[go: up one dir, main page]

WO2016104375A1 - 熱線吸収性ランプカバー - Google Patents

熱線吸収性ランプカバー Download PDF

Info

Publication number
WO2016104375A1
WO2016104375A1 PCT/JP2015/085545 JP2015085545W WO2016104375A1 WO 2016104375 A1 WO2016104375 A1 WO 2016104375A1 JP 2015085545 W JP2015085545 W JP 2015085545W WO 2016104375 A1 WO2016104375 A1 WO 2016104375A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp cover
heat
tungsten oxide
fine particles
resin
Prior art date
Application number
PCT/JP2015/085545
Other languages
English (en)
French (fr)
Inventor
孝雄 和氣
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580070769.3A priority Critical patent/CN107002974B/zh
Priority to US15/538,871 priority patent/US10359171B2/en
Priority to EP15872943.4A priority patent/EP3239600B1/en
Priority to BR112017013493-4A priority patent/BR112017013493A2/ja
Priority to MX2017008517A priority patent/MX2017008517A/es
Priority to ES15872943T priority patent/ES2839976T3/es
Priority to JP2016566316A priority patent/JPWO2016104375A1/ja
Publication of WO2016104375A1 publication Critical patent/WO2016104375A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a heat-absorbing lamp cover that is excellent in transparency and anti-fogging property with respect to a light source, such as an LED light source or a semiconductor laser, that has a small temperature rise due to lamp irradiation.
  • a light source such as an LED light source or a semiconductor laser
  • a methacrylic resin known as a thermoplastic resin is used as a raw material for a vehicle member such as a tail lamp cover or a meter panel because of its excellent transparency and weather resistance.
  • An aromatic polycarbonate resin is also a thermoplastic resin excellent in transparency, heat resistance, and impact resistance, and is therefore used as a raw material for a vehicle member such as a headlamp cover. It is known that the tail lamp cover or the head lamp cover is coated with an anti-fogging coating film on the side of the lens chamber so that the inside of the lamp is not fogged (see Patent Document 1).
  • the lamp cover itself can be given anti-fogging performance without the need to coat the tail lamp cover or head lamp cover with an anti-fogging coat, It can be performed at low cost. To that end, an anti-fogging coatless lamp cover is desired.
  • LED lamps and semiconductor lasers are being used as light sources for lamps instead of conventional halogen lamps. For example, LED lamps suppress an increase in temperature of a lamp cover due to lamp irradiation. As a result, condensation tends to occur in the lamp cover. Therefore, in order to raise the temperature of the lamp cover using the LED light source, the temperature of the lamp cover needs to be increased by sunlight (heat rays), and a lamp cover that can absorb the heat rays is demanded.
  • an object of the present invention is to provide a heat-absorbing lamp cover that is excellent in transparency and anti-fogging property with respect to a light source such as an LED light source or a semiconductor laser that hardly increases the temperature of the cover due to lamp irradiation.
  • a heat-absorbing lamp cover having an average light transmittance of visible light of 75% or more, an average light transmittance of near infrared light of 75% or less, and a haze of 3.0% or less.
  • the heat-absorbing lamp cover according to [1] comprising a resin composition containing an inorganic infrared shielding material at a ratio of 1 to 5000 ppm by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the thermoplastic resin is an acrylic resin and / or an aromatic polycarbonate resin.
  • the inorganic infrared shielding material has a general formula: M x W y O z [Where: M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Represents at least one element selected from the group consisting of Os, Bi and I; x, y, and z are the following formulas: 0.01 ⁇ x ⁇ 1 0.001 ⁇ x / y ⁇ 1 and 2.2 ⁇ z / y ⁇ 3.0 Is a number satisfying]
  • the heat-absorbing lamp cover according to any one of [2] to [3], wherein the composite tungsten
  • M is any one of [4] to [5], wherein M represents at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
  • Heat-absorbing lamp cover [7] The heat-absorbing lamp cover according to any one of [4] to [6], wherein the composite tungsten oxide particles are coated with a dispersant.
  • the heat ray absorbing lamp cover of the present invention an effect of being excellent in transparency and anti-fogging property can be obtained with respect to a light source such as an LED light source or a semiconductor laser in which the temperature rise of the cover is small due to lamp irradiation.
  • the heat-absorbing lamp cover has an average light transmittance of visible light of 75% or more, an average light transmittance of near infrared light of 75% or less, and a haze of 3.0%. It is as follows.
  • the heat ray absorbing lamp cover may be composed of a resin composition including a thermoplastic resin and an inorganic infrared shielding material.
  • thermoplastic resin as the base material of the thermoplastic resin composition constituting the heat-absorbing lamp cover of the present invention is not particularly limited as long as it is a transparent thermoplastic resin having a high light transmittance in the visible light region.
  • the visible light transmittance according to JIS R3106 when it is set to a thick plate-like molded product is 50% or more, and the haze according to JIS K7105 is 30% or less.
  • an acrylic resin (a resin obtained from a monomer component containing an acrylic acid monomer and / or a methacrylic acid monomer, and can also be expressed as a (meth) acrylic resin), an aromatic polycarbonate resin, a poly It is selected according to desired properties from thermoplastic resins exemplified by etherimide resin, polyester resin, polystyrene resin, polyethersulfone resin, fluororesin and polyolefin resin, and one or more of these It may be a mixture.
  • an acrylic resin, particularly a methacrylic resin is preferable from the viewpoint of transparency and weather resistance
  • an aromatic polycarbonate resin is preferable from the viewpoint of heat resistance and impact resistance.
  • the methacrylic resin that can be used as the thermoplastic resin in the present invention is preferably obtained by polymerizing a monomer component containing methyl methacrylate and an acrylate ester.
  • the mass ratio of methyl methacrylate, acrylate ester, etc. can be selected as appropriate, but the methyl methacrylate is 85 to 100 parts by mass and the monomer mainly composed of acrylate is 0 to 15 parts by mass. It is more preferable that methyl methacrylate is 90 to 100 parts by mass, and the monomer mainly composed of acrylate is 0 to 10 parts by mass.
  • the heat resistance of a methacrylic resin can be improved by making monomers, such as acrylic ester, into the said range.
  • acrylate ester examples include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, sec-butyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, and the like. It is done. Among these, methyl acrylate and ethyl acrylate are preferable. In addition, only 1 type may be sufficient as acrylic ester, and 2 or more types may be sufficient as it.
  • the polymerization method for polymerizing the monomer component is not particularly limited, and for example, known polymerization methods such as suspension polymerization, solution polymerization, and bulk polymerization can be employed. Among these, bulk polymerization is preferable. . Both batch type and continuous type can be adopted as the bulk polymerization.
  • the bulk polymerization is obtained by allowing the monomer component, the polymerization initiator, etc. to stay in the reaction vessel for a predetermined time while being continuously supplied into the reaction vessel.
  • a polymer can be obtained with high productivity by the method of continuously extracting the resulting partial polymer.
  • the polymerization initiator used when polymerizing the monomer component is not particularly limited.
  • an azo compound such as azobisisobutyronitrile, 1,1-di (t-butylperoxy) cyclohexane
  • a known radical polymerization initiator such as peroxide can be used.
  • 1 type may be sufficient as a polymerization initiator, and 2 or more types may be sufficient as it.
  • a chain transfer agent can be used as necessary.
  • the chain transfer agent is not particularly limited, and preferred examples include mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexyl thioglycolate, and the like.
  • mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexyl thioglycolate, and the like.
  • 1 type may be sufficient as a chain transfer agent, and 2 or more types may be sufficient as it.
  • the molecular weight distribution index represented by the weight average molecular weight / number average molecular weight of the methacrylic resin used in the present invention is not particularly limited, but is preferably 1.8 to 6.0.
  • a method using various radical polymerization initiators, a method using various chain transfer agents, and a multistage polymerization process are combined.
  • a known polymerization method such as a method is preferably used.
  • the methacrylic resin having a molecular weight distribution index of 2.2 or more may be produced by mixing two or more methacrylic resins having different weight average molecular weights.
  • the mixing method is not particularly limited, and a melt kneading method, a solvent kneading method, a dry blend method, and the like are used. From the viewpoint of productivity, the melt kneading method and the dry blend method are preferably used.
  • a normal mixer, a kneader, or the like can be used as an apparatus used for mixing.
  • a single-screw kneading extruder a twin-screw kneading extruder, a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, and the like. Can be mentioned.
  • methacrylic resin used in the present invention various additives as necessary, for example, antioxidants, stabilizers, ultraviolet absorbers, lubricants, processing aids, antistatic agents, colorants, impact resistance aids. , Foaming agents, fillers, matting agents and the like may be included.
  • Aromaatic polycarbonate resin examples of the aromatic polycarbonate resin that can be used as a thermoplastic resin in the present invention include those obtained by reacting a dihydric phenol and a carbonylating agent by an interfacial polycondensation method or a melt transesterification method; Examples thereof include those obtained by polymerizing a polymer by a solid phase transesterification method and the like; those obtained by polymerizing a cyclic carbonate compound by a ring opening polymerization method, and the like.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ methane, 1,1- Bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dibromo ) Phenyl ⁇ propane, 2,2-bis ⁇ (3-isopropyl-4-hydroxy) phenyl ⁇ propane, 2,2-bis ⁇ (4 -Hydroxy-3-phenyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl)
  • bisphenol A 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4 -Hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-Hydroxyphenyl) -3,3,5-trimethylcyclohexane and ⁇ , ⁇ ′-bis (4-hydroxyphenyl) -m-diisopropylbenzene are preferred.
