WO2018198936A1 - 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法 - Google Patents
低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法 Download PDFInfo
- Publication number
- WO2018198936A1 WO2018198936A1 PCT/JP2018/016161 JP2018016161W WO2018198936A1 WO 2018198936 A1 WO2018198936 A1 WO 2018198936A1 JP 2018016161 W JP2018016161 W JP 2018016161W WO 2018198936 A1 WO2018198936 A1 WO 2018198936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent substrate
- reflection film
- low reflection
- low
- film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/006—Anti-reflective coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/25—Oxides by deposition from the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/68—Particle size between 100-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/23—Mixtures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/732—Anti-reflective coatings with specific characteristics made of a single layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/11—Deposition methods from solutions or suspensions
- C03C2218/118—Deposition methods from solutions or suspensions by roller-coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/107—Porous materials, e.g. for reducing the refractive index
Definitions
- the present invention relates to a transparent substrate with a low-reflection film, a photoelectric conversion device including the same, a coating liquid for forming the low-reflection film of the transparent substrate with a low-reflection film, and a method for producing the transparent substrate with a low-reflection film. .
- a low reflection film is formed on the surface of a substrate such as glass or ceramic in order to transmit more light or prevent glare due to reflection for the purpose of improving the function of the substrate.
- the low-reflection film is used for glass for vehicles, show windows, or glass plates used for photoelectric conversion devices.
- a so-called thin film solar cell which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially stacked. It is formed on the main surface opposite to the main surface, that is, the main surface on the side where sunlight enters.
- the solar cell in which the low reflection film is formed on the sunlight incident side more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
- the most commonly used low-reflection film is a dielectric film formed by a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method), or the like, but a fine particle-containing film containing fine particles such as silica fine particles is used as the low-reflection film. There is also.
- the fine particle-containing film is formed by applying a coating liquid containing fine particles onto a transparent substrate by dipping, flow coating, spraying, or the like.
- Patent Document 1 a coating liquid containing fine particles and a binder precursor is applied to a glass plate having surface irregularities by a spray method and dried at 400 ° C.
- the low reflection film formed on the cover glass can improve the average transmittance of light having a wavelength of 380 to 1100 nm by at least 2.37%.
- Patent Document 2 a sol containing tetraethoxysilane, aluminum acetylacetonate, and colloidal silica is attached to a glass plate by a dip coating method, and heat treatment is performed at 680 ° C. for 180 seconds.
- a glass substrate coated therewith is disclosed.
- the low reflection film formed on the glass substrate can improve the average transmittance of light having a wavelength of 300 to 1100 nm by 2.5%.
- Patent Document 3 discloses colloidal silica having a dispersed particle size larger than the average primary particle size and having a shape factor and an aspect ratio of more than 1 to some extent, tetraalkoxysilane, A coated silicon substrate formed by applying a coating composition containing aluminum nitrate onto a substrate using a spin coater and performing a drying process at 100 ° C. for 1 minute is disclosed. Although there is no description about the improvement of the average light transmittance by this film, this film has a refractive index of 1.40 or less.
- the transparent substrate with the low reflection film requires not only an effect of improving light transmittance but also high durability. Is done. Therefore, for example, for a transparent substrate with a low reflection film used in a photoelectric conversion device, there is room for further improvement in terms of improving durability while maintaining excellent optical characteristics such as transmittance as before. there were.
- an object of the present invention is to provide a transparent substrate with a low-reflective film that has further improved durability while maintaining optical characteristics comparable to those of the prior art. Furthermore, this invention also aims at providing the photoelectric conversion apparatus provided with such a transparent substrate with a low reflection film. Furthermore, another object of the present invention is to provide a coating liquid for forming such a low-reflection film of a transparent substrate with a low-reflection film and a method for producing the transparent substrate with a low-reflection film.
- a first aspect of the present invention is a transparent substrate with a low reflection film, comprising a transparent substrate and a low reflection film formed on at least one main surface of the transparent substrate,
- the low reflection film is a porous film in which silica fine particles having a solid spherical shape and an average particle diameter of 80 to 150 nm are fixed by a binder mainly composed of silica,
- the binder further includes an aluminum compound,
- the content of the component in the low reflection film is expressed in mass%, Silica fine particles 55-70% Silica in the binder 25-40% 0.1 to 1.5% of the aluminum compound in terms of Al 2 O 3 Organic component 0.25-3%
- the low reflection film has a thickness of 80 to 800 nm;
- the transmittance defined as the increment of the average transmittance in the wavelength region of the transparent substrate with the low reflection film to the average transmittance in the wavelength region of 380 to 850 nm of the transparent substrate in a state where the low reflection film is not formed.
- Gain is 2.
- the second aspect of the present invention provides a photoelectric conversion device comprising the transparent substrate with a low reflection film according to the first aspect of the present invention.
- the third aspect of the present invention is as follows.
- a coating liquid for forming a low reflection film of a transparent substrate with a low reflection film contains solid spherical particles having an average particle diameter of 80 to 150 nm, hydrolyzable silicon compound, aluminum chelate complex, and solvent,
- the hydrolyzable silicon compound is a compound represented by the formula (I): SiX 4 (where X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom).
- the aluminum chelate complex includes at least one multidentate ligand selected from the group consisting of a polydentate ligand having a ⁇ -ketoester structure and a polydentate ligand having a ⁇ -diketone structure, and an aluminum atom directly With one or two alkoxy groups attached,
- the solvent includes an organic solvent that is miscible with water and has a boiling point of 70 ° C.
- the aluminum chelate complex is 0 6-8 parts by weight,
- a low reflective film having a thickness of 80 to 800 nm is formed on a transparent substrate using the coating liquid, the average transmission in the wavelength range of 380 to 850 nm of the transparent substrate in a state where the low reflective film is not formed.
- a transmittance gain defined as an increase in average transmittance in the wavelength region of the transparent substrate with the low-reflection film with respect to the transmittance, is 2.5% or more; Provide coating fluid.
- the fourth aspect of the present invention is A method for producing a transparent substrate with a low reflection film according to the first aspect of the present invention
- the manufacturing method includes: An application step of applying a coating liquid for forming the low reflection film to the transparent substrate; A heating step of heating the transparent substrate coated with the coating liquid; Including The coating liquid is a coating liquid according to the third aspect of the present invention, In the heating step, the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time that the surface of the transparent substrate is at a temperature of 130 ° C. or more is 5 minutes or less, A method for producing a transparent substrate with a low reflective film is provided.
- the photoelectric conversion apparatus provided with such a transparent substrate with a low reflection film can be provided.
- the transparent substrate with a low reflection film of this embodiment includes a transparent substrate and a low reflection film formed on at least one main surface of the transparent substrate.
- the low reflection film in the present embodiment is a porous film in which solid spherical silica fine particles are fixed by a binder mainly composed of silica.
- the binder further includes an aluminum compound.
- the porous film, that is, the low reflection film has a physical thickness of 80 to 800 nm, preferably more than 100 nm and 500 nm or less, more preferably more than 100 nm and 150 nm or less.
- the binder which has a silica as a main component means the binder containing 50 mass% or more of silicas.
- the silica fine particles are substantially spherical primary particles having an average particle diameter of 80 to 150 nm, preferably more than 100 nm and 150 nm or less. Since silica has a higher hardness than organic polymer materials and a relatively low refractive index, the apparent refractive index of a porous film composed of a binder and silica fine particles can be further reduced. Furthermore, primary particles having a substantially spherical shape with a uniform particle size made of silica are produced at a low cost on a commercial scale, and are excellent in quantity, quality and cost.
- the “average particle size” of the silica fine particles means a particle size (D50) corresponding to 50% volume accumulation in the particle size distribution measured by the laser diffraction particle size distribution measurement method.
- the content of the aluminum compound in the low reflection film is 0.1 to 1.5% by mass, preferably 0.2 to 1.0% by mass, when the aluminum compound is converted to Al 2 O 3. .
- the aluminum compound contained in the binder is preferably an aluminum chelate complex.
- the low-reflection film maintains excellent optical properties, while durability, particularly when in contact with water for a long time It is possible to improve the friction durability.
