WO2019225280A1 - 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 - Google Patents
油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2019225280A1 WO2019225280A1 PCT/JP2019/017538 JP2019017538W WO2019225280A1 WO 2019225280 A1 WO2019225280 A1 WO 2019225280A1 JP 2019017538 W JP2019017538 W JP 2019017538W WO 2019225280 A1 WO2019225280 A1 WO 2019225280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- martensitic stainless
- steel pipe
- stainless steel
- oil well
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 41
- 239000010959 steel Substances 0.000 title claims abstract description 41
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims abstract description 16
- 239000003129 oil well Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 20
- 230000009466 transformation Effects 0.000 claims description 16
- 238000005496 tempering Methods 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 229910000734 martensite Inorganic materials 0.000 claims description 10
- 230000007797 corrosion Effects 0.000 abstract description 45
- 238000005260 corrosion Methods 0.000 abstract description 45
- 238000005336 cracking Methods 0.000 abstract description 23
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 22
- 230000014509 gene expression Effects 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 238000010791 quenching Methods 0.000 description 10
- 230000000171 quenching effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000282342 Martes americana Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a martensitic stainless seamless steel pipe for oil well pipes used in oil wells and gas wells (hereinafter simply referred to as oil wells) for crude oil or natural gas and a method for producing the same, and in particular, when the yield stress YS is 758 MPa or more.
- the present invention relates to a method for producing a martensitic stainless steel seamless pipe for oil well pipes having excellent resistance to sulfide stress corrosion cracking (SSC resistance) in an environment containing hydrogen sulfide (H 2 S).
- 13% Cr martensitic stainless steel pipes are often used as oil well pipes for mining in environmental oil fields and gas fields containing carbon dioxide, chlorine ions, and the like.
- development of oil fields, etc. in extremely severe corrosive environments containing hydrogen sulfide has been carried out on a global scale, so the demand for SSC resistance is increasing, and component systems with reduced C and increased Ni and Mo
- the use of improved 13% Cr martensitic stainless steel pipes is also expanding.
- Patent Document 1 13% Cr steel is used as the basic composition, C is significantly reduced compared to the prior art, Ni, Mo, and Cu are contained, Cr + 2Ni + 1.1Mo + 0.7Cu ⁇ 32.5 is satisfied, and Nb: 0.20% or less , V: One or two of 0.20% or less are included so as to satisfy the condition of Nb + V ⁇ 0.05%, yield stress: high strength of 965MPa or more, and Charpy at -40 °C It has high toughness with absorbed energy of 50J or more, and good corrosion resistance can be secured.
- Patent Document 2 describes a 13% Cr martensitic stainless steel pipe of a component system containing an extremely low C content of 0.015% or less and Ti of 0.03% or more, and has a high strength of a yield stress of 95 ksi class, The HRC has a low hardness of less than 27 and has excellent SSC resistance.
- Patent Document 3 describes martensitic stainless steel in which Ti / C having a correlation with a value obtained by subtracting yield stress from tensile stress satisfies 6.0 ⁇ Ti / C ⁇ 10.1. According to the described technique, the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more, and it is possible to suppress variation in hardness that reduces the SSC resistance.
- the amount of Mo in the steel is specified by Mo ⁇ 2.3 ⁇ 0.89Si + 32.2C, and the metal structure is mainly tempered martensite, carbides precipitated during tempering, and Laves phase precipitated finely during tempering. And martensitic stainless steel composed of intermetallic compounds such as ⁇ phase and the like. According to the described technology, 0.2% proof stress can achieve a high strength of 860 MPa or more, and has excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.
- Patent Document 2 the resistance to sulfide stress corrosion cracking can be maintained under the condition that a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
- a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
- Patent Document 3 an atmosphere in which a 20% NaCl aqueous solution (H 2 S: 0.03 bar, CO 2 bal.) Is adjusted to pH: 4.5 is used.
- Patent Document 4 a 25% NaCl aqueous solution (H 2 S: 0.03) is used. bar, CO 2 bal) is said to have resistance to sulfide stress corrosion cracking in an atmosphere adjusted to pH 4.0.
- the resistance to sulfide stress corrosion cracking in atmospheres other than those described above has not been studied, and it is difficult to say that it has the resistance to sul
- An object of the present invention is to provide a martensitic stainless seamless steel pipe for oil well pipes having a yield stress of 758 MPa or more and having excellent resistance to sulfide stress corrosion cracking, and a method for producing the same.
