WO2020019796A1 - 光学成像系统 - Google Patents
光学成像系统 Download PDFInfo
- Publication number
- WO2020019796A1 WO2020019796A1 PCT/CN2019/084491 CN2019084491W WO2020019796A1 WO 2020019796 A1 WO2020019796 A1 WO 2020019796A1 CN 2019084491 W CN2019084491 W CN 2019084491W WO 2020019796 A1 WO2020019796 A1 WO 2020019796A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging system
- optical imaging
- object side
- optical
- Prior art date
Links
- 238000012634 optical imaging Methods 0.000 title claims abstract description 187
- 238000003384 imaging method Methods 0.000 claims abstract description 93
- 230000003287 optical effect Effects 0.000 claims abstract description 60
- 238000000926 separation method Methods 0.000 claims description 7
- 230000004075 alteration Effects 0.000 description 44
- 230000014509 gene expression Effects 0.000 description 24
- 201000009310 astigmatism Diseases 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000004904 shortening Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present application relates to an optical imaging system, and more particularly, the present application relates to an optical imaging system including six lenses.
- imaging lenses equipped with commonly used photosensitive elements such as photosensitive coupling elements (CCD) or complementary metal oxide semiconductor elements (CMOS) have been widely used in various fields. These lenses can be used not only for capturing images but also for spatial positioning. technology. However, most traditional lenses cannot achieve strict correction of f- ⁇ distortion, and therefore cannot achieve higher positioning accuracy while achieving better imaging quality.
- the present application provides an optical imaging system, such as a wide-angle lens, which can be applied to portable electronic products and can at least solve or partially solve at least one of the above disadvantages in the prior art.
- the imaging system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in this order from the object side to the image side along the optical axis.
- the first lens may have negative power and its image side may be concave; the second lens may have positive power; the third lens may have positive power and both its object side and image side may be convex; fourth The lens has optical power; the fifth lens has optical power; the sixth lens has optical power, and its object side can be convex, and its image side can be concave.
- the maximum effective half-diameter DT12 on the image side of the first lens and half the diagonal length of the effective pixel area ImgH on the imaging surface of the optical imaging system can satisfy 0 ⁇ DT12 / ImgH ⁇ 1.
- the effective focal length f1 of the first lens, the effective focal length f3 of the third lens, and the total effective focal length f of the optical imaging system may satisfy 1 ⁇ (
- the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging system may satisfy 1 ⁇
- the effective focal length f4 of the fourth lens, the effective focal length f5 of the fifth lens, and the total effective focal length f of the optical imaging system may satisfy 0 ⁇
- the maximum effective half-aperture DT11 of the object side of the first lens and the maximum effective half-aperture DT31 of the object side of the third lens may satisfy 0 ⁇ DT31 / DT11 ⁇ 1.
- the center thickness CT1 of the first lens on the optical axis and the center thickness CT6 of the sixth lens on the optical axis may satisfy 0 ⁇ CT1 / CT6 ⁇ 2.
- the separation distance T56 can satisfy 0 ⁇ T34 / (T45 + T56) ⁇ 0.5.
- the curvature radius R6 of the image side of the third lens and the total effective focal length f of the optical imaging system may satisfy -1.5 ⁇ R6 / f ⁇ 0.
- the curvature radius R11 of the object side of the sixth lens and the curvature radius R12 of the image side of the sixth lens may satisfy 0 ⁇ R12 / R11 ⁇ 2.
- the object side of the first lens may have at least one inflection point.
- the distance TTL on the optical axis from the object side of the first lens to the imaging surface of the optical imaging system and half the diagonal length of the effective pixel area on the imaging surface of the optical imaging system, ImgH can satisfy TTL / ImgH ⁇ 3.
- the maximum half-field angle HFOV of the optical imaging system can satisfy HFOV ⁇ 70 °.
- the imaging system includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
- Lens and sixth lens are examples of the first lens.
- the first lens may have negative power and its image side may be concave;
- the second lens may have positive power;
- the third lens may have positive power and both its object side and image side may be convex;
- fourth The lens has optical power;
- the fifth lens has optical power;
- the sixth lens has optical power, and its object side can be convex, and its image side can be concave.
- the effective focal length f1 of the first lens, the effective focal length f3 of the third lens, and the total effective focal length f of the optical imaging system may satisfy 1 ⁇ (
- the distance TTL on the optical axis from the side to the imaging surface of the optical imaging system and half the diagonal length of the effective pixel area ImgH on the imaging surface of the optical imaging system can satisfy TTL / ImgH ⁇ 3.
- This application uses multiple (for example, six) lenses, and by reasonably distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens, etc., the optical imaging system has a small size. At least one of the beneficial effects such as high resolution, wide angle, high positioning accuracy, and high imaging quality.
- FIG. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application
- FIGS. 2A to 2C respectively show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 1;
- FIG 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application
- FIGS. 4A to 4C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 2;
- FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application
- FIGS. 6A to 6C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 3, respectively;
- FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application
- FIGS. 8A to 8C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 4;
- FIG. 9 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application
- FIGS. 10A to 10C respectively show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 5;
- FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application
- FIGS. 12A to 12C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 6, respectively;
- FIG. 13 shows a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application
- FIGS. 14A to 14C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 7, respectively;
- FIG. 15 shows a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application
- FIGS. 16A to 16C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 8;
- FIG. 17 shows a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application
- FIGS. 18A to 18C show on-axis chromatic aberration curves, astigmatism curves, and magnification chromatic aberration curves of the optical imaging system of Embodiment 9, respectively.
- first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
- the thickness, size, and shape of the lens have been slightly exaggerated.
- the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
- the drawings are only examples and are not drawn to scale.
- the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
- the surface of each lens closest to the object side is called the object side of the lens; the surface of each lens closest to the image side is called the image side of the lens.
- An optical imaging system may include, for example, six lenses having power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
- the six lenses are sequentially arranged along the optical axis from the object side to the image side, and any two adjacent lenses can have an air gap.
- the first lens may have negative power and its image side may be concave; the second lens may have positive power; the third lens may have positive power and its object side may be convex, like The side can be convex; the fourth lens has positive or negative power; the fifth lens has positive or negative power; the sixth lens has positive or negative power; ,
- the image side can be concave.
- the first lens and the second lens with positive power are beneficial to increase the viewing angle, and also help to compress the incident angle of light at the diaphragm position, reduce pupil aberration, and improve imaging quality.
- the third lens with positive power has convex surfaces on both the object side and the image side, which is beneficial to reduce the system spherical aberration and astigmatism.
- the fourth lens and the fifth lens with optical power are helpful for correcting chromatic aberration and improving imaging quality.
- the sixth lens with optical power has a convex surface on the object side and a concave surface on the image side, which is conducive to shortening the total length of the system and achieving miniaturization of the module.
- the object side of the first lens may have at least one inflection point.
- Such a surface layout is beneficial for adjusting the off-axis light path distribution, increasing the amount of light entering the system off-axis field of view per unit time, and improving the contrast of the off-axis field of view.
- the optical imaging system according to the present application may satisfy a conditional expression HFOV ⁇ 70 °, where HFOV is a maximum half field angle of the optical imaging system. More specifically, HFOV can further satisfy 74.98 ° ⁇ HFOV ⁇ 75.01 °. Satisfying the conditional expression HFOV ⁇ 70 °, which is conducive to large-scale imaging and spatial positioning.
- the optical imaging system may satisfy a conditional expression 1 ⁇ (
- the optical imaging system may satisfy a conditional expression of 0 ⁇ R12 / R11 ⁇ 2, where R11 is a curvature radius of an object side of the sixth lens and R12 is a curvature radius of an image side of the sixth lens. More specifically, R11 and R12 can further satisfy 0.5 ⁇ R12 / R11 ⁇ 1.5, for example, 0.82 ⁇ R12 / R11 ⁇ 1.25. Meeting the conditional expression 0 ⁇ R12 / R11 ⁇ 2 is conducive to shortening the overall system length, reducing the tolerance sensitivity of the sixth lens, and improving the production yield of the optical system.
