WO2019026954A1 - スパッタリングターゲット、酸化物半導体薄膜、薄膜トランジスタおよび電子機器 - Google Patents
スパッタリングターゲット、酸化物半導体薄膜、薄膜トランジスタおよび電子機器 Download PDFInfo
- Publication number
- WO2019026954A1 WO2019026954A1 PCT/JP2018/028842 JP2018028842W WO2019026954A1 WO 2019026954 A1 WO2019026954 A1 WO 2019026954A1 JP 2018028842 W JP2018028842 W JP 2018028842W WO 2019026954 A1 WO2019026954 A1 WO 2019026954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- sintered body
- sputtering target
- oxide
- oxide sintered
- Prior art date
Links
- 238000005477 sputtering target Methods 0.000 title claims abstract description 84
- 239000004065 semiconductor Substances 0.000 title claims description 123
- 239000010409 thin film Substances 0.000 title claims description 122
- 239000011701 zinc Substances 0.000 claims abstract description 139
- 150000001875 compounds Chemical class 0.000 claims abstract description 73
- 229910052738 indium Inorganic materials 0.000 claims abstract description 46
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 44
- 229910052718 tin Inorganic materials 0.000 claims abstract description 42
- 239000011029 spinel Substances 0.000 claims abstract description 37
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 37
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 23
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 22
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 9
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims description 43
- 238000005452 bending Methods 0.000 claims description 23
- 229910052789 astatine Inorganic materials 0.000 claims description 3
- 239000010408 film Substances 0.000 description 73
- 239000010410 layer Substances 0.000 description 68
- 239000002994 raw material Substances 0.000 description 41
- 239000002245 particle Substances 0.000 description 31
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 230000005669 field effect Effects 0.000 description 24
- 238000005245 sintering Methods 0.000 description 23
- 239000000523 sample Substances 0.000 description 21
- 239000004973 liquid crystal related substance Substances 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000004544 sputter deposition Methods 0.000 description 18
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 15
- 239000011229 interlayer Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 239000011787 zinc oxide Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000013077 target material Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000002159 abnormal effect Effects 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 238000000137 annealing Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 235000006408 oxalic acid Nutrition 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 230000005641 tunneling Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- -1 oxalic acid Chemical class 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910007541 Zn O Inorganic materials 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 206010048334 Mobility decreased Diseases 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910007604 Zn—Sn—O Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 1
- 229940075624 ytterbium oxide Drugs 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
- C04B35/457—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02592—Microstructure amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/021—Manufacture or treatment of gated diodes, e.g. field-controlled diodes [FCD]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/211—Gated diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
- H10D30/6756—Amorphous oxide semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D48/00—Individual devices not covered by groups H10D1/00 - H10D44/00
- H10D48/383—Quantum effect devices, e.g. of devices using quantum reflection, diffraction or interference effects
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/402—Amorphous materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3287—Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
- C04B2235/663—Oxidative annealing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
- C04B2235/664—Reductive annealing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
- C04B2235/763—Spinel structure AB2O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/803—Pixels having integrated switching, control, storage or amplification elements
- H10F39/8037—Pixels having integrated switching, control, storage or amplification elements the integrated elements comprising a transistor
- H10F39/80377—Pixels having integrated switching, control, storage or amplification elements the integrated elements comprising a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
Definitions
- the present invention relates to a sputtering target, an oxide semiconductor thin film, a thin film transistor, and an electronic device.
- TFTs thin film transistors
- amorphous silicon films or crystalline silicon films as channel layers of TFTs are mainstream Met.
- an oxide semiconductor has attracted attention as a material used for a channel layer of a TFT.
- amorphous oxide semiconductors composed of indium, gallium, zinc and oxygen (In-Ga-Zn-O, hereinafter abbreviated as "IGZO") disclosed in Patent Document 1 are particularly high. It is preferably used because it has carrier mobility. However, IGZO has the disadvantage that the raw material cost is high because In and Ga are used as the raw material.
- ZTO Zn-Sn-O
- ITZO In-Sn-Zn-O
- ITZO has a large thermal expansion coefficient and a low thermal conductivity. Therefore, the sputtering target made of ITZO was likely to generate a crack due to thermal stress during bonding to a Cu or Ti backing plate and during sputtering.
- the oxide sintered body contains a hexagonal layered compound represented by In 2 O 3 (ZnO) m and a spinel structure compound represented by Zn 2 SnO 4 , and In 2 O 3 ( It has been proposed to improve the strength of the oxide sintered body by setting the aspect ratio of the hexagonal layered compound represented by ZnO) m to 3 or more.
- Patent Document 4 discloses that aluminum can be contained as long as the effects of the invention are not impaired, in addition to the hexagonal layered compound and the spinel structure compound.
- Patent document 5 is made of an oxide containing indium element (In), tin element (Sn), zinc element (Zn) and aluminum element (Al), and In 2 O 3 (ZnO) n (n is 2 to No. 20, and a sputtering target containing a spinel structure compound represented by Zn 2 SnO 4 is described.
- the ITZO sputtering targets of Patent Documents 3 to 5 have the following problems.
- the sputtering target described in Patent Document 3 increases the integrated power to 200 Wh or more when mixing and grinding the raw material powder.
- the amount of raw material powder increases, such as in mass production, power is not uniformly transmitted to the whole raw material powder at the time of mixing and pulverizing, and a hexagonal layered compound having an aspect ratio of 3 or more does not uniformly precipitate in the sintered body.
- the intensity of the target is uneven.
- Patent Documents 4 and 5 aim to provide a high density and low resistance target, and do not suggest the strength of the sputtering target. Therefore, the sputtering targets described in Patent Documents 4 and 5 do not have a structure that can suppress the occurrence of cracks during sputtering.
- the present invention has been made in view of the above problems, and it is an object of the present invention to provide a high-strength sputtering target that can suppress the occurrence of cracks during bonding to a backing plate and during sputtering.
- the following sputtering target, oxide semiconductor thin film, thin film transistor and electronic device are provided.
- the oxide sintered body has an average crystal grain size of 10 ⁇ m or less, and a difference between the average crystal grain size of the hexagonal layered compound and the average crystal grain size of the spinel compound is 1 ⁇ m or less [1] to [8] ]
- the sputtering target as described in any one of the above.
- the oxide sintered body has an average crystal grain size of 10 ⁇ m or less, and a difference between the average crystal grain size of the bixbite structure compound and the average crystal grain size of the spinel compound is 1 ⁇ m or less.
- the sputtering target according to any one of [1] to [8].
- the oxide semiconductor thin film which contains an indium element (In), a tin element (Sn), a zinc element (Zn), an X element, and oxygen, and the atomic ratio of each element satisfy
- In, Zn, Sn, and X represent content of the indium element in the oxide semiconductor thin film, a zinc element, a tin element, and an X element, respectively.
- X element is Ge, Si, Y, At least one selected from Zr, Al, Mg, Yb, and Ga.
- FIG. 7 is a longitudinal sectional view showing another embodiment of the quantum tunnel field effect transistor.
- FIG. 5 is a TEM (transmission electron microscope) photograph of a portion where a silicon oxide layer is formed between a p-type semiconductor layer and an n-type semiconductor layer. It is a longitudinal cross-sectional view for demonstrating the manufacturing procedure of a quantum tunnel field effect transistor. It is a longitudinal cross-sectional view for demonstrating the manufacturing procedure of a quantum tunnel field effect transistor. It is a longitudinal cross-sectional view for demonstrating the manufacturing procedure of a quantum tunnel field effect transistor. It is a longitudinal cross-sectional view for demonstrating the manufacturing procedure of a quantum tunnel field effect transistor. It is a longitudinal cross-sectional view for demonstrating the manufacturing procedure of a quantum tunnel field effect transistor. It is a longitudinal cross-sectional view for demonstrating the manufacturing procedure of a quantum tunnel field effect transistor.
- the ordinal numbers “first”, “second”, and “third” used in the present specification are given to avoid confusion of the constituent elements, and are not limited numerically. I will add it.
- the term “electrically connected” includes the case where they are connected via "something having an electrical function".
- the “thing having an electrical function” is not particularly limited as long as it can transmit and receive electrical signals between connection targets.
- “those having some electrical function” include electrodes, wirings, switching elements (such as transistors), resistance elements, inductors, capacitors, elements having various other functions, and the like.
- the terms “film” or “thin film” and the term “layer” can be interchanged with each other in some cases.
- the functions of the source and the drain of the transistor may be interchanged when employing transistors of different polarities or when the direction of current changes in circuit operation. Therefore, in the present specification and the like, the terms “source” and “drain” can be used interchangeably.
- a sputtering target according to an embodiment of the present invention (hereinafter, may be simply referred to as a sputtering target according to the present embodiment) includes an oxide sintered body.
- the sputtering target according to the present embodiment can be obtained, for example, by cutting and polishing the bulk of the oxide sintered body into a shape suitable as a sputtering target.
- a sputtering target can also be obtained by bonding a sputtering target material obtained by grinding and polishing the bulk of the oxide sintered body to a backing plate.
- the target which consists only of an oxide sinter is also mentioned.
- the shape of the oxide sintered body is not particularly limited, but may be a plate shape as shown by symbol 1 in FIG. 1A or a cylindrical shape as shown by symbol 1A in FIG. 1B.
- the planar shape may be a rectangle as shown by symbol 1 in FIG. 1A or a circle as shown by symbol 1B in FIG. 1C.
- the oxide sintered body may be integrally formed, or may be a multi-division type in which the oxide sintered body (symbol 1C) divided into a plurality of parts is fixed to the backing plate 3 as shown in FIG. 1D.
- the backing plate 3 is a member for holding and cooling the oxide sintered body.
- the material of the backing plate 3 is not particularly limited, but a material such as Cu, Ti, or SUS is used.
- the oxide sintered body according to the present embodiment contains indium element (In), tin element (Sn), zinc element (Zn), X element, and oxygen.
- the oxide sintered body contains the metal element other than the above-mentioned indium element (In), tin element (Sn), zinc element (Zn), and X element, as long as the effects of the present invention are not impaired. Or substantially only indium element (In), tin element (Sn), zinc element (Zn), X element only, or indium element (In), tin element (Sn), zinc element (Zn), X It may consist only of elements.
- substantially means that 95% by mass or more and 100% by mass or less (preferably 98% by mass or more and 100% by mass or less) of the metal elements of the oxide sintered body are indium elements (In) and tin elements (Sn ), Zinc element (Zn), and X element are meant.
- the oxide sintered body according to the present embodiment may contain unavoidable impurities in addition to In, Sn, Zn, and Al as long as the effects of the present invention are not impaired. Unavoidable impurities here are elements which are not intentionally added, and mean elements mixed in the raw material or the manufacturing process.
- the X element includes germanium (Ge), silicon (Si), yttrium (Y), zirconium (Zr), aluminum (Al), magnesium (Mg), ytterbium (Yb), and gallium ( At least one selected from Ga).
- unavoidable impurities include alkali metals, alkaline earth metals (Li, Na, K, Rb, Ca, Sr, Ba etc.), hydrogen (H) element, boron (B) element, carbon (C) element, They are nitrogen (N) element, fluorine (F) element, and chlorine (Cl) element.
- the atomic ratio of each element satisfies the following formula (1). 0.001 ⁇ X / (In + Sn + Zn + X) ⁇ 0.05 (1)
- In the formula (1), In, Zn, Sn and X respectively represent the contents of indium element, zinc element, tin element and X element in the oxide sintered body.
- X element is Ge, Si, Y And at least one selected from Zr, Al, Mg, Yb and Ga
- the average bending strength of the oxide sintered body can be sufficiently increased by setting the content ratio of the X element in the oxide sintered body within the range of the above-mentioned formula (1).
- the element X is preferably silicon element (Si), aluminum element (Al), magnesium element (Mg), ytterbium element (Yb), and gallium element (Ga), and more preferably silicon element (Si) , An aluminum element (Al), and a gallium element (Ga).
- aluminum element (Al) and gallium element (Ga) are preferable because the composition of the oxide as the raw material is stable and the effect of improving the average bending strength is high.
- X / (In + Sn + Zn + X) When X / (In + Sn + Zn + X) is 0.001 or more, strength reduction of the sputtering target can be suppressed.
- X / (In + Sn + Zn + X) When X / (In + Sn + Zn + X) is 0.05 or less, an oxide semiconductor thin film formed using a sputtering target including the oxide sintered body may be etched by a weak acid such as oxalic acid It will be easier. Furthermore, it is possible to suppress a decrease in TFT characteristics, particularly mobility.
- X / (In + Sn + Zn + X) is preferably 0.001 or more and 0.05 or less, more preferably 0.003 or more and 0.03 or less, and still more preferably 0.005 or more and 0.01 or less.
- the oxide sintered body according to the present embodiment may contain only one element X, or may contain two or more elements. When two or more X elements are contained, X in the formula (1) is the sum of atomic ratios of X elements.
- the form in which the X element is present in the oxide sintered body is not particularly defined. Examples of the existence form of the X element in the oxide sintered body include a form existing as an oxide, a form being in solid solution, and a form being segregated in grain boundaries.
