[go: up one dir, main page]

WO2019167689A1 - 電池モジュール、及び電池パック - Google Patents

電池モジュール、及び電池パック Download PDF

Info

Publication number
WO2019167689A1
WO2019167689A1 PCT/JP2019/005740 JP2019005740W WO2019167689A1 WO 2019167689 A1 WO2019167689 A1 WO 2019167689A1 JP 2019005740 W JP2019005740 W JP 2019005740W WO 2019167689 A1 WO2019167689 A1 WO 2019167689A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
central member
separator
heat
stacking direction
Prior art date
Application number
PCT/JP2019/005740
Other languages
English (en)
French (fr)
Inventor
智文 村山
慎也 本川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980014442.2A priority Critical patent/CN111742442A/zh
Priority to JP2020503405A priority patent/JP7281676B2/ja
Priority to US16/765,916 priority patent/US11721867B2/en
Publication of WO2019167689A1 publication Critical patent/WO2019167689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery module including a plurality of rectangular batteries.
  • the present disclosure also relates to a battery pack including a battery module.
  • the battery module includes a battery stack, a pair of side bind bars, and a pair of end plates.
  • the battery stack includes a plurality of prismatic secondary batteries (hereinafter simply referred to as prismatic batteries), and a plurality of prismatic batteries.
  • prismatic batteries a plurality of prismatic secondary batteries
  • prismatic batteries a plurality of prismatic batteries.
  • the pair of side bind bars are arranged on both sides in the width direction of the battery stack so as to sandwich the battery stack, and extend in the stacking direction. The pair of side bind bars restrains both sides in the width direction of the battery stack.
  • the pair of end plates are arranged on both sides of the battery stack in the stacking direction, and restrains both sides of the battery stack in the stacking direction.
  • Each end plate is fixed to the end surfaces in the stacking direction of the pair of side bind bars by fastening means such as bolts. By this fixing, the battery stack, the pair of side bind bars, and the pair of end plates are integrated to form a battery module.
  • the prismatic battery has a higher energy density, a large amount of heat is released when the prismatic battery abnormally generates heat. Therefore, a larger amount of heat is conducted from the abnormally heated prismatic battery to the adjacent rectangular battery in the stacking direction, and the adjacent rectangular battery generates a larger amount of heat from the abnormally heated rectangular battery. In response, it is becoming more susceptible to thermal damage.
  • an object of the present disclosure is to provide a battery module and a battery pack that can suppress heat conduction in the stacking direction and can suppress thermal damage to a prismatic battery other than a prismatic battery that has abnormally generated heat.
  • a battery module includes a plurality of stacked rectangular batteries and a battery separator disposed between each two rectangular batteries adjacent to each other in the stacking direction of the plurality of rectangular batteries.
  • the battery separator includes a plate-shaped central member, a plate-shaped central member, a plate-shaped one-side member that is disposed on one side in the stacking direction of the central member, and is made of a material having higher heat insulation than the central member, and the center It includes a plate-like other side member that is disposed on the other side in the stacking direction of the members and is made of a material having higher heat insulation than the central member.
  • heat conduction in the stacking direction can be suppressed, and thermal damage to prismatic batteries other than the prismatic battery that has abnormally generated heat can be suppressed.
  • FIG. 4 is a schematic perspective view of a part of a battery pack according to an embodiment of the present disclosure, and is a schematic perspective view of a part of the battery pack in a state where a lid portion of a housing is removed. It is a schematic cross section showing a part of AA line schematic cross section of FIG. It is a schematic plan view of a part of the battery pack when the battery pack with the lid part removed is viewed from the upper side in the Z direction. It is a figure showing an example of a computer simulation result showing a situation of heat diffusion of a battery pack of a reference example, and a situation of heat diffusion of a battery pack of the present disclosure when a square battery that has abnormally generated heat is generated. It is a graph showing the relationship between the temperature of the square battery which adjoins the square battery which carried out the abnormal heat generation in the X direction in one test example, and the thickness of the separator between batteries.
  • the X direction is a stacking direction in which a plurality of prismatic secondary batteries 31 are stacked in the battery stack 21
  • the Y direction is an orthogonal direction
  • the Z direction is a square secondary. This is the height direction of the battery 31.
  • the X direction, the Y direction, and the Z direction are orthogonal to each other.
  • the upper side refers to the electrode terminal forming side in the Z direction in the rectangular secondary battery 31
  • the lower side refers to the side opposite to the electrode terminal forming side in the Z direction in the rectangular secondary battery 31.
  • Point Moreover, in the following drawings, the same code
  • Each of the following drawings is a schematic diagram, and the dimension ratios of the vertical, horizontal, and height of each member do not match between different drawings. Moreover, in this specification, an alloy shall be contained in a metal.
  • FIG. 1 is a schematic perspective view of a part of the battery pack 1 according to an embodiment of the present disclosure, and is a schematic perspective view of a part of the battery pack 1 in a state where the lid of the housing 10 is removed.
  • the battery pack 1 includes a housing 10 and a plurality of battery modules 20.
  • the housing 10 includes a main body part 11, a lid part (not shown), and a plurality of screws (not shown).
  • the main body part 11 and the lid part are made of a metal such as aluminum or iron, or a resin.
  • the main body 11 is a box-like member having a substantially rectangular parallelepiped recess 13, and the recess 13 has a rectangular opening 14 only on the upper side in the Z direction.
  • the main body 11 has an end face 15 on the upper side in the Z direction, and the end face 15 is provided with screw holes (not shown) at predetermined intervals.
  • the main body 11 includes a pair of wall portions 11a extending in the Y direction and a pair of wall portions 11b extending in the X direction, and the height of the wall portion 11a is the wall portion 11b. It is higher than the height.
  • the lid is a plate-like member that is rectangular in plan view.
  • the lid portion has a dimension in the X direction that is substantially the same length as the wall portion 11b, and has a thickness that substantially matches the difference in height between the wall portion 11a and the wall portion 11b.
  • the edge on the one side in the Y direction of the lid portion substantially coincides with the edge on the one side in the Y direction of the wall portion 11b on the one side in the X direction, and the other side in the Y direction of the lid portion.
  • the side edge is arranged so as to substantially coincide with the other side edge in the Y direction of the wall portion 11b on the other side in the X direction.
  • a screw (not shown) is tightened so as to fasten the lid portion and the pair of wall portions 11b, the lid portion is attached to the main body portion 11, and then the main body portion 11 to which the lid portion is attached is further removed from the outer casing (not shown).
  • the battery pack 1 is formed by covering with a body.
  • the height of the wall part 11a is higher than the height of the wall part 11b, it is not limited to this, Even if the height of the wall part 11b is made higher than the height of the wall part 11a It may be good or the same.
  • the plurality of battery modules 20 are arranged adjacent to the recess 13 in the Y direction.
  • the plurality of battery modules 20 are fixed and installed in a state of being accommodated in the recess 13.
  • the battery module 20 includes a battery stack 21, one side bind bar 22, the other side bind bar 23, and a pair of end plates 24.
  • the pair of end plates 24 coincides with the pair of wall portions 11a.
  • the pair of end plates may not coincide with the pair of wall portions extending in the Y direction in the housing.
  • the battery stack 21 includes a plurality of substantially rectangular parallelepiped prismatic cells (Cells) 31 and a plurality of inter-battery separators 32.
  • the plurality of rectangular batteries 31 are stacked so as to overlap in a row in the X direction, and the inter-battery separator 32 is disposed between two rectangular batteries 31 adjacent in the X direction.
  • the prismatic battery 31 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery, and its main surface is covered with an insulating sheet such as a shrink tube.
  • the inter-battery separator 32 is a sheet-like member. The structure and material of the inter-battery separator 32 will be described in detail later.
  • Each of the one side and the other side side binding bars 22, 23 is a plate member or a rectangular tube member made of a metal such as aluminum, aluminum alloy, iron, iron alloy, stainless steel, etc., and extends in the X direction.
  • Each of the one side and the other side side binding bars 22, 23 is a restraining member that restrains the battery stack 21 having a plurality of stacked rectangular batteries 31, and constitutes a part of the housing 10. It is.
  • Each of the one side and the other side side bind bars 22 and 23 plays a role of ensuring the rigidity of the casing 10 against the reaction force of the rectangular battery 31 constituting the battery stack 21.
  • Each of the one side and the other side side bind bars 22 and 23 is an example of a side side heat radiating member.
  • each of the one side and the other side side binding bars 22 and 23 is slightly longer than the X direction dimension of the battery stack 21.
  • the one side side bind bar 22 restrains one side of the battery stack 21 in the Y direction
  • the other side bind bar 23 restrains the other side of the battery stack 21 in the Y direction.
  • Each end plate 24 is a plate member made of a metal such as aluminum or iron, and extends in the Y direction.
  • the end plate 24 disposed on one side in the X direction restrains one side in the X direction of the battery stack 21, and the end plate 24 disposed on the other side in the X direction restrains the other side in the X direction of the battery stack 21. To do.
  • the end surfaces 35 on both sides in the X direction of the one side and the other side side binding bars 22 and 23 are provided with screw holes (not shown) for fixing end plates extending in the X direction. Each is provided with a through hole (screw hole).
  • the battery module 20 further includes an end separator (not shown), a plurality of one side separators 27, and a plurality of other side separators 28.
  • Each of the end separator, the one side separator 27, and the other side separator 28 is a sheet-like member and is made of an insulating material such as a resin.
  • Each of the one side separator 27 and the other side separator 28 is preferably made of an insulating material having excellent heat conductivity.
  • the end separator is between one end of the battery stack 21 in the X direction and the end plate 24 disposed on one side, and between the other end of the battery stack 21 in the X direction and the end plate 24 disposed on the other side. Arranged between.
  • Each one side separator 27 is disposed between one end of the battery stack 21 on one side in the Y direction and the one side bind bar 22, and each other side separator 28 is disposed on the Y direction of the battery stack 21. It arrange
  • FIG. The plurality of one side separators 27 are arranged at intervals in the X direction, and the plurality of other side separators 28 are also arranged at intervals in the X direction.
  • the arrangement structure of the plurality of one side separators 27 and the arrangement structure of the plurality of other side separators 28 will be described in detail later with reference to FIG.
  • End separators are disposed between both ends of the battery stack 21 in the X direction and the end plate 24, and side separators 27 and 28 are disposed between the end portions of the battery stack 21 in the Y direction and the side bind bars 22 and 23.
  • the screws are tightened into the through holes of the end plate 24 and the screw holes of the side bind bars 22 and 23 from the outside in the X direction of the end plate 24.
  • the battery stack 21, one side and the other side binding bars 22, 23, a pair of end plates 24, two end separators, a plurality of one side separators 27, and a plurality of other side separators 28 is integrated and the battery module 20 is comprised.
  • each battery stack 21 one side surface in the Y direction of each square battery 31 is positioned on substantially the same plane due to restraint by the one side side binding bar 22, and the other side surface in the Y direction of each square battery 31 is It is located on substantially the same plane due to the restraint by the other side binding bar 23.
  • the pair of end plates 24 are pressed with a press machine (not shown) from both sides by a press machine (not shown) and the battery stack 21 is compressed by the end plates 24, and the pair of end plates 24 are side-bound bars.
  • the battery module 20 may be configured by screwing to 22 and 23.
  • the one side side bind bar 22 disposed on one side in the Y direction of the battery stack 21 on the side is constituted by the same shared side bind bar 38.
  • the one side binding bars arranged on the side may be configured independently of each other without being integrated.
  • the battery laminated body of each battery module 20 is shared by sharing one end plate 24 on one side with respect to the plurality of battery modules 20 overlapping when viewed from the Y direction.
  • the X direction one side of 21 was constrained, and the other end plate 24 on the other side was shared by one to restrain the other side in the X direction of the battery stack 21 of each battery module 20.
  • a one-side end plate that restrains may be adopted.
  • the battery stack 21 is disposed between the rectangular battery 31 at one end in the X direction and the end plate 24 on one side, and between the rectangular battery 31 at one end and the end plate 24 on one side.
  • An end separator that fills the gap may be included, and is disposed between the rectangular battery 31 on the other end in the X direction and the end plate 24 on the other side, and the gap between the rectangular battery 31 on the other end and the end plate 24 on the other side.
