvents can also be used as fats and oils, such as Isopar E, Exol Hexane, Exol Heptane, Exol E, Exol D30, Exol D40, Exol D60, Exol D80, Exol D95, Exol D110, Exol D130 (or more, Exxon Mobil) and the like.
  • liquid plasticizer for the medium resin known liquid plasticizers typified by organic acid esters and phosphate esters can be used.
  • the plasticity of the near infrared shielding ultrafine particle dispersion is improved by using the liquid plasticizer as a liquid medium. This is because it can be improved.
  • the obtained near-infrared shielding ultrafine particle dispersion having plasticity can be sandwiched between, for example, two or more transparent base materials that transmit at least visible light to form a laminated structure.
  • liquid plasticizer for example, a plasticizer that is a compound of a monohydric alcohol and an organic acid ester, an ester plasticizer such as a polyhydric alcohol organic acid ester compound, an organic phosphoric acid plasticizer, etc.
  • an ester plasticizer such as a polyhydric alcohol organic acid ester compound, an organic phosphoric acid plasticizer, etc.
  • examples thereof include phosphoric acid-based plasticizers, all of which are liquid at room temperature.
  • a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • the ester compound synthesized from the polyhydric alcohol and the fatty acid is not particularly limited. And glycol ester compounds obtained by reaction with monobasic organic acids such as n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonyl acid) and decyl acid. In addition, ester compounds of tetraethylene glycol, tripropylene glycol, and the above-mentioned monobasic organic are also included. Of these, fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethylbutyrate, triethylene glycol dioctanoate, and triethylene glycol di-2-ethylhexanate are suitable. is there. A fatty acid ester of triethylene glycol is desirable.
  • the polymer monomer is a monomer that forms a polymer by polymerization or the like, and preferred polymer monomers used in the present invention include methyl methacrylate monomer, acrylate monomer, and styrene resin. And monomers.
  • liquid solvents described above can be used alone or in combination of two or more. Further, if necessary, the pH may be adjusted by adding acid or alkali to these liquid solvents.
  • Dispersant in order to further improve the dispersion stability of the composite tungsten oxide ultrafine particles in the composite tungsten oxide ultrafine particle dispersion and avoid the coarsening of the dispersed particle diameter due to reaggregation, Addition of a dispersant, a surfactant, a coupling agent and the like is also preferable.
  • the dispersant, the coupling agent, and the surfactant can be selected according to the use, but preferably have an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group.
  • These functional groups are adsorbed on the surface of the composite tungsten oxide ultrafine particles to prevent aggregation, and have an effect of uniformly dispersing the composite tungsten oxide ultrafine particles according to the present invention even in the infrared shielding film.
  • a polymeric dispersant having any of these functional groups in the molecule is more desirable.
  • the composite tungsten oxide ultrafine particles are applied on a transparent substrate by an appropriate method or kneaded into the substrate, while having high visible light transmittance and low solar transmittance.
  • a near-infrared shielding ultrafine particle dispersion which is a composite tungsten oxide ultrafine particle dispersion having a near-infrared shielding property of low haze value, can be formed.
  • the method for dispersing the composite tungsten oxide ultrafine particles in the dispersion is not particularly limited as long as the fine particles can be uniformly dispersed in the dispersion without agglomeration.
  • the dispersion method include a pulverization / dispersion treatment method using an apparatus such as a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • a medium agitation mill such as a bead mill, a ball mill, a sand mill, or a paint shaker using a medium such as beads, balls, and Ottawa Sand because the time required for a desired dispersed particle size is short. .
  • the composite tungsten oxide ultrafine particles can be made finer and dispersed (that is, pulverized and dispersed).
  • the composite tungsten oxide ultrafine particles are dispersed in the plasticizer, it is also preferable to add an organic solvent having a boiling point of 120 ° C. or lower as desired.
  • the organic solvent having a boiling point of 120 ° C. or lower include toluene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, isopropyl alcohol, and ethanol.
  • any material can be selected as long as it can disperse the fine particles exhibiting the near-infrared shielding function at a boiling point of 120 ° C. or lower uniformly.
  • the organic solvent remaining in the solar radiation shielding intermediate film described later as an example of the near-infrared shielding ultrafine particle dispersion is set to 5% by mass or less. It is preferable. This is because, if the residual solvent of the solar radiation shielding intermediate film is 5% by mass or less, bubbles are not generated in the infrared shielding laminated structure described later, and the appearance and optical characteristics are kept good.
  • the dispersion particle diameter of the composite tungsten oxide ultrafine particles is 1 to 200 nm, light in the visible light region having a wavelength of 380 nm to 780 nm is not scattered by geometric scattering or Mie scattering. It is preferable because cloudiness (haze) is reduced and visible light transmittance can be increased. Further, in the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced. Therefore, when the dispersed particle diameter is 200 nm or less, the scattered light is extremely reduced, and the blue haze phenomenon can be suppressed.
  • the dispersed particle size of the composite tungsten oxide ultrafine particles means the particle size of the single particles of the composite tungsten oxide ultrafine particles dispersed in the solvent or the aggregated particles obtained by aggregating the composite tungsten oxide ultrafine particles. It can be measured with various commercially available particle size distribution analyzers. For example, a sample of the composite tungsten oxide ultrafine particle dispersion can be collected, and the sample can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the composite tungsten oxide ultrafine particle dispersion in which the content of the composite tungsten oxide ultrafine particles obtained by the above synthesis method is 0.01% by mass or more and 80% by mass or less is excellent in liquid stability.
  • a dispersant, a coupling agent, or a surfactant is selected, gelation of the dispersion or particle settling does not occur for more than 6 months even when placed in a constant temperature bath at a temperature of 40 ° C.
  • the dispersed particle diameter can be maintained in the range of 1 to 200 nm.
  • the dispersion particle diameter of the composite tungsten oxide ultrafine particle dispersion may be different from the average particle diameter of the composite tungsten oxide ultrafine particles dispersed in the near-infrared shielding material fine particle dispersion. This is because even if the composite tungsten oxide ultrafine particles are aggregated in the composite tungsten oxide ultrafine particle dispersion, the composite tungsten oxide ultrafine particles are processed into the near infrared shielding material fine particle dispersion from the composite tungsten oxide ultrafine particle dispersion. This is because the aggregation of ultrafine particles is understood.
  • the composite tungsten oxide ultrafine particle dispersion may appropriately contain one or more selected from resin binders.
  • the type of resin binder to be included in the composite tungsten oxide ultrafine particle dispersion is not particularly limited, but as the resin binder, thermoplastic resin such as acrylic resin, thermosetting resin such as epoxy resin, etc. are applied. it can.
  • the dispersion according to the present invention is added to the general formula XBm (where X is an alkaline earth element or a rare earth containing yttrium). It is also a preferred configuration that the boride ultrafine particles represented by the metal element selected from the elements, 4 ⁇ m ⁇ 6.3) are appropriately added as desired. In addition, what is necessary is just to select the addition ratio at this time suitably according to the desired near-infrared shielding characteristic.
  • a known inorganic pigment such as carbon black or a petal or a known organic pigment can be added.
  • a known ultraviolet absorber such as carbon black or a petal or a known organic pigment
  • a known infrared shielding material of organic matter such as carbon black or a petal or a known organic pigment
  • a phosphorus-based coloring inhibitor may be added.
  • the near-infrared shielding ultrafine particle dispersion according to the present invention in which composite tungsten oxide ultrafine particles having near-infrared shielding properties are dispersed will be described.
  • the near-infrared shielding ultrafine particle dispersion according to the present invention is a composite tungsten oxide ultrafine particle dispersion containing the composite tungsten oxide ultrafine particles obtained by the above-described production method and a solid medium.
  • the composite tungsten oxide ultrafine particle dispersion according to the present invention will be described in the order of (1) solvent, (2) production method, and (3) additive.
  • the solid medium examples include medium resins such as thermoplastic resins and thermosetting resins. These medium resins include polyethylene terephthalate resin, polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, fluororesin, ethylene / vinyl acetate copolymer, One type of resin selected from the group of resins called polyvinyl acetal resin and ionomer resin, a mixture of two or more types of resins selected from the group of resins, or two or more types of resins selected from the group of resins Any of copolymer may be sufficient. It is also preferable to add a polymer dispersant having an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group to these medium resins.
  • medium resins such as thermoplastic resins and thermosetting resins. These medium resins include polyethylene terephthalate resin, polycarbonate resin
  • the near-infrared shielding ultrafine particle dispersion according to the present invention includes 0.001% by mass to 80% by mass of composite tungsten oxide ultrafine particles.
  • the near-infrared shielding ultrafine particle dispersion may be in the form of a sheet, board or film.
  • the near-infrared shielding ultrafine particle dispersion can be applied to various applications by processing it into a sheet, board or film.
  • the liquid medium contained in the composite tungsten oxide ultrafine particle dispersion is removed to an amount that can be retained in the master batch.
  • composite tungsten oxide ultrafine particles obtained by removing the liquid medium from the composite tungsten oxide ultrafine particle dispersion may be used as the composite tungsten oxide ultrafine particles mixed with the medium resin.
  • the obtained master batch is kneaded by adding the medium resin, and the dispersion concentration thereof is adjusted while maintaining the dispersion state of the composite tungsten oxide ultrafine particles contained in the near-infrared shielding material fine particle dispersion.
  • the dispersion particle diameter of the composite tungsten oxide ultrafine particles is the same as that described in “(d) (4) Dispersion particle diameter of the composite tungsten oxide ultrafine particle dispersion”.
  • the monomer and oligomer of the medium resin and the uncured and liquid medium resin precursor and the composite tungsten oxide ultrafine particles are mixed to obtain a composite tungsten oxide ultrafine particle dispersion, and then the monomers are condensed. Or may be cured by a chemical reaction such as polymerization.
  • an acrylic resin is used as the medium resin
  • an acrylic monomer or an acrylic ultraviolet curable resin and composite tungsten oxide ultrafine particles are mixed to obtain a composite tungsten oxide ultrafine particle dispersion.
  • the said composite tungsten oxide ultrafine particle dispersion liquid is filled in a predetermined
  • the composite tungsten oxide ultrafine particle dispersion using an acrylic resin will be obtained.
  • a resin curable by crosslinking such as an ionomer resin
  • a dispersion can be obtained by crosslinking reaction with the composite tungsten oxide ultrafine particle dispersion, as in the case of using the acrylic resin described above. it can.
  • a composite tungsten oxide ultrafine particle dispersion can be obtained by mixing the composite tungsten oxide ultrafine particles and a liquid medium.
  • a known liquid plasticizer can also be used for the liquid medium.
  • the obtained dispersion is mixed with a medium resin, and the liquid medium is removed to an amount that is allowed to remain in the near-infrared shielding material fine particle dispersion by a known heat treatment or the like, thereby obtaining a near-infrared shielding ultrafine particle dispersion. It is done.
  • the entire amount of the liquid plasticizer may remain in the near-infrared shielding ultrafine particle dispersion.
  • a medium resin is used as the solid medium
  • known additives such as plasticizers, flame retardants, anti-coloring agents and fillers which are usually added to these resins can be added.
  • the solid medium is not limited to the medium resin, and a binder using a metal alkoxide can also be used.
  • Typical examples of the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. It is possible to form a dispersion composed of an oxide film by hydrolyzing and polycondensing a binder using these metal alkoxides by heating or the like.
  • the near-infrared shielding ultrafine particle dispersion according to the present invention preferably has a sheet-like, board-like or film-like form.
  • the near-infrared shielding ultrafine particle dispersion in the form of a sheet, board or film according to the present invention will be described in the order of (1) component, (2) production method, and (3) application method.
  • the composite tungsten oxide ultrafine particles and the plasticizer dispersion liquid and the master batch are uniformly mixed into the transparent resin, whereby the sheet-like, board-like or film-like near-infrared shielding super A fine particle dispersion can be produced.
  • various thermoplastic resins can be used as the resin constituting the sheet, film or board.
  • the near-infrared shielding ultrafine particle dispersion in the form of a sheet, board or film is applied to an optical filter, it is a medium resin such as a thermoplastic resin or a thermosetting resin having sufficient transparency. It is preferable.
  • polyethylene terephthalate resin polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, ionomer resin, fluorine resin, ethylene / vinyl acetate copolymer
  • a preferred resin is selected from a resin selected from the resin group, a mixture of two or more resins selected from the resin group, or a copolymer of two or more resins selected from the resin group. I can do it.
  • thermoplastic resin constituting the sheet, film, or board is flexible as it is. And may not have sufficient adhesion to a transparent substrate.
  • thermoplastic resin is a polyvinyl acetal resin, it is preferable to add a plasticizer.
  • a substance used as a plasticizer in the thermoplastic resin used in the present invention can be used.
  • a plasticizer used for an infrared shielding film composed of a polyvinyl acetal resin a plasticizer that is a compound of a monohydric alcohol and an organic acid ester, a plasticizer that is an ester system such as a polyhydric alcohol organic acid ester compound, etc.
  • phosphoric acid plasticizers such as organic phosphoric acid plasticizers.
  • Any plasticizer is preferably liquid at room temperature.
  • a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • a known method can be used as a method for forming a sheet-like, board-like or film-like near-infrared shielding ultrafine particle dispersion.
  • a calendar roll method an extrusion method, a casting method, an inflation method, or the like can be used.
  • the near-infrared shielding ultrafine particle dispersion can be applied to various uses by processing it into a sheet, board or film.
  • a solar radiation shielding intermediate film may be mentioned.
  • a sheet-like, board-like, or film-like near-infrared shielding ultrafine particle dispersion is sandwiched between a plurality of transparent substrates made of a sheet glass or plastic material of at least two transparent substrates that transmit at least visible light. By interposing it as a constituent member of the intermediate layer, it is possible to obtain a solar radiation shielding laminated structure having a near infrared shielding function while transmitting visible light.
  • the near-infrared shielding material fine particle dispersion according to the present invention is used for the solar radiation shielding intermediate film according to the present invention.
  • the infrared shielding laminated structure according to the present invention sandwiches an intermediate layer having a near infrared shielding function from both sides using a transparent substrate.
  • a transparent substrate plate glass transparent in the visible light region, plate-like plastic, or film-like plastic is used.
  • the material of the plastic is not particularly limited and can be selected according to the use, such as polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyamide resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, ionomer resin, A fluororesin can be used.
  • the infrared shielding laminated structure according to the present invention is a known method in which a plurality of transparent substrates facing each other with the near-infrared shielding ultrafine particle dispersion of sheet, board or film according to the present invention sandwiched therebetween are used. Can also be obtained by laminating and integrating.
  • the solar shielding intermediate film according to the present invention is an embodiment of a near-infrared shielding ultrafine particle dispersion.
  • the near-infrared shielding ultrafine particle dispersion according to the present invention can be used without being sandwiched between a plurality of transparent substrates made of a plate glass or plastic material of two or more transparent substrates that transmit visible light. Of course.
  • the sheet-like, board-like, or film-like near-infrared shielding ultrafine particle dispersion according to the present invention can be established alone as a near-infrared shielding ultrafine particle dispersion.
  • the details of the solar radiation shielding intermediate film and the infrared shielding laminated structure according to the present invention will be described later.
  • Infrared shielding film, infrared shielding glass are examples of a near-infrared shielding ultrafine particle dispersion.
  • the coating Since the composite tungsten ultrafine particles are dispersed in the solid medium, the layer becomes a near-infrared shielding ultrafine particle dispersion.
  • an infrared shielding film or infrared shielding glass can be produced.
  • the solid medium a medium resin or an inorganic substance can be used.
  • the infrared shielding film can be produced as follows.
  • a medium resin is added to the above-described near-infrared shielding ultrafine particle dispersion to obtain a coating solution. After coating the coating liquid on the surface of the film substrate, if the solvent is evaporated and the resin is cured by a predetermined method, a coating film in which the near-infrared shielding ultrafine particles are dispersed in the medium can be formed.
  • a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, or the like can be selected according to the purpose.
  • a polymer dispersant having these resins as a main skeleton and an amine-containing group, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group may be used for the medium resin.
  • These resins may be used alone or in combination.
  • a UV curable resin binder from the viewpoint of productivity, apparatus cost, and the like.
  • a binder using metal alkoxide or organosilazane can be used for the solid medium.
  • the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. Binders using these metal alkoxides can be subjected to hydrolysis and polycondensation by heating or the like to form a coating layer made of an oxide film.
  • the coated component is formed to fill the gap where the composite tungsten oxide ultrafine particles as the first layer are deposited, and the haze value of the film is reduced in order to suppress the refraction of visible light.
  • a coating method is convenient from the viewpoint of ease of film forming operation and cost.
  • the content is preferably 40% by mass or less in terms of oxide in the coating obtained after heating.
  • An oxide film such as silicon, zirconium, titanium, or aluminum can be easily formed by applying the coating liquid as a second layer on a film containing composite tungsten oxide ultrafine particles as a main component and heating. Is possible.
  • an organosilazane solution as a binder component or a coating liquid component used in the coating liquid according to the present invention.
  • a coating layer may be formed by further applying a binder using a medium resin or a metal alkoxide.
  • the substrate heating temperature after application of the composite tungsten oxide ultrafine particle dispersion containing a metal alkoxide of silicon, zirconium, titanium, or aluminum and its hydrolysis polymer is preferably 100 ° C. or more, More preferably, heating is performed at a temperature equal to or higher than the boiling point of the solvent in the coating solution. This is because when the substrate heating temperature is 100 ° C. or higher, the polymerization reaction of the metal alkoxide or the hydrolysis polymer of the metal alkoxide contained in the coating film can be completed. In addition, when the substrate heating temperature is 100 ° C. or higher, water or organic solvent as a solvent does not remain in the film, so that these solvents do not cause a reduction in visible light transmittance in the heated film. Because.
  • the film base material mentioned above is not limited to a film form, For example, a board form or a sheet form may be sufficient.
  • the film base material PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, fluorine resin, and the like can be used according to various purposes.
  • the infrared shielding film is preferably a polyester film, and more preferably a PET film.
  • the surface of the film substrate is preferably subjected to a surface treatment in order to realize easy adhesion of the coating layer.
  • a surface treatment in order to realize easy adhesion of the coating layer.
  • the configuration of the intermediate layer is not particularly limited, and may be composed of, for example, a polymer film, a metal layer, an inorganic layer (for example, an inorganic oxide layer such as silica, titania, zirconia), an organic / inorganic composite layer, or the like. .
  • the method of providing the coating layer on the substrate film or the substrate glass is not particularly limited as long as the near-infrared shielding ultrafine particle dispersion can be uniformly applied to the surface of the substrate.
  • Examples thereof include a bar coating method, a gravure coating method, a spray coating method, a dip coating method, a spin coating method, a screen printing, a roll coating method, and a flow coating method.
  • a coating liquid in which the liquid concentration and additives are appropriately adjusted so as to have an appropriate leveling property is combined with the coating film thickness and the content of the near infrared shielding ultrafine particles.
  • a coating film can be formed on a substrate film or substrate glass by using a wire bar having a bar number that can satisfy the purpose.
  • a coating layer can be formed on a board
  • the drying condition of the coating film varies depending on each component, the type of solvent and the use ratio, but is usually about 60 seconds to 140 ° C. for about 20 seconds to 10 minutes.
  • UV exposure machines such as an ultrahigh pressure mercury lamp, can be used suitably.
  • the adhesion between the substrate and the coating layer, the smoothness of the coating film at the time of coating, the drying property of the organic solvent, etc. can be controlled by the pre- and post-processes of forming the coating layer.
  • the pre- and post-processes include a substrate surface treatment process, a pre-bake (substrate pre-heating) process, a post-bake (substrate post-heating) process, and the like, and can be appropriately selected.
  • the heating temperature in the pre-bake process and / or the post-bake process is preferably 80 ° C. to 200 ° C., and the heating time is preferably 30 seconds to 240 seconds.
  • the thickness of the coating layer on the substrate film or the substrate glass is not particularly limited, but is practically preferably 10 ⁇ m or less, and more preferably 6 ⁇ m or less. If the thickness of the coating layer is 10 ⁇ m or less, in addition to exhibiting sufficient pencil hardness and scratch resistance, warping of the substrate film occurs when the coating layer is stripped of the solvent and the binder is cured. This is because the occurrence of process abnormalities such as these can be avoided.
  • [H] Infrared shielding laminated structure In the infrared shielding laminated structure according to the present invention, a sheet-like or film-like solar radiation shielding intermediate film is interposed between a plurality of transparent substrates made of a sheet glass or plastic material. It is made to intervene as.
  • a solar shielding intermediate film for the infrared shielding laminated structure according to the present invention, (1) a solar shielding intermediate film, (2) a sheet-like or film-shaped solar shielding intermediate film, and (3) a method for producing an infrared shielding laminated structure. These will be described in order.
  • the solar radiation shielding intermediate film according to the present invention includes composite tungsten oxide ultrafine particles obtained by the above-described production method and a medium resin.
  • the medium resin is one kind of resin selected from the group consisting of acrylic resin, styrene resin, vinyl chloride resin, olefin resin, epoxy resin, fluororesin, ethylene / vinyl acetate copolymer, polyvinyl acetal resin and ionomer resin. It is preferably either a resin, a mixture of two or more resins selected from the resin group, or a copolymer of two or more resins selected from the resin group. If the medium resin is a polyvinyl acetal resin or an ionomer resin, it is more preferable from the viewpoint of improving the adhesion strength between the solar radiation shielding intermediate film and the transparent substrate.
  • the solar radiation shielding intermediate film according to the present invention preferably contains 0.001% by mass to 80% by mass of the above-described composite tungsten oxide ultrafine particles.
  • the manufacturing method of the composite tungsten oxide ultrafine particle dispersion used as an intermediate film for solar radiation shielding is demonstrated.
  • the dispersion component containing the composite tungsten oxide ultrafine particles and the plasticizer dispersion are removed by removing the solvent component having a boiling point of 120 ° C. or lower.
  • a liquid can be obtained.
  • the dispersion powder containing composite tungsten oxide ultrafine particles can be obtained by removing the solvent component having a boiling point of 120 ° C. or lower from the composite tungsten oxide ultrafine particle dispersion containing an appropriate amount of the dispersant.
  • the composite tungsten oxide ultrafine particle dispersion is preferably dried under reduced pressure. Specifically, the composite tungsten oxide ultrafine particle dispersion is dried under reduced pressure while stirring to separate the composite tungsten oxide ultrafine particle-containing composition from the solvent component.
  • the apparatus used for the reduced-pressure drying include a vacuum agitation type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
  • the pressure value at the time of pressure reduction in the drying step is appropriately selected.
  • the removal efficiency of the solvent from the composite tungsten oxide ultrafine particle dispersion is improved, and the dispersed powder and the plasticizer dispersion are not exposed to high temperature for a long time. Aggregation of the composite tungsten oxide ultrafine particles dispersed in the dust or plasticizer dispersion liquid is preferable. Furthermore, the productivity of the dispersion powder and the plasticizer dispersion is improved, and it is easy to collect the evaporated solvent, which is preferable from the environmental consideration.
  • the remaining solvent is preferably 2.5% by mass or less. If the remaining solvent is 2.5% by mass or less, no bubbles are generated when the dispersion powder or plasticizer dispersion is processed into, for example, a laminated structure, and the appearance and optical characteristics are maintained favorable. Because. Further, if the solvent remaining in the dispersed powder is 2.5% by mass or less, when stored for a long time in the state of the dispersed powder, aggregation due to natural drying of the residual solvent does not occur and long-term stability is maintained. Because it is.
  • the dispersion powder and plasticizer dispersion liquid described above are uniformly mixed in a medium resin transparent to at least visible light by a known mixing method, and then molded by a known molding method. Can be manufactured.
  • the solar radiation shielding intermediate film is a master in which the composite tungsten oxide ultrafine particles having a high content are dispersed in the medium resin.
  • the batch can also be produced by diluting the composite tungsten oxide ultrafine particles with a medium resin.
  • Sheet-shaped or film-shaped solar shading intermediate film The dispersion powder and plasticizer dispersion liquid described above are uniformly mixed into a medium resin transparent to at least visible light, and then molded by a known molding method. By doing this, the intermediate film for solar radiation shielding of sheet form or film form concerning the present invention can be manufactured.
  • the sheet-shaped or film-shaped solar shading intermediate film does not have sufficient flexibility and adhesion to the transparent substrate, it is preferable to add a liquid plasticizer for the medium resin.
  • the medium resin used for the solar shielding intermediate film is a polyvinyl acetal resin
  • the addition of a liquid plasticizer for the polyacetal resin is beneficial for improving the adhesion to the transparent substrate.
  • the substance used as a plasticizer with respect to a medium resin can be used.
  • plasticizer used for an infrared shielding film composed of a polyvinyl acetal resin a plasticizer that is a compound of a monohydric alcohol and an organic acid ester
  • a plasticizer that is an ester system such as a polyhydric alcohol organic acid ester compound
  • phosphoric acid plasticizers such as organic phosphoric acid plasticizers.
  • Any plasticizer is preferably liquid at room temperature.
  • a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • At least one member selected from the group consisting of a silane coupling agent, a metal salt of a carboxylic acid, a metal hydroxide, and a metal carbonate can be added to the sheet-shaped or film-shaped solar shading intermediate film.
  • the metal constituting the carboxylic acid metal salt, metal hydroxide, or metal carbonate is at least one selected from sodium, potassium, magnesium, calcium, manganese, cesium, lithium, rubidium, and zinc. Is desirable.
  • the content of at least one member selected from the group consisting of a metal salt of a carboxylic acid, a metal hydroxide, and a metal carbonate is 1% by mass to 100% by mass with respect to the composite tungsten oxide ultrafine particles. Is preferred.
  • composite tungsten oxide ultrafine particles Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, Ge, In, Sn, La, Ce, Oxide fine particles and composite oxides containing two or more elements selected from the group consisting of Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Tb, Lu, Sr, and Ca
  • At least one kind of fine particles and boride fine particles may be mixed in a weight ratio of 95: 5 to 5:95.
  • the kneaded product is obtained by a known method such as extrusion molding or injection molding.
  • a known method can be used as a method for forming the sheet-shaped or film-shaped solar shading interlayer.
  • a calendar roll method, an extrusion method, a casting method, or the like can be used.
  • the composite tungsten oxide ultrafine particles contained in the solar radiation shielding intermediate film are passed through the composite tungsten oxide ultrafine particle dispersion in the process of manufacturing the near infrared shielding material fine particle dispersion, and the composite tungsten oxide ultrafine particles are stored. Depending on the state, a maximum of 2.5% by mass of volatile components may be contained.
  • the material of the plastic is not particularly limited and can be selected according to the application, polycarbonate resin, acrylic resin, polyethylene terephthalate resin, PET resin, polyamide resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, An ionomer resin, a fluororesin, etc. can be used.
  • fine-particles which have a solar radiation shielding function for a transparent base material As the fine particles having the solar radiation shielding function, composite tungsten oxide ultrafine particles having a near infrared shielding property can be used.
  • a plastic containing fine particles having a solar radiation shielding function is formed into a board shape, a sheet shape, or a film shape by dispersing the fine particles having a solar radiation shielding function in a resin that can be used in the present invention.
  • the infrared shielding laminated structure according to the present invention uses a sheet-like or film-like solar shielding intermediate film according to the present invention for the intermediate layer, and a plurality of opposed plate glasses and plastics sandwiched between the intermediate layers.
  • a transparent base material such as a plastic containing fine particles having a solar radiation shielding function is bonded and integrated by a known method.
  • the intermediate layer may have a plurality of laminated structures. When the intermediate layer is composed of a plurality of layers, at least one layer may be the solar shading intermediate film according to the present invention. Further, at least one layer of the intermediate film may contain an ultraviolet absorber.
  • UV absorber examples include a compound having a malonic ester structure, a compound having an oxalic acid anilide structure, a compound having a benzotriazole structure, a compound having a benzophenone structure, a compound having a triazine structure, a compound having a benzoate structure, and a hindered amine structure.
  • the intermediate layer may be composed of only the solar shading intermediate film according to the present invention.
  • the optical properties of the dispersions and coating films in Examples and Comparative Examples were measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). Visible light transmittance and solar transmittance were determined according to JIS R3106. Calculated.
  • the dispersed particle size was shown as an average value measured by a particle size measuring device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method.
  • ELS-8000 manufactured by Otsuka Electronics Co., Ltd.
  • the content rate of the volatile component in an Example and a comparative example was made from Shimadzu Corporation Co., Ltd. moisture meter; MOC63u. Hold for 9 minutes.
  • the weight reduction rate of the measurement sample after 10 minutes from the start of measurement was taken as the content of volatile components.
  • the average particle diameter of the composite tungsten oxide ultrafine particles dispersed in the near-red ray shielding material fine particle dispersion or in the solar radiation shielding intermediate film is observed with a transmission electron microscope image of the cross section of the dispersion or intermediate film.
  • the transmission electron microscope image was observed using a transmission electron microscope (HF-2200 manufactured by Hitachi High-Technologies Corporation).
  • the transmission electron microscope image was processed with an image processing apparatus, and the particle diameter of 100 ultrafine composite tungsten oxide particles was measured. The average value was defined as the average particle diameter.
  • the X-ray diffraction pattern was measured by a powder X-ray diffraction method ( ⁇ -2 ⁇ method) using a powder X-ray diffractometer (X'Pert-PRO / MPD manufactured by Spectris Co., Ltd. PANalytical).
  • a powder X-ray diffractometer X'Pert-PRO / MPD manufactured by Spectris Co., Ltd. PANalytical.
  • every time the X-ray diffraction pattern of the composite tungsten oxide ultrafine particles is measured, the X-ray diffraction pattern of the silicon powder standard sample is measured, and the ratio of the peak intensity is determined each time. Calculated.
  • Example 1 Dissolve 0.216 kg of Cs 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, then dry and mix with Cs 0.33 WO 3 mixed powder which is the target composition Got the body.
  • the inside of the reaction system is evacuated to about 0.1 Pa (about 0.001 Torr) using a high-frequency plasma reactor described in FIG. 1 and then completely replaced with argon gas.
  • a pressure distribution system was used.
  • argon gas as plasma gas was introduced into the reaction vessel at a flow rate of 30 L / min, and sheath gas was introduced spirally from the sheath gas supply port at a flow rate of argon gas 55 L / min and helium gas 5 L / min.