- the bulk resistance of the sputtering target can be sufficiently lowered by setting the content ratio of the element X within the range of the above-mentioned formula (1).
- the bulk resistance of the sputtering target of the present invention is preferably 50 m ⁇ cm or less, more preferably 25 m ⁇ cm or less, still more preferably 10 m ⁇ cm or less, still more preferably 5 m ⁇ cm or less, particularly preferably 3 m ⁇ cm or less .
- stable film formation can be performed by direct current sputtering.
- the bulk resistance value can be measured based on the four probe method (JIS R 1637: 1998) using a known resistivity meter.
- the average value is preferably taken as the bulk resistance value.
- the planar shape of the oxide sintered body is a quadrangle, it is preferable to divide the surface into nine equal areas and to set the center point of each quadrangle to nine.
- the planar shape of the oxide sintered body is circular, it is preferable to divide the square inscribed in the circle into nine equal areas and to set nine central points of each square.
- the atomic ratio of each element satisfy at least one of the following formulas (2) to (4). 0.40 ⁇ Zn / (In + Sn + Zn) ⁇ 0.80 (2) 0.15 ⁇ Sn / (Sn + Zn) ⁇ 0.40 (3) 0.10 ⁇ In / (In + Sn + Zn) ⁇ 0.35 (4)
- Zn and Sn respectively represent the contents of indium element, zinc element and tin element in the oxide sintered body.
- Zn / (In + Sn + Zn) When Zn / (In + Sn + Zn) is 0.4 or more, a spinel phase is easily generated in the oxide sintered body, and the characteristics as a semiconductor can be easily obtained.
- Zn / (In + Sn + Zn) is 0.80 or less, a reduction in strength due to abnormal grain growth of the spinel phase can be suppressed in the oxide sintered body.
- the fall of the mobility of an oxide semiconductor thin film can be suppressed because Zn / (In + Sn + Zn) is 0.80 or less.
- Zn / (In + Sn + Zn) is more preferably 0.50 or more and 0.70 or less.
- strength by abnormal grain growth of a spinel phase can be suppressed in oxide sinter as Sn / (Sn + Zn) is 0.15 or more.
- Sn / (Sn + Zn) being 0.40 or less, aggregation of the tin oxide which becomes the cause of the abnormal discharge at the time of a sputter
- the oxide semiconductor thin film formed into a film using a sputtering target can perform the etching process by weak acids, such as oxalic acid, easily because Sn / (Sn + Zn) is 0.40 or less.
- Sn / (Sn + Zn) By setting Sn / (Sn + Zn) to at least 0.15, the etching rate can be prevented from becoming too fast, and etching control can be facilitated. It is more preferable that Sn / (Sn + Zn) is 0.15 or more and 0.35 or less.
- In / (In + Sn + Zn) When In / (In + Sn + Zn) is 0.1 or more, the bulk resistance of the obtained sputtering target can be lowered. In addition, when In / (In + Sn + Zn) is 0.1 or more, the mobility of the oxide semiconductor thin film can be suppressed from being extremely low. When In / (In + Sn + Zn) is 0.35 or less, when sputtering film formation is performed, the film can be suppressed from becoming a conductor, and it becomes easy to obtain characteristics as a semiconductor. More preferably, In / (In + Sn + Zn) is 0.10 or more and 0.30 or less.
- the atomic ratio of each metal element of the oxide sintered body can be controlled by the blending amount of the raw material.
- the atomic ratio of each element can be determined by quantitatively analyzing the contained element with an inductively coupled plasma emission spectrometer (ICP-AES).
- the oxide sintered body according to the present embodiment preferably contains a spinel structure compound represented by Zn 2 SnO 4, a spinel structure compound represented by Zn 2 SnO 4, and In 2 O 3 (ZnO) m wherein m is an integer of 2 to 7. It is more preferable to contain the hexagonal stratiform compound represented by these. M in the formula is an integer of 2 to 7, preferably 3 to 5.
- the spinel structure compound may be referred to as a spinel compound.
- m is 2 or more, the compound takes a hexagonal layered structure.
- m is 7 or less, the bulk resistance of the oxide sintered body is lowered.
- the hexagonal layered compound composed of indium oxide and zinc oxide is a compound showing an X-ray diffraction pattern belonging to the hexagonal layered compound in the measurement by the X-ray diffraction method.
- the hexagonal layered compound contained in the oxide sintered body is a compound represented by In 2 O 3 (ZnO) m .
- the oxide sintered body according to the present embodiment may contain a spinel structure compound represented by Zn 2 SnO 4 and a bixbite structure compound represented by In 2 O 3 .
- the average crystal grain size of the oxide sintered body according to the present embodiment is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, from the viewpoint of preventing abnormal discharge and easiness of production. When the average crystal grain size is 10 ⁇ m or less, abnormal discharge due to grain boundaries can be prevented.
- the lower limit of the average crystal grain size of the oxide sintered body is not particularly limited, but is preferably 1 ⁇ m or more from the viewpoint of ease of production.
- the average grain size can be adjusted by changing the selection of raw materials and production conditions. Specifically, a raw material having a small average particle diameter, preferably a raw material having an average particle diameter of 1 ⁇ m or less is used. Furthermore, in sintering, as the sintering temperature is higher or as the sintering time is longer, the average crystal grain size tends to be larger.
- the average grain size can be measured as follows.
- the surface of the oxide sintered body is polished, and if the planar shape is a quadrangle, the surface is divided into 16 equal areas, and within a frame of 1000 times (80 ⁇ m ⁇ 125 ⁇ m) at 16 central points of each quadrilateral
- the particle diameter observed in the above is measured, the average value of the particle diameter of the particles in the 16 frames is determined, and finally the average value of the 16 measured values is taken as the average crystal particle diameter.
- the surface of the oxide sintered body is polished, and when the planar shape is circular, the square inscribed in the circle is divided into 16 equal areas, and the magnification of 1000 times (80 ⁇ m ⁇ 125 ⁇ m) at 16 central points of each square
- the particle size of the particles observed in the frame is measured, and the average value of the particle sizes of the particles in the 16 frames is obtained.
- the particle size of particles having an aspect ratio of less than 2 is measured based on JIS R 1670: 2006, with the particle size of crystal grains as the equivalent circle diameter. Specifically, as a procedure for measuring the equivalent circle diameter, a round ruler is placed on the measurement target grain of the microstructure photograph to read the diameter corresponding to the area of the target grain.
- the average value of the longest diameter and the shortest diameter is taken as the particle diameter of the particle.
- the crystal grains can be observed by a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the hexagonal layered compound, the spinel compound, and the bixbite structure compound can be confirmed by the methods described in the examples described later.
- the difference between the average grain size of the hexagonal layered compound and the average grain size of the spinel compound is 1 ⁇ m or less Is preferred.
- the average crystal grain size of the oxide sintered body according to this embodiment is 10 ⁇ m or less, and the difference between the average crystal grain size of the hexagonal layered compound and the average crystal grain size of the spinel compound is more preferably 1 ⁇ m or less .
- the difference between the average grain size of the bixbite structure compound and the average crystal grain size of the spinel compound is 1 ⁇ m. It is preferable that it is the following. By setting the average crystal grain size to such a range, the strength of the oxide sintered body can be improved.
- the average crystal grain size of the oxide sintered body according to the present embodiment is 10 ⁇ m or less, and the difference between the average crystal grain size of the bixbite structure compound and the average crystal grain size of the spinel compound is more preferably 1 ⁇ m or less .
- the relative density of the oxide sintered body according to the present embodiment is preferably 95% or more, more preferably 96% or more. Since the mechanical strength of the sputtering target is high and the conductivity is excellent because the relative density of the oxide sintered body is 95% or more, the sputtering target is attached to an RF magnetron sputtering apparatus or a DC magnetron sputtering apparatus. The stability of plasma discharge at the time of sputtering can be further enhanced.
- the relative density of the oxide sintered body is calculated from the intrinsic density of each of indium oxide, zinc oxide, tin oxide and the oxide of the X element, and the composition ratio thereof, and the actuality of the oxide sintered body against the theoretical density The density measured in Table 2 is shown as a percentage.
- the average bending strength of the oxide sintered body according to the present embodiment is 150 MPa or more, it is possible to suppress the occurrence of cracking due to a high temperature load such as bonding and backing on a backing plate.
- the average bending strength is based on JIS R 1601: 2008, in which the test piece of a prism is placed on two supports installed at an interval of 30 mm, and a pressing metal is applied to the central part. It is an average value of 30 test pieces of load (3 point bending strength) when a load is applied to the test piece and the test piece breaks.
- the average bending strength of the oxide sintered body according to the present embodiment is preferably 180 MPa or more, more preferably 210 MPa or more, still more preferably 230 MPa or more, and particularly preferably 250 MPa or more.
- the Weibull coefficient of the average bending strength of the oxide sintered body according to the present embodiment is preferably 7 or more, more preferably 10 or more, and still more preferably 15 or more.
- the Weibull coefficient of the average sintered body of the oxide sintered body is preferably 7 or more because variation in strength decreases as the Weibull coefficient increases.
- the Weibull coefficient is determined from the slope of the Weibull plot by plotting the bending strength on the Weibull probability axis (hereinafter referred to as “Weibull plot”) by the Weibull statistical analysis defined in JIS R 1625: 2010.
- the oxide sintered body according to the present embodiment includes a mixing step of mixing an indium raw material, a zinc raw material, a tin raw material and an X element raw material, a forming step of forming a raw material mixture, a sintering step of sintering a formed material, and Depending on the sintered body, it can be manufactured through an annealing process. Each step will be specifically described below.
- the In raw material is not particularly limited as long as it is a compound containing In or a metal.
- the Zn raw material is also not particularly limited as long as it is a compound containing Zn or a metal.
- the Sn raw material is not particularly limited as long as it is a compound containing Zn or a metal.
- the raw material of the X element is not particularly limited as long as it is a compound or metal containing the X element.
- the In raw material, the Zn raw material, the Sn raw material, and the raw material of the X element are preferably oxides.
- the raw materials such as indium oxide, zinc oxide, tin oxide, and X element oxide are desirably high purity raw materials, and the purity is 99% by mass or more, preferably 99.9% by mass or more, and more preferably 99% by mass.
- a raw material of .99% by mass or more is suitably used. This is because when a high purity raw material is used, a sintered body having a dense structure is obtained, and the volume resistivity of the sputtering target made of the sintered body is lowered.
- the average particle diameter of the primary particle of the metal oxide as a raw material becomes like this.
- it is 0.01 to 10 micrometer, More preferably, it is 0.05 to 5 micrometer, More preferably, it is 0.1 to 5 micrometer It is.
- the average particle size is 0.01 ⁇ m or more, aggregation is difficult, and when the average particle size is 10 ⁇ m or less, the mixing property is sufficient, and a sintered body having a fine structure can be obtained.
- the average particle size is measured by the BET method.
- a binder such as polyvinyl alcohol or vinyl acetate can be added to the raw material.
- the mixing of the raw materials can be performed using a conventional mixer such as a ball mill, jet mill and bead mill.
- the mixture obtained in the mixing step may be shaped immediately, but may be subjected to a calcination treatment prior to shaping.
- the mixture is fired at 700 ° C. to 900 ° C. for 1 hour to 5 hours.
- the mixture of the raw material powder which is not subjected to the calcination process, or the mixture subjected to the calcination process, is granulated to improve the flowability and the filling property in the subsequent forming process.
- Granulation can be performed using a spray dryer or the like.
- the average particle diameter of secondary particles formed by the granulation treatment is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, and still more preferably 10 ⁇ m to 100 ⁇ m. Since the mixture subjected to the calcination treatment has particles bonded to each other, when the granulation treatment is performed, the crushing treatment is performed before the treatment.
- the powder or granulated material of the raw material is molded by a method such as die press molding, cast molding or injection molding in the molding step.
- a method such as die press molding, cast molding or injection molding in the molding step.
- the sintering temperature is preferably 1200 ° C. or more and 1600 ° C. or less, more preferably 1250 ° C. or more and 1550 ° C. or less, and still more preferably 1300 ° C. or more and 1500 ° C. or less.
- the temperature rising rate at the time of sintering is from 0.1 ° C./min to 3 ° C./min from room temperature to the sintering temperature.
- the temperature may be temporarily maintained at 700 ° C. to 800 ° C. for 1 hour to 10 hours, and the temperature may be raised again to the sintering temperature.
- the sintering time varies depending on the sintering temperature, but is preferably 1 to 50 hours, more preferably 2 to 30 hours, and still more preferably 3 to 20 hours.
- the atmosphere at the time of sintering may be air or oxygen gas, and these include a reducing gas such as hydrogen gas, methane gas or carbon monoxide gas, or an inert gas such as argon gas or nitrogen gas. It is also good.
- the annealing step is not essential, when it is carried out, the temperature is usually maintained at 700 ° C. to 1100 ° C. for 1 hour to 5 hours.
- the sintered body may be once cooled, then heated again for annealing, or may be annealed when the temperature is lowered from the sintering temperature.