  • carbonylating agent examples include carbonyl halide (such as phosgene), carbonate ester (such as diphenyl carbonate), and haloformate (such as dihaloformate of dihydric phenol). These may be used alone or in combination of two or more.
  • additives such as a mold release agent, an ultraviolet absorber, a dye, a pigment, a polymerization inhibitor, an antioxidant, a flame retardant, and a reinforcing material are contained within a range that does not impair the effects of the present invention. May be.
  • the heat-absorbing lamp cover of the present invention is composed of a resin composition containing an inorganic infrared shielding material at a ratio of 1 to 5000 ppm by mass with respect to 100 parts by mass of a thermoplastic resin.
  • the average particle diameter of inorganic particles (including composite tungsten oxide fine particles described later) contained in the inorganic infrared shielding material used in the present invention is usually 1 nm to 800 nm, preferably 1 nm to 500 nm. 1 nm to 300 nm is more preferable, and 1 nm to 100 nm is more preferable.
  • the average particle diameter of the inorganic particles means the dispersed particle diameter when the inorganic particles are dispersed.
  • the average particle diameter (dispersed particle diameter) of the inorganic particles can be measured with various commercially available particle size distribution analyzers. For example, it can be measured using ESL-800 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the inorganic infrared shielding material examples include a tungsten inorganic infrared shielding material, a lanthanum inorganic infrared shielding material, a tin inorganic infrared shielding material, and an antimony infrared shielding agent.
  • tungsten-based inorganic infrared shielding materials are preferable from the viewpoint of infrared shielding performance and haze, and composite tungsten oxide fine particles are particularly preferred among them.
  • the composite tungsten oxide fine particles used in the present invention preferably have the general formula: M x W y O z [Wherein M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Represents at least one element selected from the group consisting of Be, Hf, Os, Bi, and I, wherein x, y, and z are represented by the following formula: 0.01 ⁇ x ⁇ 1, 0.001 ⁇ x / y ⁇ 1, and 2.2 ⁇ z / y ⁇ 3.0 It is a number that satisfies ] It is the following formula: 0.01 ⁇ x ⁇
  • M is preferably at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba, and is preferably K, Rb, or Cs.
  • the range of x is preferably 0.01 ⁇ x ⁇ 0.5, and more preferably 0.2 ⁇ x ⁇ 0.4.
  • the ranges of x / y and z / y are each preferably 0.01 ⁇ x / y ⁇ 0.5, 2.7 ⁇ z / y ⁇ 3.0, and 0.2 ⁇ x / y ⁇ 0.4. 2.8 ⁇ z / y ⁇ 3.0 is more preferable.
  • the composite tungsten oxide fine particles can be obtained by heat-treating a starting tungsten compound in an inert gas atmosphere or a reducing gas atmosphere.
  • the composite tungsten oxide fine particles obtained through the heat treatment have sufficient near-infrared shielding power and have desirable properties as infrared shielding fine particles.
  • the starting material of the composite tungsten oxide fine particles represented by the general formula M x W y O z is a tungsten compound containing the element M in the form of a single element or a compound.
  • the element M is contained in the form of elemental element or compound, tungsten trioxide powder, tungsten oxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten hexachloride.
  • the hydrate powder is one or more selected from the group consisting of a tungsten compound powder obtained by drying an ammonium tungstate aqueous solution, and a metal tungsten powder.
  • the tungsten compound containing the element M is water, an organic solvent, or the like. It is preferable that it is soluble in a solvent. Examples of such compounds include, but are not limited to, tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, etc. containing element M. It is preferable that it is in the form of a solution.
  • tungsten trioxide powder As starting materials for obtaining composite tungsten oxide fine particles represented by the general formula M x W y O z , tungsten trioxide powder, tungsten oxide powder, tungsten oxide hydrate, tungsten hexachloride powder, tungstic acid Ammonium powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and dried, or tungsten hexachloride dissolved in alcohol and water added to precipitate it.
  • One or more kinds of powders selected from the group consisting of tungsten oxide hydrate powder obtained by drying, tungsten compound powder obtained by drying ammonium tungstate aqueous solution, and metal tungsten powder, and the M Use powder that is mixed with simple substance or compound powder containing element Door can be.
  • the tungsten compound which is a starting material for obtaining the composite tungsten oxide fine particles is a solution or a dispersion
  • each element can be easily and uniformly mixed.
  • the starting material of the composite tungsten oxide fine particles is a powder obtained by mixing an alcohol solution of tungsten hexachloride or an ammonium tungstate aqueous solution with a solution of the compound containing the M element and then drying. Further preferred.
  • the starting material of the composite tungsten oxide fine particles is a dispersion in which tungsten hexachloride is dissolved in alcohol and then water is added to form a precipitate, and a simple substance or compound containing the M element. It is also preferable that the powder or a powder of the compound containing the element M is mixed and then dried.
  • Examples of the compound containing M element include, but are not limited to, M element tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, and the like. Any solution can be used. Furthermore, in particular, when the composite tungsten oxide fine particles are industrially produced, a production method using a tungsten oxide hydrate powder or tungsten trioxide and an M element carbonate or hydroxide is a heat treatment. Since no harmful gas or the like is generated at such a stage, it is preferably employed.
  • the heat treatment condition in the inert atmosphere of the composite tungsten oxide fine particles is preferably 650 ° C. or higher.
  • the starting material heat-treated at 650 ° C. or higher has a sufficient near-infrared shielding power and has good efficiency as infrared shielding fine particles.
  • an inert gas such as Ar or N 2 is preferably used.
  • the heat treatment conditions in the reducing atmosphere first, the starting material is heat-treated at 100 ° C. or higher and 850 ° C. or lower in the reducing gas atmosphere, and then heat-treated at a temperature of 650 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere. It is preferable to do.
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • the volume ratio of H 2 is preferably 0.1% or more, and more preferably 2% or more, as the composition of the reducing atmosphere. H 2 can be advanced efficiently reduced if more than 0.1% by volume.
  • the surface of the fine particles of the infrared shielding material obtained in the above process is coated with an oxide containing one or more kinds of metals selected from the group consisting of Si, Ti, Zr, and Al. From the viewpoint of improving the property.
  • the coating method is not particularly limited, the surface of the infrared shielding material fine particles can be coated by adding the metal alkoxide to the solution in which the infrared shielding material fine particles are dispersed.
  • the composite tungsten oxide fine particles are preferably coated with a dispersant.
  • the dispersant include polymethyl methacrylate, polycarbonate, polysulfone, polyacrylonitrile, polyarylate, polyethylene, polyvinyl chloride, polyvinylidene chloride, fluororesin, polyvinyl butyral, polyvinyl alcohol, polystyrene, silicone resins and derivatives thereof. It is done.
  • the composite tungsten oxide fine particles are coated with these dispersants, so that the dispersibility when added to the resin is improved, and further, the mechanical properties are prevented from being lowered.
  • composite tungsten oxide fine particles and a dispersant are dissolved in a solvent such as toluene and stirred to prepare a dispersion, and then the composite tungsten oxide is removed by removing the solvent by a process such as vacuum drying.
  • a solvent such as toluene
  • a process such as vacuum drying.
  • thermoplastic resin particularly an acrylic resin
  • a method of directly adding composite tungsten oxide fine particles or coated composite tungsten oxide fine particles The method of adding after diluting with a thermoplastic resin, especially an acrylic resin is mentioned.
  • the thermoplastic resin used in the present invention is preferably blended with an inorganic infrared shielding material for the purpose of imparting heat absorption.
  • the inorganic infrared shielding material used in the present invention is preferably a composite oxide composed of a tungsten oxide component and cesium tungsten oxide.
  • the upper limit of the ratio of the inorganic infrared shielding material to 100 parts by mass of the resin component is preferably 5000 ppm by mass or less, preferably 3000 ppm by mass or less, and 2000 ppm by mass from the viewpoint of transparency and fine dispersion. The following is more preferable.
  • the lower limit of the above ratio is preferably 10 ppm by mass or more, preferably 100 ppm by mass or more, and more preferably 20 ppm by mass or more from the viewpoint of heat ray absorbability.
  • the heat ray absorbing lamp cover of the present invention preferably has an average visible light transmittance of 75% or more, more preferably 80% or more.
  • the average light transmittance of visible light is usually measured as a transmittance in a wavelength region of 380 to 780 nm in a state of a molded body having a thickness of 2 mm.
  • the average light transmittance of near infrared light is preferably 75% or less, and more preferably 70% or less.
  • the average light transmittance of near-infrared light is usually measured as the transmittance in the wavelength region of 800 nm to 2000 nm.
  • the heat ray absorptive lamp cover of this invention has favorable transparency, and a haze is 3.0% or less.
  • the haze is usually measured for a molded body having a thickness of 2 mm.
  • Inorganic infrared shielding materials reduce the light transmittance in the wavelength region of 800 to 2000 nm, and the shielding ability can also affect the high wavelength region of the visible region below 800 nm. As a result, the lamp cover is bluish. I can see it. In order to suppress this phenomenon, it is effective to add a small amount of dye to such an extent that the average transmittance in the visible band 380 to 780 nm can be maintained at 75% or more. For example, a nearly colorless lamp cover can be obtained by adding a red, orange or yellow dye in such an amount that the average light transmittance at 380 to 780 nm is reduced by 1%.
