[go: up one dir, main page]

WO2019116464A1 - Semiconductor device and semiconductor device production method - Google Patents

Semiconductor device and semiconductor device production method Download PDF

Info

Publication number
WO2019116464A1
WO2019116464A1 PCT/JP2017/044737 JP2017044737W WO2019116464A1 WO 2019116464 A1 WO2019116464 A1 WO 2019116464A1 JP 2017044737 W JP2017044737 W JP 2017044737W WO 2019116464 A1 WO2019116464 A1 WO 2019116464A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
electrode
region
semiconductor
groove
Prior art date
Application number
PCT/JP2017/044737
Other languages
French (fr)
Japanese (ja)
Inventor
威 倪
林 哲也
俊治 丸井
亮太 田中
圭佑 竹本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/044737 priority Critical patent/WO2019116464A1/en
Publication of WO2019116464A1 publication Critical patent/WO2019116464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/80FETs having rectifying junction gate electrodes
    • H10D30/87FETs having Schottky gate electrodes, e.g. metal-semiconductor FETs [MESFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/40Crystalline structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
  • Patent Document 1 a semiconductor device capable of increasing the current has been known (Patent Document 1).
  • the semiconductor device described in Patent Document 1 is a HEMT (High Electron Mobility Transistor), and forms a concavo-convex portion in an epitaxial semiconductor layer.
  • the semiconductor device described in Patent Document 1 causes a large current to flow by utilizing the surface (right and left side surfaces) of the uneven portion.
  • the semiconductor device described in Patent Document 1 may have different characteristics on the left and right sides of the uneven portion.
  • the material of the epitaxial semiconductor layer described in Patent Document 1 is gallium nitride
  • a gallium surface is formed on one side surface of the uneven portion
  • a nitrogen surface is formed on the other side surface.
  • the threshold voltage is different. For this reason, in the semiconductor device described in Patent Document 1, there is a possibility that the threshold voltages become unbalanced at the left and right side surfaces of the uneven portion, and the flowing current also becomes unbalanced. As a result, the reliability of the semiconductor device may be reduced.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a highly reliable semiconductor device and a method of manufacturing the semiconductor device.
  • a semiconductor device is formed in contact with a substrate in which a groove is formed, a semiconductor region formed in contact with the surface of the groove, and the surface of the semiconductor region, and a two-dimensional electron gas layer in the semiconductor region
  • An electron supply region for generating The semiconductor device further includes a first electrode electrically connected to the two-dimensional electron gas layer, and a second electrode electrically connected to the two-dimensional electron gas layer at a position separated from the first electrode.
  • the semiconductor region is formed only on the first side surface of the first side surface and the second side surface facing each other in the groove.
  • a highly reliable semiconductor device and a method of manufacturing the semiconductor device can be provided.
  • FIG. 1 is a perspective view for explaining the configuration of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view as viewed from the direction AA of FIG.
  • FIG. 3 is a perspective view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view for explaining the configuration of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view as viewed from the AA direction of FIG. FIG.
  • FIG. 8 is a perspective view for explaining the configuration of the semiconductor device according to the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view as viewed from the direction AA of FIG.
  • FIG. 10 is a perspective view for explaining the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view as viewed from the AA direction of FIG.
  • FIG. 12 is a perspective view for explaining the configuration of the semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view as viewed from the AA direction of FIG.
  • FIG. 14 is a perspective view for explaining the method for manufacturing a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view as viewed from the direction AA of FIG.
  • FIG. 10 is a perspective view for explaining the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view as
  • FIG. 15 is a cross-sectional view as viewed from the AA direction of FIG.
  • FIG. 16 is a perspective view for explaining the method for manufacturing a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 17 is a view of FIG. 16 as viewed from above.
  • FIG. 18 is a perspective view for explaining the method for manufacturing a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 19 is a perspective view for explaining the configuration of the semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view as viewed from the AA direction of FIG.
  • FIG. 21 is a perspective view for explaining the method for manufacturing a semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 22 is a view of FIG. 21 as viewed from above.
  • FIG. 23 is a perspective view for explaining the method for manufacturing a semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 24 is a view of FIG. 23 as viewed from above.
  • FIG. 25 is a perspective view for explaining the method for manufacturing a semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 26 is a cross-sectional view as viewed in the direction of arrows AA in FIG.
  • FIG. 27 is a perspective view illustrating the configuration of the semiconductor device according to the seventh embodiment of the present invention.
  • FIG. 28 is a cross-sectional view as viewed in the direction of arrows AA in FIG.
  • the configuration of the semiconductor device according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the semiconductor device according to the first embodiment includes a substrate 1, a semiconductor region 2, an electron supply region 3, a back electrode 4, a gate electrode 5, a source electrode 6, a drain electrode 7, a groove 9, and a mask.
  • the material 12 and the insulating layer 13 are provided.
  • the substrate 1 is a flat plate made of an insulator.
  • an insulator to be a material of the substrate for example, silicon can be adopted.
  • the substrate 1 has, for example, a thickness of about several hundred ⁇ m.
  • the substrate 1 has a first main surface (upper surface shown in FIG. 1) and a second main surface (lower surface shown in FIG. 1) facing each other.
  • the groove 9 is formed in the first main surface of the substrate 1.
  • the groove 9 has two side surfaces (first side surface 9 a and second side surface 9 b) which are orthogonal to the first main surface of the substrate 1 and parallel to each other, and one bottom surface parallel to the first main surface of the substrate 1.
  • the first side surface 9a and the second side surface 9b face each other.
  • the substrate 1 is selected such that the first side surface 9 a of the groove 9 is a silicon crystal surface.
  • the silicon crystal face of the first side face 9a is a (111) face.
  • the semiconductor region 2 is formed in contact with only the first side surface 9 a of the groove 9. In other words, the semiconductor region 2 is formed in contact with only one of the two side surfaces of the groove 9. The semiconductor region 2 is formed in contact with the bottom surface of the groove 9 via the insulating layer 13. The semiconductor region 2 may be in direct contact with the bottom surface of the groove 9 without the insulating layer 13 interposed therebetween.
  • the semiconductor region 2 is made of, for example, gallium nitride (GaN) and has a thickness of about several ⁇ m.
  • the electron supply region 3 is formed in contact with the surface of the semiconductor region 2.
  • the electron supply region 3 is made of, for example, aluminum gallium nitride (AlGaN).
  • AlGaN aluminum gallium nitride
  • the electron supply region 3 formed on the surface of the semiconductor region 2 generates a two-dimensional electron gas layer 2 a in the semiconductor region 2 due to the work function difference between gallium nitride and aluminum gallium nitride.
  • the two-dimensional electron gas layer 2a is a layer in which a two-dimensional electron gas to be a channel is formed, and is an electron transit layer.
  • the two-dimensional electron gas layer 2 a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3.
  • the gate electrode 5, the source electrode 6, and the drain electrode 7 are formed so as to be sandwiched between the electron supply region 3 and the insulating layer 13 inside the groove 9.
  • the gate electrode 5, the source electrode 6, and the drain electrode 7 are in contact with the bottom of the groove 9 via the insulating layer 13.
  • the gate electrode 5, the source electrode 6, and the drain electrode 7 constitute a transistor.
  • the source electrode 6 (first electrode) is electrically connected to the two-dimensional electron gas layer 2 a and formed to be separated from the drain electrode 7.
  • the drain electrode 7 (second electrode) is electrically connected to the two-dimensional electron gas layer 2 a and formed to be separated from the source electrode 6. Further, the source electrode 6 and the drain electrode 7 are in ohmic contact with the semiconductor region 2.
  • the gate electrode 5 (third electrode) is located between the source electrode 6 and the drain electrode 7 and formed in contact with the electron supply region 3. Specifically, the gate electrode 5 is disposed between the source electrode 6 and the drain electrode 7 in proximity to the two-dimensional electron gas layer 2a. The gate electrode 5 controls the number of carriers in the two-dimensional electron gas layer 2a.
  • the back surface electrode 4 is formed on the lower surface (second main surface) of the substrate 1.
  • the back electrode 4 is made of titanium (Ti), nickel (Ni), Ag (silver) or the like, and has a ground potential.
  • the insulating layer 13 is a film that electrically insulates the semiconductor device from other circuits and the like and mechanically protects the semiconductor device.
  • the insulating layer 13 is made of an insulator including a ceramic material such as a silicon nitride film (Si 3 N 4 ) or a silicon oxide film (SiO 2 ).
  • the insulating layer 13 is formed to be deposited on the bottom surface of the groove 9, the second side surface 9 b of the groove 9, and the mask material 12.
  • the mask material 12 is formed on the first main surface of the substrate 1.
  • the mask material 12 is, for example, a silicon oxide film (SiO 2 ).
  • the thickness of the mask material 12 is preferably several ⁇ m.
  • the mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.
  • a resist material (not shown) is applied to the upper surface of the mask material 12.
  • the resist material is patterned using a general photolithography method.
  • the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.
  • the resist material is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 ⁇ m and the depth is 10 ⁇ m.
  • Step 2 Next, with reference to FIG. 4, the exposure of the first side surface 9 a of the groove 9 will be described.
  • the insulating layer 13 is formed on the substrate 1. Specifically, the insulating layer 13 is formed to be deposited on the bottom surface of the groove 9, the second side surface 9b of the groove 9, and the mask material 12. The insulating layer 13 is deposited using, for example, LPCVD. The thickness of the insulating layer 13 is, for example, about 100 nm.
  • a resist material is applied to the upper surface of the mask material 12. The resist material is patterned using a general photolithography method. Next, the mask material 12 is etched using the patterned resist material as a mask. Thereby, the first side surface 9 a of the groove 9 is exposed. Note that wet etching with phosphoric acid can be used as the etching method.
  • a buffer layer is grown on the substrate 1 in which the grooves 9 are formed by the MOCVD method.
  • the substrate 1 is introduced into the MOCVD apparatus, and the temperature is raised to a predetermined temperature (for example, 600 ° C.).
  • a predetermined temperature for example, 600 ° C.
  • TMA trimethylaluminum
  • the buffer layer is made of, for example, aluminum gallium nitride (AlGaN) represented by the general formula Al x Ga y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ 1-x ⁇ y ⁇ 1), It has a thickness of about several hundred nm.
  • non-doped gallium nitride is deposited on the buffer layer to form the semiconductor region 2 composed of the buffer layer and the non-doped gallium nitride layer.
  • the semiconductor region 2 formed by this method is a mismatch of lattice multipliers, and a high quality crystal layer is formed only on the (111) plane.
  • a layer to be the semiconductor region 2 is basically not formed on the silicon oxide film or the silicon nitride film.
  • the thickness of the non-doped gallium nitride layer is determined by the required breakdown voltage value, and is described as 5 ⁇ m in this embodiment, for example.
  • the electron supply region 3 is formed using the same method. The thickness of the electron supply region 3 is, for example, several tens of nm.
  • Step 4 A resist material is formed on the electron supply region 3 formed in the third step, and patterning is performed so that the positions at which the source electrode 6 and the drain electrode 7 are to be formed are exposed. Thereafter, a metal material to be the source electrode 6 and the drain electrode 7 is deposited.
  • the metal material is, for example, titanium (Ti), aluminum (Al), molybdenum (Mo), gold (Au).
  • a vacuum evaporation method can be used as a deposition method. In order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed.
  • the metal material After depositing the metal material on the resist material, the metal material is lifted off in an acetone solution to form the source electrode 6 and the drain electrode 7.
  • Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal).
  • RTA Rapid Thermal Anneal
  • the heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.
  • the formation method is the same as the formation method of the source electrode 6 and the drain electrode 7.
  • patterning is performed so as to expose the position where the gate electrode 5 is to be formed.
  • a metal material to be the gate electrode 5 is deposited.
  • the metal material is, for example, nickel (Ni), gold (Au).
  • a vacuum deposition method using an electron beam deposition apparatus can be used.
  • the substrate 1 may be rotated at a predetermined angle and a predetermined speed. After depositing a metal material on a resist material, the metal material is lifted off in an acetone solution to form a gate electrode 5.
  • a metal material is deposited on the back surface of the substrate 1 using a vacuum evaporation method to form the back surface electrode 4.
  • the metal material is, for example, titanium (Ti), nickel (Ni), silver (Ag).
  • the semiconductor device has a semiconductor region 2 and an electron supply region 3.
  • a high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a.
  • the semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.
  • the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6.
  • the gate-source voltage is equal to or higher than a predetermined threshold value
  • the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears.
  • the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on.
  • a current flows from the drain electrode 7 to the source electrode 6.
  • the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.
  • the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7.
  • the breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.
  • the semiconductor region 2 is formed only on the first side surface 9 a of the groove 9.
  • the imbalance of the threshold voltage and the imbalance of the flowing current can be improved.
  • the width of the groove 9 can be further reduced by using only the first side surface 9 a of the groove 9.
  • the area efficiency of the substrate 1 is improved, and the current density is also improved.
  • a semiconductor device with high reliability and large current density can be provided.
  • the groove 9 has a depth equal to or greater than the width of the groove 9. As a result, the area efficiency is improved compared to a semiconductor device using only a plane, and a large current can be realized.
  • gate electrode 5 may be formed in contact with electron supply region 3 inside groove 9. In order to flow a large current, it is necessary to reduce the wiring resistance. By forming gate electrode 5 in contact with electron supply region 3 inside groove 9, gate electrode 5 can be provided in groove 9. Thereby, the area of the gate electrode 5 used on the surface of the substrate 1 can be reduced. Thus, the source electrode 6 or the drain electrode 7 can be formed thick, and the wiring resistance can be reduced. Thus, a semiconductor device with a large current density can be provided.
  • the substrate 1 is made of an insulator.
  • the substrate 1 is made of an insulator.
  • a semiconductor device according to a second embodiment of the present invention will be described with reference to FIGS. 6 and 7.
  • the second embodiment differs from the first embodiment in that the semiconductor device constitutes not a transistor but a diode.
  • the source electrode 6 according to the first embodiment is described as the anode electrode 6.
  • the drain electrode 7 according to the first embodiment is described as the cathode electrode 7.
  • the method of manufacturing the semiconductor device according to the second embodiment is the same as that of the first embodiment except for the gate electrode 5, so the description will be omitted.
  • the reference numerals will be cited and the description thereof will be omitted, and the following description will be made focusing on the differences.
  • the anode electrode 6 has an energy barrier with the semiconductor region 2.
  • the cathode electrode 7 is in ohmic contact with the semiconductor region 2.
  • the cathode electrode 7 In the on operation, a forward voltage is applied which makes the cathode electrode 7 a low potential with reference to the potential of the anode electrode 6. As a result, the energy barrier is lowered and forward current flows from the anode electrode 6 to the cathode electrode 7.
  • the density of the channel connecting between the anode and the cathode can be improved by utilizing the side surface of the groove 9, and the current can be increased as compared with the planar structure.
  • a reverse voltage is applied to set the cathode electrode 7 to a high potential with reference to the potential of the anode electrode 6.
  • the energy barrier becomes high
  • the forward current is interrupted
  • the semiconductor device is turned off.
  • a high voltage is instantaneously applied between the cathode electrode 7 and the anode electrode 6.
  • the depletion layer spreads from the anode electrode 6 toward the cathode electrode 7.
  • the breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.
  • the semiconductor region 2 is formed only on the first side surface 9 a of the groove 9.
  • the imbalance of the threshold voltage and the imbalance of the flowing current can be improved.
  • the width of the groove 9 can be further reduced by using only the first side surface 9 a of the groove 9.
  • the area efficiency of the substrate 1 is improved, and the current density is also improved.
  • a semiconductor device with high reliability and large current density can be provided.
  • the groove 9 has a depth equal to or greater than the width of the groove 9. As a result, the area efficiency is improved compared to a semiconductor device using only a plane, and a large current can be realized.
  • the third embodiment is different from the first embodiment in that the electron supply region 3 is in contact with the second side surface 9 b via the insulating layer 13.
  • the explanation shall be omitted and it explains focusing on difference below.
  • the electron supply region 3 has a region which is not in contact with the gate electrode 5, the source electrode 6, and the drain electrode 7 inside the groove 9. In this region, the electron supply region 3 is in contact with the second side surface 9 b opposed to the first side surface 9 a via the insulating layer 13.
  • the mask material 12 is formed on the first main surface of the substrate 1.
  • the mask material 12 is, for example, a silicon oxide film (SiO 2 ).
  • the thickness of the mask material 12 is preferably several ⁇ m.
  • the mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.
  • a resist material is applied to the upper surface of the mask material 12.
  • the resist material is patterned using a general photolithography method.
  • the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.
  • the resist material is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is removed by oxygen plasma, sulfuric acid or the like.
  • the semiconductor device has a semiconductor region 2 and an electron supply region 3.
  • a high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a.
  • the semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.
  • the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6.
  • the gate-source voltage is equal to or higher than a predetermined threshold value
  • the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears.
  • the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on.
  • a current flows from the drain electrode 7 to the source electrode 6.
  • the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.
  • the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7.
  • the breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.
  • the semiconductor region 2 is formed only on the first side surface 9 a of the groove 9.
  • the imbalance of the threshold voltage and the imbalance of the flowing current can be improved.
  • the width of the groove 9 can be further reduced by using only the first side surface 9 a of the groove 9.
  • the area efficiency of the substrate 1 is improved, and the current density is also improved.
  • a semiconductor device with high reliability and large current density can be provided.
  • the groove 9 has a depth equal to or greater than the width of the groove 9. As a result, the area efficiency is improved compared to a semiconductor device using only a plane, and a large current can be realized.
  • the electron supply region 3 has a region not in contact with the gate electrode 5, the source electrode 6, and the drain electrode 7 in the inside of the groove 9.
  • the electron supply region 3 is in contact with the second side surface 9 b opposed to the first side surface 9 a via the insulating layer 13.
  • the groove 9 can be filled.
  • the thickness of the semiconductor region 2 is 5 ⁇ m
  • the thickness of the electron supply region 3 is 30 nm
  • the thickness of the insulating layer 13 is 50 nm
  • the width of the groove 9 is 5080 nm.
  • the area efficiency of the substrate 1 is improved, and the current density of the device is also improved.
  • heat generated when the semiconductor device operates as a transistor can be released from the electron supply region 3 to the substrate 1 through the insulating layer 13.
  • a semiconductor device according to a fourth embodiment of the present invention will be described.
  • a semi-insulating semiconductor is used as the material of the substrate 1.
  • silicon carbide SiC
