WO2019026375A1 - 制御装置、無線装置、方法及び記録媒体 - Google Patents
制御装置、無線装置、方法及び記録媒体 Download PDFInfo
- Publication number
- WO2019026375A1 WO2019026375A1 PCT/JP2018/017857 JP2018017857W WO2019026375A1 WO 2019026375 A1 WO2019026375 A1 WO 2019026375A1 JP 2018017857 W JP2018017857 W JP 2018017857W WO 2019026375 A1 WO2019026375 A1 WO 2019026375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- wireless
- wireless device
- permitted
- antenna
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 38
- 238000012545 processing Methods 0.000 claims description 35
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 93
- 230000006854 communication Effects 0.000 description 93
- 230000005540 biological transmission Effects 0.000 description 78
- 230000006870 function Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 10
- 238000009434 installation Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000010267 cellular communication Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
Definitions
- the present disclosure relates to a control device, a wireless device, a method, and a recording medium.
- frequency sharing is being considered as one of the measures to alleviate the future exhaustion of frequency resources.
- a mechanism for making another wireless system temporarily use a frequency channel assigned to a certain wireless system has been considered.
- Such a scheme may also be referred to as secondary use of frequency.
- a system to which frequency channels are preferentially allocated is called a primary system (Primary System), and a system that uses the frequency channel secondarily is called a secondary system.
- Non-Patent Document 1 As an example of an approach to secondary use of frequency, a report and instruction on use of mobile communication in a frequency band of 24 GHz or more, which FCC (Federal Communications Commission) has issued, (R & O: Report & Order). The R & O is accompanied by the final legislation concerning frequency sharing.
- FCC Federal Communications Commission
- Patent Document 1 discloses a technique for calculating use conditions of a sharable frequency band by the wireless communication device based on two-dimensional position information and height information of the wireless communication device.
- the secondary system performs beamforming. Since the magnitude of the interference given to the primary system may vary depending on the direction of the beam, the method of secondary utilization of the desired frequency may be different if beamforming is performed or not.
- the present disclosure proposes a mechanism for secondary use of frequencies suitable for beamforming by a secondary system.
- a first acquisition unit that acquires first geolocation information of a reference point for interference calculation of a first wireless service, and calculates or acquires an interference tolerance amount at the reference point;
- the second geolocation information, the first antenna information, and the wireless device of the wireless device belonging to the second wireless service sharing a part or all of the frequencies assigned to the first wireless service can be used
- a second acquisition unit for acquiring first beam pattern information indicating various beam patterns, the first geographical position information of the reference point and the interference tolerance, and the second geographical position information of the wireless device A determination unit that determines information related to a beam permitted to the wireless device based on the first antenna information and the first beam pattern information; and information related to a beam permitted to the wireless device according to the wireless ⁇ control device is provided comprising a notifying unit for notifying the device relating to the wireless device.
- a wireless device that operates based on control by the control device and belongs to a second wireless service that shares a part or all of the frequencies assigned to the first wireless service,
- a notification unit for notifying the control device of second geolocation information of the wireless device, first antenna information, and first beam pattern information indicating beam patterns usable by the wireless device;
- An acquisition unit for acquiring information on a beam permitted to the wireless device determined by the control device based on the beam pattern information of: and information on a beam permitted to the wireless device
- a processing unit for transmitting the beam, a radio apparatus comprising a are provided on the basis of.
- first geographical position information of a reference point for interference calculation of a first wireless service calculating or acquiring an interference tolerance at the reference point, and Second geolocation information, first antenna information, and beams usable by the wireless device of the wireless device belonging to the second wireless service sharing a part or all of the frequencies assigned to the wireless service of Obtaining first beam pattern information indicating a pattern, the first geographical position information of the reference point and the interference tolerance, and the second geographical position information of the wireless device, the first antenna Determining, by the processor, information on beams acceptable to the wireless device based on the information and the first beam pattern information, and information on beams acceptable to the wireless device; And notifying a line device or apparatus related to the wireless device, the method comprising is provided.
- a second radio device belonging to a second radio service sharing a part or all of the frequencies allocated to the first radio service which operates based on control by the control device Notifying the control device of: geolocation information of the first antenna, first antenna information, and first beam pattern information indicating beam patterns usable by the wireless device; and interference calculation of the first wireless service First geolocation information of the reference point, and interference tolerance at the reference point, and the second geolocation information of the wireless device, the first antenna information, and the first beam pattern information Procuring a beam based on the information on the beam determined by the control device and the beam on the wireless device. And transmitting by Tsu service, the method comprising is provided.
- the computer acquires the first geographical position information of the reference point for the interference calculation of the first wireless service, and calculates or acquires the interference tolerance at the reference point.
- a second acquisition unit acquiring first beam pattern information indicating usable beam patterns of the wireless device; the first geographical position information of the reference point and the interference tolerance; and the second of the wireless device
- a determination unit that determines information on a beam acceptable to the wireless device based on the geolocation information of 2, the first antenna information, and the first beam pattern information; and the beam acceptable to the wireless device Recording medium having a program recorded thereon for functioning as a notification section for notifying information about the device relating to the wireless device or the wireless device is provided.
- a wireless device belonging to a second wireless service sharing a part or all of the frequencies assigned to the first wireless service the computer operating under control of the control device.
- an acquisition unit for acquiring information on a beam permitted to the wireless device determined by the control device, and information on a beam permitted to the wireless device Recording medium having a program recorded thereon for functioning as a processing section for transmitting the beam is provided Zui.
- FIG. 6 is a diagram for describing protection of a primary system in an environment where beamforming is performed.
- FIG. 6 is a diagram for describing protection of a primary system in an environment where beamforming is performed. It is a figure for explaining an example of composition of a system concerning one embodiment of this indication.
- It is a block diagram which shows an example of a logical structure of the frequency supervision database which concerns on this embodiment.
- It is a block diagram which shows an example of a logical structure of the radio
- It is a flowchart which shows an example of the flow of the beam management process performed by the frequency supervision database which concerns on this embodiment.
- elements having substantially the same functional configuration may be distinguished by appending different alphabets to the same reference numerals.
- a plurality of elements having substantially the same functional configuration are distinguished as the wireless nodes 300A, 300B, and 300C as necessary.
- the wireless nodes 300A, 300B, and 300C are simply referred to as the wireless node 300.
- the incumbent system is an example of a primary system.
- Secondary users i.e., secondary systems
- tertiary users i.e., tertiary systems
- Such incumbent system protection is also referred to as Incumbent protection.
- the secondary user corresponds to a PAL (Priority Access License) user in the CBRS scheme.
- Tertiary users correspond to GAA (General Authorized Access) users in the CBRS scheme.
- Incumbent protection there is known a method of protecting an in-service system by providing an exclusion zone or a protection zone.
- a frequency supervision database determines the frequency and maximum allowable transmit power available to the secondary system based on the location information of the secondary system.
- the maximum allowable transmission power is the maximum transmission power allowed for the secondary system.
- ECC Report 186 is the legalization guideline of TVWS (TV band White Space) in Europe.
- a method of determining the maximum allowable transmission power of the secondary system based on the calculation reference point (Reference point) of the reception interference power of the primary system and the propagation loss between the secondary system is recommended.
- the legislation guidelines recommend a method of determining the maximum allowable transmission power of the secondary system in consideration of the accumulated interference power.
- beam forming beam steering
- MIMO Multiple Input Multiple Output
- beam management to manage which beam should be transmitted is considered to be performed spatially.
- no technology has been developed to protect primary systems in environments where beamforming takes place.
- FIGS. 1 and 2 illustrate protection of the primary system in a beamforming environment.
- the wireless node 20 of the secondary system is located in the vicinity of the wireless node 10 of the primary system. It is assumed that the radio node 20 of the secondary system can transmit two types of beams 21 simultaneously.
- the wireless node 20 of the secondary system can transmit the beam 21 that reaches any distance in any direction.
- the direction of the beam 21 is determined by a beam pattern to be described later.
- the distance reached by the beam 21 is determined by the beam pattern and the transmission power. For example, as the directivity of the beam becomes sharper, the directivity gain is increased, and the beam reaches far with the same transmission power.
- the beam 21 transmitted from the radio node 20 of the secondary system is prevented from reaching the inside of the protection area boundary 11 beyond the protection area boundary 11 (protection contour). Is desirable.
- the wireless node 20 of the secondary system transmits beam 21A in the direction of wireless node 10 of the primary system and transmits beam 21B in the other direction. Neither the beam 21A nor the beam 21B reaches the inside of the protected area boundary 11.
- the radio node 20 of the secondary system transmits a beam 21C in the direction of the radio node 10 of the primary system and transmits a beam 21D in the other direction. While the beam 21 D does not reach inside the protected area boundary 11, the beam 21 C reaches inside the protected area boundary 11.
- the maximum allowable transmission power is determined according to the position of the wireless node 20 of the secondary system. At that time, the maximum allowable transmission power of the radio node 20 of the secondary system is assumed that the radio node 20 of the secondary system transmits a beam in the direction of the radio node 10 of the primary system on the assumption that interference is the largest. Also, it is determined that the radio node 10 of the primary system is protected. For example, the maximum allowable transmission power of the radio node 20 of the secondary system is determined on the basis of the beam 21A. As a result, the wireless node 20 of the secondary system is suppressed from transmitting a beam reaching the inside of the protected area boundary 11 such as the beam 21C.
- the same maximum allowable transmission power is applied to beams in directions other than the direction of the radio node 10 of the primary system. Therefore, even a beam that can protect the primary system even if it is transmitted, such as the beam 21B, is uniformly suppressed.
- the present disclosure provides a mechanism for secondary use of frequencies suitable for beamforming by a secondary system.
- FIG. 3 is a diagram for describing an example of the configuration of a system 1 according to an embodiment of the present disclosure.
- the system 1 according to the present embodiment includes a frequency supervision database 100, a network manager 200, and a plurality of wireless nodes 300 (300A to 300E).
- the frequency supervising database 100 is a control device that supervises frequency secondary usage.
- the frequency control database 100 is a wireless device belonging to a second wireless service (for example, a secondary system) sharing some or all of the frequencies allocated to the first wireless service (for example, the primary system).
- Control device that supervises the Specifically, the frequency control database 100 provides the wireless node 300 with secondary available frequency information, and authorizes and manages secondary frequency use. Furthermore, the frequency control database 100 performs control regarding secondary frequency use in consideration of beamforming by the wireless node 300.
- the wireless service is a wireless service (service), and is a concept including two-way communication such as cellular communication and one-way wireless transmission and reception such as radar.
- the network manager 200 is a control device that manages a network under management. For example, the network manager 200 centrally collects information on the managed wireless node 300 and transmits it to the frequency supervision database 100, or transmits information received from the frequency supervisory database 100 to the managed wireless node 300. Do.
- the wireless node 300 is a wireless device belonging to the secondary system.
- the wireless node 300 operates based on control by the frequency supervision database 100.
- the wireless node 300 provides a wireless service to a terminal (not shown) based on control by the frequency control database 100.
- the wireless node 300 is a communication device that performs bidirectional communication such as cellular communication.
- the wireless nodes 300 (300A to 300C) operate based on control by the network manager 200.
