[go: up one dir, main page]

WO2020003560A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2020003560A1
WO2020003560A1 PCT/JP2018/047939 JP2018047939W WO2020003560A1 WO 2020003560 A1 WO2020003560 A1 WO 2020003560A1 JP 2018047939 W JP2018047939 W JP 2018047939W WO 2020003560 A1 WO2020003560 A1 WO 2020003560A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
salient pole
current
value
pole ratio
Prior art date
Application number
PCT/JP2018/047939
Other languages
English (en)
French (fr)
Inventor
戸張 和明
岩路 善尚
アグネス ハディナタ
雄作 小沼
敦彦 中村
卓也 杉本
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to EP18924485.8A priority Critical patent/EP3817218B1/en
Priority to CN201880090737.3A priority patent/CN111801886B/zh
Priority to US17/049,979 priority patent/US11424707B2/en
Publication of WO2020003560A1 publication Critical patent/WO2020003560A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to a power converter, and more particularly, to a power converter of position sensorless control.
  • SPM Surface Permanent Magnet: surface magnet type
  • IPM Interior Permanent Magnet: embedded magnet type
  • the magnetic resistance of the SPM motor to become independent of the position of the rotor, (hereinafter the L q / L d, referred to as a salient pole ratio) d-axis inductance L ratio of d and q-axis inductance L q is approximately It becomes 1.
  • L q / L d referred to as a salient pole ratio
  • L q-axis inductance L ratio of d and q-axis inductance L q is approximately It becomes 1.
  • IPM motor since a permanent magnet having a large magnetic resistance is present, it is difficult for the current magnetic flux in the d-axis direction to pass, and the current magnetic flux in the q-axis direction passes through the inside of the iron core of the rotor having a small magnetic resistance. Is 1 or more.
  • Patent Document 1 presupposes an IPM motor, finds the AC amplitude of the three-phase harmonic current amplitude by calculation, and estimates the ratio between the maximum value and the minimum value of the high-frequency current amplitude as the salient pole ratio. Also disclosed is a technique for determining a limit value of a current command that is an output of a speed control system so that an estimated value of the salient pole ratio does not fall below a predetermined value.
  • Patent Literature 1 since the limit value of the current command value is determined, the current applied to the rotor is reduced to prevent step-out due to the salient pole ratio of the magnet motor approaching 1.
  • the entire current including the id current and the iq current is reduced so that the estimated value of the salient pole ratio does not fall below a predetermined value. It is difficult to perform possible position sensorless control. Also, it is difficult for the SPM motor to stably drive stable position sensorless control even with a high torque.
  • An object of the present invention is to provide a power converter capable of performing stable position sensorless control even with high torque.
  • a preferred example of the present invention is a power conversion device that controls a load device by position sensorless control, and a current detection unit that detects a current of the load device, and a dc axis that is a control axis based on the detected current.
  • a current detection calculation unit that calculates a harmonic current component of the QC axis, and a salient pole ratio estimation unit that outputs a salient pole ratio estimated value based on the harmonic current components of the dc axis and the QC axis, Power conversion having a salient pole ratio estimated value and a salient pole ratio control unit that outputs a current component that increases or decreases the current command value of the d-axis of the rotor coordinate system based on a deviation between the determined salient pole ratio.
  • Power conversion having a salient pole ratio estimated value and a salient pole ratio control unit that outputs a current component that increases or decreases the current command value of the d-axis of the rotor coordinate system based on a deviation between the determined salient pole ratio.
  • FIG. 1 is a system configuration diagram including a power converter and a magnet motor according to a first embodiment. The figure which shows the characteristic of the torque and a phase error in a comparative example.
  • FIG. 2 is a diagram illustrating a configuration of a current detection calculation unit according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of a salient pole ratio estimation unit according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of a salient pole ratio control unit according to the first embodiment.
  • FIG. 4 is a diagram illustrating characteristics of a torque and a phase error in the first embodiment.
  • FIG. 4 is a diagram for explaining a verification method when the first embodiment is employed.
  • FIG. 1 is a system configuration diagram including a power converter and a magnet motor according to a first embodiment. The figure which shows the characteristic of the torque and a phase error in a comparative example.
  • FIG. 2 is a diagram illustrating a configuration of a current detection calculation unit according to the first
  • FIG. 7 is a system configuration diagram including a power conversion device and a magnet motor according to a second embodiment.
  • FIG. 10 is a configuration diagram of a salient pole ratio estimation unit according to the second embodiment.
  • FIG. 13 is a system configuration diagram including a power conversion device and a magnet motor according to a third embodiment.
  • FIG. 13 is a configuration diagram of a salient pole ratio estimation unit 82 according to the third embodiment.
  • FIG. 13 is a system configuration diagram including a power conversion device and a magnet motor in a fourth embodiment.
  • FIG. 13 is a configuration diagram of a salient pole ratio control unit 91 according to the fourth embodiment.
  • FIG. 14 is a system configuration diagram including a power conversion device, a magnet motor, and the like in a fifth embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a salient pole ratio control unit 92 according to a fifth embodiment.
  • FIG. 14 is a diagram illustrating a system configuration including a power converter and a magnet motor according to
  • FIG. 1 is a system configuration diagram including a power converter and a magnet motor according to the first embodiment.
  • the magnet motor 1 outputs a motor torque obtained by combining a torque component due to the magnetic flux of the permanent magnet and a torque component due to the inductance of the armature winding.
  • the power converter 2 includes a semiconductor element as a switching element.
  • Power converter 2 the voltage command value of three-phase AC v u *, v v *, v w * Enter the voltage command values v u *, v v *, v w * gate signal proportional to (ON, OFF) Create voltage.
  • an IGBT which is an example of a switching element, is used, the IGBT performs a switching operation based on a gate signal.
  • the power converter 2 outputs a DC voltage E dc as an output of the DC voltage source 2a and voltages proportional to the three-phase AC voltage command values v u * , v v * , v w * , and outputs the magnet motor 1, the output voltage and the number of rotations can be made variable.
  • the current detector 3 may be provided outside the power converter.
  • the coordinate conversion unit 4 detects currents on the dc axis and the qc axis from the detected values i uc , i vc , i wc of the three-phase alternating currents i u , i v , i w with reference to the position estimation value ⁇ dc. Output the values i dc and i qc .
  • the dq-axis coordinate system defined by the d-axis and the q-axis is a rotor coordinate system for representing the position of the magnetic pole of the rotor, and rotates in synchronization with the rotor of the magnet motor 1 which is one of the load devices.
  • the magnet motor 1 is a permanent magnet synchronous motor
  • the d-axis is generally determined based on the phase of the permanent magnet attached to the rotor.
  • the d-axis is also called a magnetic pole axis
  • the q-axis is also called a torque axis.
  • the dc axis and the qc axis respectively represent the estimated phase of the magnetic pole position, that is, the directions of the d axis and the q axis assumed in the control performed by the control unit such as the current detection calculation unit 5.
  • the dc axis is also called a control axis, and a dc-qc axis coordinate system in which an axis orthogonal to the dc axis is a qc axis is defined.
  • the current detection calculation unit 5 outputs the amplitude values ⁇ i dc_ver , ⁇ i qc_ver and the average values i dc_ver , i qc_ver of the harmonic currents of the dc and qc axes from the detected current values i dc and i qc of the dc and qc axes. I do.
  • Phase error estimating section 6 the current detection value of the dc axis and qc axis i dc, and outputs the estimated value [Delta] [theta] c of the phase error from i qc.
  • the position / speed estimating unit 7 outputs a speed estimated value ⁇ rc ⁇ and a position estimated value ⁇ dc from the estimated value ⁇ c of the phase error.
  • the salient pole ratio estimator 8 outputs an estimated salient pole ratio L dq ⁇ from the amplitude values ⁇ i dc_ver and ⁇ i qc_ver of the harmonic currents on the dc and qc axes.