  • examples of orange dyes include color index number S.I. O. 60 and the like
  • yellow index dyes include the color index number S.I. G. 5, S.M. Y. 16, S.M. Y. 157, S.M. Y. 33, D.E. Y. 54 and the like.
  • the type of the dye is not limited, but a dye that does not impair the transparency, heat resistance, and light resistance of the heat ray absorbing lamp cover is preferable.
  • the addition amount of the dye is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the composite infrared shielding material fine particles. An addition amount of 10 parts by mass or less is preferable because the transmittance is not substantially reduced, and an addition amount of 0.1 parts by mass or more is preferable because the color tone can be prevented from being bluish.
  • the heat ray absorbing lamp cover of the present invention is usually obtained by injection molding.
  • the lamp cover of the present invention uses the above-mentioned thermoplastic resin or thermoplastic resin composition as a molding material, and fills (injects) this into a mold in a molten state, and then cools the molded molded body after cooling. It can be obtained by peeling from the mold.
  • the above-mentioned methacrylic resin composition is charged from a hopper, retreated while rotating a screw, the resin composition is measured in a cylinder, the resin composition is melted, and pressure is applied.
  • the lamp cover of the present invention can be produced by filling the molten resin composition into a mold, holding the pressure for a certain period of time until the mold is sufficiently cooled, and then opening the mold and taking out the molded product.
  • the conditions for producing the lamp cover of the present invention for example, the melting temperature of the molding material, the mold temperature when the molding material is injected into the mold, and the pressure holding after filling the mold with the resin composition
  • the pressure may be appropriately set and is not particularly limited.
  • thermoplastic resin a methacrylic resin (“SUMIPEX MH” manufactured by Sumitomo Chemical Co., Ltd.), an inorganic infrared shielding material [“YMDS-874” manufactured by Sumitomo Metal Mining Co., Ltd. (Cs 0.33 WO 3 (average particle diameter)) 5 nm) Infrared shielding agent comprising about 23% by mass and an organic dispersion resin)] 1300 mass ppm (Cs 0.33 WO 3 fine particles about 300 mass ppm) (ratio to 100 parts by mass of thermoplastic resin, and so on) Mixed.
  • SUMIPEX MH methacrylic resin
  • inorganic infrared shielding material “YMDS-874” manufactured by Sumitomo Metal Mining Co., Ltd. (Cs 0.33 WO 3 (average particle diameter)) 5 nm) Infrared shielding agent comprising about 23% by mass and an organic dispersion resin)] 1300 mass ppm (Cs 0.33 WO 3 fine particles
  • melt-kneading so that the resin temperature is 250 ° C., extruding into a strand, cooling with water and cutting with a strand cutter to obtain pellets, and heat compression molding
  • a 100 mm square plate having a thickness of 2 mm at a molding temperature of 210 ° C. was produced using a machine.
  • the dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 2 A flat plate was produced in the same manner as in Example 1 except that the inorganic infrared shielding material “YMDS-874” was mixed at a ratio of 650 mass ppm (Cs 0.33 WO 3 fine particles about 150 mass ppm). The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 3 A flat plate was produced in the same manner as in Example 1 except that the inorganic infrared shielding material “YMDS-874” was mixed at a ratio of 330 mass ppm (Cs 0.33 WO 3 fine particles, approximately 75 mass ppm). The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 4 A flat plate was produced in the same manner as in Example 1 except that the inorganic infrared shielding material “YMDS-874” was mixed at a ratio of 160 mass ppm (Cs 0.33 WO 3 fine particles, approximately 37 mass ppm). The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • thermoplastic resin A methacrylic resin (“SUMIPEX MH” manufactured by Sumitomo Chemical Co., Ltd.) as a thermoplastic resin is melt-kneaded so that the resin temperature becomes 250 ° C. using a single screw extruder (screw diameter: 40 mm) to form a strand. By extruding, cooling with water and cutting with a strand cutter, pellets were obtained, and a 100 mm square plate having a thickness of 2 mm was produced at a molding temperature of 210 ° C. using a heat compression molding machine.
  • SUMIPEX MH manufactured by Sumitomo Chemical Co., Ltd.
  • thermoplastic resin such as aromatic polycarbonate resin (“Caliver 301-40” manufactured by Sumika Stylon Polycarbonate Co., Ltd.) and inorganic infrared shielding material [“YMDS-874” manufactured by Sumitomo Metal Mining Co., Ltd. (Cs 0.33 WO) 3 (infrared shielding agent comprising an average particle size of 5 nm) and an organic dispersion resin)] of 1300 ppm by mass (Cs 0.33 WO 3 fine particles of about 300 ppm by mass) (ratio to 100 parts by mass of thermoplastic resin) , And so on).
  • aromatic polycarbonate resin (“Caliver 301-40” manufactured by Sumika Stylon Polycarbonate Co., Ltd.)
  • inorganic infrared shielding material “YMDS-874” manufactured by Sumitomo Metal Mining Co., Ltd. (Cs 0.33 WO) 3 (infrared shielding agent comprising an average particle size of 5 nm) and an organic dispersion resin)] of 1300
  • Example 6 A flat plate was produced in the same manner as in Example 5 except that the inorganic infrared shielding material “YMDS-874” was mixed at a ratio of 650 mass ppm (Cs 0.33 WO 3 fine particles about 150 mass ppm). The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 7 A flat plate was produced in the same manner as in Example 5 except that the inorganic infrared shielding material “YMDS-874” was mixed at a ratio of 260 mass ppm (Cs 0.33 WO 3 fine particles about 60 mass ppm). The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 8 A flat plate was produced in the same manner as in Example 5, except that the inorganic infrared shielding material “YMDS-874” was mixed at a ratio of 130 mass ppm (Cs 0.33 WO 3 fine particles about 30 mass ppm). The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • thermoplastic resin (“Caliver 301-40” manufactured by Sumika Stylon Polycarbonate Co., Ltd.) as a thermoplastic resin is melt kneaded using a single screw extruder (screw diameter 20 mm) so that the resin temperature is 240 ° C. Then, it was extruded into a strand shape, cooled with water and cut with a strand cutter to obtain pellets, and a 100 mm square plate having a thickness of 2 mm at a molding temperature of 220 ° C. was produced using a heat compression molding machine.
  • Example 9 As a thermoplastic resin, a methacrylic resin (“SUMIPEX MH” manufactured by Sumitomo Chemical Co., Ltd.), an inorganic infrared shielding material [“KHDS-06” manufactured by Sumitomo Metal Mining Co., Ltd.
  • SUMIPEX MH methacrylic resin
  • KHDS-06 inorganic infrared shielding material
  • melt-kneading so that the resin temperature is 250 ° C., extruding into a strand, cooling with water and cutting with a strand cutter to obtain pellets, and heat compression molding
  • a 100 mm square plate having a thickness of 2 mm at a molding temperature of 210 ° C. was produced using a machine.
  • the dispersion particle diameter (average dispersion particle diameter of the two kinds of inorganic particles) of the inorganic particles (LaB 6 fine particles and ATO fine particles) in the plate was 60 nm.
  • Example 10 Inorganic infrared shielding material “KHDS-06” was mixed at a rate of 15.7 mass ppm (LaB 6 microparticles about 3.4 mass ppm) and “FMDS-874” was mixed at a rate of 516 mass ppm (ATO microparticles about 128 mass ppm).
  • a flat plate was produced in the same manner as in Example 9 except that.
  • the dispersion particle diameter (average dispersion particle diameter of the two kinds of inorganic particles) of the inorganic particles (two kinds of LaB 6 fine particles and ATO fine particles) in the plate was 60 nm.
  • thermoplastic resin a methacrylic resin (“SUMIPEX MH” manufactured by Sumitomo Chemical Co., Ltd.), an inorganic infrared shielding material [“YMDS-874” manufactured by Sumitomo Metal Mining Co., Ltd. (Cs 0.33 WO 3 (average particle diameter)) 5 nm) Infrared shielding agent comprising about 23% by mass and an organic dispersion resin)] 1300 mass ppm (Cs 0.33 WO 3 fine particles about 300 mass ppm), red dye [Sumiplast Red H3G, manufactured by Sumika Chemtex Co., Ltd. (Color index number: S.R.
  • Example 12 A flat plate was formed in the same manner as in Example 11 except that a red dye [Sumiplast Red H3G (color index number: SR 135) manufactured by Sumika Chemtex Co., Ltd.] was mixed at a ratio of 3.3 ppm by mass. Was made.
  • the dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 13 Inorganic infrared shielding material “YMDS-874” in a proportion of 1090 ppm by mass (Cs 0.33 WO 3 fine particles approximately 250 ppm by mass), red dye [Sumiplast Red H3G, manufactured by Sumika Chemtex Co., Ltd. (color index number) : S.R.135)] was mixed at a rate of 3.5 mass ppm, and a flat plate was produced in the same manner as in Example 11. The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • Example 14 Inorganic infrared shielding material “YMDS-874” at a ratio of 870 mass ppm (Cs 0.33 WO 3 fine particles about 200 mass ppm), red dye [Sumiplast Red H3G manufactured by Sumika Chemtex Co., Ltd. (color index number) : S.R.135)] was mixed in the proportion of 2.9 ppm by mass, and a flat plate was produced in the same manner as in Example 11. The dispersed particle diameter of the inorganic particles (composite tungsten oxide fine particles) in the plate was 70 nm.
  • the average value of the obtained light transmittance of 380 nm to 780 nm is “average light transmittance of visible light”
  • the average value of light transmittance of 800 nm to 2000 nm is “average light transmittance of near infrared light”.
  • the average value of the light transmittance from 400 nm to 480 nm was defined as “average light transmittance of blue light”.
  • the “blueness” was calculated as “average light transmittance of blue light” ⁇ “average light transmittance of visible light”. A larger blueness value means stronger blueness.
  • ⁇ Haze> The haze having a thickness of 2 mm was measured according to JIS-K7136 using an HR-100 manufactured by Murakami Color Research Laboratory.
  • a 100 mm square flat plate having a thickness of 2 mm was produced at a molding temperature of 210 ° C. using a heat compression molding machine.
  • the heat ray absorptive lamp cover of the present invention can be used as a cover for covering an arbitrary light source, and can be particularly preferably used as a cover for a light source in which the temperature rise of the cover due to lamp irradiation is small.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Optical Filters (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 LED光源や半導体レーザー等、ランプの照射によるカバーの温度上昇が少ない光源に対して透明性及び防曇性に優れた熱線吸収性ランプカバーを提供する。可視光の平均光線透過率が75%以上、近赤外光の平均光線透過率が75%以下であり、かつ、ヘイズが3.0%以下である熱線吸収性ランプカバー。