- the atmosphere during the annealing may be air or oxygen gas, and may contain a reducing gas such as hydrogen gas, methane gas or carbon monoxide gas, or an inert gas such as argon gas or nitrogen gas. Good.
- the sintered body obtained in the above steps (1) to (4) is cut into an appropriate shape, and the surface is polished if necessary to complete the sputtering target.
- a sintered target is cut into a shape suitable for attachment to a sputtering apparatus to form a sputtering target material (sometimes referred to as a target material), and the target material is adhered to a backing plate.
- a sputtering target is obtained.
- surface roughness Ra of a sintered compact is 0.5 micrometer or less.
- a method of adjusting surface roughness Ra of a sintered compact the method of grinding a sintered compact with a surface grinder is mentioned, for example.
- the surface of the sputtering target material is preferably finished with a No. 200 to No. 1000 diamond grindstone, particularly preferably with a No. 400 to No. 800 diamond grindstone.
- the use of a No. 200 or more No. 1,000 diamond grinding wheel can prevent the sputtering target material from being broken.
- the surface roughness Ra of the sputtering target material is preferably 0.5 ⁇ m or less, and it is preferable to provide a grinding surface having no directivity. If the sputtering target material has a surface roughness Ra of 0.5 ⁇ m or less and is provided with a non-directional polished surface, abnormal discharge and generation of particles can be prevented.
- the obtained sputtering target material is cleaned.
- air blow or running water washing can be used.
- foreign matter can be more effectively removed by suctioning air from the side opposite to the air blow nozzle with a dust collector.
- ultrasonic cleaning and the like can be further performed.
- the ultrasonic cleaning is effectively performed by performing multiple oscillation at a frequency of 25 kHz or more and 300 kHz or less.
- ultrasonic cleaning is preferably performed by performing multiple oscillations of 12 types of frequency in 25 kHz steps in a frequency range of 25 kHz to 300 kHz.
- the thickness of the sputtering target material is usually 2 mm or more and 20 mm or less, preferably 3 mm or more and 12 mm or less, more preferably 4 mm or more and 9 mm or less, and particularly preferably 4 mm or more and 6 mm or less.
- a sputtering target can be obtained by bonding the sputtering target material obtained through the above steps and processing to a backing plate.
- a plurality of sputtering target materials may be attached to one backing plate to form substantially one sputtering target.
- the sputtering target according to the present embodiment can have a relative density of 98% or more and a bulk resistance of 5 m ⁇ cm or less by the above manufacturing method, and can suppress the occurrence of abnormal discharge when sputtering is performed. Moreover, the sputtering target which concerns on this embodiment can form a high quality oxide semiconductor thin film into a film efficiently, cheaply, and by energy saving.
- the oxide semiconductor thin film according to the present embodiment contains indium element (In), tin element (Sn), zinc element (Zn), element X, and oxygen, and the atomic ratio of each element is the following formula (1A) Fulfill. 0.001 ⁇ X / (In + Sn + Zn + X) ⁇ 0.05 (1A) (In Formula (1A), In, Zn, Sn, and X represent content of the indium element in the oxide semiconductor thin film, a zinc element, a tin element, and an X element, respectively.
- X element is Ge, Si, Y, At least one selected from Zr, Al, Mg, Yb, and Ga.
- the oxide semiconductor thin film according to the present embodiment can be manufactured by a sputtering method using the sputtering target according to the present embodiment.
- the atomic ratio composition of the oxide semiconductor thin film obtained by the sputtering method reflects the atomic ratio composition of the oxide sintered body in the sputtering target.
- the oxide semiconductor thin film according to the present embodiment has the above formula By satisfying (1A), the influence on the TFT characteristics can be reduced.
- the strength of the sputtering target is improved by increasing the amount of the X element, there is a possibility that the TFT characteristics may be deteriorated if the amount is increased too much, and in the oxide semiconductor thin film according to the present embodiment, By forming the oxide semiconductor thin film using a sputtering target so as to satisfy the range of), the effects of improving the target strength and suppressing the deterioration of the TFT characteristics can be obtained in a well-balanced manner.
- the oxide semiconductor thin film according to the present embodiment When X / (In + Sn + Zn + X) of the oxide semiconductor thin film according to the present embodiment is 0.05 or less, the oxide semiconductor thin film can be easily etched by a weak acid such as oxalic acid. Furthermore, it is possible to suppress a decrease in TFT characteristics, particularly mobility.
- the X / (In + Sn + Zn + X) of the oxide semiconductor thin film according to the present embodiment is preferably 0.001 or more and 0.05 or less, more preferably 0.003 or more and 0.03 or less, and still more preferably 0. And .005 or more and 0.01 or less, and particularly preferably 0.005 or more and less than 0.01.
- the atomic ratio of each element satisfies at least one of the following formulas (2A) to (4A). 0.40 ⁇ Zn / (In + Sn + Zn) ⁇ 0.80 (2A) 0.15 ⁇ Sn / (Sn + Zn) ⁇ 0.40 (3A) 0.10 ⁇ In / (In + Sn + Zn) ⁇ 0.35 (4A)
- Zn / (In + Sn + Zn) ratio is 0.4 or more, a spinel phase is easily generated in the oxide semiconductor thin film, and characteristics as a semiconductor can be easily obtained.
- Zn / (In + Sn + Zn) is 0.80 or less, a reduction in strength due to abnormal grain growth of the spinel phase can be suppressed in the oxide semiconductor thin film.
- the fall of the mobility of an oxide semiconductor thin film can be suppressed because Zn / (In + Sn + Zn) is 0.80 or less.
- Zn / (In + Sn + Zn) is more preferably 0.50 or more and 0.70 or less.
- Sn / (Sn + Zn) The fall of the intensity
- Sn / (Sn + Zn) is 0.40 or less, the oxide semiconductor thin film formed using a sputtering target can be easily etched by a weak acid such as oxalic acid.
- Sn / (Sn + Zn) By setting Sn / (Sn + Zn) to at least 0.15, the etching rate can be prevented from becoming too fast, and etching control can be facilitated. It is more preferable that Sn / (Sn + Zn) is 0.15 or more and 0.35 or less.
- In / (In + Sn + Zn) When In / (In + Sn + Zn) is 0.1 or more, the mobility of the oxide semiconductor thin film can be suppressed from being extremely low. When In / (In + Sn + Zn) is 0.35 or less, when sputtering film formation is performed, the film can be suppressed from becoming a conductor, and it becomes easy to obtain characteristics as a semiconductor. More preferably, In / (In + Sn + Zn) is 0.10 or more and 0.30 or less.
- the oxide semiconductor thin film according to the present embodiment is in an amorphous state when deposited by sputtering, and preferably in an amorphous state even after heat treatment (annealing treatment).
- Examples of the thin film transistor according to the present embodiment include a thin film transistor including the oxide semiconductor thin film according to the present embodiment.
- oxide semiconductor thin film according to the present embodiment is a channel layer of the thin film transistor.
- the other element configuration in the thin film transistor is not particularly limited, and a known element configuration can be adopted.
- the thin film transistor according to this embodiment can be suitably used for an electronic device.
- the thin film transistor according to the present embodiment can be suitably used for a display device such as a liquid crystal display and an organic EL display.
- the film thickness of the channel layer in the thin film transistor according to this embodiment is usually 10 nm or more and 300 nm or less, preferably 20 nm or more and 250 nm or less.
- the channel layer in the thin film transistor according to the present embodiment is generally used in an N-type region, but is combined with various P-type semiconductors such as P-type Si semiconductor, P-type oxide semiconductor, P-type organic semiconductor, etc. It can be used for various semiconductor devices such as transistors.
- the thin film transistor according to this embodiment can be applied to various integrated circuits such as a field effect transistor, a logic circuit, a memory circuit, and a differential amplifier circuit. Furthermore, in addition to the field effect transistor, the present invention can be applied to an electrostatic induction transistor, a Schottky barrier transistor, a Schottky diode, and a resistor.
- the configuration of the thin film transistor according to the present embodiment can be adopted without limitation a configuration selected from known configurations such as a bottom gate, a bottom contact, and a top contact.
- the bottom gate configuration is advantageous because high performance can be obtained compared to amorphous silicon or ZnO thin film transistors.
- the bottom gate configuration is preferable because it is easy to reduce the number of masks at the time of manufacturing and to easily reduce the manufacturing cost of applications such as large displays.
- the thin film transistor according to the present embodiment can be suitably used for a display device.
- a channel etched bottom gate thin film transistor is particularly preferable.
- the channel-etched bottom gate thin film transistor can manufacture a display panel at a low cost since the number of photomasks in the photolithography process is small.
- thin film transistors having a channel-etched bottom gate structure and a top contact structure are particularly preferable because they are excellent in characteristics such as mobility and easily industrialized.
- the thin film transistor 100 includes a silicon wafer 20, a gate insulating film 30, an oxide semiconductor thin film 40, a source electrode 50, a drain electrode 60, and interlayer insulating films 70 and 70A.
- the silicon wafer 20 is a gate electrode.
- the gate insulating film 30 is an insulating film that blocks the conduction between the gate electrode and the oxide semiconductor thin film 40, and is provided on the silicon wafer 20.
- the oxide semiconductor thin film 40 is a channel layer and is provided on the gate insulating film 30.
- the oxide semiconductor thin film according to the present embodiment is used for the oxide semiconductor thin film 40.
- the source electrode 50 and the drain electrode 60 are conductive terminals for flowing a source current and a drain current to the oxide semiconductor thin film 40, and are provided so as to be in contact with the vicinity of both ends of the oxide semiconductor thin film 40.
- the interlayer insulating film 70 is an insulating film that blocks conduction between the source electrode 50 and the drain electrode 60 and the oxide semiconductor thin film 40 except for the contact portion.
- the interlayer insulating film 70A is an insulating film that blocks conduction between the source electrode 50, the drain electrode 60, and the oxide semiconductor thin film 40 except for the contact portion.
- the interlayer insulating film 70A is also an insulating film that blocks the conduction between the source electrode 50 and the drain electrode 60.
- the interlayer insulating film 70A is also a channel layer protective layer.
- the structure of the thin film transistor 100A is the same as that of the thin film transistor 100, but the source electrode 50 and the drain electrode 60 are provided in contact with both the gate insulating film 30 and the oxide semiconductor thin film 40.
- the point is different.
- an interlayer insulating film 70B is integrally provided to cover the gate insulating film 30, the oxide semiconductor thin film 40, the source electrode 50, and the drain electrode 60.
- the materials for forming the drain electrode 60, the source electrode 50, and the gate electrode can be arbitrarily selected.
- an electrode material is not limited to silicon.
- transparent electrodes such as indium tin oxide (ITO), indium zinc oxide (IZO), ZnO, and SnO 2
- metal electrodes such as Al, Ag, Cu, Cr, Ni, Mo, Au, Ti, and Ta
- metal electrodes or laminated electrodes of alloys containing these can be used.
- the gate electrode may be formed on a substrate such as glass.
- the material for forming the interlayer insulating films 70, 70A, 70B is not particularly limited, and a commonly used material can be arbitrarily selected.
- a material for forming the interlayer insulating films 70, 70A, 70B specifically, for example, SiO 2 , SiN x , Al 2 O 3 , Ta 2 O 5 , TiO 2 , MgO, ZrO 2 , CeO 2 , K 2 O, Li 2 O, Na 2 O, Rb 2 O, Sc 2 O 3 , Y 2 O 3 , Y 2 O 3 , HfO 2 , CaHfO 3 , PbTiO 3 , PbTa 2 O 6 , SrTiO 3 , Sm 2 O 3 , and AlN etc.
- Compounds can be used.
- the thin film transistor according to this embodiment is a back channel etch type (bottom gate type)
- a protective film on the drain electrode, the source electrode, and the channel layer.
- the durability can be easily improved even when the TFT is driven for a long time.
- a gate insulating film is formed on a channel layer.
- the protective film or the insulating film can be formed by, for example, CVD, but it may result in a process due to high temperature. Further, the protective film or the insulating film often contains an impurity gas immediately after deposition, and it is preferable to perform heat treatment (annealing treatment). By removing the impurity gas by heat treatment, a stable protective film or insulating film can be obtained, and a highly durable TFT element can be easily formed.
- the TFT characteristics are hardly affected by the influence of the temperature in the CVD process and the heat treatment thereafter, so that the TFT characteristics can be obtained even when the protective film or the insulating film is formed. Stability can be improved.
- the on / off characteristic is a factor that determines the display performance of the display.
- the on / off ratio is preferably 6 digits or more.
- the On current is important for current drive, but the On / Off ratio is preferably 6 digits or more.
- the thin film transistor according to the present embodiment preferably has an On / Off ratio of 1 ⁇ 10 6 or more.
- the mobility of the TFT according to this embodiment is preferably 5 cm 2 / Vs or more, and more preferably 10 cm 2 / Vs or more. The saturation mobility is obtained from the transfer characteristics when a drain voltage of 20 V is applied.
- Id is a current between the source and drain electrodes
- Vg is a gate voltage when a voltage Vd is applied between the source and drain electrodes.
