WO2019163968A1 - 二酸化炭素還元システム、及び二酸化炭素還元方法 - Google Patents
二酸化炭素還元システム、及び二酸化炭素還元方法 Download PDFInfo
- Publication number
- WO2019163968A1 WO2019163968A1 PCT/JP2019/006899 JP2019006899W WO2019163968A1 WO 2019163968 A1 WO2019163968 A1 WO 2019163968A1 JP 2019006899 W JP2019006899 W JP 2019006899W WO 2019163968 A1 WO2019163968 A1 WO 2019163968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- heat
- exhaust gas
- reduction system
- reduction
- Prior art date
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 504
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 252
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 252
- 238000000034 method Methods 0.000 title claims description 20
- 239000007789 gas Substances 0.000 claims description 117
- 238000002485 combustion reaction Methods 0.000 claims description 81
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 239000000126 substance Substances 0.000 claims description 28
- 238000010438 heat treatment Methods 0.000 claims description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 24
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 22
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 22
- 238000010248 power generation Methods 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 229910001868 water Inorganic materials 0.000 claims description 15
- 238000004064 recycling Methods 0.000 claims description 8
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims description 6
- 239000002028 Biomass Substances 0.000 claims description 3
- 238000006722 reduction reaction Methods 0.000 description 78
- 239000003054 catalyst Substances 0.000 description 16
- 238000000926 separation method Methods 0.000 description 15
- 229910044991 metal oxide Inorganic materials 0.000 description 12
- 150000004706 metal oxides Chemical class 0.000 description 12
- 239000012528 membrane Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000005580 one pot reaction Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004693 Polybenzimidazole Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920002480 polybenzimidazole Polymers 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2455—Stationary reactors without moving elements inside provoking a loop type movement of the reactants
- B01J19/2465—Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B5/00—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00157—Controlling the temperature by means of a burner
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the present invention relates to a carbon dioxide reduction system and a carbon dioxide reduction method for reducing carbon dioxide.
- Carbon dioxide has low thermal energy, and heating is necessary to reduce it to useful substances such as carbon monoxide.
- heating carbon dioxide usually generates carbon dioxide, so reducing carbon dioxide to a useful substance hardly contributes to carbon dioxide reduction.
- an object of the present invention is to provide a carbon dioxide reduction system and a carbon dioxide reduction method that can contribute to carbon dioxide reduction.
- the gist of the present invention is as shown in the following [1] to [12].
- the recycling energy is at least one selected from the group consisting of solar power generation, wind power generation, hydropower generation, wave power generation, tidal power generation, biomass power generation, geothermal power generation, solar heat, and underground heat.
- the carbon dioxide reduction system according to [1], which is used.
- the circulation path sends carbon dioxide to the heat exchanger;
- the combustion furnace includes a combustion chamber in which a combustible is combusted and a gas discharge path connected to the combustion chamber, and the heat exchanger is attached to the gas discharge path.
- the present invention further provides the following [13] to [19].
- the reduction device is a reverse shift reaction device that generates carbon monoxide and water from carbon dioxide and hydrogen by a reverse shift reaction.
- the carbon dioxide reduction system according to any one of [13] to [15], wherein the reduction device is a chemical looping type reaction device.
- a heat exchanger for cooling the exhaust gas containing carbon dioxide generated in the combustion furnace is provided, [13] to [13], wherein the circulation path heats the carbon dioxide by sending the carbon dioxide separated by the carbon dioxide separation device to the heat exchanger, and exchanging heat with the exhaust gas in the heat exchanger.
- the carbon dioxide reduction system according to any one of [16].
- the combustion furnace includes a combustion chamber in which a combustible is combusted and a gas discharge path connected to the combustion chamber, and the heat exchanger is attached to the gas discharge path.
- separating carbon dioxide from exhaust gas containing carbon dioxide generated in a combustion furnace Heating the separated carbon dioxide with heat generated in the incinerator; And a step of reducing the heated carbon dioxide.
- the carbon dioxide reduction system 1 of the present invention includes a transport route 4 and a reduction device 5.
- the carbon dioxide reduction system 1 of the present invention further includes a carbon dioxide separator 3.
- Exhaust gas containing carbon dioxide generally does not have a sufficiently high concentration of carbon dioxide, and it cannot be said that a useful substance can be efficiently produced even if it is used as it is.
- carbon dioxide contained in the exhaust gas is separated and heated after being separated by the carbon dioxide separator 3, and the heated carbon dioxide is reduced to efficiently reduce the carbon dioxide contained in the exhaust gas. it can.
- a preferred embodiment will be described in detail.
- the carbon dioxide (CO 2 ) separation device 3 is a device that separates carbon dioxide from exhaust gas containing carbon dioxide.
- the apparatus for separating carbon dioxide is not particularly limited, and examples of the separation method include a chemical absorption method, a solid absorption method, a membrane separation method, and the like, and details thereof are as described in an embodiment described later.
- Exhaust gas including carbon dioxide is not particularly limited, but exhaust gas discharged from a combustion furnace, exhaust gas discharged from a cement factory, exhaust gas discharged from a power plant (thermal power), exhaust gas discharged from a steel works Examples include gas and exhaust gas discharged from refineries.
- the transport route 4 is a route for transporting the carbon dioxide separated by the carbon dioxide separator 3 to the reducing device 5.
- the separated carbon dioxide is heated by the heating means 2 in the transport path 4.
- the transport route 4 is not particularly limited as long as it is a route that connects the carbon dioxide separator 3 and the reducing device 5, but may be constituted by a pipe, a pipe, or the like.
- the pipe may have any shape, for example, a plate shape.
- the transport path 4 includes a container, a tank, and the like in the middle of the path.
- the separated carbon dioxide may be heated by the heating means 2 in the container, the tank, and the like.
- the separated carbon dioxide may be temporarily stopped, for example, in the container or tank.
- the transport route 4 is a circulation route as shown in an embodiment described later.
- the circulation path is a path through which the carbon dioxide separated by the carbon dioxide separator 3 is circulated so as to be heated by heat generated in a combustion furnace that is an exhaust gas generation source.
- the heating means 2 heats the separated carbon dioxide by at least one of recycling energy and exhaust heat.
- Recyclable energy uses at least one selected from solar power generation, wind power generation, hydroelectric power generation, wave power generation, tidal power generation, biomass power generation, geothermal power generation, solar heat, and underground heat.
- examples of the exhaust heat include heat generated in the reducing device and heat generated in devices other than the reducing device.
- Examples of heat generated in devices other than the reduction device include heat generated in a combustion furnace, heat generated in a cement factory, heat generated in a power plant (thermal power), heat generated in a steel mill, and generated in an oil refinery. Heat etc. are mentioned. These may be used individually by 1 type and may be used in combination of 2 or more type.
- the heating means 2 will not be specifically limited if the isolate
- the heat exchanger heats carbon dioxide by exchanging heat between, for example, the heating medium heated by at least one of the above recycling energy and exhaust heat and the carbon dioxide transported in the transport path 4.
- the heating medium include fluids such as liquid and gas.
- the heat exchanger is not particularly limited, a pipe, pipe, or the like that is a part of the transport path 4 is brought into contact with the heating medium. Examples thereof include an attached one and a tube, a pipe, and the like arranged inside the heating medium.
- the heating means 2 may be a heat ray made of recyclable energy, exhaust heat or the like, and the heat ray may be irradiated from the outer peripheral surface to, for example, pipes, pipes, containers, tanks, etc. constituting the transport path 4. Further, for example, sunlight may be directly radiated on the outer peripheral surface of a pipe, tube, container, tank, or the like.
- the heating means 2 may be a heater heated by various types of power generation, a heater may be disposed inside a pipe, pipe, container, or tank constituting the transportation path 4 or may be heated from outside by these heaters. . Further, for example, at least a part of the transportation path 4 such as a pipe or a pipe may be buried in the ground and heated by underground heat.
- the reduction device 5 reduces carbon dioxide introduced from the transport route 4 and heated by the heating means 2.
- the reducing device is not particularly limited as long as it can reduce carbon dioxide, but is preferably a reverse shift reaction device, a methanation device, a methanol synthesizer, an ethanol production device, and an acrylic acid synthesizer, more preferably reverse as described later. Shift reactors, more preferably chemical looping reactors. Details of the reducing device 5, details of carbon dioxide reduction performed in the reducing device 5, substances to be generated, and the like are as described later.
- carbon dioxide is heated by recycle energy or exhaust heat, and no new carbon dioxide is discharged due to the heating of carbon dioxide. Therefore, it is possible to sufficiently contribute to carbon dioxide reduction.
- the exhaust gas supplied to the carbon dioxide separator is the exhaust gas generated in the combustion furnace, and the heat (exhaust gas) generated in the combustion furnace.
- the carbon dioxide is heated by heat. Therefore, the carbon dioxide reduction method according to the following embodiment includes a heat recovery process for recovering exhaust heat using carbon dioxide.
- FIG. 2 shows a carbon dioxide reduction system 10 according to one embodiment of the present invention.
- the carbon dioxide reduction system 10 includes a combustion furnace 11, a heat exchanger 20, a carbon dioxide (CO 2 ) separation device 30, a circulation path 40, and a reduction device 50.
- CO 2 carbon dioxide
- combustion furnace 11 in the carbon dioxide reduction system 10 examples include an incinerator that incinerates waste and the like.
- incinerator is not specifically limited, Well-known things, such as a stalker type incinerator, a fluidized bed type incinerator, a kiln type incinerator, a gasification melting furnace, are used.
- the incinerator may be a combination of two or more of these methods.
- the combustion furnace 11 is preferably a stalker type incinerator.
- the combustion furnace 11 is not limited to the one that incinerates the waste. If the exhaust gas generated by burning the combusted material contains carbon dioxide, the blast furnace or the like, such as coke, is discarded. You may burn things other than a thing.
- an incinerator that incinerates waste is preferable.
- FIG. 3 is a schematic diagram when the combustion furnace 11 is a stalker type incinerator.
- the stalker-type incinerator is generated by an input port 12 into which a combustible material such as waste is input, a stalker 13 that combusts the input combustible material, and combustion in the stalker 13. And an ash discharge port 14 through which incinerated ash is discharged.
- the stalker 13 is generally stepped or inclined, and the combustible material introduced into the upper stage of the stalker 13 from the inlet 12 is dried at the upper stage of the stalker 13 and then sent to the middle stage to be sent to the middle stage. The combustible material is burned. Next, the combusted combusted material is sent to the subsequent stage and is post-combusted at the subsequent stage to be incinerated ash and discharged from the ash discharge port 14. In addition, oxygen, air, or the like is sent to the stalker 13 from below the stalker 13 in order to burn the combustible.
- a combustion chamber 17 in which a combustible is combusted includes a lower combustion chamber 15 in which a stalker is provided, and a gas combustion chamber 16 connected above the lower combustion chamber 15.
- the generated gas is further burned in the gas combustion chamber 16.
- the gas further combusted in the gas combustion chamber 16 is discharged as exhaust gas to the outside of the combustion furnace 11 through a gas discharge path 18 connected to the gas combustion chamber 16 (that is, the combustion chamber 17), as will be described later.