  • An end separator may be included. In these configurations, the end separator may have elasticity.
  • the battery stack 21 can be closely attached in the X direction.
  • the bottom plate portion of the housing includes a heat transfer sheet 40 and a cooling plate 41 made of a metal such as aluminum or an alloy thereof.
  • the cooling plate 41 is an example of a metal lower heat radiating member.
  • the heat transfer sheet 40 is composed of a sheet member having insulating properties and excellent thermal conductivity, and is composed of, for example, an epoxy resin sheet or a silicone rubber sheet.
  • the heat transfer sheet 40 has the same rectangular shape as the cooling plate 41 in plan view, is disposed on the upper surface of the cooling plate 41 on the battery module 20 side, and is sandwiched between the cooling plate 41 and the walls 11a and 11b.
  • the cooling plate 41 and the heat transfer sheet 40 are attached to the wall portions 11a and 11b. Fix it.
  • the cooling plate 41 has a plurality of coolant passages 46.
  • the plurality of coolant passages 46 are arranged at intervals in the X direction, and each coolant passage 46 extends in the Y direction from one end to the other end of the cooling plate 41 in the Y direction.
  • a coolant refrigerant
  • the cooling plate 41 is cooled by the flow of the coolant, and the square battery 31 is cooled by the cooled cooling plate 41. Due to the cooling of the prismatic battery 31, thermal degradation of the prismatic battery 30 is suppressed.
  • FIG. 2 is a schematic cross-sectional view showing a part of the schematic cross-sectional view along the line AA in FIG.
  • FIG. 3 is a schematic plan view of a part of the battery pack 1 when the battery pack 1 with the lid part removed is viewed from the upper side in the Z direction.
  • reference numeral 26 indicates the end separator.
  • the inter-battery separator 32 includes a central member 50, one side member 51, and the other side member 52.
  • the central member 50 is a plate-like (sheet-like) member, and is arranged so that the thickness direction coincides with the X direction.
  • the one side member 51 is a plate-like (sheet-like) member, and is arranged so that the thickness direction coincides with the X direction.
  • the one side member 51 is disposed on one side in the X direction of the central member 50 and is made of a material having higher heat insulation than the central member 50.
  • the other side member 52 is a plate-like (sheet-like) member, and is arranged so that the thickness direction coincides with the X direction.
  • the other side member 52 is disposed on the other side in the X direction of the central member 50 and is made of a material having higher heat insulation than the central member 50.
  • the other side member 52 is the same as the one side member 51. That is, the one side member 51 and the other side member 52 are made of the same material, and the dimension (thickness) in the X direction, the dimension (width) in the Y direction, and the dimension (height) in the Z direction are the same. Yes.
  • the surface on the other side in the X direction of the one side member 51 abuts on the surface on one side in the X direction of the central member 50, and the surface on one side in the X direction of the other side member 52 is the surface on the other side in the X direction of the central member 50. Abut.
  • the central member 50 is made of a material excellent in heat conduction, for example, aluminum (thermal conductivity 229.04 to 256.05 W / (m ⁇ K)), an aluminum alloy, a light metal other than aluminum, other metals such as iron ( Thermal conductivity 60 to 80 W / (m ⁇ K)), iron alloy, stainless steel (thermal conductivity 16 to 19 W / (m ⁇ K)), graphite (graphite sheet), or the like.
  • the one side and the other side members 51 and 52 are made of a material having smaller thermal conductivity and higher heat insulation than the central member 50, for example, polypropylene (PP) (thermal conductivity) used as a general battery separator.
  • PP polypropylene
  • the materials used as the one side member 51 and the other side member 51 are preferably made of a material having a higher heat insulating property than the resin, so that a heat insulating effect can be expected.
  • a heat insulating material composed of a material having higher heat insulating properties than resin a heat insulating material having a structure in which a nanoporous body such as silica airgel is supported in the void of a structural material having a void such as a fiber sheet made of a nonwoven fabric or the like.
  • NASBIS thermal conductivity 0.02 W / (m ⁇ K)
  • the one side member 51 and the other side member 51, 52 preferably have insulating properties. In this case, between the rectangular batteries 31 adjacent in the X direction. Insulation can be performed reliably.
  • each of the one side member 51 and the other side member 51, 52 is made of a heat insulating material having a structure in which a nanoporous body is supported in a void of a fiber sheet, for example.
  • the thickness in the X direction of the central member 50 is preferably 30% or more and 50% or less of the total thickness of the X direction of the one side member 51 and the X direction thickness of the other side member 52. . Further, the thickness of the central member 50 in the X direction is 3/7 ( ⁇ 0.43) times the thickness of the one side member 51 plus the thickness of the other side member 52 in the X direction. More preferably, the thickness approximates the thickness.
  • the thickness of the central member 50 in the X direction is the sum of the thickness of the one side member 51 in the X direction and the thickness of the other side member 52 in the X direction.
  • the thickness is more preferably 40% or more and 46% or less.
  • the thickness in the X direction of the central member 50 may be less than 20% of the total thickness of the one side member 51 in the X direction and the thickness of the other side member 52 in the X direction. A larger thickness may be used.
  • the lower edge 70 of the central member 50 is in contact with the heat transfer sheet 40, and the lower surface 47 of the heat transfer sheet 40 is in contact with the upper surface 48 of the cooling plate 41.
  • the central member 50 is thermally coupled to the cooling plate 41 that is the lower heat radiating member via the heat transfer sheet 40. Therefore, the heat conducted to the central member 50 can be released downward to the cooling plate 41 side via the heat transfer sheet 40, and the heat of the central member 50 is diffused globally to the battery pack 1 via the cooling plate 41. Can be made. Therefore, it can suppress that the battery pack 1 becomes high temperature in a local region.
  • the central member and the cooling plate are not thermally coupled. More specifically, after heat is transmitted from the square battery that has abnormally heated to the central member, large heat may be transmitted from the lower side of the central member to the cooling plate. In such a case, a large amount of heat is easily transmitted from the central member to the rectangular battery adjacent to the abnormally heated rectangular battery, and the adjacent rectangular battery is easily damaged by heat. Therefore, in such a case, it is preferable to prevent the central member from being thermally coupled to the cooling plate because the amount of heat conducted between adjacent rectangular batteries can be suppressed. Even in this case, the lower ends of the one side member and the other side member may contact the heat transfer sheet.
  • the Z direction dimension of the central member is made smaller than the Z direction dimension of the one side member and the other side member, and the central member, one side member, and the other side member of the inter-cell separator are placed at the upper end (the opposite side to the cooling plate in the Z direction). ),
  • the lower end of the inter-cell separator may be disposed so that only the central member is separated from the heat transfer sheet. In this way, it is possible to realize a configuration in which only the central member is not thermally coupled to the cooling plate.
  • the plurality of one-side side separators 27 are arranged at intervals in the X direction, and the plurality of the other side separators 28 are also arranged at intervals in the X direction.
  • Each of the one side separator 27 and the other side separator 27 extends in the X direction.
  • the one side surface of the one side separator 27 is in contact with the other side surface of the one side bind bar 22 in the Y direction, and the other side surface of the other side separator 28 is the other side surface bind bar. 23 abuts against the surface on one side in the Y direction.
  • the sheet-like central member 50 extends in the Y direction.
  • One end portion of the central member 50 in the Y direction contacts the side surface of the one side side bind bar 22, and the other end portion of the central member 50 in the Y direction contacts the side surface of the other side side bind bar 23.
  • the central member 50 is sandwiched between the one side side bind bar 22 and the other side side bind bar 23 in the Y direction.
  • the central member 50 is sandwiched between two one side separators 27 adjacent to each other in the X direction at one end in the Y direction, and the other other end adjacent to the X direction in the other side end in the Y direction. It is clamped by the side separator 28.
  • each of the one side member 51 and the other side member 51 is sandwiched between the one side separator 27 and the other side separator 28 in the Y direction.
  • the one side separator 27 and the other side separator 28 are provided mainly for securing the function of insulating the one side bind bar 22 and the other side bind bar 23 from the rectangular battery 31. Therefore, the one side separator 27 and the other side separator 28 are usually insulators such as resin.
  • a space is provided between the one side bind bar and the other side bind bar and the square battery. Also good.
  • the surface on one side in the Y direction of the one side member 51 is in contact with the surface on the other side in the Y direction of the prismatic battery 31, and the surface on the other side in the Y direction of the one side member 51 is the surface on one side in the Y direction of the central member 50. Abut.
  • the other side surface of the other side member 52 is in contact with one side surface of the rectangular battery 31 in the Y direction, and the other side surface of the other side member 51 is the other side surface of the central member 50 in the Y direction. It abuts on the surface.
  • one side in the Y direction of the central member 50 is in direct contact with one side side binding bar 22 as a side side heat dissipation member
  • the other side in the Y direction of the central member 50 is the other side side bind as a side side heat dissipation member.
  • the bar 23 is in direct contact and is thermally coupled. Therefore, a part of the heat conducted to the central member 50 in the arrow B direction can be conducted in the arrow C direction (Y direction), and the heat can be efficiently radiated to the one side and the other side bind bars 22 and 23. Therefore, the heat that has reached the central member 50 can be diffused over a wide area through the one side and the other side side binding bars 22 and 23.
  • the rectangular batteries 31 adjacent in the stacking direction are thermally insulated by the one side and the other side members 51 and 52 of the inter-cell separator 32, the amount of heat conducted between the adjacent rectangular batteries 31 is suppressed.
  • the heat conducted to the one side and other side members 51 and 52 is conducted to the one side and other side side bind bars 22 and 23 by the central member 50. Therefore, the amount of heat conducted between adjacent rectangular batteries 31 having the largest amount of heat to be conducted can be effectively suppressed, and as a result, the battery pack 1 can be prevented from reaching a high temperature in the local region.
  • the central member 50 is thermally coupled to the one side and the other side side binding bars 22 and 23 as in the present embodiment, it may be preferable not to thermally couple the central member 50 and the cooling plate 4. is there.
  • FIG. 4 is a computer simulation showing the state of heat diffusion of the battery pack 201 of the reference example and the state of heat diffusion of the battery pack 1 of the present disclosure when the trigger cell 31t that is a square battery that has abnormally generated heat occurs. It is a figure showing an example of a result.
  • the battery pack 201 of the reference example is a sheet-like heat insulating material having a thermal conductivity of 0.02 W / (m ⁇ K) and a thickness of 2 mm as an inter-cell separator disposed between the rectangular batteries 31 adjacent in the X direction. Is used. Further, as the one side and the other side separators arranged along the one side and the other side side binding bars 22 and 23, an integral sheet-like member is adopted, and the inter-battery separator is connected to the one side and the other side binding. Instead of the bars 22 and 23, it is configured to be sandwiched between the one side separator and the other side separator.
  • the battery separator disposed between the rectangular batteries 31 adjacent in the X direction is made of two sheet-like heat insulating materials having a thermal conductivity of 0.02 W / (m ⁇ K). It has a three-layer structure that sandwiches a heat transfer material of an aluminum plate member.
  • each heat insulating material and heat transfer material are each set to a thickness of 1 mm.
  • the temperature is expressed by the density of the oblique lines.
  • the rectangular battery 31b having the lowest density of the oblique lines has a temperature of about 60 ° C.
  • one of the two rectangular batteries 31a having the highest density of oblique lines is a trigger cell 31t.
  • the temperature of one prismatic battery 31a adjacent to the trigger cell 31t in the X direction reaches 160 ° C., and is about the same temperature as the trigger cell 31t.
  • the rectangular battery 31b having the lowest temperature is spread over a wide range. From this, the heat generated in the trigger cell 31t is likely to reach the vicinity of the trigger cell 31t, and is likely to be locally high temperature. Almost damaged by heat.
  • the temperature of the plurality of prismatic batteries 31 arranged in the peripheral portion surrounding the trigger cell 31t is compared with the battery pack 201 of the reference example. And the existence range of the rectangular battery 31b having the lowest temperature is also reduced.
  • the temperature of the trigger cell 31 t is lowered from 160 ° C.
  • the temperature of the prismatic battery 31 adjacent to the trigger cell 31t in the X direction is much lower than that of the battery pack 201 of the reference example.
  • the heat generated in the trigger cell 31t can be diffused in a wider range, and generation of a local portion that becomes a high temperature can be suppressed or prevented. Therefore, in the battery pack 1, the thermal damage of the rectangular batteries 31 other than the trigger cell 31t can be suppressed or prevented.