  • high frequency power was applied to the water-cooled copper coil for high frequency plasma generation, and high frequency plasma was generated.
  • the high frequency power was set to 40KW.
  • the mixed powder was supplied into the thermal plasma at a rate of 50 g / min while supplying argon gas as a carrier gas from the gas supply device 11 at a flow rate of 9 L / min.
  • the mixed powder was instantly evaporated in the thermal plasma and rapidly solidified in the process of reaching the plasma tail flame part to become ultrafine particles.
  • the produced ultrafine particles were deposited on the recovery filter.
  • the deposited ultrafine particles were collected, and an X-ray diffraction pattern was measured by a powder X-ray diffraction method ( ⁇ -2 ⁇ method) using a powder X-ray diffractometer (X'Pert-PRO / MPD manufactured by Spectris Co., Ltd. PANalytical). .
  • the X-ray diffraction pattern of the obtained ultrafine particles is shown in FIG. Results of identification phases, ultra fine particles obtained was identified as hexagonal Cs 0.33 WO 3 single phase. Furthermore, when the crystal structure analysis by the Rietveld analysis method was performed using the said X-ray diffraction pattern, the crystallite diameter of the obtained ultrafine particle was 18.8 nm. Further, the peak top intensity value of the X-ray diffraction pattern of the obtained ultrafine particles was 4200 counts.
  • the composition of the ultrafine particles obtained was examined by ICP emission analysis. As a result, the Cs concentration was 13.6% by mass, the W concentration was 65.3% by mass, and the molar ratio of Cs / W was 0.29. The remainder other than Cs and W was oxygen, and it was confirmed that no other impurity element contained in an amount of 1% by mass or more was present.
  • the BET specific surface area of the obtained ultrafine particles was measured using a BET specific surface area measuring device (HMmodel-1208 manufactured by Mountaintech Co., Ltd.), and found to be 60.0 m 2 / g.
  • nitrogen gas having a purity of 99.9% was used for measurement of the BET specific surface area.
  • the content of volatile components in the composite tungsten oxide ultrafine particles according to Example 1 was measured and found to be 1.6% by mass.
  • the medium stirring mill used was a horizontal cylindrical annular type (manufactured by Ashizawa Corporation), and the inner wall of the vessel and the rotor (rotary stirring portion) were made of zirconia. Further, beads made of YSZ (Yttria-Stabilized Zirconia) having a diameter of 0.1 mm were used. The rotational speed of the rotor was 14 rpm / second, and pulverization and dispersion treatment was performed at a slurry flow rate of 0.5 kg / min. Thus, a composite tungsten oxide ultrafine particle dispersion liquid according to Example 1 was obtained.
  • a silicon powder standard sample manufactured by NIST, 640c
  • the peak intensity value of the standard sample is 1, the value of the XRD peak intensity ratio of the composite tungsten oxide ultrafine particles after the pulverization and dispersion treatment according to Example 1 is found to be 0.15. did. Moreover, the crystallite diameter of the composite tungsten oxide ultrafine particles after the pulverization and dispersion treatment according to Example 1 was 16.9 nm.
  • the dispersed particle size of the composite tungsten oxide ultrafine particle dispersion according to Example 1 was measured using a particle size measuring apparatus based on a dynamic light scattering method, it was 70 nm.
  • the particle diameter measurement was set to a particle refractive index of 1.81 and a particle shape of aspherical.
  • the background was measured using methyl isobutyl ketone, and the solvent refractive index was 1.40.
  • the composite tungsten oxide ultrafine particle dispersion according to Example 1 was mixed with an ultraviolet curable resin and a solvent, methyl isobutyl ketone, and applied onto a 3 mm thick glass substrate with a bar coater (IMC-700, manufactured by Imoto Seisakusho). After forming a film and evaporating the solvent from this coating film, the coating film is cured by irradiating with ultraviolet rays to obtain a coating layer which is a near-red ray shielding material fine particle dispersion, and the infrared shielding according to Example 1 Glass was obtained. At this time, the concentration of the dispersion was adjusted in advance by dilution with methyl isobutyl ketone as a solvent so that the visible light transmittance of the infrared shielding glass was 70%.
  • the average particle diameter of the composite tungsten oxide ultrafine particles dispersed in the obtained infrared shielding glass according to Example 1 was calculated by an image processing apparatus using a transmission electron microscope image, which was 17 nm. The crystallite diameter was almost the same as 16.9 nm. Further, the haze of the obtained infrared shielding glass according to Example 1 was measured based on JISK7105 using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), and found to be 0.4%. Further, the transmittance of the obtained infrared shielding glass according to Example 1 was measured at intervals of 5 nm in the wavelength range of 200 nm to 2600 nm with a spectrophotometer, and the transmission profile shown in FIG.
  • the solar transmittance was determined from the obtained transmission profile and found to be 36.5%.
  • the artificial solar illuminating lamp (XC-100 manufactured by Celic Co., Ltd.) was used to irradiate the infrared shielding glass according to Example 1 with simulated sunlight, and the presence or absence of the blue haze phenomenon was visually confirmed. Confirmed that there is no.
  • Example 2 to 6 Except for changing the carrier gas flow rate, plasma gas flow rate, sheath gas flow rate, and raw material supply rate, the same operations as in Example 1 were performed, so that the composite tungsten oxide ultrafine particles and composite tungsten oxide according to Examples 2 to 6 were used. An ultrafine particle dispersion was produced. Table 1 shows the changed carrier gas flow rate conditions, raw material supply speed conditions, and other conditions. The composite tungsten oxide ultrafine particles and composite tungsten oxide ultrafine particle dispersions according to Examples 2 to 6 were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • the infrared shielding glasses according to Examples 2 to 6 were obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersions according to Examples 2 to 6 were used. The results are shown in Table 3.
  • Example 7 A composite represented by Cs 0.33 WO 3 obtained by firing the mixed powder of Cs 2 CO 3 and H 2 WO 4 described in Example 1 at 800 ° C. in a mixed gas atmosphere of nitrogen gas and hydrogen gas. It changed to tungsten oxide and used as a raw material thrown into a high frequency plasma reactor. Otherwise, composite tungsten oxide ultrafine particles and composite tungsten oxide ultrafine particle dispersion according to Example 7 were produced in the same manner as in Example 1. Evaluations similar to those in Examples 1 to 6 were performed on the obtained ultrafine particles and dispersions thereof. The manufacturing conditions and evaluation results are shown in Tables 1 and 2.
  • Example 7 the infrared shielding glass according to Example 7 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 7 was used. The results are shown in Table 3.
  • Example 8 A composite tungsten oxide ultrafine particle and a composite tungsten oxide ultrafine particle dispersion according to Example 8 were produced by performing the same operations as in Example 7 except that the carrier gas flow rate and the raw material supply speed were changed. The obtained ultrafine particles and dispersions thereof were evaluated in the same manner as in Examples 1-7. The manufacturing conditions and evaluation results are shown in Tables 1 and 2. Further, the infrared shielding glass according to Example 8 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 8 was used. The results are shown in Table 3.
  • Example 9 Dissolve 0.148 kg of Rb 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, then dry and mix with Rb 0.32 WO 3 mixed powder which is the target composition Got the body.
  • the composite tungsten oxide ultrafine particles and the composite tungsten oxide ultrafine particle dispersion liquid according to Example 9 were used in the same manner as in Example 1 except that the mixed powder was used as a raw material to be charged into the high-frequency thermal plasma reactor. Manufactured. The obtained ultrafine particles and dispersions thereof were evaluated in the same manner as in Examples 1-8. The manufacturing conditions and evaluation results are shown in Tables 1 and 2.
  • the infrared shielding glass according to Example 9 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 9 was used. The results are shown in Table 3.
  • Example 10 Dissolve 0.375 kg of K 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, and then dry, K 0.27 WO 3 mixed powder having the target composition Got the body.
  • the composite tungsten oxide ultrafine particle and the composite tungsten oxide ultrafine particle dispersion liquid according to Example 10 were used in the same manner as in Example 1 except that the mixed powder was used as a raw material to be charged into the high-frequency thermal plasma reactor. Manufactured. The obtained ultrafine particles and dispersions thereof were evaluated in the same manner as in Examples 1 to 9. The manufacturing conditions and evaluation results are shown in Tables 1 and 2.
  • the infrared shielding glass according to Example 10 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 10 was used. The results are shown in Table 3.
  • Example 11 Dissolve 0.320 kg of TlNO 3 in 0.330 kg of water, add it to 1.000 kg of H 2 WO 4, stir well, and then dry, to obtain the target composition of Tl 0.19 WO 3 mixed powder. Obtained.
  • the composite tungsten oxide ultrafine particles and the composite tungsten oxide ultrafine particle dispersion liquid according to Example 11 were used in the same manner as in Example 1 except that the mixed powder was used as a raw material to be charged into the high-frequency thermal plasma reactor. Manufactured. The same evaluations as in Examples 1 to 10 were performed on the obtained ultrafine particles and dispersions thereof. The manufacturing conditions and evaluation results are shown in Tables 1 and 2. Further, the infrared shielding glass according to Example 11 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 11 was used. The results are shown in Table 3.
  • Example 12 Dissolve 0.111 kg of BaCO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, and then dry the powder to obtain the target composition of Ba 0.14 WO 3 mixed powder. Obtained.
  • the composite tungsten oxide ultrafine particles and the composite tungsten oxide ultrafine particle dispersion according to Example 12 were prepared in the same manner as in Example 1 except that the mixed powder was used as a raw material to be charged into the high-frequency thermal plasma reactor. Manufactured. The same evaluation as in Examples 1 to 11 was performed on the obtained ultrafine particle dispersion. The manufacturing conditions and evaluation results are shown in Tables 1 and 2. Further, the infrared shielding glass according to Example 12 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 12 was used. The results are shown in Table 3.
  • Example 13 Dissolve 0.0663 kg of K 2 CO 3 and 0.0978 kg of Cs 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, then dry and have the desired composition A K 0.24 Cs 0.15 WO 3 mixed powder was obtained.
  • the composite tungsten oxide ultrafine particles and the composite tungsten oxide ultrafine particle dispersion according to Example 13 were prepared in the same manner as in Example 1 except that the mixed powder was used as a raw material to be charged into the high-frequency thermal plasma reactor. Manufactured. The obtained ultrafine particles and dispersions thereof were evaluated in the same manner as in Examples 1-12. The manufacturing conditions and evaluation results are shown in Tables 1 and 2.
  • the infrared shielding glass according to Example 13 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 13 was used. The results are shown in Table 3.
  • Example 14 10.8 g of Cs 2 CO 3 was dissolved in 16.5 g of water, the solution was added to 50 g of H 2 WO 4 and sufficiently stirred, and then dried. The dried product was heated while supplying 2% H 2 gas using N 2 gas as a carrier, and calcined at a temperature of 800 ° C. for 30 minutes. Thereafter, a composite tungsten oxide according to Example 14 was obtained by a solid phase method in which baking was performed at 800 ° C. for 90 minutes in an N 2 gas atmosphere. A composite tungsten oxide ultrafine particle dispersion according to Example 14 was produced in the same manner as Example 1 except for the above. However, the pulverization / dispersion processing time by the medium stirring mill was 4 hours.
  • the obtained ultrafine particles and dispersions thereof were evaluated in the same manner as in Examples 1 to 13.
  • the manufacturing conditions and evaluation results are shown in Tables 1 and 2.
  • the infrared shielding glass according to Example 14 was obtained and evaluated in the same manner as the infrared shielding glass according to Example 1 except that the composite tungsten oxide ultrafine particle dispersion according to Example 14 was used. The results are shown in Table 3.
  • Example 15 to 24 Dissolve 0.044 kg of Li 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, and then dry and conduct the target composition of Li 0.3 WO 3 A mixed powder according to Example 15 was obtained. Dissolve 0.021 kg of Na 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, and then dry and implement Na 0.1 WO 3 which is the target composition A mixed powder according to Example 16 was obtained. In 0.330 kg of water, 0.251 kg of Cu (NO 3 ) 2 .3H 2 O was dissolved, added to 1.000 kg of H 2 WO 4, sufficiently stirred, dried, and Cu 0.
  • Example 17 of WO 2.72 A mixed powder according to Example 17 of WO 2.72 was obtained. Dissolve 0.005 kg of Ag 2 CO 3 in 0.330 kg of water, add this to 1.000 kg of H 2 WO 4, stir well, then dry, and implement Ag 0.01 WO 3 which is the target composition A mixed powder according to Example 18 was obtained.
  • Example 19 of Ca 0.1 WO 3 which is a target composition after dissolving 0.040 kg of CaCO 3 in 0.330 kg of water, adding this to 1.000 kg of H 2 WO 4, stirring sufficiently, and drying. To obtain a mixed powder.
  • SrCO 3 0.047 kg was dissolved in 0.330 kg of water, and this was added to 1.000 kg of H 2 WO 4, stirred well, then dried, and the target composition of Example 20 of Sr 0.08 WO 3 was obtained.
  • To obtain a mixed powder 0.012 kg of In 2 O 3 and 1.000 kg of H 2 WO 4 were sufficiently mixed by a crusher to obtain a mixed powder according to Example 21 of In 0.02 WO 3 which is a target composition.
  • SnO 2 0.115 kg and H 2 WO 4 1.000 kg were sufficiently mixed by a crusher to obtain a mixed powder according to Example 22 of Sn 0.19 WO 3 having a target composition.
  • the composite tungsten oxide ultrafine particles according to Examples 15 to 24 were prepared in the same manner as in Example 1 except that the mixed powder according to Examples 15 to 24 was used as a raw material to be charged into the high-frequency thermal plasma reactor. A composite tungsten oxide ultrafine particle dispersion was produced. The obtained ultrafine particles and dispersions thereof were evaluated in the same manner as in Examples 1-14. The manufacturing conditions and evaluation results are shown in Tables 1 and 2. In addition, infrared shielding glasses according to Examples 15 to 24 were obtained and evaluated in the same manner as the infrared shielding glass according to Example 1, except that the composite tungsten oxide ultrafine particle dispersions according to Examples 15 to 24 were used. The results are shown in Table 3.
  • Example 25 Composite tungsten oxide ultrafine particles were produced in the same manner as in Example 1. The composite tungsten oxide ultrafine particles are added to the polycarbonate resin, which is a thermoplastic resin, so that the visible light transmittance of the manufactured near-infrared shielding ultrafine particle dispersion (1.0 mm thickness) is 70%. Then, a composition for producing a near-infrared shielding ultrafine particle dispersion was prepared.
  • the prepared composition for producing a near-infrared shielding ultrafine particle dispersion was kneaded at 280 ° C. using a twin-screw extruder, extruded from a T-die, and formed into a sheet material having a thickness of 1.0 mm by a calendar roll method.
  • a sheet-like near-infrared shielding ultrafine particle dispersion according to No. 25 was obtained.
  • the visible light transmittance was 70%
  • the solar transmittance was 37.9%
  • the haze was 0. 0.7%.
  • the amount of the composite tungsten oxide ultrafine particles contained in the obtained sheet-like near-infrared shielding ultrafine particle dispersion was estimated from the mixing ratio of the composite tungsten oxide ultrafine particles and the polycarbonate resin to be 0.29. It was mass%. The results are listed in Table 4.
  • Example 26 0.230 kg of Cs 2 CO 3 was dissolved in 0.330 kg of water, and the resulting solution was added to 1.000 kg of H 2 WO 4 and stirred sufficiently, followed by drying to obtain a dried product.
  • the dried product was heated while supplying 5% H 2 gas using N 2 gas as a carrier, and baked at a temperature of 800 ° C. for 1 hour. Then, further to implement solid phase reaction method is fired for 2 hours under 800 ° C. N 2 gas atmosphere to obtain a composite tungsten oxide according to Example 26.
  • the rotational speed of the rotor was 14 rpm / second, and the pulverization and dispersion treatment was performed at a slurry flow rate of 0.5 kg / min.
  • a composite tungsten oxide ultrafine particle aqueous dispersion according to Example 26 was obtained.
  • the dispersion particle size of the aqueous dispersion of the composite tungsten oxide ultrafine particles according to Example 26 was measured and found to be 70 nm.
  • the particle refractive index was 1.81, and the particle shape was non-spherical.
  • the background was measured with water, and the solvent refractive index was 1.33.
  • Example 26 Next, about 3 kg of the obtained composite tungsten oxide ultrafine particle dispersion was dried with an air dryer to obtain composite tungsten oxide ultrafine particles according to Example 26.
  • a constant temperature oven (SPH-201 type manufactured by Espec Co., Ltd.) was used as the atmospheric dryer, the drying temperature was 70 ° C., and the drying time was 96 hours.
  • the obtained ultrafine particle was identified as a hexagonal Cs 0.33 WO 3 single phase.
  • a silicon powder standard sample manufactured by NIST, 640c
  • the value of the peak intensity on the basis of the (220) plane in the silicon powder standard sample was measured it was 19800 counts. Therefore, when the value of the peak intensity of the standard sample is 1, the value of the ratio of the XRD peak intensity of the composite tungsten oxide ultrafine particles after pulverization and dispersion treatment according to Example 1 is found to be 0.21. did.
  • the composition of the obtained composite tungsten oxide ultrafine particles according to Example 26 was examined by ICP emission analysis. As a result, the Cs concentration was 15.2% by mass, the W concentration was 64.6% by mass, and the molar ratio of Cs / W was 0.33. The balance other than Cs and W was oxygen. It was also confirmed that no other impurity element contained at 1 mass% or more was present.
  • the content of the volatile component of the composite tungsten oxide ultrafine particle according to Example 26 was measured and found to be 2.2% by mass.
  • the composite tungsten oxide ultrafine particle dispersion according to Example 26 was mixed with ultraviolet curable resin and methyl isobutyl ketone as a solvent to obtain a coating solution.
  • the coating solution was applied onto a 3 mm thick glass substrate using a bar coater (IMC-700 manufactured by Imoto Seisakusho) to form a coating film. After evaporating the solvent from the coating film, it was irradiated with ultraviolet rays and cured to form a coating layer, whereby an infrared shielding glass according to Example 26 was obtained.
  • the concentration of the coating solution was adjusted in advance when the above-described solvent was diluted with methyl isobutyl ketone so that the visible light transmittance of the infrared shielding glass was 70%.
  • the average particle diameter of the composite tungsten oxide ultrafine particles dispersed in the obtained infrared shielding glass according to Example 26 was calculated by an image processing apparatus using a transmission electron microscope image, it was 23 nm, which was described above.
  • the crystallite diameter was almost the same as 23.7 nm.
  • the haze of the obtained infrared shielding glass according to Example 26 was measured based on JISK7105 using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory) and found to be 0.3%.
  • the transmittance of the obtained infrared shielding glass according to Example 26 was measured at intervals of 5 nm in the wavelength range of 200 nm to 2600 nm using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). As a result, the transmittance shown in FIG. A profile was obtained. When the solar radiation transmittance was determined from the obtained transmission profile, it was 35.7%. Furthermore, the artificial solar illuminating lamp was used to irradiate the infrared shielding glass according to Example 26 with the artificial sunlight, and the presence or absence of the blue haze phenomenon was visually confirmed to confirm that the blue haze phenomenon did not occur.
  • Example 26 a composition for producing the sheet-like near-infrared shielding ultrafine particle dispersion according to Example 26 was prepared in the same manner as in Example 25, and the sheet A near-infrared shielding ultrafine particle dispersion was produced. Evaluation similar to Example 25 was implemented with respect to the obtained sheet-like near-infrared shielding ultrafine particle dispersion. The results are listed in Table 4.
  • Example 27 The composite tungsten oxide ultrafine particles according to Example 27 and the ultrafine particle dispersion thereof were obtained in the same manner as in Example 26 except that the drying process by the air dryer was changed to the vacuum drying process by the vacuum stirring and pulverizing machine. An infrared shielding glass and a sheet-like near-infrared shielding ultrafine particle dispersion were produced.
  • the vacuum stir crusher uses an Ishikawa stir crusher type 24P (Tajima Chemical Machinery Co., Ltd.), the drying temperature in the vacuum drying process is 80 ° C., the drying time is 32 hours, The pressure in the vacuum vessel was 40 Hz or less and 0.001 MPa or less.
  • Example 26 The same evaluation as in Example 26 was performed on the obtained composite tungsten oxide ultrafine particles according to Example 27, a dispersion thereof, an infrared shielding glass, and a sheet-like near-infrared shielding ultrafine particle dispersion. did.
  • the manufacturing conditions and evaluation results are shown in Tables 1, 2, 3, and 4.
  • Example 28 A composite tungsten oxide ultrafine particle according to Example 28 and its ultrafine particle dispersion are produced in the same manner as in Example 26, except that the drying process by the air dryer is changed to the spray drying process by the spray dryer. did.
  • a spray dryer ODL-20 type manufactured by Okawara Chemical Co., Ltd.
  • Evaluation similar to Example 26 was implemented with respect to the obtained composite tungsten oxide ultrafine particle concerning Example 28, its dispersion liquid, infrared shielding glass, and a sheet-like near-infrared shielding ultrafine particle dispersion. .
  • the manufacturing conditions and evaluation results are shown in Tables 1, 2, 3, and 4.
  • Example 29 to 31 The composite tungsten oxide ultrafine particles according to Examples 29 to 31 and the ultrafine particle dispersion thereof were produced in the same manner as in Examples 26 to 28 except that the pulverization and dispersion treatment time by the medium stirring mill was changed to 2 hours. did. However, the pulverization and dispersion treatment time by the medium stirring mill was 2 hours. Evaluation similar to Example 26 was implemented with respect to the obtained ultrafine particle, its dispersion liquid, infrared shielding glass, and a sheet-like near-infrared shielding ultrafine particle dispersion. The manufacturing conditions and evaluation results are shown in Tables 1, 2, 3, and 4.
  • Example 32 to 34 Except that 20 parts by weight of the composite tungsten oxide and 80 parts by weight of propylene glycol monoethyl ether as a solvent were mixed when preparing the composite tungsten oxide ultrafine particle dispersion, the same as in Examples 29 to 31 described above.
  • the composite tungsten oxide ultrafine particles according to Examples 32 to 34 and the ultrafine particle dispersion were produced by the synthetic production method. Evaluation similar to Example 26 was implemented with respect to the obtained ultrafine particle, the ultrafine particle dispersion, infrared shielding glass, and a sheet-like near-infrared shielding ultrafine particle dispersion.
  • the manufacturing conditions and evaluation results are shown in Tables 1, 2, 3, and 4.
  • Example 35 Composite tungsten oxide ultrafine particles were obtained in the same manner as in the method according to Example 1. Thereafter, 20 weights of the obtained ultrafine particles, 64 parts by weight of methyl isobutyl ketone, and 16 parts by weight of dispersant a were mixed to prepare 50 g of a slurry. This slurry was subjected to a dispersion treatment for 1 hour using an ultrasonic homogenizer (US-600TCVP manufactured by Nippon Seiki Seisakusho Co., Ltd.) to obtain a composite tungsten oxide ultrafine particle dispersion according to Example 35, and an infrared shielding glass was produced. Evaluation similar to Example 1 was implemented with respect to the composite tungsten oxide ultrafine particle dispersion which concerns on Example 35, and the external line shielding glass. The manufacturing conditions and evaluation results are shown in Tables 1, 2, 3, and 4.
  • Comparative Example 3 In order to generate a thermal plasma having a high temperature part of 5000 to 10000 K, the composite tungsten oxide superconductor according to Comparative Example 3 is obtained by performing the same operation as in Example 1 except that the high frequency power is set to 15 KW. Fine particles and composite tungsten oxide ultrafine particle dispersion were prepared. Evaluation similar to Example 1, the comparative examples 1 and 2 was implemented with respect to the obtained ultrafine particle and its dispersion liquid. The manufacturing conditions and evaluation results are shown in Tables 1 and 2.
  • Example 4 A comparison was made by performing the same operation as in Example 26, except that the composite tungsten oxide ultrafine particle aqueous dispersion according to Example 26 was obtained in a pulverization dispersion treatment time of 4 hours, except that the pulverization dispersion treatment was performed for 40 hours. A composite tungsten oxide ultrafine particle aqueous dispersion according to Example 4 was obtained. The dispersion particle diameter of the composite tungsten oxide ultrafine particle aqueous dispersion according to Comparative Example 4 was measured and found to be 120 nm. In addition, as a setting for the measurement of the dispersed particle size, the particle refractive index was 1.81, and the particle shape was non-spherical. The background was measured with water, and the solvent refractive index was 1.33.
  • a silicon powder standard sample manufactured by NIST, 640c
  • the value of the peak intensity on the basis of the (220) plane in the silicon powder standard sample was measured it was 19800 counts. Therefore, when the value of the peak intensity of the standard sample is 1, the ratio value of the XRD peak intensity of the composite tungsten oxide ultrafine particles after the pulverization and dispersion treatment according to Example 1 is found to be 0.07. did.
  • the composite tungsten oxide ultrafine particle dispersion according to Comparative Example 4 was mixed with an ultraviolet curable resin and methyl isobutyl ketone as a solvent to prepare a coating solution.
  • the coating solution was applied onto a 3 mm thick glass substrate using a bar coater to form a coating film. After evaporating the solvent from the coating film, it was irradiated with ultraviolet rays and cured to form a coating layer, and an infrared shielding glass according to Comparative Example 4 was obtained.
  • the concentration of the dispersion was adjusted in advance by dilution with methyl isobutyl ketone as a solvent so that the visible light transmittance of the cured film was 70%.
  • the average particle diameter of the composite tungsten oxide ultrafine particles dispersed in the obtained infrared shielding glass according to Comparative Example 4 was calculated by an image processing apparatus using a transmission electron microscope image and found to be 120 nm.
  • the haze of the obtained infrared shielding glass according to Comparative Example 4 was measured, it was 1.8%.
  • the transmittance of the obtained cured film according to Comparative Example 4 was measured at an interval of 5 nm in the wavelength range of 200 nm to 2600 nm, and the solar radiation transmittance was obtained from the obtained transmission profile, which was 48.3%. there were.
  • the presence or absence of the blue haze phenomenon of the infrared shielding glass which concerns on the comparative example 4 was confirmed visually similarly to Example 1, and it confirmed that there was a blue haze phenomenon.
  • the results are shown in Table 3.
  • Methyl butyl ketone which is a low boiling point solvent, in the obtained liquid was removed, and an intermediate film composition having a polyvinyl butyral concentration of 71% by mass was prepared.
  • the prepared intermediate film composition was kneaded with a roll and formed into a sheet having a thickness of 0.76 mm to produce a solar radiation shielding intermediate film according to Example 1.
  • the produced solar shielding intermediate film is sandwiched between two 100 mm ⁇ 100 mm ⁇ about 2 mm thick green glass substrates, heated to 80 ° C. and temporarily bonded, and then placed in an autoclave at 140 ° C. and 14 kg / cm 2. Then, this bonding was performed to produce a laminated structure A according to Example 36.
  • the average particle diameter of the composite tungsten oxide ultrafine particles dispersed in the laminated structure A according to Example 36 was calculated by an image processing apparatus using a transmission electron microscope image, and was 17 nm. Further, the haze of the obtained laminated structure A was measured based on JISK7105 using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory), and found to be 0.8%. Further, the transmittance of the laminated structure A according to Example 36 obtained was measured with a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.) at intervals of 5 nm in the wavelength range of 200 nm to 2600 nm. The solar radiation transmittance was 70. 4%. The evaluation results are shown in Table 4.
  • Example 37 A laminated structure B according to Example 37 was produced in the same manner as in Example 36 except that one of the two green glasses was replaced with polycarbonate.
  • a laminated structure C according to Example 38 was produced in the same manner as in Example 36 except that one of the two green glasses was replaced with clear glass.
  • a laminated structure C ′ according to Example 39 was produced in the same manner as in Example 36 except that the two green glasses were replaced with two clear glasses. Optical measurements similar to those of Example 36 were performed on the obtained laminated structures B, C, and C ′ according to Examples 37 to 39. The measurement results are shown in Table 5.
  • Example 40 to 62 Using the composite tungsten oxide ultrafine particle dispersions according to Examples 2 to 24, the same operations as in Example 36 were performed to prepare compositions for interlayer films according to Examples 40 to 62. Further, Example 40 Laminated structures D to Z according to .about.62 were produced. Optical measurements similar to those of Example 36 were performed on the obtained laminated structures D to Z according to Examples 40 to 62. The measurement results are shown in Table 5.
  • the prepared intermediate film composition was kneaded with a roll and formed into a 0.76 mm thick sheet to produce a solar radiation shielding intermediate film according to Example 63.
  • the produced solar shielding intermediate film is sandwiched between two 100 mm ⁇ 100 mm ⁇ about 2 mm thick green glass substrates, heated to 80 ° C. and temporarily bonded, and then placed in an autoclave at 140 ° C. and 14 kg / cm 2. Bonding structure a according to Example 63 was manufactured.
  • the optical characteristics of the obtained laminated structure a were measured in the same manner as in Example 36. The measurement results are shown in Table 5.
  • Example 64 50 g of the composite tungsten oxide ultrafine particles according to Example 64 are obtained by dispersing 20 parts by weight of the composite tungsten oxide ultrafine particles according to Example 26 in 64 parts by weight of methyl isobutyl ketone as a dispersion medium and 16 parts by weight of the dispersant a. A dispersion was obtained.
  • the dispersion particle size of the composite tungsten oxide ultrafine particle dispersion according to Example 64 was measured and found to be 80 nm.
  • the particle refractive index was 1.81
  • the particle shape was non-spherical.
  • the background was measured using methyl isobutyl ketone, and the solvent refractive index was 1.40.
  • the concentration of the composite tungsten oxide ultrafine particles was adjusted so that the visible light transmittance of the laminated structure as the production target was 70%, and methylbutylketone as a low boiling point solvent in the obtained liquid
  • an intermediate film composition was prepared so that the polyvinyl butyral concentration was 71% by mass.
  • the prepared composition was kneaded with a roll and formed into a 0.76 mm-thick sheet to produce a solar shading intermediate film according to Example 64.
  • the produced solar shielding intermediate film is sandwiched between two 100 mm ⁇ 100 mm ⁇ about 2 mm thick green glass substrates, heated to 80 ° C. and temporarily bonded, and then placed in an autoclave at 140 ° C. and 14 kg / cm 2.
  • Bonding structure b according to Example 64 was manufactured.
  • the optical characteristics of the obtained laminated structure “b” were measured in the same manner as in Example 36. The measurement results are shown in Table 5.
  • Example 65 to 72 Except that the composite tungsten oxide ultrafine particles according to Examples 27 to 34 were used, the composite tungsten oxide ultrafine particle dispersion, the intermediate film composition, and the solar radiation shielding intermediate film were combined in the same manner as in Example 64. To j. The same measurement as in Example 36 was performed on the obtained ultrafine particles and the dispersions c to j thereof. The measurement results are shown in Table 5. The dispersion particle diameter of the composite tungsten oxide ultrafine particle dispersions according to Examples 65 to 72 was measured, and all were 80 nm.
  • Example 73 20 g of the composite tungsten oxide ultrafine particles used in Example 1, 64 parts by weight of methyl isobutyl ketone, and 16 parts by weight of the dispersant a were mixed to prepare 50 g of a slurry. The obtained slurry was subjected to a dispersion treatment for 1 hour using an ultrasonic homogenizer (US-600TCVP manufactured by Nippon Seiki Seisakusho Co., Ltd.) to obtain a composite tungsten oxide ultrafine particle dispersion liquid according to Example 73. Except for using the obtained composite tungsten oxide ultrafine particle dispersion liquid according to Example 73, a structure k was manufactured in the same manner as in Example 36 by combining the intermediate film composition and the solar shading intermediate film.
  • an ultrasonic homogenizer US-600TCVP manufactured by Nippon Seiki Seisakusho Co., Ltd.
  • Example 36 The same measurement as in Example 36 was performed on the obtained ultrafine particles and the dispersion and the combined structure. The measurement results are shown in Table 5.
  • the dispersion particle diameter of the composite tungsten oxide ultrafine particle dispersion according to Example 73 was measured and found to be 70 nm.
  • the composite tungsten oxide ultrafine particles included in the shielding intermediate film are the XRD peak top intensity of the composite tungsten oxide ultrafine particles of the previous period relative to the XRD peak intensity value of the silicon powder standard sample (manufactured by NIST, 640c) (220).
  • the composite tungsten oxide ultrafine particles had a ratio of 0.13 or more and a crystallite diameter of 1 nm or more.
  • the average particle diameter and the crystallite diameter of the composite tungsten oxide ultrafine particles in the dispersion or in the solar radiation shielding intermediate film are almost the same, so the composite tungsten oxide ultrafine particles used are It is considered to be a single crystal composite tungsten oxide ultrafine particle having an amorphous phase volume ratio of less than 50%.
  • the average particle diameter of the composite tungsten oxide ultrafine particles in the dispersion or the solar radiation shielding intermediate film is larger than the crystallite diameter, and is not considered to be a single crystal.
  • different phases WO 2 and W
  • the infrared shielding glass, near-infrared shielding ultrafine particle dispersion, and infrared shielding laminated structure manufactured using the composite tungsten oxide ultrafine particles according to this example have a solar transmittance as shown in Tables 3 to 5. Excellent near-infrared shielding properties of 47% or less were exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Silicon Compounds (AREA)

