[go: up one dir, main page]

WO2019085183A1 - 制造钛及钛合金冶金制品的方法 - Google Patents

制造钛及钛合金冶金制品的方法 Download PDF

Info

Publication number
WO2019085183A1
WO2019085183A1 PCT/CN2017/116626 CN2017116626W WO2019085183A1 WO 2019085183 A1 WO2019085183 A1 WO 2019085183A1 CN 2017116626 W CN2017116626 W CN 2017116626W WO 2019085183 A1 WO2019085183 A1 WO 2019085183A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
powder
alloy
titanium alloy
sintering
Prior art date
Application number
PCT/CN2017/116626
Other languages
English (en)
French (fr)
Inventor
牛红志
张德良
孙倩倩
张海瑞
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2019085183A1 publication Critical patent/WO2019085183A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of preparation and processing of titanium and titanium alloys, and in particular relates to a method for manufacturing titanium and titanium alloy metallurgical products.
  • Titanium alloy has the advantages of low density, highest specific strength in metal structure materials, excellent corrosion resistance and heat resistance, and non-magnetic properties. It is used in aerospace, weaponry lightweight, petrochemical, marine engineering and shipbuilding industries, and automobiles. The fields of manufacturing, biomedical and sports leisure show very attractive application prospects and are extremely important structural materials and strategic materials.
  • the titanium alloy due to the high temperature activity of the titanium alloy, high deformation resistance and poor processing properties, the titanium alloy is harsh in terms of preparation, processing and forming, and ultimately causes high cost of the titanium alloy parts. At present, high cost has become the biggest obstacle to large-scale industrial applications of titanium alloys.
  • Ingot metallurgy and powder metallurgy are the two main methods for titanium alloy preparation and parts manufacturing.
  • the ingot metallurgy method first melts a titanium alloy ingot by a vacuum consumable electric arc furnace, a vacuum induction melting furnace or an electron beam cooling bed furnace, and then performs ingot forging and forging, extrusion, rolling, etc. Secondary processing or molding to obtain titanium or component blanks, and finally heat treatment, welding and machining to obtain the required titanium alloy parts. It is obvious that the ingot metallurgy method for manufacturing titanium alloy materials and parts has a long process flow, complicated process, large equipment investment, high energy consumption, and low material utilization rate, which directly leads to the cost of the titanium alloy is too high.
  • Powder metallurgy is a breakthrough in the cost-effective manufacturing of titanium alloys.
  • the raw materials used in low-cost titanium alloy powder metallurgy technology are mainly hydrogenated dehydrogenated pure titanium powder, and a small number of research institutions directly use titanium hydride powder.
  • This technology combines hydrodehydrogenated titanium powder or hydrogenated titanium powder with alloying element powder by mechanical ball milling or mechanical mixing, and then the powder mixture is compacted or nearly net. The compact is formed, and finally alloying and densification of titanium is completed by vacuum/protective atmosphere sintering or hot press sintering.
  • this conventional titanium alloy powder metallurgy technology can significantly reduce the cost of manufacturing titanium alloy materials and parts, the following typical deficiencies still exist:
  • the oxygen content is high, generally between 0.40% and 0.60% (mass ratio, the same below). Mainly because of the use of titanium hydride powder, titanium powder and alloyed powder raw materials, generally passivated treatment, high temperature alloying process, the surface layer of oxygen dissolved into the alloy;
  • the density is not high enough ( ⁇ 98%).
  • the sintering pressure is low and the voids between the particles and the pores inside the alloy cannot be eliminated by sufficient thermoplastic deformation. If the density is increased by high temperature forging or hot isostatic pressing, the cost will be significantly increased;
  • the grain size is coarser and the average cluster size is generally higher than 100 ⁇ m. Because the initial powder is still relatively thick (-200 mesh or -300 mesh), and the high temperature sintering temperature is high (1300 ⁇ 1400 ° C), the sintering time is longer (2 ⁇ 6h);
  • one of the objects of the present invention is to provide a method for manufacturing titanium and titanium alloy metallurgical products capable of reducing the cost of titanium and titanium alloy metallurgical products;
  • the second object of the present invention is to provide a method for manufacturing titanium and titanium alloy metallurgical products capable of reducing the oxygen content of titanium and titanium alloy metallurgical products;
  • the object of the present invention is The third is to provide a method for manufacturing titanium and titanium alloy metallurgical products capable of increasing the density of titanium and titanium alloy metallurgical products;
  • the fourth object of the present invention is to provide a method for manufacturing titanium and titanium alloy metallurgical products capable of reducing the grain size of titanium and titanium alloy metallurgical products;
  • the fifth object of the present invention is to provide a method for manufacturing titanium and titanium alloy metallurgical products capable of improving the room temperature elongation of titanium and titanium alloy metallurgical products;
  • the sixth object of the present invention is to provide a method for manufacturing a titanium and titanium alloy metallurgical product capable of shortening the production cycle of titanium and titanium alloy metallurgical products.
  • a method for manufacturing a metallurgical product of titanium and titanium alloy comprising the steps of: hydrolyzing titanium sponge with titanium sponge as a raw material; preparing a mixed powder of titanium hydride powder or titanium hydride and an alloying raw material; powder compact Sintering molding; preparation of titanium and titanium alloy metallurgical products.
  • the hydrotreating treatment of the titanium sponge is:
  • titanium sponge In a hydrogenation furnace, titanium sponge is maintained at a temperature of 350 to 750 ° C and a hydrogen pressure of 0.9 to 1.5 atm for 1 to 6 hours to prepare a hydrogenated titanium sponge.
  • the step of preparing the mixed powder of the titanium hydride powder or the titanium hydride and the alloying raw material is:
  • the alloying raw material added is a pure alloying element powder, or a fragile intermediate alloy particle or powder, or an alloy. Hydride particles or powder.
  • the step of preparing the mixed powder of the titanium hydride powder or the titanium hydride and the alloying raw material is carried out under the protection of an inert atmosphere, using a planetary ball mill, a stirring ball mill or a drum ball mill.
  • the powder compacting process is:
  • the prepared titanium hydride powder or the mixed powder of the titanium hydride and the alloying raw material is placed in a mold, and the pressure is maintained at a pressure of 300 to 1500 MPa for 1 to 60 minutes to complete the pressing.
  • the sintering forming process is rapid sintering and simultaneous partial dehydrogenation, which is specifically:
  • the temperature is raised to 1000-1350 ° C at a rate of 30-200 ° C / min and the temperature is maintained for 0-60 min; the partial dehydrogenation is completed in the rapid sintering process to ensure sintering.
  • the hydrogen content in the block is reduced to 0.6-1.5%; the dehydrogenation process is accompanied by a reduction reaction of TiO 2 +H ⁇ Ti+H 2 O to purify the surface of the powder particles and reduce the oxygen content of the powder.
  • thermomechanical consolidation or forming process is further included;
  • thermomechanical consolidation or forming process is carried out on a hydraulic machine equipped with a closed working box with an adjustable atmosphere, which is specifically:
  • the powder compacts which have been subjected to high-temperature sintering and heat preservation are directly transferred directly into an extrusion die or a forging die, and sufficient densification and thermoforming are performed by extrusion or forging.
  • the oxygen content in the inert atmosphere is controlled to be 0 to 200 ppm.
  • a vacuum dehydrogenation process is further included;
  • the dehydrogenation temperature is controlled at 400 to 850 ° C, the vacuum degree is maintained at 1.0 ⁇ 10-2 to 1.0 ⁇ 10 ⁇ 4 Pa, and the dehydrogenation time is 4 to 10 h to ensure that the hydrogen content in the alloy is lower than 0.01%.
  • the titanium and titanium alloy metallurgical articles are extruded long profiles of bars, tubes or slabs, or forged parts, depending on the densification and the use of the mould during forming, the alloy type being covered with pure titanium or Titanium alloy of any composition.