  • FIG. 5 is a graph showing the relationship between the temperature t of a rectangular battery adjacent in the X direction to the abnormally heated prismatic battery (hereinafter referred to as trigger cell) and the thickness T of the inter-battery separator in one test example.
  • the data represented by the dotted line is data when a single sheet of heat insulating material is used as the separator between batteries.
  • the data shown by the solid line is when the sheet-like member having a three-layer structure having a structure in which the heat transfer material is sandwiched from both sides by the same two sheet-like heat insulating materials as the data shown by the dotted line is used as the battery separator. It is data of.
  • t0 (° C.) varies depending on the specifications of the prismatic battery 31, but is a temperature set as a guideline that the prismatic battery 31 may cause thermal damage.
  • t0 160 degrees C or less, abnormal heat
  • the thickness of the battery separator made of one layer of NASBIS is reduced. It was confirmed that the thickness can be reduced to about 74%.
  • the thickness in the X direction of the central member is 30% or more of the total thickness of the X direction of the one side member 51 and the X direction thickness of the other side member 52. When the thickness is 50% or less, the effect that the inter-battery separator can be thinned can be made remarkable.
  • the battery module 20 of the present disclosure includes a plurality of prismatic batteries 31 that are stacked and a battery separator 32 that is disposed between each two prismatic batteries 31 adjacent to each other in the X direction of the plurality of prismatic batteries 31.
  • a laminate 21 is provided.
  • the inter-battery separator 32 is disposed on one side in the X direction of the plate-like central member 50 and the central member 50, and is formed of a plate-like one-side member 51 made of a material having higher heat insulation than the central member 50.
  • a plate-like other side member 52 that is disposed on the other side in the X direction of the central member 50 and is made of a material having higher heat insulation than the central member 50.
  • the inter-battery separator 32 has at least a three-layer structure in which the one side and the other side members 51 and 52 having high heat insulating properties are arranged on both sides in the X direction of the central member 50 having high heat conductivity. Therefore, the heat reaching the central member 50 can be transmitted to members other than the one side and the other side members 51 and 52 with which the central member 50 comes into contact, and can be effectively dispersed through the members. As a result, heat conducted from the trigger cell to the rectangular battery 31 adjacent in the X direction can be reduced, and thermal damage of the adjacent rectangular battery 31 can be suppressed.
  • the inter-battery separator 32 has a three-layer structure in which the central member 50 having excellent thermal conductivity is disposed in the center, heat can be radiated from the central member 50 to members other than the rectangular battery 31, and as a result, the X direction
  • the heat insulating property between the rectangular batteries 31 adjacent to each other can be increased. Therefore, the thickness of the inter-battery separator 32 can be reduced, and the compactness in the X direction can be realized. As a result, the energy density of the battery module and the battery pack can be increased.
  • heat can be dissipated from the central member 50 located at the center of the inter-battery separator 32 in the X direction to members other than the rectangular battery 31, and the heat reaching the central member 50 can be dispersed over a wide area. Therefore, the heat generated during normal charging / discharging of the prismatic battery 31 can be diffused over a wide range, so that global heat equalization can be promoted and the cooling effect can be increased. Therefore, the maximum temperature of the prismatic battery 31 during normal charging / discharging can be reduced, and thermal degradation of the prismatic battery 31 can be suppressed.
  • the battery stack 21 may be provided with metal side bind bars 22 and 23 which are disposed laterally in the Y direction and extend substantially parallel to the X direction. Then, the central member 50 may contact the one side and the other side side binding bars 22 and 23.
  • the heat conducted to the central member 50 can be efficiently dissipated to the one side and the other side side binding bars 22, 23, and the heat conducted to the central member 50 can be transferred to the large volume on one side and the other side. It can be diffused over a wide area through the side bind bars 22 and 23. Therefore, the amount of heat conducted to the rectangular battery 31 adjacent to the trigger cell in the X direction can be effectively reduced, and thermal damage to the adjacent rectangular battery 31 can be suppressed or prevented. Moreover, since the heat conducted to the central member 50 can be diffused over a wide range, the heat insulating effect between the two rectangular batteries 31 adjacent in the X direction can be increased, and the thickness of the inter-cell separator 32 can be further reduced. Moreover, since the soaking
  • the side-side heat dissipation member may be the one side and the other side side bind bars 22 and 23 that restrain the battery stack 21.
  • the member that ensures the rigidity of the casing 10 against the reaction force of the rectangular battery 31 that constitutes the battery stack 21 can also serve as a heat sink that dissipates heat. Therefore, the battery pack 1 can be configured compactly.
  • the prismatic battery 31 included in the battery stack 21 may have an external terminal on the upper side in the Z direction, and may include a cooling plate 41 on the lower side in the Z direction of the battery stack 21.
  • the central member 50 may be thermally coupled to the cooling plate 41 via the heat transfer sheet 40.
  • the heat conducted to the central member 50 can be efficiently dissipated to the cooling plate 41 via the heat transfer sheet 40, and can be diffused to a wide area via the large volume cooling plate 41. Therefore, the thermal damage of the rectangular battery 31 adjacent to the trigger cell in the X direction can be suppressed or prevented, and the thickness of the inter-battery separator 32 can be further reduced. Further, the effect of reducing the maximum temperature during charging / discharging can be increased, and the effect of suppressing thermal deterioration of the rectangular battery 31 can be further increased.
  • one is located between the two central members 50 adjacent to each other in the X direction, and is disposed along the surface of the one side and the other side side binding bars 22 and 23 on the battery stack 21 side.
  • Side and other side separators 27 and 28 may be provided.
  • the one side and the other side members 51 and 52 may contact the one side and the other side separators 27 and 28.
  • the one side and the other side separators 27 and 28 are arranged on the battery stack 21 side of the one side and the other side bind bars 22 and 23, and the one side and the other side member 51 are arranged. , 52 are arranged so as to contact the one side separator 27 and the other side separator 27. Therefore, the one side member 51 and the other side member 51 can be easily arranged in the battery module 20, and the battery module 20 can be easily manufactured.
  • the central member 50 may be made of aluminum, an aluminum alloy, or a graphite sheet, and each of the one side member 51 and the other side member 51 may be made of a heat insulating material having a lower thermal conductivity than the resin material.
  • heat conduction in the X direction can be effectively suppressed, and thermal damage to the prismatic battery 31 other than the trigger cell can be effectively suppressed.
  • thinning of the inter-battery separator 32 can be promoted.
  • the thickness of the one side member 51 in the X direction may substantially match the thickness of the other side member 52 in the X direction.
  • the thickness in the X direction of the central member 50 is 30% or more and 50% or less of the total thickness of the X direction of the one side member 51 and the X direction thickness of the other side member 52. May be.
  • the effect of suppressing heat damage in the rectangular battery 31 other than the trigger cell by suppressing heat conduction in the X direction can be made remarkable.
  • the battery separator 32 can be made thinner.
  • the battery pack 1 includes a casing 10 that houses a battery stack 21 having a plurality of stacked rectangular batteries 31, and some of the constituent members of the casing 10 restrain the battery stack 21.
  • the central member 50 may be thermally coupled to the one side and the other side side binding bars 22 and 23.
  • the battery pack 1 that can suppress heat conduction in the X direction and suppress thermal damage of the rectangular battery 31 other than the trigger cell can be configured compactly.
  • the central member 50 of the inter-battery separator 32 is brought into thermal contact with the cooling plate 41 disposed on the lower side in the Z direction than the battery stack 21 via the heat transfer sheet 40 .
  • the central member of the inter-cell separator may be brought into direct contact with or thermally coupled to the metal upper heat dissipating member disposed on the upper side in the Z direction with respect to the battery stack.
  • the central member and the upper heat radiating member are brought into thermal contact with each other through the member, if the member is constituted by an insulating sheet having high thermal conductivity, the insulating property can be ensured and the heat radiation property can be improved. preferable.
  • a lid portion of a metallic casing can be cited. Also in this modification, the thermal damage of the square battery adjacent to the trigger cell in the X direction can be suppressed or prevented, and the thickness of the inter-battery separator can be reduced. In addition, the effect of reducing the maximum temperature during charging / discharging can be increased, and the effect of suppressing thermal deterioration of the prismatic battery can be increased. Note that any member may not be present between the central member and the lid of the housing, and the housing (including the lid) may be made of a material other than metal such as resin. .
  • the side-side heat dissipation member with which the central member of the inter-cell separator contacts may be a metal cooling plate, which extends in the X direction and flows in the X direction as the coolant flows. It may have an existing coolant passage.
  • the central member of the battery separator is not in direct contact with the metal side bind bar or the metal cooling plate, and all the central members included in the battery stack are in contact with the same and the same side separator.
  • the integral side separator may extend in the X direction.
  • the central member may be thermally coupled to the metal side bind bar or the metal cooling plate via the side separator.
  • the side separator can be installed easily and inexpensively.
  • the one side and the other side binding bars may not be limited to metal members, and may be made of a plastic member such as CFRP (carbon fiber reinforced plastic) when weight reduction is more important than heat dissipation. .
  • the metal lower heat radiating member is the cooling plate 41 and the central member 50 is thermally coupled to the metal cooling plate 41 via the heat transfer sheet 40
  • the central member may be in direct contact with the metal cooling plate.
  • the central member may not be thermally coupled to the cooling plate.
  • the metal lower heat radiating member may be a bottom plate portion of a metal casing, and the central member may be in direct contact with the bottom plate portion, via a member such as a heat transfer sheet having insulation properties. You may thermally couple
  • casing is comprised with resin other than a metal, and the metal lower side heat radiating member does not need to exist.
  • the one side member 51 and the other side member 52 are the same was demonstrated.
  • the one side member and the other side member may be made of different materials and may have different thicknesses.
  • inter-battery separator 32 has a three-layer structure.
  • the inter-battery separator may have a structure of four or more layers.
  • the battery included in the battery stack 21 is a square battery 31 having a rectangular outer shape has been described.
  • the battery included in the battery stack may be any battery other than a square battery, for example, a pouch-type battery (pouch cell) or a cylindrical battery (cylindrical cell).
  • the inter-battery separator 32 is disposed between each two rectangular batteries 31 adjacent in the X direction in the battery stack 21 .
  • the inter-battery separator may be disposed between at least a pair of two rectangular batteries adjacent in the X direction in the battery stack, and between all two rectangular batteries adjacent in the X direction in the battery stack. It may not be arranged.
  • the inter-battery separators may be disposed between every two rectangular batteries adjacent in the X direction in the battery stack.
  • the center member 50, the one side member 51, and the other side member 52 are plate-shaped (sheet shape)
  • the central member, the one-side member, and the other-side member may not be plate-shaped (sheet-shaped) but may be rod-shaped.
  • the inter-battery separator may be configured by arranging a rod-shaped central member, a rod-shaped one-side member, and a rod-shaped other-side member in the stacking direction.
  • the central member, the one-side member, and the other-side member may have a shape that is neither a plate shape nor a rod shape.
  • the main body part other than the lid part in the battery pack casing may have a partition part (sill part) that separates different battery stacks and is connected to the side wall part of the main body part.
  • a UD (UniDerection) type carbon fiber reinforced plastic (CFRP) sheet-like member in which the extending directions of the carbon fibers are aligned in the same direction may be used as a central member of the inter-cell separator.
  • CFRP Carbon fiber reinforced plastic
  • Such a carbon fiber reinforced plastic has a property that the thermal conductivity in one direction is higher than the thermal conductivity in the orthogonal direction perpendicular to the one direction. Therefore, when the central member is brought into contact with the side-side heat radiating member, the sheet-like member is arranged so that the thermal conductivity in the Y direction is the highest, and the thermal conductivity in the Y direction is higher than the thermal conductivity in the Z direction. Is preferably arranged so as to be larger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