- the aluminum chelate complex examples include those containing at least one multidentate ligand selected from the group consisting of a polydentate ligand having a ⁇ -ketoester structure and a polydentate ligand having a ⁇ -diketone structure. Can be used. That is, at least one of the multidentate ligands of the aluminum chelate complex may be a ligand including a ⁇ -ketoester structure and / or a ⁇ -diketone structure. Moreover, all the polydentate ligands contained in the aluminum chelate complex may have a ⁇ -ketoester structure.
- An aluminum chelate complex containing such a multidentate ligand has high stability in a coating solution for forming a low reflection film.
- the aluminum chelate complex may include one or two alkoxy groups directly bonded to an aluminum atom and a multidentate ligand having a ⁇ -ketoester structure or a ⁇ -diketone structure.
- the alkoxy group preferably has 1 to 8 carbon atoms, for example.
- the alkoxy group may be, for example, any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group.
- the carboxylic acid constituting the ester has 4 to 6 carbon atoms in the ⁇ -ketoester structure, and the carbon number of the alcohol constituting the ester is One to three is preferable. More preferably, in the ⁇ -ketoester structure, the carboxylic acid constituting the ester has 4 carbon atoms, and the alcohol constituting the ester has 2 carbon atoms.
- Examples of the aluminum chelate complex contained in the binder include multidentate ethyl acetoacetate, acetylacetonate, methyl acetoacetate, isopropyl acetoacetate, ethyl 3-oxopentanoate and ethyl 3-oxo-4-methylpentanoate.
- An aluminum chelate complex contained as a ligand is preferably used.
- the low reflection film contains an organic component in a range of 0.2 to 3% by mass, and preferably in a range of 0.4 to 2.1% by mass.
- This organic component contains at least one selected from the group consisting of ⁇ -ketoesters and ⁇ -diketones.
- the organic component when the aluminum compound is an aluminum chelate complex, the organic component includes an organic component derived from a ligand of the aluminum chelate complex.
- the organic component may contain an alkyl group.
- the alkyl group may be, for example, a methyl group or an ethyl group.
- the content of the silica fine particles in the low reflection film is 55 to 70% by mass, and preferably 60 to 70% by mass.
- the content of silica in the binder is 25 to 40% by mass, and preferably 30 to 40% by mass.
- the content ratio of the silica fine particles in the low-reflection film and the silica in the binder is in the range of 57:43 to 74:26, preferably 60:40 to 70 in terms of mass ratio. : 30.
- the reflectance reduction effect by the low reflection film of the present embodiment can be increased. This is because gaps between the silica fine particles and between the fine particles and the transparent substrate become large.
- the durability of the low reflection film of this embodiment is deteriorated.
- silica has a function of adhering between the silica fine particles or between the fine particles and the transparent substrate, but if the content ratio of the silica fine particles is too large, the effect becomes poor. On the other hand, when the content ratio of the silica fine particles exceeds the limit and becomes small, the above-mentioned voids become too small, and the reflectance reduction effect by the low reflective film of this embodiment is lowered.
- a hydrolyzable silicon compound or a hydrolyzate of the hydrolyzable silicon compound can be used as a silica supply source in the binder.
- the hydrolyzable silicon compound may include a compound represented by the following formula (I).
- X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom.
- a hydrolyzable silicon compound typified by silicon alkoxide can be used as a silica supply source in the binder.
- the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and ethyltrimethoxysilane.
- These hydrolyzable silicon compounds may be made into binders by hydrolysis and condensation polymerization by a so-called sol-gel method.
- Hydrolysis of the hydrolyzable silicon compound can be carried out as appropriate, but is preferably carried out in a solution containing the silica fine particles.
- the polycondensation reaction between the silanol groups present on the surface of the fine particles and the silanol groups produced by hydrolysis of hydrolyzable silicon compounds such as silicon alkoxide is promoted, and the proportion of the binder that contributes to improving the binding force of the silica fine particles is increased. It is to increase.
- it is preferable to prepare a coating solution for forming a low reflection film by sequentially adding a hydrolysis catalyst and silicon alkoxide while stirring a solution containing silica fine particles.
- any acid and base can be used for the hydrolysis catalyst, it is preferable to use an acid, particularly an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, and it is more preferable to use hydrochloric acid.
- an acid particularly an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid
- hydrochloric acid is more preferable to use hydrochloric acid.
- acidic than basic is better in dispersibility of silica fine particles, and more excellent in the stability of the coating liquid.
- the hydrolysis catalyst it is desirable to use an acid having a high degree of ionization in an aqueous solution. Specifically, it is desirable to use an acid having an acid dissociation constant pKa (meaning a first acid dissociation constant when the acid is a polybasic acid) of 2.5 or less.
- pKa meaning a first acid dissociation constant when the acid is a polybasic acid
- the transparent substrate for example, a glass plate and a substrate made of an organic polymer are used.
- substrate which consists of organic polymers the board
- an example in which a glass plate is used as the transparent substrate will be described.
- the glass plate is not particularly limited, but in order to smooth the surface of the low reflection film provided on the main surface, a glass plate having excellent microscopic surface smoothness is preferable.
- the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
- the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
- the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye.
- the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order.
- the average spacing Sm of the irregularities on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly 2.0 mm or less. In particular, it is preferably 1.5 mm or less.
- the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
- the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
- the average interval Sm and the maximum height Ry are values specified in JIS (Japanese Industrial Standards) B0601-1994.
- the arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even a template glass can be suitably used as a transparent substrate of the transparent substrate with a low reflection film of the present embodiment as a glass plate excellent in microscopic surface smoothness.
- a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
- the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
- the glass plate may be a glass plate in which another film is further formed on the main surface opposite to the main surface on which the low reflection film is formed.
- a glass plate with a transparent conductive film may be mentioned as a glass plate that can be suitably applied with the low reflection film of the present embodiment.
- This glass plate with a transparent conductive film has, for example, a transparent conductive film on one main surface of any of the glass plates described above, and has one or more underlayers such as fluorine-doped on the main surface of the glass plate.
- the transparent conductive layer which has tin oxide as a main component is laminated
- the transparent substrate with a low reflection film of the present embodiment can have a transmittance gain of 2.5% or more, preferably 2.6% or more, and further 2.7% or more, and has high durability. Can also be realized.
- the transmittance gain is the average transmittance in the wavelength range 380 to 850 nm of the transparent substrate in which the low reflection film is not formed on the surface of the transparent substrate with the low reflection film on the side where the low reflection film is formed. It is the increment of the average transmittance in the wavelength region of the transparent substrate with a low reflection film with respect to the rate.
- the average reflectance in the wavelength region 360 to 740 nm of the surface on which the low reflection film is formed is determined from the average reflectance on the surface in which the low reflection film is not formed.
- the difference (reflectance reduction effect) obtained by subtracting the average reflectance of the surface in the state where the low reflection film is formed can be 3.0% or more, and preferably 3.2% or more.
- the transparent substrate with a low reflection film of the present embodiment can have such excellent reflection characteristics.
- the transparent substrate with a low reflection film of the present embodiment also has excellent wear resistance.
- the transparent substrate with a low reflection film of the present embodiment is excellent in friction durability when in contact with water for a long time. For example, after immersing the transparent substrate with a low reflection film of the present embodiment in water for 50 hours and then performing dry cloth friction on the surface on which the low reflection film is formed, a dry cloth friction durability test after immersion in water, The difference in average reflectance in the wavelength range 360 to 740 nm before and after the test on the surface on which the low reflection film is formed can be, for example, 1% or less, and further 0.5% or less.
- the transparent substrate with a low reflection film of the present embodiment can be formed by applying a coating liquid on the main surface of a transparent substrate such as a glass plate to form a coating film, and drying and curing the coating film. That is, the low reflection film is formed by applying a coating liquid for forming the low reflection film to the transparent substrate and then performing a heating process for drying and curing the coating film.
- the coating liquid in the present embodiment contains silica fine particles having a solid spherical shape and an average particle diameter of 80 to 150 nm, a hydrolyzable silicon compound, an aluminum chelate complex, and a solvent.
- the hydrolyzable silicon compound in the coating liquid has the formula (I): SiX 4 (wherein X is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group, an amino group, and a halogen atom). Contains the compound shown.
- hydrolyzable silicon compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane and tetraisopropoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, and ethyltrimethoxysilane.
- the silicon alkoxide can be used.