- the wireless node 300 accesses the frequency management database 100 via the network manager 200 or on behalf of the wireless node 300 by the network manager 200.
- the wireless nodes 300 (300D and 300E) directly access the frequency supervision database 100 when operating without control by the network manager 200.
- FIG. 4 is a block diagram showing an example of the logical configuration of the frequency control database 100 according to the present embodiment.
- the frequency control database 100 includes a network communication unit 110, a storage unit 120, and a control unit 130.
- the network communication unit 110 transmits and receives information.
- the network communication unit 110 transmits information to other nodes and receives information from other nodes.
- the other node includes another frequency supervision database 100, a network manager 200, and a wireless node 300.
- Storage unit 120 The storage unit 120 temporarily or permanently stores programs for various operations of the frequency control database 100 and various data.
- Control unit 130 controls the overall operation of the frequency control database 100 to provide various functions of the frequency control database 100.
- the control unit 130 includes a first acquisition unit 131, a second acquisition unit 132, a third acquisition unit 133, a determination unit 134, and a notification unit 135.
- the first acquisition unit 131 has a function of acquiring information on the primary system.
- the second acquisition unit 132 has a function of acquiring information on the wireless node 300 belonging to the secondary system.
- the third acquisition unit 133 has a function of acquiring information on wireless nodes other than the wireless node 300. Acquisition of information by the first acquisition unit 131 to the third acquisition unit 133 is realized by transmission and reception of information by the network communication unit 110 or reading of information stored in the storage unit 120.
- the determination unit 134 has a function of determining the control content regarding the wireless node 300. For example, the determination unit 134 determines information on beams permitted to the wireless node 300. In addition, the determination unit 134 determines whether to use the beam that the wireless node 300 intends to use.
- the notification unit 135 has a function of notifying other nodes of the information determined by the determination unit 134.
- the notification of information by the notification unit 135 is realized by transmission and reception of information by the network communication unit 110.
- the notification unit 135 may notify the wireless node 300 via the network manager 200 or may not via the network manager 200.
- Control unit 130 may further include other components in addition to these components. That is, the control unit 130 can also perform operations other than the operations of these components.
- FIG. 5 is a block diagram showing an example of a logical configuration of the wireless node 300 according to the present embodiment.
- the wireless node 300 includes an antenna unit 310, a wireless communication unit 320, a network communication unit 330, a storage unit 340, and a control unit 350.
- Antenna unit 310 The antenna unit 310 radiates the signal output from the wireless communication unit 320 into space as a radio wave. Also, the antenna unit 310 converts radio waves in space into signals, and outputs the signals to the wireless communication unit 320.
- the wireless communication unit 320 transmits and receives signals. For example, the wireless communication unit 320 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- the network communication unit 330 transmits and receives information.
- the network communication unit 330 transmits information to other nodes and receives information from other nodes.
- the other nodes include a frequency supervision database 100, a network manager 200 and other wireless nodes 300.
- Storage unit 340 The storage unit 340 temporarily or permanently stores programs for various operations of the wireless node 300 and various data.
- Control unit 350 controls the overall operation of the wireless node 300 to provide various functions of the wireless node 300.
- the control unit 350 includes a notification unit 351, an acquisition unit 352, and a processing unit 353.
- the notification unit 351 has a function of notifying other nodes of information related to the wireless node 300.
- the notification of information by the notification unit 351 is realized by transmission and reception of information by the network communication unit 330.
- the acquisition unit 352 has a function of acquiring information on the wireless node 300 from another node. Acquisition of information by the acquisition unit 352 is realized by transmission and reception of information by the network communication unit 330.
- the processing unit 353 has a function of performing various processes related to the wireless service. For example, the processing unit 353 selects a beam to be transmitted based on the information on beams permitted to the wireless node 300, and transmits a transmission signal using the selected beam.
- the processing unit 353 forms a beam by performing digital beam forming, analog beam forming, or both of them. Transmission of a transmission signal using a beam is realized by signal processing by the wireless communication unit 320 and radiation of radio waves by the antenna unit 310.
- Control unit 350 may further include other components in addition to these components. That is, the control unit 350 can also perform operations other than the operations of these components.
- the frequency control database 100 (first acquisition unit 131) acquires information on the primary system.
- the frequency control database 100 may obtain information on the primary system by communicating with the primary system, or may store information on the primary system in advance.
- the frequency supervision database 100 acquires geolocation information (corresponding to first geolocation information) of a reference point for interference calculation of the primary system.
- This reference point may also be referred to as a reference point.
- the reference point is, for example, any point on the protected area boundary 11 described above with reference to FIGS. 1 and 2.
- Geolocation information is information indicating a geographical location.
- geolocation information includes longitude and latitude.
- the geolocation information may be coordinate information that can identify a specific point, for example, indicating a predefined fine grid.
- the geolocation information may be relative location information based on a reference location.
- Geolocation information is not limited to two-dimensional location information, but may be three-dimensional location information including height.
- the frequency supervision database 100 also calculates or obtains the interference allowance at the reference point for interference calculation of the primary system. For example, the frequency control database 100 obtains a legally prescribed prescribed value as an interference allowance.
- the frequency control database 100 may calculate a value obtained by adding a margin to a legally prescribed specified value as the interference tolerance.
- the interference tolerance may not be a value but may be defined as an acceptable degradation from a given communication quality. In that case, the frequency control database 100 calculates a value indicating the communication quality in the case where the predetermined communication quality has deteriorated by the allowable deterioration degree, and sets the value as the interference allowance. For example, in the case where deterioration of 0.05% from the predetermined SNR is allowed, communication quality when the predetermined SNR is deteriorated by 0.05% is calculated as SINR, and is defined as an interference tolerance.
- the frequency control database 100 acquires information on the secondary system.
- the frequency supervision database 100 communicates with the secondary system to obtain information about the secondary system.
- the frequency control database 100 indicates the geolocation information (corresponding to the second geolocation information) of the wireless node 300, the antenna information (corresponding to the first antenna information), and the beam patterns usable by the wireless node 300. Beam pattern information (corresponding to first beam pattern information) is acquired. For example, the frequency control database 100 acquires these pieces of information from the wireless node 300.
- the antenna information is information including various information related to the antenna.
- the antenna information includes at least one of an antenna model, an antenna gain, the number of antenna elements, an antenna dimension (two-dimensional or three-dimensional), an antenna element spacing, an installation elevation angle, an installation azimuth angle, or an installation height.
- antenna information may include information indicating a beam width.
- the antenna information may include at least one of elevation of motion and azimuth of motion.
- Beam pattern information is information that defines the shape (including the direction) of a beam.
- beam pattern information includes at least one of a codebook including one or more precoding matrices, a weight matrix, and a steering vector.
- beam pattern information may include a combination of antenna elevation, azimuth, and beam width.
- the wireless node 300 (for example, the notification unit 351) notifies the frequency control database 100 of the geolocation information of the wireless node 300, the antenna information, and the beam pattern information indicating the beam pattern that can be used by the wireless node 300.
- the wireless node 300 may notify the frequency control database 100 of such information via the network manager 200, or may notify the frequency control database 100 of such information without via the network manager 200.
- Pieces of information may be included in the installation information submitted to the relevant organization at the time of installation when the wireless node 300 is installed by a mobile communication carrier or the like (that is, when it is Professional Install). In that case, the frequency control database 100 may acquire such installation information instead of the notification from the wireless node 300.
- the frequency control database 100 determines the geolocation information of the primary system, the interference tolerance, the geolocation information of the radio node 300 belonging to the secondary system, the antenna information and the beam. Based on the pattern information, the information on the beam allowed to the wireless node 300 is determined. For example, the frequency control database 100 suppresses the use of some of the beams available to the wireless node 300 and allows the use of some other beams. Thereby, among the usable beams of the wireless node 300, flexible beam management such as suppressing the use of a beam which makes it difficult to protect other systems such as the primary system and allowing the use of a protectable beam. Can be realized.
- the information regarding the beam accepted by the wireless node 300 is information including one or more combinations of information indicating an acceptable beam pattern and information indicating transmit power acceptable when using the beam pattern.
- the transmission power is determined for each of the beam directions.
- flexible beam management can be realized in which a small transmission power is allowed for beams directed to the primary system and a large transmission power is permitted for beams directed in the other direction.
- the wireless node 300 can provide wireless services to more distant terminals, and the frequency utilization efficiency is improved.
- the information indicating the allowable transmission power when using the allowable beam pattern may be information indicating the range of allowable transmission power, or information indicating the allowable transmission power itself. May be The information corresponding to the former is, for example, the allowable maximum transmission power.
- Information on beams permitted to the wireless node 300 is hereinafter also referred to as allowable beam information.
- Permitted beam information may be associated with a frequency.
- the allowable beam information includes one or more of a frequency, information indicating an allowable beam pattern at the frequency, and information indicating an allowable transmission power at the time of using the beam pattern at the frequency. It may be included information.
- the interference tolerance to the primary system may be different for each frequency. In this respect, flexible beam management according to the interference tolerance for each frequency can be realized by associating the allowable beam information with the frequency.
- the frequency to which the allowable beam information is associated is a frequency included in the 70/80 GHz band.
- the frequency to which the permissible beam information is associated is a frequency of any width included in 71 GHz to 86 GHz.
- the frequency band in which beamforming can be performed is the 70/80 GHz band. Therefore, by including the frequency to which the allowable beam information is associated in the 70/80 GHz band, it is possible to perform beam management limited to the frequency band in which beam forming can be performed.
- Table 2 below shows an example of allowable beam information.
- the combination of the transmission power P1 and the beam pattern B1 the combination of the transmission power P2 and the beam pattern B2, and the combination of the transmission power P3 and the beam pattern B3 are acceptable. Be done. At frequency F2, a combination of transmission power P3 and beam pattern B3 and a combination of transmission power P4 and beam pattern B4 are permitted.
- the frequency control database 100 determines allowable beam information by a combination of directivity gain and transmission power. The first method will be described in detail below.
- the path loss between the reference point for interference calculation of the primary system and the wireless node 300 is m g [dB].
- the interference tolerance at the reference point is I req .
- the transmission power of the wireless node 300 is P [dBm].
- G [dB] be the directional gain pointing in the direction of the primary system.
- a value obtained by subtracting the path loss mg between the reference point and the wireless node 300 from the sum of the transmission power P of the wireless node 300 and the directivity gain G is the interference tolerance amount I at the reference point.
- the transmission power P and directivity gain G of the wireless node 300 are determined so as not to exceed req . That is, the frequency control database 100 determines the transmission power P and the directivity gain G of the wireless node 300, which satisfy the following equation (1).
- the frequency control database 100 determines the transmission power P and the directivity gain G of the wireless node 300, which satisfy the following equation (2).
- the following equation (2) is a modification of the above equation (1). I req + m g PP + G (2)
- the frequency control database 100 determines the directivity gain G satisfying the above equation (2) at each transmission power P while changing the transmission power P in steps of x [dBm]. Specifically, first, the frequency control database 100 calculates the value of the directivity gain G of each of one or more beam patterns that can be formed by the wireless node 300 based on the beam pattern information of the wireless node 300. Then, the frequency control database 100 selects a directivity gain G that satisfies the equation (2) among the calculated directivity gains G.