- the exhaust gas contains carbon dioxide generated by the combustion of the combustible. Further, depending on the fuel system of the combustion furnace 11, for example, a synthesis gas containing carbon dioxide, carbon monoxide, and hydrogen may be used. In addition, the exhaust gas generally may contain nitrogen, oxygen, and water (water vapor) in addition to carbon dioxide, and may further contain carbon monoxide and hydrogen in addition to these.
- the exhaust gas is, for example, 2 to 30% by mass of carbon dioxide, 15 to 45% of carbon monoxide, 10 to 50% of hydrogen, 25 to 67% by mass of nitrogen, 0.5 to 20% by mass of oxygen, water May be contained in an amount of 5 to 40% by mass. Further, for example, carbon dioxide may be contained in an amount of 2.5 to 25 mass%, nitrogen may be contained in an amount of 35 to 70 mass%, oxygen may be contained in an amount of 4 to 18 mass%, and water may be contained in an amount of 10 to 35 mass%.
- the temperature T1 of the exhaust gas sent from the combustion chamber 17 to the gas discharge path 18 is a high temperature because it is a gas immediately after combustion. Specifically, for example, it is 200 to 1300 ° C., preferably 300 to 900 ° C.
- the combustion chamber 17 is composed of the lower combustion chamber 15 and the gas combustion chamber 16, but the gas incineration chamber 16 is omitted, and the lower combustion chamber 15 may be directly connected to the gas discharge path 18. Good.
- the combustion furnace is a stalker type incinerator has been described as an example. However, any combustion furnace may be used as long as a known combustion furnace including a combustion chamber and a gas discharge path is appropriately used. Good.
- the carbon dioxide reduction system 10 includes the heat exchanger 20 as described above.
- the heat exchanger 20 is attached to the gas discharge path 18.
- the heat exchanger 20 cools the exhaust gas inside the gas discharge path 18 sent from the combustion chamber 17.
- the medium passed through the heat exchanger 20 is carbon dioxide separated by the carbon dioxide separator 30 as described later.
- the carbon dioxide inside the heat exchanger 20 is heated by exchanging heat with the exhaust gas sent from the combustion chamber 17 and heated to a high temperature inside the gas discharge path 18.
- the heat exchanger 20 may have any form, and may be a tube type or a plate type, or a combination thereof.
- the tube type may be, for example, a heat transfer tube wound in a coil shape or a condenser shape, or may be a bundle of a plurality of tubes.
- the heat exchanger 20 may be provided inside the gas discharge path 18 as shown in FIG. 3 or may be provided along the outer peripheral surface of the gas discharge path 18. It is preferable to be provided.
- a heat exchanger (not shown) may be provided inside the gas discharge path 18, and the exhaust gas inside the gas discharge path 18 may be cooled by the heat exchanger.
- a heat exchanger may, for example, form part of the boiler and a medium inside the heat exchanger heated by the exhaust gas may be used to drive the boiler.
- the exhaust gas cooled by the heat exchanger 20 is discharged outside the combustion furnace 11 from the gas discharge path 18 and sent to the carbon dioxide separator 30 as shown in FIG.
- the exhaust gas may be sent directly to the carbon dioxide separator 30, but is preferably sent to the carbon dioxide separator 30 after various treatments.
- a cooling device 21 is provided on the path between the gas discharge path 18 and the carbon dioxide separator 30, and the exhaust gas cooled by the heat exchanger 20 is cooled by the cooling device 21. Further, it may be sent to the carbon dioxide separator 30 after being cooled.
- the cooling device 21 A heat exchanger, a cooling tower, etc. are mentioned. What is necessary is just to use what is generally used in an incinerator, such as a water spray type and an air cooling type, as a cooling tower.
- a purifier 22 is provided on the path between the gas discharge path 18 and the carbon dioxide separator 30, and the exhaust gas cooled by the heat exchanger 20 is cleaned by the purifier 22, and then carbon dioxide. It may be sent to the separation device 30.
- the cleaning device 22 include a dust removal device such as a bag filter, various adsorption filters such as an activated carbon filter, a nitrogen oxide removal device such as a denitration reaction tower, and an acid gas removal device. In these cleaning devices, dust, dioxin, Hydrogen chloride, sulfur oxides, nitrogen oxides, organic substances, etc. are removed.
- either one of the cooling device 21 and the cleaning device 22 may be provided, both may be provided, or both may not be provided.
- a processing device other than the cooling device 21 and the cleaning device 22 may be provided.
- each of the cooling device 21 and the cleaning device 22 may be singular or plural.
- the exhaust gas sent to the carbon dioxide separator 30 is cooled by the heat exchanger 20 as described above, and further cooled by the cooling device 21 as necessary as described above, so that the temperature becomes low.
- the carbon dioxide separator 30 may be sent to the carbon dioxide separator 30 without being cooled by the cooling device 21.
- the exhaust gas may be sent to the carbon dioxide separator 30 without being cooled by the heat exchanger 20 as described later, or without being cooled by any of the heat exchanger 20 and the cooling device 21.
- the temperature T2 of the exhaust gas sent to the carbon dioxide separator 30 is preferably, for example, 0 to 500 ° C., and preferably 5 to 450 ° C. By setting the temperature T2 within the above range, carbon dioxide can be appropriately separated from the exhaust gas without applying a load to the carbon dioxide separator 30.
- the exhaust gas discharged from the gas discharge path 18 may be sent to the carbon dioxide separator 30 in a state where pressure is applied by a blower (not shown) or the like.
- the carbon dioxide separator 30 separates carbon dioxide from the exhaust gas sent from the fuel furnace 11.
- the separation method of the carbon dioxide separator 30 is not particularly limited, and examples thereof include a chemical absorption method, a solid absorption method, and a membrane separation method.
- Examples of the device used in the chemical absorption method include a device that absorbs and separates carbon dioxide in exhaust gas into a solution made of an amine solution, a device that uses a pressure fluctuation adsorption method (PSA method), and the like.
- PSA method pressure fluctuation adsorption method
- the apparatus used in the solid absorption method include an apparatus in which a solid absorbent capable of absorbing carbon dioxide is supported on a porous support. Further, an apparatus using a TSA (Thermal Swing adsorption) method may be used.
- An apparatus used for the membrane separation method includes a carbon dioxide separation membrane.
- carbon dioxide separation membranes include PBI (polybenzimidazole) separation membranes.
- the PBI separation membrane has heat resistance and can separate carbon dioxide even with a relatively high temperature exhaust gas. Among these, it is preferable to use a carbon dioxide separation membrane.
- the carbon dioxide separation in the carbon dioxide separator 30 does not require strict isolation of carbon dioxide from exhaust gas, and is separated into a gas with an increased carbon dioxide content and other gases. Just do it.
- the content of carbon dioxide in the gas with an increased content of carbon dioxide is preferably 30 to 100% by mass, more preferably 55 to 99% by mass.
- the gas in which the content rate of carbon dioxide is increased will be described as simply separated carbon dioxide in order to simplify the description.
- the separated carbon dioxide is sent to the heat exchanger 20 through the circulation path 40 and used as a medium passing through the heat exchanger 20.
- the temperature T3 of the separated carbon dioxide is, for example, 0 to 550 ° C., preferably 5 to 450 ° C. Therefore, the separated carbon dioxide is heat-exchanged with the exhaust gas generated in the combustion furnace 11 and heated in the heat exchanger 20. Thereby, the heat energy generated by the combustion in the combustion furnace 11 is efficiently used.
- the carbon dioxide heated in the heat exchanger 20 is sent to the reduction device 50 through the circulation path 40.
- the exhaust gas generated in the combustion furnace 11 is cooled by carbon dioxide passing through the inside of the heat exchanger 20, and is discharged outside the combustion furnace 11 and sent to the carbon dioxide separator 30 as described above.
- the carbon dioxide separated in the carbon dioxide separator 30 may be sent to the reducing device 50 through the circulation path 40 in a state where pressure is applied by, for example, a blower.
- the pressure inside the circulation path 40 is, for example, preferably 101.35 to 999 kPa, and more preferably 101.50 to 500 kPa.
- Carbon dioxide is efficiently heat-exchanged in the heat exchanger 20 by applying pressure and passing through the circulation path 40.
- the carbon dioxide separated in the carbon dioxide separator 30 may be circulated so as to pass through the inside of the heat exchanger 20 described above.
- the inside of the heat exchanger used in the cooling device 21 described above may also be used. It may be circulated to pass through. That is, the separated carbon dioxide may be sent to the reduction device 50 through the inside of the heat exchanger of the cooling device 21 and the inside of the heat exchanger 20 in this order. According to such an aspect, the separated carbon dioxide is more efficiently heated by the thermal energy generated in the combustion furnace 11.
- the carbon dioxide heated by the heat exchanger 20 or the like is supplied to the reduction device 50.
- the temperature T4 of the carbon dioxide supplied to the reducing device 50 is preferably 200 to 900 ° C., and more preferably 300 to 700 ° C.
- the supplied carbon dioxide is reduced.
- the substance obtained by the reduction of carbon dioxide may be carbon monoxide or an organic substance such as methane, methanol, acetic acid, ethane, or ethylene, but carbon monoxide is preferred.
- the reduction device 50 may be reduced by an endothermic reaction, but is preferably a reverse shift reaction device that performs a reverse shift reaction, and more preferably a chemical looping reaction device.
- a gas component other than carbon dioxide is supplied to the reduction device 50.
- hydrogen gas is supplied. It is preferable.
- carbon monoxide and water are generated from carbon dioxide and hydrogen by a reverse shift reaction represented by the following formula (1).
- the hydrogen supplied to the reduction device 50 is preferably heated.
- the supplied hydrogen is preferably heated to, for example, 200 ° C. or higher.
- the temperature is preferably 200 to 700 ° C, more preferably 200 to 650 ° C.
- the heating method of hydrogen is not particularly limited, it is heated by passing it as a medium inside a heat exchanger attached to a combustion furnace (gas discharge passage) or inside a heat exchanger of the cooling device 21 as in the case of carbon dioxide. Alternatively, it may be heated by other methods.
- the reverse shift reaction apparatus is, for example, a reactor filled with a reverse shift reaction catalyst that promotes the reaction (1), and performs both reduction of carbon dioxide and oxidation of hydrogen within the same reactor. Is.
- the reverse shift reaction in which both the reduction of carbon dioxide and the oxidation of hydrogen are performed in the same reactor is also referred to as a one-pot reaction in this specification.
- carbon monoxide and hydrogen are passed through the same reactor, so that carbon monoxide and water (steam) are generated inside the reactor, and carbon monoxide and water (steam) are generated from the reactor.
- the gas temperature inside the reactor in the one-pot reaction is, for example, 300 to 1000 ° C., preferably 450 to 850 ° C.
- carbon dioxide, or carbon dioxide and hydrogen supplied to the reduction device 50 are heated in advance. Therefore, the reactor may not be heated, but may be heated when the gas temperature does not reach the above temperature.
