[go: up one dir, main page]

WO2019085524A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2019085524A1
WO2019085524A1 PCT/CN2018/092869 CN2018092869W WO2019085524A1 WO 2019085524 A1 WO2019085524 A1 WO 2019085524A1 CN 2018092869 W CN2018092869 W CN 2018092869W WO 2019085524 A1 WO2019085524 A1 WO 2019085524A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging system
focal length
effective focal
Prior art date
Application number
PCT/CN2018/092869
Other languages
English (en)
French (fr)
Inventor
吕赛锋
闻人建科
丁玲
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721446626.0U external-priority patent/CN207440372U/zh
Priority claimed from CN201711066338.7A external-priority patent/CN107728290B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/273,700 priority Critical patent/US11067777B2/en
Publication of WO2019085524A1 publication Critical patent/WO2019085524A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an optical imaging system, and more particularly to an optical imaging system consisting of seven lenses.
  • the present invention proposes an optical imaging system that is adaptable to portable electronic products, having a large aperture, excellent imaging quality, and wide-angle characteristics.
  • the present invention provides an optical imaging system.
  • An aspect of the invention provides an optical imaging system comprising, in order from the object side to the image side, a first lens having a negative power; a second lens having a power; a third lens having a negative power; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power; a seventh lens having a power; wherein any two of the first lens to the seventh lens
  • the adjacent lens has an air gap between the optical axes, the effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging lens are satisfied, f/EPD ⁇ 2.10, and the effective focal length f of the optical imaging system and the first lens
  • the effective focal length f1 satisfies f1/f>-3.
  • the on-axis distance TTL from the side of the first lens to the imaging surface satisfies 2 ⁇ TTL / ImgH ⁇ 6 between half ImgH of the diagonal length of the effective pixel area on the imaging surface.
  • the effective focal length f of the optical imaging system and the radius of curvature R12 of the side surface of the sixth lens image satisfy -1.5 ⁇ f / R12 ⁇ 0.
  • the effective focal length f of the optical imaging system and the radius of curvature R3 of the second lens object side satisfy 0 ⁇ f / R3 ⁇ 1.5.
  • 0 ⁇ f1/f7 ⁇ 1.5 is satisfied between the effective focal length f1 of the first lens and the effective focal length f7 of the seventh lens.
  • is satisfied between the radius of curvature R5 of the side surface of the third lens object and the radius of curvature R6 of the side surface of the third lens image.
  • 0 ⁇ f4 / f6 ⁇ 2 is satisfied between the effective focal length f4 of the fourth lens and the effective focal length f6 of the sixth lens.
  • the effective focal length f5 of the fifth lens, the radius of curvature R2 of the first lens image side surface, and the radius of curvature R3 of the second lens object side satisfy 2 ⁇
  • the on-axis distance TTL of the first lens object side to the image plane and the air space T12 of the first lens and the second lens on the optical axis satisfy 0 ⁇ T12 / TTL ⁇ 0.5.
  • the refractive index N3 of the third lens, the refractive index N5 of the fifth lens, and the refractive index N7 of the seventh lens satisfy 1.5 ⁇
  • the effective focal length f2 of the second lens satisfies
  • An aspect of the invention provides an optical imaging system comprising, in order from the object side to the image side, a first lens having a negative power; a second lens having a power having a convex side; the optical focus a third lens having a concave side; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power; and a seventh lens having a negative power;
  • the effective focal length f of the optical imaging system satisfies f/EPD ⁇ 2.10 between the entrance pupil diameter EPD of the optical imaging lens, and half of the maximum field of view of the optical imaging system HFOV satisfies HFOV ⁇ 60°.
  • the on-axis distance TTL of the side of the first lens to the imaging surface satisfies 2 ⁇ TTL / ImgH ⁇ 6 between half ImgH of the diagonal length of the effective pixel area on the imaging surface.
  • the effective focal length f of the optical imaging system and the radius of curvature R12 of the side surface of the sixth lens image satisfy -1.5 ⁇ f / R12 ⁇ 0.
  • the effective focal length f of the optical imaging system and the radius of curvature R3 of the second lens object side satisfy 0 ⁇ f / R3 ⁇ 1.5.
  • 0 ⁇ f1/f7 ⁇ 1.5 is satisfied between the effective focal length f1 of the first lens and the effective focal length f7 of the seventh lens.
  • is satisfied between the radius of curvature R5 of the side surface of the third lens object and the radius of curvature R6 of the side surface of the third lens image.
  • 0 ⁇ f4 / f6 ⁇ 2 is satisfied between the effective focal length f4 of the fourth lens and the effective focal length f6 of the sixth lens.
  • the effective focal length f5 of the fifth lens, the radius of curvature R2 of the first lens image side surface, and the radius of curvature R3 of the second lens object side satisfy 2 ⁇
  • the on-axis distance TTL of the first lens object side to the image plane and the air space T12 of the first lens and the second lens on the optical axis satisfy 0 ⁇ T12 / TTL ⁇ 0.5.
  • the refractive index N3 of the third lens, the refractive index N5 of the fifth lens, and the refractive index N7 of the seventh lens satisfy 1.5 ⁇
  • the effective focal length f2 of the second lens satisfies
  • the optical imaging system according to the present invention is applicable to portable electronic products and is an optical imaging system having a large aperture, good imaging quality, and wide-angle characteristics.
  • FIG. 1 is a schematic structural view of an optical imaging system of Embodiment 1;
  • FIG. 6 is a schematic structural view of an optical imaging system of Embodiment 2;
  • Figure 11 is a block diagram showing the structure of an optical imaging system of Embodiment 3.
  • Figure 16 is a block diagram showing the structure of an optical imaging system of Embodiment 4.
  • FIG. 21 is a schematic structural view of an optical imaging system of Embodiment 5.
  • Figure 26 is a block diagram showing the structure of an optical imaging system of Embodiment 6;
  • Figure 31 is a block diagram showing the structure of an optical imaging system of Embodiment 7;
  • FIG. 36 is a schematic structural view of an optical imaging system of Embodiment 8.
  • Figure 46 is a view showing the configuration of an optical imaging system of Embodiment 10.
  • Figure 51 is a view showing the configuration of an optical imaging system of Embodiment 11;
  • Figure 56 is a block diagram showing the structure of an optical imaging system of Embodiment 12.
  • 57 to 60 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 12.
  • Figure 61 is a view showing the configuration of an optical imaging system of Embodiment 13;
  • Figure 66 is a view showing the configuration of an optical imaging system of Embodiment 14.
  • 67 to 70 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 14;
  • Figure 71 is a view showing the configuration of an optical imaging system of Embodiment 15;
  • Figure 76 is a block diagram showing the structure of an optical imaging system of Embodiment 16.
  • 77 to 80 show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging system of Example 16, respectively.
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the present application provides an optical imaging system including, from the object side to the image side, a first lens having a negative power; a second lens having a power; a third lens having a negative power; having a light focus a fourth lens having a power; a fifth lens having a power; a sixth lens having a power; and a seventh lens having a power.
  • any two adjacent lenses of the first to seventh lenses have an air gap on the optical axis.
  • f/EPD ⁇ 2.10 is satisfied between the effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging lens, specifically, f/EPD ⁇ 2.03 is satisfied.
  • f1/f>-3 is satisfied between the effective focal length f of the optical imaging system and the effective focal length f1 of the first lens, specifically, f1/f ⁇ -2.69 is satisfied.
  • the on-axis distance TTL from the side of the first lens to the imaging surface satisfies 2 ⁇ TTL / ImgH ⁇ 6 between the half-length of the diagonal of the effective pixel area on the imaging surface, specifically, satisfying 2.14 ⁇ TTL / ImgH ⁇ 5.91.
  • the effective focal length f of the optical imaging system and the radius of curvature R12 of the side of the sixth lens image satisfy -1.5 ⁇ f / R12 ⁇ 0, specifically, -1.25 ⁇ f / R12 ⁇ -0.38 .
  • the effective focal length f of the optical imaging system and the radius of curvature R3 of the second lens object side satisfy 0 ⁇ f / R3 ⁇ 1.5, specifically, 0.18 ⁇ f / R3 ⁇ 1.28.
  • 0 ⁇ f1/f7 ⁇ 1.5 is satisfied between the effective focal length f1 of the first lens and the effective focal length f7 of the seventh lens, and more specifically, 0.12 ⁇ f1/f7 ⁇ 1.36 is satisfied.
  • the radius of curvature R5 of the side surface of the third lens object and the radius of curvature R6 of the side surface of the third lens image satisfy 0.5 ⁇
  • the effective focal length f4 of the fourth lens satisfies 0 ⁇ f4/f6 ⁇ 2 between the effective focal length f6 of the sixth lens, and specifically, 0.55 ⁇ f4/f6 ⁇ 1.79 is satisfied.
  • the effective focal length f5 of the fifth lens, the radius of curvature R2 of the first lens image side surface, and the radius of curvature R3 of the second lens object side satisfy 2 ⁇
  • the on-axis distance TTL from the side of the first lens to the imaging surface and the air interval T12 of the first lens and the second lens on the optical axis satisfy 0 ⁇ T12/TTL ⁇ 0.5, specifically , satisfies 0.10 ⁇ T12 / TTL ⁇ 0.38.
  • the refractive index N3 of the third lens, the refractive index N5 of the fifth lens, and the refractive index N7 of the seventh lens satisfy 1.5 ⁇
  • the effective focal length f2 of the second lens satisfies
  • the present application provides an optical imaging system including, from the object side to the image side, a first lens having a negative power; a second lens having a power having a convex side; and having a power a three lens having a concave side; a fourth lens having a power; a fifth lens having a power; a sixth lens having a power; and a seventh lens having a negative power.