- excellent resistance to sulfide stress corrosion cracking refers to a test solution: 20 wt% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 0.1 bar, CO 2 bal), Na acetate + acetic acid
- the test piece is immersed in an aqueous solution adjusted to pH: 4.0, the immersion time is set to 720 hours, 90% of the yield stress is applied as the load stress, and the test piece after the test is cracked. The case where it does not occur shall be said.
- the inventors of the present invention have a 13% Cr stainless steel pipe as a basic composition, and are resistant to sulfide stress corrosion cracking in a corrosive environment containing CO 2 , Cl ⁇ and H 2 S (The effect of various alloying elements on SSC resistance was studied. As a result, each component is contained within the specified range, and C, Mn, Cr, Cu, Ni, Mo, N, Ti, and Nb and W as necessary are adjusted to satisfy the appropriate relational expression. By applying appropriate quenching and tempering treatment, the stress in the corrosive atmosphere containing CO 2 , Cl ⁇ , and H 2 S can be obtained in the vicinity of the yield stress. It was found that a martensitic stainless steel seamless steel pipe for oil well pipes having excellent SSC resistance in a loaded environment can be obtained.
- the present invention has been completed by further studies based on the above findings. That is, the gist of the present invention is as follows. [1] By mass%, C: 0.010% or more, Si: 0.5% or less, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0 %, Mo: 1.0 to 2.7%, Al: 0.1% or less, V: 0.005 to 0.2%, N: 0.1% or less, Ti: 0.255 to 0.500%, Cu: 0.01 to 1.0%, Co: 0.01 to 1.0% And a martensitic stainless steel seamless pipe for oil well pipes that satisfies the following formula (1), has a composition consisting of the balance Fe and inevitable impurities, and has a yield stress of 758 MPa or more.
- the present invention has excellent sulfide stress corrosion cracking resistance (SSC resistance) in a corrosive environment containing CO 2 , Cl ⁇ , and H 2 S, and has a yield stress YS of 758 MPa or more.
- SSC resistance sulfide stress corrosion cracking resistance
- a martensitic stainless steel seamless pipe for oil well pipes having strength can be obtained.
- C 0.010% or more C has an effect of securing an effective Cr amount and ensuring corrosion resistance. For this reason, C was limited to 0.010% or more. On the other hand, when it contains excessively, hardness will become high and sulfide stress corrosion cracking sensitivity will increase. For this reason, it is desirable to contain 0.040% or less. Therefore, it is preferably 0.010 to 0.040%.
- Si 0.5% or less Since Si acts as a deoxidizing agent, it is desirable to contain 0.05% or more. On the other hand, the content exceeding 0.5% lowers the carbon dioxide gas corrosion resistance and hot workability. For this reason, Si was limited to 0.5% or less. Preferably, it is 0.10% or more, preferably 0.30% or less from the viewpoint of securing stable strength.
- Mn 0.05-0.50%
- Mn is an element that improves hot workability and strength, and is contained in an amount of 0.05% or more in order to ensure the necessary strength.
- MnS precipitates and the resistance to sulfide stress corrosion cracking is lowered. Therefore, Mn is limited to 0.05 to 0.50%. Preferably, it is 0.40% or less. Moreover, Preferably, it is 0.10% or more.
- P 0.030% or less
- P is an element that lowers both carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and is desirably reduced as much as possible in the present invention.
- extreme reduction increases manufacturing costs.
- P is limited to 0.030% or less as a range that does not cause an extreme deterioration in characteristics and can be industrially inexpensively implemented.
- Preferably it is 0.015% or less.
- S 0.005% or less Since S is an element that significantly reduces hot workability, it is desirable to reduce it as much as possible. By reducing the S content to 0.005% or less, pipe production in a normal process becomes possible, so S in the present invention is limited to 0.005% or less. In addition, Preferably it is 0.002% or less.
- Ni 4.6-8.0%
- Ni is an element that increases the strength of the steel by strengthening the protective film and improving the corrosion resistance and further solid solution. In order to acquire such an effect, the content of 4.6% or more is required. On the other hand, if the content exceeds 8.0%, the stability of the martensite phase decreases and the strength decreases. Therefore, Ni is limited to 4.6-8.0%. In addition, Preferably it is 5.0% or more, Preferably it is 7.5% or less.