  • the invention uses titanium sponge as a raw material to rapidly prepare titanium hydride or hydrogenation by synchronous mechanical ball milling.
  • the mixed powder of titanium and alloying elements is 40% of the price of commercially available titanium hydride or hydrogenated dehydrogenated titanium powder. Further, the milling efficiency, the flour extraction rate and the powder quality of the present invention are extremely high. Powder preparation, compacting, sintering and thermomechanical consolidation densification or molding are carried out under the protection of an inert atmosphere, which is very advantageous for controlling the oxygen content of the alloy.
  • the average powder particle size is only about 4 ⁇ m, the powder compact is sintered by rapid heating method, and is directly densified and formed by means of thermomechanical consolidation, which can significantly improve the density and metallurgical quality of the alloy product, improve production efficiency and realize Short process manufacturing.
  • the present invention can produce a high-quality powder metallurgy titanium alloy material with a density of more than 99.6%, an oxygen content of 0.25% or less, a main mechanical property index higher than that of a forged titanium alloy, and a lower cost than a conventional titanium alloy casting. component.
  • 1 is an elemental distribution diagram of a hydrogenation sponge titanium and an AlV40 master alloy after 2 hours of synchronous mechanical milling; wherein, (a) Ti element; (b) Al element; (c) V element.
  • Figure 2 shows the extruded state of a powder metallurgy TC4 titanium alloy extruded bar.
  • Figure 3 shows the solution-dissolved microstructure of the powder metallurgy TC4 titanium alloy extruded bar.
  • FIG 4 is an elemental distribution diagram of hydrogenated titanium sponge and pure aluminum powder and electrolytic iron powder after mechanical ball milling for 2 hours; wherein, (a) Fe element; (b) Al element.
  • Figure 5 is a process flow diagram of the present invention.
  • the invention adopts the technology of manufacturing titanium and titanium alloy metallurgical products by using titanium sponge as a raw material, and the technical procedure thereof is as follows: hydrogenation of sponge titanium ⁇ synchronous mechanical ball milling to prepare titanium hydride powder or mixed powder ⁇ powder compact in inert atmosphere Or near net shape forming ⁇ rapid sintering under inert atmosphere and simultaneous partial dehydrogenation ⁇ thermomechanical consolidation or molding under inert atmosphere ⁇ thorough vacuum dehydrogenation ⁇ alloy products. among them:
  • Powder compact The mixed powder of hydrogenated titanium powder or alloy prepared by mechanical ball milling is placed in a mold of a specific shape under the protection of an inert atmosphere, and the pressure is maintained at a pressure of 300 to 1500 MPa for 0 to 1.0 h.
  • step 2 mechanically ball milled hydrogenated titanium powder can be directly used without sieving treatment, and can control the powder in the process of powdering, encapsulation, transfer and compacting after ball milling, always under the protection of inert atmosphere, and can not be blunt Processing.
  • thermomechanical consolidation or forming on a hydraulic press equipped with an operable closed atmosphere box, the powder compact that completes the high temperature insulation in step 4 is directly transferred to the extrusion die or forging die, by extrusion or forging.
  • the function is simultaneous to complete densification and thermoforming.
  • the entire process of steps 4 and 5 maintains that the oxygen content of the inert atmosphere in the closed atmosphere tank is less than 200 ppm;
  • Vacuum dehydrogenation The alloy material or parts manufactured in step 5 are thoroughly dehydrogenated to ensure that the hydrogen content in the alloy is less than 0.01%.
  • the dehydrogenation process is carried out at 400 to 850 ° C and a vacuum of 1.0 ⁇ 10 -2 to 1.0 ⁇ 10 -4 Pa for 4 to 10 hours;
  • alloy products alloy type covered with pure titanium and titanium alloy with arbitrary composition; alloy products can be bars, tubes and slabs, etc. depending on the mold compact and the mold used for consolidation or molding. Extruded profiles with specific cross-sections can also be forged parts.
  • titanium hydride powder Under the protection of argon, the hydrogenated titanium sponge raw material is placed in a ball mill of a planetary ball mill or a stirring ball mill, and mechanical ball milling is simultaneously performed to prepare titanium hydride powder.
  • the titanium alloy powder with particle size less than 25 ⁇ m can be prepared by ball milling for 30min under the condition of ball mass ratio of 2.5:1 and ball mill rotation speed of 300rpm. After milling for 1h, titanium hydride powder with particle size less than 15 ⁇ m can be prepared, and the average particle size is smaller than 4 ⁇ m; no screening and classification treatment is required, and the powder extraction rate is as high as 97%.
  • thermomechanical consolidation or molding on a hydraulic press equipped with an operable closed atmosphere box, the powder compact that completes the high temperature insulation in the step 4 is directly transferred to the extrusion die barrel, and extruded at 16:1 Densification is achieved than extrusion.
  • the oxygen content of the argon atmosphere in the closed atmosphere tank is kept below 120ppm throughout the process;
  • the titanium extruded rod produced in step 5 is kept at 700 ° C, 1.0 ⁇ 10 -3 to 1.0 ⁇ 10 -4 Pa vacuum for 6 h, so that the residual hydrogen in the pure titanium extruded rod is completely released. , the final hydrogen content is 0.0085%;
  • the powder metallurgy pure titanium extruded bar prepared in this embodiment has an oxygen content of only 0.20%, a density of up to 99.8%, a tensile strength of 620 MPa, an elongation of 35%, and a cost close to that of the TA1 pure titanium ingot.
  • Synchronous mechanical ball milling to prepare alloy mixed powder According to the mass ratio of TC4 titanium alloy Ti-6Al-4V, the hydrogenated titanium sponge and the brittle AlV40 intermediate alloy particles are placed together in the ball mill tank of the agitating ball mill, and protected by argon gas. The lower synchronous mechanical ball milling was broken and mixed and homogenized to prepare a mixed powder of titanium hydride and AlV40. Among them, the ball mass ratio is 2.4:1, the ball mill rotation speed is 300 rpm, and the ball milling is 2 h.
  • the prepared mixed powder has a particle size of less than 15 ⁇ m and an average particle size of less than 4 ⁇ m; no screening and classification treatment is required, and the powder extraction rate is as high as 98%. As shown in Fig. 1, in the mixed powder raw material of the TC4 titanium alloy prepared in this step, the particle size of AlV40 is less than 1.0 ⁇ m and the distribution is uniform.
  • thermomechanical consolidation or molding on a hydraulic machine equipped with an operable closed atmosphere box, the powder blank which is finished in high temperature sintering in step 4 is directly transferred to the extrusion die barrel with a compression ratio of 16:1. Extrusion, densification is completed, and a TC4 titanium alloy rod is produced.
  • the oxygen content of the argon atmosphere in the closed atmosphere tank is kept below 120ppm throughout the process;
  • the TC4 titanium alloy extruded rod manufactured in step 5 is kept at 700 ° C, 1.0 ⁇ 10 -3 to 1.0 ⁇ 10 -4 Pa vacuum for 6 h, so that the residual hydrogen in the TC4 titanium alloy extruded rod Completely released, the final hydrogen content is 0.009%;
  • the TC4 titanium alloy extruded bar prepared in this example has an oxygen content of only 0.22% and a density of up to 99.8%; the measured composition of the alloy is: Ti-6.05Al-4.02V (wt%). After 950 ° C / 30 min / WQ solid solution + 580 ° C / 6 h / FC aging treatment, the tensile strength of the alloy is 1300 MPa, the elongation is 15%, the alloy cost is about 180 yuan / kg. As shown in FIG.
  • the TC4 titanium alloy extruded bar manufactured by the present embodiment has a pressed structure of Wei's structure, uniform structure, and an average crystal size of about 15 ⁇ m; after solution aging treatment, the structure is transformed into a typical structure. Basket organization (see Figure 3).
  • Embodiment 2 differs from Embodiment 2 in the process steps 3 to 7.