- the optical imaging system can satisfy the conditional expression 0 ⁇ DT12 / ImgH ⁇ 1, where DT12 is the maximum effective half-diameter of the image side of the first lens, and ImgH is the imaging surface of the optical imaging system The diagonal of the effective pixel area is half the length. More specifically, DT12 and ImgH can further satisfy 0.3 ⁇ DT12 / ImgH ⁇ 0.7, for example, 0.42 ⁇ DT12 / ImgH ⁇ 0.55. Meeting the conditional expression 0 ⁇ DT12 / ImgH ⁇ 1 is conducive to reducing the size of the module in three directions in space and achieving miniaturization.
- the optical imaging system may satisfy a conditional expression 1 ⁇
- the optical imaging system can satisfy the conditional expression 0 ⁇ DT31 / DT11 ⁇ 1, where DT11 is the maximum effective half-diameter of the object side of the first lens, and DT31 is the maximum effective side of the object side of the third lens. Effective half-caliber. More specifically, DT11 and DT31 can further satisfy 0.1 ⁇ DT31 / DT11 ⁇ 0.6, for example, 0.24 ⁇ DT31 / DT11 ⁇ 0.41. Meeting the conditional expression 0 ⁇ DT31 / DT11 ⁇ 1 is conducive to expanding the viewing angle, adjusting the off-axis field of view into the light, and improving the imaging quality.
- the optical imaging system may satisfy a conditional expression -1.5 ⁇ R6 / f ⁇ 0, where f is a total effective focal length of the optical imaging system, and R6 is a radius of curvature of the image side of the third lens. More specifically, f and R6 can further satisfy -1.2 ⁇ R6 / f ⁇ -0.4, for example, -0.93 ⁇ R6 / f ⁇ -0.59. Satisfying the conditional expression of -1.5 ⁇ R6 / f ⁇ 0 is conducive to shortening the total system length and reducing the tolerance sensitivity of the third lens.
- the optical imaging system may satisfy a conditional expression of 0 ⁇ T34 / (T45 + T56) ⁇ 0.5, where T34 is a distance between the third lens and the fourth lens on the optical axis, and T45 Is the distance between the fourth lens and the fifth lens on the optical axis, and T56 is the distance between the fifth lens and the sixth lens on the optical axis. More specifically, T34, T45, and T56 can further satisfy 0.04 ⁇ T34 / (T45 + T56) ⁇ 0.28.
- the optical imaging system can satisfy the conditional expression 0 ⁇ CT1 / CT6 ⁇ 2, where CT1 is the center thickness of the first lens on the optical axis, and CT6 is the sixth lens on the optical axis.
- the center thickness More specifically, CT1 and CT6 can further satisfy 0.5 ⁇ CT1 / CT6 ⁇ 1.5, for example, 0.58 ⁇ CT1 / CT6 ⁇ 1.47. Satisfying the conditional expression 0 ⁇ CT1 / CT6 ⁇ 2 is conducive to rationally distributing the space on the axis of the system, and achieving a good balance between the processing and manufacturing process of the first lens and the sixth lens and shortening the total system length.
- the optical imaging system may satisfy a conditional expression 0 ⁇
- ⁇ 3 is satisfied, which is helpful for correcting the axial chromatic aberration and vertical chromatic aberration of the system and improving the imaging quality of the system.
- the optical imaging system according to the present application can satisfy the conditional TTL / ImgH ⁇ 3, where TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical imaging system, and ImgH is optical Half of the diagonal of the effective pixel area on the imaging surface of the imaging system. More specifically, TTL and ImgH can further satisfy 2.51 ⁇ TTL / ImgH ⁇ 2.86. Meeting the conditional TTL / ImgH ⁇ 3 is conducive to the miniaturization of the module, so that the imaging system of the present application can be applied to a wider range of installation application scenarios.
- the above-mentioned optical imaging system may further include a diaphragm to improve the imaging quality of the lens.
- the diaphragm may be disposed between the second lens and the third lens.
- the above-mentioned optical imaging system may further include a filter for correcting color deviation and / or a protective glass for protecting a photosensitive element on the imaging surface.
- the optical imaging system according to the above embodiment of the present application may employ multiple lenses, such as the six described above.
- the size of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
- the optical imaging system configured as described above has a larger field of view angle, and can achieve a good correction of the lens f- ⁇ distortion, so that the lens can perform more accurate spatial positioning in a larger spatial range.
- At least one of the mirror surfaces of each lens is an aspherical mirror surface.
- Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the lens center to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatic aberrations. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
- the number of lenses constituting the optical imaging system can be changed to obtain various results and advantages described in this specification.
- the optical imaging system is not limited to including six lenses. If desired, the optical imaging system may also include other numbers of lenses.
- FIG. 1 is a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application.
- an optical imaging system includes: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a first lens
- the first lens E1 has a negative power, the object side S1 is concave, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is convex, like the side S4 is a concave surface;
- the third lens E3 has a positive power, and its object side S5 is convex, and the image side S6 is convex;
- the fourth lens E4 has a negative power, its object side S7 is convex, and the image side S8 is concave;
- the five lenses E5 have positive power, and the object side S9 is convex, and the image side S10 is convex.
- the sixth lens E6 has positive power, the object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 1 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 1.
- the units of the radius of curvature and thickness are millimeters (mm).
- each aspheric lens can be defined using, but not limited to, the following aspheric formula:
- x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
- k is the conic coefficient (given in Table 1);
- Ai is the correction coefficient of the aspherical i-th order.
- Table 2 below shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14, and A 16 that can be used for each of the aspherical mirrors S1-S12 in Example 1.
- Table 3 shows the total effective focal length f of the optical imaging system in Example 1, the effective focal lengths f1 to f6 of each lens, the half of the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1.
- FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 1, which shows that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 2B shows an astigmatism curve of the optical imaging system of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 2C shows a magnification chromatic aberration curve of the optical imaging system of Example 1, which represents deviations of different image heights on the imaging plane after light passes through the system. It can be known from FIG. 2A to FIG. 2C that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
- FIG. 3 is a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
- the optical imaging system includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a first lens
- the first lens E1 has a negative power, the object side S1 is concave, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is convex, like the side S4 is concave;
- third lens E3 has positive power, and its object side S5 is convex, and image side S6 is convex;
- fourth lens E4 has positive power, its object side S7 is convex, and image side S8 is convex;
- fifth The lens E5 has a negative power, and its object side S9 is concave, and the image side S10 is concave.
- the sixth lens E6 has a negative power, its object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 2, where the units of the radius of curvature and thickness are both millimeters (mm).
- Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
- Table 6 shows the total effective focal length f of the optical imaging system in Example 2, the effective focal lengths f1 to f6 of each lens, half the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1 The distance TTL to the imaging plane S15 on the optical axis and the maximum half field angle HFOV.
- FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 2, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 4B shows an astigmatism curve of the optical imaging system of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 4C shows a magnification chromatic aberration curve of the optical imaging system of Example 2, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 4A to FIG. 4C, it can be known that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
- FIG. 5 is a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
- the optical imaging system includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, and a first lens.
- the first lens E1 has a negative power, the object side S1 is concave, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is convex, like the side S4 is a concave surface;
- the third lens E3 has a positive power, and its object side S5 is convex, and the image side S6 is convex;
- the fourth lens E4 has a negative power, its object side S7 is convex, and the image side S8 is concave;
- the five lens E5 has positive power, and its object side S9 is convex, and the image side S10 is concave.
- the sixth lens E6 has positive power, its object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 3.
- the units of the radius of curvature and thickness are millimeters (mm).
- Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspherical surface type can be defined by the formula (1) given in Embodiment 1 above.
- Table 9 shows the total effective focal length f of the optical imaging system in Example 3, the effective focal lengths f1 to f6 of each lens, half the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1 The distance TTL to the imaging plane S15 on the optical axis and the maximum half field angle HFOV.
- FIG. 6A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 3, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 6B shows an astigmatism curve of the optical imaging system of Example 3, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 6C shows a magnification chromatic aberration curve of the optical imaging system of Example 3, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 6A to FIG. 6C, it can be known that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
- FIG. 7 is a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application.
- the optical imaging system includes: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
- the first lens E1 has a negative power, and its object side S1 is convex, and the image side S2 is concave.
- the second lens E2 has a positive power, its object side S3 is convex, and the image side S4 is convex.
- the third lens E3 has Positive power, the object side S5 is convex, and the image side S6 is convex;
- the fourth lens E4 has a negative power, its object side S7 is convex, and the image side S8 is concave;
- the fifth lens E5 has a positive power, which
- the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface.