  • the effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging lens satisfy f/EPD ⁇ 2.10, specifically, satisfy f/EPD ⁇ 2.03, and the maximum view of the optical imaging system Half of the field angle HFOV satisfies HFOV ⁇ 60°, specifically, HFOV ⁇ 63.1°.
  • FIG. 1 is a schematic structural view showing an optical imaging system of Embodiment 1.
  • the optical imaging system includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the optical imaging system.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first to seventh lenses E1 to E7 have respective effective focal lengths f1 to f7.
  • the first to seventh lenses E1 to E7 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the optical imaging system.
  • Table 1 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL (mm) of the optical imaging system, and the effective pixel area pair of the electronic light sensing element.
  • Half of the length of the corner is ImgH.
  • Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for each aspherical lens in this embodiment.
  • FIG. 2 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • 3 shows an astigmatism curve of the optical imaging system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4 shows a distortion curve of the optical imaging system of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 5 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 1, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 1 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 6 is a schematic structural view showing an optical imaging system of Embodiment 2.
  • the optical imaging system includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the optical imaging system.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 4 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens in the optical imaging system in this embodiment, in which the unit of curvature radius and thickness are all millimeters (mm).
  • Table 6 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a graph showing the axial chromatic aberration curve of the optical imaging system of Embodiment 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8 shows an astigmatism curve of the optical imaging system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the optical imaging system of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 2, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 2 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 11 is a schematic structural view showing an optical imaging system of Embodiment 3.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 7 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 8 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 9 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging system of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the optical imaging system of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging system of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • the optical imaging system according to Embodiment 3 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 16 is a view showing the configuration of an optical imaging system of Embodiment 4.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 10 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 11 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, in which the unit of curvature radius and thickness are in millimeters (mm).
  • Table 12 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Figure 17 is a graph showing the axial chromatic aberration of the optical imaging system of Example 4, which shows that the light of different wavelengths is deflected by the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the optical imaging system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 19 is a view showing a distortion curve of the optical imaging system of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 20 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 4 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 13 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 14 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • Table 15 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging system of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing a distortion curve of the optical imaging system of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 25 is a graph showing the chromatic aberration of magnification of the optical imaging system of Example 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 5 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 26 is a view showing the configuration of an optical imaging system of Embodiment 6.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 16 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 17 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 18 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Figure 27 is a graph showing the axial chromatic aberration of the optical imaging system of Example 6, which shows that the light of different wavelengths is deflected by the focus point after passing through the optical system.
  • 28 shows an astigmatism curve of the optical imaging system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the optical imaging system of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 30 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 6 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 19 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 20 below shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 21 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 32 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the optical imaging system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the optical imaging system of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 35 is a graph showing the chromatic aberration of magnification of the optical imaging system of Example 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 7 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 36 is a view showing the configuration of an optical imaging system of Embodiment 8.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 22 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 23 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • Table 24 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • the optical imaging system according to Embodiment 8 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 25 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic photosensitive element.
  • Table 26 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 27 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • the optical imaging system according to Embodiment 9 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Figure 46 is a diagram showing the structure of an optical imaging system of Embodiment 10.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 28 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 29 below shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 30 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 47 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 10, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 48 is a view showing an astigmatism curve of the optical imaging system of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 49 is a view showing a distortion curve of the optical imaging system of Embodiment 10, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 50 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 10, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 10 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 51 is a view showing the configuration of an optical imaging system of Embodiment 11.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a convex surface.
  • Table 31 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 32 below shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 33 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 52 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 11, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 53 is a view showing an astigmatism curve of the optical imaging system of Embodiment 11, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 54 is a view showing the distortion curve of the optical imaging system of Embodiment 11, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 55 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 11, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 11 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Figure 56 is a diagram showing the structure of an optical imaging system of Embodiment 12.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a convex surface.