  • the powder compact in the process step 3 is a powder mixture prepared by mechanical ball milling, which is loaded into the mold cavity of the engine connecting rod member, and is pressed at a pressure of 950 MPa hydraulic press for 2 min to complete the pressing.
  • the contour size of the control engine powder blank is controlled to be greater than the actual part size by about 12%. This actually takes into account that the compact volume shrinks by about 8% and about 4% of the subsequent machining allowance due to hydrogen evolution during induction heating.
  • Rapid sintering of the powder compact in process step 4 and simultaneous partial dehydrogenation in an argon atmosphere tank with an oxygen content of less than 120 ppm, the powder compact of the connecting rod is heated to 80 ° C / min by medium frequency induction heating to 1250 ° C and kept for 2 min; the content of hydrogen in the powder billet during the sintering process was reduced to 1.0 wt.%.
  • thermomechanical consolidation or molding is carried out on the hydraulic machine equipped with the operable sealed atmosphere box, and the high-speed sintering of the engine connecting rod component blank in the process 4 is directly transferred to the precision forging mold cavity, forging And the pressure is kept for 2 minutes to manufacture the engine connecting rod parts of TC4 titanium alloy.
  • the vacuum dehydrogenation in the process step 6 is to maintain the TC4 titanium alloy connecting rod manufactured in the step 5 in a vacuum furnace at 700 ° C, 1.0 ⁇ 10 -3 to 1.0 ⁇ 10 -4 Pa vacuum for 6 h to make the TC4 titanium alloy.
  • the residual hydrogen in the connecting rod is completely released, and the final hydrogen content is 0.009%;
  • the alloy product of process step 7 is produced through steps 1 to 6 to produce TC4 titanium alloy.
  • the TC4 titanium alloy engine connecting rod prepared in this embodiment has an oxygen mass content of only 0.22% and a density of up to 99.6%; the measured composition of the alloy is: Ti-6.04Al-4.03V (wt%). After solution and aging treatment, the tensile strength of the alloy is 1300 MPa, the elongation is 13%, and the Vickers hardness is 375 GPa.
  • the difference between this embodiment and the second embodiment lies in the process step 2, in the synchronous mechanical ball milling to prepare the mixed powder of the alloy, according to the ratio of Ti-29Nb-13Ta-5Zr biomedical titanium alloy, the hydrogenated sponge titanium, hydrogenated ruthenium, The cesium hydride and the hydride raw material of the hydrogenated sponge zirconium are placed in a ball mill tank of a stirring ball mill, and the mixed powder of several hydrides is prepared by simultaneous mechanical ball milling and homogenization under argon gas protection.
  • the name of the titanium alloy in process steps 5-7 is Ti-29Nb-13Ta-5Zr.
  • the Ti-29Nb-13Ta-5Zr titanium alloy extruded bar prepared in this embodiment has an oxygen content of only 0.20% and a density of up to 99.9%.
  • the average grain size of the solid solution state is less than 20 ⁇ m; after 800 ° C / 30 min / WQ solid solution + 500 ° C / 6 h / FC aging treatment, the tensile strength of the alloy is as high as 900 MPa, and the elongation reaches 28%.
  • the difference between this embodiment and the second embodiment and the fourth embodiment is that in the process step 2, in the synchronous mechanical ball milling to prepare the mixed powder of the alloy, the hydrogenated titanium sponge is used according to the mass ratio of the ⁇ -type titanium alloy Ti-2Al-5Fe.
  • the -300 mesh pure aluminum powder and the electrolytic iron powder are placed together in a ball mill tank of a stirring ball mill, and the mixed powder raw material of the Ti-2Al-5Fe alloy is prepared by synchronous mechanical ball milling and homogenization under argon gas protection.
  • the name of the titanium alloy in process steps 5-7 is Ti-2Al-5Fe.