Description

熱線吸収性ランプカバー
 本発明は、LED光源や半導体レーザー等、ランプの照射によるカバーの温度上昇が少ない光源に対して透明性及び防曇性に優れた熱線吸収性ランプカバーに関する。
 熱可塑性樹脂として知られているメタクリル系樹脂は、その透明性や耐候性に優れることから、テールランプカバーやメーターパネルといった車両用部材等の原材料として用いられる。また、芳香族ポリカーボネート樹脂も透明性、耐熱性、耐衝撃性に優れた熱可塑性樹脂であることから、ヘッドランプカバーといった車両用部材等の原材料として用いられる。かかるテールランプカバーやヘッドランプカバーには、ランプ内が曇らないようにレンズの灯室側に防曇コート膜を被覆することが知られている(特許文献1参照)。
特開2003-7105号公報
 テールランプカバーやヘッドランプカバーへの防曇コートの被覆を要さずにランプカバー自体に防曇性能を付与することができれば、ランプカバーの製造工程を簡略化できる点に加え、ランプの製造についても安価に行うことが可能となる。そのためには、防曇コートレスのランプカバーが切望される。また近年、ランプの光源として、従来のハロゲンランプに代えてLEDランプや半導体レーザーが使用されつつあるが、例えばLEDランプではランプの照射によるランプカバーの温度上昇が抑制される。その結果、ランプカバー内に結露が生じ易くなる。そのため、LED光源を使用するランプカバーの温度を上げるためには、太陽光(熱線)によるランプカバーの温度上昇が必要であり、熱線を吸収できるランプカバーが求められている。
 そこで、本発明の目的は、LED光源や半導体レーザー等、ランプの照射によるカバーの温度上昇が少ない光源に対して透明性及び防曇性に優れた熱線吸収性ランプカバーを提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、以下に記載する手段により上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕 可視光の平均光線透過率が75%以上、近赤外光の平均光線透過率が75%以下であり、かつ、ヘイズが3.0%以下である熱線吸収性ランプカバー。
〔2〕 熱可塑性樹脂100質量部に対して無機系赤外線遮蔽材料を1~5000質量ppmの割合で含む樹脂組成物から構成される、前記〔1〕に記載の熱線吸収性ランプカバー。
〔3〕 前記熱可塑性樹脂はアクリル系樹脂および/または芳香族ポリカーボネート樹脂である、前記〔2〕に記載の熱線吸収性ランプカバー。
〔4〕 前記無機系赤外線遮蔽材料は、一般式:
  M
[式中、
 Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、BiおよびIからなる群から選択される少なくとも1種の元素を表し、
 x、y、zは、下記式:
  0.01≦x≦1
  0.001≦x/y≦1 及び
  2.2≦z/y≦3.0
を満たす数である]
で表される複合タングステン酸化物微粒子である、前記〔2〕~〔3〕のいずれかに記載の熱線吸収性ランプカバー。
〔5〕 前記複合タングステン酸化物微粒子の平均粒子径は1nm~800nmである、前記〔4〕に記載の熱線吸収性ランプカバー。
〔6〕 MはLi、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群から選択される少なくとも1種の元素を表す、前記〔4〕~〔5〕のいずれかに記載の熱線吸収性ランプカバー。
〔7〕 前記複合タングステン酸化物粒子は分散剤で被覆されている、〔4〕~〔6〕のいずれかに記載の熱線吸収性ランプカバー。
 本発明の熱線吸収性ランプカバーによれば、LED光源や半導体レーザー等、ランプの照射によるカバーの温度上昇が少ない光源に対して透明性及び防曇性に優れるという効果が得られる。
本明細書において、接触式温度計を用いて防曇性を測定する方法を説明する図である。
 本発明の実施形態において、熱線吸収性ランプカバーは、可視光の平均光線透過率が75%以上、近赤外光の平均光線透過率が75%以下であり、かつ、ヘイズが3.0%以下である。本発明の実施形態において、熱線吸収性ランプカバーは、熱可塑性樹脂と無機系赤外線遮蔽材料とを含む樹脂組成物から構成され得る。
 (熱可塑性樹脂)
 本発明の熱線吸収性ランプカバーを構成する熱可塑性樹脂組成物の基材としての熱可塑性樹脂は、可視光領域の光線透過率が高い透明の熱可塑性樹脂であれば特に制限はなく、例えば2mm厚の板状成形体としたときのJIS R 3106に従う可視光透過率が50%以上で、JIS K7105に従うヘイズが30%以下のものが挙げられる。具体的には、アクリル系樹脂(アクリル酸モノマーおよび/またはメタクリル酸モノマーを含む単量体成分から得られる樹脂であって、(メタ)アクリル系樹脂とも表現され得る)、芳香族ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリエステル樹脂等、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂およびポリオレフィン樹脂に例示される熱可塑性樹脂の中から所望の特性に応じて選択され、これらの1種または2種以上の混合物であってよい。中でも透明性や耐候性の点からはアクリル系樹脂、特にメタクリル系樹脂が好ましく、耐熱性や耐衝撃性の点からは芳香族ポリカーボネート樹脂が好ましい。
 (メタクリル系樹脂)
 本発明において熱可塑性樹脂として用いることができるメタクリル系樹脂は、好適には、メタクリル酸メチルとアクリル酸エステルとを含む単量体成分を重合して得られる。メタクリル酸メチルやアクリル酸エステル等の質量割合は適宜選択されうるが、メタクリル酸メチルが85~100質量部、アクリル酸エステルを主とする単量体が0~15質量部の質量割合であるのが好ましく、メタクリル酸メチルが90~100質量部、アクリル酸エステルを主とする単量体が0~10質量部の質量割合であるのがより好ましい。アクリル酸エステル等の単量体を上記範囲にすることにより、メタクリル系樹脂の耐熱性を高めることができる。
 アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル等が挙げられる。これらの中でも、アクリル酸メチルやアクリル酸エチルが好ましい。なお、アクリル酸エステルは、1種のみであってもよいし、2種以上であってもよい。
 単量体成分を重合する際の重合方法については、特に制限はなく、例えば、懸濁重合、溶液重合、塊状重合などの公知の重合法を採用することができるが、中でも、塊状重合が好ましい。塊状重合としてはバッチ式及び連続式のいずれも採用できるが、例えば、単量体成分および重合開始剤等を反応容器の中に連続的に供給しながら、反応容器内に所定時間滞留させて得られる部分重合体を連続的に抜き出す方法により、高い生産性で重合体を得ることができる。
 単量体成分を重合する際に用いられる重合開始剤は、特に制限されるものではなく、例えば、アゾビスイソブチロニトリルの如きアゾ化合物、1,1―ジ(t-ブチルパーオキシ)シクロヘキサンの如き過酸化物等の公知のラジカル重合開始剤を用いることができる。なお、重合開始剤は、1種のみであってもよいし、2種以上であってもよい。
 単量体成分を重合する際には、必要に応じて、連鎖移動剤を用いることができる。連鎖移動剤としては、特に制限されないが、例えば、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、2-エチルヘキシルチオグリコレート等のメルカプタン類等が好ましく挙げられる。なお、連鎖移動剤は、1種のみであってもよいし、2種以上であってもよい。
 本発明において用いられるメタクリル系樹脂の重量平均分子量/数平均分子量で表される分子量分布指数は特に制限されないが、1.8~6.0であることが好ましい。特に分子量分布指数が2.2以上のメタクリル系樹脂を得るためには通常のラジカル重合では難しく、多種のラジカル重合開始剤を用いる方法、多種の連鎖移動剤を用いる方法、多段の重合工程を組み合わせる方法など、既知の重合方法が好適に用いられる。
 また、前記の分子量分布指数が2.2以上のメタクリル系樹脂は、異なる重量平均分子量を有するメタクリル樹脂を2種以上混合することにより、作製してもよい。混合する方法は特に制限されるものではなく、溶融混練法、溶媒混練法、ドライブレンド法などが用いられ、生産性の面から、溶融混練法およびドライブレンド法が好ましく用いられる。混合に用いる機器としては、通常の混合器、混練機などを用いることができ、具体的には、一軸混練押出機、二軸混練押出機、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラーなどが挙げられる。
 本発明で用いられるメタクリル系樹脂には、必要に応じて各種の添加剤、例えば、酸化防止剤、安定剤、紫外線吸収剤、滑剤、加工助剤、帯電防止剤、着色剤、耐衝撃助剤、発泡剤、充填剤、艶消し剤などを含有させてもよい。
(芳香族ポリカーボネート樹脂)
 本発明において熱可塑性樹脂として用いることができる芳香族ポリカーボネート樹脂としては、例えば、二価フェノールとカルボニル化剤とを界面重縮合法や溶融エステル交換法などで反応させることにより得られるもの;カーボネートプレポリマーを固相エステル交換法などで重合させることにより得られるもの;環状カーボネート化合物を開環重合法で重合させることにより得られるものなどが挙げられる。
 二価フェノールとしては、例えば、ハイドロキノン、レゾルシノール、4,4'-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジブロモ)フェニル}プロパン、2,2-ビス{(3-イソプロピル-4-ヒドロキシ)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3-フェニル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス{(4-ヒドロキシ-3-メチル)フェニル}フルオレン、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルケトン、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシジフェニルエステルなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの二価フェノールの中でも、ビスフェノールA、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンおよびα,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンが好ましい。特に、ビスフェノールAの単独使用や、ビスフェノールAと、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパンおよびα,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンからなる群より選択される少なくとも1種との併用が好ましい。
 カルボニル化剤としては、例えばカルボニルハライド(ホスゲンなど)、カーボネートエステル(ジフェニルカーボネートなど)、ハロホルメート(二価フェノールのジハロホルメートなど)などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 芳香族ポリカーボネート樹脂には、離型剤、紫外線吸収剤、染料、顔料、重合抑制剤、酸化防止剤、難燃化剤、補強材等の添加剤を本発明の効果を損なわない範囲で含有させてもよい。
