JP2019077599A - 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ - Google Patents
酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ Download PDFInfo
- Publication number
- JP2019077599A JP2019077599A JP2017207593A JP2017207593A JP2019077599A JP 2019077599 A JP2019077599 A JP 2019077599A JP 2017207593 A JP2017207593 A JP 2017207593A JP 2017207593 A JP2017207593 A JP 2017207593A JP 2019077599 A JP2019077599 A JP 2019077599A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- oxide
- sintered body
- transistor
- oxide semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 178
- 239000004065 semiconductor Substances 0.000 title claims abstract description 117
- 238000005477 sputtering target Methods 0.000 title claims abstract description 35
- 239000013078 crystal Substances 0.000 claims description 49
- 239000000203 mixture Substances 0.000 claims description 31
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 18
- 238000000151 deposition Methods 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 117
- 230000015572 biosynthetic process Effects 0.000 description 40
- 238000004544 sputter deposition Methods 0.000 description 34
- 238000000034 method Methods 0.000 description 31
- 238000010438 heat treatment Methods 0.000 description 23
- 239000000758 substrate Substances 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 19
- 239000001301 oxygen Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 19
- 229910052738 indium Inorganic materials 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 17
- 239000004973 liquid crystal related substance Substances 0.000 description 16
- 238000012546 transfer Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 15
- 238000005259 measurement Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 15
- 238000005245 sintering Methods 0.000 description 15
- 229910052733 gallium Inorganic materials 0.000 description 14
- 229910052718 tin Inorganic materials 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000011229 interlayer Substances 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 238000005498 polishing Methods 0.000 description 9
- -1 Ga 3 In 5 Sn 2 O 16 Chemical class 0.000 description 8
- 230000005355 Hall effect Effects 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000001354 calcination Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000002259 gallium compounds Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 150000002472 indium compounds Chemical class 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910017488 Cu K Inorganic materials 0.000 description 1
- 229910017541 Cu-K Inorganic materials 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009681 x-ray fluorescence measurement Methods 0.000 description 1
Images
Landscapes
- Thin Film Transistor (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
【課題】薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜を形成でき、かつ成膜時の割れやノジュールの生成を抑制できる酸化物焼結体、および当該焼結体を有するスパッタリングターゲットの提供。
【解決手段】In元素、Ga元素、Sn元素およびAl元素を含み、GaInO3結晶を含み、さらにSnO2結晶または(Ga1.0-xInx)2SnO5結晶(0.10≦x≦0.50)の少なくとも一方を含むことを特徴とする、酸化物焼結体。
【選択図】なし
【解決手段】In元素、Ga元素、Sn元素およびAl元素を含み、GaInO3結晶を含み、さらにSnO2結晶または(Ga1.0-xInx)2SnO5結晶(0.10≦x≦0.50)の少なくとも一方を含むことを特徴とする、酸化物焼結体。
【選択図】なし
Description
本発明は、酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタに関する。
薄膜トランジスタに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a−Si)に比べて高いキャリヤ移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型、高解像度および高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板等への適用が期待されている。
酸化物半導体の形成に当たっては、スパッタリングターゲットをスパッタリングすることにより薄膜を形成するスパッタリング法が好適に用いられる。これは、スパッタリング法で形成された薄膜が、イオンプレーティング法や真空蒸着法、電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成や膜厚等の面内均一性に優れており、スパッタリングターゲットと同じ成分組成の薄膜を形成できるためである。
酸化物半導体のなかでも、インジウム、ガリウム、スズ、および酸素からなるアモルファス酸化物半導体(In−Ga−Sn−O、以下「IGTO」と略記する)は、高いキャリヤ移動度と、有機酸による優れたエッチングレートと、リン酸、酢酸および硝酸を含む混酸に対する耐薬品性とを有することから注目されている。
特許文献1には、In2O3、Ga2O3およびSnO2からなる透明導電膜の製造方法が記載され、スパッタリングターゲットが例示されている。
特許文献2には、In2O3にGa2O3およびSnO2を添加した酸化物半導体膜が記載されている。
特許文献3には、In、Ga、およびSnを含み、Znを選択的に含有する酸化物半導体膜が記載されている。
引用文献4には、In2O3にGa2O3およびSnO2を添加した酸化物半導体膜とIn2O3にGa2O3、SnO2およびZnOを添加した酸化物半導体膜を積層したトランジスタおよびスパッタリングターゲットが例示されている。
特許文献2には、In2O3にGa2O3およびSnO2を添加した酸化物半導体膜が記載されている。
特許文献3には、In、Ga、およびSnを含み、Znを選択的に含有する酸化物半導体膜が記載されている。
引用文献4には、In2O3にGa2O3およびSnO2を添加した酸化物半導体膜とIn2O3にGa2O3、SnO2およびZnOを添加した酸化物半導体膜を積層したトランジスタおよびスパッタリングターゲットが例示されている。
特許文献5、6には、In2O3、Ga2O3およびSnO2を焼結して得られる酸化物焼結体が記載されている。
しかしながら、引用文献1から引用文献6に記載の技術には、以下のような問題があった。
特許文献1に記載の技術は導電体膜に係る技術であり、半導体薄膜が得られないという問題があった。理由の1つは、Gaの含有量が少なすぎて酸化インジウムの酸素欠損が多くなり過ぎるためである。
特許文献2、3に記載の技術は、酸素を含む雰囲気で成膜することにより、酸素欠損を抑制して半導体薄膜を得ている。しかしながら、酸素を多量に含む雰囲気で成膜すると、ノジュールまたはイエローフレークと呼ばれる、酸化物系の異物が成膜時にターゲット表面に生成し、異常放電や割れの原因になるという問題があった。
特許文献4、5に記載の技術では、Ga3InSn5O16化合物およびGa2In6Sn2O16化合物のような、比較的強度が低い化合物が焼結体中に生成する。そのため、ボンディング中に割れが発生する場合があった。また、高パワーでスパッタリングした場合に、ターゲットにヘアーラインクラックと呼ばれる微細なクラックが入る場合があり、それが異常放電の原因となり、薄膜の生産性を低下さたり、特性や歩留を低下させる場合があった。
特許文献5では、割れ、およびクラックの問題を解決するために、二段焼成法でGa2In6Sn2O16化合物の成長を抑制したスパッタリングターゲットを製造しているが、このような製法は、コストと工数を要するという問題があった。
特許文献5では、割れ、およびクラックの問題を解決するために、二段焼成法でGa2In6Sn2O16化合物の成長を抑制したスパッタリングターゲットを製造しているが、このような製法は、コストと工数を要するという問題があった。
特許文献6に記載の技術は、製造したターゲットを用いて半導体薄膜を成膜した旨が記載されておらず、当該文献記載の条件で、割れ、およびクラックの発生が抑制できるのか不明であった。
本発明は上記課題に鑑みてなされたものであり、薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜を形成でき、かつ成膜時の割れやノジュールの生成を抑制できる酸化物焼結体、および当該焼結体を有するスパッタリングターゲットの提供を目的とする。薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜、および当該薄膜を備える薄膜トランジスタを提供することも目的とする。
本発明は上記課題に鑑みてなされたものであり、薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜を形成でき、かつ成膜時の割れやノジュールの生成を抑制できる酸化物焼結体、および当該焼結体を有するスパッタリングターゲットの提供を目的とする。薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜、および当該薄膜を備える薄膜トランジスタを提供することも目的とする。
本発明によれば、以下の酸化物焼結体が提供される。
[1]In元素、Ga元素、Sn元素およびAl元素を含み、GaInO3結晶を含み、さらにSnO2結晶または(Ga1.0-xInx)2SnO5結晶(0.10≦x≦0.50)の少なくとも一方を含むことを特徴とする、酸化物焼結体。
[2]Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことを特徴とする、[1]に記載の酸化物焼結体。
[3]GaInO3結晶を主成分として含むことを特徴とする、[1]または[2]に記載の酸化物焼結体。
[4]In元素、Ga元素、Sn元素およびAl元素を含み、Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことを特徴とする、酸化物焼結体。
[5]In元素、Ga元素、Sn元素およびAl元素の原子組成比が下記式(1)から式(4)を満たす範囲であることを特徴とする、[1]から[4]のいずれか1つに記載の酸化物焼結体。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(1)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(2)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(3)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(4)