  • Saliency ratio control unit 9 outputs a correction value .DELTA.i d * of the DC current component of the d-axis than the estimated value L dq salient pole ratio ⁇ .
  • Adding unit 10 adds the correction value of the DC current component of the current command i d * and the d-axis of the d-axis .DELTA.i d *, and outputs the current command i d ** of the second d-axis.
  • Vector control calculating unit 11 the deviation between the second deviation between the current command i d ** and the average value i Dc_ver of d-axis and the current command of the q-axis i q * and the average value i Qc_ver, the magnet motor 1 Based on the electric constant and the estimated speed value ⁇ rc ⁇ , voltage commands v dc * and v qc * for the dc and qc axes are output.
  • the harmonic voltage generator 12 sets the peak value and frequency of the harmonic voltage, and outputs a dc axis harmonic voltage ⁇ v dc * and a qc axis harmonic voltage ⁇ v qc * .
  • Coordinate conversion unit 13 based on the position estimate theta dc, * voltage command v dc, v qc * harmonic voltage ⁇ v dc *, v dc ** is a sum of ⁇ v qc *, v qc ** Output three-phase AC voltage commands v u * , v v * , v w * to the power converter.
  • the vector control calculating unit 11 the deviation between the average value i Dc_ver the current command i d ** of the second d-axis and a current command i q * and the average value i Qc_ver the q-axis
  • the PI control output ⁇ v dc_pi for d-axis current control, the I control output ⁇ v dc_i for d-axis current control, the PI control output ⁇ v qc_pi for q-axis current control, and the I control output ⁇ v qc_i for q-axis current control Calculate.
  • the vector control calculation unit 11 includes a PI control output ⁇ v dc_pi for d-axis current control, which is an output of current control for the dc axis and the qc axis, an I control output ⁇ v dc_i for d-axis current control, and a PI control for q-axis current control.
  • output Delta] v Qc_pi, and I control output Delta] v Qc_i the q-axis current control, the speed estimated value omega rc ⁇ , and electrical properties of the magnet motor 1 (R, L d, L q, K e) according to the equation (1) using The voltage commands v dc * and v qc * are calculated.
  • the harmonic voltage generator 12 outputs harmonic voltages ⁇ v dc * and ⁇ v qc * of a rectangular wave or a sine wave having an amplitude value V h and a frequency f h , and outputs a voltage command v dc * as shown in Expression (2) .
  • V qc * to calculate v dc ** , v qc ** to control the three-phase voltage commands v u * , v v * , v v * for controlling the power converter 2.
  • phase error estimating unit 6 can estimate the magnetic pole position.
  • IPM motor stop / initial position estimation method in IEEJ Transactions on Journal D (Journal of Industrial Applications), Vol. 123, No. 2003, ⁇ 2 ⁇ No. 140-148.
  • the harmonic voltage generator 12 superimposes the square wave or sine wave harmonic voltages ⁇ v dc * and ⁇ v qc * of the amplitude value V h and the frequency f h on the dc and qc axes, and the phase error estimator 6 calculates the equation ( An estimated value ⁇ c of the phase error is calculated according to 3).
  • each symbol in the equation (3) is as follows.
  • L d d-axis inductance value
  • L q q-axis inductance value
  • Vv dc * harmonic voltage instruction obtained by superposing the dc axis
  • Vv qc * harmonic voltage instruction obtained by superposing the qc axis
  • V idc harmonic currents dc axis
  • V iqc qc axis of harmonic currents.
  • the position / velocity estimating unit 7 controls the velocity estimated value ⁇ rc ⁇ and the position estimated value ⁇ dc by the calculation shown in Expression (4) so that the estimated value ⁇ c of the phase error is set to “zero”. .
  • FIG. 2 is a diagram showing characteristics of torque and phase error as a comparative example when the magnet motor 1 is operated under load.
  • the upper part of FIG. 2 shows the relationship between torque and time
  • the lower part of FIG. 2 shows the relationship between phase error and time.
  • the load torque TL is applied in a ramp shape from the time point (A)
  • the phase error ⁇ shown in the lower side of FIG. 2 is -50 deg from the no-load state, and a phase error occurs and is unstable. You can see that.
  • FIG. 3 is a diagram illustrating a configuration of the current detection calculation unit 5.
  • L.P. P. F Low Pass Filter
  • the current detection value i dc, i qc and the current detection value of the average value i dc_ver, with i qc_ver calculates the harmonic current ⁇ i dc, ⁇ i qc according to the equation (5).
  • FFT Fast Fourier Transform
  • FIG. 4 is a diagram illustrating a configuration of the salient pole ratio estimation unit 8.
  • Reference numeral 8a denotes a divider, which outputs a ratio between ⁇ i qc_ver and ⁇ i dc_ver which are amplitude values of the harmonic current.
  • 8b is L. P. F (Low Pass Filter), which removes harmonic components from the output of the divider 8a and outputs an estimated value L dq ⁇ of the salient pole ratio.
  • FIG. 5 is a diagram illustrating a configuration of the salient pole ratio control unit 9.
  • 9a is the determined salient pole ratio Ldq_lmt .
  • 9b is a PI (proportional + integral) control unit, the estimated value of a predetermined saliency ratio L Dq_lmt and saliency ratio L dq ⁇ deviation (L dq ⁇ -L dq_lmt) is input, the deviation becomes zero calculating a correction value of the DC current component of the d-axis .DELTA.i d * and outputs as.
  • the d-axis inductance can be indirectly controlled, and the salient pole ratio can be made greater than 1,0.
  • FIG. 7 is a diagram illustrating a verification method when the first embodiment is employed.
  • the current detector 20 is attached to the power converter 22 that drives the magnet motor 1, and the encoder 21 is attached to the shaft of the magnet motor 1.
  • the three-phase AC current detection values (i uc , i vc , i wc ) output from the current detector 20 and the position ⁇ output from the encoder 21 are input to the harmonic current and salient pole ratio calculation unit 23.
  • the harmonic currents ⁇ i dc and ⁇ i qc or the amplitude values ⁇ i dc_ver and ⁇ i qc_ver of the harmonic currents and the salient pole ratio are estimated.
  • the observation unit 24 of each waveform observes the relationship between ⁇ i dc , ⁇ i qc or ⁇ i dc_ver , ⁇ i qc_ver and L dq ⁇ , and if L dq ⁇ is constant, it is clear that the present invention is adopted.
  • the current ripple near zero of the three-phase AC current detection values i uc , i vc , i wc
  • the amplitude value is ⁇ i dc_ver
  • the current detection value is near the maximum.
  • the salient pole ratio may be estimated with the current ripple ⁇ i qc and the amplitude value ⁇ i qc_ver .
  • the d-axis current command value can be adjusted independently of the q-axis current command value to increase the salient pole ratio of the magnet motor 1. Therefore, sensorless control is stable, and a large torque can be output. That is, in the first embodiment, stable position sensorless control can be realized even with a high torque. Further, not only the IPM motor but also a surface magnet type magnet motor having a small salient pole ratio, in which the salient pole ratio is almost 1, can operate stably by expanding the operating range.
  • FIG. 8 is a system configuration diagram including a power conversion device and a magnet motor according to the second embodiment.
  • the estimated value of the salient pole ratio is calculated from the amplitude value of the harmonic current.
  • the inductances L d ⁇ and L q ⁇ are calculated from the amplitude value of the harmonic current.
  • an estimated value L dq ⁇ of the salient pole ratio is calculated from these ratios.
  • the configuration is the same as that in FIG.
  • FIG. 9 illustrates a configuration of the salient pole ratio estimation unit 81 according to the second embodiment.