- Cr 10.0-14.0%
- Cr is an element that improves the corrosion resistance by forming a protective film, and the content of 10.0% or more can ensure the corrosion resistance required for oil well pipes. On the other hand, if the content exceeds 14.0%, the formation of ferrite becomes easy, and the stability of the martensite phase cannot be secured. Therefore, Cr is limited to 10.0-14.0%. In addition, Preferably it is 11.0% or more, Preferably it is 13.5% or less.
- Mo 1.0-2.7%
- Mo is Cl - is an element which improves the resistance to pitting, in order to obtain the corrosion resistance necessary for severe corrosive environment, it is necessary to contain at least 1.0%.
- Mo is limited to 1.0-2.7%.
- it is 1.5% or more, Preferably it is 2.5% or less.
- Al 0.1% or less Since Al acts as a deoxidizer, the content of 0.01% or more is effective for obtaining such an effect. However, since the content exceeding 0.1% adversely affects toughness, Al in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.01% or more, Preferably it is 0.03% or less.
- V 0.005-0.2%
- V is required to be contained in an amount of 0.005% or more in order to improve the strength of steel by precipitation strengthening and further improve the resistance to sulfide stress corrosion cracking.
- the content exceeds 0.2%, the toughness decreases, so V in the present invention is limited to 0.005 to 0.2%.
- it is 0.01% or more, Preferably it is 0.1% or less.
- N 0.1% or less N has the effect of improving the pitting corrosion resistance and increasing the strength by dissolving in steel. However, if the content exceeds 0.1%, a large amount of various nitride inclusions are formed, and the pitting corrosion resistance is lowered. Therefore, N in the present invention is limited to 0.1% or less. In addition, Preferably it is 0.010% or less.
- Ti 0.255 to 0.500%
- carbide can be formed, and solid solution carbon can be reduced to reduce hardness. Since the hydrogen embrittlement susceptibility is reduced by reducing the hardness, the content of Ti of 0.255% or more improves the resistance to sulfide stress corrosion cracking. On the other hand, if the content exceeds 0.500%, the formation of coarse TiN is promoted, and the toughness is reduced by the notch effect. Moreover, pitting corrosion starts from TiN, and the resistance to sulfide stress corrosion cracking decreases. Therefore, Ti is limited to 0.255 to 0.500%. In addition, Preferably it is 0.300% or more, Preferably it is 0.450% or less.
- Cu 0.01 to 1.0%
- Cu is contained in an amount of 0.01% or more in order to strengthen the protective film and improve the resistance to sulfide stress corrosion cracking. However, if the content exceeds 1.0%, CuS is precipitated and the hot workability is lowered. Therefore, Cu is limited to 0.01 to 1.0%. In addition, Preferably it is 0.03% or more, Preferably it is 0.6% or less.
- Co 0.01-1.0%
- Co is an element that increases the Ms point and promotes ⁇ transformation, thereby reducing hardness and improving pitting corrosion resistance. In order to obtain such an effect, a content of 0.01% or more is required. On the other hand, excessive content may reduce toughness and further increase material costs. Also, the resistance to sulfide stress corrosion cracking is reduced. Therefore, Co in the present invention is limited to 0.01 to 1.0%. More preferably, it is 0.03% or more, preferably 0.6% or less.
- Equation (1) is an equation that correlates with the amount of residual ⁇ .
- the formula (1) is ⁇ 20.0 or more, preferably 25.0 or less.
- Nb can reduce the solid solution carbon and reduce the hardness by forming carbides.
- excessive content may reduce toughness.
- W is an element that improves pitting corrosion resistance.
- excessive content may reduce toughness and further increase material costs. Therefore, when it contains, it limits to Nb: 0.1% or less and W: 1.0% or less.
- Nb is 0.02% or more, and W is 0.1% or more.
- it contains one or more elements selected from Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less as a selection element as required. Can do.
- Ca, REM, Mg, and B are all elements that improve corrosion resistance through the form control of inclusions. In order to obtain such an effect, it is desirable to contain Ca: 0.0005% or more, REM: 0.0005% or more, Mg: 0.0005% or more, B: 0.0005% or more. On the other hand, when it contains more than Ca: 0.010%, REM: 0.010%, Mg: 0.010%, B: 0.010%, the toughness and carbon dioxide corrosion resistance are lowered. Therefore, when it contains, it limits to Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less.