- a set of combinations of transmission power P obtained in this manner and information indicating a beam pattern corresponding to the directivity gain G satisfying the above equation (2) at the transmission power P is allowable beam information. .
- the frequency control database 100 allows a combination of a steering vector or weight matrix that meets (ie, falls below) the interference tolerance at the reference point of the primary system and the transmission power. Determined as information.
- the second method will be described in detail below.
- the protected area boundary is assumed to be the reference point of the primary system.
- the signal y at the protected area boundary is defined by the following equation.
- h is a channel vector.
- w is a steering vector.
- s is a transmission signal.
- the frequency control database 100 determines a combination of the transmission power P s and the steering vector w, which satisfies the equation (6).
- a set of combinations of the transmission power P s obtained in this manner and the steering vector w satisfying the above equation (6) at the transmission power P s is allowable beam information.
- a conditional expression to be satisfied by the transmission power and the weight matrix is obtained in the same manner as described above. Then, the frequency control database 100 determines a combination of transmission power and weight matrix that satisfies the conditional expression.
- a set of combinations of the transmission power and the weight matrix that satisfies the conditional expression at the transmission power is the allowable beam information.
- the frequency supervision database 100 extracts allowable precoding matrices from the codebook that satisfy (ie, fall below) the interference tolerance at the reference point of the primary system. Decide.
- the third method will be described in detail below.
- H is a channel vector.
- I req is the interference allowance at the reference point of the primary system.
- r is the signal at the reference point of the primary system.
- the frequency control database 100 searches for a precoding matrix F i which satisfies the above equation (7).
- a set of precoding matrices F i obtained as a result of the search is allowable beam information.
- the simultaneous transmission of multiple beams may cause a cumulative effect of interference and may not meet the interference tolerance at the primary system reference point.
- simultaneous transmission of a plurality of beams causes a cumulative effect of interference, making it difficult for another wireless node 300 to provide a predetermined quality of service (QoS) to a terminal device.
- QoS quality of service
- the frequency control database 100 determines a combination of beams that are not permitted to be combined and transmitted among a plurality of beams permitted to the wireless node 300, and uses the determination result as allowable beam information. reflect. Specifically, the frequency control database 100 includes a plurality of combinations of information indicating an acceptable beam pattern and information indicating an acceptable transmission power when using the beam pattern, which are not permitted to be used simultaneously. Determine the combination of Then, the frequency control database 100 reflects the determination result on the allowable beam information. For example, the frequency control database 100 may simultaneously use the allowable beam information among the information (a combination of the information indicating the beam pattern and the information indicating the transmission power) indicating the allowable beam included in the allowable beam information.
- the frequency control database 100 may use information indicating at least a part of a plurality of beams which are not permitted to be used at the same time among the information indicating allowable beams included in the allowable beam information from the allowable beam information. You may delete it.
- the wireless node 300 By reflecting the determination result of the combination of beams which are not allowed to be combined and transmitted in the allowable beam information, it is possible to prevent the wireless node 300 from simultaneously transmitting beams which are not allowed to be transmitted simultaneously. Therefore, even if the wireless node 300 transmits a plurality of beams simultaneously, it is possible to protect the primary system regardless of the combination of beams transmitted simultaneously.
- the frequency control database 100 (for example, the notification unit 135) notifies the radio node 300 or a device related to the radio node 300 of the allowable beam information.
- the apparatus related to the wireless node 300 is the network manager 200 that puts the wireless node 300 under management.
- the wireless node 300 (for example, the acquisition unit 352) acquires the permitted beam information notified from the frequency supervision database 100.
- the wireless node 300 (for example, the processing unit 353) transmits a beam based on the allowable beam information. Specifically, the wireless node 300 uses a combination of information indicating an allowable beam pattern included in the allowable beam information and information indicating an allowable transmission power when using the beam pattern. Choose Then, the wireless node 300 forms a beam based on the information indicating the beam pattern related to the selected combination, and transmits the transmission signal using the beam and the transmission power related to the combination. When the information indicating the beam pattern is a precoding matrix, a weight matrix, or a steering vector, the wireless node 300 forms a beam by multiplying the transmission signal by these matrices.
- the information indicating the beam pattern is a precoding matrix, a weight matrix, or a steering vector
- the wireless node 300 forms a beam by physically moving the antenna according to these parameters.
- the radio node 300 can transmit a transmission signal with any transmission power as long as the transmission power is equal to or less than the allowable transmission power.
- the wireless node 300 may select a plurality of permitted beams and simultaneously transmit a plurality of beams.
- the radio node 300 may obtain permission from the frequency supervision database 100 before actually starting transmission.
- the wireless node 300 selects a beam to be transmitted based on the allowable beam information. After that, the wireless node 300 (for example, the notification unit 351) notifies the frequency control database 100 of information on the selected beam.
- the information on the selected beam is information including one or more combinations of information indicating the selected beam pattern and information indicating transmission power used when using the beam pattern.
- the frequency management database 100 (for example, the second acquisition unit 132) acquires information on a beam selected by the wireless node 300 based on the allowable beam information. Next, based on the information on the beam selected by the wireless node 300, the frequency supervision database 100 (for example, the determination unit 134) determines whether to use the beam selected by the wireless node 300. For example, the frequency control database 100 evaluates whether the beam selected by the wireless node 300 (ie, beam pattern and transmission power) is effective or does not adversely affect other systems, etc. Determine availability. Then, the frequency management database 100 (for example, the notification unit 135) notifies the wireless node 300 of information indicating whether the beam selected by the wireless node 300 can be used.
- the frequency management database 100 for example, the second acquisition unit 132 acquires information on a beam selected by the wireless node 300 based on the allowable beam information.
- the frequency supervision database 100 (for example, the determination unit 134) determines whether to use the beam selected by the wireless node 300. For example, the frequency control database 100 evaluates whether
- the wireless node 300 (for example, the acquisition unit 352) acquires information indicating availability of the beam selected by the wireless node 300. Then, based on the information indicating the availability, the wireless node 300 (for example, the processing unit 353) transmits a transmission signal using a beam permitted to be used.
- the frequency control database 100 determines whether the beam is available. This makes it possible to more reliably suppress interference with other systems such as the primary system.
- FIG. 6 is a sequence diagram showing an example of the flow of beam management processing executed in the system 1 according to the present embodiment.
- the frequency control database 100 and the wireless node 300 are involved in this sequence.
- the frequency management database 100 acquires the geolocation information of the reference point of the primary system, and calculates or acquires the interference tolerance of the reference point (step S102). Then, the wireless node 300 notifies the wireless node 300 of geolocation information of the wireless node 300, antenna information, and beam pattern information indicating a beam pattern usable by the wireless node 300 (step S104). Then, the frequency management database 100 permits the wireless node 300 based on the geolocation information of the primary point of the primary system and the interference tolerance of the reference point, and the geolocation information of the wireless node 300, the antenna information, and the beam pattern information. Beam information is determined (step S106). Thereafter, the frequency management database 100 notifies the wireless node 300 of the determined allowable beam information of the wireless node 300 (step S108).
- the wireless node 300 selects a beam to be transmitted based on the notified allowable beam information (step S110), and notifies the frequency control database 100 of information on the selected beam (step S112).
- the frequency supervision database 100 determines whether to use the beam selected by the wireless node 300 based on the information on the beam selected by the wireless node 300 (step S114). Thereafter, the frequency management database 100 notifies the wireless node 300 of the determination result, that is, the information indicating the availability of the beam selected by the wireless node 300 (step S116). Then, the wireless node 300 transmits the transmission signal using the beam permitted to be used by the frequency control database 100 (step S118).
- the wireless node 300 While the wireless node 300 is in operation, another wireless node 300 belonging to the second wireless service (for example, secondary system) or the third wireless service (for example, tertiary system) may newly start operation. .
- the frequency control database 100 performs the above-described beam management processing on the other wireless node 300 in order to realize protection of the primary system.
- the operating wireless node 300 is also referred to as a first wireless node 300.
- the wireless node 300 newly starting operation is also referred to as a second wireless node 300.
- interference may occur between the first wireless node 300 and the second wireless node 300.
- sufficient communication quality may not be secured in at least one of the first wireless node 300 and the second wireless node 300.
- the frequency access priority indicates the priority for using the secondary available frequency, and it is possible to preferentially use the frequency secondarily as the wireless node with higher priority is higher.
- the frequency control database 100 (for example, the third acquisition unit 133) includes geographic position information (corresponding to third geographical position information) of the second wireless node 300, antenna information (corresponding to second antenna information), Beam pattern information (corresponding to second beam pattern information) indicating a beam pattern usable by the other wireless node 300 is acquired.
- geographic position information corresponding to third geographical position information
- antenna information corresponding to second antenna information
- Beam pattern information corresponding to second beam pattern information
- the contents of the geolocation information, the antenna information, and the beam pattern information are as described above.
- the frequency supervision database 100 determines the allowable beam information of the first wireless node 300 further based on the geolocation information, antenna information, and beam pattern information of the second wireless node 300. Specifically, first, the frequency management database 100 is configured to use the second wireless node 300 based on the primary system's geolocation information, interference tolerance, and the second wireless node 300's geolocation information, antenna information, and beam pattern information. Determine the allowable beam information of Then, the frequency management database 100 compares the allowable beam information of the first wireless node 300 with the allowable beam information of the second wireless node 300.
- the frequency control database 100 may compare information indicating a beam being used by the first wireless node 300 with the allowable beam information or instead of the allowable beam information for the first wireless node 300. . If the allowed beam information is to be compared, the interference that can be given to the second wireless node 300 is evaluated for all the beams that the first wireless node 300 can transmit. On the other hand, when the beam in use is to be compared, the interference that can be given to the second wireless node 300 is evaluated with respect to the beam that the first wireless node 300 is currently transmitting. Then, the frequency control database 100 changes at least one of the allowable beam information of the first wireless node 300 and the allowable beam information of the second wireless node 300 based on the comparison result.
- the frequency management database 100 calculates path loss between these communication nodes.
- the frequency supervision database 100 identifies, among beams permitted in the allowable beam information of the first wireless node 300 and the second wireless node 300, beams that may cause harmful interference with each other.
- the frequency control database 100 identifies a beam transmitted from the first wireless node 300, for which the amount of interference given to the second wireless node 300 exceeds a predetermined threshold, as a beam that may cause harmful interference.
- the predetermined threshold is obtained or calculated, for example, in the same manner as the above-described interference tolerance.
- the frequency control database 100 reflects, in the allowable beam information, information indicating the identified beam that can give harmful interference. For example, from the allowable beam information of the first wireless node 300, the frequency control database 100 indicates information indicating a beam that may cause harmful interference to the second wireless node 300 (information indicating a beam pattern and information indicating a transmission power) Remove the combination of). The same applies to the allowable beam information of the second wireless node 300.
- wireless nodes 300 are prevented from transmitting beams that may cause harmful interference to other wireless nodes 300. be able to. Therefore, when the first wireless node 300 is in operation and the second wireless node 300 is newly activated, it is possible to protect the primary system and prevent mutually harmful interference with each other. Become.