  • the salient pole ratio estimating unit 81 includes a constant 81 a that is the amplitude value V h * of the harmonic voltage, a constant 81 b that is the frequency f cc of the harmonic, a dividing unit 81 c, a dividing unit 81 e, and L. P.
  • the estimated values of the d-axis and q-axis inductances L d ⁇ and L q ⁇ are calculated from equation (6).
  • the amplitude value V h * of the harmonic voltage is the amplitude value of the harmonic voltage ⁇ v dc * on the dc axis and the harmonic voltage ⁇ v qc * on the qc axis in FIG.
  • an estimated value L dq ⁇ of the salient pole ratio is calculated from equation (7).
  • FIG. 10 is a system configuration diagram including a power converter and a magnet motor according to the third embodiment.
  • the estimated value of the salient pole ratio is calculated from the amplitude value of the harmonic current.
  • the d-axis and q-axis inductances L d ⁇ ⁇ and L q ⁇ ⁇ are calculated. This is an example of calling by a table reference type.
  • the salient pole ratio estimating unit 82 which is the same as FIG. 1, the description is omitted.
  • FIG. 11 illustrates a salient pole ratio estimation unit 82 according to the third embodiment.
  • the salient pole ratio estimating unit 82 receives a d-axis current command id * and a q-axis current command iq * and outputs L d ⁇ , a d-axis inductance reference table 82a, and a q-axis current command. It comprises a q-axis inductance reference table 82b that inputs i q * and outputs q-axis inductance L q ⁇ .
  • the d-axis inductance reference table 82a holds L d ⁇ corresponding to the d-axis current command id * .
  • the q-axis inductance reference table 82b holds the q-axis inductance Lq ⁇ corresponding to the q-axis current command iq * .
  • the d-axis inductance reference table 82a and the q-axis inductance reference table 82b can also be created at the time of off-line auto-tuning performed when starting up the general-purpose inverter. Further, it is also possible to learn the data of the table while driving according to the method of the first or second embodiment, and to switch to this embodiment as soon as the learning is completed.
  • the d-axis inductance and the q-axis inductance are calculated based on the d-axis current command i d * and the q-axis current command i q * .
  • the estimated value L dq ⁇ of the salient pole ratio corresponding to the d-axis current command id * and the q-axis current command iq * is learned in advance during offline auto-tuning or operation, and is obtained in advance. I can put it.
  • a salient pole ratio reference table holding the salient pole ratio estimated value L dq ⁇ corresponding to the d-axis current command id * and the q-axis current command iq * , and the d-axis current command id * and The estimated value L dq ⁇ of the salient pole ratio may be obtained based on the q-axis current command i q * .
  • FIG. 12 is a system configuration diagram including a power conversion device and a magnet motor according to the fourth embodiment.
  • the d-axis current command is increased or decreased so that the estimated value of the salient pole ratio follows a predetermined salient pole ratio.
  • the estimated value L dq of the salient pole ratio is increased.
  • the d-axis current command is increased when ⁇ decreases below a predetermined salient pole ratio Ldq_lmt .
  • components other than the salient pole ratio control unit 91 are the same as those in FIG.
  • FIG. 13 is a configuration diagram of a salient pole ratio control unit 91 according to the fourth embodiment.
  • Reference numeral 91a denotes a predetermined salient pole ratio Ldq_lmt to be set.
  • 91b is, PI (proportional + integral) a control unit, the salient pole ratio of the estimated value L dq ⁇ and L deviation between dq_lmt the current command of the d-axis such that the zero correction value .DELTA.i d * the calculated output I do.
  • 91c shows the limit value i d * Lwr_Lmt the direct current component of the predetermined d-axis to be set.
  • 91d the upper limit value by the correction value .DELTA.i d * limitations of current command d-axis i d * Lwr_Lmt, the lower limit is 0.
  • the output of the PI (proportional + integral) control unit 91b is input to the d-axis current command limiting unit 91d.
  • the correction value .DELTA.i d * is the current command d-axis, and outputs a positive polarity current value.
  • a predetermined limit value i d * Lwr_Lmt etc. current tolerance of the semiconductor switching elements of the power converter 2 maximum current.
  • FIG. 14 is a system configuration diagram including a power converter, a magnet motor, and the like in the fifth embodiment.
  • the d-axis current command is increased or decreased so that the estimated value of the salient pole ratio follows the predetermined salient pole ratio.
  • the estimated value of the salient pole ratio is changed to a predetermined value.
  • the phase error command is increased or decreased so as to follow the salient pole ratio.
  • FIG. 15 is a diagram illustrating a configuration of the salient pole ratio control unit 92 according to the fifth embodiment.
  • Reference numeral 92a denotes a predetermined salient pole ratio Ldq_lmt to be set.
  • Reference numeral 92b denotes a PI (proportional + integral) control unit which calculates a phase error command value ⁇ dc * according to equation (8) so that the deviation between the estimated value L dq ⁇ of the salient pole ratio and L dq_lmt becomes zero.
  • PI proportional + integral
  • the position / velocity estimating unit 7 outputs the position estimation value ⁇ dc based on the phase error command value ⁇ dc * so as to eliminate the phase error estimation value ⁇ c .
  • a magnet motor having a small salient pole ratio can be driven stably.
  • FIG. 16 is a diagram showing a system configuration including a power converter and a magnet motor in the sixth embodiment.
  • the sixth embodiment is an example applied to a magnet motor drive system.
  • the magnet motor 1 is driven by the power converter 16.
  • the power converter 16 includes software 16a and hardware. Each function of the software 16a is executed by a processor such as a microcomputer of the power conversion device 16.
  • the coordinate conversion unit 4 the current detection calculation unit 5, the phase error estimation unit 6, the position / speed estimation unit 7, the salient pole ratio estimation unit 8, the salient pole ratio control unit 9, the addition unit 10, and the vector control calculation illustrated in FIG.
  • the unit 11, the harmonic voltage generation unit 12, and the coordinate conversion unit 13 constitute software 16a in FIG.
  • the power converter 2, the DC voltage source 2a, and the current detector 3 in FIG. 1 are implemented as hardware.
  • a predetermined salient pole ratio L dq_lmt in the software 16a and a limit value of the direct current component on the d axis by the digital operator 16b of the power converter 16 or a higher-level device such as the personal computer 17, the tablet 18, and the smartphone 19 i d * _lmt can be set.
  • the predetermined saliency ratio L Dq_lmt, limit value i d * Lwr_Lmt the direct current component of the d-axis, a local area network that connects the programmable logic controller (PLC) or a computer is a host device (LAN) It may be set above.
  • the present invention is not limited to the first embodiment, and the embodiments of the second to fifth embodiments may be applied.
  • the current command value i d **, i q * and the current detection value i dc using the i qc and circuit constants of the magnet motor 1, shown in Equation (1) were subjected to calculation, the current command value i d **, i q * and the current detection value i dc, than i qc, creates a voltage correction value Delta] v dc, Delta] v dc by calculation shown in equation (9), this voltage
  • the calculation shown in equation (11) for adding the correction value and the voltage reference value for vector control shown in equation (10) may be performed.
  • Kpd proportional gain for d-axis current control
  • Kid integral gain for d-axis current control
  • Kpq proportional gain for q-axis current control
  • Kiq integral gain for q-axis current control s: Laplace operator.
  • the current command of the d-axis i d * also be applied to a vector control system for calculating the equation (14) using the current detection value i qc, the speed command value omega r * and the circuit constant of the magnet motor 1 of the qc axis be able to.
  • a vector control method of calculating the voltage command values v dc * and v qc * of the dc axis and the qc axis may be used.
  • Kpd proportional gain for d-axis current control
  • Kid integral gain for d-axis current control
  • Kpq proportional gain for q-axis current control
  • Kiq integral gain for q-axis current control s: Laplace operator.