- the aluminum chelate complex in the coating solution contains at least one multidentate ligand selected from the group consisting of a polydentate ligand having a ⁇ -ketoester structure and a polydentate ligand having a ⁇ -diketone structure. .
- the aluminum chelate complex may further comprise one or two alkoxy groups bonded directly to the aluminum atom.
- the alkoxy group preferably has 1 to 8 carbon atoms, for example.
- the alkoxy group may be any one selected from the group consisting of an i-propoxy group, an n-butoxy group, and a sec-butoxy group.
- the carboxylic acid constituting the ester has 4 to 6 carbon atoms in the ⁇ keto ester structure, and the alcohol constituting the ester
- the number of carbon atoms is preferably 1 to 3. More preferably, in the ⁇ -ketoester structure, the carboxylic acid constituting the ester has 4 carbon atoms, and the alcohol constituting the ester has 2 carbon atoms.
- Examples of the aluminum chelate complex in the coating solution include multidentate ethyl acetoacetate, acetylacetonate, methyl acetoacetate, isopropyl acetoacetate, ethyl 3-oxopentanoate and ethyl 3-oxo-4-methylpentanoate.
- An aluminum chelate complex contained as a ligand is preferably used.
- the solvent in the coating solution contains an organic solvent that is miscible with water.
- This organic solvent includes those having a boiling point of 70 ° C. or higher and lower than 180 ° C.
- ethanol (boiling point: 78 ° C.), 2-propanol (boiling point: 83 ° C.), 1-methoxy-2-propanol (boiling point: 121 ° C.), acetylacetone (boiling point: 141 ° C.), methoxypropyl acetate (boiling point: 146 ° C.) ), 3-methoxy-1-butanol (boiling point: 160 ° C.), diacetone alcohol (boiling point: 168 ° C.), 3-methoxy-3-methyl-1-butanol (boiling point: 174 ° C.), and the like.
- the organic solvent has a boiling point of 70 ° C. or higher and lower than 180 ° C.
- the organic solvent contains a solvent having a boiling point of 70 ° C. or higher and lower than 180 ° C. as a main component, and further includes a high boiling point organic solvent.
- the organic solvent having a high boiling point those having a boiling point of 180 to 250 ° C. can be used. Thereby, the drying speed after coating can be delayed, and as a result, the leveling of the coating film is promoted, and the effects of reducing coating unevenness and homogenizing the appearance can be expected.
- the amount of the organic solvent having a high boiling point is desirably 5% by mass or less based on the entire coating liquid.
- high-boiling organic solvent examples include propylene glycol (boiling point: 187 ° C.), diethylene glycol monomethyl ether (boiling point: 193 ° C.), hexylene glycol (boiling point: 198 ° C.) and diethylene glycol (boiling point: 244 ° C.).
- the ratio of the silica fine particles and the mass in terms of SiO 2, and the mass of the silicon oxide component in terms of SiO 2 contained in the hydrolyzable silicon compound is in the range of 57:43 to 74:26, preferably in the range of 60:40 to 70:30.
- the coating liquid of this embodiment when the sum of the mass of silica fine particles converted to SiO 2 and the mass of silicon oxide components contained in the hydrolyzable silicon compound converted to SiO 2 is 100 parts by mass.
- the aluminum chelate complex is in the range of 0.6 to 8 parts by mass, preferably in the range of 1 to 5 parts by mass.
- the coating liquid of the present embodiment has a wavelength region of the transparent substrate in which the low reflective film is not formed when a low reflective film having a thickness of 80 to 800 nm is formed on the transparent substrate using the coating liquid.
- a transmittance gain defined as an increase in average transmittance in the wavelength region of the transparent substrate with a low reflection film with respect to the average transmittance at 380 to 850 nm can be 2.5% or more.
- the coating liquid in the present embodiment may further contain a hydrolysis catalyst for a hydrolyzable silicon compound.
- a hydrolysis catalyst for a hydrolyzable silicon compound.
- the hydrolysis catalyst either an acid or a base can be used. From the viewpoint of the stability of the coating solution, it is desirable to use an acid, particularly an inorganic acid, particularly hydrochloric acid. This is because acidic than basic is better in dispersibility of silica fine particles, and more excellent in the stability of the coating liquid.
- As the hydrolysis catalyst it is desirable to use an acid having a high degree of ionization in an aqueous solution. Specifically, it is desirable to use an acid having an acid dissociation constant pKa (meaning a first acid dissociation constant when the acid is a polybasic acid) of 2.5 or less.
- pKa meaning a first acid dissociation constant when the acid is a polybasic acid
- any known method such as spin coating, roll coating, bar coating, dip coating, spray coating, or the like can be used.
- Spray coating is excellent in terms of mass productivity.
- Roll coating and bar coating are excellent in terms of homogeneity of the appearance of the coating film in addition to mass productivity.
- the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time during which the surface of the transparent substrate is at a temperature of 130 ° C. or more is 5 minutes or less. Is preferred. Moreover, it is preferable that the time in which the surface of the transparent substrate is at a temperature of 100 ° C. or higher is 30 seconds or longer in the heating step.
- the book described above includes an application step for applying a coating liquid for forming a low-reflection film to a transparent substrate, and a heating step for heating the transparent substrate to which the coating liquid has been applied.
- the heating step the maximum temperature experienced by the surface of the transparent substrate is 350 ° C. or less, and the time during which the surface of the transparent substrate is at a temperature of 130 ° C. or more is 5 minutes or less.
- the transparent substrate with a low reflection film of this embodiment can be used as a glass plate used in a photoelectric conversion device. That is, the photoelectric conversion device of one embodiment of the photoelectric conversion device of the present invention includes the transparent substrate with a low reflection film of the present embodiment. Examples of the photoelectric conversion device include a solar cell. In the photoelectric conversion device, the transparent substrate with the low reflection film is disposed so that the low reflection film is on the light incident side.
- the configuration of a known photoelectric conversion device can be appropriately applied to the configuration other than the glass plate used on the light incident side of the photoelectric conversion device, that is, the transparent substrate with a low reflection film of the present embodiment.
- the thickness of the low reflection film was determined using a photograph of a field emission scanning electron microscope (FE-SEM). The low reflection film was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). From the FE-SEM photograph of the cross section of the low reflection film from obliquely above 30 °, the average value of the thickness of the low reflection film at five measurement points was defined as the thickness of the low reflection film.
- FE-SEM field emission scanning electron microscope
- a glass plate with a transparent conductive film is used as the transparent substrate of the transparent substrate with a low reflective film, and the low reflective film is provided on the surface of the glass plate where the transparent conductive film is not provided Formed.
- the transparent conductive film on the glass plate was removed by sandblasting, and a black paint was applied to the surface.
- CM2600d manufactured by Konica Minolta, Inc.
- the reflectance curve was calculated
- the reflectance in the wavelength region of 360 to 740 nm was averaged to obtain the average reflectance before and after the formation of the low-reflection film.
- a difference obtained by subtracting the average reflectance after the formation of the low reflection film from the average reflectance before the formation of the low reflection film was determined to evaluate the reflectance reduction effect.
- the difference between the average value of the visible light reflectivity after 70 times wear and the average value of the visible light reflectivity in the wavelength range 360 to 740 nm of the glass plate before the formation of the low reflection film was determined, and the 70 times wear.
- the subsequent reflectance reduction effect was evaluated.
- the change of the visible light reflectance of the wear part before and behind implementation of wear was measured with a spectrocolorimeter ("CM2600d", manufactured by Konica Minolta Co., Ltd.). Note that the change in the visible light reflectance was also determined by the average value of the visible light reflectance in the wavelength region of 360 to 740 nm.
- the transparent substrate with a low reflection film was immersed in water at 80 ° C. for 50 hours. Thereafter, the transparent substrate with a low reflection film was dried, and the surface on which the low reflection film was formed of the transparent substrate with a low reflection film was worn using a reciprocating wear tester (manufactured by Taber Industries). The abrasion was carried out by bringing the dry cloth (nonwoven fabric) into contact with the low-reflection film and making the load applied to the low-reflection film 4N and reciprocating the dry cloth four times.
- the average reflectance is an average value of the reflectance in the wavelength range of 360 to 740 nm, and the measurement method was the same as the method described in the above (Reflection characteristics).