- the threshold voltage (Vth) is preferably -3.0 V or more and 3.0 V or less, more preferably -2.0 V or more and 2.0 V or less, and still more preferably -1.0 V or more and 1.0 V or less.
- the threshold voltage (Vth) is -3.0 V or more, a high mobility thin film transistor can be obtained.
- the threshold voltage (Vth) is 3.0 V or less, a thin film transistor having a small off current and a large on / off ratio can be obtained.
- the on / off ratio is preferably 10 6 or more and 10 12 or less, more preferably 10 7 or more and 10 11 or less, and still more preferably 10 8 or more and 10 10 or less.
- the on / off ratio is 10 6 or more
- the liquid crystal display can be driven.
- the on / off ratio is 10 12 or less
- driving of the organic EL with large contrast can be performed.
- the off current can be reduced to 10 -11 A or less, and when a thin film transistor is used as a transfer transistor or reset transistor of a CMOS image sensor, the image retention time is extended. It is possible to improve the sensitivity.
- the oxide semiconductor thin film according to the present embodiment can also be used for a quantum tunnel field effect transistor (FET).
- FET quantum tunnel field effect transistor
- FIG. 4 shows a schematic view (longitudinal sectional view) of a quantum tunneling field effect transistor (FET) according to one embodiment.
- the quantum tunnel field effect transistor 501 includes a p-type semiconductor layer 503, an n-type semiconductor layer 507, a gate insulating film 509, a gate electrode 511, a source electrode 513, and a drain electrode 515.
- the p-type semiconductor layer 503, the n-type semiconductor layer 507, the gate insulating film 509, and the gate electrode 511 are stacked in this order.
- the source electrode 513 is provided on the p-type semiconductor layer 503.
- the drain electrode 515 is provided on the n-type semiconductor layer 507.
- the p-type semiconductor layer 503 is a p-type group IV semiconductor layer, and here is a p-type silicon layer.
- the n-type semiconductor layer 507 is an n-type oxide semiconductor thin film according to the above embodiment.
- the source electrode 513 and the drain electrode 515 are conductive films.
- an insulating layer may be formed on the p-type semiconductor layer 503.
- the p-type semiconductor layer 503 and the n-type semiconductor layer 507 are connected via a contact hole which is a region in which the insulating layer is partially opened.
- the quantum tunnel field effect transistor 501 may include an interlayer insulating film covering the upper surface thereof.
- the quantum tunnel field effect transistor 501 controls the current tunneling through the energy barrier formed by the p-type semiconductor layer 503 and the n-type semiconductor layer 507 by the voltage of the gate electrode 511, and switches the current. (FET).
- FET field effect transistor
- FIG. 5 shows a schematic view (longitudinal sectional view) of a quantum tunnel field effect transistor 501A according to another embodiment.
- the configuration of the quantum tunnel field effect transistor 501A is the same as that of the quantum tunnel field effect transistor 501, except that a silicon oxide layer 505 is formed between the p-type semiconductor layer 503 and the n-type semiconductor layer 507.
- the presence of the silicon oxide layer can reduce the off current.
- the thickness of the silicon oxide layer 505 is preferably 10 nm or less. By setting the thickness to 10 nm or less, it is possible to prevent the tunnel current from flowing or to prevent the formed energy barrier from forming or changing the barrier height, and the tunneling current may be reduced or changed. It can be prevented.
- the thickness of the silicon oxide layer 505 is preferably 8 nm or less, more preferably 5 nm or less, still more preferably 3 nm or less, and still more preferably 1 nm or less.
- FIG. 6 shows a TEM photograph of a portion where the silicon oxide layer 505 is formed between the p-type semiconductor layer 503 and the n-type semiconductor layer 507.
- the n-type semiconductor layer 507 is an n-type oxide semiconductor.
- the oxide semiconductor included in the n-type semiconductor layer 507 may be amorphous. Since the oxide semiconductor forming the n-type semiconductor layer 507 is amorphous, it can be etched by an organic acid such as oxalic acid, and the difference in etching rate with other layers becomes large. It can be etched well without any influence.
- the oxide semiconductor forming the n-type semiconductor layer 507 may be crystalline. By being crystalline, the band gap is larger than in the case of amorphous, and off current can be reduced. Since the work function can also be increased, the current for tunneling the energy barrier formed by the p-type Group IV semiconductor material and the n-type semiconductor layer 507 can be easily controlled.
- the manufacturing method of the quantum tunnel field effect transistor 501 is not particularly limited, the following method can be exemplified.
- the gate insulating film 509 and the gate electrode 511 are formed in this order on the n-type semiconductor layer 507.
- an interlayer insulating film 519 is provided to cover the insulating film 505A, the n-type semiconductor layer 507, the gate insulating film 509, and the gate electrode 511.
- the insulating film 505A and the interlayer insulating film 519 on the p-type semiconductor layer 503 are partially opened to form a contact hole 519A, and a source electrode 513 is provided in the contact hole 519A.
- the gate insulating film 509 and the interlayer insulating film 519 on the n-type semiconductor layer 507 are partially opened to form the contact hole 519B, and the drain electrode 515 is formed in the contact hole 519B.
- the quantum tunnel field effect transistor 501 can be manufactured by the above procedure.
- the thin film transistor according to the present embodiment is preferably a channel doped thin film transistor.
- a channel-doped transistor is a transistor in which carrier of the channel is appropriately controlled by n-type doping instead of oxygen deficiency that is variable to external stimuli such as atmosphere and temperature, and has high mobility and high reliability. A compatible effect is obtained.
- the thin film transistor according to the present embodiment can be applied to various integrated circuits such as a field effect transistor, a logic circuit, a memory circuit, and a differential amplifier circuit, and can be applied to electronic devices and the like. Furthermore, the thin film transistor according to the present embodiment can be applied to an electrostatic induction transistor, a Schottky barrier transistor, a Schottky diode, and a resistor in addition to the field effect transistor.
- the thin film transistor according to the present embodiment can be suitably used for a display device, a solid-state imaging device, and the like.
- the case where the thin film transistor according to the present embodiment is used for a display device and a solid-state imaging device will be described.
- FIG. 8A is a top view of the display device according to the present embodiment.
- FIG. 8B is a circuit diagram for describing a circuit of the pixel section in the case of applying a liquid crystal element to the pixel section of the display device according to the present embodiment.
- FIG. 8B is a circuit diagram for demonstrating the circuit of a pixel part in the case of applying an organic EL element to the pixel part of the display apparatus which concerns on this embodiment.
- the thin film transistor according to this embodiment can be used as the transistor provided in the pixel portion. Since the thin film transistor according to this embodiment can easily be an n-channel transistor, part of a driver circuit that can be formed using an n-channel transistor is formed over the same substrate as the transistor in the pixel portion. By using the thin film transistor described in this embodiment for the pixel portion and the driver circuit, a highly reliable display device can be provided.
- FIG. 8A An example of a top view of an active matrix display device is shown in FIG. 8A.
- a pixel portion 301, a first scan line driver circuit 302, a second scan line driver circuit 303, and a signal line driver circuit 304 are formed over a substrate 300 of a display device.
- a plurality of signal lines are extended from the signal line driver circuit 304, and a plurality of scan lines are extended from the first scan line driver circuit 302 and the second scan line driver circuit 303.
- Pixels each having a display element are provided in a matrix at intersections of the scan lines and the signal lines.
- the substrate 300 of the display device is connected to a timing control circuit (also referred to as a controller or a control IC) through a connection portion such as a flexible printed circuit (FPC).
- a timing control circuit also referred to as a controller or a control IC
- FPC flexible printed circuit
- the first scan line driver circuit 302, the second scan line driver circuit 303, and the signal line driver circuit 304 are formed over the same substrate 300 as the pixel portion 301. Therefore, the number of parts such as a drive circuit provided outside is reduced, so that cost can be reduced. Further, in the case where a driver circuit is provided outside the substrate 300, it is necessary to extend the wiring, which increases the number of connections between the wirings. In the case where the driver circuit is provided over the same substrate 300, the number of connections between the wirings can be reduced, which can improve the reliability or the yield.
- FIG. 8B an example of a circuit configuration of a pixel is illustrated in FIG. 8B.
- a circuit of a pixel portion which can be applied to a pixel portion of a VA liquid crystal display device is shown.
- the circuit of this pixel portion can be applied to a configuration having a plurality of pixel electrodes in one pixel. Each pixel electrode is connected to a different transistor, and each transistor is configured to be driven by different gate signals. Thus, signals applied to individual pixel electrodes of multi-domain designed pixels can be controlled independently.
- the gate wiring 312 of the transistor 316 and the gate wiring 313 of the transistor 317 are separated so as to be supplied with different gate signals.
- the source electrode or drain electrode 314 which functions as a data line is used in common by the transistor 316 and the transistor 317.
- the transistor according to this embodiment can be used as the transistor 316 and the transistor 317. Thus, a highly reliable liquid crystal display device can be provided.
- a first pixel electrode is electrically connected to the transistor 316, and a second pixel electrode is electrically connected to the transistor 317.
- the first pixel electrode and the second pixel electrode are separated.
- the shapes of the first pixel electrode and the second pixel electrode are not particularly limited.
- the first pixel electrode may be V-shaped.
- the gate electrode of the transistor 316 is connected to the gate wiring 312, and the gate electrode of the transistor 317 is connected to the gate wiring 313.
- Different gate signals can be supplied to the gate wiring 312 and the gate wiring 313, operation timings of the transistor 316 and the transistor 317 can be different, and alignment of liquid crystals can be controlled.
- a storage capacitor may be formed of the capacitor wiring 310, a gate insulating film functioning as a dielectric, and a capacitor electrode electrically connected to the first pixel electrode or the second pixel electrode.
- the multi-domain structure includes a first liquid crystal element 318 and a second liquid crystal element 319 in one pixel.
- the first liquid crystal element 318 is composed of a first pixel electrode, a counter electrode, and a liquid crystal layer in between
- the second liquid crystal element 319 is composed of a second pixel electrode, a counter electrode, and a liquid crystal layer in between .
- the pixel portion is not limited to the configuration shown in FIG. 8B.
- a switch, a resistor, a capacitor, a transistor, a sensor, or a logic circuit may be added to the pixel portion illustrated in FIG. 8B.
- FIG. 8C Another example of the circuit configuration of the pixel is shown in FIG. 8C.
- a structure of a pixel portion of a display device using an organic EL element is shown.
- FIG. 8C is a diagram illustrating an example of a circuit of the applicable pixel unit 320.
- the oxide semiconductor thin film according to this embodiment can be used for a channel formation region of an n-channel transistor.
- Digital time grayscale driving can be applied to the circuit of the pixel portion.
- the thin film transistor according to this embodiment can be used for the switching transistor 321 and the driving transistor 322. Thereby, a highly reliable organic EL display device can be provided.
- the circuit configuration of the pixel portion is not limited to the configuration shown in FIG. 8C.
- a switch, a resistor, a capacitor, a sensor, a transistor, or a logic circuit may be added to the circuit in the pixel portion illustrated in FIG. 8C.
- the above is the description in the case where the thin film transistor according to the present embodiment is used for a display device.
- a CMOS (Complementary Metal Oxide Semiconductor) image sensor is a solid-state imaging device that holds a potential in a signal charge storage unit and outputs the potential to a vertical output line through an amplification transistor. If there is a leakage current in the reset transistor and / or the transfer transistor included in the CMOS image sensor, the leakage current causes charging or discharging, and the potential of the signal charge storage portion changes. When the potential of the signal charge storage portion changes, the potential of the amplification transistor also changes, resulting in a value deviated from the original potential, and the captured image is degraded.
- CMOS Complementary Metal Oxide Semiconductor
- the amplification transistor may be either a thin film transistor or a bulk transistor.
- FIG. 9 is a diagram showing an example of a pixel configuration of a CMOS image sensor.
- the pixels are composed of a photodiode 3002 which is a photoelectric conversion element, a transfer transistor 3004, a reset transistor 3006, an amplification transistor 3008, and various wirings, and a plurality of pixels are arranged in a matrix to form a sensor.
- a selection transistor electrically connected to the amplification transistor 3008 may be provided.
- “OS” described in the transistor symbol indicates an oxide semiconductor
- Si indicates silicon, which represents a preferable material when applied to each transistor. The same applies to the subsequent drawings.
- the photodiode 3002 is connected to the source side of the transfer transistor 3004, and a signal charge storage unit 3010 (FD: also referred to as floating diffusion) is formed on the drain side of the transfer transistor 3004.
- the signal charge storage unit 3010 is connected to the source of the reset transistor 3006 and the gate of the amplification transistor 3008.
- the reset power supply line 3110 can be eliminated.
- the oxide semiconductor thin film according to this embodiment may be used for the photodiode 3002, and the same material as the oxide semiconductor thin film used for the transfer transistor 3004 and the reset transistor 3006 may be used. The above is the description in the case where the thin film transistor according to the present embodiment is used for a solid-state imaging device.
- a sputtering target made of an ITZO-based oxide sintered body containing an X element was produced.
- the characteristics of the sputtering target made of the ITZO-based oxide sintered body containing the X element were compared with the characteristics of the sputtering target made of the ITZO-based oxide sintered body not containing the X element.