電池モジュールが、複数の角形電池、及び複数の角形電池の積層方向であるX方向に隣り合う各2つの角形電池の間に配置される電池間セパレータを含む電池積層体を備える。電池間セパレータが、板状の中央部材、中央部材のX方向の一方側に配置され、中央部材よりも断熱性が高い材質で構成される板状の一方側部材、及び中央部材のX方向の他方側に配置され、中央部材よりも断熱性が高い材質で構成される板状の他方側部材を含む。

Description

電池モジュール、及び電池パック
 本開示は、複数の角形電池を含む電池モジュールに関する。また、本開示は、電池モジュールを含む電池パックに関する。
 従来、電池モジュールとしては、特許文献1に記載されているものがある。この電池モジュールは、電池積層体、一対のサイドバインドバー、及び一対のエンドプレートを備え、電池積層体は、複数の角形二次電池(以下、単に、角形電池という)を含み、複数の角形電池は、同じ姿勢で角形電池の厚さ方向に積層されるように配置される。一対のサイドバインドバーは、電池積層体を挟持するように電池積層体の幅方向両側に配置され、積層方向に延在する。一対のサイドバインドバーは、電池積層体の幅方向両側を拘束する。他方、一対のエンドプレートは、電池積層体の積層方向の両側に配置され、電池積層体の積層方向の両側を拘束する。各エンドプレートは、一対のサイドバインドバーの積層方向の端面にボルト等の締結手段で固定される。この固定により、電池積層体、一対のサイドバインドバー、及び一対のエンドプレートが一体化され、電池モジュールが構成される。
国際公開第2014/083789号
 角形電池が高エネルギー密度化されるにしたがって、角形電池が異常発熱した際に大熱量の熱を放出するようになってきている。したがって、より大熱量の熱が、異常発熱した角形電池から積層方向に隣り合う角形電池に伝導するようになってきており、その隣り合う角形電池が、異常発熱した角形電池からより大熱量の熱を受けて熱損傷し易くなってきている。
 そこで、本開示の目的は、積層方向の熱の伝導を抑制でき、異常発熱した角形電池以外の角形電池の熱損傷を抑制できる電池モジュール及び電池パックを提供することにある。
 上記課題を解決するため、本開示の電池モジュールは、積層された複数の角形電池、及び複数の角形電池の積層方向に隣り合う各2つの角形電池の間に配置される電池間セパレータを含む電池積層体を備え、電池間セパレータは、板状の中央部材、中央部材の積層方向の一方側に配置され、中央部材よりも断熱性が高い材質で構成される板状の一方側部材、及び中央部材の積層方向の他方側に配置され、中央部材よりも断熱性が高い材質で構成される板状の他方側部材を含む。
 本開示に係る電池モジュールによれば、積層方向の熱の伝導を抑制でき、異常発熱した角形電池以外の角形電池の熱損傷を抑制できる。
本開示の一実施形態に係る電池パックの一部の模式斜視図であり、筐体の蓋部が取り外された状態の電池パックの一部の模式斜視図である。 図1のA‐A線模式断面図の一部を表す模式断面図である。 蓋部が外された電池パックをZ方向上側から見たときの電池パックの一部の模式平面図である。 異常発熱した角形電池が生じた場合における、参考例の電池パックの熱の拡散の様子と、本開示の電池パックの熱の拡散の様子とを表すコンピュータシミュレーション結果の一例を表す図である。 一試験例における、異常発熱した角形電池にX方向に隣り合う角形電池の温度と、電池間セパレータの厚さとの関係を表すグラフである。
 以下に、本開示に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の説明及び図面において、X方向は、電池積層体21において複数の角形二次電池31が積層される積層方向であり、Y方向は、直交方向であり、Z方向は、角形二次電池31の高さ方向である。X方向、Y方向、及びZ方向は、互いに直交する。また、以下の説明において、上側とは、角形二次電池31におけるZ方向の電極端子形成側をさし、下側とは、角形二次電池31におけるZ方向の電極端子形成側とは反対側をさす。また、以下の図面では、同一の要素(構成)には、同一の符号を付し、重複する説明を省略する。また、以下の各図は、模式図であり、異なる図間において、各部材における、縦、横、高さの寸法比は、一致しない。また、本明細書では、合金は、金属に含まれるものとする。
 図1は、本開示の一実施形態に係る電池パック1の一部の模式斜視図であり、筐体10の蓋部が取り外された状態の電池パック1の一部の模式斜視図である。なお、図1及び図3では、角形二次電池(以下、単に角形電池という)31の電極端子の図示を省略する。図1に示すように、電池パック1は、筐体10と、複数の電池モジュール20を備える。筐体10は、本体部11、蓋部(図示せず)、及び複数のねじ(図示せず)を含み、本体部11、及び蓋部は、アルミニウムや鉄等の金属、又は樹脂で構成される。本体部11は、略直方体状の凹部13を有する箱状部材であり、凹部13は、矩形状の開口14をZ方向上側のみに有する。本体部11は、Z方向上側に端面15を有し、端面15には、図示しないねじ孔が所定間隔毎に設けられる。
 図1に示すように、本体部11は、一対のY方向に延在する壁部11aと、一対のX方向に延在する壁部11bを含み、壁部11aの高さが、壁部11bの高さよりも高くなっている。蓋部は、平面視が矩形の板状部材である。蓋部は、壁部11bと略同じ長さのX方向寸法を有し、壁部11aと壁部11bの高さの差と略一致する厚さを有する。複数の電池モジュール20等を凹部13内に適切に収容した後、蓋部を、一対の壁部11bのX方向の間に配置する。また、蓋部を、Z方向から見たとき、蓋部のY方向一方側の縁が、X方向一方側の壁部11bのY方向一方側の縁に略一致し、蓋部のY方向他方側の縁が、X方向他方側の壁部11bのY方向他方側の縁に略一致するように配置する。その後、図示しないねじを、蓋部及び一対の壁部11bを締結するように締め込んで、蓋部を本体部11に取り付けた後、蓋部が取り付けられた本体部11を更に図示しない外側筐体により覆って電池パック1が構成される。なお、本実施形態において、壁部11aの高さが壁部11bの高さよりも高くなっているが、これに限定されず壁部11bの高さを壁部11aの高さよりも高くしても良いし、あるいは同一にしても良い。
 図1に示すように、複数の電池モジュール20は、凹部13にY方向に隣り合うように配置される。複数の電池モジュール20は、凹部13に収容した状態で固定されて設置される。
 電池モジュール20は、電池積層体21、一方側サイドバインドバー22、他方側サイドバインドバー23、及び一対のエンドプレート24を備える。本実施例では、一対のエンドプレート24が、一対の壁部11aに一致するが、一対のエンドプレートは、筐体においてY方向に延在する一対の壁部に一致しなくてもよい。電池積層体21は、複数の略直方体状の角形電池(Cell)31と、複数の電池間セパレータ32を含む。複数の角形電池31は、X方向に一列に重なるように積層され、電池間セパレータ32は、X方向に隣り合う2つの角形電池31間に配置される。角形電池31は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池であり、主表面がシュリンクチューブ等の絶縁シートで被覆される。電池間セパレータ32は、シート状部材である。電池間セパレータ32の構造及び材質については、後で詳しく説明する。
 一方側及び他方側サイドバインドバー22,23の夫々は、アルミニウム、アルミニウム合金や鉄、鉄合金やステンレス鋼等の金属で構成される板部材又は角形管部材であり、X方向に延在する。また、一方側及び他方側サイドバインドバー22,23の夫々は、積層された複数の角形電池31を有する電池積層体21を拘束する拘束部材であり、筐体10の一部を構成する構成部材である。一方側及び他方側サイドバインドバー22,23の夫々は、電池積層体21を構成する角形電池31の反力に対する筐体10の剛性を確保する役割を担っている。一方側及び他方側サイドバインドバー22,23の夫々は、サイド側放熱部材の一例である。一方側及び他方側サイドバインドバー22,23の夫々のX方向寸法は、電池積層体21のX方向寸法よりも僅かに長い。一方側サイドバインドバー22は、電池積層体21のY方向一方側を拘束し、他方側サイドバインドバー23は、電池積層体21のY方向他方側を拘束する。また、各エンドプレート24は、アルミニウムや鉄等の金属で構成される板部材であり、Y方向に延在する。X方向一方側に配置されるエンドプレート24は、電池積層体21のX方向一方側を拘束し、X方向他方側に配置されるエンドプレート24は、電池積層体21のX方向他方側を拘束する。
 一方側及び他方側サイドバインドバー22,23の夫々のX方向の両側の端面35には、X方向に延びるエンドプレート固定用のねじ孔(図示せず)が設けられ、一対のエンドプレート24の夫々には、貫通孔(ねじ孔)が設けられる。また、電池モジュール20は、更に、図示しないエンドセパレータ、複数の一方側サイドセパレータ27、及び複数の他方側サイドセパレータ28を備える。
 エンドセパレータ、一方側サイドセパレータ27、及び他方側サイドセパレータ28の夫々は、シート状部材であり、樹脂等の絶縁性を有する材料で構成される。一方側サイドセパレータ27、及び他方側サイドセパレータ28の夫々は、伝熱性に優れる絶縁材料で構成されると好ましい。エンドセパレータは、電池積層体21のX方向の一端と一方側に配置されたエンドプレート24との間、及び電池積層体21のX方向の他端と他方側に配置されたエンドプレート24との間に配置される。
 各一方側サイドセパレータ27は、電池積層体21のY方向一方側の端部と、一方側サイドバインドバー22との間に配置され、各他方側サイドセパレータ28は、電池積層体21のY方向他方側の端部と、他方側サイドバインドバー23との間に配置される。複数の一方側サイドセパレータ27は、X方向に間隔をおいて配置され、複数の他方側サイドセパレータ28も、X方向に間隔をおいて配置される。複数の一方側サイドセパレータ27の配置構造、及び複数の他方側サイドセパレータ28の配置構造については、後で図3を用いて詳細に説明する。
 エンドセパレータを電池積層体21のX方向の両端とエンドプレート24との間に配置し、サイドセパレータ27,28を電池積層体21のY方向の端部とサイドバインドバー22,23との間に配置する。そして、この状態で、ねじを、エンドプレート24の上記貫通孔及びサイドバインドバー22,23の上記ねじ孔に、エンドプレート24のX方向外側から締め込む。このねじの締め込みで、電池積層体21、一方側及び他方側サイドバインドバー22,23、一対のエンドプレート24、2つのエンドセパレータ、複数の一方側サイドセパレータ27、及び複数の他方側サイドセパレータ28が一体化され、電池モジュール20が構成される。
 各電池積層体21に関し、各角形電池31のY方向の一方側側面は、一方側サイドバインドバー22による拘束で略同一平面上に位置し、各角形電池31のY方向の他方側側面は、他方側サイドバインドバー23による拘束で略同一平面上に位置する。なお、一方側及び他方側の一対のエンドプレート24を両側からプレス機(図示せず)で押圧して、エンドプレート24により電池積層体21を圧縮した状態で一対のエンドプレート24をサイドバインドバー22,23にねじ止めして電池モジュール20を構成してもよい。
 図1に示す実施例では、Y方向に隣り合う2つの電池積層体21において、Y方向一方側の電池積層体21のY方向他方側に配置される他方側サイドバインドバー23と、Y方向他方側の電池積層体21のY方向一方側に配置される一方側サイドバインドバー22を、同一の共有サイドバインドバー38で構成している。しかし、Y方向に隣り合う2つの電池積層体において、Y方向一方側の電池積層体のY方向他方側に配置される他方側サイドバインドバーと、Y方向他方側の電池積層体のY方向一方側に配置される一方側サイドバインドバーを一体構造とせずに互いに独立に構成してもよい。
 また、図1に示す実施例では、Y方向から見たときに重なる複数の電池モジュール20に関し、1つで一体の一方側のエンドプレート24を共有させることで、各電池モジュール20の電池積層体21のX方向一方側を拘束し、1つで一体の他方側のエンドプレート24を共有させることで、各電池モジュール20の電池積層体21のX方向他方側を拘束した。しかし、Y方向から見たときに重なる複数の電池モジュールに関し、1つで一体の一方側エンドプレートを共有する構造を採用しなくてもよく、各電池モジュールの電池積層体のX方向一方側のみを拘束する一方側エンドプレートを採用してもよい。また、同様に、Y方向から見たときに重なる複数の電池モジュールに関し、1つで一体の他方側エンドプレートを共有する構造を採用しなくてもよく、各電池モジュールの電池積層体のX方向他方側のみを拘束する他方側エンドプレートを採用してもよい。
 また、上述のように、電池積層体21は、X方向の一端の角形電池31と一方側のエンドプレート24との間に配置されて、一端の角形電池31と一方側のエンドプレート24との隙間を埋めるエンドセパレータを含んでもよく、X方向の他端の角形電池31と他方側のエンドプレート24との間に配置されて、他端の角形電池31と他方側のエンドプレート24との隙間を埋めるエンドセパレータを含んでもよい。また、これらの構成で、エンドセパレータは、弾性を有してもよい。この場合、X方向の端の角形電池31と、一方側及び他方側のエンドプレート24のうちの少なくとも一方との隙間の寸法変化があったとしても、エンドセパレータによって、X方向の端の角形電池31と、一方側及び他方側のエンドプレート24のうちの少なくとも一方との隙間を容易に埋めることができる。よって、電池積層体21をX方向に密着配置できて好ましい。