Abstract

可視光領域で透明性があり、優れた近赤外線遮蔽特性を有し、ブルーヘイズ現象が抑制され、高い生産性をもって製造可能な近赤外線遮蔽超微粒子分散体を提供する。近赤外線遮蔽特性を有する超微粒子が固体媒体に分散された近赤外線遮蔽超微粒子分散体であって、前記超微粒子が複合タングステン酸化物超微粒子であり、シリコン粉末標準試料(NIST製、640c)の(220)面のXRDピーク強度の値を1としたとき、前記複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値が0.13以上であることを特徴とする近赤外線遮蔽超微粒子分散体を提供する。

Description

近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法
 本発明は、可視光透過性が良好で、且つ近赤外線領域の光を吸収する特性を有する赤外線遮蔽ガラスおよび赤外線遮蔽フィルムなどの近赤外線遮蔽超微粒子分散体、該近赤外線遮蔽超微粒子分散体を用いた日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法に関する。
 良好な可視光透過率を有し透明性を保ちながら日射透過率を低下させる近赤外線遮蔽技術として、これまでさまざまな技術が提案されてきた。なかでも、無機物である導電性微粒子を用いた近赤外線遮蔽技術は、その他の技術と比較して近赤外線遮蔽特性に優れ、低コストである上、電波透過性が有り、さらに耐候性が高い等のメリットがある。
 例えば特許文献1には、酸化錫微粉末の近赤外線遮蔽特性を応用した技術が記載され、酸化錫微粉末を分散状態で含有させた透明樹脂や、酸化錫微粉末を分散状態で含有させた透明合成樹脂をシートまたはフィルムに成形したものを、透明合成樹脂基材に積層してなる近赤外線遮蔽性合成樹脂成形品が提案されている。
 特許文献2には、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moといった金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、または、これらの混合物の近赤外線遮蔽特性を応用した技術が記載され、これらが媒体中に分散させた中間層を挟み込んだ合わせガラスが提案されている。
 また、出願人は特許文献3にて、窒化チタン微粒子やホウ化ランタン微粒子の近赤外線遮蔽特性を応用した技術を提案しており、これらのうちの少なくとも1種を、溶媒中や媒体中に分散させた選択透過膜用塗布液や選択透過膜を開示している。
 しかしながら出願人の検討によると、特許文献1~3に開示されている近赤外線遮蔽性合成樹脂成形品等の近赤外線遮蔽構造体は、いずれも高い可視光透過率が求められたときの近赤外線遮蔽特性が十分でなく、近赤外線遮蔽構造体としての機能が十分でないという問題点が存在した。例えば、特許文献1~3に開示されている近赤外線遮蔽構造体の持つ近赤外線遮蔽特性の具体的な数値の例として、JIS R 3106に基づいて算出される可視光透過率(本発明において、単に「可視光透過率」と記載する場合がある。)が70%のとき、同じくJIS R 3106に基づいて算出される日射透過率(本発明において、単に「日射透過率」と記載する場合がある。)は、50%を超えてしまっていた。
 そこで、出願人は特許文献4にて、一般式M(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子を近赤外線遮蔽微粒子として応用した技術を提案し、当該複合タングステン酸化物微粒子の製造方法と、当該複合タングステン酸化物が六方晶、正方晶、または立方晶の結晶構造を有する複合タングステン酸化物微粒子のいずれか1種類以上を含み、前記近赤外線遮蔽材料微粒子の粒子径が1nm以上800nm以下であることを特徴とする近赤外線遮蔽分散体を開示した。
 特許文献4に開示したように、前記一般式Mで表される複合タングステン酸化物微粒子を含む近赤外線遮蔽微粒子分散体は高い近赤外線遮蔽特性を示し、可視光透過率が70%のときの日射透過率は50%を下回るまでに改善された。とりわけM元素としてCsやRb、Tlなど特定の元素から選択される少なくとも1種類を採用し、結晶構造を六方晶とした複合タングステン酸化物微粒子を用いた近赤外線遮蔽微粒子分散体は卓越した近赤外線遮蔽特性を示し、可視光透過率が70%のときの日射透過率は37%を下回るまでに改善された。この成果を得て、当該近赤外線遮蔽微粒子分散体へハードコート処理等を加え、窓ガラスやプラズマディスプレイパネル、等の用途へ適用することが検討された。
 一方、これらの用途においては、近赤外線遮蔽特性と共に高い透明性(低いヘイズ値)が要求されているため、ヘイズ値を低下させることを目的として前記複合タングステン酸化物微粒子の粒子径を更に微細化する試みがなされ、これらの微粒子の微細化によりヘイズ値を低下させることが出来た。
 しかし、前記複合タングステン酸化物微粒子が分散された近赤外線遮蔽微粒子分散体においては、太陽光やスポットライト光、等が照射されたときに青白色に変色する現象(所謂、ブルーヘイズ現象)が確認された。この現象の為、複合タングステン酸化物微粒子を用いた近赤外線遮蔽微粒子分散体を車両等のフロントガラス等に用いた場合、太陽光を受けると青白く変色して視界不良となるため安全上問題となることが懸念された。また、建材用の窓ガラス等に用いた場合では当該ブルーヘイズ現象の発生により美観を損ねてしまい、プラズマディスプレイパネル等に用いた場合では当該ブルーヘイズ現象の発生によりコントラストが大きく低下し、鮮やかさや見易さを損ねてしまうという問題の発生が懸念された。
 さらに、出願人は特許文献5にて、特許文献4で開示した製造方法と同様の方法で製造した前記複合タングステン酸化物の粉末と溶媒と分散剤とを混合したスラリーを、イットリア安定化ジルコニアビーズと共に媒体攪拌ミルに投入し、所定粒度になるまで粉砕分散処理を行うことで、ブルーヘイズ現象を抑制した近赤外線遮蔽微粒子分散液および近赤外線遮蔽分散体等を開示した。
 しかしながら、特許文献5で製造される前記複合タングステン酸化物の粒子径は1~5μmと大きい。従って、ブルーヘイズ現象を抑制できる近赤外線遮蔽微粒子分散液を得る為には、媒体攪拌ミルを用いて前記複合タングステン酸化物を長時間粉砕し、粒子を微細化する必要があった。この長時間の粉砕工程は、前記近赤外線遮蔽微粒子分散液の生産性を著しく低下させていた。
 ここで、出願人は特許文献6にて、プラズマ反応を用いて製造される粒径100nm以下の複合タングステン酸化物超微粒子を提案した。この結果、初期粒径が小さな複合タングステン酸化物超微粒子を原料とすることで、長時間の粉砕処理を施す必要がなくなり、低コストかつ高い生産性をもって近赤外線遮蔽超微粒子分散液が製造可能となった。
 一方、特許文献7にもプラズマ反応を用いた複合タングステン酸化物超微粒子の製造方法が記載されている。
特開平2-136230号公報 特開平8-259279号公報 特開平11-181336号公報 国際公開番号WO2005/037932公報 特開2009-215487号公報 特開2010-265144号公報 特表2012-506463号公報
 しかしながら出願人のさらなる検討によると、特許文献6にて開示された方法で製造した複合タングステン酸化物超微粒子は、その結晶性が低い為、当該複合タングステン酸化物超微粒子を用いた分散液の近赤外線遮蔽特性は、十分なものではなかった。
 また、特許文献7に記載されているプラズマ反応を用いて製造された複合タングステン酸化物超微粒子は、複合タングステン酸化物超微粒子以外に二元酸化タングステン(即ち、実質的にタングステンおよび酸素からなる相を有する化合物。)、およびタングステン金属を含むものであった。この為、近赤外線遮蔽特性は十分なものではなかった。
 本発明は、上述の状況の下で成されたものであり、その解決しようとする課題は、可視光領域で透明性があり、優れた近赤外線遮蔽特性を有し、ブルーヘイズ現象が抑制され、高い生産性をもって製造可能な近赤外線遮蔽超微粒子分散体、該近赤外線遮蔽超微粒子分散体を用いた日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法を提供することである。
 本発明者らは、上記目的を達成するため鋭意研究を行った。
 そして、複合タングステン酸化物超微粒子のX線回折(本発明において「XRD」と記載する場合がある。)パターンにおいて、ピークトップ強度の比の値が所定の値である複合タングステン酸化物超微粒子を知見した。具体的には、シリコン粉末標準試料(NIST製、640c)の(220)面に係るXRDピーク強度の値を1としたときの、前記複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値が0.13以上である複合タングステン酸化物超微粒子である。
 当該複合タングステン酸化物超微粒子は、可視光領域で透明性があり、結晶性が高いことによって優れた近赤外線遮蔽特性を有していた。そして、当該複合タングステン酸化物超微粒子を含む分散液を高い生産性をもって製造可能な、汎用性のある複合タングステン酸化物超微粒子であった。
 さらに、当該複合タングステン酸化物超微粒子を用いた分散液において、複合タングステン酸化物超微粒子の分散粒子径が200nm以下であれば、ブルーヘイズ現象を抑制できることも知見した。
 そして当該複合タングステン酸化物超微粒子を固体媒体に分散させ、当該固体媒体を透明フィルム基材や透明ガラス基材といった透明基材の少なくとも一方の面にコーティング層として設けることにより、可視光領域で透明性があり優れた近赤外線遮蔽特性を有する赤外線遮蔽ガラス、赤外線遮蔽フィルムを得ることが出来ることに想到した。
 また、当該複合タングステン酸化物超微粒子を固体媒体に分散させてシート状、ボード状またはフィルム状に加工することで、可視光領域で透明性があり優れた近赤外線遮蔽特性を有するシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を得ることが出来ることに想到して本発明を完成した。
 すなわち、上述の課題を解決する第1の発明は、
 近赤外線遮蔽特性を有する超微粒子が固体媒体に分散された近赤外線遮蔽超微粒子分散体であって、
 前記超微粒子が複合タングステン酸化物超微粒子であり、シリコン粉末標準試料(NIST製、640c)の(220)面のXRDピーク強度の値を1としたとき、前記複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値が0.13以上であることを特徴とする近赤外線遮蔽超微粒子分散体である。
 第2の発明は、
 前記複合タングステン酸化物超微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物超微粒子であることを特徴とする、第1の発明に記載の近赤外線遮蔽超微粒子分散体である。
 第3の発明は、
 前記複合タングステン酸化物超微粒子の結晶子径が1nm以上200nm以下であることを特徴とする第1または第2の発明に記載の近赤外線遮蔽超微粒子分散体である。
 第4の発明は、
 前記複合タングステン酸化物超微粒子が、六方晶の結晶構造を含むことを特徴とする第1から第3の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体である。
 第5の発明は、
 前記複合タングステン酸化物超微粒子の揮発成分の含有率が、2.5質量%以下であることを特徴とする第1から5の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体である。
 第6の発明は、
 前記固体媒体が、媒体樹脂であることを特徴とする第1から第5の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体である。
 第7の発明は、
 前記媒体樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体樹脂、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかから選択される媒体樹脂であることを特徴とする第6の発明に記載の近赤外線遮蔽超微粒子分散体である。
 第8の発明は、
 前記媒体樹脂が、UV硬化性樹脂バインダーであることを特徴とする第6の発明に記載の近赤外線遮蔽超微粒子分散体である。
 第9の発明は、
 前記複合タングステン酸化物超微粒子を、0.001質量%以上80質量%以下含むことを特徴とする第1から第8の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体である。
 第10の発明は、
 前記近赤外線遮蔽超微粒子分散体が、シート状、ボード状またはフィルム状のいずれかとなっていることを特徴とする第1から第9の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体である。
 第11の発明は、
 透明基材上に、厚さ1μm以上10μm以下のコーティング層となって設けられていることを特徴とする第1から第10の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体である。
 第12の発明は、
 前記透明基材が、ポリエステルフィルムであることを特徴とする第11の発明に記載の近赤外線遮蔽超微粒子分散体である。
 第13の発明は、
 前記透明基材が、ガラスであることを特徴とする第11の発明に記載の近赤外線遮蔽超微粒子分散体である。
 第14の発明は、
 赤外線遮蔽合わせ構造体において、2枚以上の透明基材によって挟持された中間層を構成する日射遮蔽用中間膜であって、第1から第11の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体が用いられていることを特徴とする日射遮蔽用中間膜である。
 第15の発明は、
 2枚以上の透明基材と、当該2枚以上の透明基材に狭持された中間層とを備えた赤外線遮蔽合わせ構造体であって、
 前記中間層は1層以上の中間膜で構成され、
 前記中間膜の少なくとも1層が第14の発明に記載の日射遮蔽用中間膜であり、
 前記透明基材が、板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチックから選ばれるいずれかであることを特徴とする赤外線遮蔽合わせ構造体である。
 第16の発明は、
 近赤外線遮蔽特性を有する超微粒子が固体媒体に分散された近赤外線遮蔽超微粒子分散体の製造方法であって、
 前記近赤外線遮蔽特性を有する超微粒子として、シリコン粉末標準試料(NIST製、640c)の(220)面のXRDピーク強度の値を1としたとき、XRDピークトップ強度の比の値が0.13以上である複合タングステン酸化物超微粒子を、前記固体媒体に分散させることを特徴とする近赤外線遮蔽超微粒子分散体の製造方法である。
 第17の発明は、
 前記複合タングステン酸化物超微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物超微粒子であることを特徴とする、第16の発明に記載の近赤外線遮蔽超微粒子分散体の製造方法である。
 第18の発明は、
 前記複合タングステン酸化物超微粒子の分散粒子径が1nm以上200nm以下であることを特徴とする第16または第17の発明に記載の近赤外線遮蔽超微粒子分散体の製造方法である。
 第19の発明は、
 前記複合タングステン酸化物超微粒子が、六方晶の結晶構造を含むことを特徴とする第16から第18の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体の製造方法である。
 第20の発明は、
 前記複合タングステン酸化物超微粒子の揮発成分の含有率が、2.5質量%以下であることを特徴とする第16から第19の発明のいずれかに記載の近赤外線遮蔽超微粒子分散体の製造方法である。
 本発明によれば、可視光領域で透明性があり優れた赤外線遮蔽特性を有しブルーヘイズ現象が抑制され、高い生産性をもって製造出来る近赤外線遮蔽超微粒子分散体を得ることが出来る。
本発明に用いられる高周波プラズマ反応装置の概念図である。 実施例1に係る超微粒子のX線回折パターンである。 実施例1係る赤外線遮蔽ガラスの透過率のプロファイルである。
発明の実施の形態
 以下、本発明の実施の形態について、[a]複合タングステン酸化物超微粒子、[b]複合タングステン酸化物超微粒子の合成方法、[c]複合タングステン酸化物超微粒子の揮発成分とその乾燥処理方法、[d]複合タングステン酸化物超微粒子分散液、[e]近赤外線遮蔽超微粒子分散体、[f]近赤外線遮蔽超微粒子分散体の一例であるシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体、[g]近赤外線遮蔽超微粒子分散体の一例である赤外線遮蔽フィルム、赤外線遮蔽ガラス、[h]赤外線遮蔽合わせ構造体、の順で説明する。
[a]複合タングステン酸化物超微粒子
 本発明に係る複合タングステン酸化物超微粒子について、(1)XRDピークトップ強度の比、(2)組成、(3)結晶構造、(4)BET比表面積、(5)分散粒子径、(6)揮発成分、(7)まとめ、の順に説明する。
 (1)XRDピークトップ強度の比
 本発明に係る複合タングステン酸化物超微粒子は近赤外線遮蔽特性を有し、シリコン粉末標準試料(NIST製、640c)の(220)面に係るXRDピーク強度の値を1としたときの、前記複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値が0.13以上のものである。
 上述した複合タングステン酸化物超微粒子のXRDピークトップ強度の測定には、粉末X線回折法を用いる。このとき、複合タングステン酸化物超微粒子の試料間において、測定結果に客観的な定量性を持たせるため、標準試料を定めて、当該標準試料のピーク強度を測定し、当該標準試料のピーク強度の値に対する当該超微粒子試料のXRDピークトップ強度の比の値をもって、各超微粒子試料のXRDピークトップ強度を表記することとした。
 ここで標準試料は、当業界にて普遍性のあるシリコン粉末標準試料(NIST製、640c)を使用することとし、複合タングステン酸化物超微粒子のXRDピークと重なり合わない、前記シリコン粉末標準試料における(220)面を基準とすることとした。
 さらに客観的な定量性を担保するため、その他の測定条件も常に一定にすることとした。
 まず、深さ1.0mmの試料ホルダーへ、X線回折測定の際における公知の操作によって超微粒子試料を充填する。具体的には、超微粒子試料において優先方位(結晶の配向)が生じるのを回避する為、ランダム且つ徐々に充填し、尚且つムラなく出来るだけ密に充填することが好ましい。
 X線源として、陽極のターゲット材質がCuであるX線管球を45kV/40mAの出力設定で使用し、ステップスキャンモード(ステップサイズ:0.0165°(2θ)および計数時間:0.022秒/ステップ)のθ-2θの粉末X線回折法で測定することとしたものである。
 このとき、X線管球の使用時間によってXRDピーク強度は変化するので、X線管球の使用時間は試料間で殆ど同じであることが望ましい。客観的な定量性を確保するため、X線管球使用時間の試料間の差は、最大でもX線管球の予測寿命の20分の1以下に収めることが必要である。より望ましい測定方法として、複合タングステン酸化物超微粒子のX線回折パターンの測定毎に、シリコン粉末標準試料の測定を実施して、前記XRDピークトップ強度の比を算出する方法が挙げられる。本発明ではこの測定方法を用いた。市販のX線装置のX線管球予測寿命は数千時間以上で且つ1試料当たりの測定時間は数時間以下のものが殆どであるため、上述の望ましい測定方法を実施することで、X線管球使用時間によるXRDピークトップ強度の比への影響を無視できるほど小さくすることが出来る。
 また、X線管球の温度を一定とするため、X線管球用の冷却水温度も一定とすることが望ましい。
 上述した複合タングステン酸化物超微粒子のXRDピークトップ強度は、当該超微粒子の結晶性と密接な関係があり、さらには当該超微粒子における自由電子密度と密接な関係がある。本発明者らは、当該XRDピークトップ強度が、当該複合タングステン酸化物超微粒子の近赤外線遮蔽特性に大きく影響を及ぼすことを知見したものである。具体的には、当該XRDピークトップ強度比の値が0.13以上をとることにより、当該超微粒子における自由電子密度が担保され、所望の近赤外線遮蔽特性が得られることを知見したものである。尚、当該XRDピークトップ強度比の値は0.13以上であれば良く、好ましくは0.7以下である。
 尚、XRDピークトップ強度とは、X線回折パターンにおいて最もピークカウントが高い2θにおけるピーク強度である。そして、六方晶のCs複合タングステン酸化物やRb複合タングステン酸化物では、X線回折パターンにおけるピークカウントの2θは、25°~31°の範囲に出現する。
 前記複合タングステン酸化物超微粒子のXRDピークトップ強度について、異なる観点からも説明する。
 前記複合タングステン酸化物超微粒子のXRDピークトップ強度比の値が0.13以上であることは、異相が殆ど含まれていない結晶性の良い複合タングステン酸化物超微粒子が得られていることを表す。即ち、得られる複合タングステン酸化物超微粒子がアモルファス化していないと考えられる。この結果、可視光を透過する有機溶媒などの液体媒体や、可視光を透過する樹脂などの固体媒体へ、当該異相が殆ど含まれていない複合タングステン酸化物超微粒子を分散させることにより、近赤外線遮蔽特性が十分得られると考えられる。尚、本発明において異相とは、複合タングステン酸化物以外の化合物の相をいう。また、XRDピークトップ強度を測定する際に得られるXRDパターンを解析することで、複合タングステン酸化物超微粒子の結晶構造や結晶子径を求めることが出来る。
 (2)組成
 本発明に係る複合タングステン酸化物超微粒子は、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される、複合タングステン酸化物超微粒子であることが好ましい。
 当該一般式MxWyOzで示される複合タングステン酸化物超微粒子について説明する。
 一般式MxWyOz中のM元素、x、y、zおよびその結晶構造は、複合タングステン酸化物超微粒子の自由電子密度と密接な関係があり、近赤外線遮蔽特性に大きな影響を及ぼす。
 一般に、三酸化タングステン(WO)中には有効な自由電子が存在しないため近赤外線遮蔽特性が低い。
 ここで本発明者らは、当該タングステン酸化物へ、M元素(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素を添加して複合タングステン酸化物とすることで、当該複合タングステン酸化物中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線遮蔽材料として有効なものとなり、且つ、当該複合タングステン酸化物は化学的に安定な状態を保ち、耐候性に優れた近赤外線遮蔽材料として有効なものとなることを知見したものである。さらに、M元素は、Cs、Rb、K、Tl,Ba、Cu、Al、Mn、Inが好ましいこと、なかでも、M元素がCs、Rbであると、当該複合タングステン酸化物が六方晶構造を取り易くなり、可視光線を透過し近赤外線を吸収し遮蔽することから、後述する理由により特に好ましいことも知見したものである。
 ここで、M元素の添加量を示すxの値についての本発明者らの知見を説明する。
 x/yの値が0.001以上であれば、十分な量の自由電子が生成され目的とする近赤外線遮蔽特性を得ることが出来る。そして、M元素の添加量が多いほど、自由電子の供給量が増加し、近赤外線遮蔽特性も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1以下であれば、複合タングステン超微粒子に不純物相が生成されるのを回避できるので好ましい。
 次に、酸素量の制御を示すzの値についての本発明者らの知見を説明する。
 一般式MxWyOzで示される複合タングステン酸化物超微粒子において、z/yの値は2.0<z/y≦3.0であることが好ましく、より好ましくは2.2≦z/y≦3.0であり、さらに好ましくは2.6≦z/y≦3.0、最も好ましくは2.7≦z/y≦3.0である。このz/yの値が2.0以上であれば、当該複合タングステン酸化物中に目的以外の化合物であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので、有効な赤外線遮蔽材料として適用できるためである。一方、このz/yの値が3.0以下であれば当該タングステン酸化物中に必要とされる量の自由電子が生成され、効率よい赤外線遮蔽材料となる。
(3)結晶構造
 複合タングステン酸化物超微粒子は、六方晶以外に、正方晶、立方晶のタングステンブロンズの構造をとるが、いずれの構造をとるときも赤外線遮蔽材料として有効である。しかしながら、当該複合タングステン酸化物超微粒子がとる結晶構造によって、近赤外線領域の吸収位置が変化する傾向がある。即ち、近赤外線領域の吸収位置は、立方晶よりも正方晶のときが長波長側に移動し、六方晶のときは正方晶のときよりも、さらに長波長側へ移動する傾向がある。また、当該吸収位置の変動に付随して、可視光線領域の吸収は六方晶が最も少なく、次に正方晶であり、立方晶はこの中では最も大きい。
 以上の知見から、可視光領域の光をより透過させ、赤外線領域の光をより遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。複合タングステン酸化物超微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。
 即ち、複合タングステン酸化物において、XRDピークトップ強度比が上述した所定値を満たし、六方晶のタングステンブロンズであれば、優れた光学的特性が発揮される。また、複合タングステン酸化物超微粒子が、マグネリ相と呼ばれるWO2.72と同様の単斜晶の結晶構造をとっている場合や、斜方晶の結晶構造をとっている場合も、赤外線吸収に優れ、近外線遮蔽材料として有効なことがある。
 以上の知見より、六方晶の結晶構造を有する複合タングステン酸化物超微粒子が均一な結晶構造を有するとき、添加M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.29≦x/y≦0.39である。理論的にはz/y=3の時、x/yの値が0.33となることで、添加M元素が六角形の空隙の全てに配置されると考えられる。
 さらに、複合タングステン酸化物超微粒子においては、体積比率が50%以上である単結晶であることが望ましく、別な言い方をすればアモルファス相の体積比率が50%未満である単結晶であることが好ましい。
 複合タングステン酸化物超微粒子が、アモルファス相の体積比率50%未満である単結晶であると、XRDピークトップ強度を維持しながら結晶子径を200nm以下にすることが出来る。複合タングステン酸化物超微粒子の結晶子径を200nm以下とすることで、その分散粒子径を1nm以上200nm以下とすることが出来る。
 これに対し、複合タングステン超微粒子において、分散粒子径が1nm以上200nm以下ではあるが、アモルファス相が体積比率で50%以上存在する場合や、多結晶の場合、当該複合タングステン超微粒子のXRDピークトップ強度比の値が0.13未満となり、結果的に、近赤外線吸収特性が不十分で近赤外線遮蔽特性を発現が不十分となる場合がある。
 そして、複合タングステン酸化物超微粒子の結晶子径が200nm以下10nm以上であることが、より好ましい。結晶子径が200nm以下10nm以上の範囲であれば、XRDピークトップ強度比の値が0.13を超え、さらに優れた赤外線遮蔽特性が発揮されるからである。
 尚、後述する解砕、粉砕または分散された後の複合タングステン酸化物超微粒子分散液中の複合タングステン酸化物超微粒子のX線回折パターンは、近赤外線遮蔽超微粒子分散体や日射遮蔽合わせ構造体中に含まれる複合タングステン酸化物超微粒子のX線回折パターンにおいても維持される。
 結果的に、近赤外線遮蔽超微粒子分散体に含まれる複合タングステン酸化物超微粒子のXRDパターン、XRDピークトップ強度、結晶子径など結晶の状態が、本発明で用いることができる複合タングステン酸化物超微粒子の結晶の状態であれば、本発明の効果は発揮される。
 尚、複合タングステン酸化物超微粒子が単結晶であることは、透過型電子顕微鏡等の電子顕微鏡像において、各微粒子内部に結晶粒界が観察されず、一様な格子縞のみが観察されることから確認することができる。また、複合タングステン酸化物超微粒子においてアモルファス相の体積比率が50%未満であることは、同じく透過型電子顕微鏡像において、粒子全体に一様な格子縞が観察され、格子縞が不明瞭な箇所が殆ど観察されないことから確認することができる。アモルファス相は粒子外周部に存在する場合が多いので、粒子外周部に着目することで、アモルファス相の体積比率を算出可能な場合が多い。例えば、真球状の複合タングステン酸化物超微粒子において、格子縞が不明瞭なアモルファス相が当該粒子外周部に層状に存在する場合、その粒子径の20%以下の厚さであれば、当該複合タングステン酸化物超微粒子におけるアモルファス相の体積比率は、50%未満である。
 一方、複合タングステン酸化物超微粒子が樹脂等の内部で分散し、近赤外線遮蔽超微粒子分散体となっている場合、当該分散している複合タングステン酸化物超微粒子の平均粒子径から結晶子径を引いた差の値が当該平均粒子径の20%以下であれば、当該複合タングステン酸化物超微粒子は、アモルファス相の体積比率50%未満の単結晶であると言える。
 ここで、複合タングステン酸化物超微粒子の平均粒子径は、複合タングステン酸化物超微粒子分散体の透過型電子顕微鏡像から画像処理装置を用いて複合タングステン酸化物超微粒子100個の粒子径を測定し、その平均値を算出することで求めることが出来る。そして、複合タングステン酸化物超微粒子分散体に分散された複合タングステン酸化物超微粒子の平均粒子径と結晶子径との差が20%以下になるように、複合タングステン酸化物超微粒子の合成工程、粉砕工程、分散工程を、製造設備に応じて適宜調整すればよい。
(4)BET比表面積
 本発明に係る複合タングステン酸化物超微粒子のBET比表面積は、当該超微粒子の粒度分布に密接な関係があるが、それと共に、該超微粒子を原料とする近赤外線遮蔽超微粒子分散液の製造コストと生産性や、当該超微粒子自体の近赤外線遮蔽特性や光着色を抑制する耐光性に大きく影響する。
 当該超微粒子のBET比表面積が小さいことは、該超微粒子の結晶子径が大きいことを表している。よって、該超微粒子のBET比表面積が所定値以上であれば、可視光領域で透明性があり、上述のブルーヘイズ現象を抑制できる近赤外線遮蔽超微粒子分散液を製造するためには、媒体攪拌ミルで長時間超微粒子を粉砕して粒子を微細化する必要が無く、前記近赤外線遮蔽超微粒子分散液の製造コスト低減と生産性向上を実現できる。
 一方、当該超微粒子のBET比表面積が所定値以下、例えば、200m/g以下であることは、粒子形状が真球状と仮定したときのBET粒径が2nm以上になることを示しており、近赤外線遮蔽特性に寄与しない結晶子径1nm以下の超微粒子が殆ど存在していないことを意味している。よって、超微粒子のBET比表面積が所定値以下である場合は、その超微粒子の近赤外線遮蔽特性や耐光性が担保される。
 尤も、超微粒子のBET比表面積が200m/g以下であることに加え、上述したXRDピークトップ強度の比の値が所定値以上である場合に、近赤外線遮蔽特性に寄与しない結晶子径1nm以下の超微粒子が殆ど存在せず、結晶性の良い超微粒子が存在することになるので、超微粒子の近赤外線遮蔽特性や耐光性が担保されると考えられる。
 上述した複合タングステン酸化物超微粒子のBET比表面積の測定には、吸着に用いるガスとして、窒素ガス、アルゴンガス、クリプトンガス、キセノンガスなどが使用される。尤も、本発明に係る複合タングステン酸化物超微粒子のように、測定試料が粉体で、比表面積が0.1m/g以上の場合は、比較的取扱いに容易で低コストな窒素ガスを使用することが望ましい。複合タングステン酸化物超微粒子のBET比表面積は、30.0m/g以上120.0m/g以下とするのが良く、より好ましくは、30.0m/g以上90.0m/g以下、さらに好ましくは35.0m/g以上70.0m/g以下とするのが良い。複合タングステン酸化物超微粒子のBET比表面積は、複合タングステン酸化物超微粒子分散液を得る際の粉砕分散前後においても、上述の値であることが望ましい。
(5)分散粒子径
 複合タングステン酸化物超微粒子の分散粒子径は、200nm以下であることが好ましく、さらに好ましくは、分散粒子径は、200nm以下10nm以上である。複合タングステン酸化物超微粒子の分散粒子径が、200nm以下であることが好ましいことは、複合タングステン酸化物超微粒子分散液中の複合タングステン酸化物超微粒子においても同様である。これは、当該複合タングステン酸化物超微粒子の結晶子径が、最大でも200nm以下であることが好ましいことに拠る。一方、当該複合タングステン酸化物超微粒子の近赤外線吸収特性の観点から、結晶粒径は1nm以上であることが好ましく、より好ましくは10nm以上である。
 (6)揮発成分