- the specific procedure is as follows.
- polyvinyl alcohol was added to these raw materials as a molding binder, and mixed and granulated for 72 hours in a wet ball mill.
- the granulated product is uniformly filled in a mold having an inner diameter of 120 mm ⁇ 120 mm ⁇ 7 mm, pressure-formed by a cold press, and then pressure is applied by a cold isostatic pressure device (CIP) at a pressure of 196 MPa. Molded.
- the shaped body thus obtained is heated to 780 ° C. in an oxygen atmosphere in a sintering furnace, held at 780 ° C. for 5 hours, further heated to 1400 ° C., and kept at this temperature (1400 ° C.) for 20 hours After holding, it was furnace cooled to obtain an oxide sintered body.
- the temperature rise rate was 2 ° C./min.
- the obtained oxide sintered body was cut, surface-polished, and the crystal structure was examined by an X-ray diffraction measurement apparatus (XRD).
- XRD X-ray diffraction measurement apparatus
- the hexagonal layer represented by In 2 O 3 (ZnO) m (wherein m is an integer from 2 to 7) It was confirmed that a compound and a spinel compound represented by Zn 2 SnO 4 were present.
- the sample numbers 18 and 21 were single phase of spinel compound represented by Zn 2 SnO 4 .
- sample numbers 25 and 26 it was confirmed that a bixbyite structure compound and a spinel compound represented by Zn 2 SnO 4 were present.
- the measurement conditions of XRD are as follows.
- C 1 to C n respectively indicate the content (mass%) of the oxide sintered body or the constituent material of the oxide sintered body, and ⁇ 1 to n n are C 1 to C
- the density (g / cm 3 ) of each constituent corresponding to n is shown.
- the value of the specific gravity of the oxide described in the Chemical Handbook, Basic Edition I, Nippon Chemical Edition, Second Revised Edition (Maruzen Co., Ltd.) was used. .
- the bulk resistance value is measured based on the four probe method (JIS R 1637: 1998) using a resistivity meter (Mitsubishi Chemical Co., Ltd., product name Loresta GP MCP-T610). It was measured. The thickness of the sample was 5 mm, the measurement location was nine locations, and the average value of the measurement values at nine locations was taken as the bulk resistance value. Since the planar shape of the oxide sintered body was a quadrangle, the measurement site was divided into nine equal areas, and nine central points of each quadrangle were used.
- Weibull coefficient Weibull coefficient of average bending strength is plotted on the Weibull probability axis by the Weibull statistical analysis method defined in JIS R 1625: 2010 (hereinafter referred to as “Weibl plot”), It calculated
- Average grain size The average grain size of the hexagonal layered compound, the average grain size of the spinel compound, and the average grain size of the bixbite structure compound were determined, respectively, and the absolute value of the difference in the average grain size was determined. .
- the average grain size was measured in the same manner as the method described in the above embodiment.
- the oxide sintered body contains particles of a bixbite structure compound is that according to SEM-EPMA, the crystal particles contain only In element and oxygen atom, or In element, Sn element And, it was judged from the fact that the In element is 90 atomic% or more in the atomic% ratio of the In element and the Sn element (In element: Sn element) containing an oxygen atom.
- the samples having sample X have an average yield strength and Weibull coefficient compared with the samples not containing the sample (samples No. 19, 20, and 21). Was large, and the average grain size was small.
- the bulk resistance of the samples containing X element was similar to that of the samples not containing (element Nos. 19, 20 and 21), or the sample containing X element (samples)
- the numbers 1 to 18 and 22 to 27 were somewhat smaller.
- the relative density was similar between the samples containing X element (samples 1 to 18, 22 to 27) and the samples not containing X (samples 19, 20, 21).
- samples containing X element have an average bending strength of 150 MPa or more, a bulk resistance of 2.69 m ⁇ cm or less, a Weibull coefficient of 7 or more, an average crystal grain size Was 10 ⁇ m or less.
- the difference between the average crystal grain size of the hexagonal layered compound and the average crystal grain size of the spinel compound was 1 ⁇ m or less.
- the difference between the average crystal grain size of the bixbite structure compound and the average crystal grain size of the spinel compound was 1 ⁇ m or less.
- the Weibull coefficient increases as the Al content increases, when comparing the plurality of samples in which the In, Sn, and Zn contents are constant and the Al element content as the X element is different.
- the Al content exceeded 3 atomic%, the rise effect was saturated.
- the Weibull coefficient becomes larger as the content of Si increases. Although it rose, when the Si content exceeded 3 atomic%, the rise effect was saturated.
- a thin film transistor was manufactured by the following steps.
- (1) Film Forming Step The oxide sintered body according to each sample number was ground and polished to produce a sputtering target of 4 inches ⁇ ⁇ 5 mmt. Specifically, it was produced by bonding a cut and ground sintered body to a backing plate. The bonding rate was 98% or more for all targets. No crack was generated in the oxide sintered body at the time of bonding of the oxide sintered body to the backing plate, and the sputtering target was successfully manufactured. The bonding rate (bonding rate) was confirmed by X-ray CT.
- a thin film (oxide of 50 nm) is formed on a silicon wafer 20 (gate electrode) with a thermal oxide film (gate insulating film) under the film forming conditions shown in Table 3 by sputtering.
- the semiconductor layer was formed.
- sputtering was performed using a mixed gas of high purity argon and 20% high purity oxygen as a sputtering gas. At this time, no crack was generated in the sputtering target.
- the oxide semiconductor film formed on a silicon wafer was subjected to X-ray diffraction (XRD) measurement of the film after sputtering (immediately after film deposition) and the film after heat treatment after film formation. As a result of evaluation, it was amorphous before heating and was amorphous even after heating.
- XRD X-ray diffraction
- the above Id is the current between the source and drain electrodes, and Vg is the gate voltage when the voltage Vd is applied between the source and drain electrodes.
- the S value is the gate voltage difference when the drain current goes from 10 pA to 100 pA.
- the sputtering target of the present invention can be used to form an oxide semiconductor layer of a thin film transistor which drives a display device such as a liquid crystal display or an organic EL display.
- a transparent conductive film used for a light receiving element, a display element, an electrode in a touch panel, a transparent heating element for antifogging, or the like can be manufactured using the sputtering target of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Thin Film Transistor (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
一方で、近年では、ディスプレイの高精細化の要求に伴い、TFTのチャネル層に使用される材料として酸化物半導体が注目されている。
特許文献3に記載のスパッタリングターゲットはIn2O3(ZnO)mで表される六方晶層状化合物のアスペクト比を3以上にするために、原料粉末を混合粉砕する際に積算動力を200Wh以上にする必要がある。また、量産等、原料粉末量が多くなると、混合粉砕時に原料粉末全体に均一に動力が伝達されず、アスペクト比が3以上の六方晶層状化合物が焼結体中に均一に析出せず、スパッタリングターゲットの強度にムラが生じるといった欠点があった。
0.001≦X/(In+Sn+Zn+X)≦0.05 ・・・(1)
(式(1)中、In、Zn、SnおよびXは、それぞれ酸化物焼結体中のインジウム元素、亜鉛元素、スズ元素およびX元素の含有量を表す。X元素は、Ge、Si、Y、Zr、Al、Mg、Yb、およびGaから少なくとも1種以上が選択される。)
0.40≦Zn/(In+Sn+Zn)≦0.80 ・・・(2)
0.15≦Sn/(Sn+Zn)≦0.40 ・・・(3)
0.10 ≦In/(In+Sn+Zn)≦0.35 ・・・(4)
[1]~[8]のいずれか一項に記載のスパッタリングターゲット。
0.001≦X/(In+Sn+Zn+X)≦0.05 ・・・(1A)
(式(1A)中、In、Zn、SnおよびXは、それぞれ酸化物半導体薄膜中のインジウム元素、亜鉛元素、スズ元素およびX元素の含有量を表す。X元素は、Ge、Si、Y、Zr、Al、Mg、Yb、およびGaから少なくとも1種以上が選択される。)