  • the switching elements constituting the power converter 2 may be Si (silicon) semiconductor elements, such as SiC (silicon carbide) and GaN (gallium nitride). It may be a wide band gap semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

電力変換装置は、位置センサレスベクトル制御により、負荷装置を制御し、 負荷装置の電流を検出する電流検出部と、検出した電流に基づいて、制御軸であるdc軸及びqc軸の高調波電流成分を演算する電流検出演算部と、dc軸及びqc軸の高調波電流成分に基づいて、突極比推定値を出力する突極比推定部と、突極比推定値と、定めておいた突極比との偏差に基づいて、回転子座標系のd軸の電流指令値を増減する電流成分を出力する突極比制御部とを有する。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に、位置センサレス制御の電力変換装置に関する。
 磁石モータとしては、磁石モータの回転子の表面に永久磁石を配置するSPM(Surface Permanent Magnet:表面磁石形)型と、回転子の内部に永久磁石を配置するIPM(Interior Permanent Magnet:埋め込み磁石形)型のモータが知られている。
 一般に、SPMモータの磁気抵抗は、回転子の位置と無関係となるため、d軸インダクタンスLとq軸インダクタンスLqの比率(Lq / L を以下、突極比と呼ぶ)は、ほぼ1となる。一方、IPMモータでは、磁気抵抗の大きい永久磁石が存在するため、d軸方向の電流磁束は通りにくく、q軸方向の電流磁束は磁気抵抗の小さい回転子の鉄心内部を通るため、突極比は1以上となる。
 このため、これまで高調波重畳方式の位置センサレス制御は、専用設計されたIPMモータのみに適用されてきた。
 特許文献1は、IPMモータを前提としており、三相高調波電流振幅の交流振幅を演算により求め、高周波電流振幅の最大値と最小値の比を突極比として推定している。また、突極比の推定値があらかじめ定められた値を下回らないように、速度制御系の出力である電流指令のリミット値を決定する技術を開示している。
WO2015/190150公報
 特許文献1では、電流指令値のリミット値を決定しているため、回転子に与える電流を下げることで磁石モータの突極比が1に近づくことによる脱調を防止するためのものである。
 しかしながら、従来の技術では、id電流とiq電流からなる電流全体を下げることで、突極比の推定値があらかじめ定められた値を下回らないようにしているので、高トルクであっても安定駆動できる位置センサレス制御をすることは、困難である。また、SPMモータにおいても、高トルクであっても安定した位置センサレス制御を安定駆動させることは難しい。
 本発明の目的は、高トルクであっても安定した位置センサレス制御ができる電力変換装置を提供することにある。
 本発明の好ましい一例は、位置センサレス制御により、負荷装置を制御する電力変換装置であって、前記負荷装置の電流を検出する電流検出部と、検出した電流に基づいて、制御軸であるdc軸及びqc軸の高調波電流成分を演算する電流検出演算部と、前記dc軸及び前記qc軸の前記高調波電流成分に基づいて、突極比推定値を出力する突極比推定部と、前記突極比推定値と、定めておいた突極比との偏差に基づいて、回転子座標系のd軸の電流指令値を増減する電流成分を出力する突極比制御部とを有する電力変換装置である。
 本発明によれば、高トルクであっても安定した位置センサレス制御ができる電力変換装置を実現することができる。
実施例1における電力変換装置と磁石モータを含むシステム構成図。 比較例におけるトルクと位相誤差の特性を示す図。 実施例1における電流検出演算部の構成を示す図。 実施例1における突極比推定部の構成を示す図。 実施例1における突極比制御部の構成を示す図。 実施例1におけるトルクと位相誤差の特性を示す図。 実施例1を採用した場合の検証方法を説明する図。 実施例2における電力変換装置と磁石モータを含むシステム構成図。 実施例2における突極比推定部の構成図。 実施例3における電力変換装置と磁石モータを含むシステム構成図。 実施例3における突極比推定部82の構成図。 実施例4における電力変換装置と磁石モータを含むシステム構成図。 実施例4における突極比制御部91の構成図。 実施例5における電力変換装置と磁石モータなどを含むシステム構成図。 実施例5における突極比制御部92の構成を示す図である。 実施例6における電力変換器と磁石モータを含むシステム構成を示す図である。
 以下に、図面を用いて、実施例を詳細に説明する。
 図1は、実施例1における電力変換装置と磁石モータを含むシステム構成図である。磁石モータ1は、永久磁石の磁束によるトルク成分と電機子巻線のインダクタンスによるトルク成分を合成したモータトルクを出力する。
 電力変換器2は、スイッチング素子としての半導体素子を備える。電力変換器2は、3相交流の電圧指令値vu *、vv *、vw *を入力し、電圧指令値vu *、vv *、vw *に比例したゲート信号(オン、オフ)電圧を作成する。スイッチング素子の一例であるIGBTを使う場合には、ゲート信号に基づいて、IGBTがスイッチング動作をする。また、電力変換器2は、直流電圧源2aの出力である直流電圧Edcと、3相交流の電圧指令値vu *、vv *、vw *に比例した電圧を出力し、磁石モータ1の出力電圧と回転数は可変にすることができる。
 電流検出器3は、磁石モータ1の3相の交流電流iu、iv、iwを検出する。ここで磁石モータ1の3相の内の2相、例えば、u相とw相の相電流を検出し、交流条件(iu+iv+iw=0)から、v相の相電流をiv=-(iu+iw)として求めてもよい。本実施例では、電流検出器3は、電力変換装置内に設けた例を示したが、電力変換装置の外部に設けてもよい。
 次に、電力変換器を制御する制御部の各構成要素について、説明する。座標変換部4は、位置推定値θdcを基準にして、前記3相の交流電流iu、iv、iwの検出値iuc、ivc、iwcからdc軸およびqc軸の電流検出値idc、iqcを出力する。
 ここで、回転子座標系と制御軸などについて、説明をしておく。d軸とq軸により定義されるdq軸座標系は、回転子の磁極位置を表すための回転子座標系であり、負荷装置のひとつである磁石モータ1の回転子と同期して回転する。磁石モータ1が永久磁石同期電動機の場合、d軸は一般的に回転子に取り付けられた永久磁石の位相を基準にとられる。d軸は、磁極軸とも呼ばれ、q軸はトルク軸とも呼ばれる。dc軸とqc軸は、磁極位置の推定位相、すなわち、電流検出演算部5などの制御部が行う制御において想定している、d軸とq軸の方向をそれぞれ表している。dc軸は制御軸とも呼ばれ、dc軸に直交する軸をqc軸としたdc-qc軸座標系が定義される。
 電流検出演算部5は、前記dc軸およびqc軸の電流検出値idc、iqcからdc軸およびqc軸の高調波電流の振幅値Δidc_ver、Δiqc_verと平均値idc_ver、iqc_verを出力する。
 位相誤差推定部6は、dc軸およびqc軸の電流検出値idc、iqcより位相誤差の推定値Δθcを出力する。
 位置・速度推定部7は、前記位相誤差の推定値Δθcより速度推定値ωrc ^および位置推定値θdcを出力する。
 突極比推定部8は、dc軸およびqc軸の高調波電流の振幅値Δidc_ver、Δiqc_verより突極比の推定値Ldq ^を出力する。
 突極比制御部9は、突極比の推定値Ldq ^よりd軸の直流電流成分の補正値Δi を出力する。
 加算部10は、d軸の電流指令i *とd軸の直流電流成分の補正値Δi *を加算して、第2のd軸の電流指令i **を出力する。
 ベクトル制御演算部11は、第2のd軸の電流指令i **と平均値idc_verとの偏差および、q軸の電流指令iq と平均値iqc_verとの偏差磁石モータ1の電気定数、速度推定値ωrc ^に基づいて、dc軸およびqc軸の電圧指令vdc *、vqc *を出力する。
 高調波電圧発生部12は、高調波電圧の波高値および周波数を設定し、dc軸の高調波電圧Δvdc 、およびqc軸の高調波電圧Δvqc を出力する。
 座標変換部13は、位置推定値θdcを基準にして、電圧指令vdc 、vqc と高調波電圧Δvdc 、Δvqc の加算値であるvdc **、vqc **から、3相交流の電圧指令vu 、vv 、vw を、電力変換器に対して出力する。
 最初に、高調波重畳方式の基本動作について説明する。まず、ベクトル制御による電圧制御と位相制御の基本動作について説明する。
 電圧制御の基本動作は、ベクトル制御演算部11は、第2のd軸の電流指令i **と平均値idc_verとの偏差および、q軸の電流指令iq *と平均値iqc_verとの偏差に基づいて、d軸電流制御のPI制御出力Δvdc_pi、d軸電流制御のI制御出力Δvdc_i、q軸電流制御のPI制御出力Δvqc_pi、q軸電流制御のI制御出力Δvqc_iを演算する。