- Examples of the reverse shift reaction catalyst used in the above one-pot reaction include those containing noble metal catalysts such as ruthenium (Ru) and rhodium (Ru), and metal catalysts such as Mn, Fe and Co. Can be mentioned.
- noble metal catalysts such as ruthenium (Ru) and rhodium (Ru)
- metal catalysts such as Mn, Fe and Co. Can be mentioned.
- the reverse shift reaction includes a chemical looping type reaction as a more preferable embodiment.
- the reaction apparatus (chemical looping reaction apparatus) used in the chemical looping type reaction includes first and second reactors, and the reaction represented by the above formula (1) is expressed as the first and second reactions.
- the first and second reactors are respectively divided. Specifically, each of the first and second reactors is filled with a metal oxide catalyst, and in one reactor, the first reaction for reducing carbon dioxide to carbon monoxide is performed in the other reactor.
- a second reaction for oxidizing hydrogen to water is performed.
- the first and second reactions are represented by the following reaction formulas (2) and (3), respectively.
- Carbon dioxide is supplied to one reactor, and hydrogen is supplied to the other reactor, whereby the first and second reactions are performed, respectively, and carbon monoxide from one reactor is supplied to the other reactor.
- a gas containing water water vapor
- Examples of the chemical looping type reactor include a reactor having a catalyst circulation path for circulating a metal oxide catalyst between two reactors.
- carbon dioxide is supplied to the first reactor and a reduction reaction is performed to discharge carbon monoxide, and hydrogen is supplied to the second reactor to perform an oxidation reaction and water is supplied. Discharged.
- the metal oxide catalyst oxidized in the first reactor is sent to the second reactor, and the metal oxide catalyst reduced in the second reactor is sent to the first reactor.
- the metal oxide catalyst is circulated. By circulating the metal oxide catalyst in this way, the metal oxide catalyst continues to be used for a long period of time without being deactivated even if the reduction and oxidation are repeated in each of the first and second reactors. It becomes possible.
- the chemical looping reactor may be of a type that switches the gas supplied to each reactor while fixing the catalyst.
- This type of chemical looping type reactor includes first and second reactors each filled with a metal oxide catalyst, and both the first and second reactors contain carbon dioxide and hydrogen. The supplied line is attached. Then, carbon dioxide is supplied to one reactor, a reduction reaction is performed in the reactor, carbon monoxide is discharged, and hydrogen is supplied to the other reactor, and the oxidation reaction is performed in the reactor. Water is discharged.
- the reactor to which carbon dioxide is supplied and the reactor to which hydrogen is supplied are appropriately switched over time, whereby the oxidation and reduction of the metal oxide catalyst are repeated in each reactor, and the metal oxide catalyst Can be used for a long time without being deactivated.
- the gas temperature inside the first reactor (that is, the reactor in which carbon dioxide is reduced) is, for example, 450 to 1000 ° C., preferably 500 to 850 ° C.
- the gas temperature inside the second reactor (that is, the reactor in which hydrogen is oxidized) is, for example, 300 to 800 ° C., preferably 300 to 750 ° C.
- the first and second reactors may not be heated, but may be heated when the gas temperatures of carbon dioxide and hydrogen supplied to them do not reach the above temperatures.
- a known metal oxide catalyst may be used.
- the oxide may be an oxide having a perovskite crystal structure.
- the carbon monoxide obtained by the reduction device 50 may be further converted into an organic substance or the like by microbial fermentation or the like. Further, the water obtained by the reducing device 50 is preferably liquefied and removed as appropriate.
- the exhaust gas generated in the combustion furnace is reduced by heating the carbon dioxide separated by the carbon dioxide separator using the thermal energy generated in the combustion furnace. Carbon dioxide contained in the gas can be efficiently reduced.
- heat generated in the combustion furnace can be recovered safely and efficiently by using carbon dioxide having a large heat capacity and inert as a heat recovery medium.
- the heat exchanger for cooling the exhaust gas containing carbon dioxide generated in the combustion furnace is provided, but the heat exchanger may not be provided, and the carbon dioxide generated in the combustion furnace
- the contained exhaust gas may be sent to the carbon dioxide separator without being cooled by the heat exchanger.
- a pipe or the like is passed through the combustion chamber, and the pipe is separated by the carbon dioxide separator. Carbon dioxide may be heated by passing carbon dioxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Treating Waste Gases (AREA)
Abstract
二酸化炭素還元システム1は、二酸化炭素を輸送する輸送経路4と、輸送経路4から導入される加熱された二酸化炭素を還元させる還元装置5とを備え、輸送経路4において、再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる。
Description
本発明は、二酸化炭素を還元するための二酸化炭素還元システム、及び二酸化炭素還元方法に関する。
従来、発電設備、製鉄設備などにおいて石油、石炭などの化石燃料を使用することで、二酸化炭素を含む大量の排気ガスが排出されている。また、焼却炉でも、廃棄物などの可燃物を焼却することで、二酸化炭素を含む大量の排気ガスが排出される。近年、地球温暖化を抑え、持続可能な社会を構築するために、二酸化炭素の排出量を抑えることが重要となってきており、二酸化炭素を含む排気ガスを有効活用する試みがなされている。
例えば、特許文献1では、逆シフト反応により排気ガス中の二酸化炭素及び水素の少なくとも一部を一酸化炭素と水蒸気に改質したうえで、改質されたガスを微生物発酵させることにより有機物質を生成することが開示されている。
例えば、特許文献1では、逆シフト反応により排気ガス中の二酸化炭素及び水素の少なくとも一部を一酸化炭素と水蒸気に改質したうえで、改質されたガスを微生物発酵させることにより有機物質を生成することが開示されている。
二酸化炭素は、熱エネルギーが低く、一酸化炭素などの有用物質に還元するには加熱が必要である。しかし、二酸化炭素を加熱することでも、通常は二酸化炭素が発生するので、二酸化炭素を有用物質に還元しても、二酸化炭素削減に寄与しにくい。
そこで、本発明は、二酸化炭素削減に寄与することが可能な二酸化炭素還元システム、及び二酸化炭素還元方法を提供することを課題とする。
本発明者らは、鋭意検討の結果、二酸化炭素を再生利用エネルギー又は排熱により加熱することで、二酸化炭素削減に寄与できること見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]~[12]に示すとおりである。