  • the alloying elements Al and Fe powder particles are fine (less than 3 ⁇ m), and the alloy elements are uniformly distributed.
  • the Ti-2Al-5Fe titanium alloy extruded bar prepared in this embodiment has an oxygen content of only 0.21%, a density of up to 99.8%, and a measured composition of the alloy of Ti-1.98Al-5.15Fe.
  • the average grain size of the solid state of the extruded bar is 15 ⁇ m; after 850 ° C / 30 min / WQ solid solution + 500 ° C / 6 h / FC aging treatment, the tensile strength of the alloy is as high as 1320 MPa, and the elongation reaches 16%.
  • the results of the examples show that the method of the invention realizes synchronous ball milling of hydrogenated titanium sponge and alloying raw materials.
  • the mixed powder is prepared, the powder does not need to be sieved, and the powder extraction rate is more than 96%; the compacting of the powder, rapid heating alloying, thermomechanical consolidation and molding are completed under the protection of an inert atmosphere.
  • the invention has the advantages of short process flow and high efficiency, and can manufacture titanium and titanium alloy products with high density ( ⁇ 99.6%) and low oxygen content ( ⁇ 0.25%); the main mechanical properties of the alloy are higher than those of ordinary deformed titanium alloys. And the cost is significantly lower than the conventional powder metallurgy titanium alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制造钛及钛合金冶金制品的方法,所述方法包括以下工序:以海绵钛为原材料,对海绵钛进行氢化处理;制备氢化钛粉末或氢化钛与合金化原料的混合粉末;粉末压坯;烧结成型;制备钛及钛合金冶金制品。该方法实现氢化海绵钛与合金化原料的同步球磨制备混合粉末,粉末不需要筛分,出粉率大于96%;在惰性气氛保护下完成粉末的压坯、快速加热合金化、热机械固结与成型。工艺流程短,效率高,可以制造出高致密度(≥99.6%)和低氧含量(≤0.25%)的钛与钛合金制品;合金的主要力学性能高于普通变形钛合金的水平,且成本明显低于常规的粉末冶金钛合金。

Description

制造钛及钛合金冶金制品的方法 技术领域
本发明属于钛与钛合金的制备和加工成形技术领域,具体涉及一种制造钛及钛合金冶金制品的方法。
背景技术
钛合金具有低密度、金属结构材料中最高的比强度、优异的耐腐蚀和耐热性能、无磁性等突出优点,在航空航天、武器装备轻量化、石油化工、海洋工程和舰船工业、汽车制造、生物医用和体育休闲等领域表现出十分诱人的广阔的应用前景,是一种极其重要的结构材料和战略材料。然而,由于钛合金高温活性大、变形抗力高且加工性能较差,使钛合金在制备、加工和成形方面条件苛刻,最终造成钛合金零部件高昂的成本。当前,高成本已经成为钛合金大规模工业应用的最大障碍。
铸锭冶金法和粉末冶金法是钛合金制备和零部件制造的两大主流方法。铸锭冶金法首先通过真空自耗电弧炉、真空感应熔炼炉或者电子束冷床炉等方法熔炼出钛合金铸锭,然后将铸锭进行开坯锻造和锻造、挤压、轧制等二次加工或成型得到钛材或部件毛坯,最终进行热处理、焊接和机加工等处理得到所需的钛合金零部件。很明显,铸锭冶金法制造钛合金材料和零部件,工艺流程长、工艺复杂、设备投资大、能耗大、材料利用率很低,这直接导致钛合金的成本太高。当前,在低成本钛合金设计、短流程制造(如:石墨型或陶瓷型精密铸造)、大型电子束冷床炉生产钛锭和钛料回收再利用等低成本化制造方面取得显著的进展,然而仍不足以从根本上解决钛合金成本过高对其规模化应用带来的障碍。
粉末冶金法是实现钛合金低成本化制造的突破口。当前低成本钛合金粉末冶金技术使用的原材料主要是氢化脱氢的纯钛粉末,也有少量研究机构直接使用氢化钛粉末。这种技术将氢化脱氢的钛粉或者氢化钛粉与合金元素粉末进行机械球磨或者机械混合均匀化,然后把粉末混合体进行压坯或者近净 成形压坯,最终通过真空/保护气氛烧结或者热压烧结完成钛的合金化和致密化。这种常规的钛合金粉末冶金技术,虽然能够明显降低钛合金材料和零部件制造的成本,但仍然存在以下典型的不足:
1.成本仍然偏高。如:-200目的氢化脱氢钛粉或者氢化钛粉价格就在200元/kg以上,高温烧结时间长(2~6h),能耗大;
2.氧含量偏高,普遍在0.40%~0.60%(质量比,下同)。主要因为使用的氢化钛粉末、钛粉末和合金化粉末的原材料,普遍经过钝化处理,高温合金化过程中颗粒表层的氧溶解进入合金内部;
3.致密度不足够高(≤98%)。烧结的压力低,不能通过足够的热塑形变形消除颗粒间的空隙和合金内部的孔洞。若借助高温锻造或热等静压提高致密度,又会造成成本显著提高;
4.晶粒尺度较粗大,平均晶团尺寸普遍高于100μm。因为初始粉末仍然较粗(-200目或-300目),且高温烧结温度高(1300~1400℃),烧结时间较长(2~6h);
5.尽管粉末冶金钛合金拉伸强度和硬度值得到显著提高,但由于氧含量高和致密度低,造成室温延伸率普遍较低(粉末冶金TC4的延伸率≤9%),远低于常规的锻造钛合金;
6.生产周期仍然较长。主要体现在粉末筛分与混粉和真空烧结两个环节。
发明内容
为了针对性解决当前粉末冶金钛合金在成本高的问题,本发明的目的之一在于提供一种能够降低钛及钛合金冶金制品成本的制造钛与钛合金冶金制品的方法;
为了针对性解决当前粉末冶金钛合金在氧含量高的问题,本发明的目的之二在于提供一种能够降低钛及钛合金冶金制品氧含量的制造钛与钛合金冶金制品的方法;
为了针对性解决当前粉末冶金钛合金在致密度偏低的问题,本发明的目 的之三在于提供一种能够提高钛及钛合金冶金制品致密度的制造钛与钛合金冶金制品的方法;
为了针对性解决当前粉末冶金钛合金在晶粒尺寸粗大的问题,本发明的目的之四在于提供一种能够减小钛及钛合金冶金制品晶粒尺度的制造钛与钛合金冶金制品的方法;
为了针对性解决当前粉末冶金钛合金在室温延伸率不足的问题,本发明的目的之五在于提供一种能够提高钛及钛合金冶金制品室温延伸率的制造钛与钛合金冶金制品的方法;
为了针对性解决当前粉末冶金钛合金在生产周期长的问题,本发明的目的之六在于提供一种能够缩短钛及钛合金冶金制品生产周期的制造钛与钛合金冶金制品的方法。
本发明的技术方案是:
一种制造钛及钛合金冶金制品的方法,所述方法包括以下工序:以海绵钛为原材料,对海绵钛进行氢化处理;制备氢化钛粉末或氢化钛与合金化原料的混合粉末;粉末压坯;烧结成型;制备钛及钛合金冶金制品。
优选地,所述对海绵钛进行氢化处理工序为:
在氢化炉中,将海绵钛在350~750℃温度和0.9~1.5atm氢气压力的条件下,保持1~6h,制备出氢化海绵钛。
优选地,所述制备氢化钛粉末或氢化钛与合金化原料的混合粉末工序为:
将氢化海绵钛或氢化海绵钛与合金化原料按照化学计量比一起同步球磨粉碎和混合均匀化;加入的合金化原材料是纯合金元素粉末,或者是易破碎的中间合金颗粒或粉末,或者是合金的氢化物颗粒或粉末。
优选地,所述制备氢化钛粉末或氢化钛与合金化原料的混合粉末工序是在惰性气氛保护下进行的,采用行星式球磨机、搅拌式球磨机或者滚筒式球磨机。
优选地,所述粉末压坯工序为:
在惰性气氛保护下,取制备的氢化钛粉末或氢化钛与合金化原料的混合粉末装入模具中,在300~1500MPa压力保压1~60min,完成压制。
优选地,所述烧结成型工序为快速烧结并同步部分脱氢,其具体为:
在惰性气体保护下,借助感应加热、放电等离子加热或者直流电内加热,以30~200℃/min速率升温到1000~1350℃并保温0~60min完成;快速烧结过程完成部分的脱氢,保证烧结块中氢含量降低至0.6~1.5%;脱氢过程还伴随着还原反应TiO2+H→Ti+H2O,净化粉末颗粒表面,降低粉末氧含量。
优选地,在所述烧结成型工序之后,且在所述制备钛及钛合金冶金制品工序之前,还包括热机械固结或成型工序;
所述热机械固结或成型工序是在配备可调节气氛的密闭工作箱的液压机上完成的,其具体为:
将完成高温烧结和保温的粉末压坯直接快速转移到挤压模具或者锻造模具内,借助挤压或者锻造作用完成充分的致密化和热成型。
优选地,在制备氢化钛粉末或氢化钛与合金化原料的混合粉末、粉末压坯、烧结成型、热机械固结或成型工序中,均控制惰性气氛中的氧含量在0~200ppm。
优选地,在所述热机械固结或成型工序之后,且在所述制备钛及钛合金冶金制品工序之前,还包括真空脱氢工序;
在所述真空脱氢工序中,脱氢温度控制在400~850℃,真空度保持在1.0×10-2~1.0×10-4Pa,脱氢时间4~10h,保证合金中氢质量含量低于0.01%。
优选地,根据致密化和成型时使用模具的不同,所述钛及钛合金冶金制品是棒材、管材或厚板的挤压长型材,或者是锻造成型的零部件,合金类型覆盖纯钛或任意成分的钛合金。
本发明的优点及有益效果是:
本发明以海绵钛为原材料,通过同步机械球磨快速制备氢化钛或者氢化 钛与合金化元素的混合粉末,成本是市场采购的氢化钛或者氢化脱氢钛粉末价格的40%。并且,本发明的制粉效率、出粉率和粉末品质都非常高。粉末制备、压坯、烧结和热机械固结致密化或成型,均在惰性气氛保护下进行,十分有利于控制合金的氧含量。平均粉末颗粒尺寸仅为约4μm,粉末压坯采用快速升温手段烧结,且结合热机械固结手段直接进行致密化和成型,这能显著提高合金制品的致密度和冶金质量,提高生产效率、实现短流程制造。总体来说,本发明可以制造出99.6%以上致密度、0.25%以内氧质量含量、主要力学性能指标高于锻造钛合金、成本低于普通钛合金铸件的高品质粉末冶金钛合金材料及其零部件。
附图说明
图1为氢化海绵钛和AlV40中间合金同步机械球磨2h后的元素分布图;其中,(a)Ti元素;(b)Al元素;(c)V元素。
图2为粉末冶金TC4钛合金挤压棒材的挤压态组织。
图3为粉末冶金TC4钛合金挤压棒材的固溶时效态组织。
图4为氢化海绵钛与纯铝粉和电解铁粉同步机械球磨2h后的元素分布图;其中,(a)Fe元素;(b)Al元素。
图5为本发明的工艺流程图。
具体实施方式
如图5所示,本发明以海绵钛为原材料制造钛及钛合金冶金制品的技术,其工艺流程如下:海绵钛的氢化→同步机械球磨制备氢化钛粉末或者混合粉末→惰性气氛下粉末压坯或者近净成型制坯→惰性气氛下快速烧结并同步部分脱氢→惰性气氛下热机械固结或成型→彻底真空脱氢→合金制品。其中:
①海绵钛的氢化:在氢化炉中,将海绵钛在350~750℃温度和0.9~1.5atm氢气压力的条件下,保持1~8h,制备出氢化海绵钛;
②同步机械球磨制备氢化钛粉末或者混合粉末:在惰性气氛保护下,将氢化海绵钛或者氢化海绵钛与合金化原材料一起装入球磨机的球磨罐中, 同步进行机械球磨破碎和粉末混合均匀化。加入的合金化原材料,可以是纯元素粉末、易破碎的中间合金颗粒或者粉末,也可以是氢化物颗粒或者粉末;所用球磨机可以是行星式球磨机、搅拌式球磨机或者滚筒式球磨机等;
由于氢化海绵钛的脆性,很容易球磨破碎并同步和合金化原料快速混合均匀。颗粒破碎和粉末混合过程中不需要使用任何的过程控制剂,粉末不会发生冷焊。这使得制粉效率和出粉率显著提高,粉体颗粒尺寸更细,并保证粉末的纯净度;
③粉末压坯:在惰性气氛保护下,将机械球磨制备的氢化钛粉末或者合金的混合粉末,装入特定形状的模具中,在300~1500MPa压力下保压0~1.0h完成的。
其中,步骤②机械球磨的氢化钛粉末,无需筛分处理即可直接使用,且可以控制粉末在球磨后出粉、封装、转移和压坯过程中,始终处于惰性气氛保护下,可以不经受钝化处理。④粉末压坯的快速烧结并同步部分脱氢:在惰性气氛保护下,借助感应加热、放电等离子加热和直流电内加热等通用的快速加热方式中的一种,以30~200℃/min速率升温到1000~1350℃并保温0~60min完成的;烧结过程粉末坯中氢质量含量降低至0.6~1.5%;脱氢过程还伴随着还原反应TiO2+H→Ti+H2O,净化粉末颗粒表面,降低粉末氧含量。
⑤热机械固结或者成型:是在配备可操作的密闭气氛箱的液压机上,将工序④中完成高温保温的粉末压坯,直接快速转移到挤压模具或者锻造模具内,通过挤压或者锻造作用同步完成致密化和热成型。工序④和⑤的整个过程都保持密闭气氛箱中惰性气氛的氧含量低于200ppm;
⑥真空脱氢:将步骤⑤中制造的合金材料或者零部件进行彻底脱氢,保证合金中氢质量含量低于0.01%。脱氢过程是在400~850℃和1.0×10-2~1.0×10-4Pa真空度下保持4~10h完成的;
⑦合金制品:合金类型覆盖纯钛和任意成分的钛合金;根据粉末压坯和粉末固结或成型时使用模具的不同,合金制品可以是棒材、管材和厚板等 特定横截面的挤压型材,也可以是锻造成型的零部件。
下面,通过实施例对本发明进一步详细阐述。
实施例1
本实施例的具体工艺流程为:
①海绵钛的氢化:在氢化炉中,将颗粒尺寸小于30mm的海绵钛在450℃和1.0~1.2atm氢气压力的条件下,保持2h,制备出氢化海绵钛(氢的含量4.3wt.%);
②同步机械球磨制备氢化钛粉末:在氩气保护下,将氢化海绵钛原材料装入行星式球磨机或者搅拌式球磨机的球磨罐中,同步进行机械球磨破碎并制备出氢化钛粉末。其中,球料质量比为2.5:1和球磨机转速300rpm条件下,球磨30min可以制备出颗粒尺寸小于25μm的氢化钛粉末,球磨1h可以制备出颗粒尺寸小于15μm的氢化钛粉末,且平均颗粒尺寸小于4μm;不需要筛分分级处理,粉末出粉率高达97%。
③粉末压坯:在氩气保护下,将机械球磨制备的氢化钛粉末,装入
Figure PCTCN2017116626-appb-000001
内径的模具中,在950MPa液压机压力下保压1min完成压制。控制粉末在出粉、封装、转移和压坯过程中,始终处于氧含量低于120ppm的氩气保护下;
④粉末压坯的快速烧结并同步部分脱氢:在氧含量低于120ppm的氩气保护气氛箱中,借助中频感应加热,以100℃/min的速率升温到1000℃并保温1min;烧结过程中粉末压坯中氢的含量降低至0.95wt.%;
⑤热机械固结或者成型:是在配备可操作的密闭气氛箱的液压机上,将工序④中完成高温保温的粉末压坯,直接快速转移到挤压模具筒内,以16:1的挤压比挤出,完成致密化。整个过程都保持密闭气氛箱中氩气气氛的氧含量低于120ppm;
⑥真空脱氢:将步骤⑤中制造的钛挤压棒在700℃,1.0×10-3~1.0×10-4Pa真空度下保持6h,使纯钛挤压棒中残留的氢得到彻底释放,最终氢的含量为0.0085%;
⑦合金制品:经过步骤①~⑥工序,制造出纯钛的挤压棒;
本实施例制备的粉末冶金纯钛挤压棒材,氧质量含量仅为0.20%,致密度高达99.8%,拉伸强度为620MPa,延伸率达到35%,成本接近TA1纯钛铸锭。
实施例2
本实施例的具体工艺流程为:
①海绵钛的氢化:在氢化炉中,将零级海绵钛在450℃和1.0~1.2atm氢气压力的条件下,保持2h,制备出氢化海绵钛(氢的含量4.3wt.%);
②同步机械球磨制备合金的混合粉末:按照TC4钛合金Ti-6Al-4V的质量配比,将氢化海绵钛和脆性的AlV40中间合金颗粒一起装入搅拌式球磨机的球磨罐中,在氩气保护下同步机械球磨破碎并混合均匀化制备出氢化钛和AlV40的混合粉末。其中,球料质量比为2.4:1、球磨机转速300rpm、球磨2h,制备出的混合粉末颗粒尺寸小于15μm,平均颗粒尺寸小于4μm;不需要筛分分级处理,粉末出粉率高达98%。如图1所示,本步骤制备的TC4钛合金的混合粉末原材料中,AlV40的颗粒尺寸小于1.0μm,且分布均匀。
③粉末压坯:取机械球磨制备的粉末混合体,装入
Figure PCTCN2017116626-appb-000002
内径的模具筒中,在950MPa液压机压力下保压2min完成压制。控制粉末在球磨后的出粉、封装、转移和压坯过程中,始终处于氧含量低于120ppm的氩气保护下;
④粉末压坯的快速烧结并同步部分脱氢:在氧含量低于120ppm的氩气气氛箱中,借助中频感应加热,以100℃/min的速率将压坯加热到1200℃并保温2min;烧结过程中粉末坯料中氢的含量降低至1.2wt.%;
⑤热机械固结或者成型:是在配备可操作的密闭气氛箱的液压机上,将工序④中完成高温烧结的粉末坯料,直接快速转移到挤压模具筒内,以16:1的挤压比挤出,完成致密化,制造出TC4钛合金棒材。整个过程都保持密闭气氛箱中氩气气氛的氧含量低于120ppm;
⑥真空脱氢:将步骤⑤中制造的TC4钛合金挤压棒在700℃,1.0×10-3~1.0×10-4Pa真空度下保持6h,使TC4钛合金挤压棒中残留的氢得到彻底释放,最终氢含量为0.009%;
⑦合金制品:经过步骤①~⑥工序,制造出TC4钛合金挤压棒;