 本発明に係る複合タングステン酸化物超微粒子は、加熱により揮発する成分(本発明において「揮発成分」と記載する場合がある。)を含む場合がある。当該揮発成分は、複合タングステン酸化物超微粒子が、保管雰囲気や大気中に暴露された際や、合成工程途中において吸着する物質に起因するものである。ここで、当該揮発成分の具体例としては、水である場合や、後述する分散液の溶媒である場合がある。そして、例えば150℃またはそれ以下の加熱により、当該複合タングステン酸化物超微粒子から揮発する成分である。
 複合タングステン酸化物超微粒子における揮発成分とその含有率とは、上述したように当該超微粒子を大気等に暴露した際に吸着する水分量や、当該超微粒子の乾燥工程における溶媒残存量と関係している。そして、当該揮発成分とその含有率は、当該超微粒子を樹脂(媒体樹脂)等に分散させる際の分散性に対して、大きく影響する場合がある。
 例えば、後述する近赤外線遮蔽超微粒子分散体に使用する樹脂と、当該超微粒子に吸着されている揮発成分との相溶性が悪い場合であって、さらに当該超微粒子において当該揮発成分含有率が高い場合、製造される近赤外線遮蔽超微粒子分散体のヘイズ発生(透明性悪化)の原因となる場合がある。また、製造される当該近赤外線遮蔽超微粒子分散体が、長期間室外に設置され太陽光や風雨に暴露されたときに、複合タングステン酸化物超微粒子が近赤外線遮蔽超微粒子分散体外へと脱離したり、膜の剥がれが生じたりする場合がある。これは、当該超微粒子と樹脂との相溶性悪化が、製造される当該近赤外線遮蔽超微粒子分散体の劣化の原因となるからである。つまり、揮発成分含有率が所定量以下の複合タングステン酸化物超微粒子は、分散系に用いられる分散媒との相性によって、当該超微粒子の分散が良好であるか否かが左右されないことを意味する。従って、本発明に係る複合タングステン酸化物超微粒子において揮発成分含有率が所定量以下であれば、広い汎用性が発揮される。
 本発明者らの検討によれば、複合タングステン酸化物超微粒子において、揮発成分の含有率が2.5質量%以下であれば、当該超微粒子は殆どの分散系に用いられる分散媒に対して分散可能であり、汎用性のある複合タングステン酸化物超微粒子となることを知見した。
 一方、当該揮発成分の含有率の下限には、特に制限はないことも知見した。
 この結果、揮発成分の含有率が2.5質量%以下である超微粒子が過度に二次凝集していなければ、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサーなどの混合機、及び、バンバリーミキサー、ニーダー、ロール、一軸押出機、二軸押出機などの混練機で、均一に混合、混錬(溶融混合も含む)することにより、当該超微粒子を媒体樹脂等に分散可能となる。
 複合タングステン酸化物超微粒子における揮発成分の含有率は、熱分析により測定できる。具体的には、複合タングステン酸化物超微粒子が熱分解する温度より低く、且つ、揮発成分が揮発するよりも高い温度に、複合タングステン酸化物超微粒子試料を保持して重量減少を測定すればよい。また、揮発成分を特定する場合は、ガス質量分析機を併用して当該揮発成分を分析すればよい。
 (7)まとめ
 以上、詳細に説明した、複合タングステン酸化物超微粒子のXRDピークトップ強度やBET比表面積は、所定の製造条件によって制御可能である。具体的には、熱プラズマ法や固相反応法などで該超微粒子が生成される際の温度(焼成温度)、生成時間(焼成時間)、生成雰囲気(焼成雰囲気)、前駆体原料の形態、生成後のアニール処理、不純物元素のドープなどの製造条件の適宜な設定によって制御可能である。
 一方、複合タングステン酸化物超微粒子の揮発成分の含有率は、当該超微粒子の保存方法や保存雰囲気、当該超微粒子分散液を乾燥させる際の温度、乾燥時間、乾燥方法などの製造条件を適宜に設定することによって制御可能である。尚、複合タングステン酸化物超微粒子の揮発成分の含有率は、複合タングステン酸化物超微粒子の結晶構造や、後述する熱プラズマ法や固相反応等の複合タングステン酸化物超微粒子の合成方法には依存しない。
[b]複合タングステン酸化物超微粒子の合成方法
 本発明に係る複合タングステン酸化物超微粒子の合成方法について説明する。
 本発明に係る複合タングステン酸化物超微粒子の合成方法としては、熱プラズマ中にタングステン化合物出発原料を投入する熱プラズマ法や、タングステン化合物出発原料を還元性ガス雰囲気中で熱処理する固相反応法が挙げられる。熱プラズマ法や固相反応法で合成された複合タングステン酸化物超微粒子は、分散処理または粉砕・分散処理される。
 以下、(1)熱プラズマ法、(2)固相反応法、(3)合成された複合タングステン酸化物超微粒子、の順に説明する。
 (1)熱プラズマ法
 熱プラズマ法について(i)熱プラズマ法に用いる原料、(ii)熱プラズマ法とその条件、の順に説明する。
  (i)熱プラズマ法に用いる原料
 本発明に係る複合タングステン酸化物超微粒子を熱プラズマ法で合成する際には、タングステン化合物と、M元素化合物との混合粉体を原料として用いることができる。
 タングステン化合物としては、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解した後溶媒を蒸発させたタングステンの水和物、から選ばれる1種以上であることが好ましい。
 また、M元素化合物としては、M元素の酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、から選ばれる1種以上を用いることが好ましい。
 上述したタングステン化合物と、上述したM元素化合物とを含む水溶液とを、M元素とW元素の比が、MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.0、2.0<z/y≦3.0)のM元素とW元素の比となるように湿式混合する。そして、得られた混合液を乾燥することによって、M元素化合物とタングステン化合物との混合粉体が得られる、そして、当該混合粉体は熱プラズマ法の原料とすることが出来る。
 また、当該混合粉体を、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下にて、1段階目の焼成によって得られる複合タングステン酸化物を、熱プラズマ法の原料とすることもできる。他にも、1段階目で不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成し、当該1段階目の焼成物を、2段階目にて不活性ガス雰囲気下で焼成する、という2段階の焼成によって得られる複合タングステン酸化物を、熱プラズマ法の原料とすることも出来る。
  (ii)熱プラズマ法とその条件
 本発明で用いる熱プラズマとして、例えば、直流アークプラズマ、高周波プラズマ、マイクロ波プラズマ、低周波交流プラズマ、のいずれか、または、これらのプラズマの重畳したもの、または、直流プラズマに磁場を印加した電気的な方法により生成するプラズマ、大出力レーザーの照射により生成するプラズマ、大出力電子ビームやイオンビームにより生成するプラズマ、が適用出来る。尤も、いずれの熱プラズマを用いるにしても、10000~15000Kの高温部を有する熱プラズマであり、特に、超微粒子の生成時間を制御できるプラズマであることが好ましい。
 当該高温部を有する熱プラズマ中に供給された原料は、当該高温部において瞬時に蒸発する。そして、当該蒸発した原料は、プラズマ尾炎部に至る過程で凝縮し、プラズマ火炎外で急冷凝固されて、複合タングステン酸化物超微粒子を生成する。
 高周波プラズマ反応装置を用いる場合を例として、図1を参照しながら合成方法について説明する。
 先ず、真空排気装置により、水冷石英二重管内と反応容器6内で構成される反応系内を約0.1Pa(約0.001Torr)まで真空引きする。反応系内を真空引きした後、今度は、当該反応系内をアルゴンガスで満たし、1気圧のアルゴンガス流通系とする。
 その後、反応容器内にプラズマガスとして、アルゴンガス、アルゴンとヘリウムの混合ガス(Ar-He混合ガス)、またはアルゴンと窒素の混合ガス(Ar-N混合ガス)から選択されるいずれかのガスを30~45L/minの流量で導入する。一方、プラズマ領域のすぐ外側に流すシースガスとして、Ar-He混合ガスを60~70L/minの流量で導入する。
 そして、高周波コイル2に交流電流をかけて、高周波電磁場(周波数4MHz)により熱プラズマを発生させる。このとき、プレート電力は30~40kWとする。
 原料粉末供給ノズル5より、上記合成方法で得たM元素化合物とタングステン化合物との混合粉体、または、複合タングステン酸化物粒子酸化物の原料を、ガス供給装置11から供給する6~98L/minのアルゴンガスをキャリアガスとして、供給速度25~50g/minの割合で,熱プラズマ中に導入して所定時間反応を行う。反応後、生成した複合タングステン酸化物超微粒子は,フィルター8に堆積するので、これを回収する。
 キャリアガス流量と原料供給速度は、超微粒子の生成時間に大きく影響する。そこで、キャリアガス流量を6L/min以上9L/min以下とし、原料供給速度を25~50g/minとするのが好ましい。
 また、プラズマガス流量を30L/min以上45L/min以下、シースガス流量を60L/min以上70L/min以下とすることが好ましい。プラズマガスは10000~15000Kの高温部を有する熱プラズマ領域を保つ機能があり、シースガスは反応容器内における石英トーチの内壁面を冷やし、石英トーチの溶融を防止する機能がある。それと同時に、プラズマガスとシースガスはプラズマ領域の形状に影響を及ぼすため、それらのガスの流量はプラズマ領域の形状制御に重要なパラメータとなる。プラズマガスとシースガス流量を上げるほどプラズマ領域の形状がガスの流れ方向に延び、プラズマ尾炎部の温度勾配が緩やかなるので、生成される超微粒子の生成時間を長くし、結晶性の高い超微粒子を生成できるようになる。逆に、プラズマガスとシースガス流量を下げるほどプラズマ領域の形状がガスの流れ方向に縮み、プラズマ尾炎部の温度勾配が急になるので、生成される超微粒子の生成時間を短くし、BET比表面積の大きい超微粒子を生成できるようになる。これにより本発明に係る複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値を所定の値に設定することが出来る。
 熱プラズマ法で合成し得られる複合タングステン酸化物が、その結晶子径が200nmを超える場合や、熱プラズマ法で合成し得られる複合タングステン酸化物から得られる複合タングステン酸化物超微粒子分散液中の複合タングステン酸化物の分散粒子径が200nmを超える場合は、後述する、粉砕・分散処理を行うことができる。熱プラズマ法で複合タングステン酸化物を合成する場合は、そのプラズマ条件や、その後の粉砕・分散処理条件を適宜選択して、XRDピークトップ強度比の値が0.13以上となるようして、近赤外線遮蔽微粒子分散体中の複合タングステン酸化物超微粒子の平均粒子径と結晶子径の差が20%以下となるようにすれば、本発明の効果が発揮される。
 (2)固相反応法
 固相反応法について(i)固相反応法に用いる原料、(ii)固相反応法における焼成とその条件、の順に説明する。
  (i)固相反応法に用いる原料
 本発明に係る複合タングステン酸化物超微粒子を固相反応法で合成する際には、原料としてタングステン化合物およびM元素化合物を用いる。
 タングステン化合物は、タングステン酸(HWO)、タングステン酸アンモニウム、六塩化タングステン、アルコールに溶解した六塩化タングステンに水を添加して加水分解した後、溶媒を蒸発させたタングステンの水和物、から選ばれる1種以上であることが好ましい。
 また、より好ましい実施形態である一般式MxWyOz(但し、Mは、Cs、Rb、K、Tl、Baから選択される1種類以上の元素、0.001≦x/y≦1、2.0<z/y≦3.0)で示される複合タングステン酸化物超微粒子の原料の製造に用いるM元素化合物には、M元素の酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、から選ばれる1種以上であることが好ましい。
 また、本発明に係る複合タングステン酸化物超微粒子は、Si、Al、Zrから選ばれる1種以上の不純物元素を含有する化合物(本発明において「不純物元素化合物」と記載する場合がある。)を原料として含んでもよい。当該不純物元素化合物は、後の焼成工程において複合タングステン化合物と反応せず、複合タングステン酸化物の結晶成長を抑制して、結晶の粗大化を防ぐ働きをするものである。不純物元素を含む化合物としては、酸化物、水酸化物、硝酸塩、硫酸塩、塩化物、炭酸塩、から選ばれる1種以上であることが好ましく、粒径が500nm以下のコロイダルシリカやコロイダルアルミナが特に好ましい。
 上記タングステン化合物と、上記M元素化合物を含む水溶液とを、M元素とW元素の比が、MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.0、2.0<z/y≦3.0)のM元素とW元素の比となるように湿式混合する。不純物元素化合物を原料として含有する場合は、不純物元素化合物が0.5質量%以下になるように湿式混合する。そして、得られた混合液を乾燥することによって、M元素化合物とタングステン化合物との混合粉体、もしくは不純物元素化合物を含むM元素化合物とタングステン化合物との混合粉体が得られる。
  (ii)固相反応法における焼成とその条件
 当該湿式混合で製造したM元素化合物とタングステン化合物との混合粉体、もしくは不純物元素化合物を含むM元素化合物とタングステン化合物との混合粉体を、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下、1段階で焼成する。このとき、焼成温度は複合タングステン酸化物超微粒子が結晶化し始める温度に近いことが好ましい。具体的には焼成温度が1000℃以下であることが好ましく、800℃以下であることがより好ましく、800℃以下500℃以上の温度範囲がさらに好ましい。この焼成温度の制御により、本発明に係る複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値を所定の値に設定することが出来る。
 尤も、当該複合タングステン酸化物の合成において、前記タングステン化合物に替えて、三酸化タングステンを用いても良い。
 (3)合成された複合タングステン酸化物超微粒子
 熱プラズマ法や固相反応法による合成法で得られた複合タングステン酸化物超微粒子を用いて、後述する複合タングステン酸化物超微粒子分散液を製造したとき、当該分散液に含有されている超微粒子の分散粒子径が200nmを超える場合がある。このような場合は、後述する複合タングステン酸化物超微粒子分散液を製造する工程において粉砕・分散処理の程度を制御すればよい。そして、粉砕・分散処理を経て得られた複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値が、本発明の範囲を実現できていれば、本発明に係る複合タングステン酸化物超微粒子やその分散液から得られる複合タングステン酸化物超微粒子分散体は、優れた近赤外線遮蔽特性を発揮する。
[c]複合タングステン酸化物超微粒子の揮発成分とその乾燥処理方法
 上述したように、本発明に係る複合タングステン酸化物超微粒子は、揮発成分を含む場合があるが、当該揮発成分の含有率は2.5質量%以下であることが好ましい。しかし、複合タングステン酸化物超微粒子が大気中に暴露されるなどして、揮発成分の含有率が2.5質量%を超えた場合は、乾燥処理により当該揮発成分の含有率を低減させることが出来る。
 具体的には、上述の方法で合成された複合タングステン酸化物を、粉砕・分散処理して微粒化し、複合タングステン酸化物超微粒子分散液を製造する工程(粉砕・分散処理工程)と、製造された複合タングステン酸化物超微粒子分散液を乾燥処理して溶媒を除去する工程(乾燥工程)とを経ることで、本発明に係る複合タングステン酸化物超微粒子を製造することができる。
 粉砕分散工程に関しては、後述する「[d]複合タングステン酸化物超微粒子分散液」の項目で詳細に記述するため、ここでは乾燥処理の工程について説明する。
 当該乾燥処理の工程は、後述する粉砕分散工程で得られる複合タングステン酸化物超微粒子分散液を、乾燥処理して当該分散液中の揮発成分を除去し、本発明に係る複合タングステン酸化物超微粒子を得るものである。
 乾燥処理の設備としては、加熱および/または減圧が可能で、当該超微粒子の混合や回収がし易いという観点から、大気乾燥機、万能混合機、リボン式混合機、真空流動乾燥機、振動流動乾燥機、凍結乾燥機、リボコーン、ロータリーキルン、噴霧乾燥機、パルコン乾燥機、等が好ましいが、これらに限定されない。
 以下、その一例として、(1)大気乾燥機による乾燥処理、(2)真空流動乾燥機による乾燥処理、(3)噴霧乾燥機による乾燥処理、について説明する。以下、それぞれの乾燥処理について順に説明する。
 (1)大気乾燥機による乾燥処理
 後述する方法で得られた複合タングステン酸化物超微粒子分散液を、大気乾燥機によって乾燥処理して当該分散液中の揮発成分を除去する処理方法である。この場合、複合タングステン酸化物超微粒子から当該揮発成分が揮発するよりも高い温度であって、元素Mが脱離しない温度で乾燥処理することが望ましく、150℃以下であることが望ましい。
 当該大気乾燥機により、乾燥処理して製造した複合タングステン酸化物超微粒子は、弱い二次凝集体となっている。この状態でも、当該複合タングステン酸化物超微粒子を樹脂等に分散させることは可能であるが、より分散し易くするために、当該超微粒子を擂潰機等によって解砕することも好ましい構成である。
 (2)真空流動乾燥機による乾燥処理
 真空流動乾燥機による乾燥処理を行うことで、複合タングステン酸化物超微粒子分散液中の揮発成分を除去する処理方法である。当該真空流動乾燥機では、減圧雰囲気下で乾燥と解砕の処理を同時に行うため、乾燥速度が速い上に、上述した大気乾燥機での乾燥処理品に見られるような凝集体を形成しない。また、減圧雰囲気下での乾燥のため、比較的低温でも揮発成分を除去することができ、残存する揮発成分量も限りなく少なくすることができる。
 乾燥温度は複合タングステン酸化物超微粒子から元素Mが脱離しない温度で乾燥処理することが望ましく、当該揮発成分が揮発するよりも高い温度であって、150℃以下であることが望ましい。
 (3)噴霧乾燥機による乾燥処理
 噴霧乾燥機による乾燥処理を行うことで、複合タングステン酸化物超微粒子分散液の揮発成分を除去する処理方法である。当該噴霧乾燥機では、乾燥処理における揮発成分除去の際に、揮発成分の表面力に起因する二次凝集が発生し難い。従って、解砕処理を施さずとも二次凝集していない複合タングステン酸化物超微粒子が得られる場合が多い。
 上述した(1)~(3)に係る乾燥処理を施した複合タングステン酸化物超微粒子を、適宜な方法で樹脂等に分散させることで、高い可視光透過率と、赤外線吸収機能の発現による低い日射透過率を有しながら、ヘイズ値が低いという光学特性を有する近赤外線遮蔽材料微粒子分散体である複合タングステン酸化物超微粒子分散体を形成することができる。
[d]複合タングステン酸化物超微粒子分散液
 近赤外線遮蔽超微粒子分散体を製造する為の、複合タングステン酸化物超微粒子分散液について説明する。
 複合タングステン酸化物超微粒子分散液は、上記合成方法で得られた複合タングステン酸化物超微粒子と、水、有機溶媒、液状樹脂、プラスチック用の液状可塑剤、高分子単量体またはこれらの混合物から選択される混合スラリーの液状媒体、および適量の分散剤、カップリング剤、界面活性剤等を、媒体攪拌ミルで粉砕、分散させたものである。
 そして、当該溶媒中における当該微粒子の分散状態が良好で、その分散粒子径が1~200nmであることを特徴とする。また、該複合タングステン酸化物超微粒子分散液に含有されている複合タングステン酸化物超微粒子の含有量が、0.01質量%以上80質量%以下であることが好ましい。
 以下、本発明に係る複合タングステン酸化物超微粒子分散液について、(1)溶媒、(2)分散剤、(3)分散方法、(4)分散粒子径、(5)バインダー、その他の添加剤、の順に説明する。
 (1)溶媒
 複合タングステン酸化物超微粒子分散液に用いられる液状溶媒は特に限定されるものではなく、複合タングステン酸化物超微粒子分散液の塗布条件、塗布環境、および、適宜添加される無機バインダーや樹脂バインダーなどに合わせて適宜選択すればよい。例えば、液状溶媒は、水、有機溶媒、油脂、液状樹脂、媒体樹脂用の液状可塑剤、高分子単量体、または、これらの混合物などである。
 ここで、有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどが使用可能である。そして、これらの有機溶媒中でも、特に、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチルなどが好ましい。
 油脂としては、植物油脂または植物由来油脂が好ましい。植物油としては、アマニ油、ヒマワリ油、桐油、エノ油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油、ケシ油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が用いられる。植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などが用いられる。また、市販の石油系溶剤も油脂として用いることができ、アイソパーE、エクソールHexane、エクソールHeptane、エクソールE、エクソールD30、エクソールD40、エクソールD60、エクソールD80、エクソールD95、エクソールD110、エクソールD130(以上、エクソンモービル製)等を挙げることができる。
 媒体樹脂用の液状可塑剤としては、有機酸エステル系やリン酸エステル系等に代表される、公知の液状可塑剤を用いることができる。
 可塑性を備えた近赤外線遮蔽超微粒子分散体を製造する為に用いる複合タングステン酸化物超微粒子分散液においては、前記液状可塑剤を液状媒体とすることで、近赤外線遮蔽超微粒子分散体の可塑性を向上させることができるからである。そして、得られた可塑性を備えた近赤外線遮蔽超微粒子分散体を、例えば2枚以上の少なくとも可視光性を透過する透明基材の間に挟み込んで合わせ構造体を構成することができる。
 ここで、液状可塑剤としては、例えば一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられ、いずれも室温で液状であるものが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 多価アルコールと脂肪酸から合成されたエステル化合物は特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られた、グリコール系エステル化合物が挙げられる。また、テトラエチレングリコール、トリプロピレングリコールと、上記一塩基性有機とのエステル化合物等も挙げられる。
 なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステルが好適である。トリエチレングリコールの脂肪酸エステルが望ましい。
 また、高分子単量体とは重合等により高分子を形成する単量体であるが、本発明で用いる好ましい高分子単量体としては、メチルメタクリレート単量体、アクレリート単量体やスチレン樹脂単量体などが挙げられる。
 以上、説明した液状溶媒は、1種または2種以上を組み合わせて用いることができる。さらに、必要に応じて、これらの液状溶媒へ酸やアルカリを添加してpH調整してもよい。
 (2)分散剤
 さらに、当該複合タングステン酸化物超微粒子分散液中における複合タングステン酸化物超微粒子の分散安定性を一層向上させ、再凝集による分散粒子径の粗大化を回避するために、各種の分散剤、界面活性剤、カップリング剤などの添加も好ましい。当該分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、複合タングステン酸化物超微粒子の表面に吸着して凝集を防ぎ、赤外線遮蔽膜中においても本発明に係る複合タングステン酸化物超微粒子を均一に分散させる効果を持つ。これらの官能基のいずれかを分子中にもつ高分子系分散剤がさらに望ましい。
 (3)分散方法
 当該複合タングステン酸化物超微粒子を、適宜な方法で透明基材上に塗布、または、基材に練り込むことで、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという近赤外線遮蔽特性を有する複合タングステン酸化物超微粒子分散体である近赤外線遮蔽超微粒子分散体を形成することができる。
 複合タングステン酸化物超微粒子の分散液への分散方法は、当該微粒子を分散液中において、凝集させることなく均一に分散できる方法であれば特に限定されない。当該分散方法として、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いる、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散させることは、所望とする分散粒子径に要する時間が短いことから好ましい。
 媒体攪拌ミルを用いた粉砕・分散処理によって、複合タングステン酸化物超微粒子の分散液中への分散と同時に、複合タングステン酸化物超微粒子同士の衝突や媒体メディアの該超微粒子への衝突などによる微粒子化も進行し、複合タングステン酸化物超微粒子をより微粒子化して分散させることができる(即ち、粉砕・分散処理される)。
 複合タングステン酸化物超微粒子を可塑剤へ分散させる際、所望により、さらに120℃以下の沸点を有する有機溶剤を添加することも好ましい構成である。
 120℃以下の沸点を有する有機溶剤として、具体的にはトルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、イソプロピルアルコール、エタノールが挙げられる。尤も、沸点が120℃以下で近赤外線遮蔽機能を発揮する微粒子を均一に分散可能なものであれば、任意に選択できる。但し、当該有機溶剤を添加した場合は、分散完了後に乾燥工程を実施し、近赤外線遮蔽超微粒子分散体の一例として後述する日射遮蔽用中間膜中に残留する有機溶剤を5質量%以下とすることが好ましい。日射遮蔽用中間膜の残留溶媒が5質量%以下であれば、後述する赤外線遮蔽合わせ構造体において気泡が発生せず、外観や光学特性が良好に保たれるからである。
 (4)分散粒子径
 複合タングステン酸化物超微粒子の分散粒子径が、1~200nmであれば、幾何学散乱またはミー散乱によって波長380nm~780nmの可視光線領域の光を散乱することがないので、曇り(ヘイズ)が減少し、可視光透過率の増加を図ることが出来るので好ましい。さらに、レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上する。そこで、分散粒子径が200nm以下となると散乱光は非常に少なくなり、ブルーヘイズ現象を抑制できるため、より透明性が増すことになり好ましい。
 ここで、複合タングステン酸化物超微粒子分散液中における、当該複合タングステン酸化物超微粒子の分散粒子径について簡単に説明する。複合タングステン酸化物超微粒子の分散粒子径とは、溶媒中に分散している複合タングステン酸化物超微粒子の単体粒子や、当該複合タングステン酸化物超微粒子が凝集した凝集粒子の粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、当該複合タングステン酸化物超微粒子分散液のサンプルを採取し、当該サンプルを、動的光散乱法を原理とした大塚電子株式会社製ELS-8000を用いて測定することができる。
 また、上記の合成方法で得られる複合タングステン酸化物超微粒子の含有量が0.01質量%以上80質量%以下である複合タングステン酸化物超微粒子分散液は、液安定性に優れる。適切な液状媒体や、分散剤、カップリング剤、界面活性剤を選択した場合は、温度40℃の恒温槽に入れたときでも6ヶ月以上分散液のゲル化や粒子の沈降が発生せず、分散粒子径を1~200nmの範囲に維持できる。
 尚、複合タングステン酸化物超微粒子分散液の分散粒子径と、近赤外線遮蔽材料微粒子分散体に分散された複合タングステン酸化物超微粒子の平均粒子径が異なる場合がある。これは、複合タングステン酸化物超微粒子分散液中では複合タングステン酸化物超微粒子が凝集しても、複合タングステン酸化物超微粒子分散液から近赤外線遮蔽材料微粒子分散体に加工される際に複合タングステン酸化物超微粒子の凝集が解されるからである。
 (5)バインダー、その他の添加剤
 当該複合タングステン酸化物超微粒子分散液には、適宜、樹脂バインダーから選ばれる1種以上を含有させることができる。当該複合タングステン酸化物超微粒子分散液に含有させる樹脂バインダーの種類は特に限定されるものではないが、樹脂バインダーとしては、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが適用できる。
 また、本発明に係る複合タングステン酸化物超微粒子分散体の近赤外線遮蔽特性を向上させるために、本発明に係る分散液へ一般式XBm(但し、Xはアルカリ土類元素、またはイットリウムを含む希土類元素から選ばれた金属元素、4≦m≦6.3)で表されるホウ化物超微粒子を、所望に応じて適宜添加することも好ましい構成である。なお、このときの添加割合は、所望とする近赤外線遮蔽特性に応じて適宜選択すればよい。
 また、複合タングステン酸化物超微粒子分散体の色調を調整する為に、カーボンブラックや弁柄等の公知の無機顔料や公知の有機顔料も添加できる。
 複合タングステン酸化物超微粒子分散液には、公知の紫外線吸収剤や有機物の公知の赤外線遮蔽材やリン系の着色防止剤を添加してもよい。
[e]近赤外線遮蔽超微粒子分散体
 近赤外線遮蔽特性を有する複合タングステン酸化物超微粒子が分散している、本発明に係る近赤外線遮蔽超微粒子分散体について説明する。
 本発明に係る近赤外線遮蔽超微粒子分散体は、上述の製造方法で得られた複合タングステン酸化物超微粒子と、固体媒体とを含む、複合タングステン酸化物超微粒子分散体である。
 以下、本発明に係る複合タングステン酸化物超微粒子分散体について、(1)溶媒、(2)製造方法、(3)添加剤、の順に説明する。
 (1)媒体
 固体の媒体としては熱可塑性樹脂や熱硬化樹脂等の媒体樹脂を挙げることができる。また、これら媒体樹脂は、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂、アイオノマー樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれでもよい。これら媒体樹脂へ、主骨格にアミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として備えた高分子分散剤を添加することも好ましい。
 本発明に係る近赤外線遮蔽超微粒子分散体は、複合タングステン酸化物超微粒子を0.001質量%以上80質量%以下含むことを特徴とする。そして当該近赤外線遮蔽超微粒子分散体は、シート状、ボード状またはフィルム状であってもよい。当該近赤外線遮蔽超微粒子分散体を、シート状、ボード状またはフィルム状に加工することで様々な用途に適用できる。
 (2)製造方法
 近赤外線遮蔽超微粒子分散体の好ましい製造方法を、以下に説明する。
 まず、複合タングステン酸化物超微粒子を樹脂中に分散させた後、当該樹脂をペレット化することで、マスターバッチを得ることが出来る。
 一方、複合タングステン酸化物超微粒子と、媒体樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に混合したのち、ベント式一軸若しくは二軸の押出機で混練し、一般的な溶融押出されたストランドをカットする方法によりペレット状に加工することによっても、マスターバッチを得ることが出来る。この場合、マスターバッチの形状として円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。この場合、マスターバッチは球状に近い形状をとることが一般的である。
 上述したマスターバッチの製造工程において、複合タングステン酸化物超微粒子分散液に含まれる液体媒体を、当該マスターバッチに残留が許容される量まで除去してしまうのは好ましい構成である。また、マスターバッチの製造工程において、媒体樹脂と混合される複合タングステン酸化物超微粒子として、複合タングステン酸化物超微粒子分散液から液状媒体を除去して得られる複合タングステン酸化物超微粒子を用いることも好ましい。
 得られたマスターバッチは、媒体樹脂を追加して混練することにより近赤外線遮蔽材料微粒子分散体に含まれる複合タングステン酸化物超微粒子の分散状態が維持されたまま、その分散濃度が調整される。
 尚、複合タングステン酸化物超微粒子の分散粒子径については「[d]複合タングステン酸化物超微粒子分散液の(4)分散粒子径」にて説明したものと同様である。
 他方、媒体樹脂のモノマー、オリゴマーおよび未硬化で液状の媒体樹脂前駆体と、複合タングステン酸化物超微粒子とを混合して、複合タングステン酸化物超微粒子分散液を得てから、当該モノマー等を縮合や重合等の化学反応によって硬化させてもよい。例えば、媒体樹脂としてアクリル樹脂を用いる場合、アクリルモノマーやアクリル系の紫外線硬化樹脂と、複合タングステン酸化物超微粒子とを混合して、複合タングステン酸化物超微粒子分散液を得る。そして、当該複合タングステン酸化物超微粒子分散液を所定の鋳型などに充填しラジカル重合を行えば、アクリル樹脂を用いた複合タングステン酸化物超微粒子分散体が得られる。