[1]二酸化炭素を還元させる還元装置と、
二酸化炭素を前記還元装置に輸送する輸送経路とを備え、
前記輸送経路において、再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる、二酸化炭素還元システム。
[2]前記再生利用エネルギーが、太陽光発電、風力発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱、および地中熱からなる群から選択される少なくとも1つを利用したものである、上記[1]に記載の二酸化炭素還元システム。
[3]前記排熱が、燃焼炉で発生した熱である、上記[1]又は[2]に記載の二酸化炭素還元システム。
[4]さらに二酸化炭素分離装置を備え、
前記輸送経路の二酸化炭素が、前記二酸化炭素分離装置により二酸化炭素を含む排気ガスから二酸化炭素を分離されたものである、上記[1]~[3]のいずれか1項に記載の二酸化炭素還元システム。
[5]さらに燃焼炉を備え、
前記排気ガスが前記燃焼炉で発生した排気ガスであり、
前記輸送経路が、二酸化炭素を前記燃焼炉で発生した熱により加熱されるように循環させる循環経路である上記[4]に記載の二酸化炭素還元システム。
[6]前記燃焼炉で発生した二酸化炭素を含む排気ガスを冷却する熱交換器を備え、
前記循環経路が、二酸化炭素を前記熱交換器に送り、
前記熱交換器において前記排気ガスと熱交換させて前記二酸化炭素を加熱させる、上記[5]に記載の二酸化炭素還元システム。
[7]前記燃焼炉が、被燃焼物が燃焼される燃焼室と、前記燃焼室に接続されるガス排出路とを備え、前記熱交換器が前記ガス排出路に取り付けられる上記[6]に記載の二酸化炭素還元システム。
[8]前記還元装置が、二酸化炭素を一酸化炭素に還元させる、上記[1]~[7]のいずれか1項に記載の二酸化炭素還元システム。
[9]前記還元装置が、二酸化炭素と水素から逆シフト反応により一酸化炭素と水を生成させる逆シフト反応装置である、上記[1]~[8]のいずれか1項に記載の二酸化炭素還元システム。
[10]前記還元装置が、ケミカルルーピング型反応装置である、上記[1]~[9]のいずれか1項に記載の二酸化炭素還元システム。
[11]再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる工程と、
前記加熱された二酸化炭素を還元させる工程と
を備える二酸化炭素還元方法。
[12]二酸化炭素を含む排気ガスから二酸化炭素を分離する工程をさらに含む、上記[11]に記載の二酸化炭素還元方法。
[1]二酸化炭素を還元させる還元装置と、
二酸化炭素を前記還元装置に輸送する輸送経路とを備え、
前記輸送経路において、再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる、二酸化炭素還元システム。
[2]前記再生利用エネルギーが、太陽光発電、風力発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱、および地中熱からなる群から選択される少なくとも1つを利用したものである、上記[1]に記載の二酸化炭素還元システム。
[3]前記排熱が、燃焼炉で発生した熱である、上記[1]又は[2]に記載の二酸化炭素還元システム。
[4]さらに二酸化炭素分離装置を備え、
前記輸送経路の二酸化炭素が、前記二酸化炭素分離装置により二酸化炭素を含む排気ガスから二酸化炭素を分離されたものである、上記[1]~[3]のいずれか1項に記載の二酸化炭素還元システム。
[5]さらに燃焼炉を備え、
前記排気ガスが前記燃焼炉で発生した排気ガスであり、
前記輸送経路が、二酸化炭素を前記燃焼炉で発生した熱により加熱されるように循環させる循環経路である上記[4]に記載の二酸化炭素還元システム。
[6]前記燃焼炉で発生した二酸化炭素を含む排気ガスを冷却する熱交換器を備え、
前記循環経路が、二酸化炭素を前記熱交換器に送り、
前記熱交換器において前記排気ガスと熱交換させて前記二酸化炭素を加熱させる、上記[5]に記載の二酸化炭素還元システム。
[7]前記燃焼炉が、被燃焼物が燃焼される燃焼室と、前記燃焼室に接続されるガス排出路とを備え、前記熱交換器が前記ガス排出路に取り付けられる上記[6]に記載の二酸化炭素還元システム。
[8]前記還元装置が、二酸化炭素を一酸化炭素に還元させる、上記[1]~[7]のいずれか1項に記載の二酸化炭素還元システム。
[9]前記還元装置が、二酸化炭素と水素から逆シフト反応により一酸化炭素と水を生成させる逆シフト反応装置である、上記[1]~[8]のいずれか1項に記載の二酸化炭素還元システム。
[10]前記還元装置が、ケミカルルーピング型反応装置である、上記[1]~[9]のいずれか1項に記載の二酸化炭素還元システム。
[11]再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる工程と、
前記加熱された二酸化炭素を還元させる工程と
を備える二酸化炭素還元方法。
[12]二酸化炭素を含む排気ガスから二酸化炭素を分離する工程をさらに含む、上記[11]に記載の二酸化炭素還元方法。
また、本発明は、さらに以下の[13]~[19]を提供する。
[13]燃焼炉と、
前記燃焼炉で発生した二酸化炭素を含む排気ガスから、二酸化炭素を分離する二酸化炭素分離装置と、
前記二酸化炭素分離装置で分離された二酸化炭素を、前記燃焼炉で発生した熱により加熱されるように循環させる循環経路と、
前記加熱された二酸化炭素を還元させる還元装置と
を備える二酸化炭素還元システム。
[14]前記還元装置が、二酸化炭素を一酸化炭素に還元させる上記[13]に記載の二酸化炭素還元システム。
[15]前記還元装置が、二酸化炭素と水素から逆シフト反応により一酸化炭素と水を生成させる逆シフト反応装置である上記[13]又は[14]に記載の二酸化炭素還元システム。
[16]前記還元装置が、ケミカルルーピング型反応装置である上記[13]~[15]のいずれか1項に記載の二酸化炭素還元システム。
[17]前記燃焼炉で発生した二酸化炭素を含む排気ガスを冷却する熱交換器を備え、
前記循環経路が、前記二酸化炭素分離装置で分離された二酸化炭素を前記熱交換器に送り、前記熱交換器において前記排気ガスと熱交換させて、前記二酸化炭素を加熱させる上記[13]~[16]のいずれか1項に記載の二酸化炭素還元システム。
[18]前記燃焼炉が、被燃焼物が燃焼される燃焼室と、前記燃焼室に接続されるガス排出路とを備え、前記熱交換器が前記ガス排出路に取り付けられる上記[17]に記載の二酸化炭素還元システム。
[19]燃焼炉で発生した二酸化炭素を含む排気ガスから二酸化炭素を分離する工程と、
前記分離された二酸化炭素を、前記焼却炉で発生した熱により加熱させる工程と、
前記加熱された二酸化炭素を還元させる工程と
を備える二酸化炭素還元方法。
[13]燃焼炉と、
前記燃焼炉で発生した二酸化炭素を含む排気ガスから、二酸化炭素を分離する二酸化炭素分離装置と、
前記二酸化炭素分離装置で分離された二酸化炭素を、前記燃焼炉で発生した熱により加熱されるように循環させる循環経路と、
前記加熱された二酸化炭素を還元させる還元装置と
を備える二酸化炭素還元システム。
[14]前記還元装置が、二酸化炭素を一酸化炭素に還元させる上記[13]に記載の二酸化炭素還元システム。
[15]前記還元装置が、二酸化炭素と水素から逆シフト反応により一酸化炭素と水を生成させる逆シフト反応装置である上記[13]又は[14]に記載の二酸化炭素還元システム。
[16]前記還元装置が、ケミカルルーピング型反応装置である上記[13]~[15]のいずれか1項に記載の二酸化炭素還元システム。
[17]前記燃焼炉で発生した二酸化炭素を含む排気ガスを冷却する熱交換器を備え、
前記循環経路が、前記二酸化炭素分離装置で分離された二酸化炭素を前記熱交換器に送り、前記熱交換器において前記排気ガスと熱交換させて、前記二酸化炭素を加熱させる上記[13]~[16]のいずれか1項に記載の二酸化炭素還元システム。
[18]前記燃焼炉が、被燃焼物が燃焼される燃焼室と、前記燃焼室に接続されるガス排出路とを備え、前記熱交換器が前記ガス排出路に取り付けられる上記[17]に記載の二酸化炭素還元システム。
[19]燃焼炉で発生した二酸化炭素を含む排気ガスから二酸化炭素を分離する工程と、
前記分離された二酸化炭素を、前記焼却炉で発生した熱により加熱させる工程と、
前記加熱された二酸化炭素を還元させる工程と
を備える二酸化炭素還元方法。
本発明では、二酸化炭素削減に寄与することが可能になる。
以下、図面を参照して、本発明の二酸化炭素還元システム、及び二酸化炭素還元方法を説明する。図1に示すように、本発明の二酸化炭素還元システム1は、輸送経路4と、還元装置5とを備える。
好ましい一実施形態において、本発明の二酸化炭素還元システム1は二酸化炭素分離装置3をさらに含む。二酸化炭素を含む排気ガスは、一般的に二酸化炭素濃度が十分に高いとはいえず、そのまま利用しても効率的に有用物質が生成できるとはいえない。しかし、二酸化炭素分離装置3により排気ガスに含まれる二酸化炭素を分離したうえで加熱し、その加熱された二酸化炭素を還元することで、排気ガスに含まれる二酸化炭素を効率よく還元を行うことができる。
以下、好ましい一実施形態について詳細に説明する。
好ましい一実施形態において、本発明の二酸化炭素還元システム1は二酸化炭素分離装置3をさらに含む。二酸化炭素を含む排気ガスは、一般的に二酸化炭素濃度が十分に高いとはいえず、そのまま利用しても効率的に有用物質が生成できるとはいえない。しかし、二酸化炭素分離装置3により排気ガスに含まれる二酸化炭素を分離したうえで加熱し、その加熱された二酸化炭素を還元することで、排気ガスに含まれる二酸化炭素を効率よく還元を行うことができる。
以下、好ましい一実施形態について詳細に説明する。
二酸化炭素(CO2)分離装置3は、二酸化炭素を含む排気ガスから二酸化炭素を分離する装置である。二酸化炭素を分離する装置は、特に限定されないが、分離方式としては、化学吸収法、固体吸収法、膜分離法などが挙げられ、その詳細は後述する一実施形態で説明する通りである。二酸化炭素を含む排気ガスは、特に限定されないが、燃焼炉から排出された排気ガス、セメント工場から排出された排気ガス、発電所(火力)から排出された排気ガス、製鉄所から排出された排気ガス、製油工場から排出された排気ガスなどが挙げられる。
輸送経路4は、二酸化炭素分離装置3で分離された二酸化炭素を還元装置5に輸送する経路である。分離された二酸化炭素は、輸送経路4において、加熱手段2により加熱される。輸送経路4にて二酸化炭素を加熱することで、加熱した二酸化炭素を還元装置5に少ない放熱ロスで導入することが可能になる。
輸送経路4は、二酸化炭素分離装置3と還元装置5を接続させる経路であれば特に限定されないが、パイプ、管などにより構成されるとよい。パイプはいかなる形状でもよく、例えばプレート状であってもよい。また、輸送経路4は、その経路の途中で容器、タンクなどを備え、例えば分離された二酸化炭素はその容器、タンクなどにおいて加熱手段2により加熱されてもよい。分離された二酸化炭素は、例えば上記容器、タンクなどにおいて一旦停留させてもよい。
なお、輸送経路4は、後述する実施形態で示すように循環経路であることが好ましい。循環経路とは、二酸化炭素分離装置3で分離された二酸化炭素を、排気ガスの発生源である燃焼炉などで発生した熱によって加熱されるように、循環させる経路である。
輸送経路4は、二酸化炭素分離装置3と還元装置5を接続させる経路であれば特に限定されないが、パイプ、管などにより構成されるとよい。パイプはいかなる形状でもよく、例えばプレート状であってもよい。また、輸送経路4は、その経路の途中で容器、タンクなどを備え、例えば分離された二酸化炭素はその容器、タンクなどにおいて加熱手段2により加熱されてもよい。分離された二酸化炭素は、例えば上記容器、タンクなどにおいて一旦停留させてもよい。
なお、輸送経路4は、後述する実施形態で示すように循環経路であることが好ましい。循環経路とは、二酸化炭素分離装置3で分離された二酸化炭素を、排気ガスの発生源である燃焼炉などで発生した熱によって加熱されるように、循環させる経路である。
加熱手段2は、再生利用エネルギーおよび排熱の少なくともいずれかにより、分離された二酸化炭素を加熱する。再生利用エネルギーは、太陽光発電、風力発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱、および地中熱から選択される少なくとも1つを利用したものである。また、排熱は、還元装置で発生する熱、還元装置以外の装置で発生する熱が挙げられる。前記還元装置以外の装置で発生する熱としては、例えば燃焼炉で発生した熱、セメント工場で発生した熱、発電所(火力)で発生した熱、製鉄所で発生した熱、製油工場で発生した熱などが挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
加熱手段2は、分離された二酸化炭素を輸送経路4において加熱できれば特に限定されないが、熱交換器により構成されることが好ましい。熱交換器は、例えば上記再生利用エネルギー又は排熱の少なくともいずれかによって加熱された加熱媒体と、輸送経路4において輸送される二酸化炭素とを熱交換させることで、二酸化炭素を加熱する。加熱媒体としては、液体、気体などの流体が挙げられる。
熱交換器は、特に限定されないが、輸送経路4の一部となる管、パイプなどを上記加熱媒体に接触させるもの、加熱媒体が内部に通される構造体の外周面に管、パイプなどを取り付けたもの、上記加熱媒体内部に管、パイプなどを配置させたものなどが挙げられる。