本实施例制备的TC4钛合金挤压棒材,氧质量含量仅为0.22%,致密度高达99.8%;合金实测成分为:Ti-6.05Al-4.02V(wt%)。经过950℃/30min/WQ固溶+580℃/6h/FC时效处理,合金的拉伸强度为1300MPa,延伸率达到15%,合金成本约为180元/kg。如图2所示,本实施方案制造的TC4钛合金挤压棒材,挤压态组织为魏氏组织,组织均匀,平均晶团尺寸约为15μm;经过固溶时效处理,组织转变为典型的网篮组织(见图3)。
实施例3
本实施例与实施例2的不同在于工艺步骤③~⑦。
工艺步骤③中的粉末压坯,是取机械球磨制备的粉末混合体,装入发动机连杆部件的模具型腔中,在950MPa液压机压力下保压2min完成压制。控制发动机连杆粉末坯的轮廓尺寸大于实际零件尺寸约12%。这实际考虑到感应加热过程中由于放氢造成压坯体积收缩约8%和后续约4%的加工余量。
工艺步骤④中粉末压坯的快速烧结并同步部分脱氢:是在氧含量低于120ppm的氩气气氛箱,借助中频感应加热,以80℃/min的速率将连杆的粉末压坯加热到1250℃并保温2min;烧结过程中粉末坯料中氢的含量降低至1.0wt.%。
工艺步骤⑤中热机械固结或者成型,是在配备可操作的密闭气氛箱的液压机上,将工序④中完成高温烧结的发动机连杆部件坯料,直接快速转移到精锻模具型腔内,锻造并保压2min,制造出TC4钛合金的发动机连杆部件。
工艺步骤⑥中的真空脱氢,是将步骤⑤中制造的TC4钛合金连杆在700℃,1.0×10-3~1.0×10-4Pa真空度的真空炉中保持6h,使TC4钛合金连杆中残留的氢得到彻底释放,最终氢含量为0.009%;
工艺步骤⑦的合金制品,是经过步骤①~⑥工序,制造出TC4钛合金 的发动机连杆锻件;
本实施例制备的TC4钛合金发动机连杆,氧质量含量仅为0.22%,致密度高达99.6%;合金实测成分为:Ti-6.04Al-4.03V(wt%)。经过固溶+时效处理,合金的拉伸强度为1300MPa,延伸率达到13%,维氏硬度为375GPa。
实施例4
本实施例与实施例2的不同在于工艺步骤②,在同步机械球磨制备合金的混合粉末时,是按照Ti-29Nb-13Ta-5Zr生物医用钛合金的配比,将氢化海绵钛、氢化铌、氢化钽和氢化海绵锆的颗粒原料一起装入搅拌式球磨机的球磨罐中,在氩气保护下同步机械球磨破碎并混合均匀化制备出几种氢化物的混合粉末。相应地,工艺步骤⑤~⑦中的钛合金名称就是Ti-29Nb-13Ta-5Zr。
本实施例制备的Ti-29Nb-13Ta-5Zr钛合金挤压棒材,氧质量含量仅为0.20%,致密度高达99.9%。固溶态平均晶粒尺寸小于20μm;经过800℃/30min/WQ固溶+500℃/6h/FC时效处理,合金的拉伸强度高达900MPa,延伸率达到28%。
实施例5
本实施例与实施例2和实施例4的不同在于工艺步骤②,在同步机械球磨制备合金的混合粉末时,是按照β型钛合金Ti-2Al-5Fe的质量配比,将氢化海绵钛、-300目的纯铝粉和电解铁粉一起装入搅拌式球磨机的球磨罐中,在氩气保护下同步机械球磨破碎并混合均匀化制备出Ti-2Al-5Fe合金的混合粉末原料。相应地,工艺步骤⑤~⑦中的钛合金名称就是Ti-2Al-5Fe。如图4所示,经过2h的机械球磨,合金元素Al和Fe粉末颗粒细小(小于3μm),且合金元素分布均匀。
本实施例制备的Ti-2Al-5Fe钛合金挤压棒材,氧质量含量仅为0.21%,致密度高达99.8%,合金实测成分为Ti-1.98Al-5.15Fe。挤压棒固溶态的平均晶粒尺寸为15μm;经过850℃/30min/WQ固溶+500℃/6h/FC时效处理,合金的拉伸强度高达1320MPa,延伸率达到16%。
实施例结果表明,本发明方法实现氢化海绵钛与合金化原料的同步球磨 制备混合粉末,粉末不需要筛分,出粉率大于96%;在惰性气氛保护下完成粉末的压坯、快速加热合金化、热机械固结与成型。本发明的工艺流程短,效率高,可以制造出高致密度(≥99.6%)和低氧含量(≤0.25%)的钛与钛合金制品;合金的主要力学性能高于普通变形钛合金的水平,且成本明显低于常规的粉末冶金钛合金。
需要理解的是,以上对本发明的具体实施例进行的描述只是为了说明本发明的技术路线和特点,其目的在于让本领域内的技术人员能够了解本发明的内容并据以实施,但本发明并不限于上述特定实施方式。凡是在本发明权利要求的范围内做出的各种变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种制造钛及钛合金冶金制品的方法,其特征在于:所述方法包括以下工序:以海绵钛为原材料,对海绵钛进行氢化处理;制备氢化钛粉末或氢化钛与合金化原料的混合粉末;粉末压坯;烧结成型;制备钛及钛合金冶金制品。
  2. 根据权利要求1所述的制造钛及钛合金冶金制品的方法,其特征在于:所述对海绵钛进行氢化处理工序为:
    在氢化炉中,将海绵钛在350~750℃温度和0.9~1.5atm氢气压力的条件下,保持1~6h,制备出氢化海绵钛。
  3. 根据权利要求1所述的制造钛及钛合金冶金制品的方法,其特征在于:所述制备氢化钛粉末或氢化钛与合金化原料的混合粉末工序为:
    将氢化海绵钛或氢化海绵钛与合金化原料按照化学计量比一起同步球磨粉碎和混合均匀化;加入的合金化原材料是纯合金元素粉末,或者是易破碎的中间合金颗粒或粉末,或者是合金的氢化物颗粒或粉末。
  4. 根据权利要求1所述的制造钛及钛合金冶金制品的方法,其特征在于:所述制备氢化钛粉末或氢化钛与合金化原料的混合粉末工序是在惰性气氛保护下进行的,采用行星式球磨机、搅拌式球磨机或者滚筒式球磨机。
  5. 根据权利要求1所述的制造钛及钛合金冶金制品的方法,其特征在于:所述粉末压坯工序为:
    在惰性气氛保护下,取制备的氢化钛粉末或氢化钛与合金化原料的混合粉末装入模具中,在300~1500MPa压力保压1~60min,完成压制。
  6. 根据权利要求1所述的制造钛及钛合金冶金制品的方法,其特征在于:所述烧结成型工序为快速烧结并同步部分脱氢,其具体为:
    在惰性气体保护下,借助感应加热、放电等离子加热或者直流电内加热,以30~200℃/min速率升温到1000~1350℃并保温0~60min完成;快速烧结过程完成部分的脱氢,保证烧结块中氢含量降低至0.6~1.5%。
  7. 根据权利要求1-6任一项所述的制造钛及钛合金冶金制品的方 法,其特征在于:在所述烧结成型工序之后,且在所述制备钛及钛合金冶金制品工序之前,还包括热机械固结或成型工序;
    所述热机械固结或成型工序是在配备可调节气氛的密闭工作箱的液压机上完成的,其具体为:
    将完成高温烧结和保温的粉末压坯直接快速转移到挤压模具或者锻造模具内,借助挤压或者锻造作用完成充分的致密化和热成型。
  8. 根据权利要求7所述的制造钛及钛合金冶金制品的方法,其特征在于:在制备氢化钛粉末或氢化钛与合金化原料的混合粉末、粉末压坯、烧结成型、热机械固结或成型工序中,均控制惰性气氛中的氧含量在0~200ppm。
  9. 根据权利要求7所述的制造钛及钛合金冶金制品的方法,其特征在于:在所述热机械固结或成型工序之后,且在所述制备钛及钛合金冶金制品工序之前,还包括真空脱氢工序;
    在所述真空脱氢工序中,脱氢温度控制在400~850℃,真空度保持在1.0×10-2~1.0×10-4Pa,脱氢时间4~10h,保证合金中氢质量含量低于0.01%。
  10. 根据权利要求1所述的制造钛及钛合金冶金制品的方法,其特征在于:根据致密化和成型时使用模具的不同,所述钛及钛合金冶金制品是棒材、管材或厚板的挤压长型材,或者是锻造成型的零部件,合金类型覆盖纯钛或任意成分的钛合金。
PCT/CN2017/116626 2017-10-30 2017-12-15 制造钛及钛合金冶金制品的方法 WO2019085183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711030580.9A CN107760897A (zh) 2017-10-30 2017-10-30 以氢化海绵钛为原材料制造钛与钛合金及其零部件的方法
CN201711030580.9 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019085183A1 true WO2019085183A1 (zh) 2019-05-09

Family

ID=61270613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116626 WO2019085183A1 (zh) 2017-10-30 2017-12-15 制造钛及钛合金冶金制品的方法

Country Status (2)

Country Link
CN (1) CN107760897A (zh)
WO (1) WO2019085183A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385677A (zh) * 2021-06-04 2021-09-14 孙晓华 真空烧结多孔钛涂层的钛粉末颗粒搅拌球磨预处理方法
CN114101680A (zh) * 2021-11-17 2022-03-01 北京理工大学 一种钛合金表面硬质层的制备方法