 樹脂媒体としてアイオノマー樹脂等の、架橋により硬化する樹脂を用いる場合も、上述したアクリル樹脂を用いた場合と同様に、複合タングステン酸化物超微粒子分散液に架橋反応させることで分散体を得ることができる。
 さらに、複合タングステン酸化物超微粒子と液状媒体とを混合することで、複合タングステン酸化物超微粒子分散液を得ることが出来る。ここで、液状媒体には公知の液状可塑剤も用いることができる。得られた分散液を媒体樹脂と混合し公知の加熱処理等により、液状媒体を近赤外線遮蔽材料微粒子分散体に残留が許容される量まで除去することで、近赤外線遮蔽超微粒子分散体が得られる。なお、液状媒体に液状可塑剤を用いた場合は、当該液状可塑剤の全量が近赤外線遮蔽超微粒子分散体に残留してもよい。
 (3)添加剤
 また、固体媒体として媒体樹脂を用いる場合には、通常、これらの樹脂に添加される可塑剤、難燃剤、着色防止剤およびフィラー等の公知の添加物を添加することができる。
 尤も、固体媒体は媒体樹脂に限定されず、金属アルコキシドを用いたバインダーの利用も可能である。当該金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これら金属アルコキシドを用いたバインダーを加熱等により加水分解・縮重合させることで、酸化物膜からなる分散体を形成することが可能である。
[f]シート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体
 本発明に係る近赤外線遮蔽超微粒子分散体は、シート状、ボード状またはフィルム状の形態をとることも好ましい構成である。
 以下、本発明に係るシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体について、(1)構成成分、(2)製造方法、(3)適用方法、の順に説明する。
 (1)構成成分
 前記複合タングステン酸化物超微粒子および可塑剤分散液や、マスターバッチを透明樹脂中へ均一に混合することにより、本発明に係るシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を製造できる。
 シート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を製造する場合、当該シートやフィルム、ボードを構成する樹脂には多様な熱可塑性樹脂を用いることが出来る。そして、シート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体が光学フィルターに適用されることを考えれば、十分な透明性を持った熱可塑性樹脂や熱硬化樹脂等の媒体樹脂であることが好ましい。
 具体的には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体といった樹脂群から選択される樹脂、または当該樹脂群から選択される2種以上の樹脂の混合物、または当該樹脂群から選択される2種以上の樹脂の共重合体から、好ましい樹脂の選択を行うことが出来る。
 また、シート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を合わせガラスなどの中間層として用いる場合であって、当該シートやフィルム、ボードを構成する熱可塑性樹脂が、そのままでは柔軟性や透明基材との密着性を十分に有しない場合がある。例えば、当該熱可塑性樹脂がポリビニルアセタール樹脂である場合は、さらに可塑剤を添加することが好ましい。
 上述した可塑剤としては、本発明に用いる熱可塑性樹脂において可塑剤として用いられる物質を用いることができる。例えば、ポリビニルアセタール樹脂で構成された赤外線遮蔽フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 (2)製造方法
 複合タングステン酸化物超微粒子、可塑剤分散液、マスターバッチのいずれかと、熱可塑性樹脂と、所望に応じて可塑剤その他添加剤とを混練した後、当該混練物を、公知の押出成形法、射出成形法等の方法により、例えば、平面状や曲面状に成形されたシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を製造することができる。
 シート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体の形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。
(3)適用方法
 近赤外線遮蔽超微粒子分散体を、シート状、ボード状またはフィルム状に加工することで様々な用途に適用できる。近赤外線遮蔽超微粒子分散体の一態様として日射遮蔽用中間膜が挙げられる。
 シート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を、少なくとも可視光性を透過する2枚以上の透明基材の板ガラスまたはプラスチックの材質からなる複数枚の透明基材間によって挟持される中間層の構成部材として介在させることで、可視光線を透過しつつ近赤外線遮蔽機能を備えた日射遮蔽合わせ構造体を得ることが出来る。これは、本発明に係る近赤外線遮蔽材料微粒子分散体を、本発明に係る日射遮蔽用中間膜に用いた例である。
 即ち、本発明に係る赤外線遮蔽合わせ構造体は、近赤外線遮蔽機能を備えた中間層をその両側から透明基材を用いて挟持するものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であり、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂、等が使用可能である。
 また、本発明に係る赤外線遮蔽合わせ構造体は、本発明に係るシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体を挟持して対向する複数枚の透明基材を、公知の方法で貼り合わせ一体化することによっても得られる。
 本発明に係る日射遮蔽用中間膜について説明したように、本発明に係る日射遮蔽用中間膜は、近赤外線遮蔽超微粒子分散体の一態様である。本発明に係る近赤外線遮蔽超微粒子分散体は、可視光性を透過する2枚以上の透明基材の板ガラスまたはプラスチックの材質からなる複数枚の透明基材間によって挟持されることなく使用できることはもちろんである。すなわち、本発明に係るシート状、ボード状またはフィルム状の近赤外線遮蔽超微粒子分散体は、単独で近赤外線遮蔽超微粒子分散体として成立できるものである。
 尚、本発明に係る日射遮蔽用中間膜と赤外線遮蔽合わせ構造体の詳細は後述する。
[g]赤外線遮蔽フィルム、赤外線遮蔽ガラス
 赤外線遮蔽フィルム、赤外線遮蔽ガラスは、近赤外線遮蔽超微粒子分散体の一例である。
 上述した近赤外線遮蔽超微粒子分散液を用いて、基板フィルムまたは基板ガラスから選択される透明基板上へ、複合タングステン酸化物超微粒子が個体媒体に分散された近赤外線遮蔽超微粒子分散体であるコーティング層を形成することで赤外線遮蔽フィルムまたは赤外線遮蔽ガラスを製造することが出来る。
 前述した複合タングステン酸化物超微粒子分散液を、樹脂などの固体媒体または高分子単量体と混合して塗布液を作製し、公知の方法で透明基材上にコーティング膜を形成すると、該コーティング層は、複合タングステン超微粒子が個体媒体に分散されているので近赤外線遮蔽超微粒子分散体となる。基板フィルムや基板ガラスの表面に複合タングステン超微粒子分散体を設けることで、赤外線遮蔽フィルムまたは赤外線遮蔽ガラスを作製することができる。
 個体媒体には、媒体樹脂や無機物を用いることができる。
 例えば、赤外線遮蔽フィルムは以下のように作製することができる。
 上述した近赤外線遮蔽超微粒子分散液に媒体樹脂を添加し、塗布液を得る。この塗布液をフィルム基材表面にコーティングした後、溶媒を蒸発させ所定の方法で樹脂を硬化させれば、当該近赤外線遮蔽超微粒子が媒体中に分散したコーティング膜の形成が可能となる。
 上記コーティング膜の媒体樹脂として、例えば、UV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が目的に応じて選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、アイオノマー樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂、PET樹脂、ポリアミド樹脂、ポリイミド樹脂、オレフィン樹脂が挙げられる。また、これら樹脂を主骨格にもちアミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として備えた高分子分散剤を媒体樹脂に用いてもよい。
 これらの樹脂は、単独使用であっても混合使用であっても良い。尤も、当該コーティング層用の媒体のなかでも、生産性や装置コストなどの観点からUV硬化性樹脂バインダーを用いることが特に好ましい。
 また固体媒体には、金属アルコキシドやオルガノシラザンを用いたバインダーの利用も可能である。当該金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これら金属アルコキシドを用いたバインダーは、加熱等により加水分解・縮重合させることで、酸化物膜からなるコーティング層を形成することが可能である。
 さらに、当該コーティング層上へ、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含むアルコキシド、および/または、当該アルコキシドの部分加水分解縮重合物、を含有する塗布液を塗布した後、加熱することで、当該コーティング層上へ、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含む酸化物のコーティング膜を形成し、多層膜とするのも好ましい構成である。当該構成を採ることにより、コーティングされた成分が、第1層である複合タングステン酸化物超微粒子の堆積した間隙を埋めて成膜され、可視光の屈折を抑制するために、膜のヘイズ値がより低減して可視光透過率が向上し、また複合タングステン酸化物超微粒子の基材への結着性が向上するからである。ここで、複合タングステン酸化物超微粒子単体あるいは複合タングステン酸化物超微粒子を主成分とする膜上に、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含むアルコキシドや、これらの部分加水分解縮重合物からなるコーティング膜を形成する方法としては、成膜操作の容易さやコストの観点から塗布法が便宜である。
 上記塗布法に用いるコーティング液としては、水やアルコールなどの溶媒中に、珪素、ジルコニウム、チタン、アルミニウムのいずれか1種以上を含むアルコキシドや、当該アルコキシドの部分加水分解縮重合物を1種以上含むものである。その含有量は、加熱後に得られるコーティング中の酸化物換算で40質量%以下が好ましい。また、必要に応じて酸やアルカリを添加してpH調整することも好ましい。当該コーティング液を、複合タングステン酸化物超微粒子を主成分とする膜上に、第2層として塗布し加熱することで、珪素、ジルコニウム、チタン、アルミニウムなどの酸化物被膜を容易に形成することが可能である。さらに加えて、本発明に係る塗布液に使用するバインダー成分またはコーティング液の成分として、オルガノシラザン溶液を用いるのも好ましい。
 上記方法以外に、複合タングステン酸化物超微粒子分散液を基板フィルムまたは基板ガラスの上に塗布した後、さらに媒体樹脂や金属アルコキシドを用いたバインダーを塗布してコーティング層を形成してもよい。
 無機バインダーやコーティング膜として、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドおよびその加水分解重合物を含む複合タングステン酸化物超微粒子分散液の塗布後の基材加熱温度は、100℃以上が好ましく、さらに好ましくは塗布液中の溶媒の沸点以上で加熱を行う。これは、基材加熱温度が100℃以上であると、塗膜中に含まれる金属アルコキシドまたは当該金属アルコキシドの加水分解重合物の重合反応が完結出来るからである。また、基材加熱温度が100℃以上であると、溶媒である水や有機溶媒が膜中に残留することがないので、加熱後の膜において、これら溶媒が可視光透過率低減の原因とならないからである。
 尚、上述したフィルム基材は、フィルム状に限定されることはなく、例えば、ボード状でもシート状でも良い。当該フィルム基材材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、ふっ素樹脂等が、各種目的に応じて使用可能である。尤も、赤外線遮蔽フィルムとしては、ポリエステルフィルムであることが好ましく、PETフィルムであることがより好ましい。
 また、フィルム基板の表面は、コーティング層接着の容易さを実現するため、表面処理がなされていることが好ましい。また、ガラス基板もしくはフィルム基板とコーティング層との接着性を向上させるために、ガラス基板上もしくはフィルム基板上に中間層を形成し、中間層上にコーティング層を形成することも好ましい構成である。中間層の構成は特に限定されるものではなく、例えばポリマフィルム、金属層、無機層(例えば、シリカ、チタニア、ジルコニア等の無機酸化物層)、有機/無機複合層等により構成することができる。
 基板フィルム上または基板ガラス上へコーティング層を設ける方法は、当該基材表面へ近赤外線遮蔽超微粒子分散液が均一に塗布できる方法であれればよく、特に限定されない。例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法、スピンコート法、スクリーン印刷、ロールコート法、流し塗り、等を挙げることが出来る。
 例えばUV硬化樹脂を用いたバーコート法によれば、適度なレベリング性を持つよう液濃度及び添加剤を適宜調整した塗布液を、コーティング膜の厚み及び前記近赤外線遮蔽超微粒子の含有量を合目的に満たすことのできるバー番号のワイヤーバーを用いて基板フィルムまたは基板ガラス上に塗膜を形成することができる。そして塗布液中に含まれる溶媒を乾燥により除去したのち紫外線を照射し硬化させることで、基板フィルムまたは基板ガラス上にコーティング層を形成することができる。このとき、塗膜の乾燥条件としては、各成分、溶媒の種類や使用割合によっても異なるが、通常では60℃~140℃の温度で20秒~10分間程度である。紫外線の照射には特に制限はなく、例えば超高圧水銀灯などのUV露光機を好適に用いることができる。
 その他、コーティング層の形成の前後工程により、基板とコーティング層の密着性、コーティング時の塗膜の平滑性、有機溶媒の乾燥性などを操作することもできる。前記前後工程としては、例えば基板の表面処理工程、プリベーク(基板の前加熱)工程、ポストベーク(基板の後加熱)工程などが上げられ、適宜選択することができる。プリベーク工程および/あるいはポストベーク工程における加熱温度は80℃~200℃、加熱時間は30秒~240秒であることが好ましい。
 基板フィルム上または基板ガラス上におけるコーティング層の厚みは、特に限定されないが、実用上は10μm以下であることが好ましく、6μm以下であることがより好ましい。これはコーティング層の厚みが10μm以下であれば、十分な鉛筆硬度を発揮して耐擦過性を有することに加えて、コーティング層における溶媒の揮散およびバインダーの硬化の際に、基板フィルムの反り発生等の工程異常発生を回避出来るからである。
[h]赤外線遮蔽合わせ構造体
 本発明に係る赤外線遮蔽合わせ構造体は、シート状またはフィルム状の日射遮蔽用中間膜を、板ガラスまたはプラスチックの材質からなる複数枚の透明基材間に、中間層として介在させて成るものである。
 以下、本発明に係る赤外線遮蔽合わせ構造体について、(1)日射遮蔽用中間膜、(2)シート状またはフィルム状の日射遮蔽用中間膜、(3)赤外線遮蔽合わせ構造体の製造方法、の順に説明する。
 (1)日射遮蔽用中間膜
 本発明に係る日射遮蔽用中間膜は、上述の製造方法で得られた複合タングステン酸化物超微粒子と、媒体樹脂とを含むことを特徴とする。そして、当該媒体樹脂は、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂やアイオノマー樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることが好ましい。当該媒体樹脂がポリビニルアセタール樹脂やアイオノマー樹脂であれば、日射遮蔽用中間膜と透明基材の密着強度が向上する観点から、さらに好ましい。
 また、本発明に係る日射遮蔽用中間膜においては、上述の複合タングステン酸化物超微粒子を0.001質量%以上80質量%以下含むことが好ましい。
 以下に、日射遮蔽用中間膜となる複合タングステン酸化物超微粒子分散体の製造方法の一例を説明する。
 複合タングステン酸化物超微粒子分散液と媒体樹脂用の液状可塑剤とを混合して後、沸点120℃以下の溶媒成分を除去することで、複合タングステン酸化物超微粒子を含む分散粉や可塑剤分散液を得ることが出来る。また、適量の分散剤を含有する複合タングステン酸化物超微粒子分散液から沸点120℃以下の溶媒成分を除去することで、複合タングステン酸化物超微粒子を含む分散粉を得ることができる。複合タングステン酸化物超微粒子分散液から溶媒成分を除去する方法としては、当該複合タングステン酸化物超微粒子分散液を減圧乾燥することが好ましい。具体的には、複合タングステン酸化物超微粒子分散液を攪拌しながら減圧乾燥し、複合タングステン酸化物超微粒子含有組成物と溶媒成分とを分離する。当該減圧乾燥に用いる装置としては、真空攪拌型の乾燥機があげられるが、上記機能を有する装置であれば良く、特に限定されない。また、乾燥工程の減圧の際の圧力値は適宜選択される。
 当該減圧乾燥法を用いることで、複合タングステン酸化物超微粒子分散液からの溶媒の除去効率が向上すると伴に、分散粉や可塑剤分散液が長時間高温に曝されることがないので、分散粉や可塑剤分散液中に分散している複合タングステン酸化物超微粒子の凝集が起こらず好ましい。さらに分散粉や可塑剤分散液の生産性も上がり、蒸発した溶媒を回収することも容易で、環境的配慮からも好ましい。
 当該乾燥工程後に得られた分散粉や可塑剤分散液において、残留する溶媒は2.5質量%以下であることが好ましい。残留する溶媒が2.5質量%以下であれば、当該分散粉や可塑剤分散液を、例えば合わせ構造体へと加工した際に気泡が発生せず、外観や光学特性が良好に保たれるからである。また、当該分散粉に残留する溶媒が2.5質量%以下であれば、当該分散粉の状態で長期保管した際に、残留溶媒の自然乾燥による凝集が発生せず、長期安定性が保たれるからである。
 上述した分散粉、可塑剤分散液を、少なくとも可視光線に対して透明な媒体樹脂中へ均一に公知の混合方法で混合した後に、公知の成型方法で成形することにより、日射遮蔽用中間膜を製造できる。日射遮蔽用中間膜は、複合タングステン酸化物超微粒子を含有する前記分散分や前記可塑剤分散液を用いて製造する他に、高い含有率の複合タングステン酸化物超微粒子を媒体樹脂に分散したマスターバッチを、媒体樹脂で希釈して複合タングステン酸化物超微粒子を分散することでも製造できる。
 (2)シート状またはフィルム状の日射遮蔽用中間膜
 上述した分散粉、可塑剤分散液を少なくとも可視光線に対して透明な媒体樹脂中へ均一に公知の混合した後に、公知の成型方法で成形することにより、本発明に係るシート状またはフィルム状の日射遮蔽用中間膜を製造できる。
 また、シート状またはフィルム状の日射遮蔽用中間膜が、柔軟性や透明基材との密着性を十分に有しない場合、媒体樹脂用の液状可塑剤を添加することが好ましい。例えば、日射遮蔽用中間膜に用いた媒体樹脂がポリビニルアセタール樹脂である場合は、ポリアセタール樹脂用の液状可塑剤の添加は、透明基材との密着性向上に有益である。
 可塑剤としては、媒体樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された赤外線遮蔽フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 また、シート状またはフィルム状の日射遮蔽用中間膜には、シランカップリング剤、カルボン酸の金属塩、金属の水酸化物、金属の炭酸塩から成る群の少なくとも1種を添加することができる。前記カルボン酸の金属塩、金属の水酸化物、金属の炭酸塩を構成する金属が、ナトリウム、カリウム、マグネシウム、カルシウム、マンガン、セシウム、リチウム、ルビジウム、亜鉛から選択される少なくとも1種であることが望ましい。前記カルボン酸の金属塩、金属の水酸化物、金属の炭酸塩から成る群の少なくとも1種の含有量が、前記複合タングステン酸化物超微粒子に対して1質量%以上100質量%以下であることが好ましい。
 さらに、複合タングステン酸化物超微粒子と、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、P、Ge、In、Sn、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Tb、Lu、Sr、Caから成る群から選ばれた2種以上の元素を含む酸化物微粒子、複合酸化物微粒子、ホウ化物微粒子の内の少なくとも1種以上の微粒子とを重量比で95:5~5:95の範囲で混合してもよい。
 分散粉または可塑剤分散液またはマスターバッチと、媒体樹脂と、所望に応じて可塑剤その他添加剤とを混練した後、当該混練物を、押出成形法、射出成形法等の公知の方法により、例えば、平面状や曲面状に成形されたシート状の日射遮蔽用中間膜を製造することができる。
 シート状またはフィルム状の日射遮蔽用中間膜の形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法等を用いることができる。
 また、日射遮蔽用中間膜に含まれる複合タングステン酸化物超微粒子は、近赤外線遮蔽材料微粒子分散体の製造過程で、複合タングステン酸化物超微粒子分散液を経たり、複合タングステン酸化物超微粒子の保存状態によりすることで、揮発成分が最大で2.5質量%含まれることがある。
 (3)赤外線遮蔽合わせ構造体の製造方法
 シート状またはフィルム状の日射遮蔽用中間膜を、板ガラスまたはプラスチックの材質からなる複数枚の透明基材間に、中間層として介在させて成る赤外線遮蔽合わせ構造体について説明する。
 赤外線遮蔽合わせ構造体は、中間層をその両側から少なくとも可視光性を透過する透明基材を用いて挟み合わせたものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であり、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、PET樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂、等が使用可能である。
 さらに、透明基材には日射遮蔽機能を有する微粒子を含むプラスチックを用いてもよい。日射遮蔽機能を有する微粒子には、近赤外線遮蔽特性を有する複合タングステン酸化物超微粒子を用いることができる。即ち、日射遮蔽機能を有する微粒子を含むプラスチックは、日射遮蔽機能を有する微粒子が本発明で用いることができる樹脂中に分散され、ボード状、シート状またはフィルム状に成型されている。
 本発明に係る赤外線遮蔽合わせ構造体は、前記中間層に本発明に係るシート状またはフィルム状の日射遮蔽用中間膜を用い、前記中間層を挟み込んで存在させた対向する複数枚の板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチック、等の透明基材を公知の方法で貼り合わせて、一体化することによって製造される。
 中間層は、複数の積層構造としてもよい。中間層を複数の層で構成する場合、少なくとも1層が本発明に係る日射遮蔽用中間膜であればよい。また、中間膜の少なくとも1層に、紫外線吸収剤を含有してもよい。紫外線吸収剤としては、マロン酸エステル構造を有する化合物、シュウ酸アニリド構造を有する化合物、ベンゾトリアゾール構造を有する化合物、ベンゾフェノン構造を有する化合物、トリアジン構造を有する化合物、ベンゾエート構造を有する化合物、ヒンダードアミン構造を有する化合物等が挙げられる。
 なお、中間層は、本発明に係る日射遮蔽用中間膜のみで構成して良いのは勿論である。
 以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 尚、実施例および比較例における分散液や塗布膜の光学特性は、分光光度計(日立製作所株式会社製 U-4100)を用いて測定し、可視光透過率と日射透過率とは、JISR3106に従って算出した。また、分散粒子径は、動的光散乱法に基づく粒径測定装置(大塚電子株式会社製 ELS-8000)により測定した平均値をもって示した。
 また、実施例および比較例における揮発成分の含有率は、島津製作所株式会社製、水分計;MOC63uを用い、測定試料を測定開始1分間で室温から温度125℃まで昇温させ、温度125℃で9分間保持した。そして、測定開始から10分間後における測定試料の重量減少率を揮発成分の含有率とした。近赤線遮蔽材料微粒子分散体中や、日射遮蔽用中間膜中に分散された複合タングステン酸化物超微粒子の平均粒子径は、当該分散体や中間膜の断面の透過型電子顕微鏡像を観察することによって測定した。透過型電子顕微鏡像は、透過型電子顕微鏡(株式会社日立ハイテクノロジーズ製 HF-2200)を用いて観察した。当該透過型電子顕微鏡像を画像処理装置にて処理し、複合タングステン酸化物超微粒子100個の粒子径を測定して、その平均値を平均粒子径とした。X線回折パターンは、粉末X線回折装置(スペクトリス株式会社PANalytical製X‘Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)により測定した。また、客観的な定量性を確保するため、複合タングステン酸化物超微粒子のX線回折パターンの測定毎に、シリコン粉末標準試料のX線回折パターンの測定を実施して、都度ピーク強度の比を算出した。
[実施例1]
 水0.330kgにCsCO0.216kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるCs0.33WO混合粉体を得た。
 次に、上記図1にて説明した高周波プラズマ反応装置を用い、真空排気装置により反応系内を約0.1Pa(約0.001Torr)まで真空引きした後、アルゴンガスで完全に置換して1気圧の流通系とした。その後、反応容器内にプラズマガスとしてアルゴンガスを30L/minの流量で導入し、シースガスとしてシースガス供給口より螺旋状にアルゴンガス55L/minとヘリウムガス5L/minの流量で導入した。そして、高周波プラズマ発生用の水冷銅コイルに高周波電力を印加し、高周波プラズマを発生させた。このとき、10000~15000Kの高温部を有している熱プラズマを発生させるため、高周波電力は40KWとした。
 こうして、高周波プラズマを発生させた後、キャリアガスとして、アルゴンガスをガス供給装置11から9L/minの流量で供給しながら、上記混合粉体を50g/minの割合で熱プラズマ中に供給した。
 その結果、混合粉体は熱プラズマ中にて瞬時に蒸発し、プラズマ尾炎部に至る過程で急冷凝固して超微粒化した。当該生成した超微粒子は、回収フィルターに堆積した。
 当該堆積した超微粒子を回収し、粉末X線回折装置(スペクトリス株式会社PANalytical製 X‘Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)によりX線回折パターンを測定した。
 得られた超微粒子のX線回折パターンを図2に示す。相の同定を行った結果、得られた超微粒子は六方晶Cs0.33WO単相と同定された。さらに当該X線回折パターンを用いて、リートベルト解析法による結晶構造解析を行ったところ、得られた超微粒子の結晶子径は18.8nmであった。さらに得られた超微粒子のX線回折パターンのピークトップ強度の値は4200カウントであった。
 得られた超微粒子の組成を、ICP発光分析法により調べた。その結果、Cs濃度が13.6質量%、W濃度が65.3質量%であり、Cs/Wのモル比は0.29であった。CsとW以外の残部は酸素であり、1質量%以上含有されるその他不純物元素は存在していないことを確認した。
 得られた超微粒子のBET比表面積を、BET比表面積測定装置(株式会社Mountech製 HMmodel-1208)を用いて測定したところ、60.0m/gであった。尚、BET比表面積の測定には純度99.9%の窒素ガスを使用した。
 また、実施例1に係る複合タングステン酸化物超微粒子における揮発成分の含有率を測定したところ1.6質量%であった。
 得られた複合タングステン酸化物超微粒子を20重量部と、メチルイソブチルケトン(MIBK)64重量部と、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、「分散剤a」と記載する。)16重量部を混合し、3kgのスラリーを調製した。このスラリーをビーズと共に媒体攪拌ミルに投入し、1時間粉砕分散処理を行った。尚、媒体攪拌ミルは横型円筒形のアニュラータイプ(アシザワ株式会社製)を使用し、ベッセル内壁とローター(回転攪拌部)の材質はジルコニアとした。また、ビーズには、直径0.1mmのYSZ(Yttria-Stabilized Zirconia:イットリア安定化ジルコニア)製のビーズを使用した。ローターの回転速度は14rpm/秒とし、スラリー流量0.5kg/minにて粉砕分散処理を行い、実施例1に係る複合タングステン酸化物超微粒子分散液を得た。
 実施例1に係る複合タングステン酸化物超微粒子分散液に含まれる複合タングステン酸化物超微粒子、すなわち粉砕分散処理後の複合タングステン酸化物超微粒子のX線回折パターンのピークトップ強度の値は3000カウント、ピーク位置は2θ=27.8°であった。
 一方、シリコン粉末標準試料(NIST製 640c)を準備し、当該シリコン粉末標準試料における(220)面を基準としたピーク強度の値を測定したところ、19800カウントであった。
 従って、当該標準試料のピーク強度の値を1としたときの、実施例1に係る粉砕分散処理後の複合タングステン酸化物超微粒子のXRDピーク強度の比の値は0.15であることが判明した。
 また、実施例1に係る粉砕分散処理後の複合タングステン酸化物超微粒子の結晶子径は16.9nmであった。
 さらに、実施例1に係る複合タングステン酸化物超微粒子分散液の分散粒子径を、動的光散乱法に基づく粒径測定装置を用いて測定したところ、70nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは、メチルイソブチルケトンを用いて測定し、溶媒屈折率は1.40とした。
 実施例1に係る複合タングステン酸化物超微粒子分散液に紫外線硬化樹脂および溶媒のメチルイソブチルケトンと混合し、厚さ3mmのガラス基板上にバーコーター(井元製作所製 IMC-700)で塗布して塗布膜を形成し、この塗布膜から溶媒を蒸発させた後、紫外線照射して塗布膜を硬化させて、近赤線遮蔽材料微粒子分散体であるコーティング層を得て、実施例1に係る赤外線遮蔽ガラスを得た。このとき、当該赤外線遮蔽ガラスの可視光透過率が70%になるように予め溶媒のメチルイソブチルケトンによる希釈で分散液の濃度を調整した。
 得られた実施例1に係る赤外線遮蔽ガラス中に分散された複合タングステン酸化物超微粒子の平均粒子径を、透過型電子顕微鏡像を用いた画像処理装置によって算出したところ、17nmであり、上述した結晶子径16.9nmとほぼ同値であった。
 また、得られた実施例1に係る赤外線遮蔽ガラスのヘイズを、ヘイズメーター(村上色彩技術研究所製 HM-150)を用いて、JISK7105に基づき測定したところ、0.4%であった。また、得られた実施例1に係る赤外線遮蔽ガラスの透過率を、分光光度計により波長200nm~2600nmの範囲において5nmの間隔で測定した結果、図3に示す透過プロファイルが得られた。得られた透過プロファイルから日射透過率を求めたところ、36.5%であった。また、人工太陽照明灯(セリック株式会社製 XC-100)を用いて疑似太陽光を実施例1に係る赤外線遮蔽ガラスに照射して、ブルーヘイズ現象の有無を目視で確認し、ブルーヘイズ現象がないことを確認した。
[実施例2~6]
 キャリアガス流量、プラズマガス流量、シースガス流量、原料供給速度を変更したこと以外は、実施例1と同様の操作をすることで、実施例2~6に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。変更したキャリアガス流量条件と原料供給速度条件、およびその他の条件を表1に記載する。実施例2~6に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液に対して、実施例1と同様の評価を実施した。当該評価結果を表2に示す。
 また、実施例2~6に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例2~6に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例7]