熱交換器は、特に限定されないが、輸送経路4の一部となる管、パイプなどを上記加熱媒体に接触させるもの、加熱媒体が内部に通される構造体の外周面に管、パイプなどを取り付けたもの、上記加熱媒体内部に管、パイプなどを配置させたものなどが挙げられる。
加熱手段2は、再生利用エネルギーや排熱などからなる熱線でもよく、熱線は、例えば、輸送経路4を構成するパイプ、管、容器、タンクなどに外周面から照射させるとよい。また、例えば、太陽光をパイプ、管、容器、タンクなどの外周面に直接照射させてもよい。加熱手段2は、各種発電により加熱されたヒーターでもよく、輸送経路4を構成する管、パイプ、容器、タンクの内部にヒーターを配置してもよく、これらの外部からヒーターで加熱してもよい。また、例えば、パイプ、管などの輸送経路4の少なくとも一部が地中に埋められることで地中熱により加熱されてもよい。
還元装置5は、輸送経路4から導入され、かつ加熱手段2によって加熱された二酸化炭素を還元する。還元装置は、二酸化炭素を還元できる限り特に限定されないが、後述するように逆シフト反応装置、メタン化装置、メタノール合成装置、エタノール製造装置、アクリル酸合成装置であることが好ましく、より好ましくは逆シフト反応装置であり、さらに好ましくはケミカルルーピング型反応装置である。還元装置5の詳細、還元装置5において行われる二酸化炭素還元の詳細、生成される物質などについては後述する通りである。
以上で説明したとおり、本発明では、二酸化炭素は、再生利用エネルギー又は排熱により加熱され、二酸化炭素の加熱のために、新たに二酸化炭素が排出されない。したがって、二酸化炭素削減に十分に寄与することが可能である。
以下、本発明について一実施形態を用いてより詳細に説明する。以下で説明する一実施形態に係る二酸化炭素還元システム及び二酸化炭素還元方法では、二酸化炭素分離装置に供給される排気ガスが燃焼炉で発生した排気ガスであり、かつ燃焼炉で発生した熱(排熱)により二酸化炭素が加熱される。したがって、以下の一実施形態に係る二酸化炭素還元方法は、二酸化炭素を利用して排熱を回収する熱回収プロセスも含む。
図2は、本発明の一実施形態に係る二酸化炭素還元システム10を示す。
二酸化炭素還元システム10は、燃焼炉11、熱交換器20、二酸化炭素(CO2)分離装置30、循環経路40、及び還元装置50を備える。
二酸化炭素還元システム10は、燃焼炉11、熱交換器20、二酸化炭素(CO2)分離装置30、循環経路40、及び還元装置50を備える。
(燃焼炉)
二酸化炭素還元システム10における燃焼炉11は、例えば廃棄物などを焼却する焼却炉が挙げられる。焼却炉の種類は、特に限定されないが、ストーカー式焼却炉、流動床式焼却炉、キルン式焼却炉、ガス化溶融炉など公知のものが使用される。焼却炉は、これらの方式の2以上を組み合わせたものであってもよい。燃焼炉11は、これらの中ではストーカー式焼却炉が好ましい。また、燃焼炉11は、廃棄物を焼却するものに限定されず、被燃焼物を燃焼させることで発生する排気ガスに、二酸化炭素が含有されるものであれば、高炉など、コークスなどの廃棄物以外を燃焼させるものであってもよい。燃焼炉11としては、廃棄物を焼却する焼却炉が好ましい。
二酸化炭素還元システム10における燃焼炉11は、例えば廃棄物などを焼却する焼却炉が挙げられる。焼却炉の種類は、特に限定されないが、ストーカー式焼却炉、流動床式焼却炉、キルン式焼却炉、ガス化溶融炉など公知のものが使用される。焼却炉は、これらの方式の2以上を組み合わせたものであってもよい。燃焼炉11は、これらの中ではストーカー式焼却炉が好ましい。また、燃焼炉11は、廃棄物を焼却するものに限定されず、被燃焼物を燃焼させることで発生する排気ガスに、二酸化炭素が含有されるものであれば、高炉など、コークスなどの廃棄物以外を燃焼させるものであってもよい。燃焼炉11としては、廃棄物を焼却する焼却炉が好ましい。
図3は、燃焼炉11がストーカー式焼却炉である場合の模式図である。ストーカー式焼却炉は、図3に示すように、廃棄物などの被燃焼物が投入される投入口12と、投入された被燃焼物を燃焼させるストーカー13と、ストーカー13における燃焼により生成された焼却灰が排出される灰排出口14とを備える。
ストーカー13は、一般的に、階段状又は傾斜状になっており、投入口12からストーカー13の上段に投入された被燃焼物は、ストーカー13の上段で乾燥され、その後中段に送られて中段で被燃焼物が燃焼される。次いで、燃焼された被燃焼物は、後段に送られて後段で後燃焼されて、焼却灰となって灰排出口14から排出される。また、ストーカー13には、被燃焼物を燃焼させるために、ストーカー13の下方などから酸素、空気などが送られる。
燃焼炉11において、被燃焼物が燃焼される燃焼室17は、ストーカーが設けられる下段燃焼室15と、下段燃焼室15の上方に接続されたガス燃焼室16とからなり、ストーカー13における燃焼により発生したガスは、ガス燃焼室16でさらに燃焼される。ガス燃焼室16でさらに燃焼されたガスは、排気ガスとして、ガス燃焼室16(すなわち、燃焼室17)に接続されるガス排出路18を通って燃焼炉11の外部に出され、後述するように二酸化炭素分離装置30に送られる。
排気ガスは、被燃焼物の燃焼により生じた二酸化炭素が含まれる。また、燃焼炉11の燃料方式によっては、例えば二酸化炭素、一酸化炭素、水素を含む合成ガスであってもよい。また、排気ガスには、一般的に二酸化炭素以外にも、窒素、酸素、及び水(水蒸気)が含まれてもよいし、これらに加えさらに一酸化炭素、水素が含まれてもよい。
排気ガスは、例えば、二酸化炭素が2~30質量%、一酸化炭素が15~45%、水素が10~50%、窒素が25~67質量%、酸素が0.5~20質量%、水が5~40質量%含まれるものであってもよい。また、例えば、二酸化炭素が2.5~25質量%、窒素が35~70質量%、酸素が4~18質量%、水が10~35質量%含まれるものであってもよい。
排気ガスは、例えば、二酸化炭素が2~30質量%、一酸化炭素が15~45%、水素が10~50%、窒素が25~67質量%、酸素が0.5~20質量%、水が5~40質量%含まれるものであってもよい。また、例えば、二酸化炭素が2.5~25質量%、窒素が35~70質量%、酸素が4~18質量%、水が10~35質量%含まれるものであってもよい。
ガス排出路18に燃焼室17から送られる排気ガスの温度T1は、燃焼直後のガスであるため高温である。具体的には、例えば200~1300℃、好ましくは300~900℃である。
なお、上記では燃焼室17は、下段燃焼室15とガス燃焼室16とからなる構成が示されるが、ガス焼却室16は省略され、下段燃焼室15がガス排出路18に直接接続されてもよい。また、以上では、燃焼炉がストーカー式焼却炉である場合を例に説明したが、燃焼炉は、いかなるものでもよく、燃焼室と、ガス排出路とを備える公知の燃焼炉を適宜使用すればよい。
なお、上記では燃焼室17は、下段燃焼室15とガス燃焼室16とからなる構成が示されるが、ガス焼却室16は省略され、下段燃焼室15がガス排出路18に直接接続されてもよい。また、以上では、燃焼炉がストーカー式焼却炉である場合を例に説明したが、燃焼炉は、いかなるものでもよく、燃焼室と、ガス排出路とを備える公知の燃焼炉を適宜使用すればよい。
(熱交換器)
二酸化炭素還元システム10は、上記のように熱交換器20を備える。本実施形態において熱交換器20はガス排出路18に取り付けられる。熱交換器20は、燃焼室17から送られた、ガス排出路18内部の排気ガスを冷却する。
なお、熱交換器20の内部に通される媒体は、後述するように、二酸化炭素分離装置30によって分離された二酸化炭素である。熱交換器20内部の二酸化炭素は、燃焼室17から送られた、ガス排出路18内部の高温にされた排気ガスと熱交換することで加熱される。
二酸化炭素還元システム10は、上記のように熱交換器20を備える。本実施形態において熱交換器20はガス排出路18に取り付けられる。熱交換器20は、燃焼室17から送られた、ガス排出路18内部の排気ガスを冷却する。
なお、熱交換器20の内部に通される媒体は、後述するように、二酸化炭素分離装置30によって分離された二酸化炭素である。熱交換器20内部の二酸化炭素は、燃焼室17から送られた、ガス排出路18内部の高温にされた排気ガスと熱交換することで加熱される。
熱交換器20は、いかなる形態でもよく、管式、プレート式のいずれでもよいし、これらを組み合わせたものでもよい。また、管式は、例えば、伝熱管がコイル状、コンデンサー状に巻かれたものでもよいし、複数の管が束ねられたものでもよい。また、熱交換器20は、図3に示すようにガス排出路18内部に設けられてもよいし、ガス排出路18の外周面に沿うように設けられてもよいが、ガス排出路18内部に設けられることが好ましい。
また、ガス排出路18内部には、熱交換器20以外にも熱交換器(図示しない)が設けられ、その熱交換器によってもガス排出路18内部の排気ガスが冷却されてもよい。そのような熱交換器は、例えば、ボイラーの一部を構成し、排気ガスによって加熱された熱交換器内部の媒体が、ボイラーを駆動させるために使用されてもよい。
また、ガス排出路18内部には、熱交換器20以外にも熱交換器(図示しない)が設けられ、その熱交換器によってもガス排出路18内部の排気ガスが冷却されてもよい。そのような熱交換器は、例えば、ボイラーの一部を構成し、排気ガスによって加熱された熱交換器内部の媒体が、ボイラーを駆動させるために使用されてもよい。
熱交換器20で冷却された排気ガスは、ガス排出路18から燃焼炉11の外部に出されて、図2に示すように、二酸化炭素分離装置30に送られる。ここで、排気ガスは、二酸化炭素分離装置30に直接送られてもよいが、様々な処理をした後、二酸化炭素分離装置30に送られることが好ましい。
例えば、図2に示すように、ガス排出路18と二酸化炭素分離装置30の間の経路上には、冷却装置21が設けられ、熱交換器20で冷却された排気ガスは、冷却装置21でさらに冷却された上で二酸化炭素分離装置30に送られてもよい。冷却装置21としては、特に限定されないが、熱交換器、冷却塔などが挙げられる。冷却塔は、水噴霧式、空冷式など、焼却炉で一般的に使用されるものを使用すればよい。
例えば、図2に示すように、ガス排出路18と二酸化炭素分離装置30の間の経路上には、冷却装置21が設けられ、熱交換器20で冷却された排気ガスは、冷却装置21でさらに冷却された上で二酸化炭素分離装置30に送られてもよい。冷却装置21としては、特に限定されないが、熱交換器、冷却塔などが挙げられる。冷却塔は、水噴霧式、空冷式など、焼却炉で一般的に使用されるものを使用すればよい。
また、ガス排出路18と二酸化炭素分離装置30の間の経路上には、清浄装置22が設けられ、熱交換器20で冷却された排気ガスは、清浄装置22で清浄された後、二酸化炭素分離装置30に送られるとよい。清浄装置22としては、バグフィルタなどの煤塵除去装置、活性炭フィルタなどの各種吸着フィルタ、脱硝反応塔などの窒素酸化物除去装置、酸性ガス除去装置などが挙げられ、これら清浄装置で煤塵、ダイオキシン、塩化水素、硫黄酸化物、窒素酸化物、有機物などを除去される。
なお、二酸化炭素還元システム10には、冷却装置21と清浄装置22のいずれか一方が設けられてもよいし、両方が設けられてもよいし、両方とも設けられなくてもよい。また、冷却装置21及び清浄装置22以外の処理装置が設けられてもよい。また、冷却装置21及び清浄装置22は、それぞれ単数であってもよいし、複数設けられてもよい。
なお、二酸化炭素還元システム10には、冷却装置21と清浄装置22のいずれか一方が設けられてもよいし、両方が設けられてもよいし、両方とも設けられなくてもよい。また、冷却装置21及び清浄装置22以外の処理装置が設けられてもよい。また、冷却装置21及び清浄装置22は、それぞれ単数であってもよいし、複数設けられてもよい。
二酸化炭素分離装置30に送られる排気ガスは、上記のように熱交換器20で冷却され、また、上記したように必要に応じてさらに冷却装置21により冷却されることで低温となる。ただし、耐熱性を有する二酸化炭素分離装置30など、二酸化炭素分離装置30の種類によっては、冷却装置21によって冷却されずに二酸化炭素分離装置30に送られてもよい。さらに、排気ガスは、後述するように熱交換器20によって冷却されず、又は熱交換器20及び冷却装置21のいずれによっても冷却されずに二酸化炭素分離装置30に送られてもよい。
二酸化炭素分離装置30に送られる排気ガスの温度T2は、例えば0~500℃であることが好ましく、好ましくは5~450℃である。温度T2を上記範囲内にすることで、二酸化炭素分離装置30に負荷をかけることなく、排気ガスから二酸化炭素を適切に分離することが可能になる。
なお、ガス排出路18から排出された排気ガスは、ブロワー(図示しない)などにより圧力が付与された状態で、二酸化炭素分離装置30に送られるとよい。
なお、ガス排出路18から排出された排気ガスは、ブロワー(図示しない)などにより圧力が付与された状態で、二酸化炭素分離装置30に送られるとよい。
(二酸化炭素分離装置)
二酸化炭素分離装置30は、燃料炉11から送られてきた排気ガスから二酸化炭素を分離する。二酸化炭素分離装置30の分離方式としては、特に限定されないが、化学吸収法、固体吸収法、膜分離法などが挙げられる。化学吸収法に使用する装置としては、例えば、排気ガス中の二酸化炭素をアミン溶液などからなる溶液に吸収させて分離する装置、圧力変動吸着法(PSA法)などを利用した装置などが挙げられる。固体吸収法に使用する装置としては、二酸化炭素を吸収可能な固体吸収剤を多孔質支持体に担持させたものなどが挙げられる。また、TSA(Thermal Swing adsorption)法を利用した装置などでもよい。膜分離法に使用する装置としては、二酸化炭素分離膜が挙げられる。二酸化炭素分離膜としては、PBI系(ポリペンゾイミダゾール系)の分離膜などが挙げられる。PBI系分離膜は耐熱性を有し、比較的高温の排気ガスでも二酸化炭素を分離することが可能である。これらの中では、二酸化炭素分離膜を使用することが好ましい。