- the frequency supervision database 100 further determines the allowable beam information of the first wireless node 300 and the second wireless node 300 based further on the frequency access priority of the first wireless node 300 and the second wireless node 300. decide. Specifically, the frequency control database 100 prohibits the radio node 300 having a lower frequency access priority from transmitting a beam directed to the other radio node 300. That is, the frequency control database 100 deletes the information indicating the beam directed to the other radio node 300 from the allowable beam information of the radio node 300 having the lower frequency access priority.
- the frequency management database 100 may reject the frequency use by the second wireless node 300. Good.
- FIG. 7 is a flow chart showing an example of the flow of beam management processing executed by the frequency supervision database 100 according to the present embodiment. Note that, before the present flow is executed, the frequency control database 100 determines the allowable beam information of the first wireless node 300, and the wireless node 300 determines the allowable beam based on the allowable beam information. Shall be sent.
- the frequency management database 100 determines allowable beam information of the second wireless node 300 (step S202). Next, the frequency management database 100 compares the allowable beam information of the first wireless node 300 with the allowable beam information of the second wireless node 300 (step S204). Next, the frequency management database 100 determines whether the first wireless node 300 and the wireless node 300 cause harmful interference with each other (step S206).
- the frequency control database 100 determines at least one of the allowable beam information of the first wireless node 300 and the allowable beam information of the second wireless node 300. It changes (Step S208). For example, the frequency control database 100 deletes information on beams that may cause harmful interference to the other wireless node 300 from one set of allowable beam information. Then, the frequency management database 100 notifies the first wireless node 300 of the changed allowable beam information of the first wireless node 300, and the second changed wireless beam of the second wireless node 300. It notifies the node 300 (step S210).
- the frequency control database 100 determines the allowable beam information of the second radio node 300 determined in step S202 as the second radio. It notifies the node 300 (step S210).
- FIG. 8 is a diagram for explaining a typical handover.
- the base station 30A and the base station 30B are located adjacent to each other.
- the base station 30A operates the cell 31A, and provides a radio communication service to a terminal apparatus located in the cell 31A without performing beamforming.
- the base station 30B operates the cell 31B, and provides a radio communication service to a terminal apparatus located in the cell 31B without performing beamforming.
- the cell edge 32 at the boundary between the cell 31A and the cell 31B is far from any of the base station 30A and the base station 30B. Therefore, when the terminal device 400 is located at the cell edge 32, handover is performed according to the mobility of the terminal device 400.
- the terminal device 400 is connected to the base station 30B and receives the signal 33 from the base station 30B.
- the terminal device 400 moves from the center of the cell 31 B to the cell edge 32, handover from the base station 30 B to the base station 30 A is performed as indicated by reference numeral 35. Then, the terminal device 400 is connected to the base station 30A to receive the signal 34 from the base station 30A.
- the example described above with reference to FIG. 8 is an example of handover when the base station does not perform beamforming.
- the terminal apparatus communicating with the radio node 300 performing beamforming performs a handover, a disadvantage may occur that has not occurred when the beamforming is not performed.
- the system 1 which concerns on this embodiment, it demonstrates with reference to FIG.
- FIG. 9 is a diagram for explaining an example of the handover performed in the system 1 according to the present embodiment.
- wireless nodes 300A, 300B and 300C are located adjacent to each other.
- the wireless nodes 300A to 300B are base stations that perform beamforming to provide a wireless communication service.
- the wireless node 300A operates the cell 301A, and provides wireless communication services to the terminal devices located in the cell 301A using the beams 303A and 303B.
- the wireless node 300B operates the cell 301B, and provides wireless communication services to terminal devices located in the cell 301B using beams 303C to 303E.
- the wireless node 300C operates the cell 301C, and provides wireless communication services to terminal devices located in the cell 301C using beams 303F and 303G.
- the wireless nodes 300A to 300C connect to the network manager 200 and operate based on control by the network manager 200.
- the cell edge 302 at the boundary between the cell 301A, the cell 301B, and the cell 301C is far from any of the radio nodes 300A to 300C. Therefore, when the terminal device 400 is located at the cell edge 302, handover is performed according to the mobility of the terminal device 400.
- the terminal device 400 is connected to the wireless node 300B and receives the beam 303C from the wireless node 300B.
- the terminal device 400 moves from the center of the cell 301B to the cell edge 302, handover from the wireless node 300B to either the wireless node 300A or the wireless node 300C is performed.
- the wireless node 300C is allowed to transmit beams in the direction of the wireless node 300A or the wireless node 300B. Not. This is to suppress interference from the wireless node 300C to the wireless node 300A or the wireless node 300B. Therefore, as shown in FIG. 9, no beam is provided (ie, transmitted) from the wireless node 300C to the cell edge 302. Therefore, when the wireless node 300C is selected as the target base station and handover from the wireless node 300B to the wireless node 300C is performed as indicated by reference numeral 304, the terminal device 400 can not continuously receive a beam before and after the handover. . Therefore, there arises a disadvantage that soft handover becomes difficult. Soft handover is to perform handover while continuing wireless communication service.
- the system 1 selects the wireless node 300A as the target base station of the terminal device 400 by using the allowable beam information, and performs handover from the wireless node 300B to the wireless node 300A indicated by reference numeral 305. I do.
- the cell edge 302 is provided with beams from the wireless nodes 300A and 300B.
- the terminal device 400 can receive the beam continuously before and after the handover to perform the soft handover.
- the operation at the time of handover in the system 1 of the present embodiment will be described in detail.
- the frequency control database 100 (for example, the notification unit 135) is a control device for selecting the handover target radio node 300 of the terminal device 400 communicating with the radio nodes 300A to 300C with the allowable beam information of the radio nodes 300A to 300C ( That is, it notifies the network manager 200).
- the network manager 200 acquires the permitted beam information notified from the frequency control database 100.
- the network manager 200 selects the handover destination wireless node 300 of the terminal device 400 based on the allowable beam information of the wireless nodes 300A to 300C. For example, based on the allowable beam information of the wireless nodes 300A and 300B, the network manager 200 recognizes that the wireless nodes 300A and 300B are permitted to provide beams facing the cell edge 302. Also, the network manager 200 recognizes that the wireless node 300C is not permitted to provide a beam facing the cell edge 302 based on the allowable beam information of the wireless node 300C. Then, the network manager 200 selects, as the handover destination radio node 300 of the terminal device 400, the radio node 300A that is permitted to provide a beam facing the cell edge 302.
- the network manager 200 notifies the wireless node 300B that the wireless node 300A has been selected as the handover destination. That is, the network manager 200 instructs the start of the handover procedure from the wireless node 300B to the wireless node 300A. Thereby, the handover from the wireless node 300B to the wireless node 300A is realized.
- the network manager 200 may notify the wireless node 300A of information indicating a beam to be used. For example, the network manager 200 instructs the wireless node 300A to use the beam pointing to the cell edge 302. Thereby, the terminal device 400 can more reliably receive the beam continuously before and after the handover.
- FIG. 10 is a sequence diagram showing an example of the flow of beam management processing at handover, which is executed in the system 1 according to the present embodiment.
- the wireless node 300B, the wireless node 300A, the network manager 200, and the frequency control database 100 are involved.
- the network manager 200 notifies the available frequency information request to the frequency control database 100 (step S302).
- the frequency management database 100 notifies the network manager 200 of the requested available frequency information (step S304).
- the available frequency information is information on a frequency that the wireless node 300 can secondarily use.
- the available frequency information includes allowable beam information of the wireless node 300.
- the network manager 200 requests available frequency information of each of the managed wireless nodes 300A-300C to obtain available frequency information including allowable beam information of the wireless nodes 300A-300C.
- the network manager 200 sets operating parameters for each of the wireless nodes 300A and 300B (step S306).
- the operating parameter setting includes, for example, setting of a frequency to be used.
- the operating parameter settings include information indicating the beam to be used.
- Each of the wireless nodes 300A and 300B provides a wireless communication service to a terminal device in a cell using a beam instructed by the network manager 200.
- the network manager 200 recognizes the movement of the terminal device 400 (step S308).
- the network manager 200 recognizes that the terminal device 400 connected to the wireless node 300 B has moved to the cell edge 302.
- the network manager 200 recognizes mobility by acquiring mobility information of the terminal device 400 from an entity (for example, MME (Mobility Management Entity) in LTE) that manages the mobility of the terminal device 400. Good.
- MME Mobility Management Entity
- the network manager 200 determines the handover destination radio node 300 (step S310). Specifically, based on the allowable beam information of the wireless nodes 300A to 300C, the network manager 200 selects the wireless node 300A that is permitted to provide the beam facing the cell edge 302 as the handover destination wireless node 300 of the terminal device 400. Do.
- the network manager 200 notifies the wireless node 300A of an operation parameter change instruction including information indicating a beam to be used (step S312). For example, the network manager 200 instructs the wireless node 300A to provide the cell edge 302 with a beam.
- the network manager 200 notifies the wireless node 300B of a handover procedure start instruction for setting the wireless node 300A as a handover destination (step S314). After that, the handover procedure is performed by the wireless nodes 300A and 300B.
- the frequency management database 100 or the network manager 200 may be implemented as a tower server, a rack server, or any type of server such as a blade server.
- the frequency control database 100 or the network manager 200 may be a control module mounted on a server (for example, an integrated circuit module configured with one die, or a card or blade inserted in a slot of a blade server). Good.
- the radio node 300 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
- the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
- the wireless node 300 may be implemented as another type of base station, such as a Node B or a BTS (Base Transceiver Station).
- the radio node 300 may include a main body (also referred to as a base station apparatus) that controls wireless communication, and one or more RRHs (Remote Radio Heads) disposed at a location different from the main body. Also, various types of terminals to be described later may operate as the wireless node 300 by performing base station functions temporarily or semi-permanently.
- a main body also referred to as a base station apparatus
- RRHs Remote Radio Heads
- FIG. 11 is a block diagram showing an example of a schematic configuration of a server 700 to which the technology according to the present disclosure can be applied.
- the server 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
- the processor 701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls various functions of the server 700.
- the memory 702 includes a random access memory (RAM) and a read only memory (ROM), and stores programs and data to be executed by the processor 701.
- the storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
- the network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705.
- the wired communication network 705 may be a core network such as EPC (Evolved Packet Core), or may be a packet data network (PDN) such as the Internet.
- EPC Evolved Packet Core
- PDN packet data network
- the bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to one another.
- Bus 706 may include two or more buses of different speeds (eg, a high speed bus and a low speed bus).
- one or more components may be implemented in the processor 701.
- a program for causing a processor to function as the one or more components is installed in the server 700, and the processor 701 The program may be executed.
- the server 700 may include a module including the processor 701 and the memory 702, in which one or more components may be implemented.
- the module may store a program for causing the processor to function as the one or more components in the memory 702, and the program may be executed by the processor 701.
- the server 700 or the module may be provided as an apparatus including the one or more components, and the program for causing a processor to function as the one or more components may be provided.
- the readable recording medium which recorded the said program may be provided.
- the network communication unit 110 described with reference to FIG. 4 may be implemented in the network interface 704.
- the storage unit 120 may be implemented in the memory 702 and / or the storage 703.
- FIG. 12 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 800 has one or more antennas 810 and a base station apparatus 820. Each antenna 810 and the base station apparatus 820 may be connected to each other via an RF cable.
- Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
- the eNB 800 may have a plurality of antennas 810 as shown in FIG. 12, and the plurality of antennas 810 may correspond to, for example, a plurality of frequency bands used by the eNB 800.
- FIG. 12 illustrates an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
- the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823 and a wireless communication interface 825.
- the controller 821 may be, for example, a CPU or a DSP, and operates various functions of the upper layer of the base station device 820. For example, the controller 821 generates a data packet from data in the signal processed by the wireless communication interface 825, and transfers the generated packet through the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors and transfer the generated bundled packet. Also, the controller 821 is a logic that executes control such as radio resource management (Radio Resource Control), radio bearer control (Radio Bearer Control), mobility management (Mobility Management), admission control (Admission Control), scheduling (Scheduling), etc. Function may be provided.
- Radio Resource Control Radio Resource Control
- Radio Bearer Control Radio Bearer Control
- Mobility Management Mobility Management
- Admission control Admission Control
- scheduling scheduling
- the control may be performed in cooperation with neighboring eNBs or core network nodes.
- the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various control data (eg, terminal list, transmission power data, scheduling data, etc.).
- the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
- the controller 821 may communicate with core network nodes or other eNBs via the network interface 823.
- the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
- the network interface 823 may be a wired communication interface or a wireless communication interface for a wireless backhaul.
- the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
- the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
- the wireless communication interface 825 may typically include a baseband (BB) processor 826 and RF circuitry 827 and the like.
- the BB processor 826 may perform, for example, coding / decoding, modulation / demodulation, multiplexing / demultiplexing, etc., and each layer (eg, L1, medium access control (MAC), radio link control (RLC), and PDCP). Perform various signal processing (Packet Data Convergence Protocol).
- the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
- the BB processor 826 may be a memory that stores a communication control program, a processor that executes the program, and a module including related circuits, and the function of the BB processor 826 can be changed by updating the program. Good.
- the module may be a card or a blade inserted into a slot of the base station apparatus 820, or may be a chip mounted on the card or the blade.
- the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 810.
- the wireless communication interface 825 may include a plurality of BB processors 826 as illustrated in FIG. 12, and the plurality of BB processors 826 may correspond to, for example, a plurality of frequency bands used by the eNB 800.
- the wireless communication interface 825 may include a plurality of RF circuits 827 as illustrated in FIG. 12, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements.
- FIG. 12 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. May be.
- the eNB 800 illustrated in FIG. 12 one or more components (the notification unit 351, the acquisition unit 352, and / or the processing unit 353) included in the control unit 350 described with reference to FIG. It may be implemented. Alternatively, at least a part of these components may be implemented in the controller 821. As one example, the eNB 800 may be equipped with a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821 and one or more components may be implemented in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
- a program for causing a processor to function as the one or more components may be installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and / or the controller 821 may execute the program.
- the eNB 800, the base station apparatus 820 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be Moreover, the readable recording medium which recorded the said program may be provided.
- the wireless communication unit 320 described with reference to FIG. 5 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827).
- the antenna unit 310 may be mounted on the antenna 810.
- the network communication unit 330 may be implemented in the controller 821 and / or the network interface 823.
- the storage unit 340 may be implemented in the memory 822.
- FIG. 13 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Also, the base station device 850 and the RRH 860 may be connected to each other by a high speed line such as an optical fiber cable.
- Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the RRH 860.
- the eNB 830 may have a plurality of antennas 840 as shown in FIG. 13, and the plurality of antennas 840 may correspond to, for example, a plurality of frequency bands used by the eNB 830.
- FIG. 13 shows an example in which the eNB 830 has a plurality of antennas 840, the eNB 830 may have a single antenna 840.
- the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
- the controller 851, the memory 852 and the network interface 853 are similar to the controller 821, the memory 822 and the network interface 823 described with reference to FIG. 12.
- the wireless communication interface 855 supports any cellular communication scheme such as LTE or LTE-Advanced, and provides a wireless connection to terminals located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
- the wireless communication interface 855 may typically include a BB processor 856 or the like.
- the BB processor 856 is similar to the BB processor 826 described with reference to FIG. 12 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
- the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 13, and the plurality of BB processors 856 may correspond to, for example, a plurality of frequency bands used by the eNB 830.
- FIG. 13 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
- connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
- the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station device 850 (wireless communication interface 855) and the RRH 860.
- the RRH 860 also includes a connection interface 861 and a wireless communication interface 863.
- connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
- the connection interface 861 may be a communication module for communication on the high speed line.
- the wireless communication interface 863 transmits and receives a wireless signal via the antenna 840.
- the wireless communication interface 863 may typically include an RF circuit 864 and the like.
- the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 may include a plurality of RF circuits 864 as illustrated in FIG. 13, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements.
- FIG. 13 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
- the eNB 830 illustrated in FIG. 13 one or more components (the notification unit 351, the acquisition unit 352, and / or the processing unit 353) included in the control unit 350 described with reference to FIG. And / or may be implemented in the wireless communication interface 863. Alternatively, at least a part of these components may be implemented in the controller 851. As one example, the eNB 830 mounts a module including a part (for example, the BB processor 856) or all of the wireless communication interface 855 and / or the controller 851, and one or more components may be implemented in the module Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- a program for causing a processor to function as the one or more components may be installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 may execute the program.
- the eNB 830, the base station device 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be Moreover, the readable recording medium which recorded the said program may be provided.
- the wireless communication unit 320 described with reference to FIG. 5 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
- the antenna unit 310 may be mounted on the antenna 840.
- the network communication unit 330 may be implemented in the controller 851 and / or the network interface 853.
- the storage unit 340 may be implemented in the memory 852.
- the frequency supervision database 100 acquires the geolocation information of the reference point for interference calculation of the primary system, and calculates or acquires the interference tolerance at the reference point. Further, the frequency control database 100 acquires geolocation information, antenna information, and beam pattern information indicating beam patterns usable by the wireless node 300 of the wireless node 300 belonging to the secondary system. Then, based on the acquired or calculated information, the frequency management database 100 determines allowable beam information which is information on beams permitted to the wireless node 300. Thereafter, the frequency management database 100 notifies the wireless node 300 or the network manager 200 which puts the wireless node 300 under management, of the determined allowable beam information.
- information on allowable beams is determined for the radio node 300 that performs secondary use of frequencies and performs beamforming.
- flexible beam management such as suppressing the use of a beam which makes it difficult to protect other systems such as the primary system and allowing the use of a protectable beam. Can be realized.
- the frequency control database 100 is described as a control device that performs control related to secondary frequency use including beam management in consideration of beamforming by the wireless node 300, but the present technology applies It is not limited to the example.
- an apparatus closer to the wireless node 300 may operate as the control apparatus.
- the network manager 200 may operate as the control device.
- a MEC (Mobile Edge Computing) server may operate as the control device.
- the wireless node 300 notifies the frequency control database 100 of its own information, acquires the allowable beam information, and selects the beam to be transmitted.
- the present technology is limited to such an example. I will not.
- the network manager 200 may notify the frequency control database 100 of the information of the wireless node 300 under management to obtain allowable beam information and select a beam to be transmitted. In that case, the network manager 200 notifies the wireless node 300 of information indicating a beam to be transmitted, and the wireless node 300 transmits the beam designated by the notification.
- the frequency control database 100 is described as a control device that has a database function that holds information related to the primary system and determines allowable beam information, but the present technology is not limited to such an example. .
- the database function holding information on the primary system of the frequency control database 100 and the control device for determining the allowable beam information may be provided independently.
- the control device may be provided by the wireless node 300 or the network manager 200, and the wireless node 300 or the network manager 200 may determine the allowable beam information by itself.
- control device that determines the allowable beam information may communicate with other control devices to determine the allowable beam information so as to realize the coexistence between the wireless nodes 300 to be controlled. For example, the control device acquires location information and coverage information of the wireless node 300 from another control device, treats it as a primary system, and performs the same procedure as the above embodiment to realize coexistence Information may be determined.
- a first acquisition unit that acquires first geolocation information of a reference point for interference calculation of a first wireless service, and calculates or acquires an interference tolerance amount at the reference point; Second geographic location information, first antenna information, and use by the wireless device of a wireless device belonging to a second wireless service sharing a part or all of the frequencies allocated to the first wireless service
- a second acquisition unit for acquiring first beam pattern information indicating possible beam patterns; The wireless based on the first geographical position information of the reference point and the interference allowance, and the second geographical position information of the wireless device, the first antenna information and the first beam pattern information
- a determination unit that determines information about the beams permitted for the device;
- a notification unit for notifying the wireless device or a device related to the wireless device of information on a beam permitted to the wireless device;
- Control device comprising: (2)
- the information regarding the beam permitted to the wireless device is information including one or more of a combination of information indicating an acceptable beam pattern and information indicating an acceptable transmission power when using the beam pattern.
- the control device according to (1).
- the control device according to (3), wherein the frequency is included in a 70/80 GHz band.
- the first beam pattern information includes at least one of a codebook including one or more precoding matrices, a weight matrix, a steering vector, or a combination of antenna elevation angle, azimuth angle, and beam width.
- the controller according to any one of (4) to (4).
- the determination unit determines a combination of beams which are not permitted to be combined and transmitted among a plurality of beams permitted to the wireless device, and reflects the determination result on information on the beams allowable to the wireless device.
- the control device according to any one of the above (1) to (5).
- the second acquisition unit acquires information on a beam selected by the wireless device based on information on a beam permitted to the wireless device,
- the control device according to any one of (1) to (6), wherein the notification unit notifies the wireless device of information indicating availability of a beam selected by the wireless device.
- the controller is A second beam indicating third geolocation information of another wireless device, second antenna information, and a beam pattern usable by the other wireless device belonging to the second wireless service or the third wireless service It further comprises a third acquisition unit for acquiring pattern information,
- the determination unit determines information on beams permitted to the wireless device further based on the third geographical position information of the other wireless device, the second antenna information, and the second beam pattern information.
- the control device according to any one of (1) to (7).
- the control device (9) The control device according to (8), wherein the determination unit deletes information indicating a beam whose interference amount given to the other wireless device exceeds a predetermined threshold from the information on the beam permitted to the wireless device.
- the notification unit notifies another control device that selects another wireless device of a handover destination of a terminal device that communicates with the wireless device, with regard to information on a beam permitted to the wireless device.
- the control apparatus as described in any one of 10).
- a processing unit for transmitting a beam based on information on a beam permitted to the wireless device A wireless device comprising (13) The processing unit selects a beam to be transmitted based on information on a beam permitted to the wireless device, The notification unit notifies the control device of information on the beam selected by the processing unit, The wireless device according to (12), wherein the acquisition unit acquires information indicating availability of the beam selected by the processing unit.
- a first acquisition unit that acquires first geolocation information of a reference point for interference calculation of a first wireless service, and calculates or acquires an interference tolerance amount at the reference point; Second geographic location information, first antenna information, and use by the wireless device of a wireless device belonging to a second wireless service sharing a part or all of the frequencies allocated to the first wireless service
- a second acquisition unit for acquiring first beam pattern information indicating possible beam patterns; The wireless based on the first geographical position information of the reference point and the interference allowance, and the second geographical position information of the wireless device, the first antenna information and the first beam pattern information
- a determination unit that determines information about the beams permitted for the device;
- a notification unit for notifying the wireless device or a device related to the wireless device of information on a beam permitted to the wireless device;
- a recording medium on which a program for functioning as is recorded.