  • the semi-insulating substrate is a substrate in which the first side surface 9 a of the groove 9 for growing the semiconductor region 2 is the Si surface of silicon carbide.
  • the insulating layer 13 is formed on the semi-insulating substrate. It is preferable to use a silicon oxide film as the insulating layer 13. Thermal oxidation can be used as a deposition method.
  • the semi-insulating substrate is heated at 1000 ° C. to 1200 ° C. for 200 minutes to 300 minutes in an oxygen atmosphere. Thereby, a Si surface is formed on the semi-insulating substrate.
  • the thickness of the silicon oxide film is preferably about 10 nm to 100 nm.
  • Silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces.
  • the silicon oxide film is removed.
  • the method of removing the silicon oxide film is preferably wet etching with diluted hydrofluoric acid.
  • the time is set so that only the silicon oxide film on the Si surface can be removed. As a result, only the Si surface is exposed, and the silicon oxide film remains on the other surface.
  • the process proceeds to the step of forming the semiconductor region 2.
  • the subsequent manufacturing method is the same as that of the first embodiment, and thus the description thereof is omitted.
  • a semi-insulating substrate is used as the substrate 1. Since the semi-insulating substrate has higher insulation than a silicon substrate, leakage current can be reduced. Thereby, the thickness of the semiconductor region 2 can be reduced, and the width of the groove 9 can be reduced. Thereby, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, silicon carbide has high thermal conductivity and can suppress the temperature rise of the element when a large current flows. Thus, the increase in resistance of the element due to temperature rise can be reduced, and a low loss semiconductor device can be provided.
  • the semiconductor region 2 on the Si surface of silicon carbide, the photolithography process using a mask becomes unnecessary in the process of exposing the first side surface 9 a of the groove 9.
  • the misalignment due to the mask alignment is eliminated, and a highly reliable semiconductor device can be provided.
  • the manufacturing cost of the semiconductor device can be reduced.
  • silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces. Therefore, only the Si surface can be exposed by the oxide film wet etching process for a predetermined time. This makes it possible to provide a semiconductor device that is easy to manufacture.
  • the fifth embodiment is different from the first embodiment in that the conductive region 15 is formed in a part of the substrate 1.
  • the substrate 1 is a semi-insulating substrate. About the composition which overlaps with a 1st embodiment, a code is quoted, the explanation shall be omitted and it explains focusing on difference below.
  • the substrate 1 may be an insulator.
  • the substrate 1 has a conductive region 15 formed by ion implantation.
  • the conductive region 15 is in contact with the electron supply region 3 via the insulating layer 13.
  • Conductive region 15 is electrically connected to gate electrode 5.
  • the mask material 12 is formed on the first main surface of the substrate 1.
  • the mask material 12 is, for example, a silicon oxide film (SiO 2 ).
  • the thickness of the mask material 12 is preferably several ⁇ m.
  • the mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.
  • a resist material is applied to the upper surface of the mask material 12.
  • the resist material is patterned using a general photolithography method.
  • the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.
  • the resist material is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is used as a mask, grooves 9 are formed on the first main surface of the substrate 1 by dry etching as shown in FIG.
  • the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 ⁇ m and the depth is 10 ⁇ m.
  • the mask material 12 is removed using diluted hydrofluoric acid.
  • the resist material 16 is patterned.
  • aluminum ion implantation is performed to form a P-type conductive region 15.
  • the resist material 16 is removed by oxygen plasma, sulfuric acid or the like to perform activation.
  • annealing is preferably performed for 10 minutes to 20 minutes in an atmosphere of argon (Ar) gas at 1500 ° C. to 1800 ° C.
  • Ar argon
  • Step 2 the insulating layer 13 is formed on the semi-insulating substrate (substrate 1). It is preferable to use a silicon oxide film as the insulating layer 13.
  • Thermal oxidation can be used as a deposition method.
  • the semi-insulating substrate is heated at 1000 ° C. to 1200 ° C. for 200 minutes to 300 minutes in an oxygen atmosphere. Thereby, a Si surface is formed on the semi-insulating substrate.
  • the thickness of the silicon oxide film is preferably about 10 nm to 100 nm.
  • Silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces.
  • the silicon oxide film is removed.
  • the method of removing the silicon oxide film is preferably wet etching with diluted hydrofluoric acid. At this time, the time is set so that only the silicon oxide film on the Si surface can be removed. As a result, only the Si surface is exposed, and the silicon oxide film remains on the other surface.
  • the buffer layer is grown on the substrate 1 in which the groove 9 is formed by the MOCVD method. Specifically, the substrate 1 is introduced into the MOCVD apparatus, and the temperature is raised to a predetermined temperature (for example, 600 ° C.). When the temperature is stabilized, the substrate 1 is rotated to introduce trimethylaluminum (TMA) as a raw material to the surface of the substrate 1 at a predetermined flow rate.
  • the buffer layer is made of, for example, aluminum gallium nitride (AlGaN) represented by the general formula Al x Ga y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ 1-x ⁇ y ⁇ 1), It has a thickness of about several hundred nm.
  • non-doped gallium nitride is deposited on the buffer layer to form the semiconductor region 2 composed of the buffer layer and the non-doped gallium nitride layer.
  • the semiconductor region 2 formed by this method is a mismatch of lattice multipliers, and a high quality crystal layer is formed only on the (111) plane.
  • a layer to be the semiconductor region 2 is basically not formed on the silicon oxide film or the silicon nitride film.
  • the thickness of the non-doped gallium nitride layer is determined by the required breakdown voltage value, and is described as 5 ⁇ m in this embodiment, for example.
  • the electron supply region 3 is formed using the same method. The thickness of the electron supply region 3 is, for example, several tens of nm.
  • Step 4 A resist material is formed on the electron supply region 3 formed in the third step, and patterning is performed so that the positions at which the source electrode 6 and the drain electrode 7 are to be formed are exposed. Thereafter, a metal material to be the source electrode 6 and the drain electrode 7 is deposited.
  • the metal material is, for example, titanium (Ti), aluminum (Al), molybdenum (Mo), gold (Au).
  • a vacuum evaporation method can be used as a deposition method. In order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed.
  • annealing is performed to improve the ohmic property.
  • Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal).
  • RTA Rapid Thermal Anneal
  • the heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.
  • the gate electrode 5 is formed.
  • the formation method is the same as the formation method of the source electrode 6 and the drain electrode 7.
  • patterning is performed so as to expose the position where the gate electrode 5 is to be formed.
  • the conductive region 15 is exposed on the surface of the substrate 1.
  • patterning is performed so that the position where the gate electrode 5 is to be formed is exposed.
  • the silicon oxide film on the surface of the substrate 1 is removed with diluted hydrofluoric acid.
  • a metal material to be the gate electrode 5 is deposited.
  • the metal material is, for example, nickel.
  • the deposition amount is not particularly limited, for example, 100 nm of nickel is deposited.
  • a vacuum deposition method using an electron beam deposition apparatus can be used.
  • the substrate 1 may be rotated at a predetermined angle and a predetermined speed.
  • the gate electrode 5 is formed by lifting off the metal material in an acetone solution.
  • a metal material is deposited on the back surface of the substrate 1 using a vacuum evaporation method to form the back surface electrode 4.
  • the metal material is, for example, titanium (Ti), nickel (Ni), silver (Ag).
  • Ti titanium
  • Ni nickel
  • Ag silver
  • the semiconductor device has a semiconductor region 2 and an electron supply region 3.
  • a high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a.
  • the semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.
  • the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6.
  • the gate-source voltage is equal to or higher than a predetermined threshold value
  • the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears.
  • the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on.
  • a current flows from the drain electrode 7 to the source electrode 6.
  • the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.
  • the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7.
  • the breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.
  • the conductive region 15 is made to be the gate electrode 5, thereby eliminating the need for the step of embedding the gate electrode 5 in the groove 9, and the manufacturing becomes easy. Further, the width of the groove 9 can be reduced by the thickness of the gate electrode 5. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, since the conductive region 15 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.
  • the sixth embodiment is different from the first embodiment in that the conductive region 15 is formed in a part of the substrate 1. Furthermore, two N-type conductive regions 17 are formed in a part of the substrate 1.
  • the substrate 1 is a semi-insulating substrate. About the composition which overlaps with a 1st embodiment, a code is quoted, the explanation shall be omitted and it explains focusing on difference below.
  • the substrate 1 may be an insulator.
  • the substrate 1 has a conductive region 15 formed by ion implantation and two N-type conductive regions 17.
  • the conductive region 15 and the two N-type conductive regions 17 are in contact with the electron supply region 3 via the insulating layer 13.
  • the conductive region 15 has the same function as the gate electrode 5 and is electrically connected to the gate electrode 5.
  • One of the two N-type conductive regions 17 has the same function as the source electrode 6 and is electrically connected to the source electrode 6.
  • the other of the two N-type conductive regions 17 has the same function as the drain electrode 7 and is electrically connected to the drain electrode 7.
  • a mask material 12 is formed on the first main surface of the substrate 1.
  • the mask material 12 is, for example, a silicon oxide film (SiO 2 ).
  • the thickness of the mask material 12 is preferably several ⁇ m.
  • the mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.
  • a resist material is applied to the upper surface of the mask material 12.
  • the resist material is patterned using a general photolithography method.
  • the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.
  • the resist material is removed by oxygen plasma, sulfuric acid or the like.
  • the patterned mask material 12 is used as a mask, grooves 9 are formed in the first main surface of the substrate 1 by dry etching as shown in FIG.
  • the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 ⁇ m and the depth is 10 ⁇ m.
  • the mask material 12 is removed using diluted hydrofluoric acid.
  • the resist material 16 is patterned.
  • aluminum ion implantation is performed to form a P-type conductive region 15.
  • the resist material 16 is patterned.
  • aluminum ion implantation is performed to form an N-type conductive region 17.
  • the resist material 16 is removed by oxygen plasma, sulfuric acid or the like to perform activation.
  • annealing is preferably performed for 10 minutes to 20 minutes in an atmosphere of argon (Ar) gas at 1500 ° C. to 1800 ° C.
  • Ar argon
  • Step 2 the insulating layer 13 is formed on the semi-insulating substrate (substrate 1). It is preferable to use a silicon oxide film as the insulating layer 13.
  • Thermal oxidation can be used as a deposition method.
  • the semi-insulating substrate is heated at 1000 ° C. to 1200 ° C. for 200 minutes to 300 minutes in an oxygen atmosphere. Thereby, a Si surface is formed on the semi-insulating substrate.
  • the thickness of the silicon oxide film is preferably about 10 nm to 100 nm.
  • Silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces.
  • the silicon oxide film is removed.
  • the method of removing the silicon oxide film is preferably wet etching with diluted hydrofluoric acid. At this time, the time is set so that only the silicon oxide film on the Si surface can be removed. As a result, only the Si surface is exposed, and the silicon oxide film remains on the other surface.
  • the resist material 16 is patterned, and the silicon oxide film in the opening of the resist material 16 is removed with diluted hydrofluoric acid to expose the groove side surface (second side surface 9 b) of the N-type conductive region 17.
  • the buffer layer is grown on the substrate 1 in which the groove 9 is formed by the MOCVD method. Specifically, the substrate 1 is introduced into the MOCVD apparatus, and the temperature is raised to a predetermined temperature (for example, 600 ° C.). When the temperature is stabilized, the substrate 1 is rotated to introduce trimethylaluminum (TMA) as a raw material to the surface of the substrate 1 at a predetermined flow rate.
  • the buffer layer is made of, for example, aluminum gallium nitride (AlGaN) represented by the general formula Al x Ga y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ 1-x ⁇ y ⁇ 1), It has a thickness of about several hundred nm.
  • non-doped gallium nitride is deposited on the buffer layer to form the semiconductor region 2 composed of the buffer layer and the non-doped gallium nitride layer.
  • the semiconductor region 2 formed by this method is a mismatch of lattice multipliers, and a high quality crystal layer is formed only on the (111) plane.
  • a layer to be the semiconductor region 2 is basically not formed on the silicon oxide film or the silicon nitride film.
  • the thickness of the non-doped gallium nitride layer is determined by the required breakdown voltage value, and is described as 5 ⁇ m in this embodiment, for example.
  • the electron supply region 3 is formed using the same method. The thickness of the electron supply region 3 is, for example, several tens of nm.
  • Step 4 A resist material 16 is formed on the electron supply region 3 formed in the third step, and patterning is performed so that positions where the source electrode 6 and the drain electrode 7 are to be formed are exposed. Thereafter, a metal material to be the source electrode 6 and the drain electrode 7 is deposited.
  • the metal material is, for example, titanium (Ti), aluminum (Al), molybdenum (Mo), gold (Au).
  • a vacuum evaporation method can be used as a deposition method. In order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed.
  • annealing is performed to improve the ohmic property.
  • Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal).
  • RTA Rapid Thermal Anneal
  • the heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.
  • the gate electrode 5 is formed.
  • the formation method is the same as the formation method of the source electrode 6 and the drain electrode 7.
  • patterning is performed so as to expose the position where the gate electrode 5 is to be formed.
  • the conductive region 15 is exposed on the surface of the substrate 1.
  • patterning is performed so that the position where the gate electrode 5 is to be formed is exposed.
  • the silicon oxide film on the surface of the substrate 1 is removed with diluted hydrofluoric acid.
  • a metal material to be the gate electrode 5 is deposited.
  • the metal material is, for example, nickel.
  • the deposition amount is not particularly limited, for example, 100 nm of nickel is deposited.
  • a vacuum deposition method using an electron beam deposition apparatus can be used.
  • the substrate 1 may be rotated at a predetermined angle and a predetermined speed.
  • the gate electrode 5 is formed by lifting off the metal material in an acetone solution.
  • annealing is performed to improve the ohmic property. Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal).
  • RTA Rapid Thermal Anneal
  • the semiconductor device has a semiconductor region 2 and an electron supply region 3.
  • a high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a.
  • the semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.
  • the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6.
  • the gate-source voltage is equal to or higher than a predetermined threshold value
  • the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears.
  • the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on.
  • a current flows from the drain electrode 7 to the source electrode 6.
  • the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.
  • the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7.
  • the breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.
  • the conductive region 15 is made to be the gate electrode 5, thereby eliminating the need for the step of embedding the gate electrode 5 in the groove 9, and the manufacturing becomes easy. Further, the width of the groove 9 can be reduced by the thickness of the gate electrode 5. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, since the conductive region 15 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.
  • the step of embedding the source electrode 6 and the drain electrode 7 in the groove 9 becomes unnecessary by using the N-type conductive region 17 as the source electrode 6 and the drain electrode 7. , Easy to manufacture. Further, the width of the groove 9 can be reduced by the thickness of the source electrode 6 and the drain electrode 7. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Thus, a semiconductor device with a large current density can be provided.
  • the seventh embodiment is different from the sixth embodiment in that the field plate electrode 11 is formed on a part of the substrate 1.
  • symbol is quoted and the description shall be abbreviate
  • the substrate 1 may be an insulator.
  • the substrate 1 has a conductive region 15 formed by ion implantation and two N-type conductive regions 17.
  • the conductive region 15 and the two N-type conductive regions 17 are in contact with the electron supply region 3 via the insulating layer 13.
  • the conductive region 15 has the same function as the gate electrode 5 and is electrically connected to the gate electrode 5.
  • One of the two N-type conductive regions 17 has the same function as the source electrode 6 and is electrically connected to the source electrode 6.
  • the other of the two N-type conductive regions 17 has the same function as the drain electrode 7 and is electrically connected to the drain electrode 7.
  • the field plate electrode 11 is formed between the gate electrode 5 and the source electrode 6 and is in contact with the electron supply region 3 via the insulating layer 13. Further, the field plate electrode 11 is at the same potential as the source electrode 6.
  • the structure is the same as the manufacturing method of the sixth embodiment except that the shape of the resist mask for forming the N-type conductive region 17 is different.
  • the semiconductor device has a semiconductor region 2 and an electron supply region 3.
  • a high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a.
  • the semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.
  • the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6.
  • the gate-source voltage is equal to or higher than a predetermined threshold value
  • the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears.
  • the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on.
  • a current flows from the drain electrode 7 to the source electrode 6.
  • the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.
  • the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Further, the electric field is concentrated on the edge of the conductive region 15 to be the gate electrode 5.
  • the semiconductor device of the seventh embodiment by having the field plate electrode 11, a part of the electric field can be dispersed in the field plate electrode 11, and the electric field applied to the conductive region 15 to be the gate electrode 5 is descend. This improves the breakdown voltage of the device. Further, since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large withstand voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.
  • the semiconductor device of the seventh embodiment by using the conductive region 15 as the gate electrode 5, the step of embedding the gate electrode 5 in the groove 9 becomes unnecessary, and the semiconductor device can be easily manufactured. Further, the width of the groove 9 can be reduced by the thickness of the gate electrode 5. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, since the conductive region 15 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.
  • the step of embedding the source electrode 6 and the drain electrode 7 in the groove 9 becomes unnecessary by using the N-type conductive region 17 as the source electrode 6 and the drain electrode 7. , Easy to manufacture. Further, the width of the groove 9 can be reduced by the thickness of the source electrode 6 and the drain electrode 7. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved.
  • the step of burying the field plate electrode 11 in the groove 9 becomes unnecessary, which facilitates manufacture. Further, since a part of the N-type conductive region 17 becomes the field plate electrode 11, the area of the field plate electrode 11 used on the surface of the substrate 1 can be reduced. Thus, the source electrode 6 or the drain electrode 7 can be formed thick, and the wiring resistance can be reduced. Thus, a semiconductor device with a large current density can be provided. Furthermore, since the field plate electrode 11 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.
  • the manufacture of a semiconductor device using gallium nitride has been described, but materials other than gallium nitride can also be used, and for example, gallium arsenide (GaAs) may be used.
  • the substrate 1 may be sapphire. Since a sapphire substrate has a smaller mismatch of crystal lattice constant with gallium nitride as compared with a silicon substrate and can obtain a high quality substrate, a semiconductor device with high withstand voltage can be provided. Furthermore, since the buffer layer required for the silicon substrate can be largely reduced, a semiconductor device which can be manufactured inexpensively can be provided.
  • the present invention may include two semiconductor devices (a first semiconductor device and a second semiconductor device).
  • the semiconductor devices according to the first to seventh embodiments can be used as the two semiconductor devices.
  • the two semiconductor devices may be the same or different.
  • the source electrode 6 or the drain electrode 7 can be shared with each other, so that an electrode used for the semiconductor device can be a half. Thereby, the area efficiency of the substrate 1 is improved, and a large current can be realized.