二酸化炭素分離装置30は、燃料炉11から送られてきた排気ガスから二酸化炭素を分離する。二酸化炭素分離装置30の分離方式としては、特に限定されないが、化学吸収法、固体吸収法、膜分離法などが挙げられる。化学吸収法に使用する装置としては、例えば、排気ガス中の二酸化炭素をアミン溶液などからなる溶液に吸収させて分離する装置、圧力変動吸着法(PSA法)などを利用した装置などが挙げられる。固体吸収法に使用する装置としては、二酸化炭素を吸収可能な固体吸収剤を多孔質支持体に担持させたものなどが挙げられる。また、TSA(Thermal Swing adsorption)法を利用した装置などでもよい。膜分離法に使用する装置としては、二酸化炭素分離膜が挙げられる。二酸化炭素分離膜としては、PBI系(ポリペンゾイミダゾール系)の分離膜などが挙げられる。PBI系分離膜は耐熱性を有し、比較的高温の排気ガスでも二酸化炭素を分離することが可能である。これらの中では、二酸化炭素分離膜を使用することが好ましい。
本発明において二酸化炭素分離装置30における二酸化炭素の分離とは、厳密に排気ガスから二酸化炭素を単離する必要はなく、二酸化炭素の含有率が高められたガスと、その他のガスとに分離されればよい。二酸化炭素の含有率が高められたガスにおける二酸化炭素の含有率は、好ましくは30~100質量%、より好ましくは55~99質量%である。なお、本明細書では、このように二酸化炭素の含有率が高められたガスも、説明を簡略化するために、単に分離された二酸化炭素として説明する。
分離された二酸化炭素は、循環経路40により、上記した熱交換器20に送られ、熱交換器20内部を通る媒体として使用される。ここで、分離された二酸化炭素の温度T3は、例えば、0~550℃、好ましくは5~450℃である。したがって、熱交換器20内部において、分離された二酸化炭素は、燃焼炉11内部で発生した排気ガスと熱交換され加熱される。これにより、燃焼炉11内部の燃焼により発生した熱エネルギーが効率的に利用される。
熱交換器20において加熱された二酸化炭素は、循環経路40を通って、還元装置50に送られる。一方で、燃焼炉11で発生した排気ガスは、熱交換器20内部を通る二酸化炭素により冷却され、上記したとおり、燃焼炉11の外部に出されて、二酸化炭素分離装置30に送られる。
熱交換器20において加熱された二酸化炭素は、循環経路40を通って、還元装置50に送られる。一方で、燃焼炉11で発生した排気ガスは、熱交換器20内部を通る二酸化炭素により冷却され、上記したとおり、燃焼炉11の外部に出されて、二酸化炭素分離装置30に送られる。
二酸化炭素分離装置30において分離された二酸化炭素は、例えばブロワーなどにより、圧力が付与された状態で、循環経路40を通って、還元装置50に送られてもよい。ここで、循環経路40の内部の圧力は、例えば、101.35~999kPaが好ましく、101.50~500kPaがより好ましい。二酸化炭素は、圧力を付与したうえで循環経路40を通すことで、熱交換器20において効率良く熱交換される。
なお、二酸化炭素分離装置30において分離された二酸化炭素は、上記した熱交換器20内部を通るように循環させられればよいが、例えば、上記した冷却装置21に使用される熱交換器の内部も通るように循環させられてもよい。すなわち、分離された二酸化炭素は、冷却装置21の熱交換器内部、及び熱交換器20内部をこの順に通って、還元装置50に送られてもよい。このような態様によれば、分離された二酸化炭素は、燃焼炉11で発生した熱エネルギーによってより効率的に加熱される。
(還元装置)
上記のように還元装置50には、熱交換器20などで加熱された二酸化炭素が供給される。ここで、還元装置50に供給される二酸化炭素の温度T4は、200~900℃が好ましく、300~700℃がより好ましい。二酸化炭素の温度T4を上記範囲内とすることで、還元装置50における追加的な加熱を少なくすることができ、また、加熱をしなくても、二酸化炭素を還元することが可能になる。
上記のように還元装置50には、熱交換器20などで加熱された二酸化炭素が供給される。ここで、還元装置50に供給される二酸化炭素の温度T4は、200~900℃が好ましく、300~700℃がより好ましい。二酸化炭素の温度T4を上記範囲内とすることで、還元装置50における追加的な加熱を少なくすることができ、また、加熱をしなくても、二酸化炭素を還元することが可能になる。
還元装置50では、供給された二酸化炭素が還元される。ここで、二酸化炭素の還元により得られる物質は、一酸化炭素でもよいし、メタン、メタノール、酢酸、エタン、エチレンなどの有機物質でもよいが、一酸化炭素が好ましい。還元装置50は、吸熱反応により還元を行うとよいが、好ましくは逆シフト反応を行う逆シフト反応装置であることが好ましく、より好ましくはケミカルルーピング型反応装置である。
また、二酸化炭素の還元によって上記物質を得るために、還元装置50には二酸化炭素以外のガス成分が供給されることが好ましく、具体的には、図2に示すように、水素ガスが供給されることが好ましい。水素ガスが供給されると、以下の式(1)で表される逆シフト反応により、二酸化炭素と水素から、一酸化炭素と水が生成される。
CO2 + H2 → CO +H2O (1)
CO2 + H2 → CO +H2O (1)
還元装置50に供給される水素は、加熱されていることが好ましい。具体的には、供給される水素は、例えば、200℃以上に加熱されているとよいが、後述する1ポット型反応である場合には、例えば300~900℃以上、より好ましくは350~750℃に加熱されるとよい。また、ケミカルルーピング反応では、好ましくは200~700℃、より好ましくは200~650℃である。
水素の加熱方法は、特に限定されないが、二酸化炭素と同様に、燃焼炉(ガス排出路)に取り付けられた熱交換器の内部や、冷却装置21の熱交換器内部に媒体として通すことで加熱してもよいし、他の方法で加熱してもよい。
水素の加熱方法は、特に限定されないが、二酸化炭素と同様に、燃焼炉(ガス排出路)に取り付けられた熱交換器の内部や、冷却装置21の熱交換器内部に媒体として通すことで加熱してもよいし、他の方法で加熱してもよい。
逆シフト反応装置は、例えば、上記(1)の反応を促進させる逆シフト反応用触媒を内部に充填した反応器であり、同じ反応器内部で二酸化炭素の還元と、水素の酸化の両方を行うものである。なお、このように同じ反応器内部で二酸化炭素の還元と、水素の酸化の両方を行う逆シフト反応は、本明細書では1ポット型反応ともいう。
1ポット型反応では、二酸化炭素と水素を、同じ反応器内部を通過させることで、その反応器内部で一酸化炭素と水(水蒸気)が生成され、その反応器から一酸化炭素と水(水蒸気)が排出される。
1ポット型反応における反応器内部のガス温度は、例えば、300~1000℃、好ましくは450~850℃である。上記のように、還元装置50に供給される二酸化炭素、又は二酸化炭素及び水素は予め加熱される。したがって、反応器は、加熱されなくてもよいが、ガス温度が上記温度に到達しない場合などには、加熱されてもよい。
1ポット型反応では、二酸化炭素と水素を、同じ反応器内部を通過させることで、その反応器内部で一酸化炭素と水(水蒸気)が生成され、その反応器から一酸化炭素と水(水蒸気)が排出される。
1ポット型反応における反応器内部のガス温度は、例えば、300~1000℃、好ましくは450~850℃である。上記のように、還元装置50に供給される二酸化炭素、又は二酸化炭素及び水素は予め加熱される。したがって、反応器は、加熱されなくてもよいが、ガス温度が上記温度に到達しない場合などには、加熱されてもよい。
上記した1ポット型反応に使用される逆シフト用反応用触媒としては、ルテニウム(Ru)やロジウム(Ru),等の貴金属触媒、Mn、Fe、Co,などの金属触媒を含有したものなどが挙げられる。
また、逆シフト反応は、より好ましい態様として、ケミカルルーピング型反応がある。ケミカルルーピング型反応で使用する反応装置(ケミカルルーピング型反応装置)は、第1及び第2の反応器を備え、上記した式(1)で表される反応が、第1及び第2の反応として、第1及び第2の反応器それぞれに分割して行われる。具体的には、第1及び第2の反応器それぞれに金属酸化物触媒を充填して、一方の反応器にて二酸化炭素を一酸化炭素に還元する第1の反応を、他方の反応器にて水素を水に酸化する第2の反応を行う。上記第1及び第2の反応は、それぞれ、以下の式(2)、(3)の反応式で表される。
一方の反応器には二酸化炭素が、他方の反応器には水素が供給されることで、それぞれ第1及び第2の反応が行われ、一方の反応器から一酸化炭素が、他方の反応器から水(水蒸気)を含むガスが排出される。
一方の反応器には二酸化炭素が、他方の反応器には水素が供給されることで、それぞれ第1及び第2の反応が行われ、一方の反応器から一酸化炭素が、他方の反応器から水(水蒸気)を含むガスが排出される。
CO2(ガス) + MOx-1(固体) →CO(ガス) + MOx(固体) (2)
H2(ガス) + MOx(固体) →H2O(ガス)+MOx-1(固体) (3)
(なお、式(2)、(3)において、Mは金属を表し、xは正の整数を表す。)
H2(ガス) + MOx(固体) →H2O(ガス)+MOx-1(固体) (3)
(なお、式(2)、(3)において、Mは金属を表し、xは正の整数を表す。)
ケミカルルーピング型反応装置としては、金属酸化物触媒を2つの反応器間で循環させる触媒循環経路を有するものが挙げられる。このケミカルルーピング型反応装置では、第1の反応器に二酸化炭素が供給され還元反応が行われ一酸化炭素が排出されるとともに、第2の反応器に水素が供給され酸化反応が行われ水が排出される。また、第1の反応器で酸化させた金属酸化物触媒が第2の反応器に送られ、かつ第2の反応器で還元された金属酸化物触媒が第1の反応器に送られることで、金属酸化物触媒が循環させられる。このように金属酸化物触媒を循環させることで、第1及び第2の反応器それぞれで還元及び酸化それぞれを繰り返し行っても、金属酸化物触媒は、失活することなく、長期間使用し続けることが可能になる。
また、ケミカルルーピング型反応装置としては、触媒を固定して各反応器に供給されるガスを切り替えるタイプのものでもよい。このタイプのケミカルルーピング型反応装置は、それぞれに金属酸化物触媒が充填された第1及び第2の反応器を備え、第1及び第2の反応器には、いずれも二酸化炭素、及び水素が供給されるラインが取り付けられる。そして、二酸化炭素が一方の反応器に供給され、その反応器で還元反応が行われ、一酸化炭素が排出されるとともに、水素が他方の反応器に供給され、その反応器で酸化反応が行われ、水が排出される。
二酸化炭素が供給される反応器、及び水素が供給される反応器が、時間経過と共に適宜切り替えられ、それにより、各反応器では、金属酸化物触媒の酸化と還元が繰りされ、金属酸化物触媒は、失活することなく、長期間使用し続けることが可能になる。
二酸化炭素が供給される反応器、及び水素が供給される反応器が、時間経過と共に適宜切り替えられ、それにより、各反応器では、金属酸化物触媒の酸化と還元が繰りされ、金属酸化物触媒は、失活することなく、長期間使用し続けることが可能になる。
ケミカルルーピング型反応装置において、第1の反応器(すなわち、二酸化炭素の還元が行われる反応器)の内部のガス温度は、例えば450~1000℃、好ましくは500~850℃である。また、第2の反応器(すなわち、水素の酸化が行われる反応器)の内部のガス温度は、例えば300~800℃、好ましくは300~750℃である。
第1及び第2の反応器は、加熱されなくてもよいが、これらに供給される二酸化炭素、及び水素のガス温度が上記温度に到達しない場合などには、加熱されてもよい。
第1及び第2の反応器は、加熱されなくてもよいが、これらに供給される二酸化炭素、及び水素のガス温度が上記温度に到達しない場合などには、加熱されてもよい。
ケミカルルーピング型反応装置における金属酸化物触媒は、公知の金属酸化物触媒が使用されればよいが、例えば、La、Sr、Co、Ce、Zr、Y及びFeから選択される1種又は2種以上の金属の酸化物などが挙げられる。酸化物としては、ペロブスカイト型の結晶構造を有する酸化物などであってもよい。
還元装置50で得られた一酸化炭素は、さらに微生物発酵などにより有機物質などに変換されてもよい。また、還元装置50で得られた水は、適宜液化などされて除去されるとよい。
以上のように、本実施形態によれば、二酸化炭素分離装置で分離された二酸化炭素を、燃焼炉で生じた熱エネルギーを利用して加熱した上で還元することで、燃焼炉で発生した排気ガスに含まれる二酸化炭素を効率的に還元することができる。また、本実施形態では、熱容量が大きく、かつ不活性である二酸化炭素を熱回収媒体としたことにより、燃焼炉で発生した熱を安全かつ効率的に回収することができる。
なお、以上の実施形態では、燃焼炉で発生した二酸化炭素を含む排気ガスを冷却する熱交換器が設けられたが、熱交換器は設けられなくてもよく、燃焼炉で発生した二酸化炭素を含む排気ガスは、熱交換器で冷却されずに二酸化炭素分離装置に送られてもよい。
ただし、この場合も、分離された二酸化炭素は、燃焼炉で発生した熱により加熱される必要があるので、例えば、燃焼室にパイプなどを通し、そのパイプ中に二酸化炭素分離装置で分離された二酸化炭素を通過させることで二酸化炭素を加熱するとよい。