 図1の参照を続けて、本実施例では、筐体の底板部は、伝熱シート40と、アルミニウムやその合金等の金属で構成される冷却プレート41を含む。冷却プレート41は、金属製の下側放熱部材の一例である。伝熱シート40は、絶縁性を有すると共に熱伝導性に優れるシート部材で構成され、例えば、エポキシ樹脂シートやシリコーンゴムシート等で構成される。伝熱シート40は、平面視において冷却プレート41と同一の矩形形状を有し、冷却プレート41の電池モジュール20側の上面に配置され、冷却プレート41と壁部11a,11bとで挟持される。例えば、ねじを、冷却プレート41の下側から、冷却プレート41、伝熱シート40、及び壁部11a,11bに締め込むことで、冷却プレート41及び伝熱シート40を、壁部11a,11bに固定する。
 詳述しないが、冷却プレート41は、複数の冷却剤通路46を有する。複数の冷却剤通路46は、X方向に間隔をおいて配置され、各冷却剤通路46は、冷却プレート41のY方向の一端から他端までY方向に延在する。例えば、図示しないポンプ等によって、流動力が付与された水等の冷却剤(冷媒)が、冷却剤通路46内を流動する。この冷却剤の流動によって、冷却プレート41が冷却され、角形電池31が、冷却された冷却プレート41で冷却される。この角形電池31の冷却により、角形電池30の熱劣化が抑制される。
 図2は、図1のA‐A線模式断面図の一部を表す模式断面図である。また、図3は、蓋部が外された電池パック1をZ方向上側から見たときの電池パック1の一部の模式平面図である。なお、図2において、参照番号26は、上記エンドセパレータを示す。図2、及び図3に示すように、電池間セパレータ32は、中央部材50、一方側部材51、及び他方側部材52を有する。図2に示すように、中央部材50は、板状(シート状)部材であり、厚さ方向がX方向に一致するように配置される。また、一方側部材51は、板状(シート状)部材であり、厚さ方向がX方向に一致するように配置される。一方側部材51は、中央部材50のX方向の一方側に配置され、中央部材50よりも断熱性が高い材質で構成される。
 他方側部材52は、板状(シート状)部材であり、厚さ方向がX方向に一致するように配置される。他方側部材52は、中央部材50のX方向の他方側に配置され、中央部材50よりも断熱性が高い材質で構成される。他方側部材52は、一方側部材51と同一である。すなわち、一方側部材51と他方側部材52は、同一の材質で構成され、X方向の寸法(厚み)、Y方向の寸法(幅)、及びZ方向の寸法(高さ)が同一になっている。一方側部材51のX方向他方側の面は、中央部材50のX方向一方側の面に当接し、他方側部材52のX方向一方側の面は、中央部材50のX方向他方側の面に当接する。
 中央部材50は、熱伝導に優れる材質、例えば、アルミニウム(熱伝導率229.04~256.05W/(m・K))、アルミニウム合金、アルミニウム以外の軽金属、それ以外の金属、例えば、鉄(熱伝導率60~80W/(m・K))、鉄合金、ステンレス鋼(熱伝導率16~19W/(m・K))又はグラファイト(グラファイトシート)等で構成される。他方、一方側及び他方側部材51,52は、中央部材50よりも熱伝導性が小さくて断熱性が高い材質、例えば、一般的な電池間セパレータとして使用されるポリプロピレン(PP)(熱伝導率0.17~0.19W/(m・K))、ポリブチレンテレフタレート(PBT)(熱伝導率0.25W/(m・K))、ポリカーボネート(PC)(熱伝導率0.19W/(m・K))などの樹脂のほか、NASBIS(商標)、不織布、グラスウール(熱伝導率0.04W/(m・K))、ロックウール、セルロースファイバー、ウレタンフォーム(熱伝導率0.021W/(m・K))、フェノールフォーム、ポリウレタンフォーム(熱伝導率0.03W/(m・K))、ポリスチレン(熱伝導率0.03W/(m・K))、発砲ゴム、エアロゲル、又はヒュームドシリカ等で構成される。一方側及び他方側部材51,52として使用される材質は、樹脂より断熱性が高い材質により構成されることでより断熱効果が期待できるので好ましい。樹脂より断熱性が高い材質により構成される断熱材としては、不織布等からなる繊維シート等の空隙を有する構造材の前記空隙にシリカエアロゲル等のナノ多孔体が担持された構造を有する断熱材が存在し、この断熱材の一例としてNASBIS(熱伝導率0.02W/(m・K))が存在する。なお、角形電池31が、絶縁性を有するフィルムで被覆されている場合でも、一方側及び他方側部材51,52は、絶縁性を有すると好ましく、この場合、X方向に隣り合う角形電池31間の絶縁を確実に実行できる。
 中央部材50が、アルミニウム又はアルミニウム合金で構成され、一方側及び他方側部材51,52の夫々が、例えば繊維シートの空隙にナノ多孔体が担持された構造を有する断熱材で構成される場合、中央部材50のX方向の厚さが、一方側部材51のX方向の厚さと他方側部材52のX方向の厚さとを加えた厚さの30%以上50%以下の厚さであると好ましい。また、中央部材50のX方向の厚さが、一方側部材51のX方向の厚さと他方側部材52のX方向の厚さとを加えた厚さの3/7(≒0.43)倍の厚さに近似する厚さであると更に好ましく、例えば、中央部材50のX方向の厚さが、一方側部材51のX方向の厚さと他方側部材52のX方向の厚さとを加えた厚さの40%以上46%以下の厚さであると更に好ましい。なお、中央部材50のX方向の厚さは、一方側部材51のX方向の厚さと他方側部材52のX方向の厚さとを加えた厚さの20%未満の厚さでもよく、50%よりも大きい厚さでもよい。
 図2に示すように、中央部材50の下側縁部70は、伝熱シート40に接触し、伝熱シート40の下面47は、冷却プレート41の上面48に接触する。換言すると、中央部材50は、下側放熱部材である冷却プレート41に伝熱シート40を介して熱結合する。したがって、中央部材50に伝導した熱を、伝熱シート40を介して冷却プレート41側に下側に放出でき、中央部材50の熱を、冷却プレート41を介して電池パック1に大局的に拡散させることができる。よって、電池パック1が局所領域で高温になることを抑制できる。
 なお、中央部材と冷却プレートは熱的に結合しない方が好ましい場合がある。より詳しくは、熱が異常発熱した角形電池から中央部材に伝わった後、大きな熱が中央部材の下側から冷却プレートに伝わる場合がある。このような場合、異常発熱した角形電池に隣り合う角形電池に、大きな熱が中央部材から冷却プレートを介して伝わり易く、該隣り合う角形電池が熱損傷し易くなる。したがって、このような場合、中央部材が冷却プレートに熱的に結合しないようにすると、隣り合う角形電池同士間で伝導する熱量を抑制できて好ましい。なお、この場合でも、一方側及び他方側部材の夫々の下端は伝熱シートに接触してもよい。例えば、中央部材のZ方向寸法を一方側及び他方側部材のZ方向寸法よりも小さくして、電池間セパレータの中央部材、一方側及び他方側部材を、上端(Z方向の冷却プレートと逆側の端部)の位置を揃えて、電池間セパレータの下端は、中央部材のみ伝熱シートから離間するように配置してもよい。このようにすると、中央部材のみ冷却プレートに熱的に結合しない構成を実現できる。
 図3に示すように、複数の一方側サイドセパレータ27は、X方向に間隔をおいて配置され、複数の他方側サイドセパレータ28も、X方向に間隔をおいて配置される。また、一方側及び他方側サイドセパレータ27,28の夫々は、X方向に延在する。一方側サイドセパレータ27のY方向一方側の面は、一方側サイドバインドバー22のY方向他方側の面に当接し、他方側サイドセパレータ28のY方向他方側の面は、他方側サイドバインドバー23のY方向一方側の面に当接する。
 また、シート状の中央部材50は、Y方向に延在する。中央部材50のY方向の一端部は、一方側サイドバインドバー22の側面に接触し、中央部材50のY方向の他端部は、他方側サイドバインドバー23の側面に接触する。中央部材50は、Y方向に関して、一方側サイドバインドバー22と他方側サイドバインドバー23で挟持される。また、中央部材50は、Y方向の一方側端部が、X方向に関して隣り合う2つの一方側サイドセパレータ27で挟持され、Y方向の他方側端部が、X方向に関して隣り合う2つの他方側サイドセパレータ28で挟持される。これに対し、一方側及び他方側部材51,52の夫々は、Y方向に関して、一方側サイドセパレータ27と他方側サイドセパレータ28で挟持される。一方側サイドセパレータ27と他方側サイドセパレータ28は、一方側サイドバインドバー22と他方側サイドバインドバー23を、角形電池31に対して絶縁する機能を確保することを主な目的として設けられており、そのため、一方側サイドセパレータ27と他方側サイドセパレータ28は、通常樹脂などの絶縁体である。なお、一方側サイドバインドバーと他方側サイドバインドバーを、角形電池に対して絶縁するため、一方側サイドバインドバー及び他方側サイドバインドバーと、角形電池との間に空間(スペース)を設けてもよい。
 一方側部材51のY方向一方側の面は、角形電池31におけるY方向他方側の面に当接し、一方側部材51のY方向他方側の面は、中央部材50のY方向一方側の面に当接する。また、他方側部材52のY方向他方側の面は、角形電池31におけるY方向一方側の面に当接し、他方側部材51のY方向一方側の面は、中央部材50のY方向他方側の面に当接する。
 本実施例では、中央部材50のY方向一方側が、サイド側放熱部材としての一方側サイドバインドバー22に直接接触し、中央部材50のY方向他方側が、サイド側放熱部材としての他方側サイドバインドバー23に直接接触して熱的に結合されている。したがって、矢印B方向に中央部材50に伝導した熱の一部を、矢印C方向(Y方向)に伝導させることができ、一方側及び他方側サイドバインドバー22,23に効率的に放熱できる。よって、中央部材50に到達した熱を、一方側及び他方側サイドバインドバー22,23を介して広範囲な領域に拡散できる。また、積層方向に隣接する角形電池31は、電池間セパレータ32の一方側及び他方側部材51,52によって断熱されているので、隣接する角形電池31同士間で伝導する熱量が抑制されている。そして、一方側及び他方側部材51,52に伝導した熱は中央部材50により一方側及び他方側サイドバインドバー22,23に伝導される。そのため、最も伝導する熱量が大きい隣接する角形電池31同士間で伝導する熱量を効果的に抑制でき、その結果、電池パック1が局所領域で高温になることを抑制できる。なお、本実施例のように中央部材50を一方側及び他方側サイドバインドバー22,23に熱的に結合した場合において、中央部材50と冷却プレート4を熱的に結合しない方が好ましい場合がある。
 図4は、異常発熱した角形電池であるトリガセル31tが生じた場合における、参考例の電池パック201の熱の拡散の様子と、本開示の電池パック1の熱の拡散の様子とを表すコンピュータシミュレーション結果の一例を表す図である。
 参考例の電池パック201は、X方向に隣り合う角形電池31の間に配置する電池間セパレータとして、熱伝導率0.02W/(m・K)で厚さが2mmの一層のシート状断熱材を用いている。また、一方側及び他方側サイドバインドバー22,23に沿うように配置される一方側及び他方側サイドセパレータとして、一体のシート状部材を採用し、電池間セパレータが、一方側及び他方側サイドバインドバー22,23でなくて一方側及び他方側サイドセパレータに挟持される構成としている。一方、コンピュータシミュレーションを行った電池パック1では、X方向に隣り合う角形電池31の間に配置する電池間セパレータは、熱伝導率0.02W/(m・K)の2つのシート状断熱材でアルミニウム製板部材の伝熱材を挟持している3層構造を有している。ここで、各断熱材および伝熱材は、それぞれ1mmの厚さに設定している。
 また、図4(a),(b)においては、斜線の密度で、温度を表現している。詳しくは、図4(a),(b)においては、斜線の密度が高い程、温度が高いことを示し、最も斜線の密度が高い図4(a)に示す2つの角形電池31aは、160℃の高温となっている一方、図4(a)及び図4(b)において、最も斜線の密度が低い角形電池31bは、60℃程度の温度となっている。なお、参考例の電池パック201において、最も斜線の密度が高い2つの角形電池31aのうちの一方は、トリガセル31tとなっている。
 図4(a)に示すように、参考例の電池パック201では、トリガセル31tにX方向に隣り合う一方の角形電池31aの温度が160℃まで到達し、トリガセル31tと同程度の温度となっているのに対し、温度が最も低い角形電池31bが広範囲に広がっている。このことから、トリガセル31tで生じた熱が、トリガセル31tの近傍に籠り易くて、局所的に高温になり易く、特に、トリガセル31tにX方向に隣り合う角形電池31aが、トリガセル31tからの熱で熱損傷し易い。
 これに対し、図4(b)に示すように、本開示の電池パック1では、参考例の電池パック201との比較で、トリガセル31tを取り巻く周辺部に配置された複数の角形電池31の温度が高くなっていて、温度が最も低い角形電池31bの存在範囲も小さくなっている。しかし、電池パック201のように、温度が160℃にまで達する高温の角形電池31aが全く存在せず、トリガセル31tの温度も160℃から下がっている。また、参考例の電池パック201と比較して、トリガセル31tにX方向に隣り合う角形電池31の温度も格段に低い。したがって、電池パック1では、トリガセル31tで生じた熱を、より広範囲に拡散でき、高温となる局所箇所の生成を抑制又は防止できる。よって、電池パック1では、トリガセル31t以外の角形電池31の熱損傷を、抑制又は防止できる。
 図5は、一試験例における、異常発熱した角形電池(以下、トリガセルという)にX方向に隣り合う角形電池の温度tと、電池間セパレータの厚さTとの関係を表すグラフである。図5において、点線で表すデータは、電池間セパレータとして、一層のシート状断熱材を用いたときのデータである。また、実線で示すデータは、電池間セパレータとして、伝熱材を、点線で表すデータと同一の2つのシート状断熱材で両側から挟み込んだ構造を有する3層構造のシート状部材を用いたときのデータである。なお、電池間セパレータに3層構造を使用する場合、伝熱材と断熱材との各層は、(伝熱材の厚さ)/(片方の断熱材の厚さ)=6/7とし、(伝熱材の厚さ)/(2つの断熱材の厚さを合わせた厚さ)=3/7に設定している。また、t0(℃)は、角形電池31の仕様により変化するが、角形電池31が熱損傷を起こす可能性がある目安として設定した温度である。なお、t0が160℃以下である場合、図4(a)に示すトリガセル31tのX方向に隣り合う角形電池31aに異常発熱が伝播されることになる。