 また、ベクトル制御演算部11は、dc軸およびqc軸の電流制御の出力であるd軸電流制御のPI制御出力Δvdc_pi、d軸電流制御のI制御出力Δvdc_i、q軸電流制御のPI制御出力Δvqc_pi、q軸電流制御のI制御出力Δvqc_iと、速度推定値ωrc ^、および磁石モータ1の電気定数(R、 L、 Lq、 Ke)を用いて式(1)に従い電圧指令vdc *、vqc *を演算する。
Figure JPOXMLDOC01-appb-M000001
ここで、式(1)の各記号の定義は、次の通りである。
R :磁石モータの全体の抵抗値
L :d軸インダクタンス値、 Lq :q軸インダクタンス値
Ke :誘起電圧係数        :設定値を示す
Δvdc_pi:d軸電流制御のPI制御出力、Δvdc_i:d軸電流制御のI制御出力、Δvqc_pi:q軸電流制御のPI制御出力、Δvqc_i:q軸電流制御のI制御出力。
 高調波電圧発生部12は、振幅値Vhと周波数fhの矩形波あるいは正弦波の高調波電圧Δvdc *、Δvqc *を出力し、式(2)に示すように電圧指令vdc *、vqc *と加算して、vdc **、vqc **を演算し、電力変換器2を制御する3相の電圧指令vu 、vv 、vv を制御する。
Figure JPOXMLDOC01-appb-M000002
 一方、位相制御の基本動作については、位相誤差推定部6は磁極位置を推定できるのであれば、どのような方法を用いても構わない。例えば、参考文献として、電気学会論文誌D(産業応用部門誌)、123 巻 (2003) 2 号 140-148の「IPMモータの停止時・初期位置推定方式」がある。
 高調波電圧発生部12では、振幅値Vhと周波数fhの矩形波あるいは正弦波の高調波電圧Δvdc 、Δvqc をdc、qc軸に重畳し、位相誤差推定部6において式(3)に従い位相誤差の推定値Δθcを演算する。
Figure JPOXMLDOC01-appb-M000003
 ここで、式(3)の各記号の定義は、次の通りである。
L :d軸インダクタンス値、 Lq :q軸インダクタンス値、
Vvdc  :dc軸に重畳した高調波電圧指令、Vvqc  :qc軸に重畳した高調波電圧指令、Vidc :dc軸の高調波電流、Viqc :qc軸の高調波電流。
 また、位置・速度推定部7では、位相誤差の推定値Δθcを「零」とするように、式(4)に示す演算により、速度推定値ωrc ^と位置推定値θdcを制御する。
Figure JPOXMLDOC01-appb-M000004
 ここで、式(4)の各記号の定義は、次の通りである。
Kp:比例ゲイン、Ki:積分ゲイン、s:ラプラス演算子。
 次に磁石モータ1の突極比が1近傍であり、突極比推定部8、突極比制御部9を用いない制御特性について述べる。図2は、磁石モータ1を負荷運転したときの比較例としてのトルクと位相誤差の特性を示す図である。
 図2の上側は、トルクと時間との関係を示し、下側は、位相誤差と時間との関係を示す図である。時刻(A)点からランプ状に負荷トルクTLを与えているが、図2の下側に示す位相誤差Δθが、無負荷の状態から-50degしており位相誤差が発生し不安定であることがわかる。
 このとき電力変換器2の半導体スイッチング素子の電流耐量(最大電流)などから決定される過電流レベルに到達することがあり、磁石モータ1を駆動することは不可能になってしまう。このように、磁石モータ1の突極比が1近傍の場合、電力変換装置が過電流に陥りやすく運転不能となる問題があった。
 そこで、本実施例の特徴である電流検出演算部5、突極比推定部8、突極比制御部9を用いれば、この問題を改善することができる。
 以下、これらを用いた場合の制御特性について述べる。図3は、電流検出演算部5の構成を示す図である。
 5a、5bはL.P.F(Low Pass Filter)であり電流検出値idc、iqcに含まる高調波電流を除去して電流検出値の平均値idc_ver、iqc_verを出力する。
また電流検出値idc、iqcと電流検出値の平均値idc_ver、iqc_verを用いて、式(5)に従い高調波電流Δidc、Δiqcを演算する。
Figure JPOXMLDOC01-appb-M000005
 5cは、FFT(Fast Fourier Transform)演算部であり電流検出値idc、iqcに含まる高調波電流Δidc、Δiqcの振幅値であるΔidc_ver、Δiqc_verを出力する。
 図4は、突極比推定部8の構成を示す図である。8aは除算部であり、高調波電流の振幅値であるΔiqc_verとΔidc_verの比率を出力する。8bはL.P.F(Low Pass Filter)であり、除算部8aの出力における高調波成分を除去して突極比の推定値Ldq ^を出力する。
 図5は、突極比制御部9の構成を示す図である。9aは、定めておいた突極比Ldq_lmtである。9bは、PI(比例+積分)制御部であり、所定の突極比Ldq_lmtと突極比の推定値Ldq ^の偏差(Ldq ^-Ldq_lmt)が入力され、偏差が零となるようにd軸の直流電流成分の補正値Δid *を演算し出力する。d軸電流指令id *を増減させることで、d軸インダクタンスを間接的に制御し、突極比を1、0より大きくすることができる。
 図6は、実施例1におけるトルクと位相誤差の特性を示す図である。図2に用いた条件で、Ldq_lmt=1、5に設定している。図2と図6に開示したトルクと位相誤差の特性を比較すれば効果は明らかであるが、磁石モータ1の突極比を制御することで200%の高トルクでも安定な位置センサレス制御を実現できている。
 ここで、図7は、実施例1を採用した場合の検証方法を説明する図である。磁石モータ1を駆動する電力変換装置22に電流検出器20を取り付け、磁石モータ1のシャフトにエンコーダ21を取り付ける。
 高調波電流および突極比の計算部23には、電流検出器20の出力である三相交流の電流検出値(iuc、 ivc、 iwc)とエンコーダ21の出力である位置θが入力され、電流検出演算部5および突極比推定部8と同様な演算を行うことで、高調波電流Δidc、Δiqcあるいは高調波電流の振幅値Δidc_ver、Δiqc_verと、突極比の推定値Ldq ^を出力する。
 各部波形の観測部24では、Δidc、ΔiqcあるいはΔidc_ver、Δiqc_verとLdq ^の関係を観測し、Ldq ^が一定であれば、本発明を採用していることが明白である。またエンコーダ21を取り付けられない場合は、三相交流の電流検出値(iuc、 ivc、 iwc)の零近傍における電流リプルをΔidc、その振幅値をΔidc_ver、電流検出値が最大近傍における電流リプルをΔiqc、その振幅値をΔiqc_verとして突極比を推定してもよい。
 実施例1によれば、d軸の電流指令値を、q軸の電流指令値とは、別に、独立して調整し、磁石モータ1の突極比を大きく出来る。そのために、センサレス制御が安定し、大きなトルクを出力できる。つまり、実施例1では、高トルクでも安定な位置センサレス制御を実現できる。さらに、IPMモータだけではなく、突極比がほぼ1になる、表面磁石型の突極比が小さな磁石モータでも、運転範囲を拡大して安定駆動することができる。
 図8は、実施例2における電力変換装置と磁石モータを含むシステム構成図である。
実施例1では、突極比の推定値を高調波電流の振幅値より演算する実施例であったが、実施例2では、高調波電流の振幅値よりインダクタンスL ^、Lq ^を算出し、それらの比率より突極比の推定値Ldq ^を演算する。
図8の突極比推定部81以外は、図1と同様なので、説明は省略する。
 図9は、実施例2における突極比推定部81の構成を示す。
突極比推定部81は、高調波電圧の振幅値Vh である定数81a、高調波の周波数fccである定数81b、除算部81c、除算部81e、L.P.F81fより構成され、式(6)よりd軸およびq軸のインダクタンスL ^、Lq ^の推定値を演算する。
Figure JPOXMLDOC01-appb-M000006
 ここで、高調波電圧の振幅値Vh は、図1のdc軸の高調波電圧Δvdc 、およびqc軸の高調波電圧Δvqc の振幅値となる。さらに、式(7)より突極比の推定値Ldq ^を演算する。
Figure JPOXMLDOC01-appb-M000007
 このような構成とすることで、演算で算出したd軸およびq軸のインダクタンスL ^、Lq ^を、式(3)の位相誤差の推定演算式に反映できるメリットがある。
 図10は、実施例3における電力変換装置と磁石モータを含むシステム構成図である。実施例1では、突極比の推定値を高調波電流の振幅値より演算する実施例であったが、実施例3は、d軸およびq軸のインダクタンスL ^^、Lq ^^をテーブル参照型で呼び出す実施例である。図10において、突極比推定部82以外は、図1と同様なので説明を省略する。
 図11は、実施例3における突極比推定部82を示す。