- Example 1 Preparation of coating solution> Silica fine particle dispersion (Quatron PL-7, substantially spherical primary particles having an average particle size of 125 nm, solid content concentration 23% by mass, manufactured by Fuso Chemical Industry Co., Ltd.) 28.3 parts by mass, 1-methoxy-2-propanol (solvent ) 58.6 parts by mass, 1 part by mass of 1N hydrochloric acid (hydrolysis catalyst) was stirred and mixed, and further, 12.1 parts by mass of tetraethoxysilane (normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.) was added. Subsequently, the mixture was stirred for 8 hours while keeping the temperature at 40 ° C. to hydrolyze tetraethoxysilane to obtain a hydrolyzed solution.
- tetraethoxysilane normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.
- the ratio of the mass obtained by converting the silicon oxide component contained in the binder SiO 2 is 65: A 35, solid concentration in terms of SiO 2 is 10 It was mass%.
- Hydrolyzed solution 85.00 g, 1-methoxy-2-propanol (solvent) 14.15 g, aluminum chelate complex solution (aluminum ethyl acetoacetate dibutoxide (“DX-9740” manufactured by Shin-Etsu Chemical Co., Ltd.)), concentration 10 mass 0.85 g dissolved in 1-methoxy-2-propanol (solvent) so that the concentration becomes 1%, and mixed by stirring to obtain a coating solution of Example 1.
- the silica fine particles are converted to SiO 2 and 64.6% by mass
- the silicon oxide component contained in the binder is converted to SiO 2 and 34.8% by mass, and converted to Al 2 O 3 .
- the aluminum compound thus obtained was 0.17% by mass, and the organic component (the organic component derived from the ligand of the aluminum chelate complex) was 0.42% by mass.
- the content rate of each component in solid content of a coating liquid is corresponded to the content rate of each component in the low-reflection film formed.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 1 part by mass as an aluminum chelate complex.
- Example 1 a low reflective film was formed on the main surface on one side of a glass plate with a transparent conductive film to obtain a transparent substrate with a low reflective film.
- This glass plate is made of Nippon Soda Glass Co., Ltd., having a thickness of 3.2 mm, having a normal soda lime silicate composition, and having a transparent conductive layer including a transparent conductive layer formed on one main surface using an on-line CVD method. It was a glass plate with a transparent conductive film.
- This glass plate is cut into 200 ⁇ 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), cleaned with an ultrasonic cleaner, washed with deionized water, and dried at room temperature. Thus, a glass plate for forming a low reflection film was obtained.
- an alkaline solution alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.
- LBC-1 alkaline cleaning solution manufactured by Reybold Co., Ltd.
- Example 1 using a roll coater, the coating liquid of Example 1 was applied to the main surface of the glass plate on which the transparent conductive film was not applied. At this time, the film thickness of the coating solution was adjusted to 1 to 5 ⁇ m. Next, the coating solution applied to the glass plate was dried and cured with hot air.
- This hot air drying uses a belt-conveying type hot air drying device, the hot air set temperature is set to 350 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 25 mm, and the conveying speed is set to 0.3 m / min. It was performed by passing under the once. At this time, the time during which the glass plate coated with the coating liquid is in contact with hot air is 80 seconds, and the time over 130 ° C. on the glass surface coated with the coating liquid of the glass plate is 40 seconds. The highest temperature reached 150 ° C. The glass plate after drying and curing was allowed to cool to room temperature, and a low reflection film was formed on the glass plate.
- Example 2 ⁇ Preparation of coating solution> Hydrolyzed solution, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, 85.00 g of hydrolyzed solution, 13.30 g of 1-methoxy-2-propanol (solvent), 1.70 g of aluminum chelate complex solution, A coating solution was prepared in the same manner as in Example 1 except that. In the solid content of this coating solution, the silica fine particles are converted to SiO 2 , 64.2% by mass, the silicon oxide component contained in the binder is converted to SiO 2 , 34.6% by mass, and converted to Al 2 O 3 .
- the aluminum compound was 0.33 mass%, and the organic component (organic component derived from the ligand of the aluminum chelate complex) was 0.84 mass%.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 2 parts by mass as an aluminum chelate complex.
- Example 2 a low reflection film was formed by the same procedure as in Example 1 except that the coating liquid of Example 2 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
- Example 3 ⁇ Preparation of coating solution> Hydrolyzed solution, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, hydrolyzed solution 85.00 g, 1-methoxy-2-propanol (solvent) 12.45 g, aluminum chelate complex solution 2.55 g A coating solution was prepared in the same manner as in Example 1 except that.
- the aluminum compound was 0.50% by mass, and the organic component (organic component derived from the ligand of the aluminum chelate complex) was 1.26% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 3 parts by mass as an aluminum chelate complex.
- Example 3 a low reflection film was formed in the same procedure as in Example 1 except that the coating liquid of Example 3 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
- Example 4 Preparation of coating solution> Hydrolyzed solution, 1-methoxy-2-propanol (solvent), aluminum chelate complex solution, 85.00 g of hydrolyzed solution, 10.75 g of 1-methoxy-2-propanol (solvent), 4.25 g of aluminum chelate complex solution, A coating solution was prepared in the same manner as in Example 1 except that.
- the aluminum compound was 0.82% by mass, and the organic component (organic component derived from the ligand of the aluminum chelate complex) was 2.07% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 5 parts by mass as an aluminum chelate complex.
- Example 4 a low reflection film was formed in the same procedure as in Example 1 except that the coating liquid of Example 4 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
- Example 5 ⁇ Preparation of coating solution>
- aluminum ethyl acetoacetate diisopropoxide manufactured by Wako Pure Chemical Industries, Ltd.
- 1-methoxy-2-propanol solvent
- 85.00 g of the hydrolyzed solution, 13.30 g of 1-methoxy-2-propanol (solvent), and 1.700 g of an aluminum chelate complex solution were mixed with stirring. Except for these, a coating solution was prepared in the same manner as in Example 1.
- the aluminum compound was 0.37% by mass, and the organic component (organic component derived from the ligand of the aluminum chelate complex) was 0.93% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 2 parts by mass as an aluminum chelate complex.
- Example 5 a low reflection film was formed in the same procedure as in Example 1 except that the coating liquid of Example 5 was used, and the above-described characteristics were evaluated. The results are shown in Table 1.
- the aluminum compound was 4.7% by mass, and the organic component was 0% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 6.5 parts by mass as aluminum chloride.
- a low reflection film was formed by the same procedure as in Example 1 except that the coating liquid of Comparative Example 1 was used, and the above-described characteristics were evaluated.
- the immersion time of the transparent substrate with a low reflection film in water was shortened to 20 hours. The results are shown in Table 2.
- Comparative Example 2 a coating solution containing no aluminum compound was prepared. Specifically, in the same manner as in Example 1, except that the aluminum chelate complex solution was not mixed and only 85.00 g of the hydrolyzed solution and 15.00 g of 1-methoxy-2-propanol (solvent) were mixed and stirred. A coating solution was prepared. In the solid content of the coating solution, the silica fine particles in terms of SiO 2 65.0 wt%, silicon oxide components contained in the binder 35.0 wt% in terms of SiO 2, aluminum compound 0 wt% The organic component was 0% by mass.
- the aluminum compound was 0.084% by mass, and the organic component (the organic component derived from the ligand of the aluminum chelate complex) was 0.21% by mass.
- the aluminum compound when 100 parts by mass of silicon oxide (derived from silica fine particles and tetraalkoxysilane) converted to SiO 2 was 100 parts by mass, the aluminum compound was 0.5 parts by mass as an aluminum chelate complex.
- Comparative Example 4 ⁇ Preparation of coating solution>
- an aluminum chelate complex solution obtained by dissolving aluminum trisacetylacetonate (manufactured by Wako Pure Chemical Industries, Ltd.) in 1-methoxy-2-propanol (solvent) so as to have a concentration of 10% by mass.
- a coating solution was prepared in the same manner as in Example 1.
- the silica fine particles are converted to SiO 2 and 63.6% by mass
- the silicon oxide component contained in the binder is converted to SiO 2 and 34.3% by mass, and converted to Al 2 O 3 .
- the aluminum compound was 0.31% by mass
- the organic component organic component derived from the ligand of the aluminum chelate complex
- the aluminum compound was 2 parts by mass as an aluminum chelate complex.