(無機系赤外線遮蔽材料)
 本発明の熱線吸収性ランプカバーは、熱可塑性樹脂100質量部に対して無機系赤外線遮蔽材料を1~5000質量ppmの割合で含む樹脂組成物から構成されることが、赤外線遮蔽性能と曇り度の観点から好ましい。
 本発明で使用される無機系赤外線遮蔽材料に含有される無機粒子(後述する複合タングステン酸化物微粒子を含む)の平均粒子径は、通常1nm~800nmであり、1nm~500nmであることが好ましく、1nm~300nmがより好ましく、1nm~100nmがさらに好ましい。平均粒子径が1nm以上であると凝集効果を抑制できるため分散性不良を効果的に防止でき、500nm以下であると透明樹脂成形品の曇り度が高くなることを効果的に防止できる。なお、本発明において、無機粒子の平均粒子径は、無機粒子が分散している場合には、その分散粒子径を意味するものとする。無機粒子の平均粒子径(分散粒子径)は、市販されている種々の粒度分布計で測定することができる。例えば、動的光散乱法を原理とした大塚電子(株)社製、ESL-800を用いて測定することができる。この無機系赤外線遮蔽材料としては、タングステン系無機系赤外線遮蔽材料、ランタン系無機系赤外線遮蔽材料、スズ系無機系赤外線遮蔽材料、アンチモン系赤外線遮蔽剤等が挙げられる。この中でも赤外線遮蔽性能と曇り度の観点よりタングステン系無機系赤外線遮蔽材料が好ましく、その中でも複合タングステン酸化物微粒子が特に好ましい。
(複合タングステン酸化物微粒子)
 本発明で使用される複合タングステン酸化物微粒子は、好適には、一般式:
 M
[式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIからなる群から選択される少なくとも1種の元素を表し、ここで、x、y、zは下記式:
  0.01≦x≦1、
  0.001≦x/y≦1、及び
  2.2≦z/y≦3.0
を満たす数である。]
で表される複合タングステン酸化物微粒子である。そのなかでもMがLi、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選択される少なくとも1種の元素であることが好ましく、K、Rb、またはCsであることが最も好ましい。また、xの範囲は0.01≦x≦0.5が好ましく、0.2≦x≦0.4の範囲がより好ましい。さらに、x/y、z/yの範囲はそれぞれ0.01≦x/y≦0.5、2.7≦z/y≦3.0が好ましく、0.2≦x/y≦0.4、2.8≦z/y≦3.0がより好ましい。
 複合タングステン酸化物微粒子は、出発原料であるタングステン化合物を、不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して得ることができる。当該熱処理を経て得られた複合タングステン酸化物微粒子は、十分な近赤外線遮蔽力を有し、赤外線遮蔽微粒子として好ましい性質を有している。
 一般式Mで表記される複合タングステン酸化物微粒子の出発原料は、元素Mを、元素単体または化合物のかたちで含有するタングステン化合物である。具体的には、元素Mを、元素単体または化合物のかたちで含有する、3酸化タングステン粉末、2酸化タングステン粉末、タングステン酸化物の水和物、6塩化タングステン粉末、タングステン酸アンモニウム粉末、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、および金属タングステン粉末からなる群より選ばれた一種類以上であることが好ましい。なお、出発原料が溶液であると各元素は容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や、6塩化タングステン溶液を用いることがさらに好ましい。これらの原料を用い、これを不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して、上述した複合タングステン酸化物微粒子を得ることができる。
 ここで、各成分が分子レベルで均一混合した出発原料であるタングステン化合物を製造するためには、各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。そのような化合物としては、例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。
 上述した複合タングステン酸化物微粒子を製造するための原料に関し、以下で、再度詳細に説明する。
 一般式Mで表記される複合タングステン酸化物微粒子を得るための出発原料として、3酸化タングステン粉末、2酸化タングステン粉末、タングステン酸化物の水和物、6塩化タングステン粉末、タングステン酸アンモニウム粉末、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、もしくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、および金属タングステン粉末からなる群から選ばれたいずれか一種類以上の粉末と、前記M元素を含有する単体または化合物の粉末とを、混合した粉末を用いることが出来る。
 さらに、当該複合タングステン酸化物微粒子を得るための出発原料であるタングステン化合物が、溶液または分散液であると、各元素は容易に均一混合可能となる。
 当該観点より、複合タングステン酸化物の微粒子の出発原料が、6塩化タングステンのアルコール溶液またはタングステン酸アンモニウム水溶液と、前記M元素を含有する化合物の溶液とを、混合した後乾燥した粉末であることがさらに好ましい。
 同様に、複合タングステン酸化物の微粒子の出発原料が、6塩化タングステンをアルコール中に溶解させた後、水を添加して沈殿を生成させた分散液と、前記M元素を含有する単体または化合物の粉末、または、前記M元素を含有する化合物の溶液とを、混合した後乾燥した粉末であることも好ましい。
 前記M元素を含有する化合物としては、M元素のタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等が挙げられるが、これらに限定されず、溶液状になるものであればよい。さらに、とりわけ、当該複合タングステン酸化物微粒子を工業的に製造する場合に、タングステン酸化物の水和物粉末や三酸化タングステンと、M元素の炭酸塩や水酸化物とを用いる製造法は、熱処理等の段階で有害なガス等が発生することが無いため、好ましく採用される。
 ここで、複合タングステン酸化物微粒子の不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な近赤外線遮蔽力を有し赤外線遮蔽微粒子として効率が良好となる。不活性ガスとしてはAr、N等の不活性ガスを用いることが好ましい。また、還元性雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて100℃以上850℃以下で熱処理し、次いで不活性ガス雰囲気中で650℃以上1200℃以下の温度で熱処理することが好ましい。この時の還元性ガスは、特に限定されないがHが好ましい。還元性ガスとしてHを用いる場合は、還元雰囲気の組成として、Hが体積比で0.1%以上であることが好ましく、さらに好ましくは2%以上である。Hが体積比で0.1%以上あれば効率よく還元を進めることができる。
 上述の工程にて得られた赤外線遮蔽材料微粒子の表面が、Si、Ti、Zr、及びAlからなる群から選択される一種類以上の金属を含有する酸化物で被覆されていることは、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、当該赤外線遮蔽材料微粒子を分散した溶液中へ、上記金属のアルコキシドを添加することで、赤外線遮蔽材料微粒子の表面を被覆することが可能である。 
 また、複合タングステン酸化物微粒子は、分散剤で被覆されていることが好ましい。分散剤としてはポリメタクリル酸メチル、ポリカーボネート、ポリサルホン、ポリアクリロニトリル、ポリアリレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、ポリビニルブチラール、ポリビニルアルコール、ポリスチレン、シリコーン系樹脂やこれらの誘導体等が挙げられる。複合タングステン酸化物微粒子は、これらの分散剤で被覆されることにより、樹脂へ添加したときの分散性が向上し、更に機械物性の低下を防ぐ効果がある。なお、分散剤による被覆方法としては、複合タングステン酸化物微粒子と分散剤をトルエン等の溶媒に溶解、攪拌し分散液を調製した後、真空乾燥等の処理で溶媒を除去することにより複合タングステン酸化物微粒子を被覆する方法等が挙げられる。
 また、無機系赤外線遮蔽材料を熱可塑性樹脂、とりわけアクリル系樹脂に添加する方法としては、複合タングステン酸化物微粒子もしくは被覆された複合タングステン酸化物微粒子を直接添加する方法や、予め1~100倍の熱可塑性樹脂、とりわけアクリル系樹脂で希釈した後に添加する方法が挙げられる。
 本発明で用いられる熱可塑性樹脂には、好適には、無機系赤外線遮蔽材料を熱線吸収性の付与を目的に配合される。本発明に用いられる無機系赤外線遮蔽材料は、好適には、酸化タングステン成分とセシウム酸化タングステンからなる複合酸化物である。樹脂成分100質量部に対する無機系赤外線遮蔽材料の割合の上限は、好適には、透明性、微分散性の点から5000質量ppm以下であり、3000質量ppm以下であるのが好ましく、2000質量ppm以下であるのがより好ましい。上記割合の下限は、好適には、熱線吸収性の点から10質量ppm以上であり、100質量ppm以上であるのが好ましく、20質量ppm以上であるのがより好ましい。
 本発明の熱線吸収性ランプカバーは、可視光の平均光線透過率が75%以上であることが好ましく、80%以上であることがより好ましい。ここで、可視光の平均光線透過率は、通常、2mm厚の成形体とした状態で波長領域380~780nmでの透過率として測定される。また、本発明の熱線吸収性ランプカバーは、近赤外光の平均光線透過率が75%以下であることが好ましく、70%以下であることがより好ましい。ここで、近赤外光の平均光線透過率は、通常、波長領域800nm~2000nmでの透過率として測定される。また、本発明の熱線吸収性ランプカバーは透明性が良好であって、ヘイズが3.0%以下であることが好ましい。ここで、ヘイズは、通常、2mm厚の成形体について測定される。
 無機系赤外線遮蔽材料は波長領域800~2000nmでの光線透過率を低下させ、かかる遮蔽能は800nm未満の可視域帯の高波長領域部にも影響し得るので、結果的にランプカバーが青みがかって見えてしまう。この現象を抑制するために、可視域帯380~780nmの平均透過率が75%以上を維持できる程度に染料を少量入れ、調色することが有効である。例えば、380~780nmにおける平均光線透過率が1%低下する程度の量で、赤色、橙色または黄色の染料を入れることでほぼ無色なランプカバーを得ることができる。
 赤色系の染料としては、カラーインデックスナンバーS.R.143、D.R.191、S.R.146、S.R.145、S.R.150、S.R.149、S.R.135、S.R.179、S.R.151、S.R.52、S.R.195などが挙げられ、橙色系の染料としては、カラーインデックスナンバーS.O.60などが挙げられ、黄色系の染料としては、カラーインデックスナンバーS.G.5、S.Y.16、S.Y.157、S.Y.33、D.Y.54などが挙げられる。