- the remainder other than the above component composition is composed of Fe and inevitable impurities.
- the steel pipe of the present invention has a structure containing a tempered martensite phase as a main phase and a volume ratio of a residual austenite phase of 30% or less and a ferrite phase of 5% or less.
- the “main phase” means a phase occupying 70% or more by volume ratio.
- the preferable manufacturing method of the stainless steel seamless steel pipe for oil country tubular goods of this invention is demonstrated.
- the steel pipe raw material which has said composition is used, the manufacturing method of the stainless steel seamless steel pipe which is a steel pipe raw material does not need to specifically limit, All the manufacturing methods of a well-known seamless pipe are applicable.
- the molten steel having the above composition is melted by a melting method such as a converter and used as a steel pipe material such as a billet by a method such as a continuous casting method or an ingot-bundling rolling method. Subsequently, these steel pipe materials are heated, and are hot-worked and piped in a pipe making process of Mannesmann-plug mill method or Mannesmann-Mandrel mill method, which is a well-known pipe making method, and has the above composition. Steel-free pipe.
- the treatment after the steel pipe material is made into a steel pipe in this way is not particularly limited, but preferably a quenching treatment in which the steel pipe is heated to the Ac 3 transformation point or higher and then cooled to a cooling stop temperature of 100 ° C. or lower. Then, a tempering treatment in which tempering is performed at a temperature below the Ac 1 transformation point is performed.
- the steel pipe is further reheated to a temperature not lower than the Ac 3 transformation point, preferably maintained for 5 min or longer, and then cooled to a cooling stop temperature of 100 ° C. or lower.
- a cooling stop temperature 100 ° C. or lower.
- cooling is performed by air cooling (cooling rate 0.05 ° C / s or more and 20 ° C / s or less) or water cooling (cooling rate 5 ° C / s or more and 100 ° C / s or less). It is not limited.
- the tempering process is a process of heating below the Ac 1 transformation point, preferably holding for 10 min or more, and air cooling.
- the tempering temperature is limited to the Ac 1 transformation point or lower. Preferably, it is 565 to 600 ° C.
- a four-master test that gives a temperature history of heating and cooling to the test piece and detects the transformation point from minute displacements of expansion and contraction. Can be measured.
- Molten steel with the components shown in Table 1 is melted in a converter, then cast into billets (steel pipe material) by a continuous casting method, and then piped, air-cooled or water-cooled by hot working using a model seamless rolling mill. 83.8mm x 12.7mm wall seamless steel pipe.
- a test material was cut out from the obtained seamless steel pipe and subjected to quenching and tempering treatment under the conditions shown in Table 2.
- a specimen for microstructure observation was collected from the test material subjected to quenching and tempering treatment, polished, and then the amount of retained austenite ( ⁇ ) was measured by an X-ray diffraction method.
- I ⁇ Integral intensity
- R ⁇ Calculated crystallographic theoretical value of R ⁇ : ⁇
- I ⁇ Integral intensity of ⁇ R ⁇ : Calculated using crystallographic theoretical calculated value of ⁇ .
- Mo-K ⁇ rays were used for the measurement, and the acceleration voltage was 50 kV.
- API arc-shaped tensile test specimens are collected from test materials that have been quenched and tempered, and subjected to tensile tests in accordance with the provisions of API-5CT.
- Tensile properties yield stress YS, tensile stress TS
- a test piece of 4 mm ⁇ ⁇ 10 mm was taken from the test material subjected to quenching treatment and measured by a formaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C.
- the SSC test was performed according to NACE TM0177 Method A.
- the test environment was adjusted to pH 4.0 by adding 0.82 g / L Na acetate + acetic acid to 20 wt% NaCl aqueous solution (liquid temperature: 25 ° C, H 2 S: 0.1 bar, CO 2 bal) as the test solution.
- the test was carried out with an immersion time of 720 hours and a load stress of 90% of the yield stress. The case where a crack did not occur in the test piece after the test was regarded as acceptable, and the case where the crack occurred was regarded as unacceptable.