- the sixth lens E6 has a positive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 4, where the units of the radius of curvature and thickness are millimeters (mm).
- Table 11 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
- Table 12 shows the total effective focal length f of the optical imaging system in Example 4, the effective focal lengths f1 to f6 of each lens, the half of the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1. The distance TTL to the imaging plane S15 on the optical axis and the maximum half field angle HFOV.
- FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 4, which indicates that the focal points of light with different wavelengths deviate through the system.
- FIG. 8B shows an astigmatism curve of the optical imaging system of Example 4, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 8C shows a magnification chromatic aberration curve of the optical imaging system of Example 4, which represents deviations of different image heights on the imaging plane after light passes through the system. According to FIG. 8A to FIG. 8C, it can be known that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
- FIG. 9 is a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
- the optical imaging system includes: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
- the first lens E1 has a negative power, and its object side S1 is convex, and the image side S2 is concave.
- the second lens E2 has a positive power, its object side S3 is convex, and the image side S4 is convex.
- the third lens E3 has Positive power, the object side S5 is convex, and the image side S6 is convex;
- the fourth lens E4 has a negative power, its object side S7 is convex, and the image side S8 is concave;
- the fifth lens E5 has a positive power, which
- the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface.
- the sixth lens E6 has a positive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 5, where the units of the radius of curvature and thickness are millimeters (mm).
- Table 14 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
- Table 15 shows the total effective focal length f of the optical imaging system in Example 5, the effective focal lengths f1 to f6 of each lens, half the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1 The distance TTL to the imaging plane S15 on the optical axis and the maximum half field angle HFOV.
- FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 5, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 10B shows an astigmatism curve of the optical imaging system of Example 5, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 10C shows a magnification chromatic aberration curve of the optical imaging system of Example 5, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIG. 10A to FIG. 10C that the optical imaging system provided in Embodiment 5 can achieve good imaging quality.
- FIG. 11 is a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
- an optical imaging system includes: a first lens E1, a second lens E2, an aperture STO, a third lens E3, a first lens
- the first lens E1 has a negative power, the object side S1 is convex, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is concave, like the side S4 is a convex surface;
- the third lens E3 has a positive power, and its object side S5 is convex, and the image side S6 is convex;
- the fourth lens E4 has a negative power, its object side S7 is concave, and the image side S8 is concave;
- the five lenses E5 have positive power, and the object side S9 is convex, and the image side S10 is convex.
- the sixth lens E6 has positive power, the object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 6, where the units of the radius of curvature and thickness are millimeters (mm).
- Table 17 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
- Table 18 shows the total effective focal length f of the optical imaging system in Example 6, the effective focal lengths f1 to f6 of each lens, the half of the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1. The distance TTL to the imaging plane S15 on the optical axis and the maximum half field angle HFOV.
- FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 6, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 12B shows an astigmatism curve of the optical imaging system of Example 6, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 12C shows a magnification chromatic aberration curve of the optical imaging system of Example 6, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 12A to FIG. 12C, it can be known that the optical imaging system provided in Embodiment 6 can achieve good imaging quality.
- FIG. 13 is a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application.
- the optical imaging system includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, an aperture STO, a third lens E3, a first lens
- the first lens E1 has a negative power, the object side S1 is concave, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is convex, like the side S4 is a concave surface;
- the third lens E3 has a positive power, and its object side S5 is convex, and the image side S6 is convex;
- the fourth lens E4 has a negative power, its object side S7 is convex, and the image side S8 is concave;
- the five lens E5 has positive power, and its object side S9 is convex, and the image side S10 is concave.
- the sixth lens E6 has positive power, its object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 7, where the units of the radius of curvature and thickness are millimeters (mm).
- Table 20 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- Table 21 shows the total effective focal length f of the optical imaging system in Example 7, the effective focal lengths f1 to f6 of each lens, half the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1 The distance TTL to the imaging plane S15 on the optical axis and the maximum half field angle HFOV.
- FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 14B shows an astigmatism curve of the optical imaging system of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 14C shows a magnification chromatic aberration curve of the optical imaging system of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the system.
- the optical imaging system given in Embodiment 7 can achieve good imaging quality.
- FIG. 15 is a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application.
- the optical imaging system includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, an aperture STO, a third lens E3, a first lens
- the four lenses E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15 are included in the optical imaging system.
- the first lens E1 has a negative power, the object side S1 is concave, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is convex, like the side S4 is concave;
- third lens E3 has positive power, and its object side S5 is convex, and image side S6 is convex;
- fourth lens E4 has positive power, its object side S7 is convex, and image side S8 is convex;
- fifth The lens E5 has a negative power, and its object side S9 is concave, and the image side S10 is concave.
- the sixth lens E6 has a negative power, its object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 22 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 8.
- the units of the radius of curvature and thickness are millimeters (mm).
- Table 23 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
- Table 24 shows the total effective focal length f of the optical imaging system in Example 8, the effective focal lengths f1 to f6 of each lens, the half of the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1.
- the distance to the imaging plane S15 on the optical axis is TTL, the maximum half field angle HFOV, and the aperture number Fno.
- FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 8, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 16B shows an astigmatism curve of the optical imaging system of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 16C shows a magnification chromatic aberration curve of the optical imaging system of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIG. 16A to FIG. 16C that the optical imaging system provided in Embodiment 8 can achieve good imaging quality.
- FIG. 17 is a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application.
- the optical imaging system includes, in order from the object side to the image side along the optical axis, a first lens E1, a second lens E2, an aperture STO, a third lens E3, a first lens
- the first lens E1 has a negative power, the object side S1 is concave, the image side S2 is concave, and the object side S1 has a inflection point;
- the second lens E2 has a positive power, and the object side S3 is convex, like the side S4 is concave;
- third lens E3 has positive power, its object side S5 is convex, and image side S6 is convex;
- fourth lens E4 has positive power, its object side S7 is convex, and image side S8 is convex;
- fifth The lens E5 has a negative power, and its object side S9 is concave, and the image side S10 is concave.
- the sixth lens E6 has a negative power, its object side S11 is convex, and the image side S12 is concave.
- the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
- Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 9, where the units of the radius of curvature and thickness are millimeters (mm).
- Table 26 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- Table 27 shows the total effective focal length f of the optical imaging system in Example 9, the effective focal lengths f1 to f6 of each lens, the half of the diagonal length of the effective pixel area on the imaging surface S15, ImgH, and the object side surface S1 of the first lens E1.
- the distance to the imaging plane S15 on the optical axis is TTL, the maximum half field angle HFOV, and the aperture number Fno.
- FIG. 18A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 9, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
- FIG. 18B shows an astigmatism curve of the optical imaging system of Example 9, which represents a meridional image plane curvature and a sagittal image plane curvature.
- FIG. 18C shows a magnification chromatic aberration curve of the optical imaging system of Example 9, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 18A to FIG. 18C, it can be known that the optical imaging system provided in Embodiment 9 can achieve good imaging quality.
- Examples 1 to 9 satisfy the relationships shown in Table 28, respectively.
- the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
- the imaging device may be an independent imaging device such as a digital camera or an imaging module integrated on a mobile electronic device such as a mobile phone.