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This semiconductor device comprises: a substrate (1) having a first main surface and a second main surface facing each other, a groove (9) being formed on the first main surface; a semiconductor region (2) formed so as to be in contact with the surface of the groove (9); and an electron supply region (3) which is formed so as to be in contact with the surface of the semiconductor region (2) and causes the semiconductor region (2) to generate a two-dimensional electron gas layer (2a). In addition, this semiconductor device comprises a first electrode (6) which electrically connects to the two-dimensional electron gas layer (2a) and a second electrode (7) which electrically connects to the two-dimensional electron gas layer (2a) at a position that is separated from the first electrode (6). Among a first side-surface (9a) and a second side-surface (9b) facing one another in the groove (9), the semiconductor region (2) is formed only on the first side-surface (9a).

Description

半導体装置及び半導体装置の製造方法Semiconductor device and method of manufacturing semiconductor device

 本発明は、半導体装置及び半導体装置の製造方法に関する。 The present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.

 従来より、大電流化が可能な半導体装置が知られている(特許文献1)。特許文献1に記載された半導体装置は、HEMT(High Electron Mobility Transistor)であり、エピタキシャル半導体層に凹凸部を形成する。特許文献1に記載された半導体装置は、この凹凸部の表面(左右の側面)を利用することにより、大きな電流を流す。 Conventionally, a semiconductor device capable of increasing the current has been known (Patent Document 1). The semiconductor device described in Patent Document 1 is a HEMT (High Electron Mobility Transistor), and forms a concavo-convex portion in an epitaxial semiconductor layer. The semiconductor device described in Patent Document 1 causes a large current to flow by utilizing the surface (right and left side surfaces) of the uneven portion.

特開2012-222354号公報JP 2012-222354 A

 しかしながら、特許文献1に記載されたエピタキシャル半導体層は、凹凸部における左右の側面の結晶面が異なる。これにより、特許文献1に記載された半導体装置は、凹凸部の左右の側面において特性が異なる場合がある。例えば、特許文献1に記載されたエピタキシャル半導体層の材料が窒化ガリウムである場合、凹凸部の一方の側面にガリウム面が形成され、他方の側面には窒素面が形成される。これにより、HEMTを形成する場合は、面方位によって電極とのコンタクト抵抗が異なる。これにより、同じ電圧を印加した場合でも凹凸部の左右の側面に流れる電流が異なる。 However, in the epitaxial semiconductor layer described in Patent Document 1, the crystal planes of the left and right side surfaces of the uneven portion are different. Thus, the semiconductor device described in Patent Document 1 may have different characteristics on the left and right sides of the uneven portion. For example, when the material of the epitaxial semiconductor layer described in Patent Document 1 is gallium nitride, a gallium surface is formed on one side surface of the uneven portion, and a nitrogen surface is formed on the other side surface. Thereby, when forming a HEMT, the contact resistance with the electrode differs depending on the plane orientation. Thereby, even when the same voltage is applied, the currents flowing to the left and right side surfaces of the uneven portion are different.

 また、面方位によって電極とのエネルギー障壁が異なるため、閾値電圧が異なる。このため、特許文献1に記載された半導体装置では、凹凸部の左右の側面で閾値電圧が不均衡となり、流れる電流も不均衡となるおそれがある。これにより、半導体装置の信頼性が低下するおそれがある。 In addition, since the energy barrier with the electrode is different depending on the plane orientation, the threshold voltage is different. For this reason, in the semiconductor device described in Patent Document 1, there is a possibility that the threshold voltages become unbalanced at the left and right side surfaces of the uneven portion, and the flowing current also becomes unbalanced. As a result, the reliability of the semiconductor device may be reduced.

 本発明は、上記問題に鑑みて成されたものであり、その目的は、信頼性が高い半導体装置及び半導体装置の製造方法を提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide a highly reliable semiconductor device and a method of manufacturing the semiconductor device.

 本発明の一態様に係る半導体装置は、溝が形成された基板と、溝の表面に接して形成される半導体領域と、半導体領域の表面に接して形成され、半導体領域に二次元電子ガス層を発生させる電子供給領域と、を備える。また、半導体装置は、二次元電子ガス層と電気的に接続する第一電極と、第一電極と離間した位置で二次元電子ガス層と電気的に接続する第二電極と、を備える。半導体領域は、溝において互いに対面する第1側面と第2側面のうち、第1側面のみに形成される。 A semiconductor device according to one aspect of the present invention is formed in contact with a substrate in which a groove is formed, a semiconductor region formed in contact with the surface of the groove, and the surface of the semiconductor region, and a two-dimensional electron gas layer in the semiconductor region An electron supply region for generating The semiconductor device further includes a first electrode electrically connected to the two-dimensional electron gas layer, and a second electrode electrically connected to the two-dimensional electron gas layer at a position separated from the first electrode. The semiconductor region is formed only on the first side surface of the first side surface and the second side surface facing each other in the groove.

 本発明によれば、信頼性が高い半導体装置及び半導体装置の製造方法を提供できる。 According to the present invention, a highly reliable semiconductor device and a method of manufacturing the semiconductor device can be provided.

図1は、本発明の第1実施形態に係る半導体装置の構成を説明する斜視図である。FIG. 1 is a perspective view for explaining the configuration of the semiconductor device according to the first embodiment of the present invention. 図2は、図1のA-A方向から見た断面図である。FIG. 2 is a cross-sectional view as viewed from the direction AA of FIG. 図3は、本発明の第1実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 3 is a perspective view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 4 is a perspective view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 5 is a perspective view for explaining the method of manufacturing a semiconductor device according to the first embodiment of the present invention. 図6は、本発明の第2実施形態に係る半導体装置の構成を説明する斜視図である。FIG. 6 is a perspective view for explaining the configuration of the semiconductor device according to the second embodiment of the present invention. 図7は、図6のA-A方向から見た断面図である。FIG. 7 is a cross-sectional view as viewed from the AA direction of FIG. 図8は、本発明の第3実施形態に係る半導体装置の構成を説明する斜視図である。FIG. 8 is a perspective view for explaining the configuration of the semiconductor device according to the third embodiment of the present invention. 図9は、図8のA-A方向から見た断面図である。FIG. 9 is a cross-sectional view as viewed from the direction AA of FIG. 図10は、本発明の第3実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 10 is a perspective view for explaining the method for manufacturing a semiconductor device according to the third embodiment of the present invention. 図11は、図10のA-A方向から見た断面図である。FIG. 11 is a cross-sectional view as viewed from the AA direction of FIG. 図12は、本発明の第5実施形態に係る半導体装置の構成を説明する斜視図である。FIG. 12 is a perspective view for explaining the configuration of the semiconductor device according to the fifth embodiment of the present invention. 図13は、図12のA-A方向から見た断面図である。FIG. 13 is a cross-sectional view as viewed from the AA direction of FIG. 図14は、本発明の第5実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 14 is a perspective view for explaining the method for manufacturing a semiconductor device according to the fifth embodiment of the present invention. 図15は、図14のA-A方向から見た断面図である。FIG. 15 is a cross-sectional view as viewed from the AA direction of FIG. 図16は、本発明の第5実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 16 is a perspective view for explaining the method for manufacturing a semiconductor device according to the fifth embodiment of the present invention. 図17は、図16を上方から見た図である。FIG. 17 is a view of FIG. 16 as viewed from above. 図18は、本発明の第5実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 18 is a perspective view for explaining the method for manufacturing a semiconductor device according to the fifth embodiment of the present invention. 図19は、本発明の第6実施形態に係る半導体装置の構成を説明する斜視図である。FIG. 19 is a perspective view for explaining the configuration of the semiconductor device according to the sixth embodiment of the present invention. 図20は、図19のA-A方向から見た断面図である。FIG. 20 is a cross-sectional view as viewed from the AA direction of FIG. 図21は、本発明の第6実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 21 is a perspective view for explaining the method for manufacturing a semiconductor device according to the sixth embodiment of the present invention. 図22は、図21を上方から見た図である。FIG. 22 is a view of FIG. 21 as viewed from above. 図23は、本発明の第6実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 23 is a perspective view for explaining the method for manufacturing a semiconductor device according to the sixth embodiment of the present invention. 図24は、図23を上方から見た図である。FIG. 24 is a view of FIG. 23 as viewed from above. 図25は、本発明の第6実施形態に係る半導体装置の製造方法を説明する斜視図である。FIG. 25 is a perspective view for explaining the method for manufacturing a semiconductor device according to the sixth embodiment of the present invention. 図26は、図25のA-A方向から見た断面図である。FIG. 26 is a cross-sectional view as viewed in the direction of arrows AA in FIG. 図27は、本発明の第7実施形態に係る半導体装置の構成を説明する斜視図である。FIG. 27 is a perspective view illustrating the configuration of the semiconductor device according to the seventh embodiment of the present invention. 図28は、図27のA-A方向から見た断面図である。FIG. 28 is a cross-sectional view as viewed in the direction of arrows AA in FIG.

 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。なお、本明細書において「上面」「下面」等の「上」「下」の定義は、図示した断面図上の単なる表現上の問題であって、例えば、半導体装置の方位を90°変えて観察すれば「上」「下」の称呼は、「左」「右」になり、180°変えて観察すれば「上」「下」の称呼の関係は逆になることは勿論である。また、「裏面」とは、図示した断面図上の表現の問題であって、「上」「下」の選択の場合と同様に、具体的な半導体装置の方位を変えれば、その称呼や定義は変わり得ることは勿論である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts will be denoted by the same reference numerals and the description thereof will be omitted. In the present specification, the definitions of "upper" and "lower", such as "upper surface" and "lower surface", are merely a representational problem on the cross-sectional view illustrated, for example, by changing the orientation of the semiconductor device by 90 °. It goes without saying that, when observed, the names of “upper” and “lower” become “left” and “right”, and when changed 180 ° and observed, the relationship between the names of “upper” and “lower” is reversed. In addition, “back side” is a problem of expression on the cross-sectional view illustrated, and as in the case of “upper” and “lower” selection, if specific semiconductor device orientation is changed, its affirmation or definition Of course it can change.

(第1実施形態)
(半導体装置の構成)
 図1及び図2を参照して第1実施形態に係る半導体装置の構成を説明する。第1実施形態に係る半導体装置は、基板1と、半導体領域2と、電子供給領域3と、裏面電極4と、ゲート電極5と、ソース電極6と、ドレイン電極7と、溝9と、マスク材12と、絶縁層13と、を備える。
First Embodiment
(Structure of semiconductor device)
The configuration of the semiconductor device according to the first embodiment will be described with reference to FIGS. 1 and 2. The semiconductor device according to the first embodiment includes a substrate 1, a semiconductor region 2, an electron supply region 3, a back electrode 4, a gate electrode 5, a source electrode 6, a drain electrode 7, a groove 9, and a mask. The material 12 and the insulating layer 13 are provided.

 基板1は、絶縁体からなる平板である。基板1の材料となる絶縁体としては、例えば、シリコンを採用可能である。基板1は、例えば、数百μm程度の厚さを有する。基板1は、互いに対向する第1主面(図1に示す上面)及び第2主面(図1に示す下面)を有する。基板1の第1主面に溝9が形成される。溝9は、基板1の第1主面に直交し、互いに平行な2つの側面(第1側面9a,第2側面9b)と、基板1の第1主面に平行な1つの底面を有する。第1側面9aと、第2側面9bは、互いに対面する。基板1は、溝9の第1側面9aがシリコン結晶面となるように選定される。第1側面9aのシリコン結晶面は、(111)面である。 The substrate 1 is a flat plate made of an insulator. As an insulator to be a material of the substrate 1, for example, silicon can be adopted. The substrate 1 has, for example, a thickness of about several hundred μm. The substrate 1 has a first main surface (upper surface shown in FIG. 1) and a second main surface (lower surface shown in FIG. 1) facing each other. The groove 9 is formed in the first main surface of the substrate 1. The groove 9 has two side surfaces (first side surface 9 a and second side surface 9 b) which are orthogonal to the first main surface of the substrate 1 and parallel to each other, and one bottom surface parallel to the first main surface of the substrate 1. The first side surface 9a and the second side surface 9b face each other. The substrate 1 is selected such that the first side surface 9 a of the groove 9 is a silicon crystal surface. The silicon crystal face of the first side face 9a is a (111) face.

 半導体領域2は、溝9の第1側面9aのみに接して形成される。換言すれば、半導体領域2は、溝9の2つの側面のうち、片面のみに接して形成される。また、半導体領域2は、絶縁層13を介して溝9の底面に接して形成される。なお、半導体領域2は、絶縁層13を介することなく、直接、溝9の底面に接してもよい。半導体領域2は、例えば、窒化ガリウム(GaN)からなり、数μm程度の厚さを有する。 The semiconductor region 2 is formed in contact with only the first side surface 9 a of the groove 9. In other words, the semiconductor region 2 is formed in contact with only one of the two side surfaces of the groove 9. The semiconductor region 2 is formed in contact with the bottom surface of the groove 9 via the insulating layer 13. The semiconductor region 2 may be in direct contact with the bottom surface of the groove 9 without the insulating layer 13 interposed therebetween. The semiconductor region 2 is made of, for example, gallium nitride (GaN) and has a thickness of about several μm.

 電子供給領域3は、半導体領域2の表面に接して形成される。電子供給領域3は、例えば、窒化アルミニウムガリウム(AlGaN)からなる。半導体領域2の表面に形成される電子供給領域3は、窒化ガリウムと窒化アルミニウムガリウムの仕事関数差によって、半導体領域2に二次元電子ガス層2aを発生させる。二次元電子ガス層2aは、チャネルとなる二次元電子ガスが形成される層であり、電子走行層である。二次元電子ガス層2aは、半導体領域2と電子供給領域3との界面近傍に形成される。 The electron supply region 3 is formed in contact with the surface of the semiconductor region 2. The electron supply region 3 is made of, for example, aluminum gallium nitride (AlGaN). The electron supply region 3 formed on the surface of the semiconductor region 2 generates a two-dimensional electron gas layer 2 a in the semiconductor region 2 due to the work function difference between gallium nitride and aluminum gallium nitride. The two-dimensional electron gas layer 2a is a layer in which a two-dimensional electron gas to be a channel is formed, and is an electron transit layer. The two-dimensional electron gas layer 2 a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3.

 図2に示すように、溝9の内部において、電子供給領域3と絶縁層13に挟まれるように、ゲート電極5、ソース電極6、及びドレイン電極7が形成される。ゲート電極5、ソース電極6、及びドレイン電極7は、絶縁層13を介して溝9の底面に接している。ゲート電極5、ソース電極6、及びドレイン電極7は、トランジスタを構成する。 As shown in FIG. 2, the gate electrode 5, the source electrode 6, and the drain electrode 7 are formed so as to be sandwiched between the electron supply region 3 and the insulating layer 13 inside the groove 9. The gate electrode 5, the source electrode 6, and the drain electrode 7 are in contact with the bottom of the groove 9 via the insulating layer 13. The gate electrode 5, the source electrode 6, and the drain electrode 7 constitute a transistor.

 ソース電極6(第一電極)は、二次元電子ガス層2aと電気的に接続され、ドレイン電極7と離間して形成される。ドレイン電極7(第二電極)は、二次元電子ガス層2aと電気的に接続され、ソース電極6と離間して形成される。また、ソース電極6とドレイン電極7は、半導体領域2とオーミック接続される。 The source electrode 6 (first electrode) is electrically connected to the two-dimensional electron gas layer 2 a and formed to be separated from the drain electrode 7. The drain electrode 7 (second electrode) is electrically connected to the two-dimensional electron gas layer 2 a and formed to be separated from the source electrode 6. Further, the source electrode 6 and the drain electrode 7 are in ohmic contact with the semiconductor region 2.

 ゲート電極5(第三電極)は、ソース電極6とドレイン電極7との間に位置し、電子供給領域3に接して形成される。詳しくは、ゲート電極5は、ソース電極6とドレイン電極7との間で二次元電子ガス層2aに近接して配置される。ゲート電極5は、二次元電子ガス層2aのキャリア数を制御する。 The gate electrode 5 (third electrode) is located between the source electrode 6 and the drain electrode 7 and formed in contact with the electron supply region 3. Specifically, the gate electrode 5 is disposed between the source electrode 6 and the drain electrode 7 in proximity to the two-dimensional electron gas layer 2a. The gate electrode 5 controls the number of carriers in the two-dimensional electron gas layer 2a.

 裏面電極4は、基板1の下面(第2主面)に形成される。裏面電極4は、チタン(Ti)、ニッケル(Ni)、Ag(銀)等からなり、アース電位をとる。 The back surface electrode 4 is formed on the lower surface (second main surface) of the substrate 1. The back electrode 4 is made of titanium (Ti), nickel (Ni), Ag (silver) or the like, and has a ground potential.

 絶縁層13は、半導体装置を他の回路などと電気的に絶縁し、機械的に保護するための膜である。絶縁層13は、シリコン窒化膜(Si)、シリコン酸化膜(SiO)などのセラミック材料を含む絶縁体からなる。絶縁層13は、溝9の底面、溝9の第2側面9b、及びマスク材12に堆積するように形成される。 The insulating layer 13 is a film that electrically insulates the semiconductor device from other circuits and the like and mechanically protects the semiconductor device. The insulating layer 13 is made of an insulator including a ceramic material such as a silicon nitride film (Si 3 N 4 ) or a silicon oxide film (SiO 2 ). The insulating layer 13 is formed to be deposited on the bottom surface of the groove 9, the second side surface 9 b of the groove 9, and the mask material 12.

(半導体装置の製造方法)
 次に、図3~図5を参照し、図1に示す半導体装置の製造方法の一例を説明する。
(Method of manufacturing semiconductor device)
Next, an example of a method of manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS.

(第1工程)
 まず、図3を参照して溝9の形成方法について説明する。図3に示すように、基板1の第1主面上にマスク材12を形成する。マスク材12は、例えば、シリコン酸化膜(SiO)である。マスク材12の厚さは、数μmが好ましい。マスク材12は、熱CVD法やプラズマCVD法の化学気相堆積法により基板1の第1主面上に堆積される。
(Step 1)
First, the method of forming the groove 9 will be described with reference to FIG. As shown in FIG. 3, the mask material 12 is formed on the first main surface of the substrate 1. The mask material 12 is, for example, a silicon oxide film (SiO 2 ). The thickness of the mask material 12 is preferably several μm. The mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.