 実施例1に記載のCsCOとHWOとの混合粉体を、窒素ガスと水素ガスとの混合ガス雰囲気下、800℃で焼成したCs0.33WOで表される複合タングステン酸化物に変更して、高周波プラズマ反応装置に投入する原料として用いた。それ以外は実施例1と同様の方法で実施例7に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1~6と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例7に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例7に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例8]
 キャリアガス流量と原料供給速度を変更したこと以外は、実施例7と同様の操作をすることで、実施例8に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1~7と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例8に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例8に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例9]
 水0.330kgにRbCO0.148kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるRb0.32WO混合粉体を得た。
 前記混合粉体を高周波熱プラズマ反応装置に投入する原料として用いたこと以外は、実施例1と同様の方法で実施例9に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1~8と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例9に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例9に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例10]
 水0.330kgにKCO0.375kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるK0.27WO混合粉体を得た。
 前記混合粉体を高周波熱プラズマ反応装置に投入する原料として用いたこと以外は、実施例1と同様の方法で実施例10に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。また、得られた超微粒子とその分散液に対して、実施例1~9と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例10に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例10に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例11]
 水0.330kgにTlNO0.320kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるTl0.19WO混合粉体を得た。
 前記混合粉体を高周波熱プラズマ反応装置に投入する原料として用いたこと以外は、実施例1と同様の方法で実施例11に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1~10と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例11に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例11に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例12]
 水0.330kgにBaCO0.111kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるBa0.14WO混合粉体を得た。
 前記混合粉体を高周波熱プラズマ反応装置に投入する原料として用いたこと以外は、実施例1と同様の方法で実施例12に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子その分散液に対して、実施例1~11と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例12に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例12に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例13]
 水0.330kgにKCO0.0663kgとCsCO0.0978kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるK0.24Cs0.15WO混合粉体を得た。
 前記混合粉体を高周波熱プラズマ反応装置に投入する原料として用いたこと以外は、実施例1と同様の方法で実施例13に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1~12と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例13に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例13に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例14]
 水16.5gにCsCO10.8gを溶解し、当該溶液をHWO50gに添加して十分攪拌した後、乾燥した。当該乾燥物へNガスをキャリアーとした2%Hガスを供給しながら加熱し、800℃の温度で30分間焼成した。その後、Nガス雰囲気下800℃で90分間焼成する固相法にて実施例14に係る複合タングステン酸化物を得た。
 これ以外は実施例1と同様にして、実施例14に係る複合タングステン酸化物超微粒子分散液を製造した。但し、媒体攪拌ミルによる粉砕・分散処理時間は4時間とした。得られた超微粒子とその分散液に対して、実施例1から13と同様に評価した。当該製造条件と評価結果を表1、2に示す。
 また、実施例14に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例14に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例15~24]
 水0.330kgにLiCO0.044kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるLi0.3WOの実施例15に係る混合粉体を得た。
 水0.330kgにNaCO0.021kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるNa0.1WOの実施例16に係る混合粉体を得た。
 水0.330kgにCu(NO・3HO0.251kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるCu0.26WO2.72の実施例17に係る混合粉体を得た。
 水0.330kgにAgCO0.005kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるAg0.01WOの実施例18に係る混合粉体を得た。
 水0.330kgにCaCO0.040kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるCa0.1WOの実施例19に係る混合粉体を得た。
 水0.330kgにSrCO0.047kgを溶解し、これをHWO1.000kgに添加して十分攪拌した後、乾燥し、狙いの組成であるSr0.08WOの実施例20に係る混合粉体を得た。
 In0.011kgとHWO1.000kgを擂潰機で十分混合し、狙いの組成であるIn0.02WOの実施例21に係る混合粉体を得た。
 SnO0.115kgとHWO1.000kgを擂潰機で十分混合し、狙いの組成であるSn0.19WOの実施例22に係る混合粉体を得た。
 Yb0.150kgとHWO1.000kgを擂潰機で十分混合し、狙いの組成をYb0.19WOの実施例23に係る混合粉体を得た。
 日産化学社製スノーテックスS、0.115kgとHWO1.000kgを擂潰機で十分混合し、狙いの組成であるSi0.043WO2.839の実施例24に係る混合粉体を得た。尚、スノーテックSとは超微細シリカ粉末である。
 前記実施例15~24に係る混合粉体を高周波熱プラズマ反応装置に投入する原料として用いたこと以外は、実施例1と同様の方法で実施例15~24に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1~14と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、実施例15~24に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、実施例15~24に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[実施例25]
 実施例1と同様の方法で複合タングステン酸化物超微粒子を製造した。
 熱可塑性樹脂であるポリカーボネート樹脂ヘ、製造されるシート状の近赤外線遮蔽超微粒子分散体(1.0mm厚)の可視光透過率が70%となるように、当該複合タングステン酸化物超微粒子を添加し、近赤外線遮蔽超微粒子分散体の製造用組成物を調製した。
 調製した近赤外線遮蔽超微粒子分散体の製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出して、カレンダーロール法により1.0mm厚のシート材とし、実施例25に係るシート状の近赤外線遮蔽超微粒子分散体を得た。
 得られた実施例25に係るシート状の近赤外線遮蔽超微粒子分散体の光学特性を測定したところ、可視光透過率が70%であり、日射透過率が37.9%であり、ヘイズが0.7%であった。
 また、得られたシート状の近赤外線遮蔽超微粒子分散体中に含有される複合タングステン酸化物超微粒子の量を、複合タングステン酸化物超微粒子とポリカーボネート樹脂との混合割合から見積もったところ0.29質量%であった。当該結果を表4に記載する。
[実施例26]
 水0.330kgにCsCO0.216kgを溶解し、得られた溶液をHWO1.000kgに添加して十分攪拌した後、乾燥して乾燥物を得た。Nガスをキャリアーとした5%Hガスを供給しながら当該乾燥物を加熱し、800℃の温度で1時間焼成した。その後、さらにNガス雰囲気下800℃で2時間焼成する固相反応法を実施して、実施例26に係る複合タングステン酸化物を得た。
 得られた実施例26に係る複合タングステン酸化物20重量部と、水80重量部とを混合し、約3kgのスラリーを調製した。尚、このスラリーには、分散剤を添加していない。このスラリーをビーズと共に媒体攪拌ミルに投入し、4時間粉砕分散処理を行った。尚、媒体攪拌ミルは横型円筒形のアニュラータイプ(アシザワ株式会社製)を使用し、ベッセル内壁とローター(回転攪拌部)の材質はジルコニアとした。また、ビーズには、直径0.1mmのYSZ(Yttria-Stabilized Zirconia:イットリア安定化ジルコニア)製のビーズを使用した。ローターの回転速度は14rpm/秒とし、スラリー流量0.5kg/minにて粉砕分散処理を行い、実施例26に係る複合タングステン酸化物超微粒子水分散液を得た。
 実施例26に係る複合タングステン酸化物超微粒子の水分散液の分散粒子径を測定したところ、70nmであった。尚、分散粒子径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは水で測定し、溶媒屈折率は1.33とした。
 次に、得られた複合タングステン酸化物超微粒子分散液約3kgを大気乾燥機で乾燥処理して、実施例26に係る複合タングステン酸化物超微粒子を得た。尚、大気乾燥機には、恒温オーブン(エスペック株式会社製 SPH-201型)を使用し、乾燥温度は70℃、乾燥時間は96時間とした。
 実施例26に係る複合タングステン酸化物超微粒子のX線回折パターンを測定し、相の同定を行った結果、得られた超微粒子は、六方晶Cs0.33WO単相と同定された。また、得られた超微粒子のX線回折パターンのピークトップ強度の値は4200カウントであり、ピーク位置は2θ=27.8°であり、結晶子径は23.7nmであった。一方、シリコン粉末標準試料(NIST製、640c)を準備し、当該シリコン粉末標準試料における(220)面を基準としたピーク強度の値を測定したところ、19800カウントであった。従って、当該標準試料のピーク強度の値を1としたときの、実施例1に係る粉砕分散処理後の複合タングステン酸化物超微粒子のXRDピーク強度の比の値は0.21であることが判明した。
 得られた実施例26に係る複合タングステン酸化物超微粒子の組成を、ICP発光分析法により調べた。その結果、Cs濃度が15.2質量%、W濃度が64.6質量%であり、Cs/Wのモル比は0.33であった。CsとW以外の残部は酸素であった。そして、その他の不純物元素であって1質量%以上含有されるものは、存在していないことも確認された。
 粉砕して得られた実施例26に係る複合タングステン酸化物超微粒子のBET比表面積を測定したところ、42.6m/gであった。
 また、実施例26に係る複合タングステン酸化物超微粒子の揮発成分の含有率を測定したところ2.2質量%であった。
 得られた複合タングステン酸化物超微粒子20重量部を、溶媒のメチルイソブチルケトン64重量部と分散剤a16重量部に分散させて50gの分散液を作製し、当該分散液の分散粒子径を測定したところ80nmであった。尚、分散粒子径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、メチルイソブチルケトンで測定し、溶媒屈折率は1.40とした。
 実施例26に係る複合タングステン酸化物超微粒子分散液へ、紫外線硬化樹脂および溶媒としてメチルイソブチルケトンを混合して塗布液を得た。当該塗布液を厚さ3mmのガラス基板上へバーコーター(井元製作所製 IMC-700)を用いて塗布し塗布膜を形成した。
 当該塗布膜から溶媒を蒸発させた後、紫外線照射し硬化させてコーティング層とし、実施例26に係る赤外線遮蔽ガラスを得た。このとき、当該赤外線遮蔽ガラスの可視光透過率が70%になるように、予め、上述した溶媒のメチルイソブチルケトンによる希釈の際、塗布液の濃度を調整した。
 得られた実施例26に係る赤外線遮蔽ガラス中に分散された複合タングステン酸化物超微粒子の平均粒子径を、透過型電子顕微鏡像を用いた画像処理装置によって算出したところ、23nmであり、上述した結晶子径23.7nmとほぼ同値であった。
 また、得られた実施例26に係る赤外線遮蔽ガラスのヘイズを、ヘイズメーター(村上色彩技術研究所製 HM-150)を用いて、JISK7105に基づき測定したところ、0.3%であった。また、得られた実施例26に係る赤外線遮蔽ガラスの透過率を、分光光度計(日立製作所製U-4100)により波長200nm~2600nmの範囲において5nmの間隔で測定した結果、図3に示す透過プロファイルが得られた。得られた透過プロファイルから日射透過率を求めたところ、35.7%であった。さらに、人工太陽照明灯を用いて疑似太陽光を実施例26に係る赤外線遮蔽ガラスに照射して、ブルーヘイズ現象の有無を目視で確認し、ブルーヘイズ現象が発生しないことを確認した。
 ここで、実施例26に係る複合タングステン酸化物超微粒子を用いて、実施例25と同様にして実施例26に係るシート状の近赤外線遮蔽超微粒子分散体の製造用組成物を調製し、シート状の近赤外線遮蔽超微粒子分散体を製造した。得られたシート状の近赤外線遮蔽超微粒子分散体に対して、実施例25と同様の評価を実施した。当該結果を表4に記載する。
[実施例27]
 大気乾燥機による乾燥処理を真空攪拌擂潰機による真空乾燥処理に変更した以外は、実施例26と同様の方法で、実施例27に係る複合タングステン酸化物超微粒子と、その超微粒子分散液と、赤外線遮蔽ガラスと、シート状の近赤外線遮蔽超微粒子分散体とを製造した。
 尚、真空攪拌擂潰機は石川式攪拌擂潰機24P型(田島化学機械株式会社製)を使用し、真空乾燥処理における乾燥温度は80℃、乾燥時間は32時間、混練ミキサーの回転周波数は40Hz、真空容器内の圧力は0.001MPa以下とした。
 得られた実施例27に係る複合タングステン酸化物超微粒子と、その分散液と、赤外線遮蔽ガラスと、シート状の近赤外線遮蔽超微粒子分散体とに対して、実施例26と同様の評価を実施した。当該製造条件と評価結果とを表1、2、3、4に示す。
[実施例28]
 大気乾燥機による乾燥処理を、噴霧乾燥機による噴霧乾燥処理に変更した以外は、実施例26と同様の方法で実施例28に係る複合タングステン酸化物超微粒子と、その超微粒子分散液とを製造した。
 尚、噴霧乾燥機は噴霧乾燥機ODL-20型(大川原化工機株式会社製)を使用した。
 得られた実施例28に係る複合タングステン酸化物超微粒子と、その分散液と、赤外線遮蔽ガラスと、シート状の近赤外線遮蔽超微粒子分散体に対して、実施例26と同様の評価を実施した。当該製造条件と評価結果とを表1、2、3、4に示す。
[実施例29~31]
 媒体攪拌ミルによる粉砕分散処理時間を2時間に変更した以外は、実施例26~28と同様の方法で実施例29~31に係る複合タングステン酸化物超微粒子と、その超微粒子分散液とを製造した。但し、媒体攪拌ミルによる粉砕分散処理時間は2時間とした。得られた超微粒子とその分散液と赤外線遮蔽ガラスとシート状の近赤外線遮蔽超微粒子分散体に対して、実施例26と同様の評価を実施した。当該製造条件と評価結果とを表1、2、3、4に示す。
[実施例32~34]
 複合タングステン酸化物超微粒子分散液の調製の際、複合タングステン酸化物20重量部と、溶媒としてプロピレングリコールモノエチルエーテル80重量部とを混合したこと以外は、上述した実施例29~31と同様の合成製造方法により、実施例32~34に係る複合タングステン酸化物超微粒子と、その超微粒子分散液とを製造した。得られた超微粒子と、その超微粒子分散液と、赤外線遮蔽ガラスと、シート状の近赤外線遮蔽超微粒子分散体に対して、実施例26と同様の評価を実施した。当該製造条件と評価結果とを表1、2、3、4に示す。
[実施例35]
 実施例1に係る方法と同様にして複合タングステン酸化物超微粒子を得た。その後、得られた超微粒子20重量と、メチルイソブチルケトン64重量部と、分散剤a16重量部とを混合し、50gのスラリーを調製した。このスラリーへ、超音波ホモジナイザー(株式会社日本精機製作所製 US-600TCVP)によって1時間分散処理を行い、実施例35に係る複合タングステン酸化物超微粒子分散液を得、さらに赤外線遮蔽ガラスを製造した。実施例35に係る複合タングステン酸化物超微粒子分散液と、外線遮蔽ガラスとに対して、実施例1と同様の評価を実施した。当該製造条件と評価結果とを表1、2、3、4に示す。
[比較例1および2]
 キャリアガス流量、プラズマガス流量、シースガス流量、原料供給速度を変更したこと以外は、実施例1と同様の操作をすることで、比較例1、2に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。変更したキャリアガス流量条件と原料供給速度条件、およびその他の条件を表1に記載する。得られた超微粒子とその分散液に対して、実施例1と同様の評価を実施した。当該評価結果を表2に示す。
 また、比較例1および2に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、比較例1および2に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[比較例3]
 5000~10000Kの高温部を有している熱プラズマを発生させるために、高周波電力を15KWとした以外は、実施例1と同様の操作をすることで、比較例3に係る複合タングステン酸化物超微粒子と複合タングステン酸化物超微粒子分散液を製造した。得られた超微粒子とその分散液に対して、実施例1、比較例1、2と同様の評価を実施した。当該製造条件と評価結果を表1、2に示す。
 また、比較例1および2に係る複合タングステン酸化物超微粒子分散液を用いた以外は実施例1に係る赤外線遮蔽ガラスと同様に、比較例1および2に係る赤外線遮蔽ガラスを得て評価した。結果を表3に示す。
[比較例4]
 実施例26に係る複合タングステン酸化物超微粒子水分散液を4時間の粉砕分散処理時間で得るところを、40時間の粉砕分散処理とした以外は、実施例26と同様の操作を行って、比較例4に係る複合タングステン酸化物超微粒子水分散液を得た。比較例4に係る複合タングステン酸化物超微粒子水分散液の分散粒子径を測定したところ、120nmであった。尚、分散粒子径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは水で測定し、溶媒屈折率は1.33とした。
 比較例4に係る複合タングステン酸化物超微粒子のX線回折パターンを測定し、相の同定を行った結果、得られた超微粒子は、六方晶Cs0.33WO単相と同定された。また、得られた超微粒子のX線回折パターンのピークトップ強度の値は1300カウント、ピーク位置は2θ=27.8°であり、結晶子径は8.1nmであった。一方、シリコン粉末標準試料(NIST製、640c)を準備し、当該シリコン粉末標準試料における(220)面を基準としたピーク強度の値を測定したところ、19800カウントであった。従って、当該標準試料のピーク強度の値を1としたときの、実施例1に係る粉砕分散処理後の複合タングステン酸化物超微粒子のXRDピーク強度の比の値は0.07であることが判明した。
 粉砕して得られた比較例4に係る複合タングステン酸化物超微粒子のBET比表面積を測定したところ、102.8m/gであった。
 また、比較例4に係る複合タングステン酸化物超微粒子の揮発成分の含有率を測定したところ2.2質量%であった。
 得られた複合タングステン酸化物超微粒子20重量部を、メチルイソブチルケトン64重量部と分散剤a16重量部に分散させて、比較例4に係る50gの複合タングステン酸化物超微粒子分散液を得た。そして当該複合タングステン酸化物超微粒子分散液の分散粒子径を測定したところ、120nmであった。尚、分散粒子径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。尚、バックグラウンドはメチルイソブチルケトンで測定し、溶媒屈折率は1.40とした。
 次に、比較例4に係る複合タングステン酸化物超微粒子分散液を、紫外線硬化樹脂および溶媒であるメチルイソブチルケトンと混合して塗布液を調製した。当該塗布液を、厚さ3mmのガラス基板上へ、バーコーターを用いて塗布し塗布膜を形成した。当該塗布膜から溶媒を蒸発させた後、紫外線照射し硬化させてコーティング層とし、比較例4に係る赤外線遮蔽ガラスを得た。このとき、硬化膜の可視光透過率が70%になるように、予め溶媒のメチルイソブチルケトンによる希釈によって、分散液の濃度を調整した。
 得られた比較例4に係る赤外線遮蔽ガラス中に分散された複合タングステン酸化物超微粒子の平均粒子径を、透過型電子顕微鏡像を用いた画像処理装置によって算出したところ、120nmであった。得られた比較例4に係る赤外線遮蔽ガラスのヘイズを測定したところ、1.8%であった。また、得られた比較例4に係る硬化膜の透過率を、波長200nm~2600nmの範囲において5nmの間隔で測定し、得られた透過プロファイルから日射透過率を求めたところ、48.3%であった。また、比較例4に係る赤外線遮蔽ガラスのブルーヘイズ現象の有無を、実施例1と同様に目視で確認し、ブルーヘイズ現象があることを確認した。
 結果を表3に示す。
[実施例36]
 実施例1に係る複合タングステン酸化物超微粒子分散液をポリビニルブチラールに添加し、そこへ可塑剤としてトリエチレングリコール-ジ-2-エチルブチレートを、重量比[ポリビニルブチラール/可塑剤]=100/40となるように添加した。このとき、作製目的物である赤外線遮蔽合わせ構造体(本実施例、比較例において「合わせ構造体」と記載する場合がある。)の可視光透過率が70%となるように、複合タングステン酸化物超微粒子の濃度を調整した。得られた液体中の低沸点溶媒であるメチルブチルケトンを除去し、ポリビニルブチラール濃度が71質量%である中間膜用組成物を調製した。
 調製された当該中間膜用組成物をロールで混練して、0.76mm厚のシート状に成形し、実施例1に係る日射遮蔽用中間膜を作製した。作製された日射遮蔽用中間膜を、100mm×100mm×約2mm厚のグリーンガラス基板2枚の間に挟み込み、80℃に加熱して仮接着した後、140℃、14kg/cmのオートクレーブに入れて、本接着を行い、実施例36に係る合わせ構造体Aを作製した。
 得られた実施例36に係る合わせ構造体A中に分散された複合タングステン酸化物超微粒子の平均粒子径を、透過型電子顕微鏡像を用いた画像処理装置によって算出したところ、17nmであった。また、得られた合わせ構造体Aのヘイズを、ヘイズメーター(村上色彩技術研究所製HM-150)を用いて、JISK7105に基づき測定したところ、0.8%であった。また、得られた実施例36に係る合わせ構造体Aの透過率を、分光光度計(日立製作所製U-4100)により波長200nm~2600nmの範囲において5nmの間隔で測定した結果、可視光透過率70%のときの日射透過率は34.4%であった。当該評価結果を表4に示す。また、人工太陽照明灯(セリック株式会社製 XC-100)を用いて疑似太陽光を実施例1に係る合わせ構造体Aに照射して、ブルーヘイズ現象の有無を目視で確認し、ブルーヘイズ現象がないことを確認した。
[実施例37~39]
 2枚のグリーンガラスの内1枚をポリカーボネートに替えた以外は、実施例36と同様にして実施例37に係る合わせ構造体Bを作製した。また、2枚のグリーンガラスの内1枚をクリアガラスに替えた以外は、実施例36と同様にして実施例38に係る合わせ構造体Cを作製した。また、2枚のグリーンガラスを2枚のクリアガラスに替えた以外は、実施例36と同様にして実施例39に係る合わせ構造体C´を作製した。
 得られた実施例37~39に係る合わせ構造体B、C、C´に対し、実施例36と同様の光学的測定を実施した。当該測定結果を表5に示す。
[実施例40~62]
 実施例2から24に係る複合タングステン酸化物超微粒子分散液を用い、実施例36と同様の操作を実施して、実施例40~62に係る中間膜用組成物を調製し、さらに実施例40~62に係る合わせ構造体D~Zを作製した。
 得られた実施例40~62に係る合わせ構造体D~Zに対し、実施例36と同様の光学的測定を実施した。当該測定結果を表5に示す。
[実施例63]
 実施例1に係る複合タングステン酸化物超微粒子をポリビニルブチラールに添加し、そこへ可塑剤としてトリエチレングリコール-ジ-2-エチルブチレートを、重量比[ポリビニルブチラール/可塑剤]=100/40となるように添加し、実施例63に係る複合タングステン酸化物超微粒子分散液を作製した。このとき、作製目的物である合わせ構造体の可視光透過率が70%となるように、複合タングステン酸化物超微粒子の濃度を調整し、ポリビニルブチラール濃度が71質量%である中間膜用組成物を調製した。
 調製された当該中間膜用組成物をロールで混練して、0.76mm厚のシート状に成形し、実施例63に係る日射遮蔽用中間膜を作製した。作製された日射遮蔽用中間膜を、100mm×100mm×約2mm厚のグリーンガラス基板2枚の間に挟み込み、80℃に加熱して仮接着した後、140℃、14kg/cmのオートクレーブに入れて本接着を行い、実施例63に係る合わせ構造体aを作製した。
 得られた合わせ構造体aの光学的特性を、実施例36と同様に測定した。当該測定結果を表5に示す。
[実施例64]
 実施例26に係る複合タングステン酸化物超微粒子20重量部を、分散媒であるメチルイソブチルケトン64重量部と分散剤a16重量部に分散させて、実施例64に係る50gの複合タングステン酸化物超微粒子分散液を得た。
 実施例64に係る複合タングステン酸化物超微粒子分散液の分散粒子径を測定したところ、80nmであった。
 尚、当該分散粒子径測定の際、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはメチルイソブチルケトンを用いて測定し、溶媒屈折率は1.40とした。
 次に、実施例64に係る複合タングステン酸化物超微粒子分散液をポリビニルブチラールに添加し、そこへ可塑剤としてトリエチレングリコール-ジ-2-エチルブチレートを、重量比[ポリビニルブチラール/可塑剤]=100/40となるように添加した。このとき、作製目的物である合わせ構造体の可視光透過率が70%になるように、複合タングステン酸化物超微粒子の濃度を調整し、得られた液体中の低沸点溶媒であるメチルブチルケトンを除去し、ポリビニルブチラール濃度が71質量%となるように中間膜用組成物を調製した。
 調製された当該組成物をロールで混練して、0.76mm厚のシート状に成形し、実施例64に係る日射遮蔽用中間膜を作製した。作製された日射遮蔽用中間膜を、100mm×100mm×約2mm厚のグリーンガラス基板2枚の間に挟み込み、80℃に加熱して仮接着した後、140℃、14kg/cmのオートクレーブに入れて本接着を行い、実施例64に係る合わせ構造体bを作製した。
 得られた合わせ構造体bの光学的特性を実施例36と同様に測定した。当該測定結果を表5に示す。
[実施例65~72]
 実施例27~34に係る複合タングステン酸化物超微粒子を用いた以外は、実施例64と同様に複合タングステン酸化物超微粒子分散液と中間膜用組成物と日射遮蔽用中間膜と合わせ構造体c~jとを製造した。得られた超微粒子とその分散液と合わせ構造体c~jに対して、実施例36と同様の測定を実施した。当該測定結果を表5に示す。
 尚、実施例65~72に係る複合タングステン酸化物超微粒子分散液の分散粒子径を測定したところ、いずれも80nmであった。
[実施例73]
 実施例1で用いた複合タングステン酸化物超微粒子20重量と、メチルイソブチルケトン64重量部と、分散剤a16重量部とを混合し50gのスラリーを調製した。得られたスラリーへ、超音波ホモジナイザー(株式会社日本精機製作所製US-600TCVP)を用いて1時間分散処理を行い、実施例73に係る複合タングステン酸化物超微粒子分散液を得た。
 得られた実施例73に係る複合タングステン酸化物超微粒子分散液を用いた以外は、実施例36と同様にして中間膜用組成物と日射遮蔽用中間膜と合わせ構造体kを製造した。得られた超微粒子とその分散液と合わせ構造体に対して、実施例36と同様の測定を実施した。当該測定結果を表5に示す。
 尚、実施例73に係る複合タングステン酸化物超微粒子分散液の分散粒子径を測定したところ、70nmであった。
[比較例5~7]
 比較例1~3に係る複合タングステン酸化物超微粒子を用いた以外は、実施例64と同様に複合タングステン酸化物超微粒子分散液と中間膜用組成物と日射遮蔽用中間膜と合わせ構造体AA~ACとを製造した。得られた超微粒子とその分散液と合わせ構造体AA~ACに対して、実施例36と同様の評価を実施した。当該測定結果を表5に示す。
 尚、比較例5~7に係る複合タングステン酸化物超微粒子分散液の分散粒子径を測定したところ、いずれも80nmであった。比較例5に係る複合タングステン酸化物超微粒子分散液の分散粒子径も比較例4と同様に測定したところ、80nmであった。
[まとめ]
 表2から明らかなように、実施例1~35に係る赤外線遮蔽ガラスのコーティング層である分散体に含まれる複合タングステン酸化物超微粒子と、実施例36~73に係る赤外線遮蔽合わせ構造体の日射遮蔽中間膜に含まれるに複合タングステン酸化物超微粒子とは、シリコン粉末標準試料(NIST製、640c)(220)面のXRDピーク強度の値に対する前期複合タングステン酸化物超微粒子のXRDピークトップ強度の比が0.13以上であり、結晶子径が1nm以上の複合タングステン酸化物超微粒子であった。ここで、実施例において、分散体中や日射遮蔽中間膜中の複合タングステン酸化物超微粒子の平均粒子径と結晶子径とはほぼ同じであることから、用いている複合タングステン酸化物超微粒子はアモルファス相の体積比率が50%未満である単結晶の複合タングステン酸化物超微粒子であると考えられる。
 一方、比較例1、2、4~6において、分散体中や日射遮蔽中間膜中の複合タングステン酸化物超微粒子の平均粒子径は結晶子径よりも大きく、単結晶ではないと考えられる。また、比較例3、7においては異相(WOとW)が発生していた。
 そして、当該実施例に係る複合タングステン酸化物超微粒子を用いて製造された赤外線遮蔽ガラス、近赤外線遮蔽超微粒子分散体、赤外線遮蔽合わせ構造体は、表3~5に示すように日射透過率が47%以下の優れた近赤外線遮蔽特性を発揮した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
1 熱プラズマ
2 高周波コイル
3 シースガス供給ノズル
4 プラズマガス供給ノズル
5 原料粉末供給ノズル
6 反応容器
7 吸引管
8 フィルター