突極比推定部82は、d軸の電流指令i *、およびq軸の電流指令iq *を入力して、L ^^を出力するd軸インダクタンス参照テーブル82a、q軸の電流指令iq *を入力して、q軸のインダクタンスLq ^^を出力するq軸インダクタンス参照テーブル82bから構成される。
 ここで、d軸インダクタンス参照テーブル82aは、d軸の電流指令id *に対応したL ^^を保持している。また、q軸インダクタンス参照テーブル82bは、q軸の電流指令iq に対応したq軸のインダクタンスLq ^^を保持している。
 d軸インダクタンス参照テーブル82a、およびq軸インダクタンス参照テーブル82bは、汎用インバータの立ち上げ時に実施するオフライン・オートチューニングのときに作成することもできる。また、実施例1あるいは実施例2の方式により運転中して、テーブルのデータを学習し、学習が終わり次第、本実施例に切り替えるようにしてもよい。
 また、上記の説明では、d軸の電流指令id *およびq軸の電流指令iq *に基づいて、d軸のインダクタンス、およびq軸のインダクタンスを算出していた。代わりに、d軸の電流指令i *およびq軸の電流指令iq *に対応した突極比の推定値Ldq ^を、オフライン・オートチューニングや、運転中に学習して、予め求めておくことができる。つまり、d軸の電流指令i *およびq軸の電流指令iq に対応した突極比の推定値Ldq ^を保持した突極比参照テーブルと、d軸の電流指令i *およびq軸の電流指令iq *に基づいて、突極比の推定値Ldq ^を取得するようにしてもよい。
 このような構成とすることで、オンラインでなくなるが、実施例1と同等の効果を得ることができる。
 図12は、実施例4における電力変換装置と磁石モータを含むシステム構成図である。実施例1では、突極比の推定値を所定の突極比に追従するようにd軸の電流指令を増減する実施例であったが、実施例4では、突極比の推定値Ldq ^が所定の突極比Ldq_lmtより低下した場合にd軸の電流指令を増加する実施例である。
図12において、突極比制御部91以外は、図1と同様なので、説明を省略する。
 図13は、実施例4における突極比制御部91の構成図を示す。
91aは、設定する所定の突極比Ldq_lmtを示す。91bは、PI(比例+積分)制御部であり、突極比の推定値Ldq ^とLdq_lmtとの偏差が零となるようにd軸の電流指令の補正値Δi *を演算し出力する。
 91cは、設定する所定のd軸の直流電流成分の制限値i * _lmtを示す。91dは、d軸の電流指令の補正値Δi *の制限部で上限値はi * _lmt、下限値が0である。PI(比例+積分)制御部91bの出力が、d軸の電流指令制限部91dに入力される。この結果、d軸の電流指令の補正値Δi *は、正極性の電流値を出力することになる。
 このとき、電力変換器2の半導体スイッチング素子の電流耐量(最大電流)などから所定の制限値i * _lmtを決定してもよい。
このような構成とすることで、軽トルク時に必要以上のd軸電流を流すことがなくなり高効率化のメリットがある。
 図14は、実施例5における電力変換装置と磁石モータなどを含むシステム構成図である。実施例1では、突極比の推定値を所定の突極比に追従するようにd軸の電流指令を増減する方式であったが、実施例5では、突極比の推定値を所定の突極比に追従するように位相誤差の指令を増減する方式である。
 図14において、突極比制御部92と位置・速度推定部7以外は、図1と同様なので、説明は省略する。
 図15は、実施例5における突極比制御部92の構成を示す図である。
92aは、設定する所定の突極比Ldq_lmtである。92bはPI(比例+積分)制御部であり、突極比の推定値Ldq ^とLdq_lmtとの偏差が零となるように式(8)に従い位相誤差の指令値Δθdc を演算し出力する。
Figure JPOXMLDOC01-appb-M000008
 ここで、式(8)の各記号の定義は、次の通りである。
Kp1:比例ゲイン、Ki1:積分ゲイン。
 位置・速度推定部7は、位相誤差の推定値Δθcを無くすように、位相誤差の指令値Δθdc に基づいて、位置推定値θdcを出力する。
 実施例5により、実施例1と同様に突極比の小さな磁石モータでも安定に駆動することができる。
 図16は、実施例6における電力変換器と磁石モータを含むシステム構成を示す図である。実施例6は、磁石モータ駆動システムに適用した例である。
 磁石モータ1は、電力変換装置16により駆動される。電力変換装置16は、ソフトウェア16aとハードウェアからなる。ソフトウェア16aの各機能は、電力変換装置16のマイコンなどのプロセッサーにより実行される。
 図1に示した座標変換部4、電流検出演算部5、位相誤差推定部6、位置・速度推定部7、突極比推定部8、突極比制御部9、加算部10、ベクトル制御演算部11、高調波電圧発生部12、座標変換部13は、図16のソフトウェア16aを構成している。
 図1の電力変換器2、直流電圧源2a、電流検出器3は、ハードウェアとして実装されている。電力変換装置16のデジタル・オペレータ16b、もしくは、パーソナル・コンピュータ17、タブレット18、スマートフォン19などの上位装置により、ソフトウェア16a内の所定の突極比Ldq_lmtと、d軸の直流電流成分の制限値i * _lmtを設定することができる。
 本実施例を磁石モータ駆動システムに適用すれば、突極比の小さな磁石モータでも安定運転を実現することができる。また、所定の突極比Ldq_lmt、d軸の直流電流成分の制限値i * _lmtは、上位装置であるプログラマブル・ロジック・コントローラ(PLC)やコンピュータと接続するローカル・エリア・ネットワーク(LAN)上で設定してもよい。
 さらに、実施例1に限らず、実施例2から実施例5の実施例を適用しても良い。
 ここまでの実施例1から実施例5においては、電流指令値i **、iq *と電流検出値idc、iqcおよび磁石モータ1の回路定数を用いて、式(1)に示す演算を行ったが、電流指令値i **、iq *と電流検出値idc、iqcより、式(9)に示す演算により電圧補正値Δvdc、Δvdcを作成し、この電圧補正値と、式(10)に示すベクトル制御の電圧基準値を加算する式(11)に示す演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000009
 ここで、式(9)の各記号の定義は、次の通りである。
Kpd:d軸電流制御の比例ゲイン、Kid: d軸電流制御の積分ゲイン、Kpq:q軸電流制御の比例ゲイン、Kiq :q軸電流制御の積分ゲインs:ラプラス演算子。
Figure JPOXMLDOC01-appb-M000010
 ここで、式(10)の各記号の定義は、次の通りである。
vdc0:d軸電圧指令、vqc0:q軸電圧指令、Tacr:電流制御の応答周波数相当の時定数、s:ラプラス演算子、Ke :誘起電圧係数。
Figure JPOXMLDOC01-appb-M000011
 また、電流指令値i *、iq *と電流検出値idc、iqcから、ベクトル制御演算に使用する式(12)に示す中間的な電流指令値i **、iq **を作成し、速度推定値ωrc ^および磁石モータ1の回路定数を用いた式(13)に示す演算を行ってもよい。
 また、d軸の電流指令i *、qc軸の電流検出値iqc、速度指令値ωr *および磁石モータ1の回路定数を用いた式(14)を演算するベクトル制御方式にも適用することができる。dc軸とqc軸の電圧指令値vdc *、vqc *を演算するベクトル制御方式を用いてもよい。
Figure JPOXMLDOC01-appb-M000012
 ここで、式(12)の各記号の定義は、次の通りである。
Kpd:d軸電流制御の比例ゲイン、Kid:d軸電流制御の積分ゲイン、Kpq:q軸電流制御の比例ゲイン、Kiq :q軸電流制御の積分ゲインs:ラプラス演算子。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 ここで、式(14)の各記号の定義は、次の通りである。
R1:磁石モータの一次抵抗、Td:q軸の電流指令iq の遅れ時定数。
なお、実施例1から実施例5において、電力変換器2を構成するスイッチング素子としては、Si(シリコン)半導体素子であっても、SiC(シリコンカーバイト)やGaN(ガリュームナイトライド)などのワイドバンドギャップ半導体素子であってもよい。
1…磁石モータ、2…電力変換器、3…電流検出器、5…電流検出演算部、6…位相誤差推定部、7…位置・速度推定部、8…突極比推定部、9…突極比制御部、11…ベクトル制御演算部

Claims (13)

  1. 位置センサレス制御により、負荷装置を制御する電力変換装置であって、
    前記負荷装置の電流を検出する電流検出部と、
    検出した電流に基づいて、制御軸であるdc軸及びqc軸の高調波電流成分を演算する電流検出演算部と、
    前記dc軸及び前記qc軸の前記高調波電流成分に基づいて、突極比推定値を出力する突極比推定部と、