CN114134359A (zh) * 2021-12-01 2022-03-04 东北大学 一种使用球形钛合金粗粉末制造钛合金材料的方法
CN114210981A (zh) * 2021-12-08 2022-03-22 罗镇霆 一种钛钢复合零件的制备方法
CN114226735A (zh) * 2021-11-23 2022-03-25 成都先进金属材料产业技术研究院股份有限公司 一种粉状钛基钎料及其制备方法
CN114309603A (zh) * 2022-01-05 2022-04-12 东北大学 一种直接热挤压海绵钛颗粒制备纯钛的方法
CN114393374A (zh) * 2022-01-13 2022-04-26 陕西华陆金钛工业有限公司 一种tc4钛合金方管生产方法
CN114672687A (zh) * 2022-03-11 2022-06-28 西安斯瑞先进铜合金科技有限公司 一种铜钛合金铸锭的熔炼工艺
CN114703393A (zh) * 2022-03-16 2022-07-05 中国人民解放军国防科技大学 一种高强度Ti-Zr-Ta合金及其制备方法、应用
WO2022146281A1 (en) * 2020-12-29 2022-07-07 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi Metal powder recycling system
CN114959329A (zh) * 2022-06-15 2022-08-30 西部超导材料科技股份有限公司 一种高纯净性Ti32Ta合金铸锭的制备方法
CN115386758A (zh) * 2022-08-11 2022-11-25 西北工业大学 高氧钛轧板的制备方法
CN115488341A (zh) * 2022-09-26 2022-12-20 吉林大学 一种具有仿生结构的低模量生物医用钛合金一体化制备方法
CN115502400A (zh) * 2022-09-06 2022-12-23 中国航发北京航空材料研究院 一种基于氢化钛原料快速制备高性能粉末钛合金的方法
CN116037933A (zh) * 2023-01-04 2023-05-02 北京科技大学 一种Ti2AlNb粉末冶金材料的制备方法
CN116043152A (zh) * 2023-01-31 2023-05-02 嘉善永鑫紧固件有限公司 一种钛合金无磁碟簧及其制备方法和应用
CN116174726A (zh) * 2022-09-09 2023-05-30 吉林大学 一种制备低成本生物医用钛合金球形粉的方法
CN116219226A (zh) * 2023-03-16 2023-06-06 承德天大钒业有限责任公司 一种增材制造用tc4钛合金粉体及其制备方法
CN116329549A (zh) * 2022-11-25 2023-06-27 西安超晶科技股份有限公司 一种tc4钛合金小型模锻件的制备方法
CN116397138A (zh) * 2023-04-18 2023-07-07 承德天大钒业有限责任公司 一种铝铌钽中间合金及其制备方法
CN116716515A (zh) * 2023-07-06 2023-09-08 西安稀有金属材料研究院有限公司 一种高均质耐蚀钛钽中间合金及其制备方法
CN117139622A (zh) * 2023-07-26 2023-12-01 西安欧中材料科技有限公司 一种采用热等静压制备高性能tc11钛合金结构件的方法
CN119368653A (zh) * 2024-11-01 2025-01-28 中国第二重型机械集团德阳万航模锻有限责任公司 一种高均匀性Ti-6Al-4V钛合金大尺寸锻件及制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766601A4 (en) * 2018-03-16 2021-12-01 Toho Technical Service Co., Ltd. TITANIUM POWDER AND METHOD FOR MANUFACTURING THEREOF
CN108838404B (zh) * 2018-06-20 2021-06-15 北京科技大学 钛合金低成本近净成形方法
TWI658884B (zh) * 2018-08-24 2019-05-11 可成科技股份有限公司 鈦基工件及其製造方法
CN110373561B (zh) * 2019-07-11 2020-12-29 中国航发北京航空材料研究院 一种粉末锻造制备高致密度细晶钛合金的方法
CN110343887B (zh) * 2019-07-11 2020-12-29 中国航发北京航空材料研究院 一种粉末挤压制备高致密度细晶钛合金的方法
CN110484737B (zh) * 2019-10-08 2021-05-18 攀枝花学院 用高氧钛回收料制备钛锭的方法
CN110616340B (zh) * 2019-10-08 2021-06-11 攀枝花学院 用高氧钛回收料氢化脱氢制备钛锭的方法
CN111215623B (zh) * 2020-03-02 2021-06-25 北京理工大学 一种Ti-Al系合金的粉末冶金致密化无压烧结方法
CN113510246A (zh) * 2020-03-25 2021-10-19 中国科学院过程工程研究所 一种Ti-6Al-4V合金粉的制备方法及由其制得的Ti-6Al-4V合金粉
CN111763841B (zh) * 2020-05-21 2021-06-29 北京科技大学 粉末冶金钛或钛合金制品及其短流程制备方法
CN113134626B (zh) * 2021-04-06 2022-03-29 东北大学 一种超低温环境用钛合金氢泵叶轮的增材制造方法
CN114058901B (zh) * 2021-11-16 2022-08-23 东北大学 亚微米氧化钇颗粒增韧的高性能近α粉末冶金钛合金及其制法
CN114433859B (zh) * 2022-01-25 2023-02-14 华中科技大学 一种高品质钛合金粉末用电极、其制备和应用
CN115770878B (zh) * 2022-11-28 2024-10-25 西北有色金属研究院 一种降低增材制造高强钛合金力学性能各向异性的方法
CN116393705B (zh) * 2023-05-11 2023-09-08 宝鸡市永盛泰钛业有限公司 一种3d打印用钛合金材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934373A (zh) * 2010-09-07 2011-01-05 昆明冶金研究院 氢化钛粉末制备钛及钛合金制品工艺
CN102407337A (zh) * 2011-11-24 2012-04-11 李宝干 钛及钛合金粉末冶金异型件制备方法
CN104550963A (zh) * 2014-12-16 2015-04-29 中国航空工业集团公司北京航空材料研究院 一种利用氢化钛合金粉末实现钛合金粉末成型的方法
US20150328684A1 (en) * 2007-06-11 2015-11-19 Advance Material Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
CN105081314A (zh) * 2015-09-25 2015-11-25 上海交通大学 一种利用氢化钛粉末制备钛制品的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044822B2 (ja) * 1980-04-02 1985-10-05 日本電気株式会社 固体電解コンデンサ用多孔質体の製造方法
JP2782665B2 (ja) * 1992-03-06 1998-08-06 東邦チタニウム株式会社 チタンまたはチタン合金粉末の製造方法
KR101181022B1 (ko) * 2009-12-18 2012-09-07 전북대학교산학협력단 수소화티타늄 분말로부터 나노구조의 티타늄을 제조하는 방법
CN102554242B (zh) * 2012-02-09 2013-12-11 西安宝德粉末冶金有限责任公司 微细球形钛粉末的制造方法
CN106077656B (zh) * 2016-07-30 2018-05-25 上海交通大学 一种制备具有纳米结构钛制品的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150328684A1 (en) * 2007-06-11 2015-11-19 Advance Material Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
CN101934373A (zh) * 2010-09-07 2011-01-05 昆明冶金研究院 氢化钛粉末制备钛及钛合金制品工艺
CN102407337A (zh) * 2011-11-24 2012-04-11 李宝干 钛及钛合金粉末冶金异型件制备方法