[6]In元素、Ga元素、Sn元素、およびAl元素を下記式(5)から式(8)を満たす原子組成比の範囲で含有することを特徴とする、酸化物焼結体。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(5)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(6)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(7)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(8)
[7]相対密度が95%以上であることを特徴とする[1]から[6]のいずれか1つに記載の酸化物焼結体。
[8]バルク抵抗が20mΩcm以下であることを特徴とする[1]から[7]のいずれか1つに記載の酸化物焼結体。
[1]In元素、Ga元素、Sn元素およびAl元素を含み、GaInO3結晶を含み、さらにSnO2結晶または(Ga1.0-xInx)2SnO5結晶(0.10≦x≦0.50)の少なくとも一方を含むことを特徴とする、酸化物焼結体。
[2]Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことを特徴とする、[1]に記載の酸化物焼結体。
[3]GaInO3結晶を主成分として含むことを特徴とする、[1]または[2]に記載の酸化物焼結体。
[4]In元素、Ga元素、Sn元素およびAl元素を含み、Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことを特徴とする、酸化物焼結体。
[5]In元素、Ga元素、Sn元素およびAl元素の原子組成比が下記式(1)から式(4)を満たす範囲であることを特徴とする、[1]から[4]のいずれか1つに記載の酸化物焼結体。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(1)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(2)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(3)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(4)
[6]In元素、Ga元素、Sn元素、およびAl元素を下記式(5)から式(8)を満たす原子組成比の範囲で含有することを特徴とする、酸化物焼結体。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(5)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(6)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(7)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(8)
[7]相対密度が95%以上であることを特徴とする[1]から[6]のいずれか1つに記載の酸化物焼結体。
[8]バルク抵抗が20mΩcm以下であることを特徴とする[1]から[7]のいずれか1つに記載の酸化物焼結体。
本発明によれば、以下のスパッタリングターゲットが提供される。
[9][1]から[8]のいずれか1つに記載の酸化物焼結体を備えることを特徴とするスパッタリングターゲット。
本発明によれば、以下の酸化物半導体薄膜が提供される。
[10] In元素、Ga元素、Sn元素、およびAl元素を式(9)から式(12)を満たす原子組成比の範囲で含有することを特徴とする、酸化物半導体薄膜。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(9)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(10)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(11)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(12)
[9][1]から[8]のいずれか1つに記載の酸化物焼結体を備えることを特徴とするスパッタリングターゲット。
本発明によれば、以下の酸化物半導体薄膜が提供される。
[10] In元素、Ga元素、Sn元素、およびAl元素を式(9)から式(12)を満たす原子組成比の範囲で含有することを特徴とする、酸化物半導体薄膜。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(9)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(10)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(11)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(12)
本発明によれば、以下の薄膜トランジスタが提供される。
[11][10]に記載の酸化物半導体薄膜を備えることを特徴とする薄膜トランジスタ。
本発明によれば、以下の電子機器が提供される。
[12][11]に記載の薄膜トランジスタを含む、電子機器。
[11][10]に記載の酸化物半導体薄膜を備えることを特徴とする薄膜トランジスタ。
本発明によれば、以下の電子機器が提供される。
[12][11]に記載の薄膜トランジスタを含む、電子機器。
本発明によれば、薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜を形成でき、かつ成膜時の割れやノジュールの生成を抑制できる酸化物焼結体、および当該焼結体を有するスパッタリングターゲットを提供できる。薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜、および当該薄膜を備える薄膜トランジスタも提供できる。
本実施形態では、酸化物焼結体に含まれる「化合物」を、「結晶」と称して説明することがあるがそれぞれは同様の意味を示す。
<本発明の背景>
まず、本発明の背景を簡単に説明する。
IGTO酸化物焼結体において、スパッタ時にターゲットにヘアーラインクラックが生じる場合があることは公知である。
ヘアーラインクラックが生じる原因は明らかではないが、スパッタリングターゲット中にGa3In5Sn2O16、Ga2In6Sn2O16、またはGa3InSn5O16等の化合物が存在するのが原因と推察される。このように推察する理由は、これらの化合物の結晶相の結晶軸方向の熱膨張率が異なるため、スパッタ等により一方向から熱が加わった場合に、内部応力が発生し、ヘアーラインクラックが発生すると考えられるためである。
これの問題に対し、本発明者らは、ヘアーラインクラックの発生を防止するために、Ga3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の生成を抑制する原料を添加することを考えた。
ただし、添加元素は、スパッタにより成膜した膜にも含まれるため、単に化合物の生成を抑制できるだけでなく、半導体薄膜の特性を悪化させないようにする必要がある。
<本発明の背景>
まず、本発明の背景を簡単に説明する。
IGTO酸化物焼結体において、スパッタ時にターゲットにヘアーラインクラックが生じる場合があることは公知である。
ヘアーラインクラックが生じる原因は明らかではないが、スパッタリングターゲット中にGa3In5Sn2O16、Ga2In6Sn2O16、またはGa3InSn5O16等の化合物が存在するのが原因と推察される。このように推察する理由は、これらの化合物の結晶相の結晶軸方向の熱膨張率が異なるため、スパッタ等により一方向から熱が加わった場合に、内部応力が発生し、ヘアーラインクラックが発生すると考えられるためである。
これの問題に対し、本発明者らは、ヘアーラインクラックの発生を防止するために、Ga3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の生成を抑制する原料を添加することを考えた。
ただし、添加元素は、スパッタにより成膜した膜にも含まれるため、単に化合物の生成を抑制できるだけでなく、半導体薄膜の特性を悪化させないようにする必要がある。
本発明者らは、さらなる検討の結果、IGTO酸化物焼結体にAlを添加することにより、Ga3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の生成が抑制され、ヘアーラインクラックの発生を防止できることを見出した。これは高パワー成膜やスパッタリング装置の大型化にも対応できる可能性がある。
さらに、IGTO酸化物焼結体にAlを添加したターゲットを用いて生成した酸化物半導体薄膜は、低温アニールでも安定したTFT特性を発現する組成であり、また、TFTの作製において保護膜または絶縁膜を化学蒸着法(CVD)で形成する際の加熱等での半導体特性の劣化が小さい(CVD耐性が高い)ことが判明したため、本発明を創出するに至った。
以上が本発明の背景である。
さらに、IGTO酸化物焼結体にAlを添加したターゲットを用いて生成した酸化物半導体薄膜は、低温アニールでも安定したTFT特性を発現する組成であり、また、TFTの作製において保護膜または絶縁膜を化学蒸着法(CVD)で形成する際の加熱等での半導体特性の劣化が小さい(CVD耐性が高い)ことが判明したため、本発明を創出するに至った。
以上が本発明の背景である。
<酸化物焼結体の構造>
次に、本実施形態に係る酸化物焼結体の構造について説明する。
本実施形態に係る酸化物焼結体は、In元素(インジウム)、Ga元素(ガリウム)、Sn元素(スズ)、およびAl元素(アルミニウム)を含む。
次に、本実施形態に係る酸化物焼結体の構造について説明する。
本実施形態に係る酸化物焼結体は、In元素(インジウム)、Ga元素(ガリウム)、Sn元素(スズ)、およびAl元素(アルミニウム)を含む。
インジウムは、半導体薄膜の移動度を担う酸化物である。
ガリウムは、酸化インジウムの結晶化を抑えたり、酸素欠損の発生を抑える効果と、得られる酸化物半導体薄膜のバンドギャップを大きくする効果を有する。
スズは、耐薬品性を有する。また、導電膜にも使用されることから、半導体薄膜の移動度に影響を及ぼすことは少なく、高価なインジウムの添加量を減らす効果も有する。
ガリウムは、酸化インジウムの結晶化を抑えたり、酸素欠損の発生を抑える効果と、得られる酸化物半導体薄膜のバンドギャップを大きくする効果を有する。
スズは、耐薬品性を有する。また、導電膜にも使用されることから、半導体薄膜の移動度に影響を及ぼすことは少なく、高価なインジウムの添加量を減らす効果も有する。
Alは、Ga3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の発生を抑制し、これにより、焼結体の強度を上昇させる効果を有する。
Al添加によりGa3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の発生が抑制される原因は明確でないが、以下の推察ができる。
具体的には、AlはGa、Sn、およびInよりもイオン半径が小さいため、結晶の格子間や結晶粒界、元素欠陥の後などに存在すると考えられ、複雑な結晶構造を示すGa3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の析出を抑制し、より単純な結晶構造であるGaInO3、SnO2、(Ga0.7In0.3)2SnO5などの結晶が析出するものと考えられる。
Al添加によりGa3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の発生が抑制される原因は明確でないが、以下の推察ができる。
具体的には、AlはGa、Sn、およびInよりもイオン半径が小さいため、結晶の格子間や結晶粒界、元素欠陥の後などに存在すると考えられ、複雑な結晶構造を示すGa3In5Sn2O16、Ga2In6Sn2O16、およびGa3InSn5O16等の化合物の析出を抑制し、より単純な結晶構造であるGaInO3、SnO2、(Ga0.7In0.3)2SnO5などの結晶が析出するものと考えられる。
本実施形態に係る酸化物焼結体は、前記酸化物焼結体が、Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことが望ましい。
これにより、ヘアーラインクラックの発生を抑制できる。
これにより、ヘアーラインクラックの発生を抑制できる。
本実施形態に係る酸化物焼結体は、GaInO3結晶を含むことが好ましく、主成分として含むことがより好ましい。これにより、ヘアーラインクラック等の発生がなくなり、異常放電のない安定したスパッタリングが行えるようになる。「GaInO3結晶を主成分として含む」とは、GaInO3結晶が、焼結体中に占める割合が50質量%以上であることを意味する。
GaInO3結晶が、焼結体中に占める割合は、好ましくは、60質量%以上であり、より好ましくは、70質量%以上であり、さらに好ましくは、80質量%以上である。
GaInO3結晶が、焼結体中に占める割合は、好ましくは、60質量%以上であり、より好ましくは、70質量%以上であり、さらに好ましくは、80質量%以上である。
本実施形態に係る酸化物焼結体は、SnO2結晶および(Ga1.0-xInx)2SnO5結晶(0.10≦x≦0.50)のいずれか一方または両方を含有していてもよい。SnO2結晶および(Ga1.0-xInx)2SnO5結晶は、熱伝導率が良く、また、線膨張係数も小さいので、熱歪による焼結体中の内部応力が大きくなることを抑える効果があり、スパッタリング中のヘアーラインクラックの発生を抑える効果もある。(Ga1.0-xInx)2SnO5結晶の具体例としては、x=0.3の(Ga0.7In0.3)2SnO5が挙げられる。
<酸化物焼結体の組成>