- Comparative Example 5 ⁇ Preparation of coating solution>
- an aluminum chelate complex solution prepared by dissolving aluminum trisethyl acetoacetate (manufactured by Wako Pure Chemical Industries, Ltd.) in 1-methoxy-2-propanol (solvent) to a concentration of 10% by mass.
- a coating solution was prepared in the same manner as in Example 1.
- the aluminum compound was 0.24% by mass, and the organic component (organic component derived from the ligand of the aluminum chelate complex) was 1.83% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 2 parts by mass as an aluminum chelate complex.
- Comparative Example 6 ⁇ Preparation of coating solution>
- aluminum tri-sec-butoxide manufactured by Tokyo Chemical Industry Co., Ltd.
- 1-methoxy-2-propanol solvent
- a thing was used. 85.00 g of the hydrolyzed solution, 13.30 g of 1-methoxy-2-propanol (solvent), and 1.70 g of an aluminum tri-sec-butoxide solution were mixed with stirring. Except for these, a coating solution was prepared in the same manner as in Example 1.
- the silica fine particles are converted to SiO 2 and 64.7% by mass
- the silicon oxide component contained in the binder is converted to SiO 2 and 34.9% by mass
- converted to Al 2 O 3 The aluminum compound was 0.41% by mass
- the organic component was 0% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 2 parts by mass as aluminum tri-sec-butoxide. .
- the obtained aluminum compound was 1.59% by mass, and the organic component (organic component derived from the ligand of the aluminum chelate complex) was 4.03% by mass.
- the silicon oxide converted to SiO 2 derived from silica fine particles and tetraalkoxysilane
- the aluminum compound was 10 parts by mass as an aluminum chelate complex.
- the transparent substrates with a low reflection film of Examples 1 to 5 had excellent durability (wear resistance and wear resistance after water immersion) while maintaining excellent optical characteristics.
- the transparent substrates with low reflective films of Comparative Examples 1 to 3 and 7 had excellent optical properties but were inferior in durability, particularly wear resistance after immersion in water.
- the aluminum compound aluminum chelate complex or aluminum tri-sec-butoxide
- Comparative Examples 4 to 6 the aluminum compound (aluminum chelate complex or aluminum tri-sec-butoxide) was not sufficiently dissolved in the solvent in the coating solution, and a low reflection film could not be formed.
- the present invention it is possible to provide a transparent substrate with a low reflection film that has excellent optical characteristics and excellent durability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Surface Treatment Of Glass (AREA)
- Sustainable Development (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
前記低反射膜は、中実な球状で平均粒径が80~150nmであるシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる多孔質膜であって、
前記バインダは、アルミニウム化合物をさらに含み、
前記低反射膜における成分の含有率が、質量%表示で、
前記シリカ微粒子 55~70%
前記バインダにおけるシリカ 25~40%
前記アルミニウム化合物をAl2O3に換算して 0.1~1.5%
有機成分 0.25~3%
であり、
前記低反射膜の膜厚が80~800nmであり、
前記低反射膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記低反射膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが、2.5%以上であり、
前記有機成分が、βケトエステル及びβジケトンからなる群から選択される少なくともいずれか1つを含む、
低反射膜付き透明基板を提供する。
低反射膜付き透明基板の低反射膜を形成するための塗工液であって、
前記塗工液は、中実な球状で平均粒径が80~150nmであるシリカ微粒子と、加水分解性シリコン化合物と、アルミニウムキレート錯体と、溶媒とを含み、
前記加水分解性シリコン化合物は、式(I):SiX4(ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである)に示す化合物を含み、
前記アルミニウムキレート錯体は、βケトエステル構造を有する多座配位子及びβジケトン構造を有する多座配位子からなる群から選択される少なくともいずれか1つの多座配位子と、アルミニウム原子に直接結合した1又は2個のアルコキシ基とを含み、
前記溶媒は、水と混和し、かつ、70℃以上180℃未満の沸点を有する有機溶媒を含み、
前記シリカ微粒子をSiO2に換算した質量と、前記加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量との比(シリカ微粒子:加水分解性シリコン化合物)が、57:43~74:26であり、
前記シリカ微粒子をSiO2に換算した質量と、前記加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量との和を100質量部としたときに、前記アルミニウムキレート錯体は、0.6~8質量部であり、
前記塗工液を用いて透明基板上に80~800nmの厚さの低反射膜を形成したときに、前記低反射膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記低反射膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが2.5%以上である、
塗工液を提供する。
上記本発明の第1の態様にかかる低反射膜付き透明基板の製造方法であって、
前記製造方法は、
前記低反射膜を形成するための塗工液を前記透明基板に塗布する塗布工程と、
前記塗工液が塗布された前記透明基板を加熱する加熱工程と、
を含み、
前記塗工液は、上記本発明の第3の態様に係る塗工液であり、
前記加熱工程において、前記透明基板の表面が経験する最高温度が350℃以下であり、前記透明基板の表面が130℃以上の温度にある時間が5分以下である、
低反射膜付き透明基板の製造方法を提供する。
SiX4 (I)
低反射膜を形成するための塗工液を透明基板に塗布する塗布工程と、塗工液が塗布された透明基板を加熱する加熱工程と、を含み、前記塗工液が上記で説明した本実施形態の塗工液であり、前記加熱工程において、前記透明基板の表面が経験する最高温度が350℃以下であり、前記透明基板の表面が130℃以上の温度にある時間が5分以下である、製造方法、
を挙げることができる。
低反射膜の厚さは、電界放射型走査型電子顕微鏡(FE-SEM)の写真を用いて求めた。低反射膜を電界放射型走査型電子顕微鏡(S-4500、株式会社日立製作所製)によって観察した。低反射膜の30°斜め上方からの断面におけるFE-SEM写真から、測定点5点での低反射膜の厚さの平均値を、低反射膜の厚さとした。
後述のとおり、本実施例及び比較例では、低反射膜付き透明基板の透明基板として透明導電膜付きガラス板が用いられ、ガラス板の透明導電膜が設けられていない側の面に低反射膜が形成された。反射率の測定では、低反射膜のみの反射率を測定するために、ガラス板の透明導電膜をサンドブラストにより除去し、その面に黒色塗料を塗布した。分光測色計(「CM2600d」、コニカミノルタ株式会社製)を用いて、ガラス板における低反射膜が形成された面の反射率曲線(反射スペクトル)を測定した。また、低反射膜が形成される前のガラス板の反射率についても、同様の方法で反射率曲線を求めた。低反射膜形成前後のガラス板の反射率について、波長域360~740nmにおける反射率を平均化し、低反射膜形成前後の平均反射率を求めた。低反射膜形成前の平均反射率から、低反射膜形成後の平均反射率を差し引いた差を求めて、反射率低減効果の評価を行った。
分光光度計(「U-4100」、株式会社日立ハイテクサイエンス製)を用い、低反射膜の形成前後における透明基板(ここではガラス板)の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長380~850nmにおける透過率を平均化して算出した。低反射膜が形成されたガラス板の平均透過率の、該低反射膜が形成される前のガラス板の平均透過率に対する増分を透過率ゲインとした。
往復摩耗試験機(Taber Industries社製)を用い、低反射膜付き透明基板の低反射膜が形成されている面を摩耗子CS-10Fにて荷重4Nで70回又は250回摩耗した。70回摩耗を行った摩耗部について、上記の(反射特性)の試験と同様の方法で反射率曲線(反射スペクトル)を測定し、波長域360~740nmにおける可視光反射率の平均値を求めた。この70回摩耗後の可視光反射率の平均値と、低反射膜が形成される前のガラス板の波長域360~740nmにおける可視光反射率の平均値との差を求めて、70回摩耗後の反射率低減効果の評価を行った。また、250回摩耗を行った摩耗部については、摩耗実施前後の摩耗部の可視光反射率の変化を、分光測色計(「CM2600d」、コニカミノルタ株式会社製)にて計測した。なお、可視光反射率の変化についても、波長域360~740nmにおける可視光反射率の平均値によって求めた。