- the imaging device is equipped with the optical imaging system described above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜(E1)具有负光焦度,像侧面(S2)为凹面;第二透镜(E2)具有正光焦度;第三透镜(E3)具有正光焦度,物侧面(S5)和像侧面(S6)均为凸面;第四透镜(E4)具有光焦度;第五透镜(E5)具有光焦度;第六透镜(E6)具有光焦度,物侧面(S11)为凸面,像侧面(S12)为凹面。第一透镜(E1)的像侧面(S2)的最大有效半口径DT12与光学成像系统的成像面(S15)上有效像素区域对角线长的一半ImgH满足0<DT12/ImgH<1。
Description
相关申请的交叉引用
本申请要求于2018年07月26日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810831541.7的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
本申请涉及一种光学成像系统,更具体地,本申请涉及一种包括六片透镜的光学成像系统。
近年来,配置有例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件的成像镜头在各领域广泛应用,这些镜头不仅可以用于捕获图像,还可以应用于空间定位技术。然而,传统镜头大多无法实现对f-θ畸变的严格校正,因而无法在获得较佳成像质量的同时具备较高的定位精度。
同时,随着CCD或CMOS等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的镜头的高成像品质及小型化均提出了更高的要求。因此,需要一种可以良好兼顾高成像质量、定位精度与小型化的光学系统。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统,例如,广角镜头。
本申请的一个方面公开了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜的像侧面的最大有效半口径DT12与光学成像系统的成像面上有效像素区域对角线长的一半ImgH可满足0<DT12/ImgH<1。
在一个实施方式中,第一透镜的有效焦距f1、第三透镜的有效焦距f3与光学成像系统的总有效焦距f可满足1<(|f1|+|f3|)/f<3。
在一个实施方式中,第四透镜的有效焦距f4与光学成像系统的总有效焦距f可满足1<|f4/f|<2。
在一个实施方式中,第四透镜的有效焦距f4、第五透镜的有效焦距f5与光学成像系统的总有效焦距f可满足0<|f4/f+f5/f|<3。
在一个实施方式中,第一透镜的物侧面的最大有效半口径DT11与第三透镜的物侧面的最大有效半口径DT31可满足0<DT31/DT11<1。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第六透镜于光轴上的中心厚度CT6可满足0<CT1/CT6<2。
在一个实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34、第四透镜和第五透镜在光轴上的间隔距离T45与第五透镜和第六透镜在光轴上的间隔距离T56可满足0<T34/(T45+T56)<0.5。
在一个实施方式中,第三透镜的像侧面的曲率半径R6与光学成像系统的总有效焦距f可满足-1.5<R6/f<0。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足0<R12/R11<2。
在一个实施方式中,第一透镜的物侧面可具有至少一个反曲点。
在一个实施方式中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<3。
在一个实施方式中,光学成像系统的最大半视场角HFOV可满足HFOV≥70°。
本申请的另一个方面公开了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜的有效焦距f1、第三透镜的有效焦距f3与光学成像系统的总有效焦距f可满足1<(|f1|+|f3|)/f<3;以及第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<3。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有小型化、广角、高定位精度、高成像质量等至少一个有益效果。
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;图2A至图2C分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;图4A至图4C分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;图6A至图6C分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;图8A至图8C分别示出了实 施例4的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;图10A至图10C分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;图12A至图12C分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;图14A至图14C分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;图16A至图16C分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像系统的结构示意图;图18A至图18C分别示出了实施例9的光学成像系统的轴上色差曲线、象散曲线以及倍率色差曲线。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近物侧的表面称为该透镜的物侧面;每个透镜最靠近像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除 非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,且任意相邻两透镜间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凹面。
具有正光焦度的第一透镜和第二透镜,有利于增大视角,同时也有利于压缩光阑位置光线入射角,减小光瞳像差,提高成像质量。具有正光焦度的第三透镜,其物侧面和像侧面均为凸面,有利于减小系统球差与像散。具有光焦度的第四透镜和第五透镜,有利于校正色差,提高成像质量。具有光焦度的第六透镜,其物侧面为凸面,像侧面为凹面,有利缩短系统总长,实现模组小型化。
可选地,第一透镜的物侧面可具有至少一个反曲点。这样的面型布置有利于调节轴外光路分布,增加系统轴外视场单位时间内的进光量,提高轴外视场的相对照度。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式HFOV≥70°,其中,HFOV为光学成像系统的最大半视场角。更具体地,HFOV进一步可满足74.98°≤HFOV≤75.01°。满足条件式HFOV≥70°,有利于较大范围的成像与空间定位。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式1<(|f1|+|f3|)/f<3,其中,f为光学成像系统的总有效焦距,f1第一透镜的有效焦距,f3第三透镜的有效焦距。更具体地,f、f1和f2进一步可满足1.80≤(|f1|+|f3|)/f≤2.60,例如,2.00≤(|f1|+|f3|)/f≤2.47。满足条件式1<(|f1|+|f3|)/f<3,有利于合理分配系统光焦度,并有利于在实现模组小型化的同时降低系统的公差敏感度。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<R12/R11<2,其中,R11为第六透镜物侧面的曲率半径,R12为第六透镜像侧面的曲率半径。更具体地,R11和R12进一步可满足0.5≤R12/R11≤1.5,例如,0.82≤R12/R11≤1.25。满足条件式0<R12/R11<2,有利于缩短系统总长,减低第六透镜的公差敏感度,提高光学系统的生产良率。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<DT12/ImgH<1,其中,DT12为第一透镜像侧面的最大有效半口径,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半。更具体地,DT12和ImgH进一步可满足0.3≤DT12/ImgH≤0.7,例如,0.42≤DT12/ImgH≤0.55。满足条件式0<DT12/ImgH<1,有利于减小模组在空间三个方向上的尺寸,实现小型化。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式1<|f4/f|<2,其中,f为光学成像系统的总有效焦距,f4为第四透镜的有效焦距。更具体地,f和f4进一步可满足1.16≤|f4/f|≤1.82。满足条件式1<|f4/f|<2,有利于在透镜注塑成型工艺性与校正系统像差这两者间取得较好平衡。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<DT31/DT11<1,其中,DT11为第一透镜物侧面的最大有效半口径,DT31为第三透镜物侧面的最大有效半口径。更具体地,DT11和DT31进一步可满足0.1≤DT31/DT11≤0.6,例如,0.24≤DT31/DT11≤0.41。满足条件式0<DT31/DT11<1,有利于扩大视角,调节轴外视场进入光线,提高成像质量。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式-1.5<R6/f<0,其中,f为光学成像系统的总有效焦距,R6为第三透镜像侧面的曲率半径。更具体地,f和R6进一步可满足-1.2≤R6/f≤-0.4,例如,-0.93≤R6/f≤-0.59。满足条件式-1.5<R6/f<0,有利于缩短系统总长,减小第三透镜的公差敏感度。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<T34/(T45+T56)<0.5,其中,T34为第三透镜和第四透镜在光轴上的间隔距离,T45为第四透镜和第五透镜在光轴上的间隔距离,T56为第五透镜和第六透镜在光轴上的间隔距离。更具体地,T34、T45和T56进一步可满足0.04≤T34/(T45+T56)≤0.28。满足条件式0<T34/(T45+T56)<0.5,有利于缩短系统总长,调节系统轴外光路;有利于减小轴外光线的入射角,提高成像质量。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<CT1/CT6<2,其中,CT1为第一透镜于光轴上的中心厚度,CT6为第六透镜于光轴上的中心厚度。更具体地,CT1和CT6进一步可满足0.5≤CT1/CT6≤1.5,例如,0.58≤CT1/CT6≤1.47。满足条件式0<CT1/CT6<2,有利于合理分配系统的轴上空间,并在第一透镜和第六透镜的加工制造工艺性与缩短系统总长这两者间取得较好平衡。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<|f4/f+f5/f|<3,其中,f为光学成像系统的总有效焦距,f4为第四透镜的有效焦距,f5第五透镜的有效焦距。更具体地,f、f4和f5进一步可满足0.07≤|f4/f+f5/f|≤2.97。满足条件式0<|f4/f+f5/f|<3,有利于校正系统的轴向色差与垂轴色差,提高系统成像质量。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式TTL/ImgH<3,其中,TTL为第一透镜物侧面至光学成像系统的成像面在光轴上的距离,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足2.51≤TTL/ImgH≤2.86。满足条件式TTL/ImgH<3,有利于实现模组的小型化,使得本申请的成像系统可适用于更广范围的安装应用场景。
在示例性实施方式中,上述光学成像系统还可包括光阑,以提升镜头的成像质量。例如,光阑可设置在第二透镜与第三透镜之间。
可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像系统更有利于生产加工并且可适用于智能手机等便携式电子产品。通过上述配置的光学成像系统具有较大视场角,并能够实现对镜头f-θ畸变的良好校正,使得该镜头能够在较大的空间范围进行较为精确的空间定位。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像系统不限于包括六个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表1