- a notification unit configured to notify the control device of antenna information and first beam pattern information indicating a beam pattern usable by the wireless device;
- an acquisition unit configured to acquire information on a beam permitted to the wireless device, which is determined by the control device based on the first beam pattern information.
- a recording medium on which a program for functioning as is recorded.
- Reference Signs List 1 system 100 frequency management database 110 network communication unit 120 storage unit 130 control unit 131 first acquisition unit 132 second acquisition unit 133 third acquisition unit 134 determination unit 135 notification unit 200 network manager 300 wireless node 310 antenna unit 320 Wireless communication unit 330 Network communication unit 340 Storage unit 350 Control unit 351 Notification unit 352 Acquisition unit 353 Processing unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.はじめに
2.構成例
2.1.全体構成例
2.2.周波数監理データベースの構成例
2.3.無線ノードの構成例
3.技術的特徴
3.1.基本動作
3.2.無線ノードが増加する場合の動作
3.3.ハンドオーバへの応用
4.応用例
5.まとめ
2016年7月14日、FCC(Federal Communications Commission)は、24GHz以上の周波数帯における移動体通信利用に係る報告及び命令(R&O:Report & Order)を発令した。当該R&Oには、周波数共用に関する最終法制案が付属されている。当該最終法制案に基づいて、新たなFCC規則が採択される見通しとなっている。さらに、R&Oでは、いくつかの周波数帯について、FNPRM(Further Notice of Proposed Rulemaking)に関するさらなる意見募集が行われている。とりわけ、71-76GHz及び81-86GHz(70/80GHz帯)については、2016年8月25日に採択された47 C.F.R Part 96で規定される、CBRS(Citizens Broadband Radio Service)の仕組みに基づく周波数共用が提案されている。
<2.1.全体構成例>
図3は、本開示の一実施形態に係るシステム1の構成の一例を説明するための図である。図3に示すように、本実施形態に係るシステム1は、周波数監理データベース100、ネットワークマネージャ200、及び複数の無線ノード300(300A~300E)を含む。
図4は、本実施形態に係る周波数監理データベース100の論理的な構成の一例を示すブロック図である。図4に示すように、周波数監理データベース100は、ネットワーク通信部110、記憶部120及び制御部130を備える。
ネットワーク通信部110は、情報を送受信する。例えば、ネットワーク通信部110は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の周波数監理データベース100、ネットワークマネージャ200、及び無線ノード300を含む。
記憶部120は、周波数監理データベース100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
制御部130は、周波数監理データベース100全体の動作を制御して、周波数監理データベース100の様々な機能を提供する。制御部130は、第1の取得部131、第2の取得部132、第3の取得部133、決定部134及び通知部135を含む。
図5は、本実施形態に係る無線ノード300の論理的な構成の一例を示すブロック図である。図5を参照すると、無線ノード300は、アンテナ部310、無線通信部320、ネットワーク通信部330、記憶部340及び制御部350を備える。
アンテナ部310は、無線通信部320により出力される信号を電波として空間に放射する。また、アンテナ部310は、空間の電波を信号に変換し、当該信号を無線通信部320へ出力する。
無線通信部320は、信号を送受信する。例えば、無線通信部320は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
ネットワーク通信部330は、情報を送受信する。例えば、ネットワーク通信部330は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、周波数監理データベース100、ネットワークマネージャ200及び他の無線ノード300を含む。
記憶部340は、無線ノード300の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
制御部350は、無線ノード300全体の動作を制御して、無線ノード300の様々な機能を提供する。制御部350は、通知部351、取得部352及び処理部353を含む。
<3.1.基本動作>
(1)一次システムに関する情報
周波数監理データベース100(第1の取得部131)は、一次システムに関する情報を取得する。周波数監理データベース100は、一次システムとの通信により一次システムに関する情報を取得してもよいし、予め一次システムに関する情報を記憶していてもよい。例えば、周波数監理データベース100は、一次システムの干渉計算のための基準点の地理位置情報(第1の地理位置情報に相当)を取得する。この基準点は、参照点(Reference Point)とも称される場合がある。基準点は、例えば図1及び図2を参照して上記説明した保護領域境界11上の任意の地点である。
周波数監理データベース100(第2の取得部132)は、二次システムに関する情報を取得する。典型的には、周波数監理データベース100は、二次システムとの通信により二次システムに関する情報を取得する。例えば、周波数監理データベース100は、無線ノード300の地理位置情報(第2の地理位置情報に相当)、アンテナ情報(第1のアンテナ情報に相当)、及び無線ノード300が使用可能なビームパターンを示すビームパターン情報(第1のビームパターン情報に相当)を取得する。例えば、周波数監理データベース100は、無線ノード300からこれらの情報を取得する。
周波数監理データベース100(例えば、決定部134)は、一次システムの地理位置情報、干渉許容量、並びに二次システムに属する無線ノード300の地理位置情報、アンテナ情報及びビームパターン情報に基づいて、無線ノード300に許容されるビームに関する情報を決定する。例えば、周波数監理データベース100は、無線ノード300が使用可能なビームのうち、一部のビームの使用を抑制し、他の一部のビームの使用を許容する。これにより、無線ノード300が使用可能なビームのうち、一次システム等の他のシステムの保護が困難となるビームの使用を抑制し、保護可能なビームの使用を許容する、といった、柔軟なビームマネジメントが実現可能となる。
第1の方法によれば、周波数監理データベース100は、指向性ゲインと送信電力との組み合わせによって、許容ビーム情報を決定する。以下、第1の方法について詳しく説明する。
Ireq≧P+G-mg …(1)
Ireq+mg≧P+G …(2)
第2の方法によれば、周波数監理データベース100は、一次システムの基準点における干渉許容量を満たす(即ち、下回る)ステアリングベクトル又はウェイト行列と送信電力との組み合わせを、許容ビーム情報として決定する。以下、第2の方法について詳しく説明する。
第3の方法によれば、周波数監理データベース100は、一次システムの基準点における干渉許容量を満たす(即ち、下回る)プリコーディング行列をコードブックから抽出することで、許容ビーム情報を決定する。以下、第3の方法について詳しく説明する。
周波数監理データベース100(例えば、通知部135)は、許容ビーム情報を無線ノード300又は無線ノード300に関する装置に通知する。無線ノード300に関する装置とは、無線ノード300を管理下におくネットワークマネージャ200である。
以下では、図6を参照して、上記説明したビームマネジメントに係る処理の流れの一例を説明する。
次いで、無線ノード300は、無線ノード300の地理位置情報、アンテナ情報、及び無線ノード300が使用可能なビームパターンを示すビームパターン情報を無線ノード300に通知する(ステップS104)。そして、周波数監理データベース100は、一次システムの基準点の地理位置情報及び基準点の干渉許容量、並びに無線ノード300の地理位置情報、アンテナ情報、及びビームパターン情報に基づいて、無線ノード300の許容ビーム情報を決定する(ステップS106)。その後、周波数監理データベース100は、決定した無線ノード300の許容ビーム情報を、無線ノード300に通知する(ステップS108)。
続いて、運用される無線ノード300が増加する場合のビームマネジメントについて説明する。
図8は、典型的なハンドオーバを説明するための図である。図8に示すように、基地局30A及び基地局30Bが隣接して位置している。基地局30Aは、セル31Aを運用しており、セル31A内に位置する端末装置に対し、ビームフォーミングを行なわずに無線通信サービスを提供する。同様に、基地局30Bは、セル31Bを運用しており、セル31B内に位置する端末装置に対し、ビームフォーミングを行なわずに無線通信サービスを提供する。セル31Aとセル31Bとの境界部分にあるセルエッジ32は、基地局30A及び基地局30Bのいずれからも遠い。そのため、セルエッジ32に端末装置400が位置する場合、端末装置400のモビリティに応じてハンドオーバが行われる。
本開示に係る技術は、様々な製品へ応用可能である。例えば、周波数監理データベース100又はネットワークマネージャ200は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のサーバとして実現されてもよい。また、周波数監理データベース100又はネットワークマネージャ200は、サーバに搭載される制御モジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)であってもよい。
図11は、本開示に係る技術が適用され得るサーバ700の概略的な構成の一例を示すブロック図である。サーバ700は、プロセッサ701、メモリ702、ストレージ703、ネットワークインタフェース704及びバス706を備える。
(第1の応用例)
図12は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
図13は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
以上、図1~図13を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る周波数監理データベース100は、一次システムの干渉計算のための基準点の地理位置情報を取得し、当該基準点における干渉許容量を算出又は取得する。また、周波数監理データベース100は、二次システムに属する無線ノード300の、地理位置情報、アンテナ情報、及び当該無線ノード300が使用可能なビームパターンを示すビームパターン情報を取得する。そして、周波数監理データベース100は、取得又は算出したこれらの情報に基づいて、無線ノード300に許容されるビームに関する情報である許容ビーム情報を決定する。その後、周波数監理データベース100は、決定した許容ビーム情報を無線ノード300又は無線ノード300を管理下におくネットワークマネージャ200に通知する。
(1)
第1の無線業務の干渉計算のための基準点の第1の地理位置情報を取得し、前記基準点における干渉許容量を算出又は取得する第1の取得部と、
前記第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を取得する第2の取得部と、
前記基準点の前記第1の地理位置情報及び前記干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記無線装置に許容されるビームに関する情報を決定する決定部と、
前記無線装置に許容されるビームに関する情報を前記無線装置又は前記無線装置に関する装置に通知する通知部と、
を備える制御装置。
(2)
前記無線装置に許容されるビームに関する情報は、許容されるビームパターンを示す情報と当該ビームパターンを使用する際に許容される送信電力を示す情報との組み合わせを1つ以上含む情報である、前記(1)に記載の制御装置。
(3)
前記無線装置に許容されるビームに関する情報は、周波数に対応付けられる、前記(2)に記載の制御装置。
(4)
前記周波数は、70/80GHz帯に含まれる、前記(3)に記載の制御装置。
(5)
前記第1のビームパターン情報は、プリコーディング行列を1つ以上含むコードブック、ウェイト行列、ステアリングベクトル、又はアンテナの仰角、方位角及びビーム幅の組み合わせの、少なくともいずれかを含む、前記(1)~(4)のいずれか一項に記載の制御装置。
(6)
前記決定部は、前記無線装置に許容される複数のビームのうち、組み合わせて送信することが許容されないビームの組み合わせを決定し、決定結果を前記無線装置に許容されるビームに関する情報に反映する、前記(1)~(5)のいずれか一項に記載の制御装置。
(7)
前記第2の取得部は、前記無線装置により、前記無線装置に許容されるビームに関する情報に基づいて選択された、ビームに関する情報を取得し、
前記通知部は、前記無線装置により選択されたビームの使用可否を示す情報を前記無線装置に通知する、前記(1)~(6)のいずれか一項に記載の制御装置。
(8)
前記制御装置は、
前記第2の無線業務又は第3の無線業務に属する、他の無線装置の第3の地理位置情報、第2のアンテナ情報及び前記他の無線装置が使用可能なビームパターンを示す第2のビームパターン情報を取得する第3の取得部をさらに備え、
前記決定部は、前記他の無線装置の前記第3の地理位置情報、前記第2のアンテナ情報及び前記第2のビームパターン情報にさらに基づいて、前記無線装置に許容されるビームに関する情報を決定する、前記(1)~(7)のいずれか一項に記載の制御装置。
(9)
前記決定部は、前記無線装置に許容されるビームに関する情報から、前記他の無線装置に与える干渉量が所定の閾値を超えるビームを示す情報を削除する、前記(8)に記載の制御装置。
(10)
前記決定部は、前記無線装置及び前記他の無線装置の周波数アクセス優先度にさらに基づいて、前記無線装置に許容されるビームに関する情報を決定する、前記(8)又は(9)に記載の制御装置。
(11)
前記通知部は、前記無線装置に許容されるビームに関する情報を、前記無線装置と通信する端末装置のハンドオーバ先の他の無線装置を選択する他の制御装置に通知する、前記(1)~(10)のいずれか一項に記載の制御装置。
(12)
制御装置による制御に基づいて動作する、第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置であって、
前記無線装置の第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を前記制御装置に通知する通知部と、
前記第1の無線業務の干渉計算のための基準点の第1の地理位置情報、及び前記基準点における干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記制御装置により決定された、前記無線装置に許容されるビームに関する情報を取得する取得部と、