- All of the examples of the present invention have a high strength of yield stress of 758 MPa or more and martensite stainless steel seamless steel pipe having excellent SSC resistance without cracking even when stress is applied in an environment containing H 2 S. It has become. On the other hand, in a comparative example outside the scope of the present invention, desired high strength or excellent SSC resistance cannot be ensured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
[1]質量%で、C:0.010%以上、Si:0.5%以下、Mn:0.05~0.50%、P:0.030%以下、S:0.005%以下、Ni:4.6~8.0%、Cr:10.0~14.0%、Mo:1.0~2.7%、Al:0.1%以下、V:0.005~0.2%、N:0.1%以下、Ti:0.255~0.500%、Cu:0.01~1.0%、Co:0.01~1.0%を含有し、かつ下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、758MPa以上の降伏応力を有する油井管用マルテンサイト系ステンレス継目無鋼管。
-35≦-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307≦45 ・・・(1)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)である。(但し、含有しない元素は0(零)%とする。)
[2]前記組成に加えてさらに、質量%でNb:0.1%以下、W:1.0%以下のうちから選ばれた1種または2種を含有する組成とする[1]に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
[3]前記組成に加えてさらに、質量%で、Ca:0.010%以下、REM:0.010%以下、Mg:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上を含有する組成とする[1]または[2]に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
[4][1]~[3]のいずれかに記載の組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。
Cは有効Cr量を確保し、耐食性を担保する効果がある。このため、Cは0.010%以上に限定した。一方、過剰に含有することで硬度が高くなり、硫化物応力腐食割れ感受性が増大する。このため、0.040%以下を含有することが望ましい。よって、好ましくは0.010~0.040%である。
Siは、脱酸剤として作用するため、0.05%以上含有することが望ましい。一方で、0.5%を超える含有は、耐炭酸ガス腐食性および熱間加工性を低下させる。このため、Siは0.5%以下に限定した。好ましくは、安定した強度確保の観点から0.10%以上であり、好ましくは0.30%以下である。
Mnは、熱間加工性および強度を向上させる元素であり、必要な強度を確保するためには0.05%以上含有する。一方、過剰に添加することでMnSが析出し、耐硫化物応力腐食割れ性を低下させる。よって、Mnは0.05~0.50%に限定した。好ましくは、0.40%以下である。また、好ましくは、0.10%以上である。
Pは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性をともに低下させる元素であり、本発明ではできるだけ低減させることが望ましい。しかしながら、極端な低減は製造コストを高騰させる。よって、特性の極端な低下を招かない範囲で、かつ工業的に安価に実施可能な範囲として、Pは0.030%以下に限定した。なお、好ましくは0.015%以下である。
Sは、熱間加工性を著しく低下させる元素であるため、できるだけ低減させることが望ましい。S含有量を0.005%以下に低減することで、通常工程でのパイプ製造が可能となるため、本発明におけるSは0.005%以下に限定した。なお、好ましくは0.002%以下である。
Niは、保護被膜を強固にして耐食性を向上させ、更に固溶することで鋼の強度を増加させる元素である。このような効果を得るためには、4.6%以上の含有を必要とする。一方、含有量が8.0%を超えると、マルテンサイト相の安定性が低下して、強度が低下する。よって、Niは4.6~8.0%に限定した。なお、好ましくは5.0%以上であり、好ましくは7.5%以下である。
Crは、保護被膜を形成して耐食性を向上させる元素であり、10.0%以上の含有で油井管用として必要な耐食性を確保できる。一方、含有量が14.0%を超えるとフェライトの生成が容易となるため、マルテンサイト相の安定確保ができなくなる。よって、Crは10.0~14.0%に限定した。なお、好ましくは11.0%以上であり、好ましくは13.5%以下である。
Moは、Cl-による孔食に対する抵抗性を向上させる元素であり、厳しい腐食環境に必要な耐食性を得るためには、1.0%以上の含有が必要である。一方、Moは過剰に含有しても効果が飽和し、さらに、高価な元素であるため、2.7%を超える含有は製造コストの高騰を招く。よって、Moは1.0~2.7%に限定した。なお、好ましくは1.5%以上であり、好ましくは2.5%以下である。
Alは、脱酸剤として作用するため、このような効果を得るためには、0.01%以上の含有が有効である。しかしながら、0.1%を超える含有は、靱性に悪影響を及ぼすため、本発明におけるAlは0.1%以下に限定した。なお、好ましくは0.01%以上であり、好ましくは0.03%以下である。
Vは、析出強化によって鋼の強度を向上させ、更に耐硫化物応力腐食割れ性も向上させるため、0.005%以上の含有が必要である。一方、0.2%を超える含有は、靱性が低下するため、本発明におけるVは0.005~0.2%に限定した。なお、好ましくは0.01%以上であり、好ましくは0.1%以下である。
Nは、耐孔食性を向上させると共に、鋼中に固溶し強度を増加させる作用を有する。しかしながら、含有量が0.1%を超えると、種々の窒化物系介在物が多く生成し、耐孔食性が低下する。よって、本発明におけるNは0.1%以下に限定した。なお、好ましくは0.010%以下である。
Tiは、0.255%以上含有することで、炭化物を形成し、固溶炭素を減少させて硬度を低減できる。水素脆化感受性は硬さ低減により小さくなるため、Tiを0.255%以上含有することで、耐硫化物応力腐食割れ性が向上する。一方、0.500%を超える含有では、粗大TiNの生成が促進され、切欠き効果によって靱性が低下する。また、TiNを起点とした孔食が起こり、耐硫化物応力腐食割れ性が低下する。よって、Tiは0.255~0.500%に限定した。なお、好ましくは0.300%以上であり、好ましくは0.450%以下である。