本実施形態に係る酸化物焼結体の組成は、スパッタ時の熱応力で割れることなく、かつ成膜した酸化物半導体薄膜の特性が優れたものであれば、限定しない。具体的な原子組成比としては、以下の式(1)から式(4)を満たす範囲が好ましい。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(1)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(2)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(3)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(4)
本実施形態に係る酸化物焼結体の組成は、スパッタ時の熱応力で割れることなく、かつ成膜した酸化物半導体薄膜の特性が優れたものであれば、限定しない。具体的な原子組成比としては、以下の式(1)から式(4)を満たす範囲が好ましい。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(1)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(2)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(3)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(4)
原子組成比を式(1)から式(4)に規定する範囲にすることにより、ヘアーラインクラックなどが発生しないターゲットが得られる。また、当該ターゲットを用いて生成した半導体薄膜の特性も優れる。
式(1)において、インジウムの含有量を0.20以上とすることにより、移動度の低下を防ぐことができる。式(1)において、インジウムの含有量を0.55以下とすることにより、スパッタで成膜した膜が結晶化したり、酸素欠損の量が増えすぎて、導体になったりするのを防げる。より好ましくは、0.25≦In/(In+Ga+Sn)≦0.55、さらに好ましくは、0.30≦In/(In+Ga+Sn)≦0.55である。
式(2)において、ガリウムの含有量を0.01以上とすることにより酸素欠損を抑える効果が発現し、スパッタした膜が半導体薄膜になる。式(2)において、ガリウムの含有量を0.50以下とすることにより、酸素欠損が少なくなり過ぎて、膜が絶縁体化するのを防げる。より好ましくは、0.02≦Ga/(In+Ga+Sn)≦0.45、さらに好ましくは、0.03≦Ga/(In+Ga+Sn)≦0.40である。
式(3)において、スズの含有量を0.01以上とすることにより、耐薬品性が発現する。式(3)において、スズの含有量を0.50以下とすることにより、エッチングによる半導体薄膜のアイランド形成ができる。より好ましくは、0.02≦Sn/(In+Ga+Sn)≦0.45、さらに好ましくは0.03≦Sn/(In+Ga+Sn)≦0.40である。
式(4)において、アルミニウムの含有量を0.05以上とすることにより、本実施形態の化合物を含んだ酸化物焼結体を得ることができる。また、本実施形態の酸化物焼結体から得られる酸化物半導体膜を用いた薄膜トランジスタの移動度を十分な値にできる。さらに、本実施形態の酸化物焼結体から得られる酸化物半導体膜は、低温アニールでも安定したTFT特性を発現する。式(4)において、アルミニウムの含有量を0.30以下とすることにより、移動度が小さくなり過ぎるのを防ぐことができる。
より好ましくは、0.05≦Al/(In+Ga+Sn+Al)≦0.25、さらに好ましくは0.08≦Al/(In+Ga+Sn+Al)≦0.22である。
より好ましくは、0.05≦Al/(In+Ga+Sn+Al)≦0.25、さらに好ましくは0.08≦Al/(In+Ga+Sn+Al)≦0.22である。
In元素、Ga元素、Sn元素、およびAl元素以外の元素は特に限定しない。
ただし、本実施形態に係る酸化物焼結体は、In元素、Ga元素、Sn元素、およびAl元素を含み、残部(In元素、Ga元素、Sn元素、およびAl元素を除いた元素)が酸素と不可避不純物からなるものが好ましい。残部が酸素と不可避不純物であることにより、In元素、Ga元素、Sn元素、およびAl元素以外の元素が酸化物焼結体や、当該酸化物焼結体を用いて製造された半導体薄膜の特性に与える影響を最小限にできる。
不可避不純物とは、意図的に添加しない元素であって、原料や製造工程で混入する元素を意味する。以下の説明でも同様である。
ただし、本実施形態に係る酸化物焼結体は、In元素、Ga元素、Sn元素、およびAl元素を含み、残部(In元素、Ga元素、Sn元素、およびAl元素を除いた元素)が酸素と不可避不純物からなるものが好ましい。残部が酸素と不可避不純物であることにより、In元素、Ga元素、Sn元素、およびAl元素以外の元素が酸化物焼結体や、当該酸化物焼結体を用いて製造された半導体薄膜の特性に与える影響を最小限にできる。
不可避不純物とは、意図的に添加しない元素であって、原料や製造工程で混入する元素を意味する。以下の説明でも同様である。
<酸化物焼結体の物性>
本実施形態に係る酸化物焼結体は、相対密度が95%以上であることが好ましい。
相対密度が95%以上とすることにより、成膜時のクラック発生やノジュール生成を抑制でき、得られる薄膜トランジスタの性能の低下や、歩留の低下、膜密度の低下を防ぐことができる。また、CVD装置での成膜温度を上げることができる。相対密度は、好ましくは、96%以上であり、より好ましくは、97%以上である。
相対密度は、例えば、アルキメデス法で測定した酸化物焼結体の実測密度を、酸化物焼結体の理論密度で除した値を、百分率にして、算出することができる。
例えば、酸化物焼結体の原料粉末として酸化物A、酸化物B、酸化物C、酸化物Dを用いた場合において、酸化物A、酸化物B、酸化物C、酸化物Dの使用量(仕込量)をそれぞれa(g)、b(g)、c(g)、d(g)とすると、理論密度は、以下のように当てはめることで算出できる。
理論密度=(a+b+c+d)/((a/酸化物Aの密度)+(b/酸化物Bの密度)+(c/酸化物Cの密度)+(d/酸化物Dの密度))
なお、各酸化物の密度は、密度と比重はほぼ同等であることから、化学便覧 基礎編I日本化学編 改定2版(丸善株式会社)に記載されている酸化物の比重の値を用いるとよい。なお、理論密度は、各酸化物の質量比を用いて以下のように算出することもできる。
理論密度=1/((酸化物Aの質量比/酸化物Aの密度)+(酸化物Bの質量比/酸化物Bの密度)+(酸化物Cの質量比/酸化物Cの密度)+(酸化物Dの質量比/酸化物Dの密度))
本実施形態に係る酸化物焼結体は、相対密度が95%以上であることが好ましい。
相対密度が95%以上とすることにより、成膜時のクラック発生やノジュール生成を抑制でき、得られる薄膜トランジスタの性能の低下や、歩留の低下、膜密度の低下を防ぐことができる。また、CVD装置での成膜温度を上げることができる。相対密度は、好ましくは、96%以上であり、より好ましくは、97%以上である。
相対密度は、例えば、アルキメデス法で測定した酸化物焼結体の実測密度を、酸化物焼結体の理論密度で除した値を、百分率にして、算出することができる。
例えば、酸化物焼結体の原料粉末として酸化物A、酸化物B、酸化物C、酸化物Dを用いた場合において、酸化物A、酸化物B、酸化物C、酸化物Dの使用量(仕込量)をそれぞれa(g)、b(g)、c(g)、d(g)とすると、理論密度は、以下のように当てはめることで算出できる。
理論密度=(a+b+c+d)/((a/酸化物Aの密度)+(b/酸化物Bの密度)+(c/酸化物Cの密度)+(d/酸化物Dの密度))
なお、各酸化物の密度は、密度と比重はほぼ同等であることから、化学便覧 基礎編I日本化学編 改定2版(丸善株式会社)に記載されている酸化物の比重の値を用いるとよい。なお、理論密度は、各酸化物の質量比を用いて以下のように算出することもできる。
理論密度=1/((酸化物Aの質量比/酸化物Aの密度)+(酸化物Bの質量比/酸化物Bの密度)+(酸化物Cの質量比/酸化物Cの密度)+(酸化物Dの質量比/酸化物Dの密度))
本実施形態に係る酸化物焼結体は、バルク抵抗が20mΩcm以下であることが好ましい。
バルク抵抗は、より好ましくは10mΩcm以下、特に好ましくは5mΩcm以下である。バルク抵抗を20mΩcm以下とすることにより、直流スパッタで安定した成膜を行うことができる。バルク抵抗の下限値は特に規定しないが、例えば1mΩcm以上である。
バルク抵抗は、より好ましくは10mΩcm以下、特に好ましくは5mΩcm以下である。バルク抵抗を20mΩcm以下とすることにより、直流スパッタで安定した成膜を行うことができる。バルク抵抗の下限値は特に規定しないが、例えば1mΩcm以上である。
バルク抵抗値は、公知の抵抗率計を使用して四探針法(JIS R 1637)に基づき測定できる。測定箇所は5箇所程度であり、平均値をバルク抵抗値とするのが好ましい。
測定箇所は、酸化物焼結体の平面形状が四角形の場合には、中心および四隅と中心の中間点の4点の計5箇所とするのが好ましい。
なお、酸化物焼結体の平面形状が円形の場合は、円に内接する正方形の中心および正方形の四隅と、中心の中間点の4点の計5箇所とするのが好ましい。
以上が、本実施形態に係る酸化物焼結体の説明である。
測定箇所は、酸化物焼結体の平面形状が四角形の場合には、中心および四隅と中心の中間点の4点の計5箇所とするのが好ましい。
なお、酸化物焼結体の平面形状が円形の場合は、円に内接する正方形の中心および正方形の四隅と、中心の中間点の4点の計5箇所とするのが好ましい。
以上が、本実施形態に係る酸化物焼結体の説明である。
<酸化物焼結体の製造方法>
次に、本実施形態に係る酸化物焼結体の製造方法について説明する。
本実施形態に係る酸化物焼結体が製造できるものであれば、製造方法は特に限定しないが、以下の(a)から(c)の工程を含む製法を例示できる。
(a)原料化合物粉末を混合して混合物を調製する工程。
(b)混合物を成型して成型体を調製する工程。
(c)成型体を焼結する工程。
次に、本実施形態に係る酸化物焼結体の製造方法について説明する。
本実施形態に係る酸化物焼結体が製造できるものであれば、製造方法は特に限定しないが、以下の(a)から(c)の工程を含む製法を例示できる。
(a)原料化合物粉末を混合して混合物を調製する工程。
(b)混合物を成型して成型体を調製する工程。
(c)成型体を焼結する工程。
(1)工程(a):配合工程
配合工程は、酸化物焼結体の原料を混合する工程である。
原料としては、インジウム化合物の粉末、ガリウム化合物の粉末、スズ化合物の粉末、およびアルミニウム化合物の粉末を用いる。インジウム、スズおよびガリウムの化合物としては、例えば、酸化物、水酸化物が挙げられる。アルミニウム化合物としては、酸化物が挙げられる。焼結のしやすさ、副生成物の残存のし難さから、酸化物が好ましい。
配合工程は、酸化物焼結体の原料を混合する工程である。
原料としては、インジウム化合物の粉末、ガリウム化合物の粉末、スズ化合物の粉末、およびアルミニウム化合物の粉末を用いる。インジウム、スズおよびガリウムの化合物としては、例えば、酸化物、水酸化物が挙げられる。アルミニウム化合物としては、酸化物が挙げられる。焼結のしやすさ、副生成物の残存のし難さから、酸化物が好ましい。
原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、特に好ましくは4N(99.99質量%)以上である。純度が2N以上とすることにより、耐久性が確保でき、液晶ディスプレイに用いた際に液晶側に不純物が入り、焼き付けが起こる可能性を低減できる。
金属酸化物等のターゲットの製造に用いる原料は、通常の混合粉砕機、例えば、湿式ボールミルやビーズミルまたは超音波装置を用いて、均一に混合および粉砕することが好ましい。
配合した原料は仮焼してもよい。仮焼は、スパッタリングターゲットの原料である化合物の混合物を得た後、必要に応じて設けられる工程である。
仮焼により、得られる焼結体の密度を上げることが容易になり好ましいが、コストアップになるおそれがある。そのため、仮焼を行わずに密度を上げることがより好ましい。
仮焼により、得られる焼結体の密度を上げることが容易になり好ましいが、コストアップになるおそれがある。そのため、仮焼を行わずに密度を上げることがより好ましい。
仮焼では、原料混合物を500℃以上、1200℃以下で、1時間以上、100時間以下、熱処理することが好ましい。500℃以上で1時間以上、熱処理することにより、インジウム化合物、ガリウム化合物、スズ化合物の熱分解が十分となる。一方、熱処理条件が、1200℃以下、100時間以下とすることにより粒子の粗大化を防止できる。
仮焼は、800℃以上、1200℃以下の温度範囲で、2時間以上、50時間以下、実施することが好ましい。
得られた仮焼物は、下記の成型工程および焼成工程の前に粉砕するのが好ましい。
仮焼は、800℃以上、1200℃以下の温度範囲で、2時間以上、50時間以下、実施することが好ましい。
得られた仮焼物は、下記の成型工程および焼成工程の前に粉砕するのが好ましい。
(2)工程(b):成型工程
成型工程は、原料混合物(上記仮焼工程を設けた場合には仮焼物)を加圧成型して成型体とする工程である。この工程により、ターゲットとして好適な形状に成型する。仮焼工程を設けた場合には、得られた仮焼物の微粉末を造粒した後、プレス成型により所望の形状に成型することができる。
成型工程は、原料混合物(上記仮焼工程を設けた場合には仮焼物)を加圧成型して成型体とする工程である。この工程により、ターゲットとして好適な形状に成型する。仮焼工程を設けた場合には、得られた仮焼物の微粉末を造粒した後、プレス成型により所望の形状に成型することができる。
成型体の平均厚みは5.5mm以上が好ましく、6mm以上がより好ましく、8mm以上がさらに好ましく、12mm以上が特に好ましい。成型体の平均厚みが5.5mm以上だと、成型体の厚さ方向の温度勾配が減少し、表面と深部の結晶型の組合せの変動が生じにくくなることが期待できる。
本工程で用いることができる成型処理としては、例えば、プレス成型(一軸プレス)、金型成型、鋳込み成型、射出成型等も挙げられる。焼結密度の高い焼結体(ターゲット)を得るためには、冷間静水圧(CIP)等で成型するのが好ましい。
また、プレス成型(一軸プレス)後に、冷間静水圧(CIP)、熱間静水圧(HIP)等で成型するように、2段階以上の成型工程を設けてもよい。