  • Table 34 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 35 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, in which the unit of curvature radius and thickness are in millimeters (mm).
  • Table 36 below shows the high order term coefficients of the respective aspherical surfaces S1-S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 57 is a graph showing the axial chromatic aberration curve of the optical imaging system of Example 12, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 58 is a view showing an astigmatism curve of the optical imaging system of Embodiment 12, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 59 is a view showing the distortion curve of the optical imaging system of Embodiment 12, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 60 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 12, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 12 is suitable for a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a convex surface.
  • Table 37 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 38 below shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 39 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 62 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 13, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 63 is a view showing an astigmatism curve of the optical imaging system of Embodiment 13, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 64 is a view showing a distortion curve of the optical imaging system of Embodiment 13, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 65 is a graph showing the chromatic aberration of magnification of the optical imaging system of Example 13, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 13 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 66 is a view showing the configuration of an optical imaging system of Embodiment 14.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a convex surface.
  • Table 40 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 41 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 42 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 67 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 14, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 68 is a view showing an astigmatism curve of the optical imaging system of Embodiment 14, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 69 is a view showing the distortion curve of the optical imaging system of Embodiment 14, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 70 is a graph showing the chromatic aberration of magnification of the optical imaging system of Example 14, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 14 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 71 is a schematic structural view showing the optical imaging system of the fifteenth embodiment.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a concave surface.
  • Table 43 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 44 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm).
  • Table 45 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 72 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 15, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 73 is a view showing an astigmatism curve of the optical imaging system of Embodiment 15, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 74 is a view showing the distortion curve of the optical imaging system of Embodiment 15, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 75 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 15, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 15 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • Fig. 76 is a view showing the configuration of an optical imaging system of Embodiment 16.
  • the optical imaging system includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have a negative refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a convex surface.
  • the fourth lens E4 may have positive refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a convex surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a convex surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have positive refractive power, and the object side surface S11 may be a convex surface, and the image side surface S12 may be a convex surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a concave surface.
  • Table 46 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the diagonal length of the effective pixel area of the electronic light sensing element.
  • Table 47 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the optical imaging system in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 48 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • 77 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 16, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • 78 shows an astigmatism curve of the optical imaging system of Embodiment 16, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 79 is a view showing the distortion curve of the optical imaging system of Embodiment 16, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 80 is a graph showing the chromatic aberration of magnification of the optical imaging system of Embodiment 16, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system according to Embodiment 16 is applicable to a portable electronic product having a large aperture, good imaging quality, and wide-angle characteristics.
  • each conditional expression satisfies the conditions of Table 28 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像系统,从物侧至像侧依次包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有负焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;具有光焦度的第七透镜;其中,第一透镜至第七透镜中的任意两相邻透镜之间在光轴上具有空气间隙,光学成像系统的有效焦距f与光学成像镜头的入瞳直径EPD之间满足,f/EPD≤2.10,并且光学成像系统的有效焦距f与第一透镜的有效焦距f1之间满足f1/f>-3。本申请的光学成像系统可适用于便携式电子产品,是具有大孔径、优良成像质量和广角特性的光学成像系统。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2017年11月2日提交于中国国家知识产权局(SIPO)的、专利申请号为201711066338.7和201721446626.0的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种光学成像系统,特别是由七片镜片组成的光学成像系统。
背景技术
随着手机、平板电脑等消费电子产品的快速更新换代,市场对产品端成像镜头的要求愈加多样化。现阶段,除了要求成像镜头具有高像素、高分辨率、高相对亮度等特性外,还对镜头的大孔径和较广的视场角度等方面提出了更高的要求,以满足各个领域的成像需求。
因此,本发明提出了一种可适用于便携式电子产品,具有大孔径、优良成像质量及广角特性的光学成像系统。
发明内容
为了解决现有技术中的至少一个问题,本发明提供了一种光学成像系统。
本发明的一个方面提供了一种光学成像系统,从物侧至像侧依次包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有负焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;具有光焦度的第七透镜;其中,第一透镜至第七透镜中的任意两相邻透镜之间在光轴上具有空气间隙,光学成像系统的有效焦距f与光学成像 镜头的入瞳直径EPD之间满足,f/EPD≤2.10,并且光学成像系统的有效焦距f与第一透镜的有效焦距f1之间满足f1/f>-3。
根据本发明的一个实施方式,,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足2≤TTL/ImgH≤6。
根据本发明的一个实施方式,光学成像系统的有效焦距f与第六透镜像侧面的曲率半径R12之间满足-1.5≤f/R12≤0。
根据本发明的一个实施方式,光学成像系统的有效焦距f与第二透镜物侧面的曲率半径R3之间满足0≤f/R3≤1.5。
根据本发明的一个实施方式,第一透镜的有效焦距f1与第七透镜的有效焦距f7之间满足0<f1/f7≤1.5。
根据本发明的一个实施方式,第三透镜物侧面的曲率半径R5与第三透镜像侧面的曲率半径R6之间满足0.5≤|R5+R6|/|R5-R6|。
根据本发明的一个实施方式,第四透镜的有效焦距f4与第六透镜的有效焦距f6之间满足0≤f4/f6≤2。
根据本发明的一个实施方式,第五透镜的有效焦距f5、第一透镜像侧面的曲率半径R2以及第二透镜物侧面的曲率半径R3之间满足2≤|f5/R2|+|f5/R3|≤15。
根据本发明的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与第一透镜与第二透镜在光轴上的空气间隔T12之间满足0<T12/TTL<0.5。
根据本发明的一个实施方式,第三透镜的折射率N3、第五透镜的折射率N5以及第七透镜的折射率N7之间满足1.5≤|N3+N5+N7|/3。
根据本发明的一个实施方式,第二透镜的有效焦距f2、第三透镜的有效焦距f3、第四透镜的有效焦距f4、第五透镜的有效焦距f5、第六透镜的有效焦距f6以及第七透镜的有效焦距f7之间满足|f5+f6+f7|/|f2+f3+f4|≤2。
本发明的一个方面提供了一种光学成像系统,从物侧至像侧依次包括:具有负光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其物侧面为凹面;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;具有负光焦度的第七透镜;其 中,光学成像系统的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.10,并且光学成像系统的最大视场角的一半HFOV满足HFOV≥60°。
根据本发明的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足2≤TTL/ImgH≤6。
根据本发明的一个实施方式,光学成像系统的有效焦距f与第六透镜像侧面的曲率半径R12之间满足-1.5≤f/R12≤0。
根据本发明的一个实施方式,光学成像系统的有效焦距f与第二透镜物侧面的曲率半径R3之间满足0≤f/R3≤1.5。
根据本发明的一个实施方式,第一透镜的有效焦距f1与第七透镜的有效焦距f7之间满足0<f1/f7≤1.5。
根据本发明的一个实施方式,第三透镜物侧面的曲率半径R5与第三透镜像侧面的曲率半径R6之间满足0.5≤|R5+R6|/|R5-R6|。
根据本发明的一个实施方式,第四透镜的有效焦距f4与第六透镜的有效焦距f6之间满足0≤f4/f6≤2。
根据本发明的一个实施方式,第五透镜的有效焦距f5、第一透镜像侧面的曲率半径R2以及第二透镜物侧面的曲率半径R3之间满足2≤|f5/R2|+|f5/R3|≤15。
根据本发明的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与第一透镜与第二透镜在光轴上的空气间隔T12之间满足0<T12/TTL<0.5。
根据本发明的一个实施方式,第三透镜的折射率N3、第五透镜的折射率N5以及第七透镜的折射率N7之间满足1.5≤|N3+N5+N7|/3。
根据本发明的一个实施方式,第二透镜的有效焦距f2、第三透镜的有效焦距f3、第四透镜的有效焦距f4、第五透镜的有效焦距f5、第六透镜的有效焦距f6以及第七透镜的有效焦距f7之间满足|f5+f6+f7|/|f2+f3+f4|≤2。
根据本发明的光学成像系统可适用于便携式电子产品,是具有大孔径、良好成像质量和广角特性的光学成像系统。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的光学成像系统的结构示意图;
图2至图5分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的光学成像系统的结构示意图;
图7至图10分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的光学成像系统的结构示意图;
图12至图15分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的光学成像系统的结构示意图;