低反射膜付き透明基板を80℃の水に50時間浸漬した。その後、低反射膜付き透明基板を乾燥させて、往復摩耗試験機(Taber Industries社製)を用い、低反射膜付き透明基板の低反射膜が形成されている面を摩耗した。摩耗は、乾布(不織布)を低反射膜に接触させ、低反射膜にかかる荷重を4Nとして、乾布を4回往復運動させることにより実施した。摩耗試験後に低反射膜が形成されている側の面の平均反射率を測定し、摩耗試験前に測定しておいた低反射膜が形成されている側の面の平均反射率との差分を求めた。平均反射率は、波長域360~740nmの反射率の平均値であり、その測定方法は上記の(反射特性)に記載された方法と同じであった。
<塗工液の調製>
シリカ微粒子分散液(クォートロンPL-7、平均粒径125nmの略球状の一次粒子、固形分濃度23質量%、扶桑化学工業株式会社製)28.3質量部、1-メトキシ-2-プロパノール(溶媒)58.6質量部、1N塩酸(加水分解触媒)1質量部を攪拌混合し、さらに撹拌しながらテトラエトキシシラン(正珪酸エチル、多摩化学工業株式会社製)12.1質量部を添加し、引き続き40℃に保温しながら8時間撹拌してテトラエトキシシランを加水分解し、加水分解液を得た。
実施例1では、透明導電膜付きガラス板の片側の主表面に低反射膜を形成して、低反射膜付き透明基板を得た。このガラス板は、通常のソーダライムシリケート組成からなり、オンラインCVD法を用いて片方の主表面に透明導電層を含む透明導電膜が形成された、厚さ3.2mmの日本板硝子株式会社製の透明導電膜付きガラス板であった。このガラス板を200×300mmに切断し、アルカリ溶液(アルカリ性洗浄液 LBC-1、レイボルド株式会社製)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させて低反射膜を形成するためのガラス板とした。低反射膜を施す前のこのガラス板の透過特性を前述のとおり評価したところ、平均透過率83.2%であった。
<塗工液の調製>
加水分解液、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)13.30g、アルミニウムキレート錯体溶液1.70gとした以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して64.2質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.6質量%、Al2O3に換算したアルミニウム化合物は0.33質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は0.84質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として2質量部であった。
実施例2では、前述の実施例2の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<塗工液の調製>
加水分解液、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)12.45g、アルミニウムキレート錯体溶液2.55gとした以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して63.9質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.4質量%、Al2O3に換算したアルミニウム化合物は0.50質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は1.26質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として3質量部であった。
実施例3では、前述の実施例3の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<塗工液の調製>
加水分解液、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)10.75g、アルミニウムキレート錯体溶液4.25gとした以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して63.1質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.0質量%、Al2O3に換算したアルミニウム化合物は0.82質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は2.07質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として5質量部であった。
実施例4では、前述の実施例4の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<塗工液の調製>
実施例5では、アルミニウムキレート錯体溶液として、アルミニウムエチルアセトアセテートジイソプロポキシド(和光純薬工業株式会社製)を、濃度10質量%となるように1-メトキシ-2-プロパノール(溶媒)に溶解したものを用いた。加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)13.30g、アルミニウムキレート錯体溶液1.700gを攪拌混合した。これら以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して64.2質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.5質量%、Al2O3に換算したアルミニウム化合物は0.37質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は0.93質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として2質量部であった。
実施例5では、前述の実施例5の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。その結果を表1に示す。
<塗工液の調製>
アルミニウムキレート錯体溶液の代わりに、塩化アルミニウム水溶液(AlCl3として濃度47.6質量%、塩化アルミニウム6水和物、試薬グレード、シグマアルドリッチ社製を脱イオン水に溶解)を用いた。加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)12.99g、塩化アルミニウム水溶液2.01gを攪拌混合した。これら以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して61.9質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して33.3質量%、Al2O3に換算したアルミニウム化合物は4.7質量%、有機成分は0質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、塩化アルミニウムとして6.5質量部であった。
比較例1では、前述の比較例1の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。ただし、水浸漬後の耐摩耗性の評価試験では、低反射膜付き透明基板の水への浸漬時間を20時間に短縮した。その結果を表2に示す。
<塗工液の調製>
比較例2では、アルミニウム化合物を含まない塗工液を調製した。具体的には、アルミニウムキレート錯体溶液を混合せずに、加水分解液85.00gと1-メトキシ-2-プロパノール(溶媒)15.00gとのみを混合攪拌した以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して65.0質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して35.0質量%、アルミニウム化合物は0質量%、有機成分は0質量%であった。
比較例2では、前述の比較例2の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。その結果を表2に示す。
<塗工液の調製>
加水分解液、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)14.575g、アルミニウムキレート錯体溶液0.425gとした以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して64.8質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.9質量%、Al2O3に換算したアルミニウム化合物は0.084質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は0.21質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として0.5質量部であった。
比較例3では、前述の比較例3の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。その結果を表2に示す。
<塗工液の調製>
比較例4では、アルミニウムキレート錯体溶液として、アルミニウムトリスアセチルアセトネート(和光純薬工業株式社製)を、濃度10質量%となるように1-メトキシ-2-プロパノール(溶媒)に溶解したものを用いた。加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)13.30g、アルミニウムキレート錯体溶液1.70gを攪拌混合した。これら以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して63.6質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.3質量%、Al2O3に換算したアルミニウム化合物は0.31質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は1.80質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として2質量部であった。
比較例4では、塗工液においてアルミニウムキレート錯体が溶解せず、塗工液を用いた成膜を行うことができなかった。
<塗工液の調製>
比較例5では、アルミニウムキレート錯体溶液として、アルミニウムトリスエチルアセトアセテート(和光純薬工業株式社製)を、濃度10質量%となるように1-メトキシ-2-プロパノール(溶媒)に溶解したものを用いた。加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)13.30g、アルミニウムキレート錯体溶液1.70gを攪拌混合した。これら以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して63.7質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.3質量%、Al2O3に換算したアルミニウム化合物は0.24質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は1.83質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として2質量部であった。
比較例5では、塗工液においてアルミニウムキレート錯体が溶解せず、塗工液を用いた成膜を行うことができなかった。
<塗工液の調製>
比較例6では、アルミニウムキレート錯体溶液の代わりに、アルミニウムトリ-sec-ブトキシド(東京化成工業株式会社製)を、濃度10質量%となるように1-メトキシ-2-プロパノール(溶媒)に溶解したものを用いた。加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)13.30g、アルミニウムトリ-sec-ブトキシド溶液1.70gを攪拌混合した。これら以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して64.7質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して34.9質量%、Al2O3に換算したアルミニウム化合物は0.41質量%、有機成分は0質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムトリ-sec-ブトキシドとして2質量部であった。
比較例6では、塗工液においてアルミニウムトリ-sec-ブトキシドが溶解せず、塗工液を用いた成膜を行うことができなかった。
<塗工液の調製>