由表1可知,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A
4、A
6、A
8、A
10、A
12、A
14和A
16。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 3.8789E-02 | -8.9974E-03 | 1.5495E-03 | -1.6421E-04 | 9.2376E-06 | -2.0170E-07 | 0.0000E+00 |
S2 | 4.6976E-02 | 1.0959E-01 | -4.3637E-01 | 1.1533E+00 | -1.4740E+00 | 9.2584E-01 | -2.2624E-01 |
S3 | -1.1370E-01 | 6.9380E-02 | -3.3361E-01 | 5.5326E-01 | -5.4884E-01 | 2.8841E-01 | -6.2976E-02 |
S4 | 2.9399E-02 | -9.0421E-01 | 9.0230E+00 | -4.8855E+01 | 1.5062E+02 | -2.4120E+02 | 1.5975E+02 |
S5 | -7.6835E-03 | -1.0128E-01 | 3.0809E-01 | -2.7349E+00 | 1.1572E+01 | -2.2155E+01 | 1.7022E+01 |
S6 | 3.8661E-01 | -1.7881E+00 | 5.6016E+00 | -1.3182E+01 | 2.0108E+01 | -1.7668E+01 | 6.7829E+00 |
S7 | -1.6687E-01 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | -2.0608E-02 | -6.9399E-02 | 1.2103E-01 | -1.8013E-01 | 1.8294E-01 | -8.4535E-02 | 1.2868E-02 |
S9 | 1.6319E-01 | -4.2878E-01 | 6.9555E-01 | -8.0525E-01 | 5.5190E-01 | -1.9189E-01 | 2.6046E-02 |
S10 | -1.4431E-02 | 2.3364E-02 | 1.5164E-02 | -7.2296E-02 | 6.2116E-02 | -2.4892E-02 | 4.2243E-03 |
S11 | -2.5733E-01 | 1.4362E-01 | -7.3239E-02 | 2.5107E-02 | -5.4070E-03 | 6.3256E-04 | -2.8342E-05 |
S12 | -2.7664E-01 | 1.4113E-01 | -6.7653E-02 | 2.1137E-02 | -4.2676E-03 | 5.0415E-04 | -2.7936E-05 |
表2
表3给出了实施例1中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
f(mm) | 1.73 | f5(mm) | 3.33 |
f1(mm) | -1.92 | f6(mm) | 238.75 |
f2(mm) | 4.37 | ImgH(mm) | 2.26 |
f3(mm) | 1.57 | TTL(mm) | 6.31 |
f4(mm) | -2.22 | HFOV(°) | 75.00 |
表3
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后 的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2A至图2C可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出了实施例2中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表4
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 2.7140E-02 | -5.5284E-03 | 8.0324E-04 | -6.4223E-05 | 2.2828E-06 | 0.0000E+00 | 0.0000E+00 |
S2 | 2.0936E-01 | -1.9048E-01 | 2.7130E-01 | -7.6400E-02 | -1.8051E-01 | 1.8994E-01 | -5.5712E-02 |
S3 | -7.3667E-02 | 7.8211E-03 | -9.4895E-02 | 1.6166E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S4 | 3.4394E-01 | -3.0256E-01 | 4.4224E-01 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S5 | 3.3423E-03 | 6.4347E-01 | -5.3353E+00 | 2.5095E+01 | -6.4129E+01 | 8.4331E+01 | -4.4490E+01 |
S6 | -3.8660E-02 | -1.8084E-02 | -3.1362E-02 | 6.3575E-01 | -2.2774E+00 | 3.1820E+00 | -1.4816E+00 |
S7 | -2.6658E-02 | -4.9377E-05 | -3.2641E-02 | -8.0118E-03 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | -2.6949E-01 | 2.9369E-01 | -1.8004E-01 | 5.6373E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S9 | -1.8687E-01 | -6.3499E-02 | 9.6446E-02 | 6.5017E-03 | -1.4005E-02 | 0.0000E+00 | 0.0000E+00 |
S10 | 4.9032E-02 | -1.2367E-01 | 8.6827E-02 | -2.3717E-02 | 1.5391E-03 | 2.0952E-04 | -9.7410E-06 |
S11 | -2.4561E-01 | 2.1642E-01 | -1.6000E-01 | 7.0659E-02 | -1.7283E-02 | 2.1886E-03 | -1.1208E-04 |
S12 | -2.7674E-01 | 1.8167E-01 | -1.0062E-01 | 3.5115E-02 | -7.5992E-03 | 9.1498E-04 | -4.4634E-05 |
表5
f(mm) | 1.74 | f5(mm) | -3.25 |
f1(mm) | -1.98 | f6(mm) | -82.54 |
f2(mm) | 7.19 | ImgH(mm) | 2.26 |
f3(mm) | 2.30 | TTL(mm) | 6.31 |
f4(mm) | 2.64 | HFOV(°) | 74.98 |
表6
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4A至图4C可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出了实施例3中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表7
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.8086E-03 | 1.7893E-02 | -9.2208E-03 | 2.5388E-03 | -4.0577E-04 | 3.5566E-05 | -1.3152E-06 |
S2 | 3.1268E-02 | -7.3563E-03 | 7.2753E-02 | -1.4060E-02 | 2.7108E-22 | -2.3633E-24 | -1.6856E-27 |
S3 | -1.3850E-01 | -2.1378E-02 | -2.0809E-02 | 2.4155E-02 | 2.3883E-21 | 4.3284E-24 | -1.6856E-27 |
S4 | -1.8729E-01 | 9.1866E-02 | -1.1819E-02 | 3.5080E-02 | -7.0044E-22 | -2.0055E-25 | -1.6856E-27 |
S5 | -2.4827E-02 | -1.0057E-02 | 1.7833E-01 | -2.7551E-01 | 5.7952E-22 | -2.1355E-25 | -1.6856E-27 |
S6 | -3.2898E-03 | -1.3290E-01 | 2.1578E-01 | -1.7626E-01 | -3.0787E-22 | -2.1355E-25 | -1.6856E-27 |
S7 | -3.6830E-01 | 2.5004E-02 | -7.8481E-02 | -3.5800E-02 | -4.4396E-22 | -2.1355E-25 | -1.6856E-27 |
S8 | -9.1318E-02 | 5.1207E-03 | 1.6487E-02 | 2.0170E-03 | -1.0875E-21 | -9.2854E-25 | -1.6856E-27 |
S9 | 2.9996E-02 | -2.7334E-02 | 1.1744E-02 | -8.8359E-03 | -5.6061E-22 | -1.4932E-24 | -1.6856E-27 |
S10 | -4.2558E-02 | 4.6319E-02 | -3.5690E-02 | 1.3650E-02 | -6.0896E-03 | 9.8361E-04 | -3.8704E-05 |
S11 | -1.0984E-01 | 2.6530E-02 | -4.7794E-03 | -3.2386E-04 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S12 | -1.0928E-01 | 2.0675E-02 | -2.7183E-03 | -3.1839E-04 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
表8
f(mm) | 1.69 | f5(mm) | 3.96 |
f1(mm) | -1.96 | f6(mm) | 43.29 |
f2(mm) | 9.70 | ImgH(mm) | 2.21 |
f3(mm) | 1.63 | TTL(mm) | 6.32 |
f4(mm) | -2.40 | HFOV(°) | 75.00 |
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6A至图6C可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出了实施例4中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表10
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 3.0812E-03 | -2.0045E-03 | 2.9439E-04 | -4.6181E-06 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S2 | 7.9164E-02 | 1.4705E-01 | -3.8732E-01 | 9.0063E-01 | -1.1188E+00 | 7.4884E-01 | -2.2481E-01 |
S3 | -9.9459E-02 | 2.1949E-03 | -8.5405E-02 | 5.8420E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S4 | -2.1000E-01 | 1.7550E-01 | -2.4936E-01 | 4.9783E-01 | -5.8681E-01 | 3.4869E-01 | -6.4805E-02 |
S5 | -3.9930E-02 | -4.6638E-01 | 3.6441E+00 | -1.3756E+01 | 2.7318E+01 | -2.8198E+01 | 1.1628E+01 |
S6 | -6.5891E-02 | 7.6130E-01 | -3.0668E+00 | 6.7268E+00 | -8.5080E+00 | 5.7862E+00 | -1.6804E+00 |
S7 | -5.2802E-01 | 1.3636E+00 | -3.9127E+00 | 7.7320E+00 | -9.3790E+00 | 6.2845E+00 | -1.7469E+00 |