图17至图20分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的光学成像系统的结构示意图;
图22至图25分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的光学成像系统的结构示意图;
图27至图30分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的光学成像系统的结构示意图;
图32至图35分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的光学成像系统的结构示意图;
图37至图40分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的光学成像系统的结构示意图;
图42至图45分别示出了实施例9的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图46示出了实施例10的光学成像系统的结构示意图;
图47至图50分别示出了实施例10的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图51示出了实施例11的光学成像系统的结构示意图;
图52至图55分别示出了实施例11的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图56示出了实施例12的光学成像系统的结构示意图;
图57至图60分别示出了实施例12的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图61示出了实施例13的光学成像系统的结构示意图;
图62至图65分别示出了实施例13的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图66示出了实施例14的光学成像系统的结构示意图;
图67至图70分别示出了实施例14的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图71示出了实施例15的光学成像系统的结构示意图;
图72至图75分别示出了实施例15的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图76示出了实施例16的光学成像系统的结构示意图;以及
图77至图80分别示出了实施例16的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当 元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种光学成像系统,从物侧至像侧依次包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有负焦度的第三透镜;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;具有光焦度的第七透镜。
在本申请的实施例中,第一透镜至第七透镜中的任意两相邻透镜之间在光轴上具有空气间隙。
在本申请的实施例中,光学成像系统的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.10,具体地,满足f/EPD≤2.03。并且光学成像系统的有效焦距f与第一透镜的有效焦距f1之间满足f1/f>-3,具体地,满足f1/f≥-2.69。通过满足上述关系,能够增大通光量、加强光线不足环境的拍摄效果,同时有利于缓和光线偏折、增大视场角度、以及保证镜头小型化和成像品质。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足2≤TTL/ImgH≤6,具体地,满足2.14≤TTL/ImgH≤5.91。通过满足上述关系,能够维持镜头小型化,同时保证系统成像品质。
在本申请的实施例中,光学成像系统的有效焦距f与第六透镜像侧面的曲率半径R12之间满足-1.5≤f/R12≤0,具体地,满足-1.25≤f/R12≤-0.38。通过满足上述关系,能够改善高级慧差以及子午高级象散,从而提升成像品质。
在本申请的实施例中,光学成像系统的有效焦距f与第二透镜物侧面的曲率半径R3之间满足0≤f/R3≤1.5,具体地,满足0.18≤f/R3≤1.28。通过满足上述关系,能够缓和广角镜头中的入射光线角度,有利于增大视场角度以及矫正像差。
在本申请的实施例中,第一透镜的有效焦距f1与第七透镜的有效焦距f7之间满足0<f1/f7≤1.5,更具体地,满足0.12≤f1/f7≤1.36。通过分配第一透镜与第七透镜的光焦度,有利于缓和广角镜头的入射角度、匹配芯片CRA,同时可有效矫正象散、减小畸变。
在本申请的实施例中,第三透镜物侧面的曲率半径R5与第三透镜像侧面的曲率半径R6之间满足0.5≤|R5+R6|/|R5-R6|,更具体地,满足 0.74≤|R5+R6|/|R5-R6|。通过满足上述关系,能够合理分配第三透镜物像侧曲率半径,有利于矫正球差、降低系统中心区域视场敏感性。
在本申请的实施例中,第四透镜的有效焦距f4与第六透镜的有效焦距f6之间满足0≤f4/f6≤2,具体地,满足0.55≤f4/f6≤1.79。通过合理分配第四透镜与第六透镜有效焦距,可以降低高级球差,同时与第五透镜配合可有效矫正色差。
在本申请的实施例中,第五透镜的有效焦距f5、第一透镜像侧面的曲率半径R2以及第二透镜物侧面的曲率半径R3之间满足2≤|f5/R2|+|f5/R3|≤15,具体地,满足1.24≤|f5/R2|+|f5/R3|≤5.65。通过满足上述关系,有利于矫正广角镜头的色差、提升光学系统成像品质,同时有利于降低系统敏感性。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与第一透镜与第二透镜在光轴上的空气间隔T12之间满足0<T12/TTL<0.5,具体地,满足0.10≤T12/TTL≤0.38。通过满足上述关系,有利于缓和入射光线、改善广角系统的高级像差并提升成像效果。
在本申请的实施例中,第三透镜的折射率N3、第五透镜的折射率N5以及第七透镜的折射率N7之间满足1.5≤|N3+N5+N7|/3,具体地,满足1.67≤|N3+N5+N7|/3。通过满足上述关系,有利于矫正系统整体的像差、维持镜头小型化,同时具有良好的成像性能。
在本申请的实施例中,第二透镜的有效焦距f2、第三透镜的有效焦距f3、第四透镜的有效焦距f4、第五透镜的有效焦距f5、第六透镜的有效焦距f6以及第七透镜的有效焦距f7之间满足|f5+f6+f7|/|f2+f3+f4|≤2,具体地,满足|f5+f6+f7|/|f2+f3+f4|≤1.74。通过满足上述关系,有利于实现系统的紧凑性、维持镜头小型化、保证良好的成像性能以及加工特性,同时具有低敏感度的特点。
本申请提供了一种光学成像系统,从物侧至像侧依次包括:具有负光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面;具有光焦度的第三透镜,其物侧面为凹面;具有光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;具有负光焦度的第七透镜。
在本申请的实施例中,光学成像系统的有效焦距f与光学成像镜头的入 瞳直径EPD之间满足f/EPD≤2.10,具体地,满足f/EPD≤2.03,并且光学成像系统的最大视场角的一半HFOV满足HFOV≥60°,具体地,满足HFOV≥63.1°。通过满足上述关系,能够增大通光量,加强光线不足环境的拍摄效果,同时有利于缓和光线偏折、增大视场角度、保证镜头小型化和成像品质,以及增强与传感器的CRA匹配程度。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的光学成像系统。
图1为示出了实施例1的光学成像系统的结构示意图。如图1所示,光学成像系统包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像系统的物侧到像侧依次设置。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
在该实施例中,来自物体的光依次穿过各表面S1至S14并最终成像在成像表面S15上。
在该实施例中,第一透镜E1至第七透镜E7分别具有各自的有效焦距f1至f7。第一透镜E1至第七透镜E7沿着光轴依次排列并共同决定了光学成像系统的总有效焦距f。下表1示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL(mm)以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -3.11 f(mm) 2.09
f2(mm) 7.58 TTL(mm) 7.50
f3(mm) -16.00 ImgH(mm) 3.50
f4(mm) 2.45
f5(mm) -9.22
f6(mm) 2.67
f7(mm) -2.40
表1
表2示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000001
Figure PCTCN2018092869-appb-000002
表2
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018092869-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.3864E-03 -7.4957E-05 -1.5006E-05 1.5003E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 3.8141E-05 7.5954E-03 -3.4409E-04 5.9189E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -9.0162E-03 -7.0529E-03 -1.1214E-03 -1.3471E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 7.9493E-03 -3.2887E-03 -1.6119E-02 -1.3241E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -7.4821E-03 -1.3155E-02 -1.9980E-02 5.5687E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 6.9096E-03 -1.0848E-02 2.6126E-03 -7.6284E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.9840E-03 6.2424E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.7361E-02 1.1947E-02 1.5103E-02 -3.4832E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.1023E-01 3.2461E-02 -1.6562E-02 -1.2644E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -6.7863E-02 5.6271E-02 -2.6580E-02 4.4967E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -1.6919E-02 3.3976E-03 1.7396E-03 -6.8528E-04 0.0000E+00 0.0000E+00 0.0000E+00
S12 -7.9257E-03 -1.2379E-02 1.8225E-04 3.1185E-04 0.0000E+00 0.0000E+00 0.0000E+00
S13 7.0751E-03 -3.0994E-02 1.0029E-02 -7.4032E-04 0.0000E+00 0.0000E+00 0.0000E+00
S14 -5.4507E-02 6.2363E-03 -1.5055E-04 -1.9691E-05 0.0000E+00 0.0000E+00 0.0000E+00
表3
图2示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图2至图5 可以看出,根据实施例1的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例2
以下参照图6至图10描述根据本申请实施例2的光学成像系统。
图6为示出了实施例2的光学成像系统的结构示意图。如图6所示,光学成像系统包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像系统的物侧到像侧依次设置。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
在该实施例中,来自物体的光依次穿过各表面S1至S14最终成像在成像表面S15。
下表4示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件 有效像素区域对角线长的一半ImgH。
f1(mm) -2.79 f(mm) 1.58
f2(mm) 8.63 TTL(mm) 7.50
f3(mm) -16.61 ImgH(mm) 2.50
f4(mm) 2.34
f5(mm) -5.01
f6(mm) 2.03
f7(mm) -2.78
表4
表5示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000004
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2501E-03 -6.2308E-05 -1.0524E-05 1.2716E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 -1.0663E-02 8.0913E-03 7.5665E-04 -1.8033E-05 2.1724E-05 0.0000E+00 0.0000E+00
S3 -3.7415E-03 -1.1194E-02 -2.5046E-03 -3.1716E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 5.5208E-03 -1.1410E-02 -1.4272E-02 -5.7275E-04 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.0212E-02 -2.3035E-02 -2.6152E-02 7.1125E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.0128E-02 -1.8720E-02 -1.3517E-02 1.7694E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -7.5690E-03 7.6177E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -3.0726E-02 3.6967E-02 6.2603E-03 -3.9489E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.3370E-01 3.5020E-02 -8.3975E-03 -1.4111E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -7.2075E-02 5.9672E-02 -1.7869E-02 1.9601E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 9.7553E-04 1.1269E-02 -1.9242E-03 1.9618E-04 0.0000E+00 0.0000E+00 0.0000E+00
S12 -1.2489E-03 -2.2765E-02 -4.8102E-03 1.8235E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -3.3581E-02 -5.9279E-02 9.6796E-03 9.7837E-05 0.0000E+00 0.0000E+00 0.0000E+00
S14 -1.0381E-01 1.4161E-02 -9.0557E-04 1.0405E-04 0.0000E+00 0.0000E+00 0.0000E+00
表6
图7示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例3
以下参照图11至图15描述根据本申请实施例3的光学成像系统。
图11为示出了实施例3的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表7示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.05 f(mm) 1.04
f2(mm) 13.18 TTL(mm) 6.50
f3(mm) -68.12 ImgH(mm) 1.50
f4(mm) 2.26
f5(mm) -2.45
f6(mm) 1.26
f7(mm) -3.29
表7
表8示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000005
Figure PCTCN2018092869-appb-000006
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -9.8670E-04 -2.5531E-04 -1.0084E-05 4.1818E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 3.0718E-02 5.4729E-03 5.0585E-03 2.2682E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -9.0182E-03 -1.6400E-02 -5.1970E-03 -6.9776E-04 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.1003E-02 -8.5750E-03 -1.4601E-02 -1.2939E-04 0.0000E+00 0.0000E+00 0.0000E+00
S5 -7.3383E-03 -2.0118E-02 -3.0489E-02 -7.5610E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 5.4023E-03 -1.9648E-02 -1.3795E-02 -8.8604E-05 0.0000E+00 0.0000E+00 0.0000E+00