 次に、マスク材12の上面にレジスト材(図示は省略)を塗布する。次に、一般的なフォトリソグラフィー法を用いてレジスト材をパターニングする。次に、パターニングされたレジスト材をマスクにして、マスク材12をエッチングする。これにより、溝形成用マスクが形成される。なお、エッチング方法としては、反応性イオンエッチングなどのドライエッチングを用いることができる。 Next, a resist material (not shown) is applied to the upper surface of the mask material 12. Next, the resist material is patterned using a general photolithography method. Next, the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.

 その後、酸素プラズマや硫酸等でレジスト材を除去する。次に、パターニングされたマスク材12をマスクにして、ドライエッチング法により、図3に示すように基板1の第1主面に溝9を形成する。溝9の寸法は、特に限定されないが、例えば、溝9の幅は6μmであり、深さは10μmである。 Thereafter, the resist material is removed by oxygen plasma, sulfuric acid or the like. Next, using the patterned mask material 12 as a mask, grooves 9 are formed in the first main surface of the substrate 1 by dry etching as shown in FIG. Although the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 μm and the depth is 10 μm.

(第2工程)
 次に、図4を参照して、溝9の第1側面9aの露出について説明する。
(Step 2)
Next, with reference to FIG. 4, the exposure of the first side surface 9 a of the groove 9 will be described.

 図4に示すように、基板1に絶縁層13を形成する。具体的には、溝9の底面、溝9の第2側面9b、及びマスク材12に堆積するように絶縁層13を形成する。例えばLPCVDを用いて絶縁層13を堆積する。絶縁層13の厚さは、例えば100nm程度である。絶縁層13を形成することにより、基板1の表面は、絶縁層13で保護される。次に、マスク材12の上面にレジスト材を塗布する。一般的なフォトリソグラフィー法を用いてレジスト材をパターニングする。次に、パターニングされたレジスト材をマスクにして、マスク材12をエッチングする。これにより、溝9の第1側面9aが露出する。なお、エッチング方法としては、リン酸によるウェットエッチングを用いることができる。 As shown in FIG. 4, the insulating layer 13 is formed on the substrate 1. Specifically, the insulating layer 13 is formed to be deposited on the bottom surface of the groove 9, the second side surface 9b of the groove 9, and the mask material 12. The insulating layer 13 is deposited using, for example, LPCVD. The thickness of the insulating layer 13 is, for example, about 100 nm. By forming the insulating layer 13, the surface of the substrate 1 is protected by the insulating layer 13. Next, a resist material is applied to the upper surface of the mask material 12. The resist material is patterned using a general photolithography method. Next, the mask material 12 is etched using the patterned resist material as a mask. Thereby, the first side surface 9 a of the groove 9 is exposed. Note that wet etching with phosphoric acid can be used as the etching method.

(第3工程)
 次に、図5を参照して半導体領域2及び電子供給領域3の形成方法について説明する。
(Third step)
Next, a method of forming the semiconductor region 2 and the electron supply region 3 will be described with reference to FIG.

 図5に示すように、溝9を形成した基板1に対してMOCVD法によりバッファ層の成長を行う。具体的には、MOCVD装置内に基板1を導入し、所定温度(例えば600℃)に昇温する。温度が安定したところで、基板1を回転させ、原料となるトリメチルアルミニウム(TMA)を所定の流量で基板1の表面に導入する。バッファ層は、例えば、一般式がAlGaN(0≦x≦1、0≦y≦1、0≦1-x-y≦1)で表される窒化アルミニウムガリウム(AlGaN)からなり、数百nm程度の厚さを有する。 As shown in FIG. 5, a buffer layer is grown on the substrate 1 in which the grooves 9 are formed by the MOCVD method. Specifically, the substrate 1 is introduced into the MOCVD apparatus, and the temperature is raised to a predetermined temperature (for example, 600 ° C.). When the temperature is stabilized, the substrate 1 is rotated to introduce trimethylaluminum (TMA) as a raw material to the surface of the substrate 1 at a predetermined flow rate. The buffer layer is made of, for example, aluminum gallium nitride (AlGaN) represented by the general formula Al x Ga y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ 1-x−y ≦ 1), It has a thickness of about several hundred nm.

 その後、バッファ層上にノンドープ窒化ガリウムを堆積させることで、バッファ層とノンドープ窒化ガリウム層からなる半導体領域2を形成する。この方法で形成された半導体領域2は、格子乗数のミスマッチで、(111)面にのみ高品質な結晶層が形成される。シリコン酸化膜またはシリコン窒化膜には半導体領域2となる層は基本的に成膜されない。ノンドープ窒化ガリウム層の厚さは要求耐圧値によって決まり、本実施形態では例えば5μmとして説明する。次に、同じ方法を用いて電子供給領域3を形成する。電子供給領域3の厚さは、例えば、数十nmである。 Thereafter, non-doped gallium nitride is deposited on the buffer layer to form the semiconductor region 2 composed of the buffer layer and the non-doped gallium nitride layer. The semiconductor region 2 formed by this method is a mismatch of lattice multipliers, and a high quality crystal layer is formed only on the (111) plane. A layer to be the semiconductor region 2 is basically not formed on the silicon oxide film or the silicon nitride film. The thickness of the non-doped gallium nitride layer is determined by the required breakdown voltage value, and is described as 5 μm in this embodiment, for example. Next, the electron supply region 3 is formed using the same method. The thickness of the electron supply region 3 is, for example, several tens of nm.

(第4工程)
 第3工程で形成された電子供給領域3上にレジスト材を形成し、ソース電極6及びドレイン電極7を形成する位置が露出するようにパターニングを行う。その後、ソース電極6及びドレイン電極7となるメタル材料を堆積する。メタル材料は、例えば、チタン(Ti)、アルミニウム(Al)、モリブデン(Mo)、金(Au)である。なお、堆積方法は、真空蒸着法を用いることができる。なお、カバレッジを向上させるには基板1を所定の角度及び所定のスピードで回転させればよい。
(Step 4)
A resist material is formed on the electron supply region 3 formed in the third step, and patterning is performed so that the positions at which the source electrode 6 and the drain electrode 7 are to be formed are exposed. Thereafter, a metal material to be the source electrode 6 and the drain electrode 7 is deposited. The metal material is, for example, titanium (Ti), aluminum (Al), molybdenum (Mo), gold (Au). Note that a vacuum evaporation method can be used as a deposition method. In order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed.

 メタル材料をレジスト材上に堆積した後、このメタル材料をアセトン溶液中でリフトオフすることでソース電極6及びドレイン電極7を形成する。 After depositing the metal material on the resist material, the metal material is lifted off in an acetone solution to form the source electrode 6 and the drain electrode 7.

 次に、オーミック性を向上させるためにアニール処理を行う。アニール処理は、例えば、高速熱処理装置(RTA:Rapid Thermal Anneal)を用いて行われる。熱処理温度は、850℃が好ましく、処理時間は、30秒が好ましい。 Next, annealing is performed to improve the ohmic property. Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal). The heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.

 次に、ゲート電極5を形成する。形成方法は、ソース電極6やドレイン電極7の形成方法と同様である。まず、ゲート電極5を形成する位置が露出するようにパターニングを行う。その後、ゲート電極5となるメタル材料を堆積する。メタル材料は、例えば、ニッケル(Ni)、金(Au)である。堆積方法は、電子ビーム蒸着装置による真空蒸着法を用いることができる。また、カバレッジを向上させるには基板1を所定の角度及び所定のスピードで回転させればよい。メタル材料をレジスト材上に堆積した後、このメタル材料をアセトン溶液中でリフトオフすることでゲート電極5を形成する。 Next, the gate electrode 5 is formed. The formation method is the same as the formation method of the source electrode 6 and the drain electrode 7. First, patterning is performed so as to expose the position where the gate electrode 5 is to be formed. Thereafter, a metal material to be the gate electrode 5 is deposited. The metal material is, for example, nickel (Ni), gold (Au). As a deposition method, a vacuum deposition method using an electron beam deposition apparatus can be used. Further, in order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed. After depositing a metal material on a resist material, the metal material is lifted off in an acetone solution to form a gate electrode 5.

 次に、真空蒸着法を用いて、基板1の裏面にメタル材料を堆積して、裏面電極4を形成する。メタル材料は、例えば、チタン(Ti)、ニッケル(Ni)、銀(Ag)である。以上により、図1に示す半導体装置が製造される。 Next, a metal material is deposited on the back surface of the substrate 1 using a vacuum evaporation method to form the back surface electrode 4. The metal material is, for example, titanium (Ti), nickel (Ni), silver (Ag). Thus, the semiconductor device shown in FIG. 1 is manufactured.

(半導体装置の動作例)
 次に、図1に示す第1実施形態に係る半導体装置の基本的な動作について説明する。
(Operation example of semiconductor device)
Next, the basic operation of the semiconductor device according to the first embodiment shown in FIG. 1 will be described.

 半導体装置は、半導体領域2と電子供給領域3とを有する。半導体領域2と電子供給領域3との界面近傍に高濃度の二次元電子ガス層2aが形成され、ソース電極6とドレイン電極7は、この二次元電子ガス層2aとオーミック接続される。半導体装置は、ゲート電極5に印加する電圧を制御することで、ゲート電極5の下部にある2次元電子ガスの有無を制御でき、ソース-ドレイン間を導通したり、切断したりできる。 The semiconductor device has a semiconductor region 2 and an electron supply region 3. A high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a. The semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.

 具体的には、半導体装置は、ソース電極6の電位を基準として、ドレイン電極7に所定の正の電位を印加した状態でゲート電極5の電位を制御することで、トランジスタとして機能する。ゲート-ソース間電圧を所定の閾値以上にすると、ゲート電極5から電子供給領域3を介して半導体領域2に広がる空乏層がなくなる。これにより、二次元電子ガス層2aが、電子供給領域3と半導体領域2との界面(ゲート電極5の下部)に形成され、トランジスタがオン状態となる。電流は、ドレイン電極7からソース電極6に流れる。半導体装置は、ソース-ドレイン間を繋ぐチャネルの密度を溝9の側面を利用することで向上させることができ、平面構造と比較して大電流化が可能となる。 Specifically, the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6. When the gate-source voltage is equal to or higher than a predetermined threshold value, the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears. Thereby, the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on. A current flows from the drain electrode 7 to the source electrode 6. In the semiconductor device, the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.

 また、ゲート-ソース間電圧を所定の閾値より小さくすると、ゲート電極5から電子供給領域3を介して半導体領域2に空乏層が広がり、二次元電子ガス層2aが消滅する。これにより、トランジスタがオフ状態となり、電流が遮断される。この際、ソース-ドレイン間に高い電圧が瞬間的に印加され、ゲート電極5からドレイン電極7に向かって空乏層が広がる。半導体装置の耐圧は、この空乏層で確保される。半導体領域2は、窒化ガリウムによって形成されているため、バンドギャップおよび絶縁破壊電界が大きく、半導体領域2の厚さが薄くても大きな耐圧が得られる。これにより、半導体領域2の厚さを薄くでき、溝9の幅を小さくできるため、基板1の面積効率が向上する。これにより、大電流密度の半導体装置を提供できる。 When the gate-source voltage is smaller than a predetermined threshold, the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.

 また、第1実施形態では、溝9の第1側面9aのみに半導体領域2を形成した。これにより、溝9の左右の側面に半導体領域2を形成した場合と比較して、閾値電圧の不均衡や、流れる電流の不均衡を改善できる。さらに、溝9の第1側面9aのみを利用することで、溝9の幅をさらに小さくすることができる。これにより、基板1の面積効率が向上し、電流密度も向上する。これにより、信頼性が高く、かつ大電流密度の半導体装置を提供できる。 Further, in the first embodiment, the semiconductor region 2 is formed only on the first side surface 9 a of the groove 9. Thereby, as compared with the case where the semiconductor regions 2 are formed on the left and right side surfaces of the groove 9, the imbalance of the threshold voltage and the imbalance of the flowing current can be improved. Furthermore, the width of the groove 9 can be further reduced by using only the first side surface 9 a of the groove 9. Thereby, the area efficiency of the substrate 1 is improved, and the current density is also improved. Thus, a semiconductor device with high reliability and large current density can be provided.

 また、第1実施形態に係る半導体装置によれば、溝9は、溝9の幅以上の深さを有する。これにより、平面のみを利用した半導体装置と比較して面積効率がよくなり大電流化が可能となる。 Further, according to the semiconductor device of the first embodiment, the groove 9 has a depth equal to or greater than the width of the groove 9. As a result, the area efficiency is improved compared to a semiconductor device using only a plane, and a large current can be realized.

 また、ゲート電極5は、溝9の内部において電子供給領域3に接して形成されてもよい。大電流を流すためには配線抵抗を低減する必要がある。ゲート電極5が、溝9の内部において電子供給領域3に接して形成されることで、ゲート電極5を溝9の中に設けることができる。これにより、基板1の表面で使用されるゲート電極5の面積を小さくすることができる。これにより、ソース電極6またはドレイン電極7を厚く形成することが可能となり、配線抵抗を低減できる。これにより、大電流密度の半導体装置を提供できる。 In addition, gate electrode 5 may be formed in contact with electron supply region 3 inside groove 9. In order to flow a large current, it is necessary to reduce the wiring resistance. By forming gate electrode 5 in contact with electron supply region 3 inside groove 9, gate electrode 5 can be provided in groove 9. Thereby, the area of the gate electrode 5 used on the surface of the substrate 1 can be reduced. Thus, the source electrode 6 or the drain electrode 7 can be formed thick, and the wiring resistance can be reduced. Thus, a semiconductor device with a large current density can be provided.

 また、第1実施形態に係る半導体装置によれば、基板1は、絶縁体からなる。これにより、ドレイン電極7に高電圧を印加した時に、ドレイン電極7から半導体領域2と基板1を介し、裏面電極4に流れるリーク電流を防ぐことができる。これにより、半導体装置の信頼性が向上する。また、半導体領域2の厚さをさらに薄くできるため、溝9の幅もさらに小さくできる。これにより、基板1の面積効率が向上するため、大電流密度の半導体装置を提供できる。なお、後述するように、基板1が半絶縁半導体であっても同様の効果が得られる。 Further, according to the semiconductor device of the first embodiment, the substrate 1 is made of an insulator. As a result, when a high voltage is applied to the drain electrode 7, it is possible to prevent a leak current flowing from the drain electrode 7 to the back surface electrode 4 via the semiconductor region 2 and the substrate 1. This improves the reliability of the semiconductor device. Further, since the thickness of the semiconductor region 2 can be further reduced, the width of the groove 9 can be further reduced. As a result, the area efficiency of the substrate 1 is improved, and a semiconductor device with a large current density can be provided. As described later, even if the substrate 1 is a semi-insulating semiconductor, the same effect can be obtained.

(第2実施形態)
 次に、図6及び図7を参照して、本発明の第2実施形態に係る半導体装置について説明する。第2実施形態が第1実施形態と異なるのは、半導体装置がトランジスタではなく、ダイオードを構成することである。第2実施形態では、第1実施形態に係るソース電極6をアノード電極6として説明する。また、第2実施形態では、第1実施形態に係るドレイン電極7をカソード電極7として説明する。また、第2実施形態に係る半導体装置の製造方法は、ゲート電極5を除いて第1実施形態と同じため、説明を省略する。また、第1実施形態と重複する構成については符号を引用してその説明は省略することとし、以下、相違点を中心として説明を行う。
Second Embodiment
Next, a semiconductor device according to a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. The second embodiment differs from the first embodiment in that the semiconductor device constitutes not a transistor but a diode. In the second embodiment, the source electrode 6 according to the first embodiment is described as the anode electrode 6. In the second embodiment, the drain electrode 7 according to the first embodiment is described as the cathode electrode 7. Further, the method of manufacturing the semiconductor device according to the second embodiment is the same as that of the first embodiment except for the gate electrode 5, so the description will be omitted. In addition, with regard to the same configuration as the first embodiment, the reference numerals will be cited and the description thereof will be omitted, and the following description will be made focusing on the differences.

(半導体装置の構成)
 図6及び図7に示すように、アノード電極6は、半導体領域2との間にエネルギー障壁を有する。カソード電極7は、半導体領域2とオーミック接続されている。
(Structure of semiconductor device)
As shown in FIGS. 6 and 7, the anode electrode 6 has an energy barrier with the semiconductor region 2. The cathode electrode 7 is in ohmic contact with the semiconductor region 2.

(半導体装置の動作例)
 図6に示す第2実施形態に係る半導体装置の基本的な動作について説明する。
(Operation example of semiconductor device)
The basic operation of the semiconductor device according to the second embodiment shown in FIG. 6 will be described.

 オン動作では、アノード電極6の電位を基準としてカソード電極7を低い電位とする順方向電圧を印加する。これにより、エネルギー障壁が低くなり、順方向電流がアノード電極6からカソード電極7に流れる。半導体装置は、アノード‐カソード間を繋ぐチャネルの密度を溝9の側面を利用することで向上させることができ、平面構造と比較して大電流化が可能となる。 In the on operation, a forward voltage is applied which makes the cathode electrode 7 a low potential with reference to the potential of the anode electrode 6. As a result, the energy barrier is lowered and forward current flows from the anode electrode 6 to the cathode electrode 7. In the semiconductor device, the density of the channel connecting between the anode and the cathode can be improved by utilizing the side surface of the groove 9, and the current can be increased as compared with the planar structure.

 オフ動作では、アノード電極6の電位を基準としてカソード電極7を高い電位にする逆方向電圧を印加する。これにより、エネルギー障壁が高くなり、順方向電流が遮断され、半導体装置がオフ状態となる。このとき、カソード電極7とアノード電極6の間に高い電圧が瞬間的に印加される。これによって、アノード電極6から、カソード電極7に向かって空乏層が広がる。半導体装置の耐圧は、この空乏層で確保される。半導体領域2は、窒化ガリウムによって形成されているため、バンドギャップおよび絶縁破壊電界が大きく、半導体領域2の厚さが薄くても大きな耐圧が得られる。これにより、半導体領域2の厚さを薄くでき、溝9の幅を小さくできるため、基板1の面積効率が向上する。これにより、大電流密度の半導体装置を提供できる。 In the off operation, a reverse voltage is applied to set the cathode electrode 7 to a high potential with reference to the potential of the anode electrode 6. Thus, the energy barrier becomes high, the forward current is interrupted, and the semiconductor device is turned off. At this time, a high voltage is instantaneously applied between the cathode electrode 7 and the anode electrode 6. Thus, the depletion layer spreads from the anode electrode 6 toward the cathode electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.