CN104550963A (zh) * 2014-12-16 2015-04-29 中国航空工业集团公司北京航空材料研究院 一种利用氢化钛合金粉末实现钛合金粉末成型的方法
CN105081314A (zh) * 2015-09-25 2015-11-25 上海交通大学 一种利用氢化钛粉末制备钛制品的方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2616209A (en) * 2020-12-29 2023-08-30 Tusas Turk Havacilik Ve Uzay Sanayii Anonim Sirketi Metal powder recycling system
WO2022146281A1 (en) * 2020-12-29 2022-07-07 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi Metal powder recycling system
CN113385677B (zh) * 2021-06-04 2023-10-31 孙晓华 真空烧结多孔钛涂层的钛粉末颗粒搅拌球磨预处理方法
CN113385677A (zh) * 2021-06-04 2021-09-14 孙晓华 真空烧结多孔钛涂层的钛粉末颗粒搅拌球磨预处理方法
CN114101680B (zh) * 2021-11-17 2022-08-19 北京理工大学 一种钛合金表面硬质层的制备方法
CN114101680A (zh) * 2021-11-17 2022-03-01 北京理工大学 一种钛合金表面硬质层的制备方法
CN114226735A (zh) * 2021-11-23 2022-03-25 成都先进金属材料产业技术研究院股份有限公司 一种粉状钛基钎料及其制备方法
CN114226735B (zh) * 2021-11-23 2024-03-26 成都先进金属材料产业技术研究院股份有限公司 一种粉状钛基钎料及其制备方法
CN114134359A (zh) * 2021-12-01 2022-03-04 东北大学 一种使用球形钛合金粗粉末制造钛合金材料的方法
CN114210981A (zh) * 2021-12-08 2022-03-22 罗镇霆 一种钛钢复合零件的制备方法
CN114309603A (zh) * 2022-01-05 2022-04-12 东北大学 一种直接热挤压海绵钛颗粒制备纯钛的方法
CN114393374B (zh) * 2022-01-13 2024-04-26 陕西华陆金钛工业有限公司 一种tc4钛合金方管生产方法
CN114393374A (zh) * 2022-01-13 2022-04-26 陕西华陆金钛工业有限公司 一种tc4钛合金方管生产方法
CN114672687B (zh) * 2022-03-11 2022-12-02 西安斯瑞先进铜合金科技有限公司 一种铜钛合金铸锭的熔炼工艺
CN114672687A (zh) * 2022-03-11 2022-06-28 西安斯瑞先进铜合金科技有限公司 一种铜钛合金铸锭的熔炼工艺
CN114703393A (zh) * 2022-03-16 2022-07-05 中国人民解放军国防科技大学 一种高强度Ti-Zr-Ta合金及其制备方法、应用
CN114959329A (zh) * 2022-06-15 2022-08-30 西部超导材料科技股份有限公司 一种高纯净性Ti32Ta合金铸锭的制备方法
CN114959329B (zh) * 2022-06-15 2022-11-04 西部超导材料科技股份有限公司 一种高纯净性Ti32Ta合金铸锭的制备方法
CN115386758A (zh) * 2022-08-11 2022-11-25 西北工业大学 高氧钛轧板的制备方法
CN115386758B (zh) * 2022-08-11 2024-01-23 西北工业大学 高氧钛轧板的制备方法
CN115502400A (zh) * 2022-09-06 2022-12-23 中国航发北京航空材料研究院 一种基于氢化钛原料快速制备高性能粉末钛合金的方法
CN116174726A (zh) * 2022-09-09 2023-05-30 吉林大学 一种制备低成本生物医用钛合金球形粉的方法
CN115488341A (zh) * 2022-09-26 2022-12-20 吉林大学 一种具有仿生结构的低模量生物医用钛合金一体化制备方法
CN116329549A (zh) * 2022-11-25 2023-06-27 西安超晶科技股份有限公司 一种tc4钛合金小型模锻件的制备方法
CN116037933A (zh) * 2023-01-04 2023-05-02 北京科技大学 一种Ti2AlNb粉末冶金材料的制备方法
CN116043152B (zh) * 2023-01-31 2024-01-23 嘉善永鑫紧固件有限公司 一种钛合金无磁碟簧及其制备方法和应用
CN116043152A (zh) * 2023-01-31 2023-05-02 嘉善永鑫紧固件有限公司 一种钛合金无磁碟簧及其制备方法和应用
CN116219226A (zh) * 2023-03-16 2023-06-06 承德天大钒业有限责任公司 一种增材制造用tc4钛合金粉体及其制备方法
CN116397138A (zh) * 2023-04-18 2023-07-07 承德天大钒业有限责任公司 一种铝铌钽中间合金及其制备方法
CN116397138B (zh) * 2023-04-18 2024-05-14 承德天大钒业有限责任公司 一种铝铌钽中间合金及其制备方法
CN116716515A (zh) * 2023-07-06 2023-09-08 西安稀有金属材料研究院有限公司 一种高均质耐蚀钛钽中间合金及其制备方法
CN117139622A (zh) * 2023-07-26 2023-12-01 西安欧中材料科技有限公司 一种采用热等静压制备高性能tc11钛合金结构件的方法
CN119368653A (zh) * 2024-11-01 2025-01-28 中国第二重型机械集团德阳万航模锻有限责任公司 一种高均匀性Ti-6Al-4V钛合金大尺寸锻件及制造方法

Also Published As

Publication number Publication date
CN107760897A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2019085183A1 (zh) 制造钛及钛合金冶金制品的方法
CN105734316B (zh) 一种利用氢化钛粉末直接制备成型钛基复合材料的方法
CN112322933B (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
CN110373561B (zh) 一种粉末锻造制备高致密度细晶钛合金的方法
CN105734324A (zh) 一种粉末冶金高熵合金基复合材料的制备方法
CN108787750B (zh) 一种β凝固TiAl合金板材的一步大变形轧制方法
JP2019516861A (ja) チタン、アルミニウム、バナジウム、及び鉄のbcc材料ならびにそれから作製される製品
WO2016127716A1 (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
CN110343887B (zh) 一种粉末挤压制备高致密度细晶钛合金的方法
CN104588653A (zh) 一种TiAl合金型材的制备方法
CN104388788B (zh) 一种低成本制备铌基合金的方法
CN113618073A (zh) 一种钛铝基合金球形粉末的短流程气雾化制备方法
CN106636741A (zh) TiAl合金棒材的制备方法
EP3701054B1 (en) Titanium alloy
CN108220681A (zh) 一种含Cr和Mo的β凝固TiAl合金多向包套锻造方法
CN110238401A (zh) 一种粉末轧制制备高致密度细晶钛合金的方法
CN113881875A (zh) 一种三维骨架结构金属增强铝基复合材料及制备方法
CN102392161A (zh) 一种铝合金及其制备方法
CN114672682B (zh) 高性能粉末冶金钛合金制件及其制备方法
CN114309603B (zh) 一种直接热挤压海绵钛颗粒制备纯钛的方法
CN118186252A (zh) 一种纳米孪晶强化TiAl基合金及其制备方法
CN102417999B (zh) 一种镁合金的制备方法
CN114836658B (zh) 一种铝基复合材料及其半固态制备方法
CN114134359B (zh) 一种使用球形钛合金粗粉末制造钛合金材料的方法
CN116329549A (zh) 一种tc4钛合金小型模锻件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930767

Country of ref document: EP

Kind code of ref document: A1