S7 -6.4492E-03 3.2132E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -3.4604E-02 3.7423E-02 4.1085E-03 -4.8588E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.3988E-01 2.9810E-02 -1.8757E-02 -2.4149E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -6.7210E-02 5.8020E-02 -1.6165E-02 4.2405E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 8.8915E-03 1.6820E-02 3.3556E-04 3.1095E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -1.2747E-02 -2.6313E-02 -1.5341E-03 4.2679E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -6.4345E-02 -7.3099E-02 4.0312E-03 1.8192E-03 0.0000E+00 0.0000E+00 0.0000E+00
S14 -7.9815E-02 -7.5820E-03 3.5917E-04 1.0549E-03 0.0000E+00 0.0000E+00 0.0000E+00
表9
图12示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例4
以下参照图16至图20描述根据本申请实施例4的光学成像系统。
图16为示出了实施例4的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表10示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -3.24 f(mm) 2.11
f2(mm) 7.77 TTL(mm) 7.50
f3(mm) -15.61 ImgH(mm) 3.50
f4(mm) 2.42
f5(mm) -9.66
f6(mm) 2.67
f7(mm) -2.42
表10
下表11示出了该实施例中的光学成像系统中各透镜的表面类型、曲率 半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000007
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.4937E-03 -1.1693E-04 -1.8411E-05 2.0288E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 -3.2329E-03 7.6079E-03 -2.7588E-04 4.6373E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -7.6148E-03 -7.9015E-03 -6.8173E-04 -1.1196E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 7.4919E-03 -4.9231E-03 -1.6010E-02 -1.1759E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -8.0901E-03 -1.5741E-02 -2.1667E-02 7.6736E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 6.9734E-03 -1.2450E-02 2.0846E-03 -6.0933E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -6.2444E-03 5.9440E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.1869E-02 1.9168E-02 1.5521E-02 -5.0512E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.1370E-01 3.0064E-02 -1.8145E-02 -9.1474E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 -7.1998E-02 5.6598E-02 -2.5470E-02 4.6465E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -2.5884E-02 5.0096E-03 2.2823E-03 -8.3308E-04 0.0000E+00 0.0000E+00 0.0000E+00
S12 -8.6622E-03 -1.1872E-02 3.9628E-04 4.6550E-04 0.0000E+00 0.0000E+00 0.0000E+00
S13 8.9700E-03 -3.2449E-02 1.0290E-02 -7.7537E-04 0.0000E+00 0.0000E+00 0.0000E+00
S14 -5.4442E-02 6.1130E-03 -1.9948E-04 -1.0546E-05 0.0000E+00 0.0000E+00 0.0000E+00
表12
图17示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例5
以下参照图21至图25描述根据本申请实施例5的光学成像系统。
图21为示出了实施例5的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表13示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件 有效像素区域对角线长的一半ImgH。
f1(mm) -3.20 f(mm) 1.96
f2(mm) 8.15 TTL(mm) 7.50
f3(mm) -17.10 ImgH(mm) 2.85
f4(mm) 2.41
f5(mm) -8.96
f6(mm) 2.54
f7(mm) -2.35
表13
下表14示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000008
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1) 限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.3013E-03 -1.0150E-04 -1.7147E-05 1.8430E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 -6.1944E-03 8.2450E-03 2.0009E-04 2.7840E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -6.2314E-03 -8.4729E-03 -2.9402E-04 -1.0198E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.1083E-03 -6.0864E-03 -1.6550E-02 -1.0049E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -8.0627E-03 -1.6659E-02 -2.2009E-02 7.2314E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 9.7102E-03 -1.1795E-02 1.6332E-03 -5.7846E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.1656E-03 5.1068E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.2658E-02 1.9385E-02 1.4603E-02 -4.3979E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.1465E-01 3.0088E-02 -1.7076E-02 -8.6024E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 -7.4125E-02 5.6391E-02 -2.5243E-02 4.2959E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -1.9645E-02 6.0441E-03 1.7482E-03 -1.1726E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -9.5217E-03 -1.2942E-02 -7.4671E-06 4.7014E-04 0.0000E+00 0.0000E+00 0.0000E+00
S13 -1.4570E-03 -3.4034E-02 1.0495E-02 -6.9220E-04 0.0000E+00 0.0000E+00 0.0000E+00
S14 -6.1307E-02 7.2252E-03 -2.0812E-04 -2.1416E-05 0.0000E+00 0.0000E+00 0.0000E+00
表15
图22示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例6
以下参照图26至图30描述根据本申请实施例6的光学成像系统。
图26为示出了实施例6的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表16示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.89 f(mm) 1.77
f2(mm) 8.52 TTL(mm) 7.50
f3(mm) -18.61 ImgH(mm) 3.00
f4(mm) 2.40
f5(mm) -6.76
f6(mm) 2.27
f7(mm) -2.64
表16
下表17示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000009
Figure PCTCN2018092869-appb-000010
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.8267E-04 -4.4138E-05 -1.1921E-05 1.4366E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 -7.7091E-03 7.5611E-03 1.2424E-03 -6.7543E-05 2.1724E-05 0.0000E+00 0.0000E+00
S3 -4.6831E-03 -1.0896E-02 -7.3305E-04 -9.3674E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 9.8850E-03 -6.0073E-03 -1.7746E-02 -7.9165E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 -6.5796E-03 -1.5266E-02 -1.9806E-02 3.7757E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.2053E-02 -1.2510E-02 -2.3681E-04 -4.2086E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.6173E-03 2.9038E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.1963E-02 2.0100E-02 1.2274E-02 -3.9201E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.2372E-01 3.0546E-02 -1.2989E-02 -9.1424E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 -7.3274E-02 5.8009E-02 -2.3956E-02 3.5057E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -1.1194E-02 9.3777E-03 -7.5203E-05 -2.2685E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -8.0365E-03 -1.3992E-02 -6.2508E-04 5.2142E-04 0.0000E+00 0.0000E+00 0.0000E+00
S13 -2.5506E-02 -4.2679E-02 1.0714E-02 1.7708E-04 0.0000E+00 0.0000E+00 0.0000E+00
S14 -8.1195E-02 9.3658E-03 -1.9208E-04 -1.7325E-05 0.0000E+00 0.0000E+00 0.0000E+00
表18
图27示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的光学成像系统适用于便携式电子产品,具有 大孔径、良好的成像质量和广角特性。
实施例7
以下参照图31至图35描述根据本申请实施例7的光学成像系统。
图31为示出了实施例7的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表19示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.23 f(mm) 1.27
f2(mm) 11.25 TTL(mm) 7.50
f3(mm) -49.43 ImgH(mm) 2.00
f4(mm 2.38
f5(mm) -3.37
f6(mm) 1.70
f7(mm) -3.06
表19
下表20示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000011
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.3270E-03 -8.2445E-06 -3.1345E-06 1.0872E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 2.2914E-03 6.9544E-03 3.4973E-03 -9.0223E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -9.5326E-04 -9.5260E-03 -1.0899E-03 -1.0381E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.4004E-02 -1.8193E-03 -2.0301E-02 -7.2507E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 -9.0888E-03 -1.2943E-02 -1.8870E-02 -5.5396E-04 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.1879E-02 -1.1592E-02 -1.9823E-03 -6.0496E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -4.4789E-03 3.1693E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.5441E-02 2.3314E-02 1.0383E-02 -3.4136E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.2830E-01 3.0899E-02 -1.7617E-02 -9.9690E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 -5.7828E-02 5.8244E-02 -2.3368E-02 1.2744E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 6.6495E-04 1.3721E-02 -1.3929E-03 -3.2406E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -3.2138E-02 -2.0216E-02 1.6856E-03 1.6770E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -5.1028E-02 -5.8151E-02 1.1969E-02 4.4432E-03 0.0000E+00 0.0000E+00 0.0000E+00
S14 -1.0022E-01 1.2537E-02 -8.1711E-04 4.3304E-04 0.0000E+00 0.0000E+00 0.0000E+00
表21
图32示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例8
以下参照图36至图40描述根据本申请实施例8的光学成像系统。
图36为示出了实施例8的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14 可为凹面。
下表22示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.16 f(mm) 1.17
f2(mm) 12.23 TTL(mm) 7.50
f3(mm) -112.89 ImgH(mm) 2.00
f4(mm) 2.39
f5(mm) -3.27
f6(mm) 1.65
f7(mm) -3.24
表22
下表23示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000012
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.5550E-03 -4.7647E-07 -1.8692E-06 1.0143E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 2.1369E-03 6.7554E-03 4.1736E-03 -1.5156E-03 2.1724E-05 0.0000E+00 0.0000E+00
S3 2.0313E-03 -9.5916E-03 -1.1455E-03 -1.0379E-02 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.6921E-02 -4.3830E-04 -2.2111E-02 -6.3648E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.0556E-02 -1.1580E-02 -1.8561E-02 -2.8230E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.1054E-02 -1.0891E-02 -2.2220E-03 -6.1912E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -5.5083E-03 3.2990E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.7053E-02 2.2625E-02 9.2111E-03 -2.9780E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.2615E-01 3.3542E-02 -1.6888E-02 -1.1563E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -5.3907E-02 5.8428E-02 -2.4414E-02 -2.3524E-04 0.0000E+00 0.0000E+00 0.0000E+00