 また、第2実施形態では、溝9の第1側面9aのみに半導体領域2を形成した。これにより、溝9の左右の側面に半導体領域2を形成した場合と比較して、閾値電圧の不均衡や、流れる電流の不均衡を改善できる。さらに、溝9の第1側面9aのみを利用することで、溝9の幅をさらに小さくすることができる。これにより、基板1の面積効率が向上し、電流密度も向上する。これにより、信頼性が高く、かつ大電流密度の半導体装置を提供できる。 In the second embodiment, the semiconductor region 2 is formed only on the first side surface 9 a of the groove 9. Thereby, as compared with the case where the semiconductor regions 2 are formed on the left and right side surfaces of the groove 9, the imbalance of the threshold voltage and the imbalance of the flowing current can be improved. Furthermore, the width of the groove 9 can be further reduced by using only the first side surface 9 a of the groove 9. Thereby, the area efficiency of the substrate 1 is improved, and the current density is also improved. Thus, a semiconductor device with high reliability and large current density can be provided.

 また、第2実施形態に係る半導体装置によれば、溝9は、溝9の幅以上の深さを有する。これにより、平面のみを利用した半導体装置と比較して面積効率がよくなり大電流化が可能となる。 Also, according to the semiconductor device of the second embodiment, the groove 9 has a depth equal to or greater than the width of the groove 9. As a result, the area efficiency is improved compared to a semiconductor device using only a plane, and a large current can be realized.

(第3実施形態)
 次に、図8~図11を参照して、本発明の第3実施形態に係る半導体装置について説明する。第3実施形態が第1実施形態と異なるのは、電子供給領域3が、絶縁層13を介して第2側面9bに接することである。第1実施形態と重複する構成については符号を引用してその説明は省略することとし、以下、相違点を中心として説明を行う。
Third Embodiment
Next, with reference to FIGS. 8 to 11, a semiconductor device according to a third embodiment of the present invention will be described. The third embodiment is different from the first embodiment in that the electron supply region 3 is in contact with the second side surface 9 b via the insulating layer 13. About the composition which overlaps with a 1st embodiment, a code is quoted, the explanation shall be omitted and it explains focusing on difference below.

(半導体装置の構成)
 図8及び図9に示すように、電子供給領域3は、溝9の内部において、ゲート電極5、ソース電極6、及びドレイン電極7と接しない領域を有する。電子供給領域3は、この領域では、第1側面9aと対向する第2側面9bに絶縁層13を介して接する。
(Structure of semiconductor device)
As shown in FIGS. 8 and 9, the electron supply region 3 has a region which is not in contact with the gate electrode 5, the source electrode 6, and the drain electrode 7 inside the groove 9. In this region, the electron supply region 3 is in contact with the second side surface 9 b opposed to the first side surface 9 a via the insulating layer 13.

(半導体装置の製造方法)
 図10及び図11を参照し、図8に示す半導体装置の製造方法の一例を説明する。図10に示すように、基板1の第1主面上にマスク材12を形成する。マスク材12は、例えば、シリコン酸化膜(SiO)である。マスク材12の厚さは、数μmが好ましい。マスク材12は、熱CVD法やプラズマCVD法の化学気相堆積法により基板1の第1主面上に堆積される。
(Method of manufacturing semiconductor device)
An example of a method of manufacturing the semiconductor device shown in FIG. 8 will be described with reference to FIGS. 10 and 11. As shown in FIG. 10, the mask material 12 is formed on the first main surface of the substrate 1. The mask material 12 is, for example, a silicon oxide film (SiO 2 ). The thickness of the mask material 12 is preferably several μm. The mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.

 次に、マスク材12の上面にレジスト材を塗布する。次に、一般的なフォトリソグラフィー法を用いてレジスト材をパターニングする。次に、パターニングされたレジスト材をマスクにして、マスク材12をエッチングする。これにより、溝形成用マスクが形成される。なお、エッチング方法としては、反応性イオンエッチングなどのドライエッチングを用いることができる。 Next, a resist material is applied to the upper surface of the mask material 12. Next, the resist material is patterned using a general photolithography method. Next, the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.

 その後、酸素プラズマや硫酸等でレジスト材を除去する。次に、パターニングされたマスク材12をマスクにして、ドライエッチング法により、図10に示すように基板1の第1主面に溝9を形成する。溝9の寸法は、特に限定されないが、例えば、溝9の幅は6μmであり、深さは10μmである。以降の製造方法は、第1実施形態と同様であるため、説明を省略する。 Thereafter, the resist material is removed by oxygen plasma, sulfuric acid or the like. Next, using the patterned mask material 12 as a mask, grooves 9 are formed in the first main surface of the substrate 1 by dry etching as shown in FIG. Although the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 μm and the depth is 10 μm. The subsequent manufacturing method is the same as that of the first embodiment, and thus the description thereof is omitted.

(半導体装置の動作例)
 次に、図8に示す第3実施形態に係る半導体装置の基本的な動作について説明する。
(Operation example of semiconductor device)
Next, the basic operation of the semiconductor device according to the third embodiment shown in FIG. 8 will be described.

 半導体装置は、半導体領域2と電子供給領域3とを有する。半導体領域2と電子供給領域3との界面近傍に高濃度の二次元電子ガス層2aが形成され、ソース電極6とドレイン電極7は、この二次元電子ガス層2aとオーミック接続される。半導体装置は、ゲート電極5に印加する電圧を制御することで、ゲート電極5の下部にある2次元電子ガスの有無を制御でき、ソース-ドレイン間を導通したり、切断したりできる。 The semiconductor device has a semiconductor region 2 and an electron supply region 3. A high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a. The semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.

 具体的には、半導体装置は、ソース電極6の電位を基準として、ドレイン電極7に所定の正の電位を印加した状態でゲート電極5の電位を制御することで、トランジスタとして機能する。ゲート-ソース間電圧を所定の閾値以上にすると、ゲート電極5から電子供給領域3を介して半導体領域2に広がる空乏層がなくなる。これにより、二次元電子ガス層2aが、電子供給領域3と半導体領域2との界面(ゲート電極5の下部)に形成され、トランジスタがオン状態となる。電流は、ドレイン電極7からソース電極6に流れる。半導体装置は、ソース-ドレイン間を繋ぐチャネルの密度を溝9の側面を利用することで向上させることができ、平面構造と比較して大電流化が可能となる。 Specifically, the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6. When the gate-source voltage is equal to or higher than a predetermined threshold value, the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears. Thereby, the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on. A current flows from the drain electrode 7 to the source electrode 6. In the semiconductor device, the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.

 また、ゲート-ソース間電圧を所定の閾値より小さくすると、ゲート電極5から電子供給領域3を介して半導体領域2に空乏層が広がり、二次元電子ガス層2aが消滅する。これにより、トランジスタがオフ状態となり、電流が遮断される。この際、ソース-ドレイン間に高い電圧が瞬間的に印加され、ゲート電極5からドレイン電極7に向かって空乏層が広がる。半導体装置の耐圧は、この空乏層で確保される。半導体領域2は、窒化ガリウムによって形成されているため、バンドギャップおよび絶縁破壊電界が大きく、半導体領域2の厚さが薄くても大きな耐圧が得られる。これにより、半導体領域2の厚さを薄くでき、溝9の幅を小さくできるため、基板1の面積効率が向上する。これにより、大電流密度の半導体装置を提供できる。 When the gate-source voltage is smaller than a predetermined threshold, the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.

 また、第3実施形態では、溝9の第1側面9aのみに半導体領域2を形成した。これにより、溝9の左右の側面に半導体領域2を形成した場合と比較して、閾値電圧の不均衡や、流れる電流の不均衡を改善できる。さらに、溝9の第1側面9aのみを利用することで、溝9の幅をさらに小さくすることができる。これにより、基板1の面積効率が向上し、電流密度も向上する。これにより、信頼性が高く、かつ大電流密度の半導体装置を提供できる。 In the third embodiment, the semiconductor region 2 is formed only on the first side surface 9 a of the groove 9. Thereby, as compared with the case where the semiconductor regions 2 are formed on the left and right side surfaces of the groove 9, the imbalance of the threshold voltage and the imbalance of the flowing current can be improved. Furthermore, the width of the groove 9 can be further reduced by using only the first side surface 9 a of the groove 9. Thereby, the area efficiency of the substrate 1 is improved, and the current density is also improved. Thus, a semiconductor device with high reliability and large current density can be provided.

 また、第3実施形態に係る半導体装置によれば、溝9は、溝9の幅以上の深さを有する。これにより、平面のみを利用した半導体装置と比較して面積効率がよくなり大電流化が可能となる。 Further, according to the semiconductor device of the third embodiment, the groove 9 has a depth equal to or greater than the width of the groove 9. As a result, the area efficiency is improved compared to a semiconductor device using only a plane, and a large current can be realized.

 また、第3実施形態に係る半導体装置によれば、電子供給領域3は、溝9の内部において、ゲート電極5、ソース電極6、及びドレイン電極7と接しない領域を有する。電子供給領域3は、この領域では、第1側面9aと対向する第2側面9bに絶縁層13を介して接する。これにより、溝9を埋めることができる。これにより、例えば、半導体領域2の厚さを5μm、電子供給領域3の厚さを30nm、絶縁層13の厚さを50nmとした場合、溝9の幅は5080nmとなるため、溝9の幅を小さくすることができる。これにより、基板1の面積効率が向上し、素子の電流密度も向上する。また、半導体装置がトランジスタとして動作した際の発熱は、電子供給領域3から、絶縁層13を介して基板1に逃がすことが可能となる。これにより、温度上昇による抵抗の増加を低減できる低損失な半導体装置を提供できる。 Further, according to the semiconductor device of the third embodiment, the electron supply region 3 has a region not in contact with the gate electrode 5, the source electrode 6, and the drain electrode 7 in the inside of the groove 9. In this region, the electron supply region 3 is in contact with the second side surface 9 b opposed to the first side surface 9 a via the insulating layer 13. Thereby, the groove 9 can be filled. Thus, for example, assuming that the thickness of the semiconductor region 2 is 5 μm, the thickness of the electron supply region 3 is 30 nm, and the thickness of the insulating layer 13 is 50 nm, the width of the groove 9 is 5080 nm. Can be made smaller. Thereby, the area efficiency of the substrate 1 is improved, and the current density of the device is also improved. Further, heat generated when the semiconductor device operates as a transistor can be released from the electron supply region 3 to the substrate 1 through the insulating layer 13. Thus, it is possible to provide a low loss semiconductor device capable of reducing an increase in resistance due to temperature rise.

(第4実施形態)
 次に、本発明の第4実施形態に係る半導体装置について説明する。第4実施形態では、基板1の材料として、半絶縁半導体を用いる。半絶縁半導体としては、例えば炭化ケイ素(SiC)が採用可能である。半絶縁性基板は、半導体領域2を成長させる溝9の第1側面9aが、炭化ケイ素のSi面になるような基板である。第1実施形態と重複する構成については符号を引用してその説明は省略することとし、以下、相違点を中心として説明を行う。
Fourth Embodiment
Next, a semiconductor device according to a fourth embodiment of the present invention will be described. In the fourth embodiment, a semi-insulating semiconductor is used as the material of the substrate 1. For example, silicon carbide (SiC) can be adopted as the semi-insulating semiconductor. The semi-insulating substrate is a substrate in which the first side surface 9 a of the groove 9 for growing the semiconductor region 2 is the Si surface of silicon carbide. About the composition which overlaps with a 1st embodiment, a code is quoted, the explanation shall be omitted and it explains focusing on difference below.

(半導体装置の製造方法)
 次に、第4実施形態に係る半導体装置の製造方法の一例を説明する。第4実施形態において、溝9の第1側面9aを露出させる工程が、第1実施形態と異なる。
(Method of manufacturing semiconductor device)
Next, an example of a method of manufacturing a semiconductor device according to the fourth embodiment will be described. In the fourth embodiment, the step of exposing the first side surface 9 a of the groove 9 is different from that of the first embodiment.

 半絶縁性基板に絶縁層13を形成する。絶縁層13は、シリコン酸化膜を用いるのが好適である。堆積方法として熱酸化法を用いることができる。酸素雰囲気中に半絶縁性基板を1000℃~1200℃で200分から300分の間、加熱する。これにより、半絶縁性基板にSi面が形成される。シリコン酸化膜の厚さは、10nm~100nm程度が好ましい。炭化ケイ素は、結晶の面方位で熱酸化レートが異なり、Si面は、他の面と比べて一番遅い面である。次にシリコン酸化膜の除去を行う。シリコン酸化膜の除去方法は、希釈フッ酸によるウェットエッチングが好適である。このとき、Si面のシリコン酸化膜のみ除去できるように時間設定を行う。これにより、Si面のみ露出され、他の面にはシリコン酸化膜が残っている状態となる。次に、半導体領域2を形成する工程に移る。以降の製造方法は、第1実施形態と同様のため、説明を省略する。 The insulating layer 13 is formed on the semi-insulating substrate. It is preferable to use a silicon oxide film as the insulating layer 13. Thermal oxidation can be used as a deposition method. The semi-insulating substrate is heated at 1000 ° C. to 1200 ° C. for 200 minutes to 300 minutes in an oxygen atmosphere. Thereby, a Si surface is formed on the semi-insulating substrate. The thickness of the silicon oxide film is preferably about 10 nm to 100 nm. Silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces. Next, the silicon oxide film is removed. The method of removing the silicon oxide film is preferably wet etching with diluted hydrofluoric acid. At this time, the time is set so that only the silicon oxide film on the Si surface can be removed. As a result, only the Si surface is exposed, and the silicon oxide film remains on the other surface. Next, the process proceeds to the step of forming the semiconductor region 2. The subsequent manufacturing method is the same as that of the first embodiment, and thus the description thereof is omitted.

 第4実施形態に係る半導体装置によれば、基板1として半絶縁性基板を用いる。半絶縁性基板は、シリコン基板と比較して、絶縁性が高いことから、リーク電流を低減させることができる。これにより、半導体領域2の厚さを薄くすることができ、溝9の幅を小さくすることができる。これにより、基板1の面積効率が向上し、電流密度も向上する。さらに、炭化ケイ素は、熱伝導率が高く、大電流が流れる時の素子の温度上昇を抑えることができる。これにより、温度上昇による素子の抵抗増加を低減でき、低損失な半導体装置を提供できる。 According to the semiconductor device of the fourth embodiment, a semi-insulating substrate is used as the substrate 1. Since the semi-insulating substrate has higher insulation than a silicon substrate, leakage current can be reduced. Thereby, the thickness of the semiconductor region 2 can be reduced, and the width of the groove 9 can be reduced. Thereby, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, silicon carbide has high thermal conductivity and can suppress the temperature rise of the element when a large current flows. Thus, the increase in resistance of the element due to temperature rise can be reduced, and a low loss semiconductor device can be provided.

 また、炭化ケイ素のSi面に半導体領域2を形成することにより、溝9の第1側面9aの露出工程で、マスクによるフォトリソグラフィ工程が不要となる。これにより、マスク合わせによるずれがなくなり、信頼性の高い半導体装置を提供できる。また、マスクのコストが不要となるため、半導体装置の製造コストを低減することができる。また、炭化ケイ素は、結晶の面方位で熱酸化レートが異なり、Si面は、他の面と比べて一番遅い面である。したがって、所定時間の酸化膜ウェットエッチング処理で、Si面のみを露出させることができる。これにより、製造しやすい半導体装置を提供できる。 Further, by forming the semiconductor region 2 on the Si surface of silicon carbide, the photolithography process using a mask becomes unnecessary in the process of exposing the first side surface 9 a of the groove 9. Thus, the misalignment due to the mask alignment is eliminated, and a highly reliable semiconductor device can be provided. In addition, since the cost of the mask becomes unnecessary, the manufacturing cost of the semiconductor device can be reduced. In addition, silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces. Therefore, only the Si surface can be exposed by the oxide film wet etching process for a predetermined time. This makes it possible to provide a semiconductor device that is easy to manufacture.

(第5実施形態)
 次に、図12~図18を参照して、本発明の第5実施形態に係る半導体装置について説明する。第5実施形態が第1実施形態と異なるのは、基板1の一部に導電性領域15が形成されることである。また、基板1は、半絶縁性基板である。第1実施形態と重複する構成については符号を引用してその説明は省略することとし、以下、相違点を中心として説明を行う。なお、基板1は、絶縁体であってもよい。
Fifth Embodiment
Next, a semiconductor device according to a fifth embodiment of the present invention will be described with reference to FIG. 12 to FIG. The fifth embodiment is different from the first embodiment in that the conductive region 15 is formed in a part of the substrate 1. The substrate 1 is a semi-insulating substrate. About the composition which overlaps with a 1st embodiment, a code is quoted, the explanation shall be omitted and it explains focusing on difference below. The substrate 1 may be an insulator.

(半導体装置の構成)
 図12及び図13に示すように、基板1は、イオン注入で形成される導電性領域15を有する。導電性領域15は、絶縁層13を介して、電子供給領域3に接する。導電性領域15は、ゲート電極5と電気的に接続される。
(Structure of semiconductor device)
As shown in FIGS. 12 and 13, the substrate 1 has a conductive region 15 formed by ion implantation. The conductive region 15 is in contact with the electron supply region 3 via the insulating layer 13. Conductive region 15 is electrically connected to gate electrode 5.

(半導体装置の製造方法)
 図14~図18を参照し、図12に示す半導体装置の製造方法の一例を説明する。
(Method of manufacturing semiconductor device)
An example of a method of manufacturing the semiconductor device shown in FIG. 12 will be described with reference to FIGS. 14 to 18.

(第1工程)
 図14に示すように、基板1の第1主面上にマスク材12を形成する。マスク材12は、例えば、シリコン酸化膜(SiO)である。マスク材12の厚さは、数μmが好ましい。マスク材12は、熱CVD法やプラズマCVD法の化学気相堆積法により基板1の第1主面上に堆積される。
(Step 1)
As shown in FIG. 14, the mask material 12 is formed on the first main surface of the substrate 1. The mask material 12 is, for example, a silicon oxide film (SiO 2 ). The thickness of the mask material 12 is preferably several μm. The mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.

 次に、マスク材12の上面にレジスト材を塗布する。次に、一般的なフォトリソグラフィー法を用いてレジスト材をパターニングする。次に、パターニングされたレジスト材をマスクにして、マスク材12をエッチングする。これにより、溝形成用マスクが形成される。なお、エッチング方法としては、反応性イオンエッチングなどのドライエッチングを用いることができる。 Next, a resist material is applied to the upper surface of the mask material 12. Next, the resist material is patterned using a general photolithography method. Next, the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.