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極、配線、スイッチング素子(トランジスタなど)、抵抗素子、インダクタ、キャパシタ、およびその他の各種機能を有する素子などが含まれる。
また、本明細書等において、トランジスタが有するソースやドレインの機能は、異なる極性のトランジスタを採用する場合又は回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる。
本発明の一実施形態に係るスパッタリングターゲット(以下、単に本実施形態に係るスパッタリングターゲットと称する場合がある。)は、酸化物焼結体を含む。
本実施形態に係るスパッタリングターゲットは、例えば、酸化物焼結体のバルクを、スパッタリングターゲットとして好適な形状に切削、および研磨して得られる。また、酸化物焼結体のバルクを研削および研磨して得たスパッタリングターゲット素材を、バッキングプレートへボンディングすることによっても、スパッタリングターゲットを得ることができる。また、別の態様に係る本実施形態のスパッタリングターゲットとしては、酸化物焼結体のみからなるターゲットも挙げられる。
バッキングプレート3は、酸化物焼結体の保持および冷却用の部材である。バッキングプレート3の材料は特に限定されないが、Cu,Ti,またはSUS等の材料が使用される。
ここで、「実質的」とは、酸化物焼結体の金属元素の95質量%以上100質量%以下(好ましくは98質量%以上100質量%以下)がインジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)、およびX元素であることを意味する。本実施形態に係る酸化物焼結体は、本発明の効果を損なわない範囲でIn、Sn、Zn及びAlの他に不可避不純物を含んでいてもよい。ここでいう不可避不純物とは、意図的に添加しない元素であって、原料又は製造工程で混入する元素を意味する。
X元素は、ゲルマニウム元素(Ge)、シリコン元素(Si)、イットリウム元素(Y)、ジルコニウム元素(Zr)、アルミニウム元素(Al)、マグネシウム元素(Mg)、イッテルビウム元素(Yb)、およびガリウム元素(Ga)から少なくとも1種以上選択される。
0.001≦X/(In+Sn+Zn+X)≦0.05 ・・・(1)
(式(1)中、In、Zn、SnおよびXは、それぞれ酸化物焼結体中のインジウム元素、亜鉛元素、スズ元素およびX元素の含有量を表す。X元素は、Ge、Si、Y、Zr、Al、Mg、YbおよびGaから少なくとも1種以上選択される。)
X元素としては、好ましくは、シリコン元素(Si)、アルミニウム元素(Al)、マグネシウム元素(Mg)、イッテルビウム元素(Yb)、およびガリウム元素(Ga)であり、より好ましくは、シリコン元素(Si)、アルミニウム元素(Al)、およびガリウム元素(Ga)である。特にアルミニウム元素(Al)およびガリウム元素(Ga)は、原料としての酸化物の組成が安定しており、平均抗折力の向上効果が高いので、好ましい。
本実施形態に係る酸化物焼結体は、X元素を1種のみ含有してもよいし、2種以上を含有してもよい。X元素を2種以上含むときは、式(1)におけるXは、X元素の原子比の合計とする。
酸化物焼結体中のX元素の存在形態は、特に規定されない。酸化物焼結体中のX元素の存在形態としては、例えば、酸化物として存在している形態、固溶している形態、および粒界に偏析している形態が挙げられる。
バルク抵抗値は、公知の抵抗率計を使用して四探針法(JIS R 1637:1998)に基づき測定できる。測定箇所は9箇所程度であり、平均値をバルク抵抗値とするのが好ましい。
測定箇所は、酸化物焼結体の平面形状が四角形の場合には、面を等面積に9分割し、それぞれの四角形の中心点9箇所とするのが好ましい。
なお、酸化物焼結体の平面形状が円形の場合は、円に内接する正方形を等面積に9分割し、それぞれの正方形の中心点9箇所とするのが好ましい。
0.40≦Zn/(In+Sn+Zn)≦0.80 ・・・(2)
0.15≦Sn/(Sn+Zn)≦0.40 ・・・(3)
0.10 ≦In/(In+Sn+Zn)≦0.35 ・・・(4)
なお、mが2以上であることにより、化合物が六方晶層状構造をとる。mが7以下であることにより、酸化物焼結体のバルク抵抗が低くなる。
本実施形態に係る酸化物焼結体は、Zn2SnO4で表されるスピネル構造化合物、およびIn2O3で表されるビックスバイト構造化合物を含有しても良い。
本実施形態に係る酸化物焼結体の平均結晶粒径は、異常放電の防止および製造容易性の観点から、好ましくは10μm以下であり、より好ましくは8μm以下である。平均結晶粒径が10μm以下であることにより、粒界に起因する異常放電を防止できる。酸化物焼結体の平均結晶粒径の下限は、特に規定されないが、製造容易性の観点から1μm以上であることが好ましい。
平均結晶粒径は、原料の選択および製造条件の変更により調整できる。具体的には、平均粒径が小さい原料、好ましくは平均粒径が1μm以下の原料を用いる。さらに、焼結の際、焼結温度が高い程、または焼結時間が長い程、平均結晶粒径が大きくなる傾向がある。
酸化物焼結体の表面を研磨し、平面形状が四角形の場合には、面を等面積に16分割し、それぞれの四角形の中心点16箇所において、倍率1000倍(80μm×125μm)の枠内で観察される粒子径を測定し、16箇所の枠内の粒子の粒径の平均値をそれぞれ求め、最後に16カ所の測定値の平均値を平均結晶粒径とする。
酸化物焼結体の表面を研磨し、平面形状が円形の場合、円に内接する正方形を等面積に16分割し、それぞれの正方形の中心点16箇所において、倍率1000倍(80μm×125μm)の枠内で観察される粒子の粒径を測定し、16箇所の枠内の粒子の粒径の平均値を求める。
粒径は、アスペクト比が2未満の粒子については、JIS R 1670:2006に基づき、結晶粒の粒径を円相当径として測定する。円相当径の測定手順としては、具体的には、微構造写真の測定対象グレインに円定規を当て対象グレインの面積に相当する直径を読み取る。アスペクト比が2以上の粒子については、最長径と最短径の平均値をその粒子の粒径とする。結晶粒は走査型電子顕微鏡(SEM)により観察できる。六方晶層状化合物、スピネル化合物、およびビックスバイト構造化合物は、後述する実施例に記載の方法により確認できる。
本実施形態に係る酸化物焼結体の平均結晶粒径が10μm以下であり、六方晶層状化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径の差が1μm以下であることがより好ましい。
本実施形態に係る酸化物焼結体の平均結晶粒径が10μm以下であり、ビックスバイト構造化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径の差が1μm以下であることがより好ましい。
本実施形態に係る酸化物焼結体の平均抗折力は、好ましくは180MPa以上であり、より好ましくは210MPa以上であり、さらに好ましくは230MPa以上であり、特に好ましくは250MPa以上である。
混合工程では、まず原料を用意する。
In原料は、Inを含む化合物または金属であれば特に限定されない。
Zn原料も、Znを含む化合物または金属であれば特に限定されない。
Sn原料も、Znを含む化合物または金属であれば特に限定されない。
X元素の原料も、X元素を含む化合物または金属であれば、特に限定されない。
In原料、Zn原料、Sn原料、およびX元素の原料は、好ましくは酸化物である。
酸化インジウム、酸化亜鉛、酸化錫、およびX元素酸化物等の原料は、高純度の原料を用いるのが望ましく、その純度が99質量%以上、好ましくは99.9質量%以上、さらに好ましくは99.99質量%以上の原料が好適に用いられる。高純度の原料を用いると緻密な組織の焼結体が得られ、その焼結体からなるスパッタリングターゲットの体積抵抗率が低くなるためである。
原料の混合は、ボールミル、ジェットミル、およびビーズミル等の通常の混合機を用いて行うことができる。
原料の粉末または造粒物は、成形工程において金型プレス成形、鋳込み成形、または射出成形等の方法により成形する。スパッタリングターゲットとして、焼結密度の高い焼結体を得る場合には、成形工程において金型プレス成形等により予備成形した後に、冷間静水圧プレス成形等によりさらに圧密化することが好ましい。
焼結工程においては、常圧焼結、ホットプレス焼結、または熱間静水圧プレス焼結等の通常行われている焼結方法を用いることができる。焼結温度は、好ましくは1200℃以上1600℃以下であり、より好ましくは1250℃以上1550℃以下であり、さらに好ましくは1300℃以上1500℃以下である。焼結温度を1200℃以上とすることにより、充分な焼結密度が得られ、スパッタリングターゲットのバルク抵抗も低くできる。焼結温度を1600℃以下とすることにより、焼結時の酸化亜鉛の昇華を抑制できる。焼結に際しての昇温速度は、室温から焼結温度までを0.1℃/分以上3℃/分以下とすることが好ましい。また、昇温の過程において、700℃以上800℃以下で一旦温度を1時間以上10時間以下保持し、再度焼結温度まで昇温してもよい。
アニーリング工程は必須でないが、行う場合は、通常、700℃以上1100℃以下で1時間以上5時間以下、温度を保持する。本工程は、一旦焼結体を冷却後、再度昇温しアニーリングしてもよいし、焼結温度から降温する際にアニーリングしてもよい。アニーリング時の雰囲気は、空気または酸素ガスでもよいし、これらに、水素ガス、メタンガス、または一酸化炭素ガス等の還元性ガス、あるいは、アルゴンガス、窒素ガス等の不活性ガスを含んでいてもよい。
具体的には、焼結体をスパッタリング装置への装着に適した形状に切削加工することで、スパッタリングターゲット素材(ターゲット素材と称する場合もある。)とし、該ターゲット素材をバッキングプレートに接着することで、スパッタリングターゲットが得られる。
スパッタリングターゲット素材の表面粗さRaが0.5μm以下であり、方向性のない研削面を備えていることが好ましい。スパッタリングターゲット素材の表面粗さRaが0.5μm以下であり、方向性のない研磨面を備えていれば、異常放電およびパーティクルの発生を防ぐことができる。
尚、以上のエアーブローおよび流水洗浄では清浄処理の効果に限界があるので、さらに超音波洗浄等を行なうこともできる。超音波洗浄は、周波数25kHz以上300kHz以下の間で多重発振させて行なう方法が有効である。例えば周波数25kHz以上300kHz以下の間で、25kHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なうのが好ましい。
そのため、スパッタリングターゲットは、バッキングプレートへのボンディング時およびスパッタリング時にクラックの発生を抑制できる。
次に、本実施形態に係る酸化物半導体薄膜について、説明する。
本実施形態に係る酸化物半導体薄膜は、インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)、X元素、および酸素を含有し、各元素の原子比が下記式(1A)を満たす。
0.001≦X/(In+Sn+Zn+X)≦0.05 ・・・(1A)
(式(1A)中、In、Zn、SnおよびXは、それぞれ酸化物半導体薄膜中のインジウム元素、亜鉛元素、スズ元素およびX元素の含有量を表す。X元素は、Ge、Si、Y、Zr、Al、Mg、Yb、およびGaから少なくとも1種以上が選択される。)
0.40≦Zn/(In+Sn+Zn)≦0.80 ・・・(2A)
0.15≦Sn/(Sn+Zn)≦0.40 ・・・(3A)
0.10 ≦In/(In+Sn+Zn)≦0.35 ・・・(4A)
本実施形態に係る薄膜トランジスタとしては、本実施形態に係る酸化物半導体薄膜を含む薄膜トランジスタが挙げられる。
具体的には、本実施形態に係る薄膜トランジスタは、液晶ディスプレイ及び有機ELディスプレイ等の表示装置に好適に用いることができる。
特にボトムゲート構成が、アモルファスシリコン又はZnOの薄膜トランジスタに比べ高い性能が得られるので有利である。ボトムゲート構成は、製造時のマスク枚数を削減しやすく、大型ディスプレイ等の用途の製造コストを低減しやすいため好ましい。
本実施形態に係る薄膜トランジスタは、表示装置に好適に用いることができる。
図2に示すように、薄膜トランジスタ100は、シリコンウエハ20、ゲート絶縁膜30、酸化物半導体薄膜40、ソース電極50、ドレイン電極60、および層間絶縁膜70、70Aを備える。
酸化物半導体薄膜40はチャネル層であり、ゲート絶縁膜30上に設けられる。酸化物半導体薄膜40には本実施形態に係る酸化物半導体薄膜が用いられる。
層間絶縁膜70は、ソース電極50およびドレイン電極60と、酸化物半導体薄膜40の間の接触部分以外の導通を遮断する絶縁膜である。
層間絶縁膜70Aは、ソース電極50およびドレイン電極60と、酸化物半導体薄膜40の間の接触部分以外の導通を遮断する絶縁膜である。層間絶縁膜70Aは、ソース電極50とドレイン電極60の間の導通を遮断する絶縁膜でもある。層間絶縁膜70Aは、チャネル層保護層でもある。
例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、ZnO、およびSnO2等の透明電極や、Al、Ag、Cu、Cr、Ni、Mo、Au、Ti、およびTa等の金属電極、またはこれらを含む合金の金属電極や積層電極を用いることができる。
また、図2および図3において、ガラス等の基板上にゲート電極を形成してもよい。
On/Off比は、Vg=-10VのIdの値をOff電流値とし、Vg=20VのIdの値をOn電流値として、比[On電流値/Off電流値]を決めることにより、求められる。
また、本実施形態に係るTFTの移動度は、5cm2/Vs以上であることが好ましく、10cm2/Vs以上であることが好ましい。
飽和移動度は、ドレイン電圧を20V印加した場合の伝達特性から求められる。具体的に、伝達特性Id-Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、飽和領域の式により飽和移動度を求めることにより、算出できる。Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
On/Off比は106以上、1012以下が好ましく、107以上、1011以下がより好ましく、108以上、1010以下がさらに好ましい。On/Off比が106以上であると、液晶ディスプレイの駆動ができる。On/Off比が1012以下であると、コントラストの大きな有機ELの駆動ができる。また、On/Off比が1012以下であると、オフ電流を10-11A以下にでき、薄膜トランジスタをCMOSイメージセンサーの転送トランジスタまたはリセットトランジスタに用いた場合、画像の保持時間を長くしたり、感度を向上させたりできる。
本実施形態に係る酸化物半導体薄膜は、量子トンネル電界効果トランジスタ(FET)に用いることもできる。
量子トンネル電界効果トランジスタ501は、p型半導体層503、n型半導体層507、ゲート絶縁膜509、ゲート電極511、ソース電極513、およびドレイン電極515を備える。
ソース電極513は、p型半導体層503上に設けられる。ドレイン電極515はn型半導体層507上に設けられる。
p型半導体層503は、p型のIV族半導体層であり、ここではp型シリコン層である。
n型半導体層507は、ここでは上記実施形態に係るn型の酸化物半導体薄膜である。ソース電極513およびドレイン電極515は導電膜である。
量子トンネル電界効果トランジスタ501Aの構成は、量子トンネル電界効果トランジスタ501と同様であるが、p型半導体層503とn型半導体層507の間に酸化シリコン層505が形成されている点が異なる。酸化シリコン層が有ることにより、オフ電流を小さくすることが出来る。
酸化シリコン層505の厚みは、10nm以下であるのが好ましい。10nm以下とすることにより、トンネル電流が流れなかったり、形成されるエネルギー障壁が形成しにくかったり障壁高さが変化したりするのを防止でき、トンネリング電流が低下したり、変化したりするのを防げる。酸化シリコン層505の厚みは、好ましくは、8nm以下、より好ましくは5nm以下、更に好ましくは3nm以下、更により好ましくは1nm以下である。
図6にp型半導体層503とn型半導体層507の間に酸化シリコン層505が形成された部分のTEM写真を示す。
まず、図7Aに示すように、p型半導体層503上に絶縁膜505Aを形成し、絶縁膜505Aの一部をエッチング等で開口してコンタクトホール505Bを形成する。
次に、図7Bに示すように、p型半導体層503および絶縁膜505A上にn型半導体層507を形成する。この際、コンタクトホール505Bを介してp型半導体層503とn型半導体層507を接続する。
次に、図7Dに示すように、絶縁膜505A、n型半導体層507、ゲート絶縁膜509およびゲート電極511を覆うように、層間絶縁膜519を設ける。
さらに、図7Eに示すように、n型半導体層507上のゲート絶縁膜509および層間絶縁膜519の一部を開口してコンタクトホール519Bを形成し、コンタクトホール519Bにドレイン電極515を形成する。
以上の手順で量子トンネル電界効果トランジスタ501を製造できる。
本実施形態に係る薄膜トランジスタは、電界効果型トランジスタ、論理回路、メモリ回路、および差動増幅回路等の各種の集積回路にも適用でき、それらを電子機器等に適用することができる。さらに、本実施形態に係る薄膜トランジスタは、電界効果型トランジスタ以外にも静電誘起型トランジスタ、ショットキー障壁型トランジスタ、ショットキーダイオード、および抵抗素子にも適応できる。
本実施形態に係る薄膜トランジスタは、表示装置及び固体撮像素子等に好適に用いることができる。
以下、本実施形態に係る薄膜トランジスタを表示装置および固体撮像素子に用いる場合について、説明する。