S11 2.1277E-03 1.3774E-02 -1.5926E-03 -3.3607E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -3.7354E-02 -2.1428E-02 2.3850E-03 2.1489E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -6.0284E-02 -6.1189E-02 1.0370E-02 3.9951E-03 0.0000E+00 0.0000E+00 0.0000E+00
S14 -9.8888E-02 1.1824E-02 -6.8139E-04 5.0016E-04 0.0000E+00 0.0000E+00 0.0000E+00
表24
图37示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例9
以下参照图41至图45描述根据本申请实施例9的光学成像系统。
图41为示出了实施例9的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为 凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表25示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -1.91 f(mm) 0.79
f2(mm) 7.17 TTL(mm) 7.00
f3(mm) -16.46 ImgH(mm) 1.50
f4(mm) 2.03
f5(mm) -3.05
f6(mm) 1.44
f7(mm) -3.44
表25
下表26示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000013
Figure PCTCN2018092869-appb-000014
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.1936E-03 1.3945E-04 1.3313E-05 -4.5776E-07 -3.5650E-08 0.0000E+00 0.0000E+00
S2 1.3342E-02 -5.7503E-03 9.4129E-03 -3.2122E-03 2.1724E-05 0.0000E+00 0.0000E+00
S3 2.2093E-03 3.3453E-03 -1.5991E-02 8.3499E-04 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.8631E-02 -7.4256E-03 -1.6108E-02 -7.6109E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 1.5547E-04 -1.5687E-02 -2.1708E-03 -4.5260E-02 0.0000E+00 0.0000E+00 0.0000E+00
S6 -5.6632E-06 -3.0488E-04 1.9035E-02 -2.4823E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 2.9291E-03 -6.3205E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -3.6030E-02 3.4386E-02 1.6598E-02 -7.2215E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.5690E-01 -4.5383E-04 -1.8308E-02 2.6358E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -3.9214E-02 6.1404E-02 -1.5581E-02 -1.0632E-02 0.0000E+00 0.0000E+00 0.0000E+00
S11 1.7804E-02 3.8428E-02 -4.8120E-03 -4.5502E-02 0.0000E+00 0.0000E+00 0.0000E+00
S12 -7.1579E-02 -3.3159E-02 3.4881E-02 2.9320E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -1.8171E-01 -5.9050E-02 3.3730E-02 8.5103E-02 0.0000E+00 0.0000E+00 0.0000E+00
S14 -1.8035E-01 2.2280E-02 3.1378E-02 3.7667E-03 0.0000E+00 0.0000E+00 0.0000E+00
表27
图42示出了实施例9的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。 图45示出了实施例9的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例10
以下参照图46至图50描述根据本申请实施例10的光学成像系统。
图46为示出了实施例10的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表28示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -1.91 f(mm) 0.97
f2(mm) 13.58 TTL(mm) 7.50
f3(mm) -19927.26 ImgH(mm) 1.43
f4(mm) 2.26
f5(mm) -2.93
f6(mm) 1.45
f7(mm) -2.54
表28
下表29示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000015
表29
下表30示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2826E-03 7.3034E-07 -8.1294E-07 8.1130E-07 -3.1954E-08 0.0000E+00 0.0000E+00
S2 -2.3134E-02 1.5975E-02 -9.3149E-03 3.7093E-03 1.9472E-05 0.0000E+00 0.0000E+00
S3 -1.6514E-02 5.1182E-03 -5.0195E-03 -3.4533E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 3.0588E-02 -1.6418E-03 5.8917E-03 -1.2445E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.8137E-02 -6.9177E-04 -6.6020E-03 6.1738E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 7.9615E-03 1.1855E-02 1.0128E-02 9.5601E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -1.6064E-02 -1.4605E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -5.0740E-02 1.6488E-02 -1.0927E-02 2.2712E-02 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.6294E-01 -2.2531E-02 -6.6031E-02 7.7772E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -1.7955E-02 7.3796E-02 -4.7271E-03 -1.8364E-02 0.0000E+00 0.0000E+00 0.0000E+00
S11 1.6780E-02 3.0114E-02 -1.0226E-02 -3.6412E-02 0.0000E+00 0.0000E+00 0.0000E+00
S12 -5.4394E-02 -4.8087E-02 1.1225E-02 -4.9931E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -1.2870E-01 -2.5242E-02 1.5765E-02 3.5424E-02 0.0000E+00 0.0000E+00 0.0000E+00
S14 -1.4385E-01 2.8408E-03 1.1402E-02 -6.0616E-04 0.0000E+00 0.0000E+00 0.0000E+00
表30
图47示出了实施例10的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图48示出了实施例10的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图49示出了实施例10的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图50示出了实施例10的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图46至图50可以看出,根据实施例10的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例11
以下参照图51至图55描述根据本申请实施例11的光学成像系统。
图51为示出了实施例11的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10 可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
下表31示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -3.20 f(mm) 1.87
f2(mm) 5.49 TTL(mm) 7.50
f3(mm) -12.81 ImgH(mm) 2.50
f4(mm) 2.44
f5(mm) -7.29
f6(mm) 4.44
f7(mm) -2.96
表31
下表32示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000016
Figure PCTCN2018092869-appb-000017
表32
下表33示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -5.4199E-03 1.1027E-04 1.4261E-05 -6.8889E-07 -3.5650E-08 0.0000E+00 0.0000E+00
S2 9.1565E-03 -2.1396E-03 3.2976E-03 -9.2671E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -5.0586E-03 -5.7481E-03 -6.0383E-03 1.0614E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.2572E-02 -1.7189E-02 -2.2371E-03 1.9264E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 -2.0381E-02 -2.1096E-02 -1.7564E-02 4.1104E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 7.9778E-03 -1.1287E-02 -1.6064E-02 -8.6357E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 2.1498E-03 3.2918E-03 -4.8934E-03 3.7284E-03 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.1155E-02 1.1055E-02 1.8651E-02 -1.8335E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.5923E-02 7.3649E-03 1.0735E-02 1.0233E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 2.4082E-02 1.6938E-02 1.4995E-03 2.0482E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -1.2715E-02 -5.0993E-03 7.2678E-04 7.5279E-04 0.0000E+00 0.0000E+00 0.0000E+00
S12 -2.2718E-02 2.1163E-04 5.3046E-04 -4.7744E-04 0.0000E+00 0.0000E+00 0.0000E+00
S13 -3.4690E-02 3.1185E-03 -1.8930E-03 2.2183E-03 0.0000E+00 0.0000E+00 0.0000E+00
S14 -3.5950E-02 6.1441E-03 -6.3764E-05 -5.0009E-05 0.0000E+00 0.0000E+00 0.0000E+00
表33
图52示出了实施例11的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图53示出了实施例11的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图54示出了实施例11的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图55示出了实施例11的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图51至图55可以看出,根据实施例11的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例12
以下参照图56至图60描述根据本申请实施例12的光学成像系统。
图56为示出了实施例12的光学成像系统的结构示意图。光学成像 系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
下表34示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.99 f(mm) 1.72
f2(mm) 5.41 TTL(mm) 7.50
f3(mm) -14.27 ImgH(mm) 2.50
f4(mm) 2.41
f5(mm) -6.17
f6(mm) 3.85
f7(mm) -2.90
表34
下表35示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000018
表35
下表36示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -5.8896E-03 1.3230E-04 1.1882E-05 -1.2394E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 1.2699E-02 2.6138E-04 2.6185E-03 -5.2076E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -5.1891E-03 -9.0681E-03 -1.6555E-03 -3.0310E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -1.8042E-02 -2.3189E-02 -1.7803E-03 1.7471E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.7769E-02 -3.6670E-02 -2.1403E-02 8.6515E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.3026E-02 -2.0266E-02 -2.6184E-02 5.2012E-04 0.0000E+00 0.0000E+00 0.0000E+00
S7 9.4389E-04 4.3339E-03 -6.3072E-03 4.3899E-03 0.0000E+00 0.0000E+00 0.0000E+00
S8 -3.3076E-02 1.9887E-02 2.3747E-02 -6.5654E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.3377E-02 2.0744E-02 1.9506E-02 -4.0279E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 3.1465E-02 2.2399E-02 5.7373E-03 4.3603E-04 0.0000E+00 0.0000E+00 0.0000E+00
S11 -2.1073E-02 -4.4208E-03 1.4531E-03 -1.9112E-05 0.0000E+00 0.0000E+00 0.0000E+00
S12 -2.7336E-02 4.8699E-03 -1.6695E-04 -1.4181E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -3.3576E-02 4.4795E-04 1.0971E-03 -5.4839E-05 0.0000E+00 0.0000E+00 0.0000E+00
S14 -3.2906E-02 5.6333E-03 -1.1128E-04 -3.8457E-06 0.0000E+00 0.0000E+00 0.0000E+00
表36
图57示出了实施例12的光学成像系统的轴上色差曲线,其表示不同 波长的光线经由光学系统后的会聚焦点偏离。图58示出了实施例12的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图59示出了实施例12的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图60示出了实施例12的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图56至图60可以看出,根据实施例12的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例13
以下参照图61至图65描述根据本申请实施例13的光学成像系统。
图61为示出了实施例13的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
下表37示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.85 f(mm) 1.53