 その後、酸素プラズマや硫酸等でレジスト材を除去する。次に、パターニングされたマスク材12をマスクにして、ドライエッチング法により、図14に示すように基板1の第1主面に溝9を形成する。溝9の寸法は、特に限定されないが、例えば、溝9の幅は6μmであり、深さは10μmである。その後、希釈フッ酸を用いてマスク材12を除去する。 Thereafter, the resist material is removed by oxygen plasma, sulfuric acid or the like. Next, using the patterned mask material 12 as a mask, grooves 9 are formed on the first main surface of the substrate 1 by dry etching as shown in FIG. Although the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 μm and the depth is 10 μm. Thereafter, the mask material 12 is removed using diluted hydrofluoric acid.

 次に、図16に示すように、レジスト材16をパターニングする。次に、アルミニウムイオン注入を行い、P型の導電性領域15を形成する。その後、レジスト材16を酸素プラズマや硫酸等で除去し、活性化を行う。活性化方法として、1500℃~1800℃のアルゴン(Ar)ガスの雰囲気中に10分~20分の間、アニールすることが好適である。これにより、図18に示すように、導電性領域15が形成される。 Next, as shown in FIG. 16, the resist material 16 is patterned. Next, aluminum ion implantation is performed to form a P-type conductive region 15. Thereafter, the resist material 16 is removed by oxygen plasma, sulfuric acid or the like to perform activation. As an activation method, annealing is preferably performed for 10 minutes to 20 minutes in an atmosphere of argon (Ar) gas at 1500 ° C. to 1800 ° C. Thereby, as shown in FIG. 18, the conductive region 15 is formed.

(第2工程)
 次に、半絶縁性基板(基板1)に絶縁層13を形成する。絶縁層13は、シリコン酸化膜を用いるのが好適である。堆積方法として熱酸化法を用いることができる。酸素雰囲気中に半絶縁性基板を1000℃~1200℃で200分から300分の間、加熱する。これにより、半絶縁性基板にSi面が形成される。シリコン酸化膜の厚さは、10nm~100nm程度が好ましい。炭化ケイ素は、結晶の面方位で熱酸化レートが異なり、Si面は、他の面と比べて一番遅い面である。次にシリコン酸化膜の除去を行う。シリコン酸化膜の除去方法は、希釈フッ酸によるウェットエッチングが好適である。このとき、Si面のシリコン酸化膜のみ除去できるように時間設定を行う。これにより、Si面のみ露出され、他の面にはシリコン酸化膜が残っている状態となる。
(Step 2)
Next, the insulating layer 13 is formed on the semi-insulating substrate (substrate 1). It is preferable to use a silicon oxide film as the insulating layer 13. Thermal oxidation can be used as a deposition method. The semi-insulating substrate is heated at 1000 ° C. to 1200 ° C. for 200 minutes to 300 minutes in an oxygen atmosphere. Thereby, a Si surface is formed on the semi-insulating substrate. The thickness of the silicon oxide film is preferably about 10 nm to 100 nm. Silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces. Next, the silicon oxide film is removed. The method of removing the silicon oxide film is preferably wet etching with diluted hydrofluoric acid. At this time, the time is set so that only the silicon oxide film on the Si surface can be removed. As a result, only the Si surface is exposed, and the silicon oxide film remains on the other surface.

(第3工程)
 溝9を形成した基板1に対してMOCVD法によりバッファ層の成長を行う。具体的には、MOCVD装置内に基板1を導入し、所定温度(例えば600℃)に昇温する。温度が安定したところで、基板1を回転させ、原料となるトリメチルアルミニウム(TMA)を所定の流量で基板1の表面に導入する。バッファ層は、例えば、一般式がAlGaN(0≦x≦1、0≦y≦1、0≦1-x-y≦1)で表される窒化アルミニウムガリウム(AlGaN)からなり、数百nm程度の厚さを有する。
(Third step)
The buffer layer is grown on the substrate 1 in which the groove 9 is formed by the MOCVD method. Specifically, the substrate 1 is introduced into the MOCVD apparatus, and the temperature is raised to a predetermined temperature (for example, 600 ° C.). When the temperature is stabilized, the substrate 1 is rotated to introduce trimethylaluminum (TMA) as a raw material to the surface of the substrate 1 at a predetermined flow rate. The buffer layer is made of, for example, aluminum gallium nitride (AlGaN) represented by the general formula Al x Ga y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ 1-x−y ≦ 1), It has a thickness of about several hundred nm.

 その後、バッファ層上にノンドープ窒化ガリウムを堆積させることで、バッファ層とノンドープ窒化ガリウム層からなる半導体領域2を形成する。この方法で形成された半導体領域2は、格子乗数のミスマッチで、(111)面にのみ高品質な結晶層が形成される。シリコン酸化膜またはシリコン窒化膜には半導体領域2となる層は基本的に成膜されない。ノンドープ窒化ガリウム層の厚さは要求耐圧値によって決まり、本実施形態では例えば5μmとして説明する。次に、同じ方法を用いて電子供給領域3を形成する。電子供給領域3の厚さは、例えば、数十nmである。 Thereafter, non-doped gallium nitride is deposited on the buffer layer to form the semiconductor region 2 composed of the buffer layer and the non-doped gallium nitride layer. The semiconductor region 2 formed by this method is a mismatch of lattice multipliers, and a high quality crystal layer is formed only on the (111) plane. A layer to be the semiconductor region 2 is basically not formed on the silicon oxide film or the silicon nitride film. The thickness of the non-doped gallium nitride layer is determined by the required breakdown voltage value, and is described as 5 μm in this embodiment, for example. Next, the electron supply region 3 is formed using the same method. The thickness of the electron supply region 3 is, for example, several tens of nm.

(第4工程)
 第3工程で形成された電子供給領域3上にレジスト材を形成し、ソース電極6及びドレイン電極7を形成する位置が露出するようにパターニングを行う。その後、ソース電極6及びドレイン電極7となるメタル材料を堆積する。メタル材料は、例えば、チタン(Ti)、アルミニウム(Al)、モリブデン(Mo)、金(Au)である。なお、堆積方法は、真空蒸着法を用いることができる。なお、カバレッジを向上させるには基板1を所定の角度及び所定のスピードで回転させればよい。
(Step 4)
A resist material is formed on the electron supply region 3 formed in the third step, and patterning is performed so that the positions at which the source electrode 6 and the drain electrode 7 are to be formed are exposed. Thereafter, a metal material to be the source electrode 6 and the drain electrode 7 is deposited. The metal material is, for example, titanium (Ti), aluminum (Al), molybdenum (Mo), gold (Au). Note that a vacuum evaporation method can be used as a deposition method. In order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed.

 メタル材料をレジスト材上に堆積した後、このメタル材料をアセトン溶液中でリフトオフすることでソース電極6及びドレイン電極7を形成する。次に、オーミック性を向上させるためにアニール処理を行う。アニール処理は、例えば、高速熱処理装置(RTA:Rapid Thermal Anneal)を用いて行われる。熱処理温度は、850℃が好ましく、処理時間は、30秒が好ましい。 After depositing the metal material on the resist material, the metal material is lifted off in an acetone solution to form the source electrode 6 and the drain electrode 7. Next, annealing is performed to improve the ohmic property. Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal). The heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.

 次に、ゲート電極5を形成する。形成方法は、ソース電極6やドレイン電極7の形成方法と同様である。まず、ゲート電極5を形成する位置が露出するようにパターニングを行う。次に、基板1の表面に導電性領域15を露出させる。露出方法として、ゲート電極5を形成する位置が露出するようにパターニングを行う。次に、希釈フッ酸で基板1の表面のシリコン酸化膜を除去する。 Next, the gate electrode 5 is formed. The formation method is the same as the formation method of the source electrode 6 and the drain electrode 7. First, patterning is performed so as to expose the position where the gate electrode 5 is to be formed. Next, the conductive region 15 is exposed on the surface of the substrate 1. As an exposure method, patterning is performed so that the position where the gate electrode 5 is to be formed is exposed. Next, the silicon oxide film on the surface of the substrate 1 is removed with diluted hydrofluoric acid.

 その後、ゲート電極5となるメタル材料を堆積する。メタル材料は、例えば、ニッケルである。堆積量は、特に限定されないが、例えばニッケルを100nm堆積する。堆積方法は、電子ビーム蒸着装置による真空蒸着法を用いることができる。また、カバレッジを向上させるには基板1を所定の角度及び所定のスピードで回転させればよい。メタル材料を堆積した後、このメタル材料をアセトン溶液中でリフトオフすることでゲート電極5を形成する。 Thereafter, a metal material to be the gate electrode 5 is deposited. The metal material is, for example, nickel. Although the deposition amount is not particularly limited, for example, 100 nm of nickel is deposited. As a deposition method, a vacuum deposition method using an electron beam deposition apparatus can be used. Further, in order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed. After depositing the metal material, the gate electrode 5 is formed by lifting off the metal material in an acetone solution.

 次に、真空蒸着法を用いて、基板1の裏面にメタル材料を堆積して、裏面電極4を形成する。メタル材料は、例えば、チタン(Ti)、ニッケル(Ni)、銀(Ag)である。以上により、図12に示す半導体装置が製造される。 Next, a metal material is deposited on the back surface of the substrate 1 using a vacuum evaporation method to form the back surface electrode 4. The metal material is, for example, titanium (Ti), nickel (Ni), silver (Ag). Thus, the semiconductor device shown in FIG. 12 is manufactured.

(半導体装置の動作例)
 次に、図12に示す第5実施形態に係る半導体装置の基本的な動作について説明する。
(Operation example of semiconductor device)
Next, the basic operation of the semiconductor device according to the fifth embodiment shown in FIG. 12 will be described.

 半導体装置は、半導体領域2と電子供給領域3とを有する。半導体領域2と電子供給領域3との界面近傍に高濃度の二次元電子ガス層2aが形成され、ソース電極6とドレイン電極7は、この二次元電子ガス層2aとオーミック接続される。半導体装置は、ゲート電極5に印加する電圧を制御することで、ゲート電極5の下部にある2次元電子ガスの有無を制御でき、ソース-ドレイン間を導通したり、切断したりできる。 The semiconductor device has a semiconductor region 2 and an electron supply region 3. A high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a. The semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.

 具体的には、半導体装置は、ソース電極6の電位を基準として、ドレイン電極7に所定の正の電位を印加した状態でゲート電極5の電位を制御することで、トランジスタとして機能する。ゲート-ソース間電圧を所定の閾値以上にすると、ゲート電極5から電子供給領域3を介して半導体領域2に広がる空乏層がなくなる。これにより、二次元電子ガス層2aが、電子供給領域3と半導体領域2との界面(ゲート電極5の下部)に形成され、トランジスタがオン状態となる。電流は、ドレイン電極7からソース電極6に流れる。半導体装置は、ソース-ドレイン間を繋ぐチャネルの密度を溝9の側面を利用することで向上させることができ、平面構造と比較して大電流化が可能となる。 Specifically, the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6. When the gate-source voltage is equal to or higher than a predetermined threshold value, the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears. Thereby, the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on. A current flows from the drain electrode 7 to the source electrode 6. In the semiconductor device, the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.

 また、ゲート-ソース間電圧を所定の閾値より小さくすると、ゲート電極5から電子供給領域3を介して半導体領域2に空乏層が広がり、二次元電子ガス層2aが消滅する。これにより、トランジスタがオフ状態となり、電流が遮断される。この際、ソース-ドレイン間に高い電圧が瞬間的に印加され、ゲート電極5からドレイン電極7に向かって空乏層が広がる。半導体装置の耐圧は、この空乏層で確保される。半導体領域2は、窒化ガリウムによって形成されているため、バンドギャップおよび絶縁破壊電界が大きく、半導体領域2の厚さが薄くても大きな耐圧が得られる。これにより、半導体領域2の厚さを薄くでき、溝9の幅を小さくできるため、基板1の面積効率が向上する。これにより、大電流密度の半導体装置を提供できる。 When the gate-source voltage is smaller than a predetermined threshold, the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.

 また、第5実施形態に係る半導体装置によれば、導電性領域15をゲート電極5とすることにより、ゲート電極5を溝9に埋め込む工程が不要になり、製造しやすくなる。また、ゲート電極5の厚さ分だけ、溝9の幅を低減できる。このため、基板1の面積効率が向上し、電流密度も向上する。さらに導電性領域15は半導体材料であるため、所定電圧の印加時には半導体材料によって空乏層が形成される。これにより、素子の耐圧が向上する。 Further, according to the semiconductor device of the fifth embodiment, the conductive region 15 is made to be the gate electrode 5, thereby eliminating the need for the step of embedding the gate electrode 5 in the groove 9, and the manufacturing becomes easy. Further, the width of the groove 9 can be reduced by the thickness of the gate electrode 5. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, since the conductive region 15 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.

(第6実施形態)
 次に、図19~図26を参照して、本発明の第6実施形態に係る半導体装置について説明する。第6実施形態が第1実施形態と異なるのは、基板1の一部に導電性領域15が形成されることである。さらに、基板1の一部に2つのN型導電性領域17が形成される。また、基板1は、半絶縁性基板である。第1実施形態と重複する構成については符号を引用してその説明は省略することとし、以下、相違点を中心として説明を行う。なお、基板1は、絶縁体であってもよい。
Sixth Embodiment
Next, a semiconductor device according to a sixth embodiment of the present invention will be described with reference to FIGS. The sixth embodiment is different from the first embodiment in that the conductive region 15 is formed in a part of the substrate 1. Furthermore, two N-type conductive regions 17 are formed in a part of the substrate 1. The substrate 1 is a semi-insulating substrate. About the composition which overlaps with a 1st embodiment, a code is quoted, the explanation shall be omitted and it explains focusing on difference below. The substrate 1 may be an insulator.

(半導体装置の構成)
 図19及び図20に示すように、基板1は、イオン注入で形成される導電性領域15と、2つのN型導電性領域17を有する。導電性領域15と2つのN型導電性領域17は、絶縁層13を介して、電子供給領域3に接する。導電性領域15は、ゲート電極5と同様の機能を有し、ゲート電極5と電気的に接続される。2つのN型導電性領域17のうち、一方はソース電極6と同様の機能を有し、ソース電極6と電気的に接続される。また、2つのN型導電性領域17のうち、他方はドレイン電極7と同様の機能を有し、ドレイン電極7と電気的に接続される。
(Structure of semiconductor device)
As shown in FIGS. 19 and 20, the substrate 1 has a conductive region 15 formed by ion implantation and two N-type conductive regions 17. The conductive region 15 and the two N-type conductive regions 17 are in contact with the electron supply region 3 via the insulating layer 13. The conductive region 15 has the same function as the gate electrode 5 and is electrically connected to the gate electrode 5. One of the two N-type conductive regions 17 has the same function as the source electrode 6 and is electrically connected to the source electrode 6. The other of the two N-type conductive regions 17 has the same function as the drain electrode 7 and is electrically connected to the drain electrode 7.

(半導体装置の製造方法)
 図21~図26を参照し、図19に示す半導体装置の製造方法の一例を説明する。
(Method of manufacturing semiconductor device)
An example of a method of manufacturing the semiconductor device shown in FIG. 19 will be described with reference to FIGS. 21 to 26.

(第1工程)
 基板1の第1主面上にマスク材12を形成する。マスク材12は、例えば、シリコン酸化膜(SiO)である。マスク材12の厚さは、数μmが好ましい。マスク材12は、熱CVD法やプラズマCVD法の化学気相堆積法により基板1の第1主面上に堆積される。
(Step 1)
A mask material 12 is formed on the first main surface of the substrate 1. The mask material 12 is, for example, a silicon oxide film (SiO 2 ). The thickness of the mask material 12 is preferably several μm. The mask material 12 is deposited on the first main surface of the substrate 1 by a chemical vapor deposition method such as a thermal CVD method or a plasma CVD method.

 次に、マスク材12の上面にレジスト材を塗布する。次に、一般的なフォトリソグラフィー法を用いてレジスト材をパターニングする。次に、パターニングされたレジスト材をマスクにして、マスク材12をエッチングする。これにより、溝形成用マスクが形成される。なお、エッチング方法としては、反応性イオンエッチングなどのドライエッチングを用いることができる。 Next, a resist material is applied to the upper surface of the mask material 12. Next, the resist material is patterned using a general photolithography method. Next, the mask material 12 is etched using the patterned resist material as a mask. Thereby, the groove forming mask is formed. Note that dry etching such as reactive ion etching can be used as the etching method.

 その後、酸素プラズマや硫酸等でレジスト材を除去する。次に、パターニングされたマスク材12をマスクにして、ドライエッチング法により、図21に示すように基板1の第1主面に溝9を形成する。溝9の寸法は、特に限定されないが、例えば、溝9の幅は6μmであり、深さは10μmである。その後、希釈フッ酸を用いてマスク材12を除去する。 Thereafter, the resist material is removed by oxygen plasma, sulfuric acid or the like. Next, using the patterned mask material 12 as a mask, grooves 9 are formed in the first main surface of the substrate 1 by dry etching as shown in FIG. Although the dimension of the groove 9 is not particularly limited, for example, the width of the groove 9 is 6 μm and the depth is 10 μm. Thereafter, the mask material 12 is removed using diluted hydrofluoric acid.

 次に、図21に示すように、レジスト材16をパターニングする。次に、アルミニウムイオン注入を行い、P型の導電性領域15を形成する。 Next, as shown in FIG. 21, the resist material 16 is patterned. Next, aluminum ion implantation is performed to form a P-type conductive region 15.

 次に、図23に示すように、レジスト材16をパターニングする。次に、アルミニウムイオン注入を行い、N型導電性領域17を形成する。その後、レジスト材16を酸素プラズマや硫酸等で除去し、活性化を行う。活性化方法として、1500℃~1800℃のアルゴン(Ar)ガスの雰囲気中に10分~20分の間、アニールすることが好適である。これにより、図25に示すように、導電性領域15、N型導電性領域17が形成される。 Next, as shown in FIG. 23, the resist material 16 is patterned. Next, aluminum ion implantation is performed to form an N-type conductive region 17. Thereafter, the resist material 16 is removed by oxygen plasma, sulfuric acid or the like to perform activation. As an activation method, annealing is preferably performed for 10 minutes to 20 minutes in an atmosphere of argon (Ar) gas at 1500 ° C. to 1800 ° C. Thereby, as shown in FIG. 25, the conductive region 15 and the N-type conductive region 17 are formed.