図8Aは、本実施形態に係る表示装置の上面図である。図8Bは、本実施形態に係る表示装置の画素部に、液晶素子を適用する場合の画素部の回路を説明するための回路図である。また、図8Bは、本実施形態に係る表示装置の画素部に、有機EL素子を適用する場合の画素部の回路を説明するための回路図である。
以上が本実施形態に係る薄膜トランジスタを表示装置に用いる場合の説明である。
なお、また、フォトダイオード3002に本実施形態に係る酸化物半導体薄膜を用いても良く、転送トランジスタ3004、リセットトランジスタ3006に用いられる酸化物半導体薄膜と同じ材料を用いてよい。
以上が、本実施形態に係る薄膜トランジスタを固体撮像素子に用いる場合の説明である。
X元素を含有させたITZO系酸化物焼結体からなるスパッタリングターゲットを作製した。X元素を含有させたITZO系酸化物焼結体からなるスパッタリングターゲットの特性と、X元素を含有させないITZO系酸化物焼結体からなるスパッタリングターゲットの特性と、を比較した。具体的な手順は以下の通りである。
・In原料:純度99.99質量%の酸化インジウム粉末
・Sn原料:純度99.99質量%の酸化錫粉末
・Zn原料:純度99.99質量%の酸化亜鉛粉末
・X元素 :純度99.9質量%の酸化アルミニウム(Al2O3)、純度99.9質量%の酸化ゲルマニウム(GeO2)、純度99.9質量%の酸化ケイ素(SiO2)、純度99.9質量%の酸化イットリウム(Y2O3)、純度99.9質量%の酸化ジルコニウム(ZrO2)、純度99.9質量%の酸化マグネシウム(MgO)、純度99.9質量%の酸化イッテルビウム(Yb2O)
・装置:(株)リガク製Smartlab
・X線:Cu-Kα線(波長1.5418×10-10m)
・平行ビーム、2θ-θ反射法、連続スキャン(2.0°/分)
・サンプリング間隔:0.02°
・発散スリット(Divergence Slit、DS):1.0mm
・散乱スリット(Scattering Slit、SS):1.0mm
・受光スリット(Receiving Slit、RS):1.0mm
(1)平均抗折力
得られた酸化物焼結体から、厚さ3mm×幅4mm×全長36mm、断面が長方形の角柱の試験片を30本切り出し、JIS R 1601:2008に基づき、材料試験機(島津製作所製EZ Graph)にて3点曲げ強さを測定し、試験片30本の3点曲げ強さ測定値の平均値を平均抗折力とした。
酸化物焼結体の相対密度をアルキメデス法に基づき測定した。具体的には、酸化物焼結体の空中重量を、体積(=焼結体の水中重量/計測温度における水比重)で除し、下記式(5)に基づく理論密度ρ(g/cm3)に対する百分率の値を相対密度(単位:%)とした。
相対密度={(酸化物焼結体の空中重量/体積)/理論密度ρ}×100
なお、式(5)中で、C1~Cnはそれぞれ酸化物焼結体または酸化物焼結体の構成物質の含有量(質量%)を示し、ρ1~ρnはC1~Cnに対応する各構成物質の密度(g/cm3)を示す。
尚、各構成物質の密度は、密度と比重はほぼ同等であることから、化学便覧 基礎編I日本化学編 改定2版(丸善株式会社)に記載されている酸化物の比重の値を用いた。
スパッタリングターゲットの導電性を示す指標として、バルク抵抗値を抵抗率計(三菱化学(株)製、製品名ロレスタGP MCP-T610)を使用して四探針法(JIS R 1637:1998)に基づき測定した。試料の厚みを5mmとし、測定箇所は9箇所とし、9箇所の測定値の平均値をバルク抵抗値とした。
酸化物焼結体の平面形状が四角形であったため、測定箇所は、面を等面積に9分割し、それぞれの四角形の中心点9箇所とした。
平均抗折力のワイブル係数は、JIS R 1625:2010に規定されたワイブル統計解析法により、ワイブル確率軸上に、抗折力をプロット(以下「ワイブルプロット」という)し、ワイブルプロットの傾きから求めた。
六方晶層状化合物の平均結晶粒径、スピネル化合物の平均結晶粒径、ビックスバイト構造化合物の平均結晶粒径をそれぞれ求め、平均結晶粒径の差の絶対値を求めた。平均結晶粒径は、前述の実施形態中に記載した方法と同様にして測定した。
酸化物焼結体が六方晶層状化合物の粒子を含むことは、SEM-EPMAにより、結晶粒子がIn元素とZn元素を含んでいることから判断した。
酸化物焼結体がスピネル化合物の粒子を含むことは、SEM-EPMAにより、結晶粒子がZn元素とSn元素を含んでいることから判断した。
酸化物焼結体がビックスバイト構造化合物の粒子を含むことは、SEM-EPMAにより、結晶粒子が、In元素および酸素原子のみを含むか、またはIn元素、Sn元素および酸素原子を含むがIn元素およびSn元素の原子%比(In元素:Sn元素)で、In元素が90原子%以上であることから判断した。
バルク抵抗は、X元素を含有する試料(試料番号1~18、22~27)と、含有しない試料(試料番号19、20、21)とで同程度であったか、X元素を含有する試料(試料番号1~18、22~27)の方がやや小さかった。
相対密度は、X元素を含有する試料(試料番号1~18、22~27)と、含有しない試料(試料番号19、20、21)とで同程度であった。
具体的には、X元素を含有する試料(試料番号1~18、22~27)は、平均抗折力が150MPa以上、バルク抵抗が2.69mΩcm以下、ワイブル係数が7以上、平均結晶粒径が10μm以下であった。
X元素を含有する試料(試料番号1~17、22~24)においては、六方晶層状化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径との差が1μm以下であった。また、X元素を含有する試料(試料番号25、26)においては、ビックスバイト構造化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径との差が1μm以下であった。X元素を含有しない試料(試料番号19、20)においては、六方晶層状化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径との差が1μm超であった。この結果から、X元素を含有させることにより、平均抗折力、およびワイブル係数が大きく、バルク抵抗、相対密度、および平均結晶粒径が好ましい範囲にある酸化物焼結体が得られることが分かった。
また、図10に示すように、In、Sn、およびZn含有量が一定であって、X元素としてのSi元素の含有量が異なる複数の試料で比較すると、Si含有量が増えると平均抗折力も大きくなった。X元素の含有量が同じ試料で比べると、Alを含有させた試料の方が、Siを含有させた試料よりも、平均抗折力は大きくなった。
また、図11に示すように、In、Sn、およびZn含有量が一定であって、X元素としてのSi元素の含有量が異なる複数の試料で比較すると、Si含有量が増えると相対密度も大きくなったが、0.1原子%を超えると密度の上昇効果が飽和した。
また、図12に示すように、In、Sn、およびZn含有量が一定であって、X元素としてのSi元素の含有量が異なる複数の試料で比較すると、Si含有量が増えると、1原子%まではバルク抵抗が小さくなったが、3原子%を超えると僅かに大きくなった。
また、図13に示すように、In、Sn、およびZn含有量が一定であって、X元素としてのSi元素の含有量が異なる複数の試料で比較すると、Si含有量が増えるとワイブル係数は上昇したが、Si含有量が3原子%を超えると、上昇効果が飽和した。
また、図14に示すように、In、Sn、およびZn含有量が一定であって、X元素としてのSi元素の含有量が異なる複数の試料で比較すると、Si含有量が増えると平均結晶粒径は小さくなった。
Al含有させた試料およびSiを含有させた試料は、平均結晶粒径が同程度であった。
以下の工程で薄膜トランジスタを製造した。
(1)成膜工程
各試料番号に係る酸化物焼結体を研削研磨して、4インチφ×5mmtのスパッタリングターゲットを製造した。具体的には、切削研磨した焼結体をバッキングプレートにボンディングすることによって作製した。すべてのターゲットにおいて、ボンディング率は、98%以上であった。酸化物焼結体のバッキングプレートへのボンディング時に酸化物焼結体にクラックは発生せず、スパッタリングターゲットを良好に製造することができた。ボンディング率(接合率)は、X線CTにより確認した。
作製したスパッタリングターゲットを用いて、スパッタリングによって、表3に示す成膜条件で熱酸化膜(ゲート絶縁膜)付きのシリコンウエハ20(ゲート電極)上に、メタルマスクを介して50nmの薄膜(酸化物半導体層)を形成した。この際、スパッタガスとして高純度アルゴン及び高純度酸素20%の混合ガスを用いてスパッタリングを行った。この際、スパッタリングターゲットにクラックは発生しなかった。
次に、ソース・ドレインのコンタクトホール形状のメタルマスクを用いてチタン金属をスパッタリングし、ソース・ドレイン電極としてチタン電極を成膜した。チャネル部のL/Wは、200μm/1000μmとした。得られた積層体を大気中にて350℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
シリコンウエハー上に成膜した酸化物半導体膜について、スパッタ後(膜堆積直後)の加熱していない膜及び成膜後の加熱処理をした後の膜の結晶性をX線回折(XRD)測定によって評価したところ、加熱前はアモルファスであり、加熱後もアモルファスであった。
飽和移動度、S値及び閾値電圧の評価を行った。結果を表4の「加熱処理後SiO2膜形成前のTFTの特性」に示す。
飽和移動度は、ドレイン電圧に20V印加した場合の伝達特性から求めた。具体的に、伝達特性Id-Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、線形領域の式により飽和移動度を導いた。尚、Gmは∂(Id)/∂(Vg)によって表され、Vgは-15V~25Vまで印加し、その範囲での最大移動度を飽和移動度と定義した。本発明において特に断らない限り、飽和移動度はこの方法で評価した。上記Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
S値は、ドレイン電流が10pAから100pAになるときのゲート電圧差である。
閾値電圧(Vth)は、伝達特性のグラフよりId=10-9AでのVgと定義した。
また、得られたTFTサンプルの酸化物半導体層について誘導プラズマ発光分光分析装置(ICP-AES、島津製作所社製)で分析した結果、得られた酸化物半導体薄膜の原子比が酸化物半導体薄膜の製造に用いた酸化物焼結体の原子比と同じであることを確認した。
3 :バッキングプレート
20 :シリコンウエハ
30 :ゲート絶縁膜
40 :酸化物半導体薄膜
50 :ソース電極
60 :ドレイン電極
70 :層間絶縁膜
70A :層間絶縁膜
70B :層間絶縁膜
100 :薄膜トランジスタ
100A :薄膜トランジスタ
300 :基板
301 :画素部
302 :第1の走査線駆動回路
303 :第2の走査線駆動回路
304 :信号線駆動回路
310 :容量配線
312 :ゲート配線
313 :ゲート配線
314 :ドレイン電極
316 :トランジスタ
317 :トランジスタ
318 :第1の液晶素子
319 :第2の液晶素子
320 :画素部
321 :スイッチング用トランジスタ
322 :駆動用トランジスタ
3002 :フォトダイオード
3004 :転送トランジスタ
3006 :リセットトランジスタ
3008 :増幅トランジスタ
3010 :信号電荷蓄積部
3100 :電源線
3110 :リセット電源線
3120 :垂直出力線
Claims (13)
- インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)、X元素、および酸素を含有し、各元素の原子比が下記式(1)を満たし、さらにZn2SnO4で表されるスピネル構造化合物を含む、酸化物焼結体を備える、
スパッタリングターゲット。
0.001≦X/(In+Sn+Zn+X)≦0.05 ・・・(1)
(式(1)中、In、Zn、SnおよびXは、それぞれ酸化物焼結体中のインジウム元素、亜鉛元素、スズ元素およびX元素の含有量を表す。X元素は、Ge、Si、Y、Zr、Al、Mg、Yb、およびGaから少なくとも1種以上が選択される。) - 前記酸化物焼結体は、式(1)で示す原子比が0.003以上、0.03以下である、
請求項1記載のスパッタリングターゲット。 - さらに、前記酸化物焼結体が、下記式(2)を満たす、
請求項1または2に記載のスパッタリングターゲット。
0.40≦Zn/(In+Sn+Zn)≦0.80 ・・・(2) - さらに、前記酸化物焼結体が、下記式(3)を満たす、
請求項1~3のいずれか一項に記載のスパッタリングターゲット。
0.15≦Sn/(Sn+Zn)≦0.40 ・・・(3) - さらに、前記酸化物焼結体が、下記式(4)を満たす、
請求項1~4のいずれか一項に記載のスパッタリングターゲット。
0.10 ≦In/(In+Sn+Zn)≦0.35 ・・・(4) - 前記酸化物焼結体は、In2O3(ZnO)m(mは2~7である)で表わされる六方晶層状化合物を含む、
請求項1~5のいずれか一項に記載のスパッタリングターゲット。 - 前記酸化物焼結体は、平均抗折力が150MPa以上である、
請求項1~6のいずれか一項に記載のスパッタリングターゲット。 - 前記酸化物焼結体は、平均抗折力のワイブル係数が7以上である、
請求項1~7のいずれか一項に記載のスパッタリングターゲット。 - 前記酸化物焼結体は、平均結晶粒径が10μm以下であり、六方晶層状化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径の差が1μm以下である、
請求項1~8のいずれか一項に記載のスパッタリングターゲット。 - 前記酸化物焼結体は、平均結晶粒径が10μm以下であり、ビックスバイト構造化合物の平均結晶粒径と、スピネル化合物の平均結晶粒径の差が1μm以下である、
請求項1~8のいずれか一項に記載のスパッタリングターゲット。 - インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)、X元素、および酸素を含有し、各元素の原子比が下記式(1A)を満たす、
酸化物半導体薄膜。
0.001≦X/(In+Sn+Zn+X)≦0.05 ・・・(1A)
(式(1A)中、In、Zn、SnおよびXは、それぞれ酸化物半導体薄膜中のインジウム元素、亜鉛元素、スズ元素およびX元素の含有量を表す。X元素は、Ge、Si、Y、Zr、Al、Mg、Yb、およびGaから少なくとも1種以上が選択される。) - 請求項11に記載の酸化物半導体薄膜を用いた薄膜トランジスタ。
- 請求項12に記載の薄膜トランジスタを用いた電子機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/634,855 US20200235247A1 (en) | 2017-08-01 | 2018-08-01 | Sputtering target, oxide semiconductor thin film, thin film transistor, and electronic device |
KR1020207004360A KR102470714B1 (ko) | 2017-08-01 | 2018-08-01 | 스퍼터링 타깃, 산화물 반도체 박막, 박막 트랜지스터 및 전자 기기 |
JP2019534556A JP7075934B2 (ja) | 2017-08-01 | 2018-08-01 | スパッタリングターゲット、酸化物半導体薄膜、薄膜トランジスタおよび電子機器 |
CN201880050200.4A CN111032905A (zh) | 2017-08-01 | 2018-08-01 | 溅射靶、氧化物半导体薄膜、薄膜晶体管以及电子设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017149398 | 2017-08-01 | ||
JP2017-149398 | 2017-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026954A1 true WO2019026954A1 (ja) | 2019-02-07 |
Family
ID=65232939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028842 WO2019026954A1 (ja) | 2017-08-01 | 2018-08-01 | スパッタリングターゲット、酸化物半導体薄膜、薄膜トランジスタおよび電子機器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200235247A1 (ja) |
JP (1) | JP7075934B2 (ja) |
KR (1) | KR102470714B1 (ja) |
CN (1) | CN111032905A (ja) |
TW (1) | TWI760539B (ja) |
WO (1) | WO2019026954A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131876A1 (ja) * | 2017-12-28 | 2019-07-04 | 三井金属鉱業株式会社 | 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜 |
JP2022518521A (ja) * | 2019-09-18 | 2022-03-15 | 華南理工大学 | ドーピングされた金属酸化物半導体および薄膜トランジスタとその応用 |
US11702731B2 (en) | 2019-11-28 | 2023-07-18 | Imec Vzw | Method for forming a film of an oxide of In, Ga, and Zn |