f2(mm) 5.42 TTL(mm) 7.50
f3(mm) -16.24 ImgH(mm) 2.14
f4(mm) 2.40
f5(mm) -5.92
f6(mm) 3.28
f7(mm) -2.66
表37
下表38示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000019
表38
下表39示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -6.3789E-03 1.5045E-04 1.4213E-05 -1.1805E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 1.2035E-02 -2.5635E-04 2.7848E-03 -7.5484E-04 2.1724E-05 0.0000E+00 0.0000E+00
S3 -5.9908E-03 -9.1088E-03 3.7383E-04 -3.9659E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 -2.0379E-02 -2.6846E-02 -4.5651E-03 1.0251E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.6836E-02 -4.0364E-02 -2.5443E-02 5.4934E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.2301E-02 -1.9881E-02 -2.5969E-02 1.7722E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -7.1609E-04 3.7505E-03 -5.7594E-03 3.6934E-03 0.0000E+00 0.0000E+00 0.0000E+00
S8 -4.0445E-02 2.0714E-02 2.3380E-02 -6.8733E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.2683E-02 2.1567E-02 2.1964E-02 -5.3806E-03 0.0000E+00 0.0000E+00 0.0000E+00
S10 3.4756E-02 2.2651E-02 4.9562E-03 1.2608E-04 0.0000E+00 0.0000E+00 0.0000E+00
S11 -2.8312E-02 -6.9522E-03 1.7892E-03 -7.4743E-04 0.0000E+00 0.0000E+00 0.0000E+00
S12 -2.9499E-02 5.6250E-03 -5.5859E-04 -1.2155E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -3.3467E-02 3.4902E-03 -9.6743E-04 2.6331E-03 0.0000E+00 0.0000E+00 0.0000E+00
S14 -2.6879E-02 5.9465E-03 3.4930E-06 -1.7788E-05 0.0000E+00 0.0000E+00 0.0000E+00
表39
图62示出了实施例13的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图63示出了实施例13的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图64示出了实施例13的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图65示出了实施例13的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图61至图65可以看出,根据实施例13的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例14
以下参照图66至图70描述根据本申请实施例14的光学成像系统。
图66为示出了实施例14的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可 为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
下表40示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.53 f(mm) 1.30
f2(mm) 5.47 TTL(mm) 7.50
f3(mm) -21.48 ImgH(mm) 1.84
f4(mm) 2.34
f5(mm) -4.31
f6(mm) 2.46
f7(mm) -2.48
表40
下表41示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000020
Figure PCTCN2018092869-appb-000021
表41
下表42示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -7.4484E-03 1.8146E-04 2.1218E-05 -1.6507E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 1.5942E-02 -2.0335E-03 4.8605E-03 -1.8923E-03 2.1724E-05 0.0000E+00 0.0000E+00
S3 -8.4429E-03 -1.4517E-02 1.8873E-03 -6.4166E-03 2.2960E-28 0.0000E+00 0.0000E+00
S4 -2.4558E-02 -3.3150E-02 -1.4564E-02 2.1676E-05 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.3827E-02 -4.7338E-02 -3.4528E-02 2.8322E-04 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.1061E-02 -2.2320E-02 -2.8305E-02 -8.6762E-04 0.0000E+00 0.0000E+00 0.0000E+00
S7 -6.1893E-03 4.4227E-03 -2.9603E-03 2.7664E-03 0.0000E+00 0.0000E+00 0.0000E+00
S8 -5.9389E-02 3.5069E-02 2.2365E-02 -7.6794E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -5.0357E-02 2.3768E-02 3.0652E-02 -1.3995E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 5.1637E-02 2.0798E-02 1.1826E-02 -3.1278E-03 0.0000E+00 0.0000E+00 0.0000E+00
S11 -5.2543E-02 -9.6078E-03 2.0843E-03 -5.4075E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 -4.2190E-02 6.1484E-03 3.1427E-03 -1.8954E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -2.0163E-02 -2.1441E-03 3.3680E-03 8.8409E-03 0.0000E+00 0.0000E+00 0.0000E+00
S14 -9.1787E-03 1.4391E-03 2.5869E-03 -1.7348E-04 0.0000E+00 0.0000E+00 0.0000E+00
表42
图67示出了实施例14的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图68示出了实施例14的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图69示出了实施例14的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图70示出了实施例14的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图66至图70可以看出,根据实施例14的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例15
以下参照图71至图75描述根据本申请实施例15的光学成像系统。
图71为示出了实施例15的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凸面,像侧面S14可为凹面。
下表43示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -1.93 f(mm) 0.94
f2(mm) 5.83 TTL(mm) 7.50
f3(mm) -20.12 ImgH(mm) 1.27
f4(mm) 1.78
f5(mm) -1.96
f6(mm) 2.29
f7(mm) -15.52
表43
下表44示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000022
表44
下表45示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -6.5692E-03 6.2664E-05 1.3477E-05 -4.5606E-07 -3.5650E-08 0.0000E+00 0.0000E+00
S2 5.0796E-03 -1.5078E-02 1.1813E-02 -4.0884E-03 2.1724E-05 0.0000E+00 0.0000E+00
S3 -2.7414E-02 -3.5146E-02 -2.2329E-02 1.0617E-02 4.4228E-24 0.0000E+00 0.0000E+00
S4 -4.3537E-03 -4.3320E-02 -4.8095E-02 4.3622E-01 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.8064E-02 7.5565E-03 7.8484E-02 2.9868E-01 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.2704E-02 -5.5710E-03 1.8612E-01 7.5489E-02 0.0000E+00 0.0000E+00 0.0000E+00
S7 -2.6471E-02 -5.3383E-02 3.1618E-02 2.8483E-02 0.0000E+00 0.0000E+00 0.0000E+00
S8 -1.0240E-02 -3.5852E-02 3.1558E-03 7.0322E-02 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.3697E-03 1.0531E-01 1.1544E-01 3.1586E-01 0.0000E+00 0.0000E+00 0.0000E+00
S10 3.3597E-02 2.2291E-02 6.6648E-03 -1.4269E-02 0.0000E+00 0.0000E+00 0.0000E+00
S11 -3.0742E-02 -1.8466E-02 -1.6402E-02 -2.0673E-02 0.0000E+00 0.0000E+00 0.0000E+00
S12 -8.1153E-02 4.1905E-02 2.5951E-02 1.3855E-02 0.0000E+00 0.0000E+00 0.0000E+00
S13 -2.0225E-01 -6.7602E-01 5.2265E-01 -9.4443E-01 1.8758E+00 -9.8445E-01 0.0000E+00
S14 1.3407E-01 -8.2730E-01 8.1065E-01 -3.5203E-01 7.2084E-02 -5.6781E-03 0.0000E+00
表45
图72示出了实施例15的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图73示出了实施例15的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图74示出了实施例15的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图75示出了实施例15的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图71至图75可以看出,根据实施例15的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
实施例16
以下参照图76至图80描述根据本申请实施例16的光学成像系统。
图76为示出了实施例16的光学成像系统的结构示意图。光学成像系统由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有负光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凸面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凸面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凸面,像侧面S10可为凹面。
第六透镜E6可具有正光焦度,且其物侧面S11可为凸面,像侧面S12可为凸面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凹面。
下表46示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学 成像系统的总有效焦距f、光学成像系统的总长度TTL以及电子光感元件有效像素区域对角线长的一半ImgH。
f1(mm) -2.15 f(mm) 0.80
f2(mm) -64.01 TTL(mm) 7.50
f3(mm) -464.66 ImgH(mm) 1.30
f4(mm) 2.16
f5(mm) -2.52
f6(mm) 1.29
f7(mm) -2.39
表46
下表47示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092869-appb-000023
表47
下表48示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1) 限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.7160E-03 1.5262E-04 -6.7409E-06 1.8743E-06 -3.5650E-08 0.0000E+00 0.0000E+00
S2 2.2693E-03 5.6830E-03 1.0798E-03 1.6469E-03 2.1724E-05 0.0000E+00 0.0000E+00
S3 -2.9886E-02 -1.0712E-02 -1.3421E-03 -2.9571E-03 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.5877E-02 -1.1268E-02 3.6109E-03 -8.4881E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 4.2088E-03 3.7491E-03 7.3040E-03 2.0876E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 3.1820E-03 1.3259E-02 7.8072E-03 6.5239E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 -1.2294E-02 -8.2805E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S8 -4.0834E-02 3.8783E-02 -5.9181E-03 1.8351E-03 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.5780E-01 -2.2525E-03 -2.5308E-02 -5.0645E-02 0.0000E+00 0.0000E+00 0.0000E+00
S10 -1.0665E-02 7.3901E-02 -3.3886E-02 -6.6898E-02 0.0000E+00 0.0000E+00 0.0000E+00
S11 -1.7760E-03 2.0956E-02 9.5957E-03 -7.2931E-02 0.0000E+00 0.0000E+00 0.0000E+00
S12 -6.4669E-02 -3.6759E-02 4.1141E-03 -2.3479E-03 0.0000E+00 0.0000E+00 0.0000E+00
S13 -7.8994E-02 2.9373E-02 1.4383E-02 2.1908E-02 0.0000E+00 0.0000E+00 0.0000E+00
S14 -1.0668E-01 -1.2308E-02 5.4386E-02 -1.5946E-02 0.0000E+00 0.0000E+00 0.0000E+00
表48
图77示出了实施例16的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图78示出了实施例16的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图79示出了实施例16的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图80示出了实施例16的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。综上所述并参照图76至图80可以看出,根据实施例16的光学成像系统适用于便携式电子产品,具有大孔径、良好的成像质量和广角特性。
概括地说,在上述实施例1至16中,各条件式满足下面表28的条件。
条件式/实施例 1 2 3 4 5 6 7 8
f/EPD 2.03 1.50 1.34 2.03 1.88 1.65 1.45 1.35
HFOV 78.1 63.1 63.1 72.4 69.1 75.0 75.0 75.0
f1/f -1.49 -1.77 -1.97 -1.53 -1.63 -1.63 -1.75 -1.84
TTL/ImgH 2.14 3.00 4.33 2.14 2.63 2.50 3.75 3.75
f/R12 -1.20 -1.03 -0.69 -1.25 -1.19 -1.18 -0.89 -0.84
f/R3 1.28 0.83 0.35 1.26 1.14 1.00 0.66 0.61
f1/f7 1.30 1.00 0.62 1.34 1.36 1.09 0.73 0.67