S8 | -9.4954E-02 | 2.0164E-01 | -1.3323E-01 | 4.9750E-02 | -1.0114E-02 | 2.6358E-03 | -2.4199E-04 |
S9 | 4.0975E-02 | -1.2053E-01 | 1.6125E-01 | -1.4767E-01 | 9.3940E-02 | -5.0633E-02 | 1.3439E-02 |
S10 | -1.1134E-01 | 1.8506E-01 | -2.6792E-01 | 2.3387E-01 | -1.0688E-01 | 1.4537E-02 | 2.6553E-03 |
S11 | -2.0412E-01 | 1.2140E-01 | -9.6679E-02 | 5.3109E-02 | -1.8910E-02 | 3.7451E-03 | -3.0842E-04 |
S12 | -1.5517E-01 | 6.4473E-02 | -2.8012E-02 | 6.6152E-03 | -4.7986E-04 | -1.1042E-04 | 1.7830E-05 |
表11
f(mm) | 1.73 | f5(mm) | 7.31 |
f1(mm) | -2.10 | f6(mm) | 17.62 |
f2(mm) | 9.96 | ImgH(mm) | 2.25 |
f3(mm) | 1.48 | TTL(mm) | 6.32 |
f4(mm) | -2.19 | HFOV(°) | 75.00 |
表12
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8A至图8C可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光 依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出了实施例5中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表13
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 9.0438E-03 | -4.8642E-04 | -4.4394E-04 | 9.7349E-05 | -4.7731E-06 | 0.0000E+00 | 0.0000E+00 |
S2 | 6.4770E-02 | 6.7002E-02 | -1.3598E-01 | 4.7234E-01 | -7.1450E-01 | 5.9159E-01 | -2.1300E-01 |
S3 | -1.1776E-01 | 2.9167E-02 | -7.7045E-02 | 4.8034E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S4 | -2.4134E-01 | 2.6409E-01 | -4.0890E-01 | 9.8998E-01 | -1.6652E+00 | 1.5274E+00 | -5.4569E-01 |
S5 | -8.5322E-02 | 3.3190E-02 | 4.1805E-01 | -1.9939E+00 | 3.7338E+00 | -3.8230E+00 | 1.5910E+00 |
S6 | -1.0747E-01 | 1.0471E+00 | -4.4304E+00 | 1.0732E+01 | -1.4956E+01 | 1.1032E+01 | -3.3646E+00 |
S7 | -5.3272E-01 | 1.5210E+00 | -5.2021E+00 | 1.2677E+01 | -1.8448E+01 | 1.4251E+01 | -4.4632E+00 |
S8 | -1.0090E-01 | 3.1162E-01 | -7.9328E-01 | 1.8269E+00 | -2.4355E+00 | 1.6447E+00 | -4.4009E-01 |
S9 | 1.8426E-02 | 3.3728E-02 | -1.6195E-01 | 1.5572E-01 | -2.0676E-02 | -5.8701E-02 | 2.5639E-02 |
S10 | -1.4586E-01 | 2.9333E-01 | -3.8308E-01 | 2.6759E-01 | -8.7839E-02 | -2.6060E-04 | 5.3997E-03 |
S11 | -2.0180E-01 | 9.0597E-02 | -6.9074E-02 | 4.7511E-02 | -2.3569E-02 | 6.3943E-03 | -6.9355E-04 |
S12 | -1.4643E-01 | 3.5101E-02 | -6.9293E-03 | -7.0959E-04 | 7.6142E-04 | -2.0780E-04 | 2.1648E-05 |
表14
f(mm) | 1.73 | f5(mm) | 6.69 |
f1(mm) | -2.16 | f6(mm) | 20.51 |
f2(mm) | 13.08 | ImgH(mm) | 2.52 |
f3(mm) | 1.45 | TTL(mm) | 6.32 |
f4(mm) | -2.16 | HFOV(°) | 75.00 |
表15
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图10A至图10C可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面;第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出了实施例6中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表16
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.3728E-01 | 4.7018E-02 | -9.4654E-03 | 8.3490E-04 | 1.6495E-05 | -5.0868E-06 | 0.0000E+00 |
S2 | -1.8970E-01 | 5.5253E-01 | -1.9840E+00 | 5.1765E+00 | -7.6822E+00 | 6.1765E+00 | -2.0557E+00 |
S3 | -5.7572E-02 | 1.5656E-02 | -1.9829E-01 | 5.6379E-01 | -9.7488E-01 | 8.3914E-01 | -2.6193E-01 |
S4 | -3.6235E-01 | 1.3603E+00 | -4.3505E+00 | 9.5178E+00 | -1.2777E+01 | 9.4129E+00 | -2.7486E+00 |
S5 | -2.6636E-01 | 1.3794E+00 | -4.2898E+00 | 8.7164E+00 | -1.1001E+01 | 7.6177E+00 | -2.1779E+00 |
S6 | -1.0422E-01 | 5.0081E-01 | -1.2302E+00 | 1.8786E+00 | -1.5768E+00 | 5.2483E-01 | 3.3229E-02 |
S7 | -5.1439E-01 | 1.2368E+00 | -2.7983E+00 | 4.9128E+00 | -5.8119E+00 | 3.9294E+00 | -1.0911E+00 |
S8 | -1.6044E-01 | 5.2984E-01 | -9.4259E-01 | 1.1834E+00 | -9.5166E-01 | 4.2046E-01 | -7.5759E-02 |
S9 | -2.7765E-02 | 1.1489E-01 | -3.0638E-01 | 5.3037E-01 | -5.6819E-01 | 3.5035E-01 | -9.5849E-02 |
S10 | -1.3211E-01 | 1.6198E-01 | -1.2038E-01 | 3.9230E-02 | 2.4422E-02 | -1.8644E-02 | 3.7126E-03 |
S11 | -1.7979E-01 | 5.7842E-02 | -5.9300E-02 | 3.9939E-02 | -1.5914E-02 | 3.3262E-03 | -2.7930E-04 |
S12 | -1.0322E-01 | -2.4088E-02 | 1.7694E-02 | -6.0595E-03 | 9.5983E-04 | -6.5395E-05 | -1.2824E-06 |
表17
f(mm) | 1.73 | f5(mm) | 4.46 |
f1(mm) | -2.48 | f6(mm) | 11.51 |
f2(mm) | 12.16 | ImgH(mm) | 2.25 |
f3(mm) | 1.54 | TTL(mm) | 6.32 |
f4(mm) | -2.01 | HFOV(°) | 75.00 |
表18
图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12A至图12C可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面;第六 透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出了实施例7中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及最大半视场角HFOV。
表19
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 6.6242E-02 | -3.3370E-02 | 1.2856E-02 | -3.3074E-03 | 5.2777E-04 | -4.6899E-05 | 1.7988E-06 |
S2 | 1.7289E-01 | 2.6002E-01 | -1.2571E+00 | 3.9944E+00 | -6.7003E+00 | 5.8453E+00 | -2.0395E+00 |
S3 | -1.2937E-01 | -1.0181E-01 | 1.2353E-01 | -2.1250E-01 | 5.8529E-02 | 5.1753E-02 | 0.0000E+00 |
S4 | -2.0000E-01 | -9.1378E-01 | 7.0520E+00 | -2.8355E+01 | 6.6393E+01 | -8.2367E+01 | 4.2439E+01 |
S5 | -6.2672E-02 | -1.7569E-01 | 7.0117E-01 | -1.9445E+00 | 3.5736E+00 | -3.3556E+00 | 1.3508E+00 |
S6 | 3.2901E-01 | -1.7365E+00 | 5.8770E+00 | -1.2898E+01 | 1.7097E+01 | -1.2381E+01 | 3.7937E+00 |
S7 | -3.2208E-01 | -8.3954E-01 | 3.4065E+00 | -6.9658E+00 | 8.3531E+00 | -5.2207E+00 | 1.1965E+00 |
S8 | -7.1938E-03 | -4.8840E-01 | 1.2445E+00 | -1.7342E+00 | 1.4600E+00 | -6.8792E-01 | 1.3788E-01 |
S9 | 9.4751E-02 | -1.0398E-02 | -2.9357E-01 | 5.5355E-01 | -5.2074E-01 | 2.3985E-01 | -4.1725E-02 |
S10 | -1.6615E-01 | 2.3614E-01 | -2.5416E-01 | 2.0895E-01 | -1.2379E-01 | 3.8217E-02 | -4.0392E-03 |
S11 | -2.0641E-01 | 1.2359E-01 | -1.1206E-01 | 6.8511E-02 | -2.5015E-02 | 4.8300E-03 | -3.8077E-04 |
S12 | -9.6668E-02 | 1.4769E-02 | -1.2061E-02 | 7.3902E-03 | -2.3516E-03 | 3.5551E-04 | -2.0703E-05 |
表20
f(mm) | 1.73 | f5(mm) | 6.90 |
f1(mm) | -1.97 | f6(mm) | 7.81 |
f2(mm) | 12.48 | ImgH(mm) | 2.26 |
f3(mm) | 1.48 | TTL(mm) | 6.32 |
f4(mm) | -2.63 | HFOV(°) | 75.00 |
表21