 図5に示す試験例では、電池間セパレータとして、一体の1つの1層の断熱材を用いた場合、電池間セパレータの厚さを、T1(mm)以上の厚さとしなければ、トリガセルにX方向に隣り合う角形電池の温度を、t0よりも小さくすることができず、当該隣り合う角形電池の熱損傷を効果的に抑制することができなくなっている。これに対し、電池間セパレータとして、上記3層構造のシート状部材を用いた場合、電池間セパレータの厚さを、T2(mm)(<T1)以上にすれば、トリガセルにX方向に隣り合う角形電池の温度を、t0よりも小さくすることができ、当該隣り合う角形電池の熱損傷を効果的に抑制できる。因みに、本開示の3層構造のシート状の電池間セパレータとして伝熱材にアルミニウムを用いると共に断熱材にNASBISを用いると、電池間セパレータの厚さを、1層のNASBISからなる電池間セパレータの74%程度の厚さまで薄くできることが確認された。なお、3層構造の電池間セパレータにおいて、中央部材のX方向の厚さが、一方側部材51のX方向の厚さと他方側部材52のX方向の厚さとを加えた厚さの30%以上50%以下の厚さであると、電池間セパレータを薄くできるという作用効果を顕著なものとできる。
 以上、本開示の電池モジュール20は、積層された複数の角形電池31、及び複数の角形電池31のX方向に隣り合う各2つの角形電池31の間に配置される電池間セパレータ32を含む電池積層体21を備える。また、電池間セパレータ32は、板状の中央部材50、中央部材50のX方向の一方側に配置され、中央部材50よりも断熱性が高い材質で構成される板状の一方側部材51、及び中央部材50のX方向の他方側に配置され、中央部材50よりも断熱性が高い材質で構成される板状の他方側部材52を含む。
 したがって、電池間セパレータ32が、伝熱性が高い中央部材50のX方向両側に断熱性が高い一方側及び他方側部材51,52を配置した3層構造を少なくとも有する。よって、中央部材50に到達した熱を、中央部材50が接触する一方側及び他方側部材51,52以外の部材に伝えることができ、その部材を介して効果的に分散させることができる。その結果、トリガセルからそれにX方向に隣り合う角形電池31に伝導する熱を低減でき、隣り合う角形電池31の熱損傷を抑制できる。
 また、電池間セパレータ32が、熱伝導性に優れる中央部材50が中央に配置された3層構造を有するので、中央部材50から角形電池31以外の部材へ熱を放熱でき、結果として、X方向に隣り合う角形電池31間の断熱性を高くできる。よって、電池間セパレータ32の厚さを薄くでき、X方向のコンパクト化を実現できる。その結果、電池モジュール、及び電池パックのエネルギー密度を高めることが可能となる。
 更には、電池間セパレータ32のX方向の中央に位置する中央部材50から角形電池31以外の部材へ熱を放熱でき、中央部材50に到達した熱を広範囲な領域に分散させることができる。よって、角形電池31の通常の充放電時に生じる熱を広範囲に拡散できるので、熱の大局的な均熱化を促進でき、冷却効果を大きくできる。よって、通常の充放電を行っている際の角形電池31の最高温度を低減でき、角形電池31の熱劣化を抑制できる。
 また、電池積層体21のY方向に側方に配置されると共に、X方向に略平行に延在する金属製の一方側及び他方側サイドバインドバー22,23を備えてもよい。そして、中央部材50が一方側及び他方側サイドバインドバー22,23に接触してもよい。
 上記構成によれば、中央部材50に伝導した熱を、一方側及び他方側サイドバインドバー22,23に効率的に放熱でき、中央部材50に伝導した熱を、大容積の一方側及び他方側サイドバインドバー22,23を介して広範囲な領域に拡散できる。したがって、トリガセルにX方向に隣り合う角形電池31に伝導する熱量を効果的に低減でき、当該隣り合う角形電池31の熱損傷を抑制又は防止できる。また、中央部材50に伝導した熱を広範囲な領域に拡散できるので、X方向に隣り合う2つの角形電池31間の断熱効果を大きくでき、電池間セパレータ32の厚さを更に薄くできる。また、広範囲な領域の均熱化を促進できるので、充放電時の角形電池31の熱劣化の抑制効果を更に大きくできる。
 また、サイド側放熱部材が、電池積層体21を拘束する一方側及び他方側サイドバインドバー22,23であってもよい。
 上記構成によれば、電池積層体21を構成する角形電池31の反力に対する筐体10の剛性を確保する部材に放熱を行うヒートシンクの役割も兼用させることができる。したがって、電池パック1をコンパクトに構成できる。
 また、電池積層体21に含まれる角形電池31が、Z方向上側に外部端子を有し、電池積層体21のZ方向下側に冷却プレート41を備えてもよい。そして、中央部材50は、冷却プレート41に伝熱シート40を介して熱結合してもよい。
 上記構成によれば、中央部材50に伝導した熱を、伝熱シート40を介して冷却プレート41に効率的に放熱でき、大容積の冷却プレート41を介して広範囲な領域に拡散できる。よって、トリガセルにX方向に隣り合う角形電池31の熱損傷を抑制又は防止でき、電池間セパレータ32の厚さを更に薄くできる。また、充放電時の最高温度の低減効果を大きくでき、角形電池31の熱劣化の抑制効果も更に大きくできる。
 また、X方向に関して、X方向に隣り合う2つの中央部材50の間に位置すると共に、一方側及び他方側サイドバインドバー22,23の電池積層体21側の面に沿うように配置される一方側及び他方側サイドセパレータ27,28を備えてもよい。そして、一方側及び他方側部材51,52が、一方側及び他方側サイドセパレータ27,28に接触してもよい。
 中央部材を、一方側及び他方側サイドバインドバーに接触させると、その接触により、接触部の近傍に凹凸ができ易い。よって、一方側及び他方側部材を一方側及び他方側サイドバインドバーに密着接触させにくい。これに対し、本構成によれば、一方側及び他方側サイドセパレータ27,28が、一方側及び他方側サイドバインドバー22,23の電池積層体21側に配置され、一方側及び他方側部材51,52が、一方側及び他方側サイドセパレータ27,28に接触するように配置される。よって、一方側及び他方側部材51,52を、電池モジュール20内に容易に配置でき、電池モジュール20を容易に製造できる。
 また、中央部材50が、アルミニウム、アルミニウム合金、又はグラファイトシートで構成され、一方側及び他方側部材51,52の夫々が、樹脂材料より熱伝導率の低い断熱材で構成されてもよい。
 上記構成によれば、X方向の熱の伝導を効果的に抑制でき、トリガセル以外の角形電池31の熱損傷を効果的に抑制できる。また、電池間セパレータ32の薄型化も促進できる。
 また、一方側部材51のX方向の厚さは、他方側部材52のX方向の厚さと略一致してもよい。また、中央部材50のX方向の厚さは、一方側部材51のX方向の厚さと他方側部材52のX方向の厚さとを加えた厚さの30%以上50%以下の厚さであってもよい。
 上記構成によれば、X方向の熱の伝導を抑制してトリガセル以外の角形電池31の熱損傷を抑制する効果を顕著なものとできる。また、電池間セパレータ32の薄型化も顕著なものとできる。
 また、電池パック1は、積層された複数の角形電池31を有する電池積層体21を収納する筐体10を有し、筐体10の構成部材の一部は、電池積層体21を拘束する一方側及び他方側サイドバインドバー22,23であり、一方側及び他方側サイドバインドバー22,23に中央部材50が熱的に結合してもよい。
 上記構成によれば、X方向の熱の伝導を抑制でき、トリガセル以外の角形電池31の熱損傷を抑制できる電池パック1をコンパクトに構成できる。
 尚、本開示は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。
 例えば、上記実施形態では、電池間セパレータ32の中央部材50を、伝熱シート40を介して電池積層体21よりもZ方向下側に配置される冷却プレート41に熱接触させる場合について説明した。しかし、電池間セパレータの中央部材を、電池積層地よりもZ方向上側に配置された金属製の上側放熱部材に、直接接触させるか又は部材を介して熱結合させてもよい。ここで、中央部材と上側放熱部材を、部材を介して熱接触させる場合、その部材を、熱伝導性が高い絶縁シートで構成すると、絶縁性を担保できると共に放熱性を良好なものとできて好ましい。ここで、金属製の上側放熱部材の一例としては、金属製の筐体の蓋部を挙げられる。この変形例でも、トリガセルにX方向に隣り合う角形電池の熱損傷を抑制又は防止でき、電池間セパレータの厚さを薄くできる。また、充放電時の最高温度の低減効果を大きくでき、角形電池の熱劣化の抑制効果を大きくできる。なお、中央部材と、筐体の蓋部との間には、如何なる部材が存在しなくてもよく、筐体(蓋部を含む)は、樹脂等の金属以外の材質で構成されてもよい。
 また、サイド側放熱部材が、金属製のサイドバインドバー22,23である場合について説明した。しかし、電池間セパレータの中央部材が接触するサイド側放熱部材は、金属製の冷却プレートであってもよく、その冷却プレートは、X方向に延在し、冷却剤が流動すると共にX方向に延在する冷却剤通路部を有してもよい。又は、電池間セパレータの中央部材は、金属製のサイドバインドバーや金属製の冷却プレートと直接接触せず、電池積層体に含まれる全ての中央部材は、一体かつ同一のサイドセパレータに接触してもよく、その一体のサイドセパレータは、X方向に延在してもよい。そして、中央部材が、サイドセパレータを介して金属製のサイドバインドバーや金属製の冷却プレートと熱的に結合してもよく、この場合、サイドセパレータの設置を簡単安価に実行できる。又は、電池積層体のY方向の側方にX方向に延在する金属製の部材が存在しなくてもよい。詳しくは、一方側及び他方側サイドバインドバーは、金属部材に限定されなくてもよく、放熱性より軽量化を重視する場合、CFRP(carbon fiber reinforced plastic)等のプラスチック部材で構成されてもよい。
 また、金属製の下側放熱部材が、冷却プレート41であって、中央部材50が、伝熱シート40を介して金属製の冷却プレート41に熱的に結合する場合について説明した。しかし、中央部材は、金属製の冷却プレートに直接接触してもよい。又は、上述のように、中央部材は、冷却プレートに熱的に結合しなくてもよい。又は、金属製の下側放熱部材が、金属製の筐体の底板部であり、中央部材が、当該底板部に直接接触してもよく、絶縁性を有する伝熱シート等の部材を介して当該底板部に熱的に結合してもよい。又は、上述のように、筐体が、金属以外の樹脂等で構成され、金属製の下側放熱部材が存在しなくてもよい。
 また、一方側部材51、及び他方側部材52が同一である場合について説明した。しかし、一方側部材、及び他方側部材は、異なる材質で構成されてもよく、異なる厚さを有してもよい。
 また、電池間セパレータ32が3層構造を有する場合について説明した。しかし、電池間セパレータは、4層以上の構造を有してもよい。
 また、電池積層体21に含まれる電池が、外形を角形とする角形電池31である場合について説明した。しかし、電池積層体に含まれる電池は、角形電池以外の如何なる電池でもよく、例えば、パウチ型電池(パウチセル)や、円筒型電池(円筒型セル)でもよい。
 また、電池間セパレータ32が電池積層体21においてX方向に隣り合う各2つの角形電池31の間に配置される場合について説明した。しかし、電池間セパレータは、電池積層体においてX方向に隣り合う少なくとも一対の2つの角形電池の間に配置されればよく、電池積層体においてX方向に隣り合う全ての2つの角形電池の間に配置されなくてもよい。例えば、電池間セパレータは、電池積層体においてX方向に隣り合う2つの角形電池の間に一つおきに配置されてもよい。
 また、中央部材50、一方側部材51、及び他方側部材52が、板状(シート状)である場合について説明した。しかし、中央部材、一方側部材、及び他方側部材は、板状(シート状)でなくてもよく、棒状でもよい。そして、棒状の中央部材、棒状の一方側部材、及び棒状の他方側部材を、積層方向に並べることで電池間セパレータを構成してもよい。又は、中央部材、一方側部材、及び他方側部材は、板状でもなく、棒状でもない形状を有してもよい。
 また、電池モジュール20が、電池積層体21を拘束する一方側及び他方側サイドバインドバー22,23を備える場合について説明した。しかし、電池パックの筐体における蓋部以外の本体部が、異なる電池積層体を分離すると共に該本体部の側壁部に繋がる仕切部(敷居部)を有する構成でもよい。
 また、電池間セパレータの中央部材として、炭素繊維の延在方向を同じ方向に揃えたUD(UniDerection)タイプの炭素繊維強化プラスチック(CFRP)のシート状部材を用いてもよい。このような炭素繊維強化プラスチックは、一方向の熱伝導率が、その一方向に直交する直交方向の熱伝導率よりも高くなる性質を有する。よって、中央部材を、サイド側放熱部材に接触させる場合、当該シート状部材を、Y方向の熱伝導率が最も高くなるように配置し、Y方向の熱伝導率がZ方向の熱伝導率よりも大きくなるように配置すると好ましい。
 1 電池パック
 20 電池モジュール
 21 電池積層体
 22 一方側サイドバインドバー
 23 他方側サイドバインドバー
 27 一方側サイドセパレータ
 28 他方側サイドセパレータ
 31 角形電池
 32 電池間セパレータ
 40 伝熱シート
 41 冷却プレート
 50 中央部材
 51 一方側部材
 52 他方側部材
 X方向 積層方向
 Y方向 直交方向
 Z方向 角形電池の高さ方向