冷間静水圧、または静水圧加圧装置を用いる場合、面圧78.5MPa(800kgf/cm2をSI単位に換算)以上、392.4MPa(4000kgf/cm2をSI単位に換算)で0.5分以上、60分以下保持することが好ましく、面圧196.2MPa以上、294.3MPa以下で、2分以上、30分以下保持することがより好ましい。前記範囲内であると、成型体内部の組成むら等が減り、均一化されることが期待される。面圧を78.5MPa以上とすることによりで、焼結後の密度が低くなり、バルク抵抗も低くなる。面圧392.4MPa以下とすることにより、装置を大型化せずに成形できる。保持時間が0.5分以上であると、焼結後の密度と抵抗が高くなるのを防止できる。60分以下であると時間が掛かりすぎ不経済となるのを防げる。
成型処理では、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成型助剤を用いてもよい。
冷間静水圧、または静水圧加圧装置を用いる場合、面圧78.5MPa(800kgf/cm2をSI単位に換算)以上、392.4MPa(4000kgf/cm2をSI単位に換算)で0.5分以上、60分以下保持することが好ましく、面圧196.2MPa以上、294.3MPa以下で、2分以上、30分以下保持することがより好ましい。前記範囲内であると、成型体内部の組成むら等が減り、均一化されることが期待される。面圧を78.5MPa以上とすることによりで、焼結後の密度が低くなり、バルク抵抗も低くなる。面圧392.4MPa以下とすることにより、装置を大型化せずに成形できる。保持時間が0.5分以上であると、焼結後の密度と抵抗が高くなるのを防止できる。60分以下であると時間が掛かりすぎ不経済となるのを防げる。
成型処理では、ポリビニルアルコールやメチルセルロース、ポリワックス、オレイン酸等の成型助剤を用いてもよい。
(3)工程(c):焼結工程
焼結工程は、上記成型工程で得られた成型体を焼成する必須の工程である。
焼結工程は、酸素ガス雰囲気または酸素ガス加圧下で行うことが好ましい。酸素ガスを含有する雰囲気で焼結すると、得られるターゲットの密度を十分に向上させることができ、スパッタリング時の異常放電の発生を十分に抑制できる。
焼結工程は、上記成型工程で得られた成型体を焼成する必須の工程である。
焼結工程は、酸素ガス雰囲気または酸素ガス加圧下で行うことが好ましい。酸素ガスを含有する雰囲気で焼結すると、得られるターゲットの密度を十分に向上させることができ、スパッタリング時の異常放電の発生を十分に抑制できる。
焼結温度までの昇温速度は3℃/分以下が好ましく、2.5℃/分以下がより好ましく、1.5℃/分以下が特に好ましい。昇温速度が3℃/分以下だと、表面と深部の結晶型の組合せが変動する可能性が低くなる。
昇温の途中で一度昇温を止め所定の温度で保持し、2段階以上で焼結を行っても良い。
昇温の途中で一度昇温を止め所定の温度で保持し、2段階以上で焼結を行っても良い。
焼結温度は、1280℃以上1520℃以下が好ましく、1300℃以上1500℃以下がより好ましく、1320℃以上1480℃以下がさらに好ましい。
焼結時間は、2時間以上96時間以下が好ましく、4時間以上48時間以下がより好ましく、6時間以上24時間以下が特に好ましい。
焼結時間は、2時間以上96時間以下が好ましく、4時間以上48時間以下がより好ましく、6時間以上24時間以下が特に好ましい。
冷却は放置して冷却してもよいが、冷却時の降温速度は、通常4℃/分以下、好ましくは2℃/分以下、より好ましくは1℃/分以下、さらに好ましくは0.8℃/分以下、特に好ましくは0.5℃/分以下である。4℃/分以下であると本実施形態に係る結晶型が得られやすい。また、降温時にクラックが発生しにくい。
焼結工程で得られた焼結体のバルク抵抗を全体として低減するために、還元処理工程を設けてもよい。還元方法としては、例えば、還元性ガスによる方法、真空焼成、または不活性ガスによる還元等が挙げられる。
還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素や、これらのガスと酸素との混合ガス等を用いることができる。
不活性ガス中での焼成による還元処理の場合、窒素、アルゴンや、これらのガスと酸素との混合ガス等を用いることができる。
還元処理を行うと、表面部と深部の抵抗値の違いを発生、または増幅させる場合があるため、還元処理は行わなくてもよい。
不活性ガス中での焼成による還元処理の場合、窒素、アルゴンや、これらのガスと酸素との混合ガス等を用いることができる。
還元処理を行うと、表面部と深部の抵抗値の違いを発生、または増幅させる場合があるため、還元処理は行わなくてもよい。
<スパッタリングターゲット>
次に、本実施形態に係るスパッタリングターゲットについて、図1を参照して説明する。
本実施形態に係るスパッタリングターゲットは、本実施形態に係る酸化物焼結体を備える。
次に、本実施形態に係るスパッタリングターゲットについて、図1を参照して説明する。
本実施形態に係るスパッタリングターゲットは、本実施形態に係る酸化物焼結体を備える。
具体的には、スパッタリングターゲットは、酸化物焼結体と、必要に応じて酸化物焼結体に設けられる、バッキングプレート等の冷却および保持用の部材を備える。
酸化物焼結体は、スパッタリングで成膜する膜原料である。形状は特に限定されないが、図1(A)の符号1に示すような板状でもよく、図1(B)の符号1Aに示すように円筒状でもよい。板状の場合、平面形状は図1(A)の符号1に示すような矩形でもよく、図1(C)の符号1Bに示すような円形でもよい。酸化物焼結体は一体成型でもよく、図1(D)に示すように、複数に分割した酸化物焼結体(符号1C)をバッキングプレートに各々固定した多分割式でもよい。
バッキングプレートは、酸化物焼結体の保持や冷却用の部材である。材料は銅等の熱伝導性に優れた材料が好ましい。
バッキングプレートは、酸化物焼結体の保持や冷却用の部材である。材料は銅等の熱伝導性に優れた材料が好ましい。
スパッタリングターゲットは、例えば以下の工程で製造される。
(d)酸化物焼結体の表面を研削する工程。
(e)酸化物焼結体をバッキングプレートにボンディングする工程。
以下、各工程を具体的に説明する。
(d)酸化物焼結体の表面を研削する工程。
(e)酸化物焼結体をバッキングプレートにボンディングする工程。
以下、各工程を具体的に説明する。
(4)工程(d):研削工程
研削(加工)工程は、焼結体を、スパッタリング装置への装着に適した形状に切削加工する工程である。
焼結体の表面は0.3mm以上研削するのが好ましい。研削する深さは、0.5mm以上研削するのが好ましく、2mm以上が特に好ましい。0.3mm以上研削することにより、表面付近の結晶構造の変動部分を除去できる。
研削(加工)工程は、焼結体を、スパッタリング装置への装着に適した形状に切削加工する工程である。
焼結体の表面は0.3mm以上研削するのが好ましい。研削する深さは、0.5mm以上研削するのが好ましく、2mm以上が特に好ましい。0.3mm以上研削することにより、表面付近の結晶構造の変動部分を除去できる。
酸化物焼結体を例えば、平面研削盤で研削して平均表面粗さRaが5μm以下の素材とするのが好ましい。さらにスパッタリングターゲットのスパッタ面に鏡面加工を施して、平均表面粗さRaが1000×10-10m以下としてもよい。この鏡面加工(研磨)は機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の、公知の研磨技術を用いることができる。例えば、固定砥粒ポリッシャー(ポリッシュ液は水)で#2000以上にポリッシングしてもよく、遊離砥粒ラップ(研磨材はSiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えて、ラッピングしてもよい。研磨方法はこれらの方法に限定されない。
研削工程後の酸化物焼結体は、エアーブローや流水洗浄等で清浄するのが好ましい。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。なお、エアーブローや流水洗浄では洗浄能力に限界があるので、さらに超音波洗浄等を行なうこともできる。超音波洗浄は、周波数が25kHz以上、300kHz以下の間で、多重発振させて行なう方法が有効である。例えば周波数が25kHz以上、300kHzの間で、25kHz刻みに12種類の周波数を多重発振させて、超音波洗浄を行なうのが良い。
(5)工程(e):ボンディング工程
工程(e)は、研削後の焼結体を、金属インジウムなどの低融点金属で、バッキングプレートにボンディングする工程である。
以上がスパッタリングターゲットの説明である。
工程(e)は、研削後の焼結体を、金属インジウムなどの低融点金属で、バッキングプレートにボンディングする工程である。
以上がスパッタリングターゲットの説明である。
<酸化物半導体薄膜>
次に、本実施形態に係る酸化物半導体薄膜について、説明する。
本実施形態に係る酸化物半導体薄膜は、In元素、Ga元素、Sn元素、およびAl元素を含み、原子組成比が下記式(5)から式(8)を満たす。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(5)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(6)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(7)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(8)
次に、本実施形態に係る酸化物半導体薄膜について、説明する。
本実施形態に係る酸化物半導体薄膜は、In元素、Ga元素、Sn元素、およびAl元素を含み、原子組成比が下記式(5)から式(8)を満たす。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(5)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(6)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(7)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(8)
式(5)から式(8)に示す組成範囲外では、薄膜トランジスタを形成する工程で使用されるCVD成膜装置での処理の際に、薄膜トランジスタの半導体部分のキャリヤ濃度が上昇し、その後のアニール処理によってもキャリヤ濃度が低下しない場合がある。この場合、トランジスタとして作動しない可能性がある。その場合、CVD装置の成膜温度を低下させて、キャリヤ濃度の上昇を抑え、TFT特性の発現を行っていたが、CVD装置の成膜温度を低減させたことにより、耐久性の乏しいTFT特性しか得られない場合がある。
式(5)から式(8)の上下限の具体的な根拠、および、より好ましい範囲は、式(1)から式(4)の上下限の具体的な根拠、および、より好ましい範囲と同じである。
酸化物半導体薄膜中の各金属元素の含有量(原子比)は、ICP(Inductive Coupled Plasma)測定またはXRF(X−rayFluorescence)測定により、各元素の存在量を測定することで求めることができる。ICP測定は誘導プラズマ発光分析装置を用いることができる。XRF測定は薄膜蛍光X線分析装置(AZX400、リガク社製)を用いることができる。
また、セクタ型ダイナミック二次イオン質量分析計SIMS分析を用いても誘導プラズマ発光分析と同等の精度で酸化物半導体薄膜中の各金属元素の含有量(原子比)を分析できる。誘導プラズマ発光分析装置または薄膜蛍光X線分析装置で測定した金属元素の原子比が既知の標準酸化物薄膜の上面に、ソース・ドレイン電極をTFT素子と同様の材料をチャネル長で形成したものを標準材料とし、セクタ型ダイナミック二次イオン質量分析計SIMS(IMS 7f−Auto、AMETEK社製)により酸化物半導体層の分析に行い各元素の質量スペクトル強度を得、既知の元素濃度と質量スペクトル強度の検量線を作製する。次に、実TFT素子の酸化物半導体膜部分を、セクタ型ダイナミック二次イオン質量分析計SIMS分析によるスペクトル強度から、前述の検量線を用いて、原子比を算出すると、算出された原子比は、別途薄膜蛍光X線分析装置または誘導プラズマ発光分析装置で測定された酸化物半導体膜の原子比の2原子%以内であることが確認できる。
酸化物半導体薄膜中の各金属元素の含有量(原子比)は、ICP(Inductive Coupled Plasma)測定またはXRF(X−rayFluorescence)測定により、各元素の存在量を測定することで求めることができる。ICP測定は誘導プラズマ発光分析装置を用いることができる。XRF測定は薄膜蛍光X線分析装置(AZX400、リガク社製)を用いることができる。
また、セクタ型ダイナミック二次イオン質量分析計SIMS分析を用いても誘導プラズマ発光分析と同等の精度で酸化物半導体薄膜中の各金属元素の含有量(原子比)を分析できる。誘導プラズマ発光分析装置または薄膜蛍光X線分析装置で測定した金属元素の原子比が既知の標準酸化物薄膜の上面に、ソース・ドレイン電極をTFT素子と同様の材料をチャネル長で形成したものを標準材料とし、セクタ型ダイナミック二次イオン質量分析計SIMS(IMS 7f−Auto、AMETEK社製)により酸化物半導体層の分析に行い各元素の質量スペクトル強度を得、既知の元素濃度と質量スペクトル強度の検量線を作製する。次に、実TFT素子の酸化物半導体膜部分を、セクタ型ダイナミック二次イオン質量分析計SIMS分析によるスペクトル強度から、前述の検量線を用いて、原子比を算出すると、算出された原子比は、別途薄膜蛍光X線分析装置または誘導プラズマ発光分析装置で測定された酸化物半導体膜の原子比の2原子%以内であることが確認できる。
In元素、Ga元素、Sn元素、およびAl元素以外の元素は特に限定しない。
ただし、本実施形態に係る酸化物半導体薄膜は、In元素、Ga元素、Sn元素、およびAl元素を含み、残部が酸素と不可避不純物からなるものが好ましい。残部が酸素と不可避不純物であることにより、In元素、Ga元素、Sn元素、およびAl元素以外の元素が酸化物半導体薄膜の特性に与える影響を最小限にできる。
ただし、本実施形態に係る酸化物半導体薄膜は、In元素、Ga元素、Sn元素、およびAl元素を含み、残部が酸素と不可避不純物からなるものが好ましい。残部が酸素と不可避不純物であることにより、In元素、Ga元素、Sn元素、およびAl元素以外の元素が酸化物半導体薄膜の特性に与える影響を最小限にできる。