 染料の種類は問わないが、熱線吸収性ランプカバーの透明性、耐熱性、耐光性を損なわない色素が好ましい。染料の添加量は、複合赤外線遮蔽材料微粒子100質量部に対して0.1~10質量部の範囲であることが好ましい。添加量が10質量部以下であると透過率を実質的に低下させないので好ましく、0.1質量部以上であると色調が青みがかるのを回避できるので好ましい。
 本発明の熱線吸収性ランプカバーは、通常、射出成形して得られる。詳しくは、本発明のランプカバーは、上記の熱可塑性樹脂又は熱可塑性樹脂組成物を成形材料とし、これを溶融状態で金型に充填(射出)し、次いで冷却後、成形された成形体を金型から剥離することにより得ることがでる。具体的には、例えば、上記のメタクリル樹脂組成物をホッパーから投入し、スクリューを回転させながら後退させて、シリンダー内に樹脂組成物を計量し、該樹脂組成物を溶融させ、圧力をかけながら溶融した樹脂組成物を金型内に充填し、金型が充分に冷めるまで一定時間保圧した後、型を開いて成形体を取り出すことにより、本発明のランプカバーを作製することができる。なお、本発明のランプカバーを作製する際の諸条件(例えば、成形材料の溶融温度、成形材料を金型に射出する際の金型温度、樹脂組成物を金型に充填した後保圧する際の圧力など)については、適宜設定すればよく、特に限定されない。
 以下、本発明を実施例により詳しく説明するが、本発明はこれにより限定されるものではない。なお、得られた樹脂組成物の各種物性の測定およびその評価は下記の方法で行なった。
(実施例1)
 熱可塑性樹脂としてメタクリル系樹脂(住友化学(株)製「スミペックスMH」)に、無機系赤外線遮蔽材料[住友金属鉱山(株)製「YMDS-874」(Cs0.33WO(平均粒子径5nm)約23質量%および有機分散樹脂からなる赤外線遮蔽剤)]を1300質量ppm(Cs0.33WO微粒子 約300質量ppm)の割合(熱可塑性樹脂100質量部に対する割合、以下も同様)で混合した。次いで、1軸押出機(スクリュー径40mm)を用いて、樹脂温度が250℃になるように溶融混練してストランド状に押し出し、水冷してストランドカッターで切断することによりペレットを得、加熱圧縮成形機を用いて成形温度210℃で2mmの厚さを有する100mm角の平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例2)
 無機系赤外線遮蔽材料「YMDS-874」を650質量ppm(Cs0.33WO微粒子 約150質量ppm)の割合で混合したこと以外は、実施例1と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例3)
 無機系赤外線遮蔽材料「YMDS-874」を330質量ppm(Cs0.33WO微粒子 約75質量ppm)の割合で混合したこと以外は、実施例1と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例4)
 無機系赤外線遮蔽材料「YMDS-874」を160質量ppm(Cs0.33WO微粒子 約37質量ppm)の割合で混合したこと以外は、実施例1と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(比較例1)
 熱可塑性樹脂としてメタクリル系樹脂(住友化学(株)製「スミペックスMH」)を、1軸押出機(スクリュー径40mm)を用いて、樹脂温度が250℃になるように溶融混練してストランド状に押し出し、水冷してストランドカッターで切断することにより、ペレットを得、加熱圧縮成形機を用いて成形温度210℃で2mmの厚さを有する100mm角の平板を作製した。
(実施例5)
 熱可塑性樹脂として芳香族ポリカーボネート樹脂(住化スタイロンポリカーボネート(株)製「カリバー301-40」)に、無機系赤外線遮蔽材料[住友金属鉱山(株)製「YMDS-874」(Cs0.33WO(平均粒子径5nm)約23質量%および有機分散樹脂からなる赤外線遮蔽剤)]を1300質量ppm(Cs0.33WO微粒子 約300質量ppm)の割合(熱可塑性樹脂100質量部に対する割合、以下も同様)で混合した。次いで、1軸押出機(スクリュー径20mm)を用いて、樹脂温度が240℃になるように溶融混練してストランド状に押し出し、水冷してストランドカッターで切断することによりペレットを得、加熱圧縮成形機を用いて成形温度220℃で2mmの厚さを有する100mm角の平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例6)
 無機系赤外線遮蔽材料「YMDS-874」を650質量ppm(Cs0.33WO微粒子 約150質量ppm)の割合で混合したこと以外は、実施例5と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例7)
 無機系赤外線遮蔽材料「YMDS-874」を260質量ppm(Cs0.33WO微粒子 約60質量ppm)の割合で混合したこと以外は、実施例5と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例8)
 無機系赤外線遮蔽材料「YMDS-874」を130質量ppm(Cs0.33WO微粒子 約30質量ppm)の割合で混合したこと以外は、実施例5と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(比較例2)
 熱可塑性樹脂として芳香族ポリカーボネート樹脂(住化スタイロンポリカーボネート(株)製「カリバー301-40」)を、1軸押出機(スクリュー径20mm)を用いて、樹脂温度が240℃になるように溶融混練してストランド状に押し出し、水冷してストランドカッターで切断することにより、ペレットを得、加熱圧縮成形機を用いて成形温度220℃で2mmの厚さを有する100mm角の平板を作製した。
(実施例9)
 熱可塑性樹脂としてメタクリル系樹脂(住友化学(株)製「スミペックスMH」)に、無機系赤外線遮蔽材料[住友金属鉱山(株)製「KHDS-06」(LaB約22%および有機分散樹脂からなる赤外線遮蔽剤)]を23.5質量ppm(LaB微粒子 約5.1質量ppm)及び、無機系赤外線遮蔽材料[住友金属鉱山(株)製「FMDS-874」(ATO(アンチモンドープ酸化錫)約25%および有機分散樹脂からなる赤外線遮蔽剤)]を766質量ppm(ATO微粒子 約190質量ppm)の割合(熱可塑性樹脂100質量部に対する割合、以下も同様)で混合した。次いで、1軸押出機(スクリュー径40mm)を用いて、樹脂温度が250℃になるように溶融混練してストランド状に押し出し、水冷してストランドカッターで切断することによりペレットを得、加熱圧縮成形機を用いて成形温度210℃で2mmの厚さを有する100mm角の平板を作製した。板中の無機粒子(LaB微粒子とATO微粒子)の分散粒子径(2種の無機粒子の平均の分散粒子径)は、60nmであった。
(実施例10)
 無機系赤外線遮蔽材料「KHDS-06」を15.7質量ppm(LaB微粒子 約3.4質量ppm)、「FMDS-874」を516質量ppm(ATO微粒子 約128質量ppm)の割合で混合したこと以外は、実施例9と同様にして平板を作製した。板中の無機粒子(LaB微粒子とATO微粒子の2種)の分散粒子径(2種の無機粒子の平均の分散粒子径)は、60nmであった。
(実施例11)
 熱可塑性樹脂としてメタクリル系樹脂(住友化学(株)製「スミペックスMH」)に、無機系赤外線遮蔽材料[住友金属鉱山(株)製「YMDS-874」(Cs0.33WO(平均粒子径5nm)約23質量%および有機分散樹脂からなる赤外線遮蔽剤)]を1300質量ppm(Cs0.33WO微粒子 約300質量ppm)、赤色染料[住化ケムテックス(株)製「Sumiplast Red H3G」(カラーインデックスナンバー:S.R.135)]を4.4質量ppmの割合(熱可塑性樹脂100質量部に対する割合、以下も同様)で混合した。次いで、1軸押出機(スクリュー径40mm)を用いて、樹脂温度が250℃になるように溶融混練してストランド状に押し出し、水冷してストランドカッターで切断することによりペレットを得、加熱圧縮成形機を用いて成形温度210℃で2mmの厚さを有する100mm角の平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例12)
 赤色染料[住化ケムテックス(株)製「Sumiplast Red H3G」(カラーインデックスナンバー:S.R.135)]を3.3質量ppmの割合で混合したこと以外は、実施例11と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例13)
 無機系赤外線遮蔽材料「YMDS-874」を1090質量ppm(Cs0.33WO微粒子 約250質量ppm)の割合で、赤色染料[住化ケムテックス(株)製「Sumiplast Red H3G」(カラーインデックスナンバー:S.R.135)]を3.5質量ppmの割合で混合したこと以外は、実施例11と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
(実施例14)
 無機系赤外線遮蔽材料「YMDS-874」を870質量ppm(Cs0.33WO微粒子 約200質量ppm)の割合で、赤色染料[住化ケムテックス(株)製「Sumiplast Red H3G」(カラーインデックスナンバー:S.R.135)]を2.9質量ppmの割合で混合したこと以外は、実施例11と同様にして平板を作製した。板中の無機粒子(複合タングステン酸化物微粒子)の分散粒子径は、70nmであった。
<可視光の平均光線透過率および近赤外光の平均光線透過率>
 作製した平板の2mmの光路長における光線透過率を、(株)日立製作所製のプラスチック特性測定システム(U-4000型分光光度計)を用いて、波長300nm~2000nmの範囲で5nm毎に測定し、得られた光線透過率の380nm~780nmの平均値を「可視光の平均光線透過率」とし、光線透過率の800nm~2000nmの平均値を「近赤外光の平均光線透過率」とし、光線透過率の400nm~480nmの平均値を「青色光の平均光線透過率」とした。「青味度」を、「青色光の平均光線透過率」-「可視光の平均光線透過率」として算出した。青味度の値が大きいほど青味が強いことを意味する。結果を表1~4に示す。
<ヘイズ>
 上記で作製した平板2mm厚みのヘイズをJIS-K7136に準拠して、村上色彩技術研究所製HR-100を用いて測定した。
<防曇性評価>
 加熱圧縮成形機を用いて成形温度210℃で2mmの厚さを有する100mm角の平板を作製した。図1に示すように、40Wの白熱球ランプから5cmの位置に平板(厚さt=2mmの試験片)を置き、照射1時間後の点灯させた状態での平板の温度を、接触式温度計を用いて測定した。照射後の板の表面温度が高いほど防曇性に優れると言える。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の熱線吸収性ランプカバーは、任意の光源を覆うためのカバーとして利用可能であり、特に、ランプの照射によるカバーの温度上昇が少ない光源に対するカバーとして好適に利用され得る。
 本願は、2014年12月25日付けで出願された特願2014-263267に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。