ただし、この場合も、分離された二酸化炭素は、燃焼炉で発生した熱により加熱される必要があるので、例えば、燃焼室にパイプなどを通し、そのパイプ中に二酸化炭素分離装置で分離された二酸化炭素を通過させることで二酸化炭素を加熱するとよい。
1 二酸化炭素還元システム
2 加熱手段
3 二酸化炭素分離装置
4 輸送経路
5 還元装置
10 二酸化炭素還元システム
11 燃焼炉
12 投入口
13 ストーカー
14 灰排出口
15 下段燃焼室
16 ガス燃焼室
17 燃焼室
18 ガス排出路
20 熱交換器
21 冷却装置
22 清浄装置
30 二酸化炭素分離装置
40 循環経路
50 還元装置
2 加熱手段
3 二酸化炭素分離装置
4 輸送経路
5 還元装置
10 二酸化炭素還元システム
11 燃焼炉
12 投入口
13 ストーカー
14 灰排出口
15 下段燃焼室
16 ガス燃焼室
17 燃焼室
18 ガス排出路
20 熱交換器
21 冷却装置
22 清浄装置
30 二酸化炭素分離装置
40 循環経路
50 還元装置
Claims (12)
- 二酸化炭素を還元させる還元装置と、
二酸化炭素を前記還元装置に輸送する輸送経路とを備え、
前記輸送経路において、再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる、二酸化炭素還元システム。 - 前記再生利用エネルギーが、太陽光発電、風力発電、水力発電、波力発電、潮力発電、バイオマス発電、地熱発電、太陽熱、および地中熱からなる群から選択される少なくとも1つを利用したものである、請求項1に記載の二酸化炭素還元システム。
- 前記排熱が、燃焼炉で発生した熱である、請求項1又は2に記載の二酸化炭素還元システム。
- さらに二酸化炭素分離装置を備え、
前記輸送経路の二酸化炭素が、前記二酸化炭素分離装置により二酸化炭素を含む排気ガスから二酸化炭素を分離されたものである、請求項1~3のいずれか1項に記載の二酸化炭素還元システム。 - さらに燃焼炉を備え、
前記排気ガスが前記燃焼炉で発生した排気ガスであり、
前記輸送経路が、二酸化炭素を前記燃焼炉で発生した熱により加熱されるように循環させる循環経路である請求項4に記載の二酸化炭素還元システム。 - 前記燃焼炉で発生した二酸化炭素を含む排気ガスを冷却する熱交換器を備え、
前記循環経路が、二酸化炭素を前記熱交換器に送り、
前記熱交換器において前記排気ガスと熱交換させて前記二酸化炭素を加熱させる、請求項5に記載の二酸化炭素還元システム。 - 前記燃焼炉が、被燃焼物が燃焼される燃焼室と、前記燃焼室に接続されるガス排出路とを備え、前記熱交換器が前記ガス排出路に取り付けられる請求項6に記載の二酸化炭素還元システム。
- 前記還元装置が、二酸化炭素を一酸化炭素に還元させる、請求項1~7のいずれか1項に記載の二酸化炭素還元システム。
- 前記還元装置が、二酸化炭素と水素から逆シフト反応により一酸化炭素と水を生成させる逆シフト反応装置である、請求項1~8のいずれか1項に記載の二酸化炭素還元システム。
- 前記還元装置が、ケミカルルーピング型反応装置である、請求項1~9のいずれか1項に記載の二酸化炭素還元システム。
- 再生利用エネルギーおよび排熱の少なくともいずれかにより二酸化炭素を加熱させる工程と、
前記加熱された二酸化炭素を還元させる工程と
を備える二酸化炭素還元方法。 - 二酸化炭素を含む排気ガスから二酸化炭素を分離する工程をさらに含む、請求項11に記載の二酸化炭素還元方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020501071A JP7332571B2 (ja) | 2018-02-22 | 2019-02-22 | 二酸化炭素還元システム、及び二酸化炭素還元方法 |
CN201980013481.0A CN111712461A (zh) | 2018-02-22 | 2019-02-22 | 二氧化碳还原系统和二氧化碳还原方法 |
EP19757980.8A EP3757064A4 (en) | 2018-02-22 | 2019-02-22 | CARBON DIOXIDE REDUCTION SYSTEM AND CARBON DIOXIDE REDUCTION METHOD |
US16/970,446 US11554960B2 (en) | 2018-02-22 | 2019-02-22 | Carbon dioxide reduction system and carbon dioxide reduction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-029625 | 2018-02-22 | ||
JP2018029625 | 2018-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163968A1 true WO2019163968A1 (ja) | 2019-08-29 |
Family
ID=67688102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/006899 WO2019163968A1 (ja) | 2018-02-22 | 2019-02-22 | 二酸化炭素還元システム、及び二酸化炭素還元方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11554960B2 (ja) |
EP (1) | EP3757064A4 (ja) |
JP (1) | JP7332571B2 (ja) |
CN (1) | CN111712461A (ja) |
WO (1) | WO2019163968A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021054706A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054705A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054704A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054707A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021075447A (ja) * | 2019-09-24 | 2021-05-20 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2021157350A1 (ja) | 2020-02-05 | 2021-08-12 | Eneos株式会社 | 一酸化炭素の生成方法、前駆体の製造方法およびケミカルルーピングシステム用材料 |
WO2022029885A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029884A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029886A1 (ja) | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システム、製鉄システム、化学品製造システムおよびガス製造方法 |
WO2022029881A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029887A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | 製鉄システムおよび製鉄方法 |
WO2022029883A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029882A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022149536A1 (ja) | 2021-01-05 | 2022-07-14 | 積水化学工業株式会社 | ガス製造装置およびガス製造方法 |
JP2023025483A (ja) * | 2021-08-10 | 2023-02-22 | 大阪瓦斯株式会社 | 高発熱量燃料ガスの製造方法及び高発熱量燃料ガスの製造設備 |
JP2023529538A (ja) * | 2020-05-04 | 2023-07-11 | インフィニウム テクノロジー,エルエルシー | 逆水性ガスシフト触媒反応器システム |
WO2023140073A1 (ja) * | 2022-01-18 | 2023-07-27 | Eneos株式会社 | ケミカルルーピングシステム、ケミカルルーピングシステム用材料およびケミカルルーピングシステム用材料の製造方法 |
WO2023214564A1 (ja) * | 2022-05-02 | 2023-11-09 | 積水化学工業株式会社 | 炭素有価物および炭素材料の製造装置、製造システムおよび製造方法 |
WO2024004464A1 (ja) | 2022-06-30 | 2024-01-04 | 三菱瓦斯化学株式会社 | メタノール製造方法及びメタノール製造装置 |
EP4194400A4 (en) * | 2020-08-04 | 2024-05-15 | Sekisui Chemical Co., Ltd. | GAS MANUFACTURING DEVICE, GAS MANUFACTURING SYSTEM, AND GAS MANUFACTURING METHOD |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102575542B1 (ko) * | 2023-03-24 | 2023-09-07 | 케이파워에너지 주식회사 | 바이오매스 축분 고체연료 활용 열에너지 및 전기 공급 관리 시스템 |
GB202313767D0 (en) * | 2023-09-08 | 2023-10-25 | Univ Birmingham | Decarbonisation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121118A (ja) * | 1997-07-02 | 1999-01-26 | Mitsubishi Kakoki Kaisha Ltd | 高純度一酸化炭素の製造方法 |
JP2012101986A (ja) * | 2010-11-12 | 2012-05-31 | Fujifilm Corp | Coの製造方法及びその装置 |
JP2014167146A (ja) * | 2013-02-28 | 2014-09-11 | Jfe Steel Corp | 二酸化炭素ガスの電気分解方法。 |
JP2015505292A (ja) * | 2011-12-20 | 2015-02-19 | ツェーツェーペー テヒノロジー ゲーエムベーハー | 二酸化炭素の一酸化炭素への変換方法及び装置 |
JP2015077120A (ja) | 2013-09-13 | 2015-04-23 | 積水化学工業株式会社 | 有機物質の製造方法及び有機物質の製造装置 |
US20160332150A1 (en) * | 2015-05-11 | 2016-11-17 | University Of Wyoming | Catalytic effects of oxygen carrier based chemicl-looping reforming of ch4 with co2 |
WO2017111415A1 (ko) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | 열풍로를 이용한 이산화탄소 분해 및 재활용 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2505261A4 (en) | 2009-11-27 | 2013-05-15 | Murata Manufacturing Co | CATALYTIC ANTI-CONVERSION REACTION CATALYST, AND PROCESS FOR PRODUCTION OF SYNTHETIC GAS USING THE CATALYST |
JP2012036029A (ja) * | 2010-08-04 | 2012-02-23 | Mitsui Mining & Smelting Co Ltd | 製鉄所における二酸化炭素からの一酸化炭素への変換システム |
CN103097289B (zh) | 2010-10-26 | 2016-01-06 | 三井金属矿业株式会社 | 一氧化碳的制造方法及制造装置 |
US9364791B1 (en) | 2015-02-12 | 2016-06-14 | Gas Technology Institute | Carbon dioxide decomposition |
JP6744242B2 (ja) | 2017-03-10 | 2020-08-19 | 株式会社東芝 | 化学反応システム |
-
2019
- 2019-02-22 CN CN201980013481.0A patent/CN111712461A/zh active Pending
- 2019-02-22 JP JP2020501071A patent/JP7332571B2/ja active Active
- 2019-02-22 WO PCT/JP2019/006899 patent/WO2019163968A1/ja unknown
- 2019-02-22 US US16/970,446 patent/US11554960B2/en active Active