酸化物半導体薄膜のキャリヤ密度は、通常1×1018(cm-3)以下が好ましく、より好ましくは1×1014(cm-3)以上、1×1017(cm-3)以下であり、さらに好ましくは1×1015(cm-3)以上、1×1017(cm-3)以下である。
酸化物半導体薄膜のキャリヤ密度が1×1018(cm-3)以下であると、薄膜トランジスタ等の素子を構成した際の漏れ電流、ノーマリーオンや、on−off比の低下を防ぐことができ、良好なトランジスタ性能が発揮できる。キャリヤ濃度が1×1014(cm-3)以上であると、トランジスタとして問題なく駆動する。
酸化物半導体薄膜のキャリヤ密度は、ホール効果測定方法により測定することができる。
酸化物半導体薄膜のキャリヤ密度は、ホール効果測定方法により測定することができる。
酸化物半導体薄膜の移動度は1.0cm2/V・s以上、50.0m2/V・s以下が好ましい。酸化物半導体薄膜の移動度を1.0cm2/V・s以上とすることにより、液晶ディスプレイを駆動できる。移動度はホール効果・比抵抗測定装置で求められる。
酸化物半導体薄膜はアモルファス構造であることが好ましい。アモルファス構造であるか否かは、XRDのピーク、特に2θで30〜40°にピークが現れるか否かで判断できる。
酸化物半導体薄膜は、バンドギャップが3.0eV以上であることが好ましい。バンドギャップが3.0eV以上の場合、酸化物半導体薄膜は、波長が420nm付近から長波長側の光を吸収しなくなる。これにより、酸化物半導体薄膜は、有機ELやTFT−LCDの光源からの光を光吸収することがなく、TFTのチャネル層として用いた際に、TFTの光による誤作動等がなく、光安定性を向上させることができる。酸化物半導体薄膜のバンドギャップは、好ましくは3.1eV以上、より好ましくは3.3eV以上である。
バンドギャップは、試料の透過スペクトルを測定し、吸収が立ち上がる部分にフィッティングし、スペクトルがベースラインと交わるところのエネルギー(eV)値を、バンドギャップとすることで、求められる。
バンドギャップは、試料の透過スペクトルを測定し、吸収が立ち上がる部分にフィッティングし、スペクトルがベースラインと交わるところのエネルギー(eV)値を、バンドギャップとすることで、求められる。
酸化物半導体薄膜は非晶質であることが好ましい。非晶質にすることにより、スズを添加する効果が強くなり過ぎるのを防ぐことができ、薄膜が導体化するのを防止できる。また、表面粗さを小さくできるので、高移動度のトップゲート型薄膜トランジスタを作製するのに有利になる。
<酸化物半導体薄膜の製造方法>
次に、本実施形態に係る酸化物半導体薄膜の製造方法について、説明する。
本実施形態に係る酸化物半導体薄膜が製造できるのであれば、製造方法は、特に限定しない。具体的には以下の製造方法を例示できる。
次に、本実施形態に係る酸化物半導体薄膜の製造方法について、説明する。
本実施形態に係る酸化物半導体薄膜が製造できるのであれば、製造方法は、特に限定しない。具体的には以下の製造方法を例示できる。
酸化物半導体薄膜の形成には、スパッタリング法が好適に用いられる。これは、イオンプレーティング法、真空蒸着法、または電子ビーム蒸着法で形成された薄膜に比べ、組成、および膜厚等の均一性に優れるからである。また、スパッタリングターゲットと同じ成分組成の薄膜を形成できるためである。
スパッタリング法のなかでも、大面積の成膜が可能で、成膜速度が速いDCスパッタリング法が好ましい。RFスパッタリング法等の、他のスパッタリング法でもよい。
スパッタリングターゲットとして、本実施形態に係るスパッタリングターゲットを用いることにより、式(5)から式(8)に示す条件を満たす酸化物半導体薄膜が得られる。
スパッタリングターゲットとして、本実施形態に係るスパッタリングターゲットを用いることにより、式(5)から式(8)に示す条件を満たす酸化物半導体薄膜が得られる。
スパッタリングの雰囲気は、酸化性雰囲気が好ましい。酸化性雰囲気でスパッタリングすることにより、酸化性ガスが半導体薄膜中の酸素欠損を減少させるため、キャリヤ濃度を調整できるためである。酸化性雰囲気とは酸化性ガスを含む雰囲気である。酸化性ガスとは、O2、H2O、CO、およびCO2などの酸素原子含有ガスを意味する。酸化性ガスの濃度は装置、基板温度、スパッタリング圧力などの使用する条件で、最適化する。
一般的なIGTO半導体薄膜の成膜では、酸化性ガスの酸素分圧は20%から30%程度である。一方で、本実施形態に係るスパッタリングターゲットを用いた成膜では、成膜時の酸素分圧は1%程度でもよい。これは、Alが、酸素欠損の発生を抑える効果が高いため、成膜時に酸素を付加する必要性が低いためである。酸化性ガスの酸素分圧が低いほど、スパッタリング時のノジュール等の発生が抑制されるため、この点でも、本実施形態に係るスパッタリングターゲットは有用である。
スパッタリング時の電力密度(投入電力をターゲットの面の面積で割った値)は、1.0W/cm2以上、5.0W/cm2以下であることが好ましい。電力密度を1.0W/cm2以上とすることにより、放電が安定し、所望のスパッタレートも得られる。電力密度を5.0W/cm2以下とすることにより、スパッタリング時に発生した熱でターゲットが割れるのを防ぐことができる。
気体雰囲気の圧力(スパッタ圧力)は、プラズマが安定して放電できる範囲であれば特に限定されないが、0.05Pa以上、5Pa以下が好ましい。
気体雰囲気の圧力(スパッタ圧力)は、プラズマが安定して放電できる範囲であれば特に限定されないが、0.05Pa以上、5Pa以下が好ましい。
成膜される基体としては、シリコンウェハ、ガラス、セラミックス、プラスチックス、および金属などが挙げられる。成膜中の基体温度は、特に制約されないが、非晶質膜を得られやすいという点で、300℃以下であることが好ましい。また、基体温度は、特に意図的な加熱をしない場合は室温程度でもよい。
成膜後、基体を後加熱(熱処理)することもできる。熱処理により、膜が緻密化し、抵抗値が低くなる。
熱処理は、大気中で60℃以上、400℃以下で行うことが好ましい。60℃以上とすることにより、熱処理による効果が発現する。400℃以下とすることにより、逆に抵抗値が高くなるのを防止できる。
以上が酸化物半導体薄膜の製造方法の説明である。
熱処理は、大気中で60℃以上、400℃以下で行うことが好ましい。60℃以上とすることにより、熱処理による効果が発現する。400℃以下とすることにより、逆に抵抗値が高くなるのを防止できる。
以上が酸化物半導体薄膜の製造方法の説明である。
<薄膜トランジスタ>
次に、本実施形態に係る薄膜トランジスタの構造について説明する。
本実施形態に係る薄膜トランジスタは、本実施形態に係る酸化物半導体薄膜を備え、トランジスタとして機能するものであれば、特に構造は限定しない。
具体的な薄膜トランジスタの形状としては、バックチャンネルエッチ型トランジスタ、エッチストッパー型トランジスタ、トップゲート型トランジスタ、などが挙げられる。
次に、本実施形態に係る薄膜トランジスタの構造について説明する。
本実施形態に係る薄膜トランジスタは、本実施形態に係る酸化物半導体薄膜を備え、トランジスタとして機能するものであれば、特に構造は限定しない。
具体的な薄膜トランジスタの形状としては、バックチャンネルエッチ型トランジスタ、エッチストッパー型トランジスタ、トップゲート型トランジスタ、などが挙げられる。
具体的な薄膜トランジスタの例を図2および図3に示す。
図2に示すように、薄膜トランジスタ100は、シリコンウェハ20、ゲート絶縁膜30、酸化物半導体薄膜40、ソース電極50、ドレイン電極60、および層間絶縁膜70、70Aを備える。
図2に示すように、薄膜トランジスタ100は、シリコンウェハ20、ゲート絶縁膜30、酸化物半導体薄膜40、ソース電極50、ドレイン電極60、および層間絶縁膜70、70Aを備える。
シリコンウェハ20はゲート電極である。ゲート絶縁膜30はゲート電極と酸化物半導体薄膜40の導通を遮断する絶縁膜であり、シリコンウェハ20上に設けられる。
酸化物半導体薄膜40はチャネル層であり、ゲート絶縁膜30上に設けられる。酸化物半導体薄膜40は本実施形態に係る酸化物半導体薄膜が用いられる。
酸化物半導体薄膜40はチャネル層であり、ゲート絶縁膜30上に設けられる。酸化物半導体薄膜40は本実施形態に係る酸化物半導体薄膜が用いられる。
ソース電極50およびドレイン電極60は、ソース電流およびドレイン電流を酸化物半導体薄膜40に流すための導電端子であり、酸化物半導体薄膜40の両端近傍に接触するように、各々設けられる。
層間絶縁膜70は、ソース電極50およびドレイン電極60と、酸化物半導体薄膜40の間の接触部分以外の導通を遮断する絶縁膜である。
層間絶縁膜70Aは、ソース電極50およびドレイン電極60と、酸化物半導体薄膜40の間の接触部分以外の導通を遮断する絶縁膜である。層間絶縁膜70Aは、ソース電極50とドレイン電極60の間の導通を遮断する絶縁膜でもある。チャネル層保護層でもある。
層間絶縁膜70は、ソース電極50およびドレイン電極60と、酸化物半導体薄膜40の間の接触部分以外の導通を遮断する絶縁膜である。
層間絶縁膜70Aは、ソース電極50およびドレイン電極60と、酸化物半導体薄膜40の間の接触部分以外の導通を遮断する絶縁膜である。層間絶縁膜70Aは、ソース電極50とドレイン電極60の間の導通を遮断する絶縁膜でもある。チャネル層保護層でもある。
図3に示すように、薄膜トランジスタ100Aの構造は、薄膜トランジスタ100と同様であるが、ソース電極50およびドレイン電極60を、ゲート絶縁膜30と酸化物半導体薄膜40の両方に接触するように設けている点が異なる。ゲート絶縁膜30、酸化物半導体薄膜40、ソース電極50、およびドレイン電極60を覆うように、層間絶縁膜70Bが一体に設けられている点も異なる。
薄膜トランジスタは、以下の特性を有するのが好ましい。
薄膜トランジスタの移動度は1.0cm2/V・s以上、50.0cm2/V・s以下が好ましい。移動度を1.0cm2/V・s以上とすることにより、CMOSイメージセンサーの転送トランジスタやキャンセルトランジスタ、液晶ディスプレイを駆動できる。
薄膜トランジスタの移動度は1.0cm2/V・s以上、50.0cm2/V・s以下が好ましい。移動度を1.0cm2/V・s以上とすることにより、CMOSイメージセンサーの転送トランジスタやキャンセルトランジスタ、液晶ディスプレイを駆動できる。
飽和移動度は、ドレイン電圧を20V印加した場合の伝達特性から求められる。具体的に、伝達特性Id−Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、飽和領域の式により飽和移動度を求めることにより、算出できる。Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
閾値電圧(Vth)は、−3.0V以上、+3.0V以下が好ましく、−2.0V以上、+2.0V以下がより好ましく、−1.0V以上、+1.0V以下がさらに好ましい。閾値電圧(Vth)が、−3.0V以上であると、高移動度の薄膜トランジスタができる。閾値電圧(Vth)が、+3.0V以下であると、オフ電流が小さく、オンオフ比の大きな薄膜トランジスタができる。
閾値電圧(Vth)は、伝達特性のグラフよりId=10-9AでのVgで定義できる。
on−off比は106以上、1012以下が好ましく、107以上、1011以下がより好ましく、108以上、1010以下がさらに好ましい。on−off比が106以上であると、液晶ディスプレイの駆動ができる。on−off比が1012以下であると、コントラストの大きな有機ELの駆動ができる。また、本実施形態に係る酸化物半導体薄膜をCMOSイメージセンサーの転送トランジスタやリセットトランジスタに用いた場合、画像の保持時間を長くしたり、感度を向上させたりすることができる。
on−off比は106以上、1012以下が好ましく、107以上、1011以下がより好ましく、108以上、1010以下がさらに好ましい。on−off比が106以上であると、液晶ディスプレイの駆動ができる。on−off比が1012以下であると、コントラストの大きな有機ELの駆動ができる。また、本実施形態に係る酸化物半導体薄膜をCMOSイメージセンサーの転送トランジスタやリセットトランジスタに用いた場合、画像の保持時間を長くしたり、感度を向上させたりすることができる。
on−off比は、Vg=−10VのIdの値をOff電流値とし、Vg=20VのIdの値をOn電流値として、比[On電流値/Off電流値]を決めることにより、求められる。
Off電流値は、10-10A以下が好ましく、10-11A以下がより好ましく、10-12A以下がさらに好ましい。Off電流値が10-10A以下であると、コントラストの大きな有機ELの駆動ができる。また、本実施形態に係る酸化物半導体薄膜をCMOSイメージセンサーの転送トランジスタやリセットトランジスタに用いた場合、画像の保持時間を長くしたり、感度を向上させたりすることができる。
また、TFTに保護膜(SiO2膜)を形成する場合、SiO2をスパッタリング法で成膜を行えば、オフ電流を増加させることなくTFTが得られる。得られたTFTは、CMOSセンサーの転送トランジスタや、リセットトランジスタに適用できる。
Off電流値は、10-10A以下が好ましく、10-11A以下がより好ましく、10-12A以下がさらに好ましい。Off電流値が10-10A以下であると、コントラストの大きな有機ELの駆動ができる。また、本実施形態に係る酸化物半導体薄膜をCMOSイメージセンサーの転送トランジスタやリセットトランジスタに用いた場合、画像の保持時間を長くしたり、感度を向上させたりすることができる。
また、TFTに保護膜(SiO2膜)を形成する場合、SiO2をスパッタリング法で成膜を行えば、オフ電流を増加させることなくTFTが得られる。得られたTFTは、CMOSセンサーの転送トランジスタや、リセットトランジスタに適用できる。
薄膜トランジスタの半導体層に用いられる、本実施形態に係る非晶質酸化物半導体薄膜の欠陥密度は、5.0×1016cm-3以下が好ましく、1.0×1016cm-3以下がより好ましい。欠陥密度の減少により、薄膜トランジスタの移動度がさらに高くなり、光照射時の安定性、および熱に対する安定性が高くなり、TFTが安定して作動するようになる。
<薄膜トランジスタの用途>