Claims (20)

  1. 近赤外線遮蔽特性を有する超微粒子が固体媒体に分散された近赤外線遮蔽超微粒子分散体であって、
     前記超微粒子が複合タングステン酸化物超微粒子であり、シリコン粉末標準試料(NIST製、640c)の(220)面のXRDピーク強度の値を1としたとき、前記複合タングステン酸化物超微粒子のXRDピークトップ強度の比の値が0.13以上であることを特徴とする近赤外線遮蔽超微粒子分散体。
  2.  前記複合タングステン酸化物超微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物超微粒子であることを特徴とする、請求項1に記載の近赤外線遮蔽超微粒子分散体。
  3.  前記複合タングステン酸化物超微粒子の結晶子径が1nm以上200nm以下であることを特徴とする請求項1または2に記載の近赤外線遮蔽超微粒子分散体。
  4.  前記複合タングステン酸化物超微粒子が、六方晶の結晶構造を含むことを特徴とする請求項1から3のいずれかに記載の近赤外線遮蔽超微粒子分散体。
  5.  前記複合タングステン酸化物超微粒子の揮発成分の含有率が、2.5質量%以下であることを特徴とする請求項1から4のいずれかに記載の近赤外線遮蔽超微粒子分散体。
  6.  前記固体媒体が、媒体樹脂であることを特徴とする請求項1から5のいずれかに記載の近赤外線遮蔽超微粒子分散体。
  7.  前記媒体樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体樹脂、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、または、前記樹脂群から選択される2種以上の樹脂の混合物、または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかから選択される媒体樹脂であることを特徴とする請求項6に記載の近赤外線遮蔽超微粒子分散体。
  8.  前記媒体樹脂が、UV硬化性樹脂バインダーであることを特徴とする請求項6に記載の近赤外線遮蔽超微粒子分散体。
  9.  前記複合タングステン酸化物超微粒子を、0.001質量%以上80質量%以下含むことを特徴とする請求項1から8のいずれかに記載の近赤外線遮蔽超微粒子分散体。
  10.  前記近赤外線遮蔽超微粒子分散体が、シート状、ボード状またはフィルム状のいずれかとなっていることを特徴とする請求項1から9のいずれかに記載の近赤外線遮蔽超微粒子分散体。
  11.  透明基材上に、厚さ1μm以上10μm以下のコーティング層となって設けられていることを特徴とする請求項1から10のいずれかに記載の近赤外線遮蔽超微粒子分散体。
  12.  前記透明基材が、ポリエステルフィルムであることを特徴とする請求項11に記載の近赤外線遮蔽超微粒子分散体。
  13.  前記透明基材が、ガラスであることを特徴とする請求項11に記載の近赤外線遮蔽超微粒子分散体。
  14.  赤外線遮蔽合わせ構造体において、2枚以上の透明基材によって挟持された中間層を構成する日射遮蔽用中間膜であって、請求項1から11のいずれかに記載の近赤外線遮蔽超微粒子分散体が用いられていることを特徴とする日射遮蔽用中間膜。
  15.  2枚以上の透明基材と、当該2枚以上の透明基材に狭持された中間層とを備えた赤外線遮蔽合わせ構造体であって、
     前記中間層は1層以上の中間膜で構成され、
     前記中間膜の少なくとも1層が請求項14に記載の日射遮蔽用中間膜であり、
     前記透明基材が、板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチックから選ばれるいずれかであることを特徴とする赤外線遮蔽合わせ構造体。
  16.  近赤外線遮蔽特性を有する超微粒子が固体媒体に分散された近赤外線遮蔽超微粒子分散体の製造方法であって、
     前記近赤外線遮蔽特性を有する超微粒子として、シリコン粉末標準試料(NIST製、640c)の(220)面のXRDピーク強度の値を1としたとき、XRDピークトップ強度の比の値が0.13以上である複合タングステン酸化物超微粒子を、前記固体媒体に分散させることを特徴とする近赤外線遮蔽超微粒子分散体の製造方法。
  17.  前記複合タングステン酸化物超微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物超微粒子であることを特徴とする、請求項16に記載の近赤外線遮蔽超微粒子分散体の製造方法。
  18.  前記複合タングステン酸化物超微粒子の分散粒子径が1nm以上200nm以下であることを特徴とする請求項14または15に記載の近赤外線遮蔽超微粒子分散体の製造方法。
  19.  前記複合タングステン酸化物超微粒子が、六方晶の結晶構造を含むことを特徴とする請求項16から18のいずれかに記載の近赤外線遮蔽超微粒子分散体の製造方法。
  20.  前記複合タングステン酸化物超微粒子の揮発成分の含有率が、2.5質量%以下であることを特徴とする請求項16から19のいずれかに記載の近赤外線遮蔽超微粒子分散体の製造方法。
     