(第2工程)
 次に、半絶縁性基板(基板1)に絶縁層13を形成する。絶縁層13は、シリコン酸化膜を用いるのが好適である。堆積方法として熱酸化法を用いることができる。酸素雰囲気中に半絶縁性基板を1000℃~1200℃で200分から300分の間、加熱する。これにより、半絶縁性基板にSi面が形成される。シリコン酸化膜の厚さは、10nm~100nm程度が好ましい。炭化ケイ素は、結晶の面方位で熱酸化レートが異なり、Si面は、他の面と比べて一番遅い面である。次にシリコン酸化膜の除去を行う。シリコン酸化膜の除去方法は、希釈フッ酸によるウェットエッチングが好適である。このとき、Si面のシリコン酸化膜のみ除去できるように時間設定を行う。これにより、Si面のみ露出され、他の面にはシリコン酸化膜が残っている状態となる。次に、レジスト材16をパターニングし、希釈フッ酸でレジスト材16の開口部のシリコン酸化膜を除去し、N型導電性領域17の溝側面(第2側面9b)を露出させる。
(Step 2)
Next, the insulating layer 13 is formed on the semi-insulating substrate (substrate 1). It is preferable to use a silicon oxide film as the insulating layer 13. Thermal oxidation can be used as a deposition method. The semi-insulating substrate is heated at 1000 ° C. to 1200 ° C. for 200 minutes to 300 minutes in an oxygen atmosphere. Thereby, a Si surface is formed on the semi-insulating substrate. The thickness of the silicon oxide film is preferably about 10 nm to 100 nm. Silicon carbide differs in thermal oxidation rate depending on the crystal plane orientation, and the Si surface is the slowest surface compared to other surfaces. Next, the silicon oxide film is removed. The method of removing the silicon oxide film is preferably wet etching with diluted hydrofluoric acid. At this time, the time is set so that only the silicon oxide film on the Si surface can be removed. As a result, only the Si surface is exposed, and the silicon oxide film remains on the other surface. Next, the resist material 16 is patterned, and the silicon oxide film in the opening of the resist material 16 is removed with diluted hydrofluoric acid to expose the groove side surface (second side surface 9 b) of the N-type conductive region 17.

(第3工程)
 溝9を形成した基板1に対してMOCVD法によりバッファ層の成長を行う。具体的には、MOCVD装置内に基板1を導入し、所定温度(例えば600℃)に昇温する。温度が安定したところで、基板1を回転させ、原料となるトリメチルアルミニウム(TMA)を所定の流量で基板1の表面に導入する。バッファ層は、例えば、一般式がAlGaN(0≦x≦1、0≦y≦1、0≦1-x-y≦1)で表される窒化アルミニウムガリウム(AlGaN)からなり、数百nm程度の厚さを有する。
(Third step)
The buffer layer is grown on the substrate 1 in which the groove 9 is formed by the MOCVD method. Specifically, the substrate 1 is introduced into the MOCVD apparatus, and the temperature is raised to a predetermined temperature (for example, 600 ° C.). When the temperature is stabilized, the substrate 1 is rotated to introduce trimethylaluminum (TMA) as a raw material to the surface of the substrate 1 at a predetermined flow rate. The buffer layer is made of, for example, aluminum gallium nitride (AlGaN) represented by the general formula Al x Ga y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ 1-x−y ≦ 1), It has a thickness of about several hundred nm.

 その後、バッファ層上にノンドープ窒化ガリウムを堆積させることで、バッファ層とノンドープ窒化ガリウム層からなる半導体領域2を形成する。この方法で形成された半導体領域2は、格子乗数のミスマッチで、(111)面にのみ高品質な結晶層が形成される。シリコン酸化膜またはシリコン窒化膜には半導体領域2となる層は基本的に成膜されない。ノンドープ窒化ガリウム層の厚さは要求耐圧値によって決まり、本実施形態では例えば5μmとして説明する。次に、同じ方法を用いて電子供給領域3を形成する。電子供給領域3の厚さは、例えば、数十nmである。 Thereafter, non-doped gallium nitride is deposited on the buffer layer to form the semiconductor region 2 composed of the buffer layer and the non-doped gallium nitride layer. The semiconductor region 2 formed by this method is a mismatch of lattice multipliers, and a high quality crystal layer is formed only on the (111) plane. A layer to be the semiconductor region 2 is basically not formed on the silicon oxide film or the silicon nitride film. The thickness of the non-doped gallium nitride layer is determined by the required breakdown voltage value, and is described as 5 μm in this embodiment, for example. Next, the electron supply region 3 is formed using the same method. The thickness of the electron supply region 3 is, for example, several tens of nm.

(第4工程)
 第3工程で形成された電子供給領域3上にレジスト材16を形成し、ソース電極6及びドレイン電極7を形成する位置が露出するようにパターニングを行う。その後、ソース電極6及びドレイン電極7となるメタル材料を堆積する。メタル材料は、例えば、チタン(Ti)、アルミニウム(Al)、モリブデン(Mo)、金(Au)である。なお、堆積方法は、真空蒸着法を用いることができる。なお、カバレッジを向上させるには基板1を所定の角度及び所定のスピードで回転させればよい。
(Step 4)
A resist material 16 is formed on the electron supply region 3 formed in the third step, and patterning is performed so that positions where the source electrode 6 and the drain electrode 7 are to be formed are exposed. Thereafter, a metal material to be the source electrode 6 and the drain electrode 7 is deposited. The metal material is, for example, titanium (Ti), aluminum (Al), molybdenum (Mo), gold (Au). Note that a vacuum evaporation method can be used as a deposition method. In order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed.

 メタル材料をレジスト材上に堆積した後、このメタル材料をアセトン溶液中でリフトオフすることでソース電極6及びドレイン電極7を形成する。次に、オーミック性を向上させるためにアニール処理を行う。アニール処理は、例えば、高速熱処理装置(RTA:Rapid Thermal Anneal)を用いて行われる。熱処理温度は、850℃が好ましく、処理時間は、30秒が好ましい。 After depositing the metal material on the resist material, the metal material is lifted off in an acetone solution to form the source electrode 6 and the drain electrode 7. Next, annealing is performed to improve the ohmic property. Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal). The heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.

 次に、ゲート電極5を形成する。形成方法は、ソース電極6やドレイン電極7の形成方法と同様である。まず、ゲート電極5を形成する位置が露出するようにパターニングを行う。次に、基板1の表面に導電性領域15を露出させる。露出方法として、ゲート電極5を形成する位置が露出するようにパターニングを行う。次に、希釈フッ酸で基板1の表面のシリコン酸化膜を除去する。 Next, the gate electrode 5 is formed. The formation method is the same as the formation method of the source electrode 6 and the drain electrode 7. First, patterning is performed so as to expose the position where the gate electrode 5 is to be formed. Next, the conductive region 15 is exposed on the surface of the substrate 1. As an exposure method, patterning is performed so that the position where the gate electrode 5 is to be formed is exposed. Next, the silicon oxide film on the surface of the substrate 1 is removed with diluted hydrofluoric acid.

 その後、ゲート電極5となるメタル材料を堆積する。メタル材料は、例えば、ニッケルである。堆積量は、特に限定されないが、例えばニッケルを100nm堆積する。堆積方法は、電子ビーム蒸着装置による真空蒸着法を用いることができる。また、カバレッジを向上させるには基板1を所定の角度及び所定のスピードで回転させればよい。メタル材料を堆積した後、このメタル材料をアセトン溶液中でリフトオフすることでゲート電極5を形成する。次に、オーミック性を向上させるためにアニール処理を行う。アニール処理は、例えば、高速熱処理装置(RTA:Rapid Thermal Anneal)を用いて行われる。熱処理温度は、850℃が好ましく、処理時間は、30秒が好ましい。 Thereafter, a metal material to be the gate electrode 5 is deposited. The metal material is, for example, nickel. Although the deposition amount is not particularly limited, for example, 100 nm of nickel is deposited. As a deposition method, a vacuum deposition method using an electron beam deposition apparatus can be used. Further, in order to improve the coverage, the substrate 1 may be rotated at a predetermined angle and a predetermined speed. After depositing the metal material, the gate electrode 5 is formed by lifting off the metal material in an acetone solution. Next, annealing is performed to improve the ohmic property. Annealing treatment is performed, for example, using a rapid thermal annealing apparatus (RTA: Rapid Thermal Anneal). The heat treatment temperature is preferably 850 ° C., and the treatment time is preferably 30 seconds.

(半導体装置の動作例)
 次に、図19に示す第6実施形態に係る半導体装置の基本的な動作について説明する。
(Operation example of semiconductor device)
Next, the basic operation of the semiconductor device according to the sixth embodiment shown in FIG. 19 will be described.

 半導体装置は、半導体領域2と電子供給領域3とを有する。半導体領域2と電子供給領域3との界面近傍に高濃度の二次元電子ガス層2aが形成され、ソース電極6とドレイン電極7は、この二次元電子ガス層2aとオーミック接続される。半導体装置は、ゲート電極5に印加する電圧を制御することで、ゲート電極5の下部にある2次元電子ガスの有無を制御でき、ソース-ドレイン間を導通したり、切断したりできる。 The semiconductor device has a semiconductor region 2 and an electron supply region 3. A high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a. The semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.

 具体的には、半導体装置は、ソース電極6の電位を基準として、ドレイン電極7に所定の正の電位を印加した状態でゲート電極5の電位を制御することで、トランジスタとして機能する。ゲート-ソース間電圧を所定の閾値以上にすると、ゲート電極5から電子供給領域3を介して半導体領域2に広がる空乏層がなくなる。これにより、二次元電子ガス層2aが、電子供給領域3と半導体領域2との界面(ゲート電極5の下部)に形成され、トランジスタがオン状態となる。電流は、ドレイン電極7からソース電極6に流れる。半導体装置は、ソース-ドレイン間を繋ぐチャネルの密度を溝9の側面を利用することで向上させることができ、平面構造と比較して大電流化が可能となる。 Specifically, the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6. When the gate-source voltage is equal to or higher than a predetermined threshold value, the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears. Thereby, the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on. A current flows from the drain electrode 7 to the source electrode 6. In the semiconductor device, the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.

 また、ゲート-ソース間電圧を所定の閾値より小さくすると、ゲート電極5から電子供給領域3を介して半導体領域2に空乏層が広がり、二次元電子ガス層2aが消滅する。これにより、トランジスタがオフ状態となり、電流が遮断される。この際、ソース-ドレイン間に高い電圧が瞬間的に印加され、ゲート電極5からドレイン電極7に向かって空乏層が広がる。半導体装置の耐圧は、この空乏層で確保される。半導体領域2は、窒化ガリウムによって形成されているため、バンドギャップおよび絶縁破壊電界が大きく、半導体領域2の厚さが薄くても大きな耐圧が得られる。これにより、半導体領域2の厚さを薄くでき、溝9の幅を小さくできるため、基板1の面積効率が向上する。これにより、大電流密度の半導体装置を提供できる。 When the gate-source voltage is smaller than a predetermined threshold, the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large breakdown voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.

 また、第6実施形態に係る半導体装置によれば、導電性領域15をゲート電極5とすることにより、ゲート電極5を溝9に埋め込む工程が不要になり、製造しやすくなる。また、ゲート電極5の厚さ分だけ、溝9の幅を低減できる。このため、基板1の面積効率が向上し、電流密度も向上する。さらに導電性領域15は半導体材料であるため、所定電圧の印加時には半導体材料によって空乏層が形成される。これにより、素子の耐圧が向上する。 Further, according to the semiconductor device of the sixth embodiment, the conductive region 15 is made to be the gate electrode 5, thereby eliminating the need for the step of embedding the gate electrode 5 in the groove 9, and the manufacturing becomes easy. Further, the width of the groove 9 can be reduced by the thickness of the gate electrode 5. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, since the conductive region 15 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.

 さらに、第6実施形態に係る半導体装置によれば、N型導電性領域17をソース電極6及びドレイン電極7とすることにより、ソース電極6及びドレイン電極7を溝9に埋め込む工程が不要になり、製造しやすくなる。また、ソース電極6及びドレイン電極7の厚さ分だけ、溝9の幅を低減できる。このため、基板1の面積効率が向上し、電流密度も向上する。これにより、大電流密度の半導体装置を提供できる。 Furthermore, according to the semiconductor device of the sixth embodiment, the step of embedding the source electrode 6 and the drain electrode 7 in the groove 9 becomes unnecessary by using the N-type conductive region 17 as the source electrode 6 and the drain electrode 7. , Easy to manufacture. Further, the width of the groove 9 can be reduced by the thickness of the source electrode 6 and the drain electrode 7. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Thus, a semiconductor device with a large current density can be provided.

(第7実施形態)
 次に、図27及び図28を参照して、本発明の第7実施形態に係る半導体装置について説明する。第7実施形態が第6実施形態と異なるのは、基板1の一部にフィールドプレート電極11が形成されることである。第6実施形態と重複する構成については符号を引用してその説明は省略することとし、以下、相違点を中心として説明を行う。なお、基板1は、絶縁体であってもよい。
Seventh Embodiment
Next, with reference to FIGS. 27 and 28, a semiconductor device according to a seventh embodiment of the present invention will be described. The seventh embodiment is different from the sixth embodiment in that the field plate electrode 11 is formed on a part of the substrate 1. About the structure which overlaps with 6th Embodiment, the code | symbol is quoted and the description shall be abbreviate | omitted, and, below, it demonstrates centering on difference. The substrate 1 may be an insulator.

(半導体装置の構成)
 図27及び図28に示すように、基板1は、イオン注入で形成される導電性領域15と、2つのN型導電性領域17を有する。導電性領域15と2つのN型導電性領域17は、絶縁層13を介して、電子供給領域3に接する。導電性領域15は、ゲート電極5と同様の機能を有し、ゲート電極5と電気的に接続される。2つのN型導電性領域17のうち、一方はソース電極6と同様の機能を有し、ソース電極6と電気的に接続される。また、2つのN型導電性領域17のうち、他方はドレイン電極7と同様の機能を有し、ドレイン電極7と電気的に接続される。また、ソース電極6となるN型導電性領域17の一部は、絶縁層13を介して、電子供給領域3に接する。この一部が、フィールドプレート電極11となる。フィールドプレート電極11は、ゲート電極5とソース電極6との間に形成され、電子供給領域3に絶縁層13を介して接する。また、フィールドプレート電極11は、ソース電極6と同電位である。
(Structure of semiconductor device)
As shown in FIGS. 27 and 28, the substrate 1 has a conductive region 15 formed by ion implantation and two N-type conductive regions 17. The conductive region 15 and the two N-type conductive regions 17 are in contact with the electron supply region 3 via the insulating layer 13. The conductive region 15 has the same function as the gate electrode 5 and is electrically connected to the gate electrode 5. One of the two N-type conductive regions 17 has the same function as the source electrode 6 and is electrically connected to the source electrode 6. The other of the two N-type conductive regions 17 has the same function as the drain electrode 7 and is electrically connected to the drain electrode 7. Further, a part of the N-type conductive region 17 to be the source electrode 6 is in contact with the electron supply region 3 via the insulating layer 13. A part of this is the field plate electrode 11. The field plate electrode 11 is formed between the gate electrode 5 and the source electrode 6 and is in contact with the electron supply region 3 via the insulating layer 13. Further, the field plate electrode 11 is at the same potential as the source electrode 6.

(半導体装置の製造方法)
 第6実施形態の製造方法と比較して、N型導電性領域17を形成するレジストマスクの形状が異なるのみで、他は同じである。
(Method of manufacturing semiconductor device)
The structure is the same as the manufacturing method of the sixth embodiment except that the shape of the resist mask for forming the N-type conductive region 17 is different.

(半導体装置の動作例)
 次に、図27に示す第7実施形態に係る半導体装置の基本的な動作について説明する。
(Operation example of semiconductor device)
Next, the basic operation of the semiconductor device according to the seventh embodiment shown in FIG. 27 will be described.

 半導体装置は、半導体領域2と電子供給領域3とを有する。半導体領域2と電子供給領域3との界面近傍に高濃度の二次元電子ガス層2aが形成され、ソース電極6とドレイン電極7は、この二次元電子ガス層2aとオーミック接続される。半導体装置は、ゲート電極5に印加する電圧を制御することで、ゲート電極5の下部にある2次元電子ガスの有無を制御でき、ソース-ドレイン間を導通したり、切断したりできる。 The semiconductor device has a semiconductor region 2 and an electron supply region 3. A high concentration two-dimensional electron gas layer 2a is formed in the vicinity of the interface between the semiconductor region 2 and the electron supply region 3, and the source electrode 6 and the drain electrode 7 are in ohmic contact with the two-dimensional electron gas layer 2a. The semiconductor device can control the presence or absence of the two-dimensional electron gas in the lower part of the gate electrode 5 by controlling the voltage applied to the gate electrode 5, and can conduct or disconnect the source and the drain.

 具体的には、半導体装置は、ソース電極6の電位を基準として、ドレイン電極7に所定の正の電位を印加した状態でゲート電極5の電位を制御することで、トランジスタとして機能する。ゲート-ソース間電圧を所定の閾値以上にすると、ゲート電極5から電子供給領域3を介して半導体領域2に広がる空乏層がなくなる。これにより、二次元電子ガス層2aが、電子供給領域3と半導体領域2との界面(ゲート電極5の下部)に形成され、トランジスタがオン状態となる。電流は、ドレイン電極7からソース電極6に流れる。半導体装置は、ソース-ドレイン間を繋ぐチャネルの密度を溝9の側面を利用することで向上させることができ、平面構造と比較して大電流化が可能となる。 Specifically, the semiconductor device functions as a transistor by controlling the potential of the gate electrode 5 in a state where a predetermined positive potential is applied to the drain electrode 7 based on the potential of the source electrode 6. When the gate-source voltage is equal to or higher than a predetermined threshold value, the depletion layer extending from the gate electrode 5 to the semiconductor region 2 via the electron supply region 3 disappears. Thereby, the two-dimensional electron gas layer 2a is formed at the interface between the electron supply region 3 and the semiconductor region 2 (below the gate electrode 5), and the transistor is turned on. A current flows from the drain electrode 7 to the source electrode 6. In the semiconductor device, the density of the channel connecting the source and the drain can be improved by using the side surface of the groove 9, and a large current can be obtained as compared with the planar structure.