Claims (10)

  1.  積層された複数の電池、及び前記複数の電池の積層方向に隣り合う2つの前記電池の間に配置される電池間セパレータを含む電池積層体を備え、
     前記電池間セパレータは、中央部材、前記中央部材の前記積層方向の一方側に配置され、前記中央部材よりも断熱性が高い材質で構成される一方側部材、及び前記中央部材の前記積層方向の他方側に配置され、前記中央部材よりも断熱性が高い材質で構成される他方側部材を含む、電池モジュール。
  2.  前記積層方向及び前記電池の高さ方向の両方向に直交する方向を直交方向とするとき、前記電池積層体の前記直交方向の側方に配置されると共に、前記積層方向に延在するサイド側放熱部材を備え、
     前記中央部材が前記サイド側放熱部材に接触する、請求項1に記載の電池モジュール。
  3.  前記サイド側放熱部材は、前記電池積層体を拘束する拘束部材である、請求項2に記載の電池モジュール。
  4.  前記電池積層体に含まれる前記電池は、前記高さ方向の一方側に外部端子を有し、
     前記電池積層体の前記高さ方向の他方側に配置された金属製の下側放熱部材を備え、
     前記中央部材は、前記下側放熱部材に直接接触するか又は部材を介して熱結合する、請求項1乃至3のいずれか1つに記載の電池モジュール。
  5.  前記電池積層体に含まれる前記電池は、前記高さ方向の一方側に外部端子を有し、
     前記電池積層体の前記高さ方向の一方側に配置された金属製の上側放熱部材を備え、
     前記中央部材は、前記上側放熱部材に直接接触するか又は部材を介して熱結合する、請求項1乃至4のいずれか1つに記載の電池モジュール。
  6.  前記積層方向に関して、前記積層方向に隣り合う2つの前記中央部材の間に位置すると共に、前記サイド側放熱部材の前記電池積層体側の面に沿うように配置されるサイドセパレータを備え、
     前記一方側部材及び前記他方側部材が、前記サイドセパレータに接触する、請求項2又は3に記載の電池モジュール。
  7.  前記中央部材が、アルミニウム、アルミニウム合金又はグラファイトシートで構成され、
     前記一方側部材及び前記他方側部材の夫々が、樹脂材料より熱伝導率の低い断熱材で構成される、請求項1乃至6のいずれか1つに記載の電池モジュール。
  8.  前記一方側部材の前記積層方向の厚さは、前記他方側部材の前記積層方向の厚さと略同一であり、
     前記中央部材の前記積層方向の厚さは、前記一方側部材の前記積層方向の厚さと前記他方側部材の前記積層方向の厚さとを加えた厚さの30%以上50%以下の厚さである、請求項7に記載の電池モジュール。
  9.  請求項1乃至8のいずれか1つに記載の電池モジュールを備える電池パック。
  10.  積層された複数の電池を有する電池積層体を収納する筐体を有し、
     前記筐体の構成部材の一部は、前記電池積層体を拘束する拘束部材であり、
     前記拘束部材に前記中央部材が熱的に結合される、請求項9に記載の電池パック。
PCT/JP2019/005740 2018-02-27 2019-02-18 電池モジュール、及び電池パック WO2019167689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980014442.2A CN111742442A (zh) 2018-02-27 2019-02-18 电池模块以及电池组
JP2020503405A JP7281676B2 (ja) 2018-02-27 2019-02-18 電池モジュール、及び電池パック
US16/765,916 US11721867B2 (en) 2018-02-27 2019-02-18 Battery module and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032747 2018-02-27
JP2018-032747 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167689A1 true WO2019167689A1 (ja) 2019-09-06