前記無線装置に許容されるビームに関する情報に基づいてビームを送信する処理部と、
を備える無線装置。
(13)
前記処理部は、前記無線装置に許容されるビームに関する情報に基づいて送信するビームを選択し、
前記通知部は、前記処理部により選択されたビームに関する情報を前記制御装置に通知し、
前記取得部は、前記処理部により選択されたビームの使用可否を示す情報を取得する、前記(12)に記載の無線装置。
(14)
第1の無線業務の干渉計算のための基準点の第1の地理位置情報を取得し、前記基準点における干渉許容量を算出又は取得することと、
前記第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を取得することと、
前記基準点の前記第1の地理位置情報及び前記干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記無線装置に許容されるビームに関する情報をプロセッサにより決定することと、
前記無線装置に許容されるビームに関する情報を前記無線装置又は前記無線装置に関する装置に通知することと、
を含む方法。
(15)
制御装置による制御に基づいて動作する、第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を前記制御装置に通知することと、
前記第1の無線業務の干渉計算のための基準点の第1の地理位置情報、及び前記基準点における干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記制御装置により決定された、前記無線装置に許容されるビームに関する情報を取得することと、
前記無線装置に許容されるビームに関する情報に基づいてビームをプロセッサにより送信することと、
を含む方法。
(16)
コンピュータを、
第1の無線業務の干渉計算のための基準点の第1の地理位置情報を取得し、前記基準点における干渉許容量を算出又は取得する第1の取得部と、
前記第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を取得する第2の取得部と、
前記基準点の前記第1の地理位置情報及び前記干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記無線装置に許容されるビームに関する情報を決定する決定部と、
前記無線装置に許容されるビームに関する情報を前記無線装置又は前記無線装置に関する装置に通知する通知部と、
として機能させるためのプログラムが記録された記録媒体。
(17)
コンピュータを、
制御装置による制御に基づいて動作する、第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を前記制御装置に通知する通知部と、
前記第1の無線業務の干渉計算のための基準点の第1の地理位置情報、及び前記基準点における干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記制御装置により決定された、前記無線装置に許容されるビームに関する情報を取得する取得部と、
前記無線装置に許容されるビームに関する情報に基づいてビームを送信する処理部と、
として機能させるためのプログラムが記録された記録媒体。
100 周波数監理データベース
110 ネットワーク通信部
120 記憶部
130 制御部
131 第1の取得部
132 第2の取得部
133 第3の取得部
134 決定部
135 通知部
200 ネットワークマネージャ
300 無線ノード
310 アンテナ部
320 無線通信部
330 ネットワーク通信部
340 記憶部
350 制御部
351 通知部
352 取得部
353 処理部
Claims (17)
- 第1の無線業務の干渉計算のための基準点の第1の地理位置情報を取得し、前記基準点における干渉許容量を算出又は取得する第1の取得部と、
前記第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を取得する第2の取得部と、
前記基準点の前記第1の地理位置情報及び前記干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記無線装置に許容されるビームに関する情報を決定する決定部と、
前記無線装置に許容されるビームに関する情報を前記無線装置又は前記無線装置に関する装置に通知する通知部と、
を備える制御装置。 - 前記無線装置に許容されるビームに関する情報は、許容されるビームパターンを示す情報と当該ビームパターンを使用する際に許容される送信電力を示す情報との組み合わせを1つ以上含む情報である、請求項1に記載の制御装置。
- 前記無線装置に許容されるビームに関する情報は、周波数に対応付けられる、請求項2に記載の制御装置。
- 前記周波数は、70/80GHz帯に含まれる、請求項3に記載の制御装置。
- 前記第1のビームパターン情報は、プリコーディング行列を1つ以上含むコードブック、ウェイト行列、ステアリングベクトル、又はアンテナの仰角、方位角及びビーム幅の組み合わせの、少なくともいずれかを含む、請求項1に記載の制御装置。
- 前記決定部は、前記無線装置に許容される複数のビームのうち、組み合わせて送信することが許容されないビームの組み合わせを決定し、決定結果を前記無線装置に許容されるビームに関する情報に反映する、請求項1に記載の制御装置。
- 前記第2の取得部は、前記無線装置により、前記無線装置に許容されるビームに関する情報に基づいて選択された、ビームに関する情報を取得し、
前記通知部は、前記無線装置により選択されたビームの使用可否を示す情報を前記無線装置に通知する、請求項1に記載の制御装置。 - 前記制御装置は、
前記第2の無線業務又は第3の無線業務に属する、他の無線装置の第3の地理位置情報、第2のアンテナ情報及び前記他の無線装置が使用可能なビームパターンを示す第2のビームパターン情報を取得する第3の取得部をさらに備え、
前記決定部は、前記他の無線装置の前記第3の地理位置情報、前記第2のアンテナ情報及び前記第2のビームパターン情報にさらに基づいて、前記無線装置に許容されるビームに関する情報を決定する、請求項1に記載の制御装置。 - 前記決定部は、前記無線装置に許容されるビームに関する情報から、前記他の無線装置に与える干渉量が所定の閾値を超えるビームを示す情報を削除する、請求項8に記載の制御装置。
- 前記決定部は、前記無線装置及び前記他の無線装置の周波数アクセス優先度にさらに基づいて、前記無線装置に許容されるビームに関する情報を決定する、請求項8に記載の制御装置。
- 前記通知部は、前記無線装置に許容されるビームに関する情報を、前記無線装置と通信する端末装置のハンドオーバ先の他の無線装置を選択する他の制御装置に通知する、請求項1に記載の制御装置。
- 制御装置による制御に基づいて動作する、第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置であって、
前記無線装置の第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を前記制御装置に通知する通知部と、
前記第1の無線業務の干渉計算のための基準点の第1の地理位置情報、及び前記基準点における干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記制御装置により決定された、前記無線装置に許容されるビームに関する情報を取得する取得部と、
前記無線装置に許容されるビームに関する情報に基づいてビームを送信する処理部と、
を備える無線装置。 - 前記処理部は、前記無線装置に許容されるビームに関する情報に基づいて送信するビームを選択し、
前記通知部は、前記処理部により選択されたビームに関する情報を前記制御装置に通知し、
前記取得部は、前記処理部により選択されたビームの使用可否を示す情報を取得する、請求項12に記載の無線装置。 - 第1の無線業務の干渉計算のための基準点の第1の地理位置情報を取得し、前記基準点における干渉許容量を算出又は取得することと、
前記第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を取得することと、
前記基準点の前記第1の地理位置情報及び前記干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記無線装置に許容されるビームに関する情報をプロセッサにより決定することと、
前記無線装置に許容されるビームに関する情報を前記無線装置又は前記無線装置に関する装置に通知することと、
を含む方法。 - 制御装置による制御に基づいて動作する、第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を前記制御装置に通知することと、
前記第1の無線業務の干渉計算のための基準点の第1の地理位置情報、及び前記基準点における干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記制御装置により決定された、前記無線装置に許容されるビームに関する情報を取得することと、
前記無線装置に許容されるビームに関する情報に基づいてビームをプロセッサにより送信することと、
を含む方法。 - コンピュータを、
第1の無線業務の干渉計算のための基準点の第1の地理位置情報を取得し、前記基準点における干渉許容量を算出又は取得する第1の取得部と、
前記第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を取得する第2の取得部と、
前記基準点の前記第1の地理位置情報及び前記干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記無線装置に許容されるビームに関する情報を決定する決定部と、
前記無線装置に許容されるビームに関する情報を前記無線装置又は前記無線装置に関する装置に通知する通知部と、
として機能させるためのプログラムが記録された記録媒体。 - コンピュータを、
制御装置による制御に基づいて動作する、第1の無線業務に割り当てられた周波数のうち一部又は全部を共用する第2の無線業務に属する無線装置の、第2の地理位置情報、第1のアンテナ情報、及び前記無線装置が使用可能なビームパターンを示す第1のビームパターン情報を前記制御装置に通知する通知部と、
前記第1の無線業務の干渉計算のための基準点の第1の地理位置情報、及び前記基準点における干渉許容量、並びに前記無線装置の前記第2の地理位置情報、前記第1のアンテナ情報及び前記第1のビームパターン情報に基づいて、前記制御装置により決定された、前記無線装置に許容されるビームに関する情報を取得する取得部と、
前記無線装置に許容されるビームに関する情報に基づいてビームを送信する処理部と、
として機能させるためのプログラムが記録された記録媒体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/634,579 US11350422B2 (en) | 2017-08-04 | 2018-05-09 | Control device, wireless device, method, and recording medium |
CN201880048820.4A CN110945893B (zh) | 2017-08-04 | 2018-05-09 | 控制设备、无线设备、方法和记录介质 |
EP18840291.1A EP3664495B1 (en) | 2017-08-04 | 2018-05-09 | Control device, wireless device, method, and recording medium |
CA3071365A CA3071365A1 (en) | 2017-08-04 | 2018-05-09 | Control device, wireless device, method, and recording medium |
JP2019533907A JP7196844B2 (ja) | 2017-08-04 | 2018-05-09 | 制御装置、無線装置、方法及び記録媒体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-151381 | 2017-08-04 | ||
JP2017151381 | 2017-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026375A1 true WO2019026375A1 (ja) | 2019-02-07 |
Family
ID=65232593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017857 WO2019026375A1 (ja) | 2017-08-04 | 2018-05-09 | 制御装置、無線装置、方法及び記録媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11350422B2 (ja) |
EP (1) | EP3664495B1 (ja) |
JP (1) | JP7196844B2 (ja) |
CN (1) | CN110945893B (ja) |
CA (1) | CA3071365A1 (ja) |
WO (1) | WO2019026375A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020202828A1 (ja) * | 2019-03-29 | 2020-10-08 | ソニー株式会社 | 通信制御装置、通信装置、及び通信制御方法 |
JP2020184739A (ja) * | 2019-04-26 | 2020-11-12 | パナソニックIpマネジメント株式会社 | 共用周波数を利用可能な無線システム、共用周波数を用いた無線通信における無線資源割当方法、および基地局 |
WO2021131913A1 (ja) | 2019-12-26 | 2021-07-01 | ソニー株式会社 | 通信装置、通信制御装置、および通信方法 |
JPWO2022044751A1 (ja) * | 2020-08-26 | 2022-03-03 | ||
WO2022201971A1 (ja) * | 2021-03-22 | 2022-09-29 | ソニーグループ株式会社 | 通信制御装置、通信制御方法および通信装置 |
WO2022234772A1 (ja) * | 2021-05-07 | 2022-11-10 | 株式会社日立国際電気 | 固定無線機及び無線通信システム |
WO2022269689A1 (ja) * | 2021-06-21 | 2022-12-29 | 楽天モバイル株式会社 | 通信制御装置、通信制御方法、通信システム、およびプログラム |
WO2023089790A1 (ja) * | 2021-11-19 | 2023-05-25 | 株式会社Nttドコモ | 基地局及び通信方法 |
JP7517332B2 (ja) | 2019-05-15 | 2024-07-17 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、及びプログラム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7231828B2 (ja) * | 2019-04-26 | 2023-03-02 | 日本電信電話株式会社 | 干渉波演算方法、干渉波演算装置及びコンピュータプログラム |
EP4278460A1 (en) * | 2021-01-13 | 2023-11-22 | Qualcomm Incorporated | Reduced overhead beam profile parametrization |
US12170905B2 (en) * | 2022-03-31 | 2024-12-17 | Rakuten Symphony, Inc. | Method, apparatus, and computer readable medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014127792A (ja) * | 2012-12-26 | 2014-07-07 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信システム及び無線通信方法 |