Cuは、保護被膜を強固にして耐硫化物応力腐食割れ性を向上させるため、0.01%以上含有する。しかしながら、1.0%を超える含有は、CuSが析出して熱間加工性を低下させる。よって、Cuは0.01~1.0%に限定した。なお、好ましくは0.03%以上であり、好ましくは0.6%以下である。
Coは、Ms点を上昇させα変態を促進することで、硬さを低減すると共に、耐孔食性を向上させる元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、過剰な含有は靱性を低下させる場合があり、更に材料コストを高騰させる。また、耐硫化物応力腐食割れ性も低下する。よって、本発明におけるCoは0.01~1.0%に限定した。より好ましくは0.03%以上であり、好ましくは0.6%以下である。
-35≦-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307≦45 ・・・(1)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)である。(但し、含有しない元素は0(零)%とする。)
上記した成分が基本成分である。これら基本の組成に加えて更に、必要に応じて選択元素として、Nb:0.1%以下、W:1.0%以下のうちから選ばれた1種または2種を含有することができる。
本発明では、上記の組成を有する鋼管素材を用いるが、鋼管素材であるステンレス継目無鋼管の製造方法は特に限定する必要はなく、公知の継目無管の製造方法がいずれも適用できる。
本発明では、更に鋼管に、Ac3変態点以上の温度に再加熱し、好ましくは5min以上保持し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理を施す。これによって、マルテンサイト相の微細化と高靱化が得られる。焼入れ加熱温度がAc3変態点未満では、オーステナイト単相域に加熱することができないため、その後の冷却で十分なマルテンサイト組織が得られず、所望の高強度を達成できない。よって、焼入れ加熱温度はAc3変態点以上に限定する。なお、冷却方法は限定しないが、一般に空冷(冷却速度0.05℃/s以上20℃/s以下)または水冷(冷却速度5℃/s以上100℃/s以下)により冷却し、冷却速度の条件も限定されない。
続いて、焼入れ処理を施した鋼管に、焼戻処理を施す。焼戻処理は、Ac1変態点以下に加熱し、好ましくは10min以上保持し、空冷する処理である。焼戻温度がAc1変態点より高温になると、オーステナイト相が生成し、所望の高強度、高靱性および優れた耐食性を確保できない。よって、焼戻温度はAc1変態点以下に限定する。好ましくは、565~600℃である。なお、上記のAc3変態点(℃)、Ac1変態点(℃)については、試験片に加熱および冷却の温度履歴を与え、膨張および収縮の微小変位から変態点を検出するフォーマスター試験により測定することができる。
γ(体積率)=100/(1+(1αRγ/IγRα))
ここで、Iα:αの積分強度
Rα:αの結晶学的理論計算値
Iγ:γの積分強度
Rγ:γの結晶学的理論計算値
を用いて換算した。なお、測定にはMo-Kα線を用い、加速電圧を50kVとした。
Claims (4)
- 質量%で、C:0.010%以上、
Si:0.5%以下、
Mn:0.05~0.50%、
P:0.030%以下、
S:0.005%以下、
Ni:4.6~8.0%、
Cr:10.0~14.0%、
Mo:1.0~2.7%、
Al:0.1%以下、
V:0.005~0.2%、
N:0.1%以下、
Ti:0.255~0.500%、
Cu:0.01~1.0%、
Co:0.01~1.0%を含有し、かつ下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、758MPa以上の降伏応力を有する油井管用マルテンサイト系ステンレス継目無鋼管。
記
-35≦-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307≦45 ・・・(1)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)である。(但し、含有しない元素は0(零)%とする。) - 前記組成に加えてさらに、質量%でNb:0.1%以下、
W:1.0%以下のうちから選ばれた1種または2種を含有する組成とする請求項1に記載の油井管用マルテンサイト系ステンレス継目無鋼管。 - 前記組成に加えてさらに、質量%で、Ca:0.010%以下、
REM:0.010%以下、
Mg:0.010%以下、
B:0.010%以下のうちから選ばれた1種または2種以上を含有する組成とする請求項1または2に記載の油井管用マルテンサイト系ステンレス継目無鋼管。 - 請求項1~3のいずれかに記載の組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112020023438-9A BR112020023438B1 (pt) | 2018-05-25 | 2019-04-25 | Tubo de aço sem costuras de aço inoxidável martensítico para tubos de poço de petróleo e método para produção dos mesmos |
EP19808237.2A EP3805420A4 (en) | 2018-05-25 | 2019-04-25 | MARTENSITIC STAINLESS STEEL SEAMLESS STEEL TUBE FOR OIL WELL TUBES, AND ITS PRODUCTION PROCESS |
US17/059,078 US11773461B2 (en) | 2018-05-25 | 2019-04-25 | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
MX2020012626A MX2020012626A (es) | 2018-05-25 | 2019-04-25 | Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo. |
JP2019545820A JP6680408B1 (ja) | 2018-05-25 | 2019-04-25 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018100106 | 2018-05-25 | ||
JP2018-100106 | 2018-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225280A1 true WO2019225280A1 (ja) | 2019-11-28 |
Family