    前記突極比推定値と、定めておいた突極比との偏差に基づいて、回転子座標系のd軸の電流指令値を増減する電流成分を出力する突極比制御部とを有することを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記電流検出演算部は、前記dc軸および前記qc軸の電流に基づいて、前記dc軸および前記qc軸の高調波電流の振幅値を出力し、
    前記突極比推定部は、前記dc軸および前記qc軸の前記高調波電流の振幅値に基づいて、前記突極比推定値を出力し、
    前記突極比制御部は、前記突極比推定値と、定めておいた突極比との偏差に基づいて、PI制御をするPI制御部を有することを特徴とする電力変換装置。
  3. 請求項1に記載の電力変換装置において、
    前記電流検出演算部は、
    前記dc軸の電流成分および前記qc軸の電流成分に基づいて、前記dc軸および前記qc軸の高調波電流の振幅値を算出し、
    前記突極比推定部は、
    前記dc軸および前記qc軸の前記高調波電流の振幅値に基づいて、前記d軸のインダクタンス推定値とq軸のインダクタンス推定値を算出し、
    前記d軸のインダクタンス推定値と前記q軸のインダクタンス推定値に基づいて、前記突極比推定値を出力することを特徴とする電力変換装置。
  4. 位置センサレス制御により、負荷装置を制御する電力変換装置であって、
     回転子座標系のd軸の電流指令に対応した前記d軸のインダクタンス推定値を保持したd軸インダクタンス参照テーブルと、回転子座標系のq軸の前記電流指令に対応した前記q軸のインダクタンス推定値を保持したq軸インダクタンス参照テーブルとを有し、前記d軸の前記電流指令と前記q軸の前記電流指令に基づいて、前記d軸インダクタンス参照テーブルと前記q軸インダクタンス参照テーブルを参照し、前記d軸のインダクタンス推定値と前記q軸のインダクタンス推定値を算出し、前記d軸のインダクタンス推定値と前記q軸のインダクタンス推定値に基づいて、突極比推定値を出力する突極比推定部と、
     前記突極比推定値と、定めておいた突極比との偏差に基づいて、d軸電流指令値を増減する電流成分を出力する突極比制御部とを有することを特徴とする電力変換装置。
  5. 位置センサレス制御により、負荷装置を制御する電力変換装置であって、
     回転子座標系のd軸の電流指令とq軸の前記電流指令に対応した突極比推定値を保持した突極比参照テーブルを有し、前記d軸の前記電流指令と前記q軸の前記電流指令に基づいて、前記突極比参照テーブルを参照し、前記突極比推定値を出力する突極比推定部と、
     前記突極比推定値と、定めておいた突極比との偏差に基づいて、d軸電流指令値を増減する電流成分を出力する突極比制御部とを有することを特徴とする電力変換装置。
  6. 請求項1に記載の電力変換装置において、
    前記突極比制御部は、
    前記突極比推定値と、定めておいた突極比との偏差に基づいて、PI制御をするPI制御部と、
    前記d軸の前記電流指令値の制限値を保持し、前記制限値に基づいて、前記d軸の前記電流指令値を制限するd軸電流制限部とを有することを特徴とする電力変換装置。
  7. 請求項1に記載の電力変換装置において、
    前記定めておいた突極比を入力する外部装置を有することを特徴とする電力変換装置。
  8. 位置センサレス制御により、負荷装置を制御する電力変換装置であって、
    前記負荷装置の電流を検出する電流検出部と、
    検出した電流に基づいて、制御軸であるdc軸及びqc軸の高調波電流成分を演算する電流検出演算部と、
    前記dc軸及び前記qc軸の前記高調波電流成分に基づいて、突極比推定値を出力する突極比推定部と、
    前記突極比推定値と、定めておいた突極比との偏差に基づいて、位相誤差の指令値を出力する突極比制御部とを有することを特徴とする電力変換装置。
  9. 請求項1に記載の電力変換装置において、
    前記電流検出部は、三相電流を検出し、
    座標変換部が、前記三相電流を前記dc軸及び前記qc軸の電流検出値に座標変換し、
    前記電流検出演算部は、
    前記dc軸及び前記qc軸の電流検出値に基づいて、
    前記dc軸及び前記qc軸の高調波電流の振幅値と平均値を出力することを特徴とする電力変換装置。
  10. 請求項1に記載の電力変換装置において、
    前記負荷装置は、磁石モータであり、
    前記磁石モータの回転子の表面に永久磁石を配置した表面磁石型、および前記磁石モータの前記回転子の内部に永久磁石を配置した埋め込み磁石型から選択した前記磁石モータであることを特徴とする電力変換装置。
  11. 請求項1に記載の電力変換装置において、
    前記負荷装置と接続する電力変換器と、
    前記dc軸および前記qc軸の高調波電圧を出力する高調波電圧発生部とを有することを特徴とする電力変換装置。
  12. 請求項1に記載の電力変換装置において、
    前記d軸の電流指令値を増減する電流成分を加算した第2のd軸電流指令値と、前記dc軸の高調波電流の平均値との偏差と、
    q軸の電流指令値と、前記qc軸の高調波電流の平均値の偏差と、
    速度推定値に基づいて、前記dc軸および前記qc軸の電圧指令を出力するベクトル制御演算部を有することを特徴とする電力変換装置。
  13. 請求項12に記載の電力変換装置において、
    スイッチング素子を有する電力変換器と、高調波電圧を発生する高調波電圧発生部とを有し、
    前記高調波電圧と前記ベクトル制御演算部の出力とに基づいて、前記電力変換器は、制御されることを特徴とする電力変換装置。
PCT/JP2018/047939 2018-06-28 2018-12-26 電力変換装置 WO2020003560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18924485.8A EP3817218B1 (en) 2018-06-28 2018-12-26 Power conversion apparatus
CN201880090737.3A CN111801886B (zh) 2018-06-28 2018-12-26 电力转换装置
US17/049,979 US11424707B2 (en) 2018-06-28 2018-12-26 Power conversion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122783A JP7032250B2 (ja) 2018-06-28 2018-06-28 電力変換装置
JP2018-122783 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020003560A1 true WO2020003560A1 (ja) 2020-01-02

Family

ID=68986161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047939 WO2020003560A1 (ja) 2018-06-28 2018-12-26 電力変換装置

Country Status (5)

Country Link
US (1) US11424707B2 (ja)
EP (1) EP3817218B1 (ja)
JP (1) JP7032250B2 (ja)
CN (1) CN111801886B (ja)
WO (1) WO2020003560A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7699908B2 (ja) * 2018-11-20 2025-06-30 株式会社日立産機システム 電力変換装置
EP3982534A1 (en) * 2020-10-12 2022-04-13 Mitsubishi Electric R&D Centre Europe B.V. Method and device for controlling an electrical motor
JP7545872B2 (ja) 2020-11-27 2024-09-05 オリエンタルモーター株式会社 交流モータ制御装置およびそれを備えた駆動システム
JP2023005629A (ja) * 2021-06-29 2023-01-18 株式会社日立産機システム 電力変換装置
JP2023183455A (ja) * 2022-06-16 2023-12-28 株式会社日立産機システム 電力変換装置
DE102023106725B4 (de) * 2023-03-17 2025-02-27 Schaeffler Technologies AG & Co. KG Fortlaufende Anisotropieprüfung im sensorlosen Betrieb einer elektrischen Maschine zur Steigerung der Zuverlässigkeit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126352A (ja) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp 制御装置