图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14A至图14C可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16C描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表22示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出了实施例8中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、最大半视场角HFOV以及光圈数Fno。
表22
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 5.8961E-02 | -1.8038E-02 | 3.7812E-03 | -4.9584E-04 | 3.6872E-05 | -1.1425E-06 | 0.0000E+00 |
S2 | 5.2644E-01 | -1.0272E+00 | 1.8706E+00 | -2.2146E+00 | 1.5940E+00 | -6.5675E-01 | 1.1906E-01 |
S3 | -1.3428E-01 | -4.2384E-02 | 5.3265E-02 | -8.1174E-02 | -1.8599E-01 | 3.0694E-01 | -1.1862E-01 |
S4 | 1.0460E-01 | -3.0703E-01 | 3.0985E+00 | -1.3344E+01 | 3.4867E+01 | -4.8807E+01 | 3.0534E+01 |
S5 | 2.5924E-02 | 1.9358E-02 | -1.5000E-01 | 3.7336E-02 | 1.3446E+00 | -2.9428E+00 | 1.9446E+00 |
S6 | 5.1529E-02 | -3.0792E-01 | 1.1797E+00 | -3.1555E+00 | 4.7836E+00 | -3.7345E+00 | 1.1838E+00 |
S7 | 2.3038E-03 | -4.2619E-02 | -6.3385E-04 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | -1.1118E-01 | -9.4162E-01 | 2.2884E+00 | -2.5754E+00 | 1.5739E+00 | -4.9919E-01 | 6.6423E-02 |
S9 | -6.8605E-02 | -7.2182E-01 | 1.3504E+00 | -1.0726E+00 | 3.1503E-01 | 5.6041E-02 | -3.6522E-02 |
S10 | 1.2897E-01 | -1.8518E-01 | 1.3315E-01 | -4.9258E-02 | 6.4188E-03 | 1.0820E-03 | -3.0823E-04 |
S11 | -2.1262E-01 | 1.7599E-01 | -1.2950E-01 | 6.0263E-02 | -1.6146E-02 | 2.3123E-03 | -1.3896E-04 |
S12 | -2.6573E-01 | 1.7275E-01 | -9.8466E-02 | 3.6102E-02 | -8.4737E-03 | 1.1725E-03 | -7.2671E-05 |
表23
f(mm) | 1.73 | f5(mm) | -2.89 |
f1(mm) | -1.85 | f6(mm) | -43.05 |
f2(mm) | 7.10 | ImgH(mm) | 2.26 |
f3(mm) | 1.86 | TTL(mm) | 6.31 |
f4(mm) | 3.01 | HFOV(°) | 75.00 |
表24
图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图16A至图16C可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
实施例9
以下参照图17至图18C描述了根据本申请实施例9的光学成像系统。图17示出了根据本申请实施例9的光学成像系统的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面,且物侧面S1具有反曲点;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;第四透镜E4具有正光焦度,其物侧面S7为凸面, 像侧面S8为凸面;第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面;第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例9的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出了实施例9中光学成像系统的总有效焦距f、各透镜的有效焦距f1至f6、成像面S15上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL、最大半视场角HFOV以及光圈数Fno。
表25
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 2.6849E-02 | -5.4891E-03 | 8.1234E-04 | -6.6414E-05 | 2.4615E-06 | 0.0000E+00 | 0.0000E+00 |
S2 | 1.3567E-01 | 9.3214E-02 | -3.2542E-01 | 6.8283E-01 | -7.5368E-01 | 4.2346E-01 | -9.5003E-02 |
S3 | -7.2453E-02 | -9.9936E-03 | -8.1430E-02 | 1.5013E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S4 | 2.7698E-01 | -2.4114E-01 | 3.1972E-01 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S5 | 6.4569E-03 | 6.1327E-01 | -5.8173E+00 | 3.0501E+01 | -8.5761E+01 | 1.2308E+02 | -7.0595E+01 |
S6 | -1.1085E-02 | -3.5445E-01 | 1.9957E+00 | -5.7296E+00 | 8.8371E+00 | -6.9920E+00 | 2.3000E+00 |
S7 | -4.0058E-02 | 2.2695E-02 | -4.0907E-02 | -7.8269E-03 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S8 | -2.2317E-01 | 2.1373E-01 | -1.0788E-01 | 3.0731E-02 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |
S9 | -1.2926E-01 | -7.6342E-02 | 8.5970E-02 | 5.0823E-03 | -1.0631E-02 | 0.0000E+00 | 0.0000E+00 |
S10 | 4.7440E-02 | -1.2329E-01 | 8.6812E-02 | -2.3252E-02 | 1.4935E-03 | 4.3597E-05 | 3.5472E-05 |
S11 | -2.5481E-01 | 2.2279E-01 | -1.7203E-01 | 8.1064E-02 | -2.1211E-02 | 2.8729E-03 | -1.5760E-04 |
S12 | -2.6295E-01 | 1.6613E-01 | -9.0656E-02 | 3.0858E-02 | -6.4005E-03 | 7.3225E-04 | -3.3813E-05 |
表26
f(mm) | 1.74 | f5(mm) | -4.13 |
f1(mm) | -1.95 | f6(mm) | -194.94 |
f2(mm) | 6.03 | ImgH(mm) | 2.26 |
f3(mm) | 2.34 | TTL(mm) | 6.27 |
f4(mm) | 3.16 | HFOV(°) | 75.01 |
表27
图18A示出了实施例9的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图18B示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图18A至图18C可知,实施例9所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表28中所示的关系。
条件式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
(|f1|+|f3|)/f | 2.02 | 2.46 | 2.12 | 2.08 | 2.10 | 2.33 | 2.00 | 2.15 | 2.47 |
R12/R11 | 0.91 | 0.85 | 1.02 | 1.06 | 1.04 | 1.11 | 1.25 | 0.82 | 0.87 |
DT12/ImgH | 0.53 | 0.52 | 0.52 | 0.47 | 0.42 | 0.45 | 0.44 | 0.55 | 0.52 |
|f4/f| | 1.28 | 1.52 | 1.42 | 1.27 | 1.25 | 1.16 | 1.52 | 1.74 | 1.82 |
DT31/DT11 | 0.24 | 0.25 | 0.32 | 0.34 | 0.34 | 0.41 | 0.35 | 0.25 | 0.24 |
R6/f | -0.59 | -0.90 | -0.93 | -0.77 | -0.78 | -0.85 | -0.68 | -0.69 | -0.92 |
T34/(T45+T56) | 0.05 | 0.21 | 0.06 | 0.05 | 0.04 | 0.06 | 0.05 | 0.09 | 0.28 |
CT1/CT6 | 1.47 | 0.91 | 0.62 | 0.58 | 0.63 | 1.02 | 0.68 | 0.81 | 0.87 |
|f4/f+f5/f| | 0.65 | 0.35 | 0.92 | 2.97 | 2.63 | 1.42 | 2.48 | 0.07 | 0.56 |
TTL/ImgH | 2.79 | 2.79 | 2.86 | 2.81 | 2.51 | 2.80 | 2.80 | 2.80 | 2.77 |
HFOV(°) | 75.00 | 74.98 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 75.01 |
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (23)
- 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,所述第一透镜具有负光焦度,其像侧面为凹面;所述第二透镜具有正光焦度;所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第四透镜具有光焦度;所述第五透镜具有光焦度;所述第六透镜具有光焦度,其物侧面为凸面,像侧面为凹面;以及所述第一透镜的像侧面的最大有效半口径DT12与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足0<DT12/ImgH<1。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1、所述第三透镜的有效焦距f3与所述光学成像系统的总有效焦距f满足1<(|f1|+|f3|)/f<3。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述光学成像系统的总有效焦距f满足1<|f4/f|<2。
- 根据权利要求3所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4、所述第五透镜的有效焦距f5与所述光学成像系统的总有效焦距f满足0<|f4/f+f5/f|<3。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的最大有效半口径DT11与所述第三透镜的物侧面的最大有效半口径DT31满足0<DT31/DT11<1。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第六透镜于所述光轴上的中心厚度CT6满足0<CT1/CT6<2。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56满足0<T34/(T45+T56)<0.5。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述光学成像系统的总有效焦距f满足-1.5<R6/f<0。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述第六透镜的像侧面的曲率半径R12满足0<R12/R11<2。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面具有反曲点。