加水分解液、1-メトキシ-2-プロパノール(溶媒)、アルミニウムキレート錯体溶液を、加水分解液85.00g、1-メトキシ-2-プロパノール(溶媒)6.50g、アルミニウムキレート錯体溶液8.5gとした以外は、実施例1と同様に塗工液を調製した。この塗工液の固形分において、シリカ微粒子はSiO2に換算して61.3質量%、バインダに含まれる酸化ケイ素成分はSiO2に換算して33.0質量%、Al2O3に換算したアルミニウム化合物は1.59質量%、有機成分(アルミニウムキレート錯体の配位子由来の有機成分)は4.03質量%であった。この塗工液において、SiO2に換算したケイ素の酸化物(シリカ微粒子とテトラアルコキシシランに由来)を100質量部としたとき、アルミニウム化合物は、アルミニウムキレート錯体として10質量部であった。
比較例7では、前述の比較例7の塗工液を用いた以外は実施例1と同じ手順で、低反射膜を形成し、前述の各特性を評価した。ただし、水浸漬後の耐摩耗性の評価試験では、低反射膜付き透明基板の水への浸漬時間を30時間に短縮した。その結果を表2に示す。
Claims (25)
- 透明基板と、前記透明基板の少なくとも一方の主表面に形成されている低反射膜とを含む、低反射膜付き透明基板であって、
前記低反射膜は、中実な球状で平均粒径が80~150nmであるシリカ微粒子が、シリカを主成分とするバインダによって固定されてなる多孔質膜であって、
前記バインダは、アルミニウム化合物をさらに含み、
前記低反射膜における成分の含有率が、質量%表示で、
前記シリカ微粒子 55~70%
前記バインダにおけるシリカ 25~40%
前記アルミニウム化合物をAl2O3に換算して 0.1~1.5%
有機成分 0.25~3%
であり、
前記低反射膜の膜厚が80~800nmであり、
前記低反射膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記低反射膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが、2.5%以上であり、
前記有機成分が、βケトエステル及びβジケトンからなる群から選択される少なくともいずれか1つを含む、
低反射膜付き透明基板。 - 前記アルミニウム化合物は、アルミニウムキレート錯体であり、
前記アルミニウムキレート錯体が、βケトエステル構造を有する多座配位子及びβジケトン構造を有する多座配位子からなる群から選択される少なくともいずれか1つの多座配位子を含む、
請求項1に記載の低反射膜付き透明基板。 - 前記アルミニウムキレート錯体は、さらに、アルミニウム原子に直接結合した1又は2個のアルコキシ基を含む、
請求項2に記載の低反射膜付き透明基板。 - 前記アルコキシ基の炭素数が1~8である、
請求項3に記載の低反射膜付き透明基板。 - 前記アルコキシ基が、i-プロポキシ基、n-ブトキシ基及びsec-ブトキシ基からなる群から選択されるいずれか1つである、
請求項4に記載の低反射膜付き透明基板。 - 前記アルミニウムキレート錯体に含まれる多座配位子の全てが、βケトエステル構造を有する、
請求項2~5のいずれか1項に記載の低反射膜付き透明基板。 - 前記βケトエステル構造において、
エステルを構成するカルボン酸の炭素数が4~6個であり、
エステルを構成するアルコールの炭素数が1~3個である、
請求項2~6のいずれか1項に記載の低反射膜付き透明基板。 - 前記βケトエステル構造において、
エステルを構成するカルボン酸の炭素数が4個であり、
エステルを構成するアルコールの炭素数が2個である、
請求項7に記載の低反射膜付き透明基板。 - 前記バインダにおけるシリカが、前記低反射膜を形成するための塗工液に添加された、加水分解性シリコン化合物又は加水分解性シリコン化合物の加水分解物に由来し、
該加水分解性シリコン化合物が、下記式(I)に示す化合物を含む、
請求項1~8のいずれか1項に記載の低反射膜付き透明基板。
SiX4 (I)
ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである。 - 前記加水分解性シリコン化合物が、テトラアルコキシシランである、
請求項9に記載の低反射膜付き透明基板。 - 前記低反射膜付き透明基板を水に50時間浸漬した後に、前記低反射膜が形成されている面に対して乾布摩擦を実施する、水浸漬後の乾布摩擦耐久性試験について、
前記低反射膜が形成されている側の面の、前記試験の前後の波長域360~740nmにおける平均反射率の差が1%以下である、
請求項1~10のいずれか1項に記載の低反射膜付き透明基板。 - 前記低反射膜は、前記低反射膜を形成するための塗工液が前記透明基板に塗布された後に、加熱工程が実施されることによって形成されており、
前記加熱工程において、
前記透明基板の表面が経験する最高温度が350℃以下であり、
前記透明基板の表面が130℃以上の温度にある時間が5分以下である、
請求項1~11のいずれか1項に記載の低反射膜付き透明基板。 - 前記透明基板がガラス板である、
請求項1~12のいずれか1項に記載の低反射膜付き透明基板。 - 前記透明基板の前記低反射膜が形成されている前記主表面とは反対側の主表面に、透明導電層を含む膜が形成されている、
請求項13に記載の低反射膜付き透明基板。 - 請求項1~14のいずれか1項に記載の低反射膜付き透明基板を備えた光電変換装置。
- 低反射膜付き透明基板の低反射膜を形成するための塗工液であって、
前記塗工液は、中実な球状で平均粒径が80~150nmであるシリカ微粒子と、加水分解性シリコン化合物と、アルミニウムキレート錯体と、溶媒とを含み、
前記加水分解性シリコン化合物は、式(I):SiX4(ここで、Xは、アルコキシ基、アセトキシ基、アルケニルオキシ基、アミノ基及びハロゲン原子から選ばれる少なくとも1つである)に示す化合物を含み、
前記アルミニウムキレート錯体は、βケトエステル構造を有する多座配位子及びβジケトン構造を有する多座配位子からなる群から選択される少なくともいずれか1つの多座配位子と、アルミニウム原子に直接結合した1又は2個のアルコキシ基とを含み、
前記溶媒は、水と混和し、かつ、70℃以上180℃未満の沸点を有する有機溶媒を含み、
前記シリカ微粒子をSiO2に換算した質量と、前記加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量との比(シリカ微粒子:加水分解性シリコン化合物)が、57:43~74:26であり、
前記シリカ微粒子をSiO2に換算した質量と、前記加水分解性シリコン化合物に含まれる酸化ケイ素成分をSiO2に換算した質量との和を100質量部としたときに、前記アルミニウムキレート錯体は、0.6~8質量部であり、
前記塗工液を用いて透明基板上に80~800nmの厚さの低反射膜を形成したときに、前記低反射膜が形成されていない状態の前記透明基板の波長域380~850nmにおける平均透過率に対する、前記低反射膜付き透明基板の該波長域における平均透過率の増分、として定義される透過率ゲインが2.5%以上である、
塗工液。 - 前記加水分解性シリコン化合物の加水分解触媒として、酸解離定数pKaが2.5以下の酸をさらに含む、
請求項16に記載の塗工液。 - 前記加水分解性シリコン化合物が、テトラアルコキシシランである、
請求項16又は17に記載の塗工液。 - 前記アルコキシ基の炭素数が1~8である、
請求項16~18のいずれか1項に記載の塗工液。 - 前記アルコキシ基が、i-プロポキシ基、n-ブトキシ基及びsec-ブトキシ基からなる群から選択されるいずれか1つである、
請求項19に記載の塗工液。 - 前記アルミニウムキレート錯体に含まれる多座配位子の全てが、βケトエステル構造を有する、
請求項16~20のいずれか1項に記載の塗工液。 - 前記βケトエステル構造において、
エステルを構成するカルボン酸の炭素数が4~6個であり、
エステルを構成するアルコールの炭素数が1~3個である、
請求項16~21のいずれか1項に記載の塗工液。 - 前記βケトエステル構造において、
エステルを構成するカルボン酸の炭素数が4個であり、
エステルを構成するアルコールの炭素数が2個である、
請求項22に記載の塗工液。 - 請求項1~14のいずれか1項に記載の低反射膜付き透明基板の製造方法であって、
前記製造方法は、
前記低反射膜を形成するための塗工液を前記透明基板に塗布する塗布工程と、
前記塗工液が塗布された前記透明基板を加熱する加熱工程と、
を含み、
前記塗工液は、請求項16~23のいずれか1項に記載の塗工液であり、
前記加熱工程において、前記透明基板の表面が経験する最高温度が350℃以下であり、前記透明基板の表面が130℃以上の温度にある時間が5分以下である、
低反射膜付き透明基板の製造方法。 - 前記製造方法によって製造された前記低反射膜付き透明基板を水に50時間浸漬した後に、前記低反射膜が形成されている面に対して乾布摩擦を実施する、水浸漬後の乾布摩擦耐久性試験について、
前記低反射膜が形成されている側の面の、前記試験の前後の波長域360~740nmにおける平均反射率の差が1%以下である、
請求項24に記載の低反射膜付き透明基板の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES18791143T ES2917523T3 (es) | 2017-04-27 | 2018-04-19 | Sustrato transparente revestido con una película de baja reflexión, dispositivo de conversión fotoeléctrica, líquido de revestimiento para formar una película de baja reflexión para un sustrato transparente revestido con una película de baja reflexión, y método de producción de un sustrato transparente revestido con una película de baja reflexión |
PL18791143.3T PL3617165T3 (pl) | 2017-04-27 | 2018-04-19 | Powlekane warstewką niskorefleksyjną przezroczyste podłoże, urządzenie do konwersji fotoelektrycznej, ciecz powlekająca do tworzenia warstewki niskorefleksyjnej na powlekanym warstewką niskorefleksyjną przezroczystym podłożu oraz sposób wytwarzania powlekanego warstewką niskorefleksyjną przezroczystego podłoża |
EP18791143.3A EP3617165B1 (en) | 2017-04-27 | 2018-04-19 | Low-reflection-film-coated transparent substrate, photoelectric conversion device, coating liquid for forming low-reflection film for low-reflection-film-coated transparent substrate, and production method for low-reflection-film-coated transparent substrate |
BR112019021667-7A BR112019021667B1 (pt) | 2017-04-27 | 2018-04-19 | Substrato transparente revestido com película de baixa reflexão, líquido de revestimento para formar a película de baixa reflexão do referido substrato, e método de produção do referido substrato |
CN201880026906.7A CN110546117B (zh) | 2017-04-27 | 2018-04-19 | 带低反射膜的透明基板、光电转换装置、用于形成带低反射膜的透明基板的低反射膜的涂覆液和带低反射膜的透明基板的制造方法 |
US16/608,602 US11661519B2 (en) | 2017-04-27 | 2018-04-19 | Low-reflection film-coated transparent substrate, photoelectric conversion device, coating liquid for forming low-reflection film of low-reflection film-coated transparent substrate, and method for producing low-reflection film-coated transparent substrate |