|R5+R6|/|R5-R6| 2.85 3.13 9.84 2.68 2.89 2.97 6.65 12.68
f4/f6 0.92 1.15 1.79 0.91 0.95 1.06 1.40 1.45
|f5/R2|+|f5/R3| 1.24 1.89 3.72 1.38 1.43 1.59 2.05 2.18
T12/TTL 0.25 0.26 0.27 0.25 0.27 0.26 0.29 0.29
|N3+N5+N7|/3 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67
|f5+f6+f7||f2+f3+f4| 1.50 1.02 0.09 1.74 1.34 0.93 0.13 0.05
条件式/实施例 9 10 11 12 13 14 15 16
f/EPD 1.25 1.85 2.03 1.85 1.65 1.55 2.00 1.50
HFOV 75.0 87.1 86.9 86.9 86.9 86.9 66.4 86.9
f1/f -2.41 -1.97 -1.71 -1.74 -1.86 -1.94 -2.04 -2.69
TTL/ImgH 4.67 5.23 3.00 3.00 3.50 4.08 5.91 5.77
f/R12 -0.56 -0.74 -0.49 -0.46 -0.48 -0.52 -0.38 -0.69
f/R3 0.22 0.52 0.49 0.46 0.41 0.34 0.18 0.47
f1/f7 0.56 0.75 1.08 1.03 1.07 1.02 0.12 0.90
|R5+R6|/|R5-R6| 7.16 20.25 0.74 0.97 1.22 2.09 5.88 10.88
f4/f6 1.41 1.55 0.55 0.63 0.73 0.95 0.78 1.68
|f5/R2|+|f5/R3| 4.74 1.99 2.54 2.67 2.79 3.23 5.65 1.76
T12/TTL 0.30 0.10 0.32 0.33 0.36 0.38 0.36 0.10
|N3+N5+N7|/3 1.70 1.67 1.67 1.67 1.67 1.67 1.67 1.67
|f5+f6+f7||f2+f3+f4| 0.70 0.00 1.19 0.81 0.63 0.32 1.21 0.01
表49
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 一种光学成像系统,从物侧至像侧依次包括:
    具有负光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有负焦度的第三透镜;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜;
    具有光焦度的第七透镜;
    其特征在于,
    第一透镜至第七透镜中的任意两相邻透镜之间在光轴上具有空气间隙;以及
    光学成像系统的有效焦距f与光学成像镜头的入瞳直径EPD之间满足,f/EPD≤2.10,并且光学成像系统的有效焦距f与第一透镜的有效焦距f1之间满足f1/f>-3。
  2. 根据权利要求1所述的光学成像系统,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足2≤TTL/ImgH≤6。
  3. 根据权利要求1所述的光学成像系统,其特征在于,光学成像系统的有效焦距f与第六透镜像侧面的曲率半径R12之间满足-1.5≤f/R12≤0。
  4. 根据权利要求1至3中任一项所述的光学成像系统,其特征在于,光学成像系统的有效焦距f与第二透镜物侧面的曲率半径R3之间满足0≤f/R3≤1.5。
  5. 根据权利要求1至3中任一项所述的光学成像系统,其特征在于,第一透镜的有效焦距f1与第七透镜的有效焦距f7之间满足0<f1/f7≤1.5。
  6. 根据权利要求1至3中任一项所述的光学成像系统,其特征在于,第三透镜物侧面的曲率半径R5与第三透镜像侧面的曲率半径R6之间满足0.5≤|R5+R6|/|R5-R6|。
  7. 根据权利要求1至3中任一项所述的光学成像系统,其特征在于,第四透镜的有效焦距f4与第六透镜的有效焦距f6之间满足0≤f4/f6≤2。
  8. 根据权利要求1至3中任一项所述的光学成像系统,其特征在于,第五透镜的有效焦距f5、第一透镜像侧面的曲率半径R2以及第二透镜物侧面的曲率半径R3之间满足2≤|f5/R2|+|f5/R3|≤15。
  9. 根据权利要求1至3中任一项所述的光学成像系统,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与第一透镜与第二透镜在光轴上的空气间隔T12之间满足0<T12/TTL<0.5。
  10. 根据权利要求1所述的光学成像系统,其特征在于,第三透镜的折射率N3、第五透镜的折射率N5以及第七透镜的折射率N7之间满足1.5≤|N3+N5+N7|/3。
  11. 根据权利要求1所述的光学成像系统,其特征在于,第二透镜的有效焦距f2、第三透镜的有效焦距f3、第四透镜的有效焦距f4、第五透镜的有效焦距f5、第六透镜的有效焦距f6以及第七透镜的有效焦距f7之间满足|f5+f6+f7|/|f2+f3+f4|≤2。
  12. 一种光学成像系统,从物侧至像侧依次包括:
    具有负光焦度的第一透镜;
    具有光焦度的第二透镜,其物侧面为凸面;
    具有光焦度的第三透镜,其物侧面为凹面;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜;
    具有负光焦度的第七透镜;
    其中,光学成像系统的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD≤2.10,并且光学成像系统的最大视场角的一半HFOV满足HFOV≥60°。
  13. 根据权利要求12所述的光学成像系统,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与成像面上有效像素区域对角线长的一半ImgH之间满足2≤TTL/ImgH≤6。
  14. 根据权利要求12所述的光学成像系统,其特征在于,光学成像系统的有效焦距f与第六透镜像侧面的曲率半径R12之间满足-1.5≤f/R12≤0。
  15. 根据权利要求12至14中任一项所述的光学成像系统,其特征在于,光学成像系统的有效焦距f与第二透镜物侧面的曲率半径R3之间满足0≤f/R3≤1.5。
  16. 根据权利要求12至14中任一项所述的光学成像系统,其特征在于,第一透镜的有效焦距f1与第七透镜的有效焦距f7之间满足0<f1/f7≤1.5。
  17. 根据权利要求12至14中任一项所述的光学成像系统,其特征在于,第三透镜物侧面的曲率半径R5与第三透镜像侧面的曲率半径R6之间满足0.5≤|R5+R6|/|R5-R6|。
  18. 根据权利要求12至14中任一项所述的光学成像系统,其特征在于,第四透镜的有效焦距f4与第六透镜的有效焦距f6之间满足0≤f4/f6≤2。
  19. 根据权利要求12至14中任一项所述的光学成像系统,其特征在于,第五透镜的有效焦距f5、第一透镜像侧面的曲率半径R2以及第二透镜物侧面的曲率半径R3之间满足2≤|f5/R2|+|f5/R3|≤15。
  20. 根据权利要求12至14中任一项所述的光学成像系统,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与第一透镜与第二透镜在光轴上的空气间隔T12之间满足0<T12/TTL<0.5。
  21. 根据权利要求12所述的光学成像系统,其特征在于,第三透镜的折射率N3、第五透镜的折射率N5以及第七透镜的折射率N7之间满足1.5≤|N3+N5+N7|/3。
  22. 根据权利要求12所述的光学成像系统,其特征在于,第二透镜的有效焦距f2、第三透镜的有效焦距f3、第四透镜的有效焦距f4、第五透镜的有效焦距f5、第六透镜的有效焦距f6以及第七透镜的有效焦距f7之间满足|f5+f6+f7|/|f2+f3+f4|≤2。
PCT/CN2018/092869 2017-11-02 2018-06-26 光学成像系统 WO2019085524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/273,700 US11067777B2 (en) 2017-11-02 2019-02-12 Optical imaging system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721446626.0 2017-11-02
CN201721446626.0U CN207440372U (zh) 2017-11-02 2017-11-02 光学成像系统
CN201711066338.7 2017-11-02
CN201711066338.7A CN107728290B (zh) 2017-11-02 2017-11-02 光学成像系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/273,700 Continuation US11067777B2 (en) 2017-11-02 2019-02-12 Optical imaging system

Publications (1)

Publication Number Publication Date
WO2019085524A1 true WO2019085524A1 (zh) 2019-05-09

Family

ID=66332396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092869 WO2019085524A1 (zh) 2017-11-02 2018-06-26 光学成像系统

Country Status (2)

Country Link
US (1) US11067777B2 (zh)
WO (1) WO2019085524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075786A (zh) * 2020-01-06 2021-07-06 天津欧菲光电有限公司 光学系统、镜头模组及终端设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748258B2 (en) * 2018-02-01 2020-08-18 Jiangxi Lianchuang Electronic Co., Ltd. Method, device and system for correcting distortion of wide-angle lens
JP6618217B1 (ja) * 2018-08-14 2019-12-11 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN112147750B (zh) * 2019-06-26 2025-05-09 江西欧菲光学有限公司 广角镜头、图像拾取装置及电子装置
CN111198438B (zh) 2020-03-05 2024-07-26 玉晶光电(厦门)有限公司 光学成像镜头
JP6903850B1 (ja) * 2020-03-27 2021-07-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ系、撮像装置、及び移動体
CN112462501B (zh) * 2020-12-17 2025-05-02 浙江舜宇光学有限公司 光学成像系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242167A (ja) * 1997-12-26 1999-09-07 Olympus Optical Co Ltd 実像式変倍ファインダー
JP2004354435A (ja) * 2003-05-27 2004-12-16 Olympus Corp ステレオ撮像装置
CN102253476A (zh) * 2010-05-17 2011-11-23 富士胶片株式会社 可变放大率光学系统和成像设备
CN106094170A (zh) * 2015-04-30 2016-11-09 富士胶片株式会社 摄像透镜以及摄像装置
CN106932889A (zh) * 2017-04-28 2017-07-07 深圳市东正光学技术有限公司 广角镜头
CN107153252A (zh) * 2016-03-02 2017-09-12 先进光电科技股份有限公司 光学成像系统
CN107664829A (zh) * 2017-10-30 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107728290A (zh) * 2017-11-02 2018-02-23 浙江舜宇光学有限公司 光学成像系统
CN207440372U (zh) * 2017-11-02 2018-06-01 浙江舜宇光学有限公司 光学成像系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154314A (en) 1997-12-26 2000-11-28 Olympus Optical Co., Ltd. Real image mode variable magnification finder
TWI414841B (zh) 2011-02-18 2013-11-11 Largan Precision Co Ltd 廣視角光學系統
WO2013153792A1 (ja) 2012-04-09 2013-10-17 富士フイルム株式会社 撮像レンズおよび撮像装置
TWI449947B (zh) 2012-08-13 2014-08-21 Largan Precision Co Ltd 影像鏡片系統組
JP2016062020A (ja) 2014-09-19 2016-04-25 富士フイルム株式会社 撮像レンズおよび撮像装置
KR101659167B1 (ko) 2014-10-16 2016-09-22 삼성전기주식회사 촬상 광학계
CN108957703B (zh) 2015-01-30 2021-03-26 大立光电股份有限公司 光学取像系统以及取像装置
CN204925495U (zh) 2015-08-29 2015-12-30 东莞市明镜光学有限公司 七镜片超广角镜头
TWI608247B (zh) 2015-11-13 2017-12-11 先進光電科技股份有限公司 光學成像系統(一)
CN106959499B (zh) 2016-01-11 2020-12-29 扬明光学股份有限公司 光学镜头
TWI589924B (zh) * 2016-05-17 2017-07-01 Kinko Optical Co Limited Wide-angle six-slice lens
CN206020792U (zh) 2016-08-25 2017-03-15 广东弘景光电科技股份有限公司 日夜共焦广角低畸变高像素光学系统及其应用的镜头
CN106125260B (zh) 2016-08-25 2018-08-28 广东弘景光电科技股份有限公司 超广角低畸变高像素光学系统及其应用的镜头
CN106932887B (zh) 2016-11-10 2020-01-21 嘉兴中润光学科技有限公司 一种车载用广角镜头
CN206515544U (zh) 2016-12-27 2017-09-22 东莞市宇瞳光学科技股份有限公司 小型超大光圈定焦镜头
CN106772951B (zh) 2017-03-02 2022-12-13 舜宇光学(中山)有限公司 一种广角低畸变镜头
US10416414B2 (en) * 2017-12-18 2019-09-17 AAC Technologies Pte. Ltd. Camera optical lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242167A (ja) * 1997-12-26 1999-09-07 Olympus Optical Co Ltd 実像式変倍ファインダー
JP2004354435A (ja) * 2003-05-27 2004-12-16 Olympus Corp ステレオ撮像装置
CN102253476A (zh) * 2010-05-17 2011-11-23 富士胶片株式会社 可变放大率光学系统和成像设备
CN106094170A (zh) * 2015-04-30 2016-11-09 富士胶片株式会社 摄像透镜以及摄像装置
CN107153252A (zh) * 2016-03-02 2017-09-12 先进光电科技股份有限公司 光学成像系统
CN106932889A (zh) * 2017-04-28 2017-07-07 深圳市东正光学技术有限公司 广角镜头
CN107664829A (zh) * 2017-10-30 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107728290A (zh) * 2017-11-02 2018-02-23 浙江舜宇光学有限公司 光学成像系统
CN207440372U (zh) * 2017-11-02 2018-06-01 浙江舜宇光学有限公司 光学成像系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075786A (zh) * 2020-01-06 2021-07-06 天津欧菲光电有限公司 光学系统、镜头模组及终端设备

Also Published As

Publication number Publication date
US11067777B2 (en) 2021-07-20
US20190170984A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019105139A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2019114524A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019085524A1 (zh) 光学成像系统
WO2019210738A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2020024633A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2020119171A1 (zh) 光学成像镜头
WO2019205821A1 (zh) 光学成像镜头
WO2020119146A1 (zh) 光学成像镜头
CN109725406B (zh) 光学镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020029613A1 (zh) 光学成像镜头
WO2019227877A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020048157A1 (zh) 摄像镜头
WO2019233040A1 (zh) 摄像透镜组
WO2019141210A1 (zh) 光学成像镜头
WO2019056776A1 (zh) 光学成像镜头
WO2019062136A1 (zh) 摄像透镜组
WO2020019796A1 (zh) 光学成像系统
WO2019052144A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872887

Country of ref document: EP

Kind code of ref document: A1