本実施形態に係る薄膜トランジスタは、電界効果型トランジスタ、論理回路、メモリ回路、および差動増幅回路等各種の集積回路にも適用でき、それらを電子機器等に適用することができる。さらに、本実施形態に係る薄膜トランジスタは、電界効果型トランジスタ以外にも静電誘起型トランジスタ、ショットキー障壁型トランジスタ、ショットキーダイオード、および抵抗素子にも適応できる。また、本実施形態に係る薄膜トランジスタは、CMOSイメージセンサーの転送トランジスタやキャンセルトランジスタにも適応できる。
本実施形態に係る薄膜トランジスタは、電界効果型トランジスタ、論理回路、メモリ回路、および差動増幅回路等各種の集積回路にも適用でき、それらを電子機器等に適用することができる。さらに、本実施形態に係る薄膜トランジスタは、電界効果型トランジスタ以外にも静電誘起型トランジスタ、ショットキー障壁型トランジスタ、ショットキーダイオード、および抵抗素子にも適応できる。また、本実施形態に係る薄膜トランジスタは、CMOSイメージセンサーの転送トランジスタやキャンセルトランジスタにも適応できる。
本実施形態に係る薄膜トランジスタは、表示装置および固体撮像素子等に好適に用いることができる。以下、本実施形態に係る薄膜トランジスタを表示装置および固体撮像素子に用いる場合について、説明する。
まず、本実施形態に係る薄膜トランジスタを表示装置に用いる場合について、図4を参照して説明する。
図4(A)は、本発明の一態様の表示装置の上面図である。図4(B)は、本発明の一態様の表示装置の画素に、液晶素子を適用する場合の画素部の回路を説明するための回路図である。また、図4(C)は、本発明の一態様の表示装置の画素に、有機EL素子を適用する場合の画素部の回路を説明するための回路図である。
図4(A)は、本発明の一態様の表示装置の上面図である。図4(B)は、本発明の一態様の表示装置の画素に、液晶素子を適用する場合の画素部の回路を説明するための回路図である。また、図4(C)は、本発明の一態様の表示装置の画素に、有機EL素子を適用する場合の画素部の回路を説明するための回路図である。
画素部に配置するトランジスタは、本実施形態に係る薄膜トランジスタを用いることができる。本実施形態に係る薄膜トランジスタはnチャネル型とすることが容易なので、nチャネル型トランジスタで構成できる駆動回路の一部を、画素部のトランジスタと同一基板上に形成する。画素部や駆動回路に本実施の形態に示す薄膜トランジスタを用いることにより、信頼性の高い表示装置を提供できる。
アクティブマトリクス型表示装置の上面図の一例を図4(A)に示す。表示装置の基板300上には、画素部301、第1の走査線駆動回路302、第2の走査線駆動回路303、信号線駆動回路304が形成される。画素部301には、複数の信号線が信号線駆動回路304から延伸して配置され、複数の走査線が第1の走査線駆動回路302、および第2の走査線駆動回路303から延伸して配置される。走査線と信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に設けられる。表示装置の基板300は、FPC(Flexible Printed Circuit)等の接続部を介して、タイミング制御回路(コントローラ、制御ICともいう)に接続される。
図4(A)では、第1の走査線駆動回路302、第2の走査線駆動回路303、信号線駆動回路304は、画素部301と同じ基板300上に形成される。そのため、外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また、基板300外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の接続数が増える。同じ基板300上に駆動回路を設けた場合、その配線間の接続数を減らすことができ、信頼性の向上、または歩留まりの向上を図ることができる。
また、画素部の回路構成の一例を図4(B)に示す。ここでは、VA型液晶表示装置の画素に適用することができる画素部の回路を示す。
この回路は、一つの画素に複数の画素電極を有する構成に適用できる。それぞれの画素電極は異なるトランジスタに接続され、各トランジスタは異なるゲート信号で駆動できるように構成されている。これにより、マルチドメイン設計された画素部の個々の画素電極に印加する信号を、独立して制御できる。
トランジスタ316のゲート配線312と、トランジスタ317のゲート配線313には、異なるゲート信号を与えられるように分離されている。一方、データ線として機能するソース電極またはドレイン電極314は、トランジスタ316とトランジスタ317で共通に用いられる。トランジスタ316とトランジスタ317は、本実施形態に係るトランジスタを用いることができる。これにより、信頼性の高い液晶表示装置を提供できる。
トランジスタ316には、第1の画素電極が電気的に接続され、トランジスタ317には、第2の画素電極が電気的に接続される。第1の画素電極と第2の画素電極とは分離されている。第1の画素電極と第2の画素電極の形状は、特に限定しない。例えば、第1の画素電極は、V字状とすればよい。
トランジスタ316のゲート電極はゲート配線312と接続され、トランジスタ317のゲート電極はゲート配線313と接続されている。ゲート配線312とゲート配線313に異なるゲート信号を与えて、トランジスタ316とトランジスタ317の動作タイミングを異ならせ、液晶の配向を制御できる。
また、容量配線310と、誘電体として機能するゲート絶縁膜と、第1の画素電極または第2の画素電極と電気的に接続する容量電極とで、保持容量を形成してもよい。
マルチドメイン構造は、一画素に第1の液晶素子318と第2の液晶素子319を備える。第1の液晶素子318は第1の画素電極と対向電極とその間の液晶層とで構成され、第2の液晶素子319は第2の画素電極と対向電極とその間の液晶層とで構成される。
画素部の回路は、図4(B)に示す構成に限定されない。図4(B)に示す回路にスイッチ、抵抗素子、容量素子、トランジスタ、センサー、または論理回路を追加してもよい。
画素部の回路構成の他の一例を図4(C)に示す。ここでは、有機EL素子を用いた表示装置の画素構造を示す。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極の一方から電子が、他方から正孔が、それぞれ発光性の有機化合物を含む層に注入され、電流が流れる。電子および正孔が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
図4(C)は、適用可能な画素部の回路の一例を示す図である。ここではnチャネル型のトランジスタを1つの画素に2つ用いる例を示す。本実施形態の酸化物半導体膜は、nチャネル型のトランジスタのチャネル形成領域に用いることができる。この回路は、デジタル時間階調駆動を適用できる。
適用可能な回路の構成について、説明する。
画素320は、スイッチング用トランジスタ321、駆動用トランジスタ322、発光素子324および容量素子323を有している。スイッチング用トランジスタ321は、ゲート電極が走査線326に接続され、第1の電極(ソース電極およびドレイン電極の一方)が信号線325に接続され、第2の電極(ソース電極およびドレイン電極の他方)が駆動用トランジスタ322のゲート電極に接続されている。駆動用トランジスタ322は、ゲート電極が容量素子323を介して電源線327に接続され、第1の電極が電源線327に接続され、第2の電極が発光素子324の第1の電極(画素電極)に接続される。発光素子324の第2の電極は、共通電極328に相当する。共通電極328は、同一基板上に形成される共通電位線と、電気的に接続される。
画素320は、スイッチング用トランジスタ321、駆動用トランジスタ322、発光素子324および容量素子323を有している。スイッチング用トランジスタ321は、ゲート電極が走査線326に接続され、第1の電極(ソース電極およびドレイン電極の一方)が信号線325に接続され、第2の電極(ソース電極およびドレイン電極の他方)が駆動用トランジスタ322のゲート電極に接続されている。駆動用トランジスタ322は、ゲート電極が容量素子323を介して電源線327に接続され、第1の電極が電源線327に接続され、第2の電極が発光素子324の第1の電極(画素電極)に接続される。発光素子324の第2の電極は、共通電極328に相当する。共通電極328は、同一基板上に形成される共通電位線と、電気的に接続される。
スイッチング用トランジスタ321および駆動用トランジスタ322は、本実施形態に係る薄膜トランジスタを用いることができる。これにより、信頼性の高い有機EL表示装置を提供することができる。
回路の構成は、図4(C)に示す構成に限定されない。図4(C)に示す回路にスイッチ、抵抗素子、容量素子、センサー、トランジスタまたは論理回路を追加してもよい。
以上が本実施形態に係る薄膜トランジスタを表示装置に用いる場合の説明である。
以上が本実施形態に係る薄膜トランジスタを表示装置に用いる場合の説明である。
次に、本実施形態に係る薄膜トランジスタを固体撮像素子に用いる場合について、図5を参照して説明する。
CMOS(Complementary Metal Oxide Semiconductor)イメージセンサーは、信号電荷蓄積部に電位を保持し、その電位を増幅トランジスタを介して、垂直出力線に出力する固体撮像素子である。CMOSイメージセンサーに含まれるリセットトランジスタ、および/または転送トランジスタにリーク電流があると、そのリーク電流によって充電または放電が起こり、信号電荷蓄積部の電位が変化する。信号電荷蓄積部の電位が変化すると、増幅トランジスタの電位も変わってしまい、本来の電位からずれた値となり、撮像された映像が劣化してしまう。
本実施形態に係る薄膜トランジスタをCMOSイメージセンサのリセットトランジスタ、および転送トランジスタに適用した場合の動作の効果を説明する。増幅トランジスタは、薄膜トランジスタまたはバルクトランジスタのどちらを適用しても良い。
図5は、CMOSイメージセンサーの画素構成の一例を示す図である。画素は光電変換素子であるフォトダイオード3002、転送トランジスタ3004、リセットトランジスタ3006、増幅トランジスタ3008および各種配線で構成されており、マトリクス状に複数が配置されてセンサーを構成する。増幅トランジスタ3008と電気的に接続される選択トランジスタを設けても良い。トランジスタ記号に記してある「OS」は酸化物半導体(Oxide Semiconductor)を、「Si」はシリコンを示しており、それぞれのトランジスタに適用すると好ましい材料を表している。以降の図面についても同様である。
フォトダイオード3002は、転送トランジスタ3004のソース側に接続されており、転送トランジスタ3004のドレイン側には信号電荷蓄積部3010(FD:フローティングディフュージョンとも呼ぶ)が形成される。信号電荷蓄積部3010にはリセットトランジスタ3006のソース、および増幅トランジスタ3008のゲートが接続されている。別の構成として、リセット電源線3110を削除することもできる。例えば、リセットトランジスタ3006のドレインをリセット電源線3110ではなく、電源線3100または垂直出力線3120につなぐ方法がある。
以上が、本実施形態に係る薄膜トランジスタを固体撮像素子に用いる場合の説明である。
以上が、本実施形態に係る薄膜トランジスタを固体撮像素子に用いる場合の説明である。
このように、本実施形態の酸化物焼結体は、薄膜トランジスタに用いたときに優れた特性を有する酸化物半導体薄膜を形成でき、かつ成膜時の割れやノジュールの生成を抑制できる。
以下、実施例に基づき、本発明に好適な実施形態を、より詳細に説明するが、本発明は実施例には限定されない。
<焼結体およびターゲットの強度試験>
まず、本実施形態の条件を満たす酸化物焼結体を製造してターゲットに加工し、スパッタリング成膜の際の割れやノジュール発生の有無を試験した。具体的な手順は以下の通りである。
<焼結体およびターゲットの強度試験>
まず、本実施形態の条件を満たす酸化物焼結体を製造してターゲットに加工し、スパッタリング成膜の際の割れやノジュール発生の有無を試験した。具体的な手順は以下の通りである。
まず、実施例1から実施例3として、ガリウム、インジウム、スズ、およびアルミニウムを含む組成の試料を用意した。さらに、比較例1として、インジウム、ガリウム、スズを含むがアルミニウムを含まない組成の試料も用意した。
各元素の原料は、以下の組成を有し、純度99.99質量%の酸化物粉末を用いた。
インジウム :In2O3
ガリウム :Ga2O3
スズ :SnO2
アルミニウム:Al2O3
各元素の質量比は以下のように求めた。
インジウム質量比 :In2O3/(In2O3+Ga2O3+SnO2+Al2O3)
ガリウム質量比 :Ga2O3/(In2O3+Ga2O3+SnO2+Al2O3)
スズ質量比 :SnO2/(In2O3+Ga2O3+SnO2+Al2O3)
アルミニウム質量比 :Al2O3/(In2O3+Ga2O3+SnO2+Al2O3)
各元素の原子比は式(1)から式(4)の不等号で挟まれる中段の式を用いて求めた。
インジウム :In2O3
ガリウム :Ga2O3
スズ :SnO2
アルミニウム:Al2O3
各元素の質量比は以下のように求めた。
インジウム質量比 :In2O3/(In2O3+Ga2O3+SnO2+Al2O3)
ガリウム質量比 :Ga2O3/(In2O3+Ga2O3+SnO2+Al2O3)
スズ質量比 :SnO2/(In2O3+Ga2O3+SnO2+Al2O3)
アルミニウム質量比 :Al2O3/(In2O3+Ga2O3+SnO2+Al2O3)
各元素の原子比は式(1)から式(4)の不等号で挟まれる中段の式を用いて求めた。
次に、原料粉末を秤量し、ポリエチレン製のポットに入れて、乾式ボールミルにより72時間混合粉砕し、混合粉末を作製した。
この混合粉末を金型に入れ、49MPa(500kg/cm2を換算)の圧力でプレス成型体とした。この成型体を196MPa(2000kg/cm2を換算)の圧力でCIP(Cold Isostatic Pressing)により緻密化を行った。次に、この成型体を常圧焼成炉に設置して、大気雰囲気下で、350℃で3時間保持した後に、100℃/時間にて昇温し、1430℃にて、48時間焼結し、その後、放置して冷却した。