JP2019514444A JP7083342B2 (ja) | 2017-04-27 | 2018-04-19 | 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-088245 | 2017-04-27 | ||
JP2017088245 | 2017-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198936A1 true WO2018198936A1 (ja) | 2018-11-01 |
Family
ID=63920456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016161 WO2018198936A1 (ja) | 2017-04-27 | 2018-04-19 | 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11661519B2 (ja) |
EP (1) | EP3617165B1 (ja) |
JP (1) | JP7083342B2 (ja) |
CN (1) | CN110546117B (ja) |
AR (1) | AR111733A1 (ja) |
CL (1) | CL2019003040A1 (ja) |
ES (1) | ES2917523T3 (ja) |
PL (1) | PL3617165T3 (ja) |
WO (1) | WO2018198936A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021106869A1 (ja) * | 2019-11-25 | 2021-06-03 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280786A (ja) * | 2008-04-21 | 2009-12-03 | Dainippon Toryo Co Ltd | 透明膜形成用組成物及び積層透明膜 |
JP2011251890A (ja) * | 2010-05-07 | 2011-12-15 | Canon Inc | 酸化アルミニウム前駆体ゾル、光学用部材および光学用部材の製造方法 |
JP2013537873A (ja) | 2010-09-01 | 2013-10-07 | エージーシー グラス ユーロップ | 反射防止層を被覆されたガラス基板 |
JP2013228643A (ja) * | 2012-04-27 | 2013-11-07 | Central Glass Co Ltd | 低反射膜の形成方法およびその低反射膜付き部材 |
JP2014015543A (ja) | 2012-07-09 | 2014-01-30 | Nissan Chem Ind Ltd | 低屈折率コーティング組成物 |
JP2014032248A (ja) | 2012-08-01 | 2014-02-20 | Nippon Sheet Glass Co Ltd | 光電変換装置用カバーガラス |
WO2016051750A1 (ja) * | 2014-09-30 | 2016-04-07 | 日本板硝子株式会社 | 低反射コーティング、ガラス板、ガラス基板、及び光電変換装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051665A (en) * | 1998-05-20 | 2000-04-18 | Jsr Corporation | Coating composition |
US6620493B2 (en) * | 2000-03-07 | 2003-09-16 | Fukuvi Chemcial Industry Co Ltd | Reflection-reducing film |
US20070285776A1 (en) * | 2004-08-12 | 2007-12-13 | Fujifilm Corporation | Anti-Reflection Film |
US20070042173A1 (en) * | 2005-08-22 | 2007-02-22 | Fuji Photo Film Co., Ltd. | Antireflection film, manufacturing method thereof, and polarizing plate using the same, and image display device |
US20080223430A1 (en) * | 2007-03-14 | 2008-09-18 | Guardian Industries Corp. | Buffer layer for front electrode structure in photovoltaic device or the like |
JP6186301B2 (ja) | 2014-03-31 | 2017-08-23 | 富士フイルム株式会社 | 反射防止物品、及び画像表示装置、並びに反射防止物品の製造方法 |
CN108780163B (zh) * | 2016-03-18 | 2020-01-24 | 富士胶片株式会社 | 层叠体、层叠体的制造方法及防反射膜的制造方法 |
-
2018
- 2018-04-19 EP EP18791143.3A patent/EP3617165B1/en active Active
- 2018-04-19 CN CN201880026906.7A patent/CN110546117B/zh active Active
- 2018-04-19 US US16/608,602 patent/US11661519B2/en active Active
- 2018-04-19 JP JP2019514444A patent/JP7083342B2/ja active Active
- 2018-04-19 ES ES18791143T patent/ES2917523T3/es active Active
- 2018-04-19 WO PCT/JP2018/016161 patent/WO2018198936A1/ja unknown
- 2018-04-19 PL PL18791143.3T patent/PL3617165T3/pl unknown
- 2018-04-26 AR ARP180101078A patent/AR111733A1/es active IP Right Grant
-
2019
- 2019-10-23 CL CL2019003040A patent/CL2019003040A1/es unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280786A (ja) * | 2008-04-21 | 2009-12-03 | Dainippon Toryo Co Ltd | 透明膜形成用組成物及び積層透明膜 |
JP2011251890A (ja) * | 2010-05-07 | 2011-12-15 | Canon Inc | 酸化アルミニウム前駆体ゾル、光学用部材および光学用部材の製造方法 |
JP2013537873A (ja) | 2010-09-01 | 2013-10-07 | エージーシー グラス ユーロップ | 反射防止層を被覆されたガラス基板 |
JP2013228643A (ja) * | 2012-04-27 | 2013-11-07 | Central Glass Co Ltd | 低反射膜の形成方法およびその低反射膜付き部材 |
JP2014015543A (ja) | 2012-07-09 | 2014-01-30 | Nissan Chem Ind Ltd | 低屈折率コーティング組成物 |
JP2014032248A (ja) | 2012-08-01 | 2014-02-20 | Nippon Sheet Glass Co Ltd | 光電変換装置用カバーガラス |
WO2016051750A1 (ja) * | 2014-09-30 | 2016-04-07 | 日本板硝子株式会社 | 低反射コーティング、ガラス板、ガラス基板、及び光電変換装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3617165A4 |
Also Published As
Publication number | Publication date |
---|---|
CN110546117B (zh) | 2022-04-29 |
JPWO2018198936A1 (ja) | 2020-02-27 |
US20210115263A1 (en) | 2021-04-22 |
US11661519B2 (en) | 2023-05-30 |
JP7083342B2 (ja) | 2022-06-10 |
EP3617165B1 (en) | 2022-05-18 |
BR112019021667A2 (pt) | 2020-05-12 |
CN110546117A (zh) | 2019-12-06 |
AR111733A1 (es) | 2019-08-14 |
CL2019003040A1 (es) | 2020-07-10 |
EP3617165A4 (en) | 2021-02-17 |
EP3617165A1 (en) | 2020-03-04 |
PL3617165T3 (pl) | 2022-08-22 |
ES2917523T3 (es) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100429009C (zh) | 一种可在多种基材表面形成疏水透明薄膜的方法 | |
US11442200B2 (en) | Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate | |
TWI701456B (zh) | 低反射塗層、玻璃板、玻璃基板、及光電轉換裝置 | |
US10329430B2 (en) | Low-reflection coated glass sheet, method for producing low-reflection coated substrate, and coating liquid for forming low-reflection coating of low-reflection coated substrate | |
EP3225600B1 (en) | Glass plate with low-reflection coating | |
JP6560210B2 (ja) | 低反射コーティング、低反射コーティング付き基板および光電変換装置 | |
JP7083342B2 (ja) | 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法 | |
JP6487933B2 (ja) | 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、光電変換装置、及び低反射コーティングを製造する方法 | |
JP7213177B2 (ja) | 被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法 | |
WO2018198935A1 (ja) | 低反射コーティング付きガラス物品 | |
BR112019001437B1 (pt) | Chapa de vidro revestida de baixa reflexão, método para produção de substrato revestido de baixa reflexão e líquido de revestimento para formar um revestimento de baixa reflexão de substrato revestido de baixa reflexão |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791143 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019514444 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019021667 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018791143 Country of ref document: EP Effective date: 20191127 |
|
ENP | Entry into the national phase |
Ref document number: 112019021667 Country of ref document: BR Kind code of ref document: A2 Effective date: 20191015 |