Claims (7)

  1.  可視光の平均光線透過率が75%以上、近赤外光の平均光線透過率が75%以下であり、かつ、ヘイズが3.0%以下である熱線吸収性ランプカバー。
  2.  熱可塑性樹脂100質量部に対して無機系赤外線遮蔽材料を1~5000質量ppmの割合で含む樹脂組成物から構成される、請求項1に記載の熱線吸収性ランプカバー。
  3.  前記熱可塑性樹脂はアクリル系樹脂および/または芳香族ポリカーボネート樹脂である、請求項2に記載の熱線吸収性ランプカバー。
  4.  前記無機系赤外線遮蔽材料は、一般式:
      M
    [式中、
     Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、BiおよびIからなる群から選択される少なくとも1種の元素を表し、
     x、y、zは、下記式:
      0.01≦x≦1
      0.001≦x/y≦1 及び
      2.2≦z/y≦3.0
    を満たす数である]
    で表される複合タングステン酸化物微粒子である、請求項2~3のいずれかに記載の熱線吸収性ランプカバー。
  5.  前記複合タングステン酸化物微粒子の平均粒子径は1nm~800nmである、請求項4に記載の熱線吸収性ランプカバー。
  6.  MはLi、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群から選択される少なくとも1種の元素を表す、請求項4~5のいずれかに記載の熱線吸収性ランプカバー。
  7.  前記複合タングステン酸化物粒子は分散剤で被覆されている、請求項4~6のいずれかに記載の熱線吸収性ランプカバー。
PCT/JP2015/085545 2014-12-25 2015-12-18 熱線吸収性ランプカバー WO2016104375A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580070769.3A CN107002974B (zh) 2014-12-25 2015-12-18 热射线吸收性灯罩
US15/538,871 US10359171B2 (en) 2014-12-25 2015-12-18 Heat ray absorbing lamp cover
EP15872943.4A EP3239600B1 (en) 2014-12-25 2015-12-18 Heat ray absorbing lamp cover
BR112017013493-4A BR112017013493A2 (ja) 2014-12-25 2015-12-18 Heat wave absorptive lamp cover
MX2017008517A MX2017008517A (es) 2014-12-25 2015-12-18 Cubierta de la lampara absorbente de rayo de calor.
ES15872943T ES2839976T3 (es) 2014-12-25 2015-12-18 Pantalla de lámpara que absorbe la radiación térmica
JP2016566316A JPWO2016104375A1 (ja) 2014-12-25 2015-12-18 熱線吸収性ランプカバー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263267 2014-12-25
JP2014-263267 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104375A1 true WO2016104375A1 (ja) 2016-06-30