     
PCT/JP2016/087799 2015-12-18 2016-12-19 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法 WO2017104854A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2018007490A MX2018007490A (es) 2015-12-18 2016-12-19 Cuerpo de dispersión de partículas ultrafinas de protección infrarroja cercana, pelicula intermedia de protección contra la radiación solar, estructura laminada de protección contra rayos infrarrojos, y método para producir cuerpo de dispersión de partículas ultrafinas de protección infrarroja cencana.
CN201680074497.9A CN108779381B (zh) 2015-12-18 2016-12-19 近红外线屏蔽超微粒子分散体、日照屏蔽用中间膜、红外线屏蔽夹层结构体及近红外线屏蔽超微粒子分散体的制造方法
BR112018012405A BR112018012405A2 (pt) 2015-12-18 2016-12-19 corpo de dispersão de partículas ultrafinas de blindagem de infravermelho próximo, filme intermediário de blindagem de radiação solar, estrutura laminada de blindagem de infravermelho, e, método para produzir um corpo de dispersão de partículas ultrafinas de blindagem de infravermelho próximo.
KR1020187020228A KR102620283B1 (ko) 2015-12-18 2016-12-19 근적외선 차폐 초미립자 분산체, 일사 차폐용 중간막, 적외선 차폐 적층 구조체, 및 근적외선 차폐 초미립자 분산체의 제조 방법
MYPI2018000956A MY193170A (en) 2015-12-18 2016-12-19 Near infrared shielding ultrafine particle dispersion body, solar radiation shielding intermediate film, infrared shielding laminated structure, and method for produsing near-infrared shielding ultrafine particle dispersion body
US16/063,585 US11091655B2 (en) 2015-12-18 2016-12-19 Infrared-shielding ultrafine particle dispersion body, interlayer for shielding solar radiation, infrared-shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion body
JP2017556493A JP6922742B2 (ja) 2015-12-18 2016-12-19 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法
EP16875828.2A EP3395924B1 (en) 2015-12-18 2016-12-19 Near infrared shielding ultrafine particle dispersion, interlayer for solar shading, infrared shielding laminated structure, and method for producing near infrared shielding ultrafine particle dispersion
IL260089A IL260089B (en) 2015-12-18 2018-06-17 A body containing a bulk of tiny particles that protect against a near infrared wavelength, an intermediate layer for protection against solar radiation, a layered structure for protection against an infrared wavelength, and a method for preparing a body containing a bulk of tiny particles that protect against a near infrared wavelength

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015247930 2015-12-18
JP2015-247929 2015-12-18
JP2015-247930 2015-12-18
JP2015247929 2015-12-18
JP2016146803 2016-07-26
JP2016-146805 2016-07-26
JP2016-146803 2016-07-26
JP2016146805 2016-07-26

Publications (1)

Publication Number Publication Date
WO2017104854A1 true WO2017104854A1 (ja) 2017-06-22

Family

ID=59056797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087799 WO2017104854A1 (ja) 2015-12-18 2016-12-19 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法

Country Status (11)

Country Link
US (1) US11091655B2 (ja)
EP (1) EP3395924B1 (ja)
JP (1) JP6922742B2 (ja)
KR (1) KR102620283B1 (ja)
CN (1) CN108779381B (ja)
BR (1) BR112018012405A2 (ja)
IL (1) IL260089B (ja)
MX (1) MX2018007490A (ja)
MY (1) MY193170A (ja)
TW (1) TWI726959B (ja)
WO (1) WO2017104854A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235839A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線吸収繊維とその製造方法、およびこれを用いた繊維製品
WO2018235842A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 光熱変換層とその製造方法、および当該光熱変換層を用いたドナーシート
WO2018235829A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線硬化型インク組成物とその製造方法、近赤外線硬化膜、および光造形法
US20190002712A1 (en) * 2015-12-18 2019-01-03 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
WO2019021992A1 (ja) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 赤外線吸収微粒子分散粉、赤外線吸収微粒子分散粉含有分散液、赤外線吸収微粒子分散粉含有インク、および偽造防止インク、並びに偽造防止用印刷物
KR20210060604A (ko) * 2018-09-27 2021-05-26 스미토모 긴조쿠 고잔 가부시키가이샤 적외선 흡수 재료 미립자 분산액과 그의 제조 방법
EP3647388A4 (en) * 2017-05-25 2021-06-02 Sumitomo Metal Mining Co., Ltd. NEAR-INFRARED SHIELDING ULTRAFINE PARTICLE DISPERSION BODY, NEAR-INFRARED SHIELDING INTERMEDIATE FILM, NEAR-INFRARED SHIELDING LAMINATED STRUCTURE AND MANUFACTURING METHOD FOR A NEAR-INFRARED PARTICLE DISPERSION BODY
JP2021084825A (ja) * 2019-11-26 2021-06-03 住友金属鉱山株式会社 混和複合タングステン酸化物微粒子粉末、混和複合タングステン酸化物微粒子分散液、および、混和複合タングステン酸化物微粒子分散体
WO2021261523A1 (ja) * 2020-06-26 2021-12-30 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US20220081318A1 (en) * 2019-01-21 2022-03-17 Sumitomo Metal Mining Co., Ltd. Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and infrared-absorbing substrate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757632A4 (en) 2018-02-08 2022-01-19 Sumitomo Metal Mining Co., Ltd. MICROPARTICLE DISPERSION OF NEAR INFRARED RAY ABSORPTION MATERIAL, NEAR INFRARED RAY ABSORBER, NEAR INFRARED RAY ABSORPTION LAMINATE, COMBINED STRUCTURE FOR NEAR INFRARED RAY ABSORPTION
CN111278766B (zh) * 2018-02-09 2023-05-23 中国石油化工股份有限公司 低温等离子体反应设备和分解硫化氢的方法
CN108760783A (zh) * 2018-05-28 2018-11-06 厦门大学 一种铯钨青铜粉体结晶度的评价方法
KR102690865B1 (ko) * 2018-12-18 2024-08-05 스미토모 긴조쿠 고잔 가부시키가이샤 유기 무기 하이브리드 적외선 흡수 입자 제조 방법, 유기 무기 하이브리드 적외선 흡수 입자
EP3950630A4 (en) * 2019-03-29 2022-12-21 Sekisui Chemical Co., Ltd. LAMINATED GLASS AND VEHICLE SYSTEM
CN111763428B (zh) * 2019-04-01 2022-12-13 律胜科技股份有限公司 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
WO2020199085A1 (zh) * 2019-04-01 2020-10-08 律胜科技股份有限公司 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
CN110631401B (zh) * 2019-08-30 2020-07-10 浙江大学 一种热传导隐形方法、装置以及应用
TWI727675B (zh) * 2020-02-26 2021-05-11 南亞塑膠工業股份有限公司 紅外線遮蔽膜及其製造方法
CN111716833A (zh) * 2020-06-30 2020-09-29 江南大学 一种涂覆型多层透明的紫外近红外屏蔽高分子材料、制备方法及其应用
KR102609124B1 (ko) * 2021-07-09 2023-12-04 인네이처 주식회사 열차단능이 있는 온실 필름용 마스터배치의 제조방법
WO2024077033A1 (en) * 2022-10-05 2024-04-11 Battelle Memorial Institute Transparent ceramic windows for hypersonic application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087680A1 (ja) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. 日射遮蔽用合わせ構造体
JP2010265144A (ja) * 2009-05-15 2010-11-25 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物超微粒子の製造方法
JP2011157504A (ja) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子
JP2012506463A (ja) * 2008-10-23 2012-03-15 データレース リミテッド 熱吸収添加剤
JP2013173642A (ja) * 2012-02-24 2013-09-05 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用複合タングステン酸化物微粒子とその製造方法、および日射遮蔽体形成用複合タングステン酸化物微粒子分散液、並びに日射遮蔽体
JP2014166701A (ja) * 2013-02-28 2014-09-11 Sumitomo Metal Mining Co Ltd 熱線遮蔽用合わせ構造体
JP2015066763A (ja) * 2013-09-27 2015-04-13 住友金属鉱山株式会社 熱線遮蔽用合わせ構造体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136230A (ja) 1988-11-16 1990-05-24 Takiron Co Ltd 赤外線吸収性合成樹脂成型品
JP3154645B2 (ja) 1995-01-23 2001-04-09 セントラル硝子株式会社 自動車用合せガラス
US6060154A (en) 1997-09-30 2000-05-09 Sumitomo Metal Mining Co., Ltd. Coating liquid for selective permeable membrane, selective permeable membrane and selective permeable multilayered membrane
JP4058822B2 (ja) 1997-09-30 2008-03-12 住友金属鉱山株式会社 選択透過膜用塗布液、選択透過膜および選択透過多層膜
US8083847B2 (en) 2003-10-20 2011-12-27 Sumitomo Metal Mining Co., Ltd. Fine particle dispersion of infrared-shielding material, infrared-shielding body, and production method of fine particles of infrared-shielding material and fine particles of infrared-shielding material
KR100982871B1 (ko) * 2004-08-31 2010-09-16 스미토모 긴조쿠 고잔 가부시키가이샤 도전성 입자, 가시광 투과형 입자 분산 도전체 및 그제조방법, 투명 도전 박막 및 그 제조방법, 이를 이용한투명 도전물품, 적외선 차폐물품
JP5298581B2 (ja) 2008-03-12 2013-09-25 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散液、赤外線遮蔽膜と赤外線遮蔽光学部材およびプラズマディスプレイパネル用近赤外線吸収フィルター
WO2010055570A1 (ja) 2008-11-13 2010-05-20 住友金属鉱山株式会社 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
WO2010101211A1 (ja) 2009-03-06 2010-09-10 株式会社ブリヂストン 熱線遮蔽性積層体、及びこれを用いた熱線遮蔽性合わせガラス
JP5942466B2 (ja) 2012-02-22 2016-06-29 住友金属鉱山株式会社 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
JP2018124300A (ja) 2015-06-12 2018-08-09 コニカミノルタ株式会社 赤外遮蔽体
MX2018007488A (es) 2015-12-18 2019-01-31 Sumitomo Metal Mining Co Particulas ultrafinas de oxido de tungsteno compuesto y liquido de dispersion de las mismas.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087680A1 (ja) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. 日射遮蔽用合わせ構造体
JP2012506463A (ja) * 2008-10-23 2012-03-15 データレース リミテッド 熱吸収添加剤
JP2010265144A (ja) * 2009-05-15 2010-11-25 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物超微粒子の製造方法
JP2011157504A (ja) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子
JP2013173642A (ja) * 2012-02-24 2013-09-05 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用複合タングステン酸化物微粒子とその製造方法、および日射遮蔽体形成用複合タングステン酸化物微粒子分散液、並びに日射遮蔽体
JP2014166701A (ja) * 2013-02-28 2014-09-11 Sumitomo Metal Mining Co Ltd 熱線遮蔽用合わせ構造体
JP2015066763A (ja) * 2013-09-27 2015-04-13 住友金属鉱山株式会社 熱線遮蔽用合わせ構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395924A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008476B2 (en) * 2015-12-18 2021-05-18 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
US20190002712A1 (en) * 2015-12-18 2019-01-03 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
US11884790B2 (en) 2017-05-25 2024-01-30 Sumitomo Metal Mining Co., Ltd. Near-infrared shielding ultrafine particle dispersion body, near-infrared shielding intermediate film, near-infrared shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion body
EP3647388A4 (en) * 2017-05-25 2021-06-02 Sumitomo Metal Mining Co., Ltd. NEAR-INFRARED SHIELDING ULTRAFINE PARTICLE DISPERSION BODY, NEAR-INFRARED SHIELDING INTERMEDIATE FILM, NEAR-INFRARED SHIELDING LAMINATED STRUCTURE AND MANUFACTURING METHOD FOR A NEAR-INFRARED PARTICLE DISPERSION BODY
JP7247886B2 (ja) 2017-06-19 2023-03-29 住友金属鉱山株式会社 近赤外線硬化型インク組成物とその製造方法、近赤外線硬化膜、および光造形法
CN110753730A (zh) * 2017-06-19 2020-02-04 住友金属矿山株式会社 近红外线固化型油墨组合物及其制造方法、近红外线固化膜以及光造型法
US11685839B2 (en) 2017-06-19 2023-06-27 Sumitomo Metal Mining Co., Ltd. Near-infrared curable ink composition and production method thereof, near-infrared cured layer, and stereolithography
JPWO2018235842A1 (ja) * 2017-06-19 2020-04-16 住友金属鉱山株式会社 光熱変換層とその製造方法、および当該光熱変換層を用いたドナーシート
WO2018235842A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 光熱変換層とその製造方法、および当該光熱変換層を用いたドナーシート
JP7010289B2 (ja) 2017-06-19 2022-01-26 住友金属鉱山株式会社 光熱変換層とその製造方法、および当該光熱変換層を用いたドナーシート
WO2018235839A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線吸収繊維とその製造方法、およびこれを用いた繊維製品
WO2018235829A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線硬化型インク組成物とその製造方法、近赤外線硬化膜、および光造形法
JPWO2018235829A1 (ja) * 2017-06-19 2020-04-16 住友金属鉱山株式会社 近赤外線硬化型インク組成物とその製造方法、近赤外線硬化膜、および光造形法
US11577537B2 (en) 2017-06-19 2023-02-14 Sumitomo Metal Mining Co., Ltd. Light to heat conversion layer and method for manufacturing the same, and donor sheet using the same
JP7259748B2 (ja) 2017-07-24 2023-04-18 住友金属鉱山株式会社 赤外線吸収微粒子分散粉、赤外線吸収微粒子分散粉含有分散液、赤外線吸収微粒子分散粉含有インク、および偽造防止インク、並びに偽造防止用印刷物
JPWO2019021992A1 (ja) * 2017-07-24 2020-05-28 住友金属鉱山株式会社 赤外線吸収微粒子分散粉、赤外線吸収微粒子分散粉含有分散液、赤外線吸収微粒子分散粉含有インク、および偽造防止インク、並びに偽造防止用印刷物
WO2019021992A1 (ja) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 赤外線吸収微粒子分散粉、赤外線吸収微粒子分散粉含有分散液、赤外線吸収微粒子分散粉含有インク、および偽造防止インク、並びに偽造防止用印刷物
IL272223B2 (en) * 2017-07-24 2024-01-01 Sumitomo Metal Mining Co Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, and anti-counterfeit ink, and anti-counterfeit printed matter
US11787949B2 (en) 2017-07-24 2023-10-17 Sumitomo Metal Mining Co., Ltd. Infrared absorbing fine particle dispersed powder, dispersion liquid containing infrared absorbing fine particle dispersed powder, ink containing infrared absorbing fine particle dispersed powder, and anti-counterfeit ink, and anti-counterfeit printed matter
IL272223B1 (en) * 2017-07-24 2023-09-01 Sumitomo Metal Mining Co Dispersion powder containing INFA red absorbent particles, dispersion liquid containing dispersion powder containing INFA red absorbent particles, ink containing dispersion powder containing INFA red absorbent particles, anti-counterfeiting ink, and anti-counterfeiting printed material
JPWO2020066426A1 (ja) * 2018-09-27 2021-08-30 住友金属鉱山株式会社 赤外線吸収材料微粒子分散液とその製造方法
KR20210060604A (ko) * 2018-09-27 2021-05-26 스미토모 긴조쿠 고잔 가부시키가이샤 적외선 흡수 재료 미립자 분산액과 그의 제조 방법
JP7367686B2 (ja) 2018-09-27 2023-10-24 住友金属鉱山株式会社 赤外線吸収材料微粒子分散液とその製造方法
KR102618176B1 (ko) * 2018-09-27 2023-12-28 스미토모 긴조쿠 고잔 가부시키가이샤 적외선 흡수 재료 미립자 분산액과 그의 제조 방법
EP3868713A4 (en) * 2018-09-27 2022-09-07 Sumitomo Metal Mining Co., Ltd. LIQUID FOR DISPERSING FINE PARTICLES OF INFRARED-ABSORBING MATERIAL AND METHOD FOR PRODUCTION THEREOF
US20220081318A1 (en) * 2019-01-21 2022-03-17 Sumitomo Metal Mining Co., Ltd. Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and infrared-absorbing substrate
JP2021084825A (ja) * 2019-11-26 2021-06-03 住友金属鉱山株式会社 混和複合タングステン酸化物微粒子粉末、混和複合タングステン酸化物微粒子分散液、および、混和複合タングステン酸化物微粒子分散体
JP7494465B2 (ja) 2019-11-26 2024-06-04 住友金属鉱山株式会社 混和複合タングステン酸化物微粒子粉末、混和複合タングステン酸化物微粒子分散液、および、混和複合タングステン酸化物微粒子分散体
CN115884950A (zh) * 2020-06-26 2023-03-31 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
WO2021261523A1 (ja) * 2020-06-26 2021-12-30 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Also Published As

Publication number Publication date
IL260089A (en) 2018-07-31
IL260089B (en) 2022-02-01
MY193170A (en) 2022-09-26
MX2018007490A (es) 2019-02-13
TW201736463A (zh) 2017-10-16
KR20180095006A (ko) 2018-08-24
US20190002708A1 (en) 2019-01-03
EP3395924A4 (en) 2019-08-07
BR112018012405A2 (pt) 2018-12-04
US11091655B2 (en) 2021-08-17
JP6922742B2 (ja) 2021-08-18
EP3395924B1 (en) 2024-02-28
CN108779381A (zh) 2018-11-09
EP3395924A1 (en) 2018-10-31
CN108779381B (zh) 2021-08-17
JPWO2017104854A1 (ja) 2018-11-08
KR102620283B1 (ko) 2024-01-02
TWI726959B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2017104854A1 (ja) 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法
JP6825577B2 (ja) 複合タングステン酸化物超微粒子およびその分散液
TWI745592B (zh) 近紅外線遮蔽超微粒子分散體、近紅外線遮蔽中間膜、近紅外線遮蔽夾層構造體及近紅外線遮蔽超微粒子分散體之製造方法
CN115038998A (zh) 电磁波吸收粒子分散体、电磁波吸收层叠体、电磁波吸收透明基材
KR20200118055A (ko) 근적외선 흡수 재료 미립자 분산체, 근적외선 흡수체, 근적외선 흡수물 적층체 및 근적외선 흡수용 접합 구조체
JP6697692B2 (ja) 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法
WO2024195641A1 (ja) 複合タングステン酸化物粒子、近赤外線吸収粒子分散液、および近赤外線吸収粒子分散体
TWI765059B (zh) 農園藝用土壤覆蓋薄膜及其製造方法
JP6949304B2 (ja) 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体
EP4501857A1 (en) Composite tungsten oxide particles, near-infrared-absorbing particle dispersion liquid, and near-infrared-absorbing particle dispersion
JP2025006005A (ja) 複合タングステン酸化物粒子、近赤外線吸収粒子分散液、および近赤外線吸収粒子分散体
WO2025070678A1 (ja) 複合タングステン酸化物粒子、近赤外線吸収粒子分散液、および近赤外線吸収粒子分散体
WO2023145737A1 (ja) 近赤外線吸収粒子、近赤外線吸収粒子の製造方法、近赤外線吸収粒子分散液、近赤外線吸収粒子分散体、近赤外線吸収積層体、近赤外線吸収透明基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556493

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 260089

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007490

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012405

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187020228

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020228

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016875828

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875828

Country of ref document: EP

Effective date: 20180718

ENP Entry into the national phase

Ref document number: 112018012405

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180618