WO2014136739A1 (ja) * | 2013-03-04 | 2014-09-12 | 日本電気株式会社 | 無線通信システム、制御装置、制御方法及びプログラム |
WO2015125891A1 (ja) * | 2014-02-21 | 2015-08-27 | 株式会社Nttドコモ | 無線通信制御方法および無線通信システム |
WO2015190357A1 (ja) * | 2014-06-09 | 2015-12-17 | 京セラ株式会社 | 無線通信装置および信号処理の制御方法 |
JP2016019134A (ja) | 2014-07-08 | 2016-02-01 | ソニー株式会社 | 装置及び方法 |
JP2016195363A (ja) * | 2015-04-01 | 2016-11-17 | 日本電信電話株式会社 | 構築装置及び構築方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7620370B2 (en) * | 2006-07-13 | 2009-11-17 | Designart Networks Ltd | Mobile broadband wireless access point network with wireless backhaul |
US9509543B2 (en) * | 2009-06-26 | 2016-11-29 | Qualcomm Incorporated | Method and apparatus that facilitates interference reduction in wireless systems |
US8447237B2 (en) * | 2010-04-12 | 2013-05-21 | Telefonaktiebolaget L M Ericsson (Publ) | Interference avoidance in white space communication systems |
JP5581230B2 (ja) * | 2011-01-07 | 2014-08-27 | 株式会社Nttドコモ | 無線基地局装置及び無線通信方法 |
JP6007480B2 (ja) * | 2011-09-16 | 2016-10-12 | ソニー株式会社 | 通信制御装置、通信制御方法及び通信制御システム |
JP2013201388A (ja) * | 2012-03-26 | 2013-10-03 | Gigaphoton Inc | レーザシステム及び極端紫外光生成システム |
EP3295737B1 (en) * | 2015-05-12 | 2021-02-24 | Telefonaktiebolaget LM Ericsson (publ) | Methods and devices for beam selection |
US10148332B2 (en) * | 2015-05-28 | 2018-12-04 | Futurewei Technologies, Inc. | System and method for multi-level beamformed non-orthogonal multiple access communications |
US10739464B2 (en) * | 2015-07-17 | 2020-08-11 | Hughes Network Systems, Llc | Satellite modem location tracking |
US10419948B1 (en) * | 2018-01-05 | 2019-09-17 | Amazon Technologies, Inc. | Aerial reflectors for terrestrial non-line-of-sight NLOS communication |
-
2018
- 2018-05-09 EP EP18840291.1A patent/EP3664495B1/en active Active
- 2018-05-09 CA CA3071365A patent/CA3071365A1/en active Pending
- 2018-05-09 US US16/634,579 patent/US11350422B2/en active Active
- 2018-05-09 JP JP2019533907A patent/JP7196844B2/ja active Active
- 2018-05-09 CN CN201880048820.4A patent/CN110945893B/zh active Active
- 2018-05-09 WO PCT/JP2018/017857 patent/WO2019026375A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014127792A (ja) * | 2012-12-26 | 2014-07-07 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信システム及び無線通信方法 |
WO2014136739A1 (ja) * | 2013-03-04 | 2014-09-12 | 日本電気株式会社 | 無線通信システム、制御装置、制御方法及びプログラム |
WO2015125891A1 (ja) * | 2014-02-21 | 2015-08-27 | 株式会社Nttドコモ | 無線通信制御方法および無線通信システム |
WO2015190357A1 (ja) * | 2014-06-09 | 2015-12-17 | 京セラ株式会社 | 無線通信装置および信号処理の制御方法 |
JP2016019134A (ja) | 2014-07-08 | 2016-02-01 | ソニー株式会社 | 装置及び方法 |
JP2016195363A (ja) * | 2015-04-01 | 2016-11-17 | 日本電信電話株式会社 | 構築装置及び構築方法 |
Non-Patent Citations (1)
Title |
---|
"REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING", FCC 16-89, 14 July 2016 (2016-07-14) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020202828A1 (ja) * | 2019-03-29 | 2020-10-08 | ソニー株式会社 | 通信制御装置、通信装置、及び通信制御方法 |
JP7452531B2 (ja) | 2019-03-29 | 2024-03-19 | ソニーグループ株式会社 | 通信制御装置、通信装置、及び通信制御方法 |
US11832288B2 (en) | 2019-03-29 | 2023-11-28 | Sony Group Corporation | Communication control device, communication device, and communication control method |
JP2020184739A (ja) * | 2019-04-26 | 2020-11-12 | パナソニックIpマネジメント株式会社 | 共用周波数を利用可能な無線システム、共用周波数を用いた無線通信における無線資源割当方法、および基地局 |
JP7517332B2 (ja) | 2019-05-15 | 2024-07-17 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、及びプログラム |
EP4084356A4 (en) * | 2019-12-26 | 2023-06-21 | Sony Group Corporation | COMMUNICATION DEVICE, COMMUNICATION CONTROL DEVICE AND COMMUNICATION METHOD |
WO2021131913A1 (ja) | 2019-12-26 | 2021-07-01 | ソニー株式会社 | 通信装置、通信制御装置、および通信方法 |
US12200637B2 (en) | 2019-12-26 | 2025-01-14 | Sony Group Corporation | Communication device, communication control device, and communication method |
CN114830559A (zh) * | 2019-12-26 | 2022-07-29 | 索尼集团公司 | 通信设备、通信控制设备以及通信方法 |
WO2022044751A1 (ja) * | 2020-08-26 | 2022-03-03 | 楽天モバイル株式会社 | プログラム、処理装置、基地局装置 |
JP7457819B2 (ja) | 2020-08-26 | 2024-03-28 | 楽天モバイル株式会社 | プログラム、処理装置、基地局装置 |
JPWO2022044751A1 (ja) * | 2020-08-26 | 2022-03-03 | ||
WO2022201971A1 (ja) * | 2021-03-22 | 2022-09-29 | ソニーグループ株式会社 | 通信制御装置、通信制御方法および通信装置 |
WO2022234772A1 (ja) * | 2021-05-07 | 2022-11-10 | 株式会社日立国際電気 | 固定無線機及び無線通信システム |
JP7585472B2 (ja) | 2021-05-07 | 2024-11-18 | 株式会社日立国際電気 | 固定無線機及び無線通信システム |
WO2022269689A1 (ja) * | 2021-06-21 | 2022-12-29 | 楽天モバイル株式会社 | 通信制御装置、通信制御方法、通信システム、およびプログラム |
WO2023089790A1 (ja) * | 2021-11-19 | 2023-05-25 | 株式会社Nttドコモ | 基地局及び通信方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3664495A1 (en) | 2020-06-10 |
CA3071365A1 (en) | 2019-02-07 |
JP7196844B2 (ja) | 2022-12-27 |
JPWO2019026375A1 (ja) | 2020-06-18 |
US11350422B2 (en) | 2022-05-31 |
CN110945893B (zh) | 2023-08-15 |
EP3664495B1 (en) | 2024-07-10 |
CN110945893A (zh) | 2020-03-31 |
EP3664495A4 (en) | 2020-07-22 |
US20210100005A1 (en) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7196844B2 (ja) | 制御装置、無線装置、方法及び記録媒体 | |
CN113329506B (zh) | 频谱资源管理装置和方法、无线通信设备和方法 | |
US8477704B2 (en) | Radio resource assignment method and base station device | |
US8868097B2 (en) | Frequency spectrum sensing method using pilot signal and cognitive radio system using the same | |
JP7074123B2 (ja) | 装置、方法及びプログラム | |
Ahmad et al. | LTE-railway user priority-based cooperative resource allocation schemes for coexisting public safety and railway networks | |
WO2013111442A1 (ja) | 通信制御装置、送信電力割当て方法及びプログラム | |
JP2011050032A (ja) | 送信電力割当て方法、通信装置及びプログラム | |
JP7243719B2 (ja) | 通信制御装置、通信制御方法およびコンピュータプログラム | |
JP7509130B2 (ja) | 通信制御装置、及び通信制御方法 | |
Sarma et al. | Power control scheme for device‐to‐device communication using uplink channel in 5G mm‐Wave network | |
US8694035B2 (en) | Communications system and method for determining an exclusion zone in proximity to a wireless communications system | |
US20090163215A1 (en) | Communications Systems | |
US8908647B2 (en) | Mobile communication system for reducing interference to an area | |
JP2010166505A (ja) | 無線通信システムにおける基地局装置及び方法 | |
US9538387B2 (en) | Radio resource assignment coordination in superdense networks | |
US9078273B2 (en) | Base station, communication terminal, usable radio resource setting method, and base station control program | |
US10382176B2 (en) | Method and apparatus for determining multi-point transmission resource | |
JPWO2019230671A1 (ja) | 無線装置、端末、方法およびコンピュータプログラム | |
Habiba et al. | Backhauling 5G Small Cells with Massive‐MIMO‐Enabled mmWave Communication | |
CN106461776A (zh) | 用于保护雷达免受干扰的方法和装置 | |
WO2021179976A1 (zh) | 电子设备、无线通信方法和计算机可读存储介质 | |
WO2021261243A1 (ja) | 通信制御方法および通信制御装置 | |
US12244539B2 (en) | Spectrum management device, electronic device, wireless communication method to adjust usage of spectrum to prevent interference, and storage medium | |
US20240172142A1 (en) | Communication control apparatus, communication control method, and communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18840291 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019533907 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3071365 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018840291 Country of ref document: EP Effective date: 20200304 |