Family

ID=56150394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085545 WO2016104375A1 (ja) 2014-12-25 2015-12-18 熱線吸収性ランプカバー

Country Status (8)

Country Link
US (1) US10359171B2 (ja)
EP (1) EP3239600B1 (ja)
JP (2) JPWO2016104375A1 (ja)
CN (1) CN107002974B (ja)
BR (1) BR112017013493A2 (ja)
ES (1) ES2839976T3 (ja)
MX (1) MX2017008517A (ja)
WO (1) WO2016104375A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155501A1 (ja) * 2017-02-23 2018-08-30 住友化学株式会社 ランプカバー
WO2019181168A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 光配向膜の形成方法及び積層体の製造方法
JP2019207405A (ja) * 2018-05-28 2019-12-05 住友金属鉱山株式会社 赤外線吸収ランプおよび赤外線吸収ランプカバー
WO2020022426A1 (ja) * 2018-07-27 2020-01-30 株式会社クラレ 赤外線遮蔽性積層シートとその製造方法
WO2020129919A1 (ja) * 2018-12-18 2020-06-25 住友金属鉱山株式会社 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531555B1 (en) * 2016-03-22 2020-01-07 The United States Of America As Represented By The Secretary Of The Army Tungsten oxide thermal shield
EP4527888A1 (en) * 2023-09-19 2025-03-26 Trinseo Europe GmbH Inorganic infrared absorber in resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007105A (ja) * 2001-06-21 2003-01-10 Stanley Electric Co Ltd 防曇コート膜付き車両用レンズの製造方法
JP2007231092A (ja) * 2006-02-28 2007-09-13 Toshiba Lighting & Technology Corp 紫外線および赤外線遮断材料、可視選択透過フィルタ、管球および照明器具
JP2012082326A (ja) * 2010-10-12 2012-04-26 Sumitomo Metal Mining Co Ltd 高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法、高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206940B2 (ja) 1991-12-16 2001-09-10 ダイセル化学工業株式会社 近赤外線吸収メタクリル系樹脂組成物及びその成形体
JP4182357B2 (ja) 2005-01-17 2008-11-19 住友金属鉱山株式会社 熱線遮蔽樹脂シート材および熱線遮蔽樹脂シート材積層体、並びにそれらを用いた建築構造体
JP2011001425A (ja) 2009-06-17 2011-01-06 Kuraray Co Ltd 熱線遮蔽性を有するメタクリル系樹脂組成物およびその製造方法
JP5714826B2 (ja) * 2010-02-16 2015-05-07 帝人株式会社 ポリカーボネート樹脂組成物及びそれからなる成形品
IT1403380B1 (it) 2010-12-17 2013-10-17 Bayer Materialscience Ag Composizione di polimeri con caratteristiche di assorbimento di calore ad alta stabilità agli agenti atmosferici.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007105A (ja) * 2001-06-21 2003-01-10 Stanley Electric Co Ltd 防曇コート膜付き車両用レンズの製造方法
JP2007231092A (ja) * 2006-02-28 2007-09-13 Toshiba Lighting & Technology Corp 紫外線および赤外線遮断材料、可視選択透過フィルタ、管球および照明器具
JP2012082326A (ja) * 2010-10-12 2012-04-26 Sumitomo Metal Mining Co Ltd 高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法、高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022089854A (ja) * 2017-02-23 2022-06-16 住友化学株式会社 ランプカバー
CN110300870A (zh) * 2017-02-23 2019-10-01 住友化学株式会社 灯罩
JPWO2018155501A1 (ja) * 2017-02-23 2019-12-12 住友化学株式会社 ランプカバー
WO2018155501A1 (ja) * 2017-02-23 2018-08-30 住友化学株式会社 ランプカバー
US10759916B2 (en) 2017-02-23 2020-09-01 Sumitomo Chemical Company, Limited Lamp cover
JP7050046B2 (ja) 2017-02-23 2022-04-07 住友化学株式会社 ランプカバー
JPWO2019181168A1 (ja) * 2018-03-23 2021-03-18 富士フイルム株式会社 光配向膜の形成方法及び積層体の製造方法
WO2019181168A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 光配向膜の形成方法及び積層体の製造方法
JP2019207405A (ja) * 2018-05-28 2019-12-05 住友金属鉱山株式会社 赤外線吸収ランプおよび赤外線吸収ランプカバー
JP7338237B2 (ja) 2018-05-28 2023-09-05 住友金属鉱山株式会社 赤外線吸収ランプおよび赤外線吸収ランプカバー
JPWO2020022426A1 (ja) * 2018-07-27 2021-08-05 株式会社クラレ 赤外線遮蔽性積層シートとその製造方法
JP7329515B2 (ja) 2018-07-27 2023-08-18 株式会社クラレ 赤外線遮蔽性積層シートとその製造方法
WO2020022426A1 (ja) * 2018-07-27 2020-01-30 株式会社クラレ 赤外線遮蔽性積層シートとその製造方法
JPWO2020129919A1 (ja) * 2018-12-18 2021-11-04 住友金属鉱山株式会社 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子
WO2020129919A1 (ja) * 2018-12-18 2020-06-25 住友金属鉱山株式会社 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子
JP7361341B2 (ja) 2018-12-18 2023-10-16 住友金属鉱山株式会社 有機無機ハイブリッド赤外線吸収粒子の製造方法、有機無機ハイブリッド赤外線吸収粒子
US11912878B2 (en) 2018-12-18 2024-02-27 Sumitomo Metal Mining Co., Ltd. Method of producing organic-inorganic hybrid infrared absorbing particles and organic-inorganic hybrid infrared absorbing particles

Also Published As

Publication number Publication date
ES2839976T3 (es) 2021-07-06
US10359171B2 (en) 2019-07-23
JP6427710B1 (ja) 2018-11-21
JP2019016601A (ja) 2019-01-31
JPWO2016104375A1 (ja) 2017-11-02
MX2017008517A (es) 2017-10-25
US20170343183A1 (en) 2017-11-30
CN107002974B (zh) 2019-10-29
BR112017013493A2 (ja) 2018-01-09
EP3239600A4 (en) 2018-08-15
CN107002974A (zh) 2017-08-01
EP3239600A1 (en) 2017-11-01
EP3239600B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2016104375A1 (ja) 熱線吸収性ランプカバー
CN103694659B (zh) 提高树脂组合物的初期色相和红外线遮蔽性能的方法
EP1925427B1 (en) Light-absorbent resin composition for laser welding, light-absorbent molding from said composition and method for manufacturing said molding
US10759916B2 (en) Lamp cover
JP4632094B2 (ja) 高耐熱性マスターバッチの製造方法、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
JP5257626B2 (ja) 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
JP5463001B2 (ja) ポリカーボネート樹脂組成物、ポリカーボネート樹脂成形品及びその製造方法
WO2019172243A1 (ja) 透明樹脂組成物、樹脂成形体、ランプカバー、車両用ランプカバー、コンビネーションランプカバー及び車両
CN101120051B (zh) 对410nm的波长光具有吸收能力的热塑性透明组合物及其成形体
JPH0673197A (ja) 近赤外線吸収透明樹脂組成物及びその成形体
JP5342767B2 (ja) ポリカーボネート樹脂組成物、ポリカーボネート樹脂成形品、及びその製造方法
JP3513525B2 (ja) 近赤外線吸収透明樹脂組成物及びその成形体
CN103897373B (zh) 聚碳酸酯组成物及隔热材
JP6991322B2 (ja) ポリカーボネート樹脂組成物およびこれを含む光学成形品
JPH06306203A (ja) 近赤外線遮断透明樹脂組成物およびその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566316

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872943

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15538871

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/008517

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013493

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017013493

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170622