- 2019-02-22 EP EP19757980.8A patent/EP3757064A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121118A (ja) * | 1997-07-02 | 1999-01-26 | Mitsubishi Kakoki Kaisha Ltd | 高純度一酸化炭素の製造方法 |
JP2012101986A (ja) * | 2010-11-12 | 2012-05-31 | Fujifilm Corp | Coの製造方法及びその装置 |
JP2015505292A (ja) * | 2011-12-20 | 2015-02-19 | ツェーツェーペー テヒノロジー ゲーエムベーハー | 二酸化炭素の一酸化炭素への変換方法及び装置 |
JP2014167146A (ja) * | 2013-02-28 | 2014-09-11 | Jfe Steel Corp | 二酸化炭素ガスの電気分解方法。 |
JP2015077120A (ja) | 2013-09-13 | 2015-04-23 | 積水化学工業株式会社 | 有機物質の製造方法及び有機物質の製造装置 |
US20160332150A1 (en) * | 2015-05-11 | 2016-11-17 | University Of Wyoming | Catalytic effects of oxygen carrier based chemicl-looping reforming of ch4 with co2 |
WO2017111415A1 (ko) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | 열풍로를 이용한 이산화탄소 분해 및 재활용 방법 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7616839B2 (ja) | 2019-09-24 | 2025-01-17 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP7497242B2 (ja) | 2019-09-24 | 2024-06-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054704A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054707A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021075447A (ja) * | 2019-09-24 | 2021-05-20 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021075776A (ja) * | 2019-09-24 | 2021-05-20 | 積水化学工業株式会社 | 製鉄システムおよび製鉄方法 |
JP7616838B2 (ja) | 2019-09-24 | 2025-01-17 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP7497243B2 (ja) | 2019-09-24 | 2024-06-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054705A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP2021054706A (ja) * | 2019-09-24 | 2021-04-08 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
JP7616840B2 (ja) | 2019-09-24 | 2025-01-17 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2021157350A1 (ja) | 2020-02-05 | 2021-08-12 | Eneos株式会社 | 一酸化炭素の生成方法、前駆体の製造方法およびケミカルルーピングシステム用材料 |
JP2021123519A (ja) * | 2020-02-05 | 2021-08-30 | Eneos株式会社 | 一酸化炭素の生成方法、前駆体の製造方法およびケミカルルーピングシステム用材料 |
JP7491505B2 (ja) | 2020-02-05 | 2024-05-28 | Eneos株式会社 | 一酸化炭素の生成方法、前駆体の製造方法およびケミカルルーピングシステム用材料 |
JP2023529538A (ja) * | 2020-05-04 | 2023-07-11 | インフィニウム テクノロジー,エルエルシー | 逆水性ガスシフト触媒反応器システム |
JP7623399B2 (ja) | 2020-05-04 | 2025-01-28 | インフィニウム テクノロジー,エルエルシー | 逆水性ガスシフト触媒反応器システム |
JP7612695B2 (ja) | 2020-08-04 | 2025-01-14 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029883A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029882A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029885A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029884A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022029886A1 (ja) | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システム、製鉄システム、化学品製造システムおよびガス製造方法 |
EP4194401A4 (en) * | 2020-08-04 | 2024-05-15 | Sekisui Chemical Co., Ltd. | GAS MANUFACTURING APPARATUS, GAS MANUFACTURING SYSTEM, AND GAS MANUFACTURING METHOD |
EP4194398A4 (en) * | 2020-08-04 | 2024-05-15 | Sekisui Chemical Co., Ltd. | GAS PRODUCTION DEVICE, GAS PRODUCTION SYSTEM AND GAS PRODUCTION METHOD |
EP4194400A4 (en) * | 2020-08-04 | 2024-05-15 | Sekisui Chemical Co., Ltd. | GAS MANUFACTURING DEVICE, GAS MANUFACTURING SYSTEM, AND GAS MANUFACTURING METHOD |
EP4194397A4 (en) * | 2020-08-04 | 2024-05-15 | Sekisui Chemical Co., Ltd. | GAS PRODUCTION DEVICE, GAS PRODUCTION SYSTEM AND GAS PRODUCTION METHOD |
JPWO2022029883A1 (ja) * | 2020-08-04 | 2022-02-10 | ||
WO2022029887A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | 製鉄システムおよび製鉄方法 |
EP4194399A4 (en) * | 2020-08-04 | 2024-05-15 | Sekisui Chemical Co., Ltd. | Gas production apparatus, gas production system, and gas production method |
WO2022029881A1 (ja) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | ガス製造装置、ガス製造システムおよびガス製造方法 |
WO2022149536A1 (ja) | 2021-01-05 | 2022-07-14 | 積水化学工業株式会社 | ガス製造装置およびガス製造方法 |
JP2023025483A (ja) * | 2021-08-10 | 2023-02-22 | 大阪瓦斯株式会社 | 高発熱量燃料ガスの製造方法及び高発熱量燃料ガスの製造設備 |
JP7692305B2 (ja) | 2021-08-10 | 2025-06-13 | 大阪瓦斯株式会社 | 高発熱量燃料ガスの製造方法及び高発熱量燃料ガスの製造設備 |
WO2023140073A1 (ja) * | 2022-01-18 | 2023-07-27 | Eneos株式会社 | ケミカルルーピングシステム、ケミカルルーピングシステム用材料およびケミカルルーピングシステム用材料の製造方法 |
WO2023214564A1 (ja) * | 2022-05-02 | 2023-11-09 | 積水化学工業株式会社 | 炭素有価物および炭素材料の製造装置、製造システムおよび製造方法 |
WO2024004464A1 (ja) | 2022-06-30 | 2024-01-04 | 三菱瓦斯化学株式会社 | メタノール製造方法及びメタノール製造装置 |
KR20250026759A (ko) | 2022-06-30 | 2025-02-25 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 메탄올 제조 방법 및 메탄올 제조 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP3757064A1 (en) | 2020-12-30 |
EP3757064A4 (en) | 2021-12-01 |
CN111712461A (zh) | 2020-09-25 |
JPWO2019163968A1 (ja) | 2021-02-12 |
US20210009428A1 (en) | 2021-01-14 |
JP7332571B2 (ja) | 2023-08-23 |
US11554960B2 (en) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019163968A1 (ja) | 二酸化炭素還元システム、及び二酸化炭素還元方法 | |
JP4413334B2 (ja) | 再生式二酸化炭素分離装置及び二酸化炭素分離システム | |
JP2008144136A (ja) | 非混合式燃料プロセッサを使用するシステムおよび方法 | |
JP2008163944A (ja) | 部分的co2回収式サイクルプラント用の改質システム | |
CN101384349A (zh) | 用于除去可燃的挥发性污染物的微通道装置 | |
WO2015033583A1 (ja) | 水素及び合成天然ガスの製造装置及び製造方法 | |
JP7627332B2 (ja) | 水素及び炭化水素燃料を製造するためのメタン改質装置 | |
JP6642924B2 (ja) | 水素ステーションシステム | |
JP4354788B2 (ja) | ガス処理装置 | |
JP5535732B2 (ja) | ボイラ設備 | |
CN102502943A (zh) | 蓄热式燃烧超临界水气化氧化装置 | |
WO2011105176A1 (ja) | ケミカルループ反応システム及びこれを用いた発電システム | |
US20070033873A1 (en) | Hydrogen gas generator | |
JP2004225995A (ja) | 工業炉 | |
JPH10185170A (ja) | 燃焼装置 | |
JP2576684B2 (ja) | 廃棄物を利用した発電装置 | |
CN210176453U (zh) | 一种火电厂热解制氢系统 | |
CN116745020A (zh) | 气体制造装置和气体制造方法 | |
JP2005214013A (ja) | メタン含有ガスを供給ガスとした発電システム | |
JP2003054927A (ja) | 二酸化炭素回収システムおよび方法 | |
JP2010159193A (ja) | 水素製造装置および水素製造方法 | |
JP2019178230A (ja) | ガス化炉システム | |
JP5339937B2 (ja) | タール分解設備およびその立ち上げ方法 | |
JP2024504798A (ja) | 廃棄物からのエネルギーを使用して水素含有生成ガスを生成する方法 | |
CN117906158A (zh) | 一种高浓度含卤素有机废气处理方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19757980 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020501071 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019757980 Country of ref document: EP Effective date: 20200922 |