この混合粉末を金型に入れ、49MPa(500kg/cm2を換算)の圧力でプレス成型体とした。この成型体を196MPa(2000kg/cm2を換算)の圧力でCIP(Cold Isostatic Pressing)により緻密化を行った。次に、この成型体を常圧焼成炉に設置して、大気雰囲気下で、350℃で3時間保持した後に、100℃/時間にて昇温し、1430℃にて、48時間焼結し、その後、放置して冷却した。
次に、得られた焼結体の結晶構造、結晶構造の格子定数、相対密度、およびバルク抵抗を求めた。さらに、焼結体をスパッタリングターゲットに加工して成膜試験を行った。
具体的な条件は以下の通りである。
具体的な条件は以下の通りである。
<結晶構造>
得られた焼結体について、X線回折測定装置Smartlabにより、以下の条件でX線回折(XRD)を測定した。得られたXRDチャートをJADE6により分析し、焼結体の結晶構造を求めた。さらに、ピーク強度比から、組成を質量%で求めた。
装置:Smartlab株式会社リガク製
X線:Cu−Kα線(波長1.5418×10-10m)
2θ―θ反射法 連続スキャン(2.0°/分)
サンプリング間隔:0.02°
スリットDS(発散スリット)、SS(発散スリット)、RS(受光スリット):1mm
得られた焼結体について、X線回折測定装置Smartlabにより、以下の条件でX線回折(XRD)を測定した。得られたXRDチャートをJADE6により分析し、焼結体の結晶構造を求めた。さらに、ピーク強度比から、組成を質量%で求めた。
装置:Smartlab株式会社リガク製
X線:Cu−Kα線(波長1.5418×10-10m)
2θ―θ反射法 連続スキャン(2.0°/分)
サンプリング間隔:0.02°
スリットDS(発散スリット)、SS(発散スリット)、RS(受光スリット):1mm
<相対密度>
得られた酸化物焼結体について、アルキメデス法で測定した実測密度を、各構成元素の酸化物の密度および質量比から算出される理論密度で除した値を、百分率にして、相対密度を算出した。なお、各原料粉末の密度は、密度と比重はほぼ同等であることから、化学便覧 基礎編I日本化学編 改定2版(丸善株式会社)に記載されている酸化物の比重の値を用いた。
得られた酸化物焼結体について、アルキメデス法で測定した実測密度を、各構成元素の酸化物の密度および質量比から算出される理論密度で除した値を、百分率にして、相対密度を算出した。なお、各原料粉末の密度は、密度と比重はほぼ同等であることから、化学便覧 基礎編I日本化学編 改定2版(丸善株式会社)に記載されている酸化物の比重の値を用いた。
<バルク抵抗>
得られた酸化物焼結体のバルク抵抗(mΩcm)を、抵抗率計ロレスタ(三菱化学株式会社製、ロレスタAX MCP-T370)を使用して、四探針法(JIS R 1637)に基づき測定した。
測定箇所は酸化物焼結体の中心および酸化物焼結体の四隅と中心との中間点の4点、計5箇所とし、5箇所の平均値をバルク抵抗値とした。
得られた酸化物焼結体のバルク抵抗(mΩcm)を、抵抗率計ロレスタ(三菱化学株式会社製、ロレスタAX MCP-T370)を使用して、四探針法(JIS R 1637)に基づき測定した。
測定箇所は酸化物焼結体の中心および酸化物焼結体の四隅と中心との中間点の4点、計5箇所とし、5箇所の平均値をバルク抵抗値とした。
<成膜耐久評価試験>
まず、酸化物焼結体を、研削研磨して、4インチφ×厚さ5mmのスパッタリングターゲットに加工し、インジウムろうを用いて銅製のバッキングプレートにボンディングした。
次に、バッキングプレートをDCマグネトロンスパッタ装置に取り付け、400WのDCスパッタリングを連続5時間実施した。DCスパッタリング後のターゲット表面の状態、具体的にはクラックの有無と黒色異物(ノジュール)の有無を目視で確認した。
以上の結果を表1に示す。得られたXRDチャートを図6から図9に示す。図6から図9には、所定のピークに対応する結晶構造の角度も示す。
まず、酸化物焼結体を、研削研磨して、4インチφ×厚さ5mmのスパッタリングターゲットに加工し、インジウムろうを用いて銅製のバッキングプレートにボンディングした。
次に、バッキングプレートをDCマグネトロンスパッタ装置に取り付け、400WのDCスパッタリングを連続5時間実施した。DCスパッタリング後のターゲット表面の状態、具体的にはクラックの有無と黒色異物(ノジュール)の有無を目視で確認した。
以上の結果を表1に示す。得られたXRDチャートを図6から図9に示す。図6から図9には、所定のピークに対応する結晶構造の角度も示す。
表1および図6から図9に示すように、実施例1および実施例2は、GaInO3を主成分とし、SnO2を含んでいた。なお、実施例1ではSnO2の存在は定性的に確認されたものの、質量比率がXRDの定量限界以下であった。
実施例3は、GaInO3を主成分とし、(Ga0.7In0.3)2SnO5を含んでいた。
実施例3は、GaInO3を主成分とし、(Ga0.7In0.3)2SnO5を含んでいた。
一方で比較例1は、Ga2In6Sn2O16を主成分とし、Ga3InSn5O16を含んでいた。
実施例1から実施例3は、成膜後のターゲットにクラックやノジュールは見られなかった。比較例1は、成膜後のターゲットにクラックやノジュールが観察された。
いずれの試料も、相対密度は95%以上、バルク抵抗は20mΩcm以下であった。
この結果から、実施例1から実施例3の構成のように、Alを含有するIGTOは、Alを含有しない場合と比べて、焼結体およびスパッタリングターゲットの、成膜時における強度が高いことが分かった。
実施例1から実施例3は、成膜後のターゲットにクラックやノジュールは見られなかった。比較例1は、成膜後のターゲットにクラックやノジュールが観察された。
いずれの試料も、相対密度は95%以上、バルク抵抗は20mΩcm以下であった。
この結果から、実施例1から実施例3の構成のように、Alを含有するIGTOは、Alを含有しない場合と比べて、焼結体およびスパッタリングターゲットの、成膜時における強度が高いことが分かった。
<半導体薄膜の評価試験>
次に、実施例1から実施例3、および比較例1のスパッタリングターゲットを用いて、以下の条件で半導体薄膜を製造し、特性を評価した。具体的な手順は以下の通りである。
なお、半導体薄膜の製造は、スパッタリングターゲットの成膜耐久評価を行う前に実施した。
次に、実施例1から実施例3、および比較例1のスパッタリングターゲットを用いて、以下の条件で半導体薄膜を製造し、特性を評価した。具体的な手順は以下の通りである。
なお、半導体薄膜の製造は、スパッタリングターゲットの成膜耐久評価を行う前に実施した。
(1)成膜工程
実施例1から実施例3、および比較例1で製造した酸化物焼結体を研削研磨して、4インチφ×厚さ5mmのスパッタリングターゲットを製造した。作製したスパッタリングターゲットを用いて、DCマグネトロンスパッタリングによって、図10(A)に示すように、ガラス基板81(日本電気硝子株式会社製ABC−G)上に、膜厚50nmの酸化物半導体薄膜83のみを成膜したサンプルを製造した。
成膜条件は以下の通りである。
雰囲気ガス:ArおよびO2
成膜前の背圧:5×10-4Pa
成膜時のスパッタ圧:0.5Pa
成膜時の基板温度:24℃
成膜時の酸素分圧:1%
実施例1から実施例3、および比較例1で製造した酸化物焼結体を研削研磨して、4インチφ×厚さ5mmのスパッタリングターゲットを製造した。作製したスパッタリングターゲットを用いて、DCマグネトロンスパッタリングによって、図10(A)に示すように、ガラス基板81(日本電気硝子株式会社製ABC−G)上に、膜厚50nmの酸化物半導体薄膜83のみを成膜したサンプルを製造した。
成膜条件は以下の通りである。
雰囲気ガス:ArおよびO2
成膜前の背圧:5×10-4Pa
成膜時のスパッタ圧:0.5Pa
成膜時の基板温度:24℃
成膜時の酸素分圧:1%
(2)熱処理工程
次に、得られたサンプルを大気中にて200℃、250℃、350℃のいずれかの条件で、昇温速度10℃/分で60分間加熱処理した。
次に、得られたサンプルを大気中にて200℃、250℃、350℃のいずれかの条件で、昇温速度10℃/分で60分間加熱処理した。
次に、製造した半導体薄膜について下記評価を行った。
<ホール効果測定>
まず、ガラス基板81および酸化物半導体薄膜83からなるサンプルから、平面形状が1cm角の正方形となるように試料を切り出した。次に、切り出した試料の4隅に金(Au)を、2mm×2mm以下の大きさ位になるように、メタルマスクを用いてイオンコーターで成膜した。次にAu金属上にインジウムはんだを乗せて、接触を良くしてホール効果測定用サンプルとした。
<ホール効果測定>
まず、ガラス基板81および酸化物半導体薄膜83からなるサンプルから、平面形状が1cm角の正方形となるように試料を切り出した。次に、切り出した試料の4隅に金(Au)を、2mm×2mm以下の大きさ位になるように、メタルマスクを用いてイオンコーターで成膜した。次にAu金属上にインジウムはんだを乗せて、接触を良くしてホール効果測定用サンプルとした。
ホール効果測定用サンプルをホール効果・比抵抗測定装置(ResiTest8300型、東陽テクニカ社製)にセットし、室温においてホール効果を評価し、キャリヤ密度および移動度を求めた。
また、得られた酸化物半導体薄膜83について、誘導プラズマ発光分析装置(ICP−AES、島津製作所社製)で分析した結果、得られた酸化物半導体薄膜の原子比が、酸化物半導体薄膜の製造に用いた焼結体の原子比と同じであることを確認した。
また、得られた酸化物半導体薄膜83について、誘導プラズマ発光分析装置(ICP−AES、島津製作所社製)で分析した結果、得られた酸化物半導体薄膜の原子比が、酸化物半導体薄膜の製造に用いた焼結体の原子比と同じであることを確認した。
上記ホール効果測定用サンプルのうち、成膜後の熱処理条件((2)の熱処理条件)が350℃の試料については、さらに、以下の条件でホール測定を行った。
まず、CVD装置により基板温度300℃または350℃で、図10(B)に示すように酸化物半導体薄膜83上にSiO2膜85を成膜したのち、上記と同じホール測定を実施した。次にSiO2膜を成膜したサンプルをさらに350℃または300℃で加熱処理し、得られたサンプルの半導体薄膜について上記と同じホール測定を行った。この際、SiO2膜に測定用針を金の層まで突き刺し、コンタクトを取った。
まず、CVD装置により基板温度300℃または350℃で、図10(B)に示すように酸化物半導体薄膜83上にSiO2膜85を成膜したのち、上記と同じホール測定を実施した。次にSiO2膜を成膜したサンプルをさらに350℃または300℃で加熱処理し、得られたサンプルの半導体薄膜について上記と同じホール測定を行った。この際、SiO2膜に測定用針を金の層まで突き刺し、コンタクトを取った。
<半導体薄膜の結晶特性>
ガラス基板および酸化物半導体層からなるサンプルについて、スパッタ後(膜堆積直後)の加熱していない膜、および表2の成膜後の加熱処理をした後の膜の結晶性をX線回折(XRD)測定によって評価した。その結果、加熱前は非晶質であり、加熱後も非晶質であった。
ガラス基板および酸化物半導体層からなるサンプルについて、スパッタ後(膜堆積直後)の加熱していない膜、および表2の成膜後の加熱処理をした後の膜の結晶性をX線回折(XRD)測定によって評価した。その結果、加熱前は非晶質であり、加熱後も非晶質であった。
<半導体薄膜のバンドギャップ>
ガラス基板81および酸化物半導体薄膜83からなるサンプルについて、表2に示す加熱処理条件で熱処理したサンプルの透過スペクトルを測定し、横軸の波長をエネルギー(eV)に、縦軸の透過率を以下の式(A)に変換した。
透過率=(αhν)2 ・・・(A)
ここで、α、h、νは以下の通りである。
α:吸収係数
h:プランク定数
ν:振動数
変換したグラフにおいて、吸収が立ち上がる部分にフィッティングし、グラフがベースラインと交わるところのエネルギー値(eV)を、バンドギャップとして算出した。
ガラス基板81および酸化物半導体薄膜83からなるサンプルについて、表2に示す加熱処理条件で熱処理したサンプルの透過スペクトルを測定し、横軸の波長をエネルギー(eV)に、縦軸の透過率を以下の式(A)に変換した。
透過率=(αhν)2 ・・・(A)
ここで、α、h、νは以下の通りである。
α:吸収係数
h:プランク定数
ν:振動数
変換したグラフにおいて、吸収が立ち上がる部分にフィッティングし、グラフがベースラインと交わるところのエネルギー値(eV)を、バンドギャップとして算出した。
<薄膜トランジスタの製造>
次に、実施例1から実施例3、および比較例1のスパッタリングターゲットを用いて、以下の条件で薄膜トランジスタを製造し、特性を評価した。図3に示す薄膜トランジスタを以下の手順で製造した。
なお、薄膜トランジスタの製造は、スパッタリングターゲットの成膜耐久評価を行う前に実施した。
(1)成膜工程
熱酸化膜(ゲート絶縁膜30)付きのゲート電極としてのシリコンウェハ20上に、メタルマスクを介して50nmの酸化物半導体薄膜40を形成した。その他の条件は、ガラス基板上に半導体薄膜を形成した場合(半導体薄膜の(1)成膜条件)と同様とした。
次に、実施例1から実施例3、および比較例1のスパッタリングターゲットを用いて、以下の条件で薄膜トランジスタを製造し、特性を評価した。図3に示す薄膜トランジスタを以下の手順で製造した。
なお、薄膜トランジスタの製造は、スパッタリングターゲットの成膜耐久評価を行う前に実施した。
(1)成膜工程
熱酸化膜(ゲート絶縁膜30)付きのゲート電極としてのシリコンウェハ20上に、メタルマスクを介して50nmの酸化物半導体薄膜40を形成した。その他の条件は、ガラス基板上に半導体薄膜を形成した場合(半導体薄膜の(1)成膜条件)と同様とした。
(2)ソース・ドレイン電極の形成
次に、ソース・ドレインのコンタクトホール形状のメタルマスクを用いて、チタン金属をスパッタリングし、ソース電極50およびドレイン電極60としてチタン電極を成膜した。実施例A、B、C及び比較例Aについては、得られた積層体を大気中にて350℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
実施例Dについては、得られた積層体を大気中にて300℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
実施例E及びFについては、得られた積層体を大気中にて250℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