JP2013192325A (ja) * 2012-03-13 2013-09-26 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置、電動機駆動システム、搬送機、昇降装置
WO2015190150A1 (ja) 2014-06-12 2015-12-17 三菱電機株式会社 交流回転機の制御装置
CN105680738A (zh) * 2014-11-19 2016-06-15 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步磁阻电机的电流控制方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668870B2 (ja) * 2001-08-09 2005-07-06 株式会社日立製作所 同期電動機駆動システム
JP4056237B2 (ja) * 2001-09-27 2008-03-05 東洋電機製造株式会社 同期機の制御装置
JP4654217B2 (ja) * 2007-04-25 2011-03-16 日立オートモティブシステムズ株式会社 永久磁石モータの弱め界磁制御装置及びそれを用いた電動パワーステアリング
US7759886B2 (en) * 2007-07-27 2010-07-20 Gm Global Technology Operations, Inc. Linearity for field weakening in an interior permanent magnet machine
US9698716B2 (en) * 2011-08-18 2017-07-04 Hitachi Construction Machinery Co., Ltd. Motor control device and work machine using the same
RU2576246C1 (ru) * 2012-02-02 2016-02-27 Мицубиси Электрик Корпорейшн Устройство управления вращающейся машины переменного тока
JP5696700B2 (ja) * 2012-08-29 2015-04-08 トヨタ自動車株式会社 ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
US20140327379A1 (en) * 2013-05-03 2014-11-06 Texas Instruments Incorporated Position sensorless drive system and method for permanent magnet motors
JP6367332B2 (ja) * 2015-01-28 2018-08-01 株式会社東芝 インバータ制御装置及びモータ駆動システム
JP6790760B2 (ja) * 2016-11-24 2020-11-25 日産自動車株式会社 可変磁束モータの電流制御方法、及び電流制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126352A (ja) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp 制御装置
JP2013192325A (ja) * 2012-03-13 2013-09-26 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置、電動機駆動システム、搬送機、昇降装置
WO2015190150A1 (ja) 2014-06-12 2015-12-17 三菱電機株式会社 交流回転機の制御装置
CN105680738A (zh) * 2014-11-19 2016-06-15 珠海格力节能环保制冷技术研究中心有限公司 一种永磁同步磁阻电机的电流控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Institute of Electrical Engineers of Japan", vol. 123, 2003, INDUSTRY APPLICATIONS SOCIETY, article "Initial Rotor Position Estimation of Interior Permanent Magnet Synchronous Motor", pages: 140 - 148
See also references of EP3817218A4

Also Published As

Publication number Publication date
EP3817218A4 (en) 2022-03-30
JP2020005404A (ja) 2020-01-09
US11424707B2 (en) 2022-08-23
US20210152113A1 (en) 2021-05-20
EP3817218A1 (en) 2021-05-05
CN111801886A (zh) 2020-10-20
EP3817218B1 (en) 2023-07-26
CN111801886B (zh) 2023-08-08
JP7032250B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020003560A1 (ja) 電力変換装置
JP3582505B2 (ja) モーター制御装置
JP4928855B2 (ja) 同期機のセンサレス制御装置
CN103595326A (zh) 电机控制装置和电机控制方法
WO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
JPWO2016121751A1 (ja) インバータ制御装置及びモータ駆動システム
JP7699908B2 (ja) 電力変換装置
WO2015137372A1 (ja) 電動機の駆動装置
JP2013150498A (ja) 同期電動機の制御装置及び制御方法
JP6113651B2 (ja) 多相電動機駆動装置
JP4402600B2 (ja) 同期電動機の駆動システム及び同期電動機の駆動方法
Hassan et al. Sensorless sliding mode torque control of an IPMSM drive based on active flux concept
JP7536418B2 (ja) 電力変換装置およびその制御方法
Takahashi et al. Stationary reference frame position sensorless control based on stator flux linkage and sinusoidal current tracking controller for IPMSM
CN110785923A (zh) 电机控制装置和电机控制方法
JP2015163035A (ja) 同期モータを制御するモータ制御装置
Lee et al. Automatic advance angle control algorithm using anti-windup feedback voltage of PI current controller for wide range speed operation of BLDCM
JP2018198479A (ja) 同期電動機の制御装置
JP6923801B2 (ja) 誘導電動機のオブザーバ制御装置
KR20070073687A (ko) 유도전동기 강인성 제어시스템
Hamano et al. Nonlinear adaptive control of interior permanent magnet synchronous motor with dynamics copper loss minimization
JP6874517B2 (ja) 同期モータのベクトル制御を行うモータ制御装置
Matsumoto et al. A novel flux-weakening control method for robust position sensorless control to magnetic saturation of IPMSMs
JP5846195B2 (ja) 電動機駆動装置の制御装置および電動機駆動システム
CN119156767A (zh) 电力转换装置和电动机控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018924485

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018924485

Country of ref document: EP

Effective date: 20210128