Family

ID=67808899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005740 WO2019167689A1 (ja) 2018-02-27 2019-02-18 電池モジュール、及び電池パック

Country Status (4)

Country Link
US (1) US11721867B2 (ja)
JP (1) JP7281676B2 (ja)
CN (1) CN111742442A (ja)
WO (1) WO2019167689A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021099804A1 (en) * 2019-11-20 2021-05-27 Hyperdrive Innovation Limited Battery assembly
JPWO2021201165A1 (ja) * 2020-04-03 2021-10-07
CN113544902A (zh) * 2019-10-25 2021-10-22 株式会社Lg新能源 电池模块及包括该电池模块的电池组
CN113889687A (zh) * 2020-07-03 2022-01-04 株式会社Lg新能源 电池组以及包括该电池组的能量存储系统和车辆
WO2022014966A1 (ko) * 2020-07-14 2022-01-20 주식회사 엘지에너지솔루션 전지 팩 및 이를 포함하는 디바이스
CN114188629A (zh) * 2020-09-15 2022-03-15 Sk新技术株式会社 电池模块
WO2022055130A1 (ko) * 2020-09-14 2022-03-17 주식회사 엘지에너지솔루션 배터리 모듈들 간의 열확산 방지구조를 적용한 배터리 팩
US20220123407A1 (en) * 2019-08-06 2022-04-21 Ngk Insulators, Ltd. Battery module
WO2022215659A1 (ja) 2021-04-06 2022-10-13 日本製鉄株式会社 バッテリーセル間の冷却構造、バッテリーモジュール、及び、バッテリーパック
JP2022551802A (ja) * 2020-09-10 2022-12-14 エルジー エナジー ソリューション リミテッド バッテリーモジュール間の熱拡散防止構造を適用したバッテリーパック
TWI879987B (zh) 2020-07-03 2025-04-11 南韓商Lg新能源股份有限公司 電池組以及包含此電池組的能量儲存系統及車輛

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6916976B1 (ja) * 2020-02-19 2021-08-11 信越ポリマー株式会社 多層シートおよびそれを備えるセルユニット
US12015178B2 (en) * 2021-08-27 2024-06-18 GM Global Technology Operations LLC Battery cell, battery pack, and method of making the same incorporating features that accelerate heat dissipation, improve uniformity of heat distribution, and reduce size
US11955656B2 (en) 2021-11-16 2024-04-09 Beta Air, Llc Battery pack for an electric aircraft
CN115819932B (zh) * 2021-11-30 2024-03-22 宁德时代新能源科技股份有限公司 复合膜及其制备方法、二次电池、电池模块、电池包和用电装置
US11824176B2 (en) 2022-03-25 2023-11-21 Beta Air, Llc Systems and methods for battery pack cooling using a cooling fin
DE102022115818A1 (de) * 2022-06-24 2024-01-04 Man Truck & Bus Se Energiespeichervorrichtung zur Speicherung elektrischer Energie, vorzugsweise für ein zumindest teilweise elektrisch angetriebenes Fahrzeug
JP2025010713A (ja) * 2023-07-10 2025-01-23 トヨタ自動車株式会社 蓄電モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015068A1 (ja) * 2010-07-30 2012-02-02 Fdk株式会社 蓄電モジュール
JP2012124319A (ja) * 2010-12-08 2012-06-28 Jm Energy Corp 蓄電デバイス
WO2015019429A1 (ja) * 2013-08-07 2015-02-12 株式会社日立製作所 電池モジュール
JP2015090750A (ja) * 2013-11-05 2015-05-11 信越ポリマー株式会社 熱伝導デバイス及びバッテリーモジュール
JP2017068986A (ja) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 電池モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586824B2 (ja) * 2007-06-27 2010-11-24 トヨタ自動車株式会社 蓄電装置及び車両
TWI419391B (zh) * 2009-12-25 2013-12-11 Ind Tech Res Inst 電池系統中的散熱與熱失控擴散防護結構
CN102117945A (zh) * 2009-12-31 2011-07-06 财团法人工业技术研究院 电池系统中的散热与热失控扩散防护结构
US8835032B2 (en) 2010-07-30 2014-09-16 Panasonic Corporation Battery module
JP2012248299A (ja) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
JP6208145B2 (ja) 2012-11-28 2017-10-04 三洋電機株式会社 電池モジュール
EP2939292B1 (en) * 2012-12-28 2018-03-28 Johnson Controls Technology Company Welding techniques for polymerized lithium ion battery cells and modules
KR102083748B1 (ko) 2015-12-15 2020-03-02 애플 인크. 미세다공성 절연체
CN105742755B (zh) * 2016-04-08 2018-04-10 中国科学技术大学 一种用于电池系统散热及防止热失控传播的复合板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015068A1 (ja) * 2010-07-30 2012-02-02 Fdk株式会社 蓄電モジュール
JP2012124319A (ja) * 2010-12-08 2012-06-28 Jm Energy Corp 蓄電デバイス
WO2015019429A1 (ja) * 2013-08-07 2015-02-12 株式会社日立製作所 電池モジュール
JP2015090750A (ja) * 2013-11-05 2015-05-11 信越ポリマー株式会社 熱伝導デバイス及びバッテリーモジュール
JP2017068986A (ja) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 電池モジュール

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123407A1 (en) * 2019-08-06 2022-04-21 Ngk Insulators, Ltd. Battery module
US11942650B2 (en) * 2019-08-06 2024-03-26 Ngk Insulators, Ltd. Battery module with multiple secondary batteries
CN113544902A (zh) * 2019-10-25 2021-10-22 株式会社Lg新能源 电池模块及包括该电池模块的电池组
EP3907815A4 (en) * 2019-10-25 2022-04-27 LG Energy Solution, Ltd. BATTERY MODULE AND BATTERY PACK INCLUDING IT
WO2021099804A1 (en) * 2019-11-20 2021-05-27 Hyperdrive Innovation Limited Battery assembly
JPWO2021201165A1 (ja) * 2020-04-03 2021-10-07
JP7430248B2 (ja) 2020-04-03 2024-02-09 日本製鉄株式会社 蓄電デバイス構造体及び蓄電デバイス構造体の放熱方法
CN113889687A (zh) * 2020-07-03 2022-01-04 株式会社Lg新能源 电池组以及包括该电池组的能量存储系统和车辆
TWI879987B (zh) 2020-07-03 2025-04-11 南韓商Lg新能源股份有限公司 電池組以及包含此電池組的能量儲存系統及車輛
EP4068473A4 (en) * 2020-07-03 2024-09-11 LG Energy Solution, Ltd. Battery pack having structure for preventing heat diffusion between adjacent battery modules, and ess and vehicle including same
WO2022014966A1 (ko) * 2020-07-14 2022-01-20 주식회사 엘지에너지솔루션 전지 팩 및 이를 포함하는 디바이스
JP2022551802A (ja) * 2020-09-10 2022-12-14 エルジー エナジー ソリューション リミテッド バッテリーモジュール間の熱拡散防止構造を適用したバッテリーパック
JP7274664B2 (ja) 2020-09-10 2023-05-16 エルジー エナジー ソリューション リミテッド バッテリーモジュール間の熱拡散防止構造を適用したバッテリーパック
WO2022055130A1 (ko) * 2020-09-14 2022-03-17 주식회사 엘지에너지솔루션 배터리 모듈들 간의 열확산 방지구조를 적용한 배터리 팩
JP7414990B2 (ja) 2020-09-14 2024-01-16 エルジー エナジー ソリューション リミテッド バッテリーモジュールの熱拡散防止構造を適用したバッテリーパック
JP2023501826A (ja) * 2020-09-14 2023-01-19 エルジー エナジー ソリューション リミテッド バッテリーモジュールの熱拡散防止構造を適用したバッテリーパック
CN114730940A (zh) * 2020-09-14 2022-07-08 株式会社 Lg新能源 在电池模块之间具有防止热扩散结构的电池组
US11799147B2 (en) 2020-09-15 2023-10-24 Sk On Co., Ltd. Battery Module
CN114188629B (zh) * 2020-09-15 2024-01-09 Sk新能源株式会社 电池模块
US12087929B2 (en) 2020-09-15 2024-09-10 Sk On Co., Ltd. Battery module
CN114188629A (zh) * 2020-09-15 2022-03-15 Sk新技术株式会社 电池模块
KR20230163529A (ko) 2021-04-06 2023-11-30 닛폰세이테츠 가부시키가이샤 배터리 셀 사이의 냉각 구조, 배터리 모듈 및 배터리 팩
WO2022215659A1 (ja) 2021-04-06 2022-10-13 日本製鉄株式会社 バッテリーセル間の冷却構造、バッテリーモジュール、及び、バッテリーパック
JP7664823B2 (ja) 2021-12-06 2025-04-18 プライムプラネットエナジー&ソリューションズ株式会社 電池モジュール

Also Published As

Publication number Publication date
JP7281676B2 (ja) 2023-05-26
CN111742442A (zh) 2020-10-02
US20200365855A1 (en) 2020-11-19
US11721867B2 (en) 2023-08-08
JPWO2019167689A1 (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2019167689A1 (ja) 電池モジュール、及び電池パック
JP7054867B2 (ja) 電池モジュール
US11387502B2 (en) Battery module comprising a heat transfer component and a thermal expansion material between cells
KR102386917B1 (ko) 배터리 모듈 및 이의 제조 방법
JP7171615B2 (ja) 電源装置と電源装置用のセパレータ
JP7281673B2 (ja) 電池パック
KR20220051147A (ko) 배터리 모듈 및 이의 제조 방법
CN110959224A (zh) 电池模块、电池组以及合并电池组
KR20220036171A (ko) 배터리 모듈
JPWO2019131358A1 (ja) 電池パック
JP5154706B1 (ja) 組電池及び組電池モジュール
US20230268581A1 (en) Battery module and battery pack
JP7414990B2 (ja) バッテリーモジュールの熱拡散防止構造を適用したバッテリーパック
KR20180106421A (ko) 배터리 모듈
CN109643833B (zh) 电池模块
JP2024166019A (ja) 電池モジュール及び電池パック
JP7483302B2 (ja) 電池セルの寿命が向上した電池パック及びこれを含むデバイス
JP7108909B2 (ja) 拘束部材および電池モジュール
JP7556589B2 (ja) 電池セルの寿命が向上した電池パック及びこれを含むデバイス
JP7625319B2 (ja) 冷却性能が向上した電池モジュール及びこれを含む電池パック
KR20210133528A (ko) 전지 모듈 및 이를 포함하는 전지 팩
JP6561756B2 (ja) 電池パック
KR20240067471A (ko) 배터리 장치
CN114586221A (zh) 电池组和包括该电池组的设备
KR20240081940A (ko) 배터리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761410

Country of ref document: EP

Kind code of ref document: A1