- 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<3。
- 根据权利要求1至11中任一项所述的光学成像系统,其特征在于,所述光学成像系统的最大半视场角HFOV满足HFOV≥70°。
- 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,所述第一透镜具有负光焦度,其像侧面为凹面;所述第二透镜具有正光焦度;所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第四透镜具有光焦度;所述第五透镜具有光焦 度;所述第六透镜具有光焦度,其物侧面为凸面,像侧面为凹面;以及所述第一透镜的有效焦距f1、所述第三透镜的有效焦距f3与所述光学成像系统的总有效焦距f满足1<(|f1|+|f3|)/f<3;以及所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<3。
- 根据权利要求13所述的光学成像系统,其特征在于,所述第一透镜的物侧面具有反曲点。
- 根据权利要求13所述的光学成像系统,其特征在于,所述第一透镜的像侧面的最大有效半口径DT12与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足0<DT12/ImgH<1。
- 根据权利要求13所述的光学成像系统,其特征在于,所述光学成像系统的最大半视场角HFOV满足HFOV≥70°。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述光学成像系统的总有效焦距f满足1<|f4/f|<2。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4、所述第五透镜的有效焦距f5与所述光学成像系统的总有效焦距f满足0<|f4/f+f5/f|<3。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第一透镜的物侧面的最大有效半口径DT11与所述第三透镜的物侧面的最大有效半口径DT31满足0<DT31/DT11<1。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第六透镜于所述光轴上的中心厚度CT6满足0<CT1/CT6<2。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56满足0<T34/(T45+T56)<0.5。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述光学成像系统的总有效焦距f满足-1.5<R6/f<0。
- 根据权利要求13至16中任一项所述的光学成像系统,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述第六透镜的像侧面的曲率半径R12满足0<R12/R11<2。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810831541.7 | 2018-07-26 | ||
CN201810831541.7A CN108761737B (zh) | 2018-07-26 | 2018-07-26 | 光学成像系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020019796A1 true WO2020019796A1 (zh) | 2020-01-30 |
Family
ID=63971737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/084491 WO2020019796A1 (zh) | 2018-07-26 | 2019-04-26 | 光学成像系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108761737B (zh) |
WO (1) | WO2020019796A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108761737B (zh) * | 2018-07-26 | 2020-07-03 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN111458838B (zh) * | 2019-01-22 | 2022-01-21 | 浙江舜宇光学有限公司 | 光学透镜组 |
CN110187479B (zh) * | 2019-07-15 | 2024-05-28 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111781702B (zh) * | 2020-06-20 | 2024-05-03 | 广东弘景光电科技股份有限公司 | 大光圈超大广角监控光学系统 |
CN111880286B (zh) * | 2020-06-20 | 2023-12-29 | 广东弘景光电科技股份有限公司 | 大光圈超大广角监控摄像模组 |
CN111679408B (zh) * | 2020-07-23 | 2025-02-28 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN112198631B (zh) * | 2020-10-29 | 2025-02-25 | 浙江舜宇光学有限公司 | 摄像镜头组 |
CN115826193A (zh) * | 2020-11-13 | 2023-03-21 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN113296248B (zh) * | 2021-07-01 | 2022-09-02 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114002824B (zh) * | 2021-12-24 | 2022-07-12 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
KR20240094113A (ko) * | 2022-11-29 | 2024-06-25 | 엘지이노텍 주식회사 | 광학계 및 이를 포함하는 카메라 장치 |
CN116338912B (zh) * | 2023-05-30 | 2023-10-03 | 江西联益光学有限公司 | 光学镜头 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205003346U (zh) * | 2015-10-14 | 2016-01-27 | 浙江舜宇光学有限公司 | 超广角镜头 |
CN107065125A (zh) * | 2016-12-14 | 2017-08-18 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
US9897782B1 (en) * | 2016-12-09 | 2018-02-20 | Newmax Technology Co., Ltd. | Six-piece optical lens system with a wide field of view |
CN207074300U (zh) * | 2016-12-27 | 2018-03-06 | 三星电机株式会社 | 光学成像系统 |
CN107817596A (zh) * | 2016-09-13 | 2018-03-20 | 先进光电科技股份有限公司 | 光学成像系统 |
CN107957621A (zh) * | 2016-10-14 | 2018-04-24 | 大立光电股份有限公司 | 光学取像系统组、取像装置及电子装置 |
WO2018080100A1 (ko) * | 2016-10-25 | 2018-05-03 | 엘컴텍 주식회사 | 렌즈 광학계 |
CN108761737A (zh) * | 2018-07-26 | 2018-11-06 | 浙江舜宇光学有限公司 | 光学成像系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208607417U (zh) * | 2018-07-26 | 2019-03-15 | 浙江舜宇光学有限公司 | 光学成像系统 |
-
2018
- 2018-07-26 CN CN201810831541.7A patent/CN108761737B/zh active Active
-
2019
- 2019-04-26 WO PCT/CN2019/084491 patent/WO2020019796A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205003346U (zh) * | 2015-10-14 | 2016-01-27 | 浙江舜宇光学有限公司 | 超广角镜头 |
CN107817596A (zh) * | 2016-09-13 | 2018-03-20 | 先进光电科技股份有限公司 | 光学成像系统 |
CN107957621A (zh) * | 2016-10-14 | 2018-04-24 | 大立光电股份有限公司 | 光学取像系统组、取像装置及电子装置 |
WO2018080100A1 (ko) * | 2016-10-25 | 2018-05-03 | 엘컴텍 주식회사 | 렌즈 광학계 |
US9897782B1 (en) * | 2016-12-09 | 2018-02-20 | Newmax Technology Co., Ltd. | Six-piece optical lens system with a wide field of view |
CN107065125A (zh) * | 2016-12-14 | 2017-08-18 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN207074300U (zh) * | 2016-12-27 | 2018-03-06 | 三星电机株式会社 | 光学成像系统 |
CN108761737A (zh) * | 2018-07-26 | 2018-11-06 | 浙江舜宇光学有限公司 | 光学成像系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108761737A (zh) | 2018-11-06 |
CN108761737B (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109270662B (zh) | 光学成像镜头 | |
WO2020019796A1 (zh) | 光学成像系统 | |
WO2020038134A1 (zh) | 光学成像系统 | |
WO2021068753A1 (zh) | 光学成像系统 | |
WO2020010879A1 (zh) | 光学成像系统 | |
WO2020029620A1 (zh) | 光学成像镜片组 | |
WO2020007080A1 (zh) | 摄像镜头 | |
WO2019223263A1 (zh) | 摄像镜头 | |
WO2020019794A1 (zh) | 光学成像镜头 | |
WO2020007081A1 (zh) | 光学成像镜头 | |
WO2020001066A1 (zh) | 摄像镜头 | |
WO2020024635A1 (zh) | 光学成像镜头 | |
WO2020073703A1 (zh) | 光学透镜组 | |
WO2020010878A1 (zh) | 光学成像系统 | |
WO2020164236A1 (zh) | 光学成像镜头 | |
WO2020029613A1 (zh) | 光学成像镜头 | |
WO2020134129A1 (zh) | 光学成像系统 | |
WO2020186759A1 (zh) | 光学成像镜头 | |
WO2020191951A1 (zh) | 光学成像镜头 | |
WO2019233040A1 (zh) | 摄像透镜组 | |
CN110673308A (zh) | 光学成像系统 | |
WO2020042799A1 (zh) | 光学成像镜片组 | |
WO2019233142A1 (zh) | 光学成像镜头 | |
WO2020098328A1 (zh) | 摄像镜头 | |
WO2019237776A1 (zh) | 光学成像系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19841306 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19841306 Country of ref document: EP Kind code of ref document: A1 |