TWI819633B (zh) * | 2022-05-31 | 2023-10-21 | 光洋應用材料科技股份有限公司 | 氧化銦鈦鋅濺鍍靶材、其薄膜及其製法 |
JP7425933B1 (ja) | 2022-09-16 | 2024-01-31 | 株式会社アルバック | 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法 |
WO2024057671A1 (ja) * | 2022-09-16 | 2024-03-21 | 株式会社アルバック | 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110767745A (zh) * | 2019-09-18 | 2020-02-07 | 华南理工大学 | 复合金属氧化物半导体及薄膜晶体管与应用 |
EP4141139A4 (en) * | 2020-04-23 | 2024-07-03 | Tosoh Corporation | Yttrium ingot and sputtering target using same |
CN112266234A (zh) * | 2020-10-27 | 2021-01-26 | 先导薄膜材料(广东)有限公司 | 一种eitzo靶材及其制备方法 |
CN113793900A (zh) * | 2021-09-14 | 2021-12-14 | 广东工业大学 | 一种基于azo薄膜的阻变存储器及其制备方法 |
WO2023145499A1 (ja) * | 2022-01-31 | 2023-08-03 | 三井金属鉱業株式会社 | スパッタリングターゲット |
CN115058695B (zh) * | 2022-08-11 | 2022-11-04 | 广州粤芯半导体技术有限公司 | 溅射方法及半导体器件的制造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001038599A1 (fr) * | 1999-11-25 | 2001-05-31 | Idemitsu Kosan Co., Ltd. | Cible de pulverisation cathodique, oxyde electro-conducteur transparent, et procede d'elaboration d'une cible de pulverisation cathodique |
WO2007034733A1 (ja) * | 2005-09-20 | 2007-03-29 | Idemitsu Kosan Co., Ltd. | スパッタリングターゲット、透明導電膜及び透明電極 |
WO2007037191A1 (ja) * | 2005-09-27 | 2007-04-05 | Idemitsu Kosan Co., Ltd. | スパッタリングターゲット、透明導電膜及びタッチパネル用透明電極 |
WO2010067571A1 (ja) * | 2008-12-12 | 2010-06-17 | 出光興産株式会社 | 複合酸化物焼結体及びそれからなるスパッタリングターゲット |
WO2012153507A1 (ja) * | 2011-05-10 | 2012-11-15 | 出光興産株式会社 | In2O3-SnO2-ZnO系スパッタリングターゲット |
WO2013179676A1 (ja) * | 2012-05-31 | 2013-12-05 | 出光興産株式会社 | スパッタリングターゲット |
JP2014037617A (ja) * | 2012-07-17 | 2014-02-27 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014098204A (ja) * | 2012-10-18 | 2014-05-29 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014111818A (ja) * | 2012-11-09 | 2014-06-19 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
WO2014112369A1 (ja) * | 2013-01-16 | 2014-07-24 | 出光興産株式会社 | スパッタリングターゲット、酸化物半導体薄膜及びこれらの製造方法 |
WO2014112363A1 (ja) * | 2013-01-15 | 2014-07-24 | 出光興産株式会社 | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014218706A (ja) * | 2013-05-09 | 2014-11-20 | 出光興産株式会社 | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2015214436A (ja) * | 2014-05-08 | 2015-12-03 | 出光興産株式会社 | 酸化物焼結体及びスパッタリングターゲット |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050017244A1 (en) * | 2003-07-25 | 2005-01-27 | Randy Hoffman | Semiconductor device |
US7145174B2 (en) * | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
US7242039B2 (en) * | 2004-03-12 | 2007-07-10 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
FR2872172B1 (fr) * | 2004-06-25 | 2007-04-27 | Pechiney Rhenalu Sa | Produits en alliage d'aluminium a haute tenacite et haute resistance a la fatigue |
US20080252202A1 (en) * | 2007-04-11 | 2008-10-16 | General Electric Company | Light-emitting device and article |
JPWO2010018707A1 (ja) * | 2008-08-11 | 2012-01-26 | 出光興産株式会社 | 酸化ガリウム−酸化スズ系酸化物焼結体及び酸化物膜 |
JP5651095B2 (ja) | 2010-11-16 | 2015-01-07 | 株式会社コベルコ科研 | 酸化物焼結体およびスパッタリングターゲット |
JP2012180247A (ja) * | 2011-03-02 | 2012-09-20 | Kobelco Kaken:Kk | 酸化物焼結体およびスパッタリングターゲット |
JP5301021B2 (ja) * | 2011-09-06 | 2013-09-25 | 出光興産株式会社 | スパッタリングターゲット |
TW201410904A (zh) * | 2012-07-30 | 2014-03-16 | Tosoh Corp | 氧化物燒結體、濺鍍靶及其製造方法 |
JP6731147B2 (ja) | 2015-08-10 | 2020-07-29 | 日立金属株式会社 | 酸化物スパッタリングターゲット材 |
-
2018
- 2018-08-01 CN CN201880050200.4A patent/CN111032905A/zh active Pending
- 2018-08-01 US US16/634,855 patent/US20200235247A1/en active Pending
- 2018-08-01 JP JP2019534556A patent/JP7075934B2/ja active Active
- 2018-08-01 TW TW107126745A patent/TWI760539B/zh active
- 2018-08-01 WO PCT/JP2018/028842 patent/WO2019026954A1/ja active Application Filing
- 2018-08-01 KR KR1020207004360A patent/KR102470714B1/ko active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001038599A1 (fr) * | 1999-11-25 | 2001-05-31 | Idemitsu Kosan Co., Ltd. | Cible de pulverisation cathodique, oxyde electro-conducteur transparent, et procede d'elaboration d'une cible de pulverisation cathodique |
WO2007034733A1 (ja) * | 2005-09-20 | 2007-03-29 | Idemitsu Kosan Co., Ltd. | スパッタリングターゲット、透明導電膜及び透明電極 |
WO2007037191A1 (ja) * | 2005-09-27 | 2007-04-05 | Idemitsu Kosan Co., Ltd. | スパッタリングターゲット、透明導電膜及びタッチパネル用透明電極 |
WO2010067571A1 (ja) * | 2008-12-12 | 2010-06-17 | 出光興産株式会社 | 複合酸化物焼結体及びそれからなるスパッタリングターゲット |
WO2012153507A1 (ja) * | 2011-05-10 | 2012-11-15 | 出光興産株式会社 | In2O3-SnO2-ZnO系スパッタリングターゲット |
WO2013179676A1 (ja) * | 2012-05-31 | 2013-12-05 | 出光興産株式会社 | スパッタリングターゲット |
JP2014037617A (ja) * | 2012-07-17 | 2014-02-27 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014098204A (ja) * | 2012-10-18 | 2014-05-29 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014111818A (ja) * | 2012-11-09 | 2014-06-19 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
WO2014112363A1 (ja) * | 2013-01-15 | 2014-07-24 | 出光興産株式会社 | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
WO2014112369A1 (ja) * | 2013-01-16 | 2014-07-24 | 出光興産株式会社 | スパッタリングターゲット、酸化物半導体薄膜及びこれらの製造方法 |
JP2014218706A (ja) * | 2013-05-09 | 2014-11-20 | 出光興産株式会社 | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2015214436A (ja) * | 2014-05-08 | 2015-12-03 | 出光興産株式会社 | 酸化物焼結体及びスパッタリングターゲット |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131876A1 (ja) * | 2017-12-28 | 2019-07-04 | 三井金属鉱業株式会社 | 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜 |
JPWO2019131876A1 (ja) * | 2017-12-28 | 2020-12-10 | 三井金属鉱業株式会社 | 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜 |
JP7269886B2 (ja) | 2017-12-28 | 2023-05-09 | 三井金属鉱業株式会社 | 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜 |
JP2022518521A (ja) * | 2019-09-18 | 2022-03-15 | 華南理工大学 | ドーピングされた金属酸化物半導体および薄膜トランジスタとその応用 |
JP7424658B2 (ja) | 2019-09-18 | 2024-01-30 | 華南理工大学 | ドーピングされた金属酸化物半導体および薄膜トランジスタとその応用 |
US11702731B2 (en) | 2019-11-28 | 2023-07-18 | Imec Vzw | Method for forming a film of an oxide of In, Ga, and Zn |
TWI819633B (zh) * | 2022-05-31 | 2023-10-21 | 光洋應用材料科技股份有限公司 | 氧化銦鈦鋅濺鍍靶材、其薄膜及其製法 |
JP7425933B1 (ja) | 2022-09-16 | 2024-01-31 | 株式会社アルバック | 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法 |
WO2024057671A1 (ja) * | 2022-09-16 | 2024-03-21 | 株式会社アルバック | 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7075934B2 (ja) | 2022-05-26 |
TW201920048A (zh) | 2019-06-01 |
KR102470714B1 (ko) | 2022-11-25 |
TWI760539B (zh) | 2022-04-11 |
US20200235247A1 (en) | 2020-07-23 |
JPWO2019026954A1 (ja) | 2020-09-10 |
CN111032905A (zh) | 2020-04-17 |
KR20200037271A (ko) | 2020-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7075934B2 (ja) | スパッタリングターゲット、酸化物半導体薄膜、薄膜トランジスタおよび電子機器 | |
CN110447093B (zh) | 氧化物半导体膜、薄膜晶体管、氧化物烧结体以及溅射靶 | |
JP7263408B2 (ja) | 結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器 | |
CN110234785B (zh) | 非晶质氧化物半导体膜、氧化物烧结体以及薄膜晶体管 | |
CN110234789B (zh) | 氧化物半导体膜、薄膜晶体管、氧化物烧结体以及溅射靶 | |
JP2019064858A (ja) | 酸化物焼結体、スパッタリングターゲット、非晶質酸化物半導体薄膜、および薄膜トランジスタ | |
JP2019064859A (ja) | 酸化物焼結体、スパッタリングターゲット、非晶質酸化物半導体薄膜、および薄膜トランジスタ | |
JP2019064887A (ja) | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ | |
JP6326560B1 (ja) | 酸化物焼結体及びスパッタリングターゲット | |
JP2019077599A (ja) | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ | |
WO2023176591A1 (ja) | 焼結体、スパッタリングターゲット、酸化物薄膜、薄膜トランジスタ、電子機器、及び焼結体の製造方法 | |
CN118871403A (zh) | 烧结体、溅射靶、氧化物薄膜、薄膜晶体管、电子设备及烧结体的制造方法 | |
CN118922581A (zh) | 溅射靶、溅射靶的制造方法、氧化物薄膜、薄膜晶体管及电子设备 | |
WO2023189870A1 (ja) | スパッタリングターゲット、スパッタリングターゲットの製造方法、酸化物薄膜、薄膜トランジスタ、及び電子機器 | |
WO2024203953A1 (ja) | スパッタリングターゲット、スパッタリングターゲットの製造方法、酸化物薄膜、薄膜トランジスタ、及び電子機器 | |
KR20240167820A (ko) | 스퍼터링 타깃, 스퍼터링 타깃의 제조 방법, 결정 산화물 박막, 박막 트랜지스터, 및 전자 기기 | |
JP2019077594A (ja) | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18842108 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019534556 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207004360 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18842108 Country of ref document: EP Kind code of ref document: A1 |