実施例G、H及び比較例Bについては、得られた積層体を大気中にて200℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
次に、ソース・ドレインのコンタクトホール形状のメタルマスクを用いて、チタン金属をスパッタリングし、ソース電極50およびドレイン電極60としてチタン電極を成膜した。実施例A、B、C及び比較例Aについては、得られた積層体を大気中にて350℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
実施例Dについては、得られた積層体を大気中にて300℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
実施例E及びFについては、得られた積層体を大気中にて250℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
実施例G、H及び比較例Bについては、得られた積層体を大気中にて200℃で60分間加熱処理し、保護絶縁膜形成前の薄膜トランジスタを製造した。
(3)保護絶縁膜の形成
得られた薄膜トランジスタのうち、実施例A、B、C及び比較例Aについては、(2)で得られた保護絶縁膜形成前の薄膜トランジスタの半導体薄膜の上に、基板温度300℃で化学蒸着法(CVD)により、SiO2膜(保護絶縁膜;層間絶縁膜70B)を形成した。SiO2膜形成後、大気中にて350℃で1時間加熱処理し、保護絶縁膜を備える薄膜トランジスタを製造した。その後、ソース電極50およびドレイン電極60に、装置のプローブピンにてコンタクトホールを形成してコンタクトを取り、薄膜トランジスタを製造した。
得られた薄膜トランジスタのうち、実施例A、B、C及び比較例Aについては、(2)で得られた保護絶縁膜形成前の薄膜トランジスタの半導体薄膜の上に、基板温度300℃で化学蒸着法(CVD)により、SiO2膜(保護絶縁膜;層間絶縁膜70B)を形成した。SiO2膜形成後、大気中にて350℃で1時間加熱処理し、保護絶縁膜を備える薄膜トランジスタを製造した。その後、ソース電極50およびドレイン電極60に、装置のプローブピンにてコンタクトホールを形成してコンタクトを取り、薄膜トランジスタを製造した。
<薄膜トランジスタの評価>
製造した薄膜トランジスタについて、保護絶縁膜(SiO2膜)形成前の薄膜トランジスタ、および保護絶縁膜(SiO2膜)を形成し加熱処理した後の薄膜トランジスタの特性について、SiO2膜に測定用針を金属チタンの層まで突き刺し評価を行った。
製造した薄膜トランジスタについて、保護絶縁膜(SiO2膜)形成前の薄膜トランジスタ、および保護絶縁膜(SiO2膜)を形成し加熱処理した後の薄膜トランジスタの特性について、SiO2膜に測定用針を金属チタンの層まで突き刺し評価を行った。
<飽和移動度>
飽和移動度は、ドレイン電圧を20V印加した場合の伝達特性から求めた。具体的に、伝達特性Id−Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、飽和領域の式により飽和移動度を導いた。なお、Gmは∂(Id)/∂(Vg)によって表され、Vgは−15Vから25Vまで印加し、その範囲での最大移動度を飽和移動度と定義した。本発明において特に断らない限り、飽和移動度はこの方法で評価した。上記Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
飽和移動度は、ドレイン電圧を20V印加した場合の伝達特性から求めた。具体的に、伝達特性Id−Vgのグラフを作成し、各Vgのトランスコンダクタンス(Gm)を算出し、飽和領域の式により飽和移動度を導いた。なお、Gmは∂(Id)/∂(Vg)によって表され、Vgは−15Vから25Vまで印加し、その範囲での最大移動度を飽和移動度と定義した。本発明において特に断らない限り、飽和移動度はこの方法で評価した。上記Idはソース・ドレイン電極間の電流、Vgはソース・ドレイン電極間に電圧Vdを印加したときのゲート電圧である。
<閾値電圧(Vth)>
閾値電圧(Vth)は、伝達特性のグラフよりId=10-9AでのVgと定義した。
閾値電圧(Vth)は、伝達特性のグラフよりId=10-9AでのVgと定義した。
<on−off比、Off電流値>
on−off比は、Vg=−10VのIdの値をOff電流値とし、Vg=20VのIdの値をOn電流値として比[On/Off]を決めた。
以上の結果を表2および表3に示す。
on−off比は、Vg=−10VのIdの値をOff電流値とし、Vg=20VのIdの値をOn電流値として比[On/Off]を決めた。
以上の結果を表2および表3に示す。
表2に示すように、実施例Aから実施例Cでは、薄膜、薄膜トランジスタのいずれも、半導体としての特性が得られていた。
比較例Aは、保護絶縁膜(SiO2膜)を形成し加熱処理した後のキャリヤ密度とVthが大きくなり過ぎ、TFTとしては実施例Aから実施例Cよりも不適となった。
比較例Aは、保護絶縁膜(SiO2膜)を形成し加熱処理した後のキャリヤ密度とVthが大きくなり過ぎ、TFTとしては実施例Aから実施例Cよりも不適となった。
表3に示すように、実施例Dは、半導体膜成膜後の熱処理温度が300℃でも半導体としての特性が得られていた。
実施例Eおよび実施例Fでは、半導体膜成膜後の熱処理温度が250℃でも半導体としての特性が得られていた。
さらに、実施例Gおよび実施例Hでは、半導体膜成膜後の熱処理温度が200℃でも半導体としての特性が得られていた。
比較例Bは薄膜、薄膜トランジスタ(TFT)のいずれも、導電体になってしまい、半導体としての特性が得られなかった。
実施例Eおよび実施例Fでは、半導体膜成膜後の熱処理温度が250℃でも半導体としての特性が得られていた。
さらに、実施例Gおよび実施例Hでは、半導体膜成膜後の熱処理温度が200℃でも半導体としての特性が得られていた。
比較例Bは薄膜、薄膜トランジスタ(TFT)のいずれも、導電体になってしまい、半導体としての特性が得られなかった。
以上の結果から、本実施形態に係る組成範囲の酸化物焼結体を用いて成膜した酸化物半導体薄膜は、従来は導体化するガリウム、インジウム、およびスズの組成範囲であっても、アルミニウムを添加することにより、半導体化することが分かった。さらに、低温アニールでも安定したTFT特性を発現する組成であることが分かった。
20…シリコンウェハ(ゲート電極)、30…ゲート絶縁膜、40…酸化物半導体薄膜、50…ソース電極、60…ドレイン電極、70…層間絶縁膜、70A…層間絶縁膜、70B…層間絶縁膜、81…ガラス基板、83…酸化物半導体薄膜、85…SiO2膜、100…薄膜トランジスタ、100A…薄膜トランジスタ。
Claims (12)
- In元素、Ga元素、Sn元素およびAl元素を含み、GaInO3結晶を含み、さらにSnO2結晶または(Ga1.0-xInx)2SnO5結晶(0.10≦x≦0.50)の少なくとも一方を含むことを特徴とする、酸化物焼結体。
- Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことを特徴とする、請求項1に記載の酸化物焼結体。
- GaInO3結晶を主成分として含むことを特徴とする、請求項1または2に記載の酸化物焼結体。
- In元素、Ga元素、Sn元素およびAl元素を含み、Ga3InSn3O12結晶、Ga3InSn5O16結晶およびGa2In6Sn2O16結晶を含まないことを特徴とする、酸化物焼結体。
- In元素、Ga元素、Sn元素およびAl元素の原子組成比が下記式(1)から式(4)を満たす範囲であることを特徴とする、請求項1から請求項4のいずれか一項に記載の酸化物焼結体。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(1)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(2)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(3)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(4) - In元素、Ga元素、Sn元素、およびAl元素を下記式(5)から式(8)を満たす原子組成比の範囲で含有することを特徴とする、酸化物焼結体。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(5)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(6)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(7)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(8) - 相対密度が95%以上であることを特徴とする請求項1から請求項6のいずれか一項に記載の酸化物焼結体。
- バルク抵抗が20mΩcm以下であることを特徴とする請求項1から請求項7のいずれか一項に記載の酸化物焼結体。
- 請求項1から請求項8のいずれか一項に記載の酸化物焼結体を備えることを特徴とするスパッタリングターゲット。
- In元素、Ga元素、Sn元素、およびAl元素を式(9)から式(12)を満たす原子組成比の範囲で含有することを特徴とする、酸化物半導体薄膜。
0.20≦In/(In+Ga+Sn)≦0.55 ・・・(9)
0.01≦Ga/(In+Ga+Sn)≦0.50 ・・・(10)
0.01≦Sn/(In+Ga+Sn)≦0.50 ・・・(11)
0.05≦Al/(In+Ga+Sn+Al)≦0.30 ・・・(12) - 請求項10に記載の酸化物半導体薄膜を備えることを特徴とする薄膜トランジスタ。
- 請求項11に記載の薄膜トランジスタを含む、電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017207593A JP2019077599A (ja) | 2017-10-26 | 2017-10-26 | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017207593A JP2019077599A (ja) | 2017-10-26 | 2017-10-26 | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019077599A true JP2019077599A (ja) | 2019-05-23 |
Family
ID=66626344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017207593A Pending JP2019077599A (ja) | 2017-10-26 | 2017-10-26 | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019077599A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021129047A (ja) * | 2020-02-14 | 2021-09-02 | 株式会社神戸製鋼所 | 薄膜トランジスタ、酸化物半導体薄膜、およびスパッタリングターゲット |
-
2017
- 2017-10-26 JP JP2017207593A patent/JP2019077599A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021129047A (ja) * | 2020-02-14 | 2021-09-02 | 株式会社神戸製鋼所 | 薄膜トランジスタ、酸化物半導体薄膜、およびスパッタリングターゲット |
JP7373428B2 (ja) | 2020-02-14 | 2023-11-02 | 株式会社神戸製鋼所 | 薄膜トランジスタ、酸化物半導体薄膜、およびスパッタリングターゲット |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI760539B (zh) | 濺鍍靶材、氧化物半導體薄膜、薄膜電晶體及電子機器 | |
CN110447093B (zh) | 氧化物半导体膜、薄膜晶体管、氧化物烧结体以及溅射靶 | |
CN112512991B (zh) | 晶体化合物、氧化物烧结体、溅射靶、晶质及无定形氧化物薄膜、薄膜晶体管及电子设备 | |
JP7082947B2 (ja) | 非晶質酸化物半導体膜、酸化物焼結体、薄膜トランジスタ、スパッタリングターゲット、電子機器及び非晶質酸化物半導体膜の製造方法 | |
JP6869157B2 (ja) | 酸化物焼結体、スパッタリングターゲット、非晶質酸化物半導体薄膜、および薄膜トランジスタ | |
JP6858107B2 (ja) | 酸化物焼結体、スパッタリングターゲット、非晶質酸化物半導体薄膜、および薄膜トランジスタ | |
CN110234789B (zh) | 氧化物半导体膜、薄膜晶体管、氧化物烧结体以及溅射靶 | |
JP2019064887A (ja) | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ | |
JP2019077599A (ja) | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ | |
JP6326560B1 (ja) | 酸化物焼結体及びスパッタリングターゲット | |
JP2019077594A (ja) | 酸化物焼結体、スパッタリングターゲット、酸化物半導体薄膜、および薄膜トランジスタ | |
CN118871403A (zh) | 烧结体、溅射靶、氧化物薄膜、薄膜晶体管、电子设备及烧结体的制造方法 | |
CN118922581A (zh) | 溅射靶、溅射靶的制造方法、氧化物薄膜、薄膜晶体管及电子设备 | |
KR20240167821A (ko) | 스퍼터링 타깃, 스퍼터링 타깃의 제조 방법, 산화물 박막, 박막 트랜지스터, 및 전자 기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210511 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211109 |