ID=68616489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017538 WO2019225280A1 (ja) | 2018-05-25 | 2019-04-25 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11773461B2 (ja) |
EP (1) | EP3805420A4 (ja) |
JP (1) | JP6680408B1 (ja) |
AR (1) | AR115168A1 (ja) |
BR (1) | BR112020023438B1 (ja) |
MX (1) | MX2020012626A (ja) |
WO (1) | WO2019225280A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021131445A1 (ja) * | 2019-12-24 | 2021-07-01 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
JPWO2022075405A1 (ja) * | 2020-10-08 | 2022-04-14 | ||
EP4079875A4 (en) * | 2020-05-18 | 2023-06-14 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL OIL WELL TUBING AND METHOD OF MANUFACTURING THEREOF |
JP2023526739A (ja) * | 2020-04-30 | 2023-06-23 | 宝山鋼鉄股▲分▼有限公司 | 高強度耐高温腐食性マルテンサイト系ステンレス鋼及びその製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05287455A (ja) * | 1992-04-09 | 1993-11-02 | Sumitomo Metal Ind Ltd | 油井用マルテンサイト系ステンレス鋼 |
JPH0741909A (ja) * | 1993-07-26 | 1995-02-10 | Sumitomo Metal Ind Ltd | 油井用ステンレス鋼およびその製造方法 |
WO2004057050A1 (ja) | 2002-12-20 | 2004-07-08 | Sumitomo Metal Industries, Ltd. | 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼 |
JP2007332442A (ja) | 2006-06-16 | 2007-12-27 | Jfe Steel Kk | 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法 |
WO2008023702A1 (fr) | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique |
JP2010242163A (ja) | 2009-04-06 | 2010-10-28 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 |
WO2017168874A1 (ja) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
WO2018079111A1 (ja) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
WO2019065115A1 (ja) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3852248B2 (ja) * | 1999-07-15 | 2006-11-29 | Jfeスチール株式会社 | 耐応力腐食割れ性に優れたマルテンサイト系ステンレス鋼の製造方法 |
JP2003003243A (ja) | 2001-06-22 | 2003-01-08 | Sumitomo Metal Ind Ltd | 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼 |
US20060065327A1 (en) * | 2003-02-07 | 2006-03-30 | Advance Steel Technology | Fine-grained martensitic stainless steel and method thereof |
RU2519201C1 (ru) | 2010-04-28 | 2014-06-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Высокопрочная нержавеющая сталь для нефтяных скважин и труба из высокопрочной нержавеющей стали для нефтяных скважин |
RU2710808C1 (ru) * | 2016-05-20 | 2020-01-14 | Ниппон Стил Корпорейшн | Стальной сортовой прокат для скважинного элемента и скважинный элемент |
-
2019
- 2019-04-25 MX MX2020012626A patent/MX2020012626A/es unknown
- 2019-04-25 BR BR112020023438-9A patent/BR112020023438B1/pt active IP Right Grant
- 2019-04-25 JP JP2019545820A patent/JP6680408B1/ja active Active
- 2019-04-25 WO PCT/JP2019/017538 patent/WO2019225280A1/ja unknown
- 2019-04-25 US US17/059,078 patent/US11773461B2/en active Active
- 2019-04-25 EP EP19808237.2A patent/EP3805420A4/en active Pending
- 2019-05-24 AR ARP190101391A patent/AR115168A1/es active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05287455A (ja) * | 1992-04-09 | 1993-11-02 | Sumitomo Metal Ind Ltd | 油井用マルテンサイト系ステンレス鋼 |
JPH0741909A (ja) * | 1993-07-26 | 1995-02-10 | Sumitomo Metal Ind Ltd | 油井用ステンレス鋼およびその製造方法 |
WO2004057050A1 (ja) | 2002-12-20 | 2004-07-08 | Sumitomo Metal Industries, Ltd. | 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼 |
JP2007332442A (ja) | 2006-06-16 | 2007-12-27 | Jfe Steel Kk | 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法 |
WO2008023702A1 (fr) | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique |
JP2010242163A (ja) | 2009-04-06 | 2010-10-28 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 |
WO2017168874A1 (ja) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
WO2018079111A1 (ja) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
WO2019065115A1 (ja) * | 2017-09-29 | 2019-04-04 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021131445A1 (ja) * | 2019-12-24 | 2021-07-01 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
JP6950851B1 (ja) * | 2019-12-24 | 2021-10-13 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
JP2023526739A (ja) * | 2020-04-30 | 2023-06-23 | 宝山鋼鉄股▲分▼有限公司 | 高強度耐高温腐食性マルテンサイト系ステンレス鋼及びその製造方法 |
EP4079875A4 (en) * | 2020-05-18 | 2023-06-14 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL OIL WELL TUBING AND METHOD OF MANUFACTURING THEREOF |
JPWO2022075405A1 (ja) * | 2020-10-08 | 2022-04-14 | ||
WO2022075405A1 (ja) * | 2020-10-08 | 2022-04-14 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
JP7173404B2 (ja) | 2020-10-08 | 2022-11-16 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
Also Published As
Publication number | Publication date |
---|---|
EP3805420A1 (en) | 2021-04-14 |
BR112020023438B1 (pt) | 2024-01-09 |
JP6680408B1 (ja) | 2020-04-15 |
MX2020012626A (es) | 2021-01-29 |
JPWO2019225280A1 (ja) | 2020-05-28 |
US20210207232A1 (en) | 2021-07-08 |
AR115168A1 (es) | 2020-12-02 |
US11773461B2 (en) | 2023-10-03 |
EP3805420A4 (en) | 2021-04-14 |
BR112020023438A2 (pt) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6315159B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6540922B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6680409B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6540920B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5145793B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5640762B2 (ja) | 油井用高強度マルテンサイト系ステンレス継目無鋼管 | |
JP6369662B1 (ja) | 二相ステンレス鋼およびその製造方法 | |
JP6743992B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5499575B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JPWO2004001082A1 (ja) | 油井用ステンレス鋼管およびその製造方法 | |
JP6237873B2 (ja) | 油井用高強度ステンレス継目無鋼管 | |
WO2014112353A1 (ja) | 油井用ステンレス継目無鋼管およびその製造方法 | |
JP6540921B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP2012136742A (ja) | 油井用高強度マルテンサイト系ステンレス継目無鋼管 | |
JP6680408B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP7207557B2 (ja) | 油井管用ステンレス継目無鋼管およびその製造方法 | |
JP4289109B2 (ja) | 耐食性に優れた油井用高強度ステンレス鋼管 | |
US20250003042A1 (en) | High-strength seamless stainless steel pipe for oil wells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019545820 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19808237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020023438 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2019808237 Country of ref document: EP Effective date: 20210111 |
|
ENP | Entry into the national phase |
Ref document number: 112020023438 Country of ref document: BR Kind code of ref document: A2 Effective date: 20201117 |