 また、ゲート-ソース間電圧を所定の閾値より小さくすると、ゲート電極5から電子供給領域3を介して半導体領域2に空乏層が広がり、二次元電子ガス層2aが消滅する。これにより、トランジスタがオフ状態となり、電流が遮断される。この際、ソース-ドレイン間に高い電圧が瞬間的に印加され、ゲート電極5からドレイン電極7に向かって空乏層が広がる。半導体装置の耐圧は、この空乏層で確保される。また、電界は、ゲート電極5となる導電性領域15のエッジに集中的にかかる。第7実施形態に係る半導体装置によれば、フィールドプレート電極11を有することで、電界の一部をフィールドプレート電極11に分散させることができ、ゲート電極5となる導電性領域15にかかる電界が低下する。これにより、素子の耐圧が向上する。また、半導体領域2は、窒化ガリウムによって形成されているため、バンドギャップおよび絶縁破壊電界が大きく、半導体領域2の厚さが薄くても大きな耐圧が得られる。これにより、半導体領域2の厚さを薄くでき、溝9の幅を小さくできるため、基板1の面積効率が向上する。これにより、大電流密度の半導体装置を提供できる。 When the gate-source voltage is smaller than a predetermined threshold, the depletion layer spreads from the gate electrode 5 to the semiconductor region 2 through the electron supply region 3, and the two-dimensional electron gas layer 2a disappears. Thereby, the transistor is turned off and the current is cut off. At this time, a high voltage is instantaneously applied between the source and drain, and the depletion layer spreads from the gate electrode 5 toward the drain electrode 7. The breakdown voltage of the semiconductor device is ensured by this depletion layer. Further, the electric field is concentrated on the edge of the conductive region 15 to be the gate electrode 5. According to the semiconductor device of the seventh embodiment, by having the field plate electrode 11, a part of the electric field can be dispersed in the field plate electrode 11, and the electric field applied to the conductive region 15 to be the gate electrode 5 is descend. This improves the breakdown voltage of the device. Further, since the semiconductor region 2 is formed of gallium nitride, the band gap and the dielectric breakdown electric field are large, and a large withstand voltage can be obtained even if the thickness of the semiconductor region 2 is thin. Thereby, the thickness of the semiconductor region 2 can be reduced and the width of the groove 9 can be reduced, so that the area efficiency of the substrate 1 is improved. Thus, a semiconductor device with a large current density can be provided.

 また、第7実施形態に係る半導体装置によれば、導電性領域15をゲート電極5とすることにより、ゲート電極5を溝9に埋め込む工程が不要になり、製造しやすくなる。また、ゲート電極5の厚さ分だけ、溝9の幅を低減できる。このため、基板1の面積効率が向上し、電流密度も向上する。さらに導電性領域15は半導体材料であるため、所定電圧の印加時には半導体材料によって空乏層が形成される。これにより、素子の耐圧が向上する。 Further, according to the semiconductor device of the seventh embodiment, by using the conductive region 15 as the gate electrode 5, the step of embedding the gate electrode 5 in the groove 9 becomes unnecessary, and the semiconductor device can be easily manufactured. Further, the width of the groove 9 can be reduced by the thickness of the gate electrode 5. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved. Furthermore, since the conductive region 15 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.

 さらに、第7実施形態に係る半導体装置によれば、N型導電性領域17をソース電極6及びドレイン電極7とすることにより、ソース電極6及びドレイン電極7を溝9に埋め込む工程が不要になり、製造しやすくなる。また、ソース電極6及びドレイン電極7の厚さ分だけ、溝9の幅を低減できる。このため、基板1の面積効率が向上し、電流密度も向上する。 Furthermore, according to the semiconductor device of the seventh embodiment, the step of embedding the source electrode 6 and the drain electrode 7 in the groove 9 becomes unnecessary by using the N-type conductive region 17 as the source electrode 6 and the drain electrode 7. , Easy to manufacture. Further, the width of the groove 9 can be reduced by the thickness of the source electrode 6 and the drain electrode 7. Therefore, the area efficiency of the substrate 1 is improved, and the current density is also improved.

 さらに、第7実施形態に係る半導体装置によれば、フィールドプレート電極11を溝9に埋め込む工程が不要になり、製造しやすくなる。また、N型導電性領域17の一部がフィールドプレート電極11となるため、基板1の表面で使用されるフィールドプレート電極11の面積を小さくすることができる。これにより、ソース電極6またはドレイン電極7を厚く形成することが可能となり、配線抵抗を低減できる。これにより、大電流密度の半導体装置を提供できる。さらにフィールドプレート電極11は半導体材料であるため、所定電圧の印加時には半導体材料によって空乏層が形成される。これにより、素子の耐圧が向上する。 Furthermore, according to the semiconductor device of the seventh embodiment, the step of burying the field plate electrode 11 in the groove 9 becomes unnecessary, which facilitates manufacture. Further, since a part of the N-type conductive region 17 becomes the field plate electrode 11, the area of the field plate electrode 11 used on the surface of the substrate 1 can be reduced. Thus, the source electrode 6 or the drain electrode 7 can be formed thick, and the wiring resistance can be reduced. Thus, a semiconductor device with a large current density can be provided. Furthermore, since the field plate electrode 11 is a semiconductor material, a depletion layer is formed of the semiconductor material when a predetermined voltage is applied. This improves the breakdown voltage of the device.

(その他の実施形態)
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
While the embodiments of the present invention have been described above, it should not be understood that the statements and drawings that form a part of this disclosure limit the present invention. Various alternative embodiments, examples and operation techniques will be apparent to those skilled in the art from this disclosure.

 上述した実施形態において、窒化ガリウムを用いる半導体装置の製造を説明したが、窒化ガリウム以外の材料を用いることも可能で、例えばヒ化ガリウム(GaAs)を用いてもよい。また、基板1は、サファイアでもよい。サファイヤ基板は、シリコン基板と比較して、窒化ガリウムとの結晶格子定数のミスマッチが小さく、高品質な基板を得ることができるため、高耐圧な半導体装置を提供できる。さらにシリコン基板では必要であったバッファ層を大幅に削減することができるため安価に製造可能な半導体装置を提供できる。 In the embodiments described above, the manufacture of a semiconductor device using gallium nitride has been described, but materials other than gallium nitride can also be used, and for example, gallium arsenide (GaAs) may be used. Further, the substrate 1 may be sapphire. Since a sapphire substrate has a smaller mismatch of crystal lattice constant with gallium nitride as compared with a silicon substrate and can obtain a high quality substrate, a semiconductor device with high withstand voltage can be provided. Furthermore, since the buffer layer required for the silicon substrate can be largely reduced, a semiconductor device which can be manufactured inexpensively can be provided.

 また、上述した実施形態において、1つの半導体装置について説明したが、これに限定されない。本発明は、2つの半導体装置(第1半導体装置、第2半導体装置)を備えてもよい。2つの半導体装置は、第1実施形態~第7実施形態に係る半導体装置を用いることができる。2つの半導体装置は、同じもよく異なっていてもよい。2つの半導体装置を用いることにより、ソース電極6またはドレイン電極7を互いに共有することができるため、半導体装置に用いられる電極を単体の半分にすることができる。これにより、基板1の面積効率が向上し大電流化が可能となる。 Moreover, although one semiconductor device is described in the above-described embodiment, the present invention is not limited to this. The present invention may include two semiconductor devices (a first semiconductor device and a second semiconductor device). The semiconductor devices according to the first to seventh embodiments can be used as the two semiconductor devices. The two semiconductor devices may be the same or different. By using two semiconductor devices, the source electrode 6 or the drain electrode 7 can be shared with each other, so that an electrode used for the semiconductor device can be a half. Thereby, the area efficiency of the substrate 1 is improved, and a large current can be realized.

1 基板
2 半導体領域
2a 二次元電子ガス層
3 電子供給領域
4 裏面電極
5 ゲート電極
6 ソース電極
7 ドレイン電極
9 溝
9a 第1側面
9b 第2側面
11 フィールドプレート電極
12 マスク材
13 絶縁層
15 導電性領域
16 レジスト材
17 N型導電性領域
Reference Signs List 1 substrate 2 semiconductor region 2a two-dimensional electron gas layer 3 electron supply region 4 back surface electrode 5 gate electrode 6 source electrode 7 source electrode 7 drain electrode 9 groove 9a first side surface 9b second side surface 11 field plate electrode 12 mask material 13 insulating layer 15 conductivity Region 16 Resist material 17 N-type conductive region

Claims (16)

 互いに対向する第1主面及び第2主面を有し、前記第1主面に溝が形成された基板と、
 前記溝の表面に接して形成される半導体領域と、
 前記半導体領域の表面に接して形成され、前記半導体領域に二次元電子ガス層を発生させる電子供給領域と、
 前記二次元電子ガス層と電気的に接続する第一電極と、
 前記第一電極と離間した位置で前記二次元電子ガス層と電気的に接続する第二電極と、
を備え、
 前記半導体領域は、前記溝において互いに対面する第1側面と第2側面のうち、前記第1側面のみに形成されることを特徴とする半導体装置。
A substrate having a first main surface and a second main surface facing each other, wherein a groove is formed on the first main surface;
A semiconductor region formed in contact with the surface of the groove;
An electron supply region formed in contact with the surface of the semiconductor region and generating a two-dimensional electron gas layer in the semiconductor region;
A first electrode electrically connected to the two-dimensional electron gas layer;
A second electrode electrically connected to the two-dimensional electron gas layer at a position separated from the first electrode;
Equipped with
The semiconductor device is characterized in that the semiconductor region is formed only on the first side surface of the first side surface and the second side surface facing each other in the groove.
 前記第一電極は、前記半導体領域との間にエネルギー障壁を有し、
 前記第二電極は、前記半導体領域とオーミック接続されていることを特徴とする請求項1に記載の半導体装置。
The first electrode has an energy barrier with the semiconductor region,
The semiconductor device according to claim 1, wherein the second electrode is in ohmic contact with the semiconductor region.
 前記第一電極及び前記第二電極が前記半導体領域とオーミック接続され、
 前記第一電極と前記第二電極との間で前記二次元電子ガス層に近接して配置され、前記二次元電子ガス層のキャリア数を制御する第三電極を備えることを特徴とする請求項1に記載の半導体装置。
The first electrode and the second electrode are ohmically connected to the semiconductor region;
A third electrode is provided between the first electrode and the second electrode and disposed in the vicinity of the two-dimensional electron gas layer to control the number of carriers in the two-dimensional electron gas layer. The semiconductor device according to 1.
 前記溝の深さは、前記溝の幅以上であることを特徴とする請求項1~3のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the depth of the groove is equal to or greater than the width of the groove.  前記電子供給領域の少なくとも一部は、前記第1側面と対向する前記第2側面に絶縁層を介して接することを特徴とする請求項1~4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein at least a part of the electron supply region is in contact with the second side surface facing the first side surface via an insulating layer.  前記第三電極は、前記溝の内部において前記電子供給領域に接して形成されることを特徴とする請求項3に記載の半導体装置。 The semiconductor device according to claim 3, wherein the third electrode is formed in contact with the electron supply region inside the groove.  前記溝における前記第三電極と前記第一電極との間に、前記電子供給領域に絶縁層を介して接するように形成されるフィールドプレート電極をさらに備え、
 前記フィールドプレート電極は、前記第一電極と同電位であることを特徴とする請求項6に記載の半導体装置。
A field plate electrode is provided between the third electrode and the first electrode in the groove, the field plate electrode being in contact with the electron supply region via an insulating layer,
7. The semiconductor device according to claim 6, wherein the field plate electrode is at the same potential as the first electrode.
 前記基板は、絶縁体又は半絶縁半導体からなることを特徴とする請求項1~7のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 7, wherein the substrate is made of an insulator or a semi-insulating semiconductor.  前記基板の一部に導電性領域が形成され、
 前記導電性領域は、絶縁層を介して前記電子供給領域に接し、第三電極となることを特徴とする請求項8に記載の半導体装置。
A conductive region is formed on a portion of the substrate,
9. The semiconductor device according to claim 8, wherein the conductive region is in contact with the electron supply region via an insulating layer and serves as a third electrode.
 前記基板の一部にN型導電性領域が形成され、
 前記N型導電性領域は、前記電子供給領域に接し、前記第一電極及び前記第二電極となることを特徴とする請求項8または9に記載の半導体装置。
An N-type conductive region is formed on a portion of the substrate,
The semiconductor device according to claim 8, wherein the N-type conductive region is in contact with the electron supply region and becomes the first electrode and the second electrode.
 前記第一電極となる前記N型導電性領域の少なくとも一部は、絶縁層を介して、前記電子供給領域に接することを特徴とする請求項10に記載の半導体装置。 11. The semiconductor device according to claim 10, wherein at least a part of the N-type conductive region to be the first electrode is in contact with the electron supply region via an insulating layer.  前記基板は、炭化ケイ素からなることを特徴とする請求項1~11のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 11, wherein the substrate is made of silicon carbide.  前記第1側面は、Si面であることを特徴とする請求項1~12のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 12, wherein the first side surface is a Si surface.  前記半導体領域は、窒化ガリウムからなることを特徴とする請求項1~13のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 13, wherein the semiconductor region is made of gallium nitride.  請求項1~14のいずれか1項に記載の半導体装置からなる第1半導体装置と、請求項1~14のいずれか1項に記載の半導体装置からなる第2半導体装置とを備え、
 前記第1半導体装置及び前記第2半導体装置は、前記第一電極又は前記第二電極を互いに共有することを特徴とする請求項1~14のいずれか1項に記載の半導体装置。
A first semiconductor device comprising the semiconductor device according to any one of claims 1 to 14, and a second semiconductor device comprising the semiconductor device according to any one of claims 1 to 14.
The semiconductor device according to any one of claims 1 to 14, wherein the first semiconductor device and the second semiconductor device share the first electrode or the second electrode with each other.
 互いに対向する第1主面及び第2主面を有する基板の前記第1主面に溝を形成する工程と、
 前記溝の側面に半導体領域を形成する工程と、
 前記半導体領域に二次元電子ガス層を発生させる電子供給領域を前記半導体領域の表面に接して形成する工程と、
 互いに離間した位置で前記二次元電子ガス層と電気的に接続する第一電極及び第二電極を形成する工程と、
 を含み、
 前記半導体領域を形成する工程において、前記溝において互いに対面する第1側面と第2側面のうち、前記第1側面のみに前記半導体領域を形成することを特徴とする半導体装置の製造方法。
Forming a groove in the first main surface of the substrate having the first main surface and the second main surface facing each other;
Forming a semiconductor region on the side surface of the groove;
Forming an electron supply region for generating a two-dimensional electron gas layer in the semiconductor region in contact with the surface of the semiconductor region;
Forming a first electrode and a second electrode electrically connected to the two-dimensional electron gas layer at mutually spaced positions;
Including
A method of manufacturing a semiconductor device, wherein in the step of forming the semiconductor region, the semiconductor region is formed only on the first side surface of the first side surface and the second side surface facing each other in the groove.
PCT/JP2017/044737 2017-12-13 2017-12-13 Semiconductor device and semiconductor device production method WO2019116464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044737 WO2019116464A1 (en) 2017-12-13 2017-12-13 Semiconductor device and semiconductor device production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044737 WO2019116464A1 (en) 2017-12-13 2017-12-13 Semiconductor device and semiconductor device production method

Publications (1)

Publication Number Publication Date
WO2019116464A1 true WO2019116464A1 (en) 2019-06-20

Family

ID=66820072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044737 WO2019116464A1 (en) 2017-12-13 2017-12-13 Semiconductor device and semiconductor device production method

Country Status (1)

Country Link
WO (1) WO2019116464A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649662A (en) * 1987-07-01 1989-01-12 Mitsubishi Electric Corp Field-effect transistor
WO1990013918A1 (en) * 1989-05-12 1990-11-15 Oki Electric Industry Co., Ltd. Field effect transistor
JPH02306668A (en) * 1989-05-22 1990-12-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device with quantum fine wire and manufacture thereof
JPH04369843A (en) * 1991-06-18 1992-12-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2012156320A (en) * 2011-01-26 2012-08-16 Toshiba Corp Semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649662A (en) * 1987-07-01 1989-01-12 Mitsubishi Electric Corp Field-effect transistor
WO1990013918A1 (en) * 1989-05-12 1990-11-15 Oki Electric Industry Co., Ltd. Field effect transistor
JPH02306668A (en) * 1989-05-22 1990-12-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device with quantum fine wire and manufacture thereof
JPH04369843A (en) * 1991-06-18 1992-12-22 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JP2012156320A (en) * 2011-01-26 2012-08-16 Toshiba Corp Semiconductor element

Similar Documents

Publication Publication Date Title
CN108807527B (en) IIIA nitride HEMT with tunnel diode in gate stack
TW577127B (en) Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment and methods of fabricating same
US7229903B2 (en) Recessed semiconductor device
TWI647846B (en) Method of manufacturing a semiconductor device and the semiconductor device
CN109037323A (en) Normally-off HEMT transistor and its manufacturing method with the 2DEG channel selectively produced
JP2007149794A (en) Field effect transistor
JP5655424B2 (en) Compound semiconductor device
US9385001B1 (en) Self-aligned ITO gate electrode for GaN HEMT device
US11973135B2 (en) Semiconductor device
CN109560135B (en) Semiconductor structure and forming method thereof
JP2010171416A (en) Semiconductor device, manufacturing method therefor, and leakage-current reduction method therefor
CN113972263B (en) An enhanced AlGaN/GaN HEMT device and its preparation method
CN104638010A (en) Transversely turned-on GaN normally closed MISFET (Metal-insulator-semiconductor Field Effect Transistor) device and manufacturing method thereof
CN112310208A (en) Enhanced gallium nitride-based transistor, preparation method thereof and electronic device
JP2013065612A (en) Nitride semiconductor device and manufacturing method of the same
JP2008112949A (en) Field-effect transistor and its manufacturing method
JP5055773B2 (en) Semiconductor element
JP2008118044A (en) Field-effect transistor and method for manufacturing the same
TWI662707B (en) Semiconductor power device and manufacturing method thereof
WO2019163075A1 (en) Semiconductor device
JP2012064663A (en) Nitride semiconductor device and method of manufacturing the same
CN108598154A (en) Enhanced gallium nitride transistor and preparation method thereof
JP5087235B2 (en) Manufacturing method of nitride semiconductor device
JP2018093027A (en) Semiconductor device
JP2015119028A (en) Semiconductor device, field effect transistor and diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP