WO2018079533A1 - 熱伝導性ペーストおよび電子装置 - Google Patents
熱伝導性ペーストおよび電子装置 Download PDFInfo
- Publication number
- WO2018079533A1 WO2018079533A1 PCT/JP2017/038314 JP2017038314W WO2018079533A1 WO 2018079533 A1 WO2018079533 A1 WO 2018079533A1 JP 2017038314 W JP2017038314 W JP 2017038314W WO 2018079533 A1 WO2018079533 A1 WO 2018079533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive paste
- thermally conductive
- meth
- heat conductive
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/10—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
- C09J163/04—Epoxynovolacs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
- C08G59/063—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4028—Isocyanates; Thioisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
- C08L61/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/52—Mounting semiconductor bodies in containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0806—Silver
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0812—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/085—Copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00012—Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a heat conductive paste and an electronic device.
- thermal conductive paste described in the above literature has room for improvement in terms of thermal conductivity and metal adhesion.
- thermosetting resin comprising a thermosetting resin, a curing agent, an acrylic compound, and a thermally conductive filler
- At least one of the thermosetting resin and the curing agent includes a resin having a biphenyl skeleton
- a thermally conductive paste is provided in which the acrylic compound contains a (meth) acrylic monomer.
- an electronic device provided with a cured product of the above thermal conductive paste.
- thermo conductive paste capable of improving thermal conductivity and metal adhesion and an electronic device using the same are provided.
- the heat conductive paste of this embodiment can contain a thermosetting resin, a curing agent, an acrylic compound, and a heat conductive filler.
- a thermosetting resin and the curing agent can include a resin having a biphenyl skeleton
- the acrylic compound can include a (meth) acrylic monomer.
- the heat conductive paste of the present embodiment can be used for an adhesive layer that joins a base material such as a printed circuit board and an electronic component such as a semiconductor element. That is, the resin adhesive layer made of a cured product of the heat conductive paste of the present embodiment can be used as a die attach material.
- the heat dissipation of the electronic component is excellent, and the die attach that is excellent in the metal adhesion (metal adhesion after moisture absorption) between the electronic component and the base material The material can be realized.
- the thermal conductive paste can improve thermal conductivity and metal adhesion by including a resin having a biphenyl skeleton and a (meth) acrylic monomer.
- the improvement in rigidity due to the rigid structure derived from the biphenyl skeleton and the increase in adhesion of the (meth) acrylic monomer contribute to a decrease in thermal conductivity after curing of the thermal conductive paste. It is considered that the molecular motion can be sufficiently suppressed and the thermal conductivity can be improved. That is, the heat conductive paste of this embodiment can efficiently improve the heat conductivity by appropriately selecting the resin characteristics while maintaining the content of the heat conductive filler.
- the heat conductive paste is used as an electronic component, a base material, and an adhesive layer due to an increase in adhesion due to the (meth) acrylic monomer, these die shear strengths can be improved.
- the heat conductivity can be kept high. That is, high thermal conductivity can be realized even in a thermally conductive paste having a low content of thermally conductive filler.
- the thermal conductivity can be 5 W / mK or more, more preferably 10 W / mK or more.
- thermosetting resin As the thermosetting resin contained in the heat conductive paste, a general thermosetting resin that forms a three-dimensional network structure by heating can be used.
- the thermosetting resin is not particularly limited, and is selected from, for example, cyanate resin, epoxy resin, resin having two or more radical polymerizable carbon-carbon double bonds in one molecule, and maleimide resin. 1 type, or 2 or more types can be included. Among these, it is particularly preferable to include an epoxy resin from the viewpoint of improving the adhesiveness of the heat conductive paste.
- the epoxy resin used as the thermosetting resin monomers, oligomers and polymers generally having two or more glycidyl groups in one molecule can be used, and the molecular weight and molecular structure are not particularly limited.
- the epoxy resin in the present embodiment include a biphenyl type epoxy resin; a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a tetramethylbisphenol F type epoxy resin; a stilbene type epoxy resin; Resin, novolak type epoxy resin such as cresol novolac type epoxy resin; polyfunctional epoxy resin such as triphenolmethane type epoxy resin and alkyl-modified triphenolmethane type epoxy resin; phenol aralkyl type epoxy resin having phenylene skeleton, biphenylene skeleton Aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins; dihydroxynaphthalene-type epoxy resins and dihydroxynaphthalene dimers Naphthol type
- epoxy resin examples include bisphenol compounds such as bisphenol A, bisphenol F, and biphenol, or derivatives thereof among compounds containing two or more glycidyl groups in one molecule, hydrogenated bisphenol A, hydrogenated bisphenol F, Diols having an alicyclic structure such as hydrogenated biphenol, cyclohexanediol, cyclohexanedimethanol, cyclohexanediethanol or derivatives thereof, aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, decanediol, or derivatives thereof, etc.
- bisphenol compounds such as bisphenol A, bisphenol F, and biphenol, or derivatives thereof among compounds containing two or more glycidyl groups in one molecule
- hydrogenated bisphenol A hydrogenated bisphenol F
- Diols having an alicyclic structure such as hydrogenated biphenol, cyclohexane
- the epoxy resin as a thermosetting resin can contain 1 type, or 2 or more types selected from what was illustrated above. Among these, from the viewpoint of improving coating workability and adhesiveness, it is more preferable to include a bisphenol type epoxy resin, and it is particularly preferable to include a bisphenol F type epoxy resin. Moreover, in this embodiment, it is more preferable to contain the liquid epoxy resin which is liquid at room temperature (25 degreeC) from a viewpoint of improving coating workability
- the cyanate resin used as the thermosetting resin is not particularly limited.
- the prepolymer is obtained by polymerizing the polyfunctional cyanate resin monomer using, for example, an acid such as mineral acid or Lewis acid, a base such as sodium alcoholate or tertiary amine, or a salt such as sodium carbonate as a catalyst. be able to.
- an acid such as mineral acid or Lewis acid
- a base such as sodium alcoholate or tertiary amine
- a salt such as sodium carbonate as a catalyst.
- thermosetting resin examples include, for example, a radical polymerizable acrylic resin having two or more (meth) acryloyl groups in the molecule.
- the acrylic resin may include a polyether, polyester, polycarbonate, or poly (meth) acrylate having a molecular weight of 500 to 10,000 and having a (meth) acryl group.
- the thermal conductive paste contains a polymerization initiator such as a thermal radical polymerization initiator. be able to.
- the maleimide resin used as the thermosetting resin is not particularly limited.
- One or more selected from bismaleimide resins such as 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane may be included.
- the thermosetting resin according to the present embodiment can include an epoxy resin (biphenyl type epoxy resin) having a biphenyl skeleton as a resin having a biphenyl skeleton.
- the epoxy resin having a biphenyl skeleton is not particularly limited as long as it has a biphenyl skeleton in its molecular structure and has two or more epoxy groups.
- epoxy resins include bifunctional epoxy resins obtained by treating biphenol derivatives with epichlorohydrin, such as biphenyl type epoxy resins and tetramethyl biphenyl type epoxy resins; among phenol aralkyl type epoxy resins having a biphenylene skeleton, And those having two groups (sometimes expressed as having two phenolic nuclei); among naphthol aralkyl type resins having a biphenylene skeleton, those having two epoxy groups; and the like.
- bifunctional epoxy resins obtained by treating biphenol derivatives with epichlorohydrin, such as biphenyl type epoxy resins and tetramethyl biphenyl type epoxy resins; among phenol aralkyl type epoxy resins having a biphenylene skeleton, And those having two groups (sometimes expressed as having two phenolic nuclei); among naphthol aralkyl type resins having a biphenylene skeleton, those having two epoxy groups; and the like.
- the content of the thermosetting resin in the heat conductive paste is, for example, preferably 5% by mass or more and more preferably 6% by mass or more with respect to the entire heat conductive paste. Preferably, it is 7 mass% or more. Thereby, the fluidity
- the content of the thermosetting resin in the heat conductive paste is, for example, preferably 30% by mass or less, more preferably 25% by mass or less, with respect to the entire heat conductive paste. More preferably, it is 15 mass% or less. Thereby, the reflow resistance and moisture resistance of the adhesive layer formed using the heat conductive paste can be improved.
- the heat conductive paste of this embodiment can contain an acrylic compound.
- the acrylic compound according to this embodiment preferably includes a (meth) acrylic monomer.
- the (meth) acrylic monomer represents an acrylate monomer, a methacrylate monomer, or a mixture thereof, and represents a monomer having at least one functional group (acrylic group or methacrylic group).
- the (meth) acrylic monomer may be a monomer having two or more functional groups. Thereby, metal adhesiveness can be improved.
- the (meth) acrylic monomer according to this embodiment is different from the acrylic polymer obtained by polymerizing the monomer, and is a monomer having at least one ethylenically unsaturated double bond.
- the molecular weight of the (meth) acrylic monomer is not particularly limited.
- the lower limit may be 150 or more, preferably 160 or more, more preferably 180 or more, while the upper limit may be 2000 or less. , Preferably it is 1000 or less, More preferably, it is 600 or less.
- bifunctional (meth) acrylic monomer examples include glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, zinc di (meth) acrylate, and ethylene glycol di (meth).
- Acrylate propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,3- Examples include butanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, and tetramethylene glycol di (meth) acrylate. These may be used alone or in combination of two or more.
- This embodiment (meth) acrylic monomer can contain another acrylic compound other than a (meth) acrylic monomer.
- acrylic compounds include monomers such as monofunctional acrylates, polyfunctional acrylates, monofunctional methacrylates, polyfunctional methacrylates, urethane acrylates, urethane methacrylates, epoxy acrylates, epoxy methacrylates, polyester acrylates, or urea acrylates, oligomers, and the like. A mixture of these may also be used. These may be used alone or in combination of two or more.
- acrylic compounds examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( (Meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,2-cyclohexanediol mono (meth) acrylate, 1,3-cyclohexanediol mono (meth) acrylate, 1,4-cyclohexanediol mono (meth) acrylate, 1 , 2-cyclohexanedimethanol mono (meth) acrylate, 1,3-cyclohexanedimethanol mono (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 1,2-cyclohexanedie Nord mono (meth) acrylate, 1,3-cyclohexanediethanol mono (meth) acrylate,
- Examples thereof include (meth) acrylate having a carboxy group.
- dicarboxylic acids that can be used here include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and tetrahydrophthalic acid. , Hexahydrophthalic acid and derivatives thereof.
- acrylic compounds examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, and isodecyl (meth) acrylate.
- the lower limit of the content of the (meth) acrylic monomer is, for example, 1% by mass or more, preferably 3% by mass or more, and more preferably 5% by mass with respect to the entire thermally conductive paste. % Or more. Thereby, discharge stability and metal adhesiveness can be improved. Also, the viscosity can be reduced.
- the upper limit of the content of the (meth) acrylic monomer is, for example, 15% by mass or less, preferably 12% by mass or less, and more preferably 10% by mass or less with respect to the entire heat conductive paste. Thereby, the balance of the various characteristics of a heat conductive paste can be aimed at.
- the heat conductive paste of this embodiment can contain a heat conductive filler.
- a heat conductive filler for example, a metal, an oxide, or nitride can be included.
- the metal filler include metal powders such as silver powder, gold powder, and copper powder.
- the oxide filler include silicates such as talc, fired clay, unfired clay, mica, and glass; oxide particles such as titanium oxide, alumina, magnesia, boehmite, silica, and fused silica; and aluminum hydroxide. , Hydroxide particles such as magnesium hydroxide and calcium hydroxide.
- nitride filler examples include nitride particles such as aluminum nitride, boron nitride, silicon nitride, and carbon nitride.
- sulfate or sulfite such as barium sulfate, calcium sulfate, calcium sulfite; zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, etc.
- Other inorganic fillers such as borates; titanates such as strontium titanate and barium titanate may also be included. These may be used alone or in combination of two or more.
- the thermally conductive filler of this embodiment preferably contains one or more selected from the group consisting of silver, copper, and alumina from the viewpoint of conductivity. Thereby, long-term workability can be improved.
- the shape of the thermally conductive filler of this embodiment includes a flake shape, a spherical shape, and the like.
- the spherical shape is preferable from the viewpoint of the fluidity of the heat conductive paste.
- the lower limit of the average particle diameter D 50 of the thermally conductive filler may be, for example, 0.1 ⁇ m or more, preferably 0.3 ⁇ m or more, and more preferably 0.5 ⁇ m or more. Thereby, the heat conductivity of a heat conductive paste can be improved.
- the upper limit of the average particle diameter D 50 of the thermally conductive filler may be, for example, 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less. Thereby, the storage stability of a heat conductive paste can be improved.
- the lower limit value of the average particle diameter D 95 of the heat conductive filler may be, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
- the heat conductivity of a heat conductive paste can be improved.
- the upper limit of the average particle diameter D 95 of the heat conductive filler may be, for example, 15 ⁇ m or less, preferably 13 ⁇ m or less, and more preferably 10 ⁇ m or less. Thereby, the storage stability of a heat conductive paste can be improved.
- the average particle diameter of a heat conductive filler can be measured, for example by the laser diffraction scattering method or the dynamic light scattering method.
- the content of the thermally conductive filler in the thermally conductive paste is, for example, preferably 50% by mass or more and more preferably 60% by mass or more with respect to the entire thermally conductive paste. preferable. Thereby, about the contact bonding layer formed using a heat conductive paste, low thermal expansion property, moisture resistance reliability, and reflow resistance can be improved more effectively.
- the content of the thermally conductive filler in the thermally conductive paste is, for example, 88% by mass or less, preferably 83% by mass or less, and more preferably 80% by mass with respect to the entire thermally conductive paste. % Or less. Thereby, the fluidity
- the thermally conductive paste can include a curing agent, for example.
- a curing agent for example.
- curing agent can contain the 1 type (s) or 2 or more types selected from an aliphatic amine, an aromatic amine, a dicyandiamide, a dihydrazide compound, an acid anhydride, and a phenol compound, for example.
- inclusion of at least one of dicyandiamide and a phenol compound is particularly preferable from the viewpoint of improving production stability.
- dihydrazide compound used as the curing agent examples include carboxylic acid dihydrazides such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and p-oxybenzoic acid dihydrazide.
- acid anhydrides used as curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, a reaction product of maleic anhydride and polybutadiene, anhydrous Examples thereof include a copolymer of maleic acid and styrene.
- a phenol compound used as a curing agent is a compound having two or more phenolic hydroxyl groups in one molecule.
- the number of phenolic hydroxyl groups in one molecule is more preferably 2 to 5, and the number of phenolic hydroxyl groups in one molecule is particularly preferably 2 or 3.
- phenol compound examples include bisphenol F, bisphenol A, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol S, dihydroxy diphenyl ether, dihydroxy benzophenone, tetramethyl biphenol, ethylidene bisphenol, and methyl ethylidene bis (methyl phenol).
- Bisphenols such as cyclohexylidene bisphenol and biphenol and their derivatives, trifunctional phenols such as tri (hydroxyphenyl) methane and tri (hydroxyphenyl) ethane and their derivatives, and phenols such as phenol novolac and cresol novolac A compound obtained by reacting formaldehyde, mainly dinuclear or trinuclear. And it may include one or more selected from the derivatives thereof. Among these, it is more preferable to include bisphenols, and it is particularly preferable to include bisphenol F.
- curing agent which concerns on this embodiment can contain the phenol resin (phenol compound) which has a biphenyl skeleton as resin which has a biphenyl skeleton.
- the phenol resin having a biphenyl skeleton is not particularly limited as long as it has a biphenyl skeleton in its molecular structure and two or more phenol groups.
- the content of the curing agent in the heat conductive paste is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more with respect to the entire heat conductive paste. .
- hardenability of a heat conductive paste can be improved more effectively.
- the content of the curing agent in the heat conductive paste is preferably 10% by mass or less, and more preferably 7% by mass or less with respect to the entire heat conductive paste. Thereby, the low thermal expansion property, reflow resistance, and moisture resistance of the adhesive layer formed using the heat conductive paste can be improved.
- the lower limit of the content of the resin having a biphenyl skeleton is, for example, 1% by mass or more, preferably 1.5% by mass or more, more preferably, with respect to the entire heat conductive paste. 2% by mass or more. Thereby, thermal conductivity can be improved.
- the upper limit of the content of the resin having a biphenyl skeleton is, for example, 15% by mass or less, preferably 10% by mass or less, and more preferably 7% by mass or less, with respect to the entire thermally conductive paste. Thereby, the balance of various characteristics of heat conductive paste, such as heat conductivity and a viscosity, can be aimed at.
- the lower limit value of the content of the resin having a biphenyl skeleton and the (meth) acrylic monomer is, for example, 3% by mass or more, preferably 5% by mass or more, with respect to the entire thermally conductive paste. More preferably, it is 6 mass% or more. Thereby, heat conductivity and metal adhesiveness can be improved.
- the upper limit of the content of the resin having a biphenyl skeleton and the (meth) acrylic monomer is, for example, 20% by mass or less, preferably 18% by mass or less, more preferably 15% with respect to the entire heat conductive paste. It is below mass%. Thereby, balance of various characteristics of heat conductive paste, such as thermal conductivity and hardening characteristics, can be aimed at.
- the lower limit of the content of the (meth) acrylic monomer is, for example, 30% by mass or more with respect to 100% by mass of the total amount of the resin having a biphenyl skeleton and the (meth) acrylic monomer, preferably It is 50 mass% or more, More preferably, it is 60 mass% or more. Thereby, heat conductivity and metal adhesiveness can be improved.
- the upper limit of the content of the (meth) acrylic monomer is, for example, 95% by mass or less, preferably 90% by mass or less, with respect to 100% by mass of the total amount of the resin having a biphenyl skeleton and the (meth) acrylic monomer. Yes, more preferably 88% by mass or less. Thereby, balance of various characteristics of heat conductive paste, such as thermal conductivity and hardening characteristics, can be aimed at.
- the lower limit value of the content of the phenol resin having a biphenyl skeleton and the (meth) acrylic monomer is, for example, 3% by mass or more, preferably 5% by mass or more, with respect to the entire heat conductive paste. Yes, more preferably 6% by mass or more. Thereby, heat conductivity and metal adhesiveness can be improved.
- the upper limit of the content of the phenol resin having a biphenyl skeleton and the (meth) acrylic monomer is, for example, 20% by mass or less, preferably 18% by mass or less, more preferably, with respect to the entire heat conductive paste. It is 15 mass% or less. Thereby, balance of various characteristics of heat conductive paste, such as thermal conductivity and hardening characteristics, can be aimed at.
- the thermally conductive paste can include, for example, a curing accelerator.
- a curing accelerator that promotes a crosslinking reaction between an epoxy resin and a curing agent can be used.
- Such curing accelerators include, for example, imidazoles, triphenylphosphine or tetraphenylphosphine salts, amine compounds such as diazabicycloundecene and salts thereof, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t -One or more selected from the group consisting of organic peroxides such as -butylperoxy) hexyne-3.
- an imidazole compound having a melting point of 180 ° C. or higher.
- examples of curing accelerators include organic metal complexes such as zinc octylate, tin octylate, cobalt naphthenate, zinc naphthenate, and acetylacetone iron, aluminum chloride, tin chloride, chloride. What contains 1 type, or 2 or more types selected from metal salts, such as zinc, amines, such as a triethylamine and a dimethyl benzylamine, can be used.
- the content of the curing accelerator in the thermally conductive paste is preferably 0.05% by mass or more, more preferably 0.1% by mass or more with respect to the entire thermally conductive paste. preferable. Thereby, the sclerosis
- the content of the curing accelerator in the thermally conductive paste is preferably 1% by mass or less, and more preferably 0.8% by mass or less, with respect to the entire thermally conductive paste. Thereby, the fluidity
- the thermally conductive paste can include, for example, a reactive diluent.
- the reactive diluent contains, for example, one or more selected from monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether, cresyl glycidyl ether, t-butylphenyl glycidyl ether, and aliphatic glycidyl ethers. Can do. As a result, it is possible to flatten the adhesive layer while improving the coating workability more effectively.
- the content of the reactive diluent in the heat conductive paste is preferably 3% by mass or more, and more preferably 4% by mass or more with respect to the whole heat conductive paste.
- operativity of a heat conductive paste and the flatness of an contact bonding layer can be improved more effectively.
- the content of the reactive diluent in the heat conductive paste is preferably 20% by mass or less and more preferably 15% by mass or less with respect to the whole heat conductive paste.
- work can be suppressed and the improvement of coating workability
- the curability of the heat conductive paste can be improved.
- the heat conductive paste of this embodiment does not need to contain a solvent.
- the solvent here means a non-reactive solvent that does not have a reactive group involved in the crosslinking reaction of the thermosetting resin contained in the thermally conductive paste.
- “Not included” means substantially not included, and indicates a case where the content of the non-reactive solvent with respect to the entire thermally conductive paste is 0.1% by mass or less.
- the heat conductive paste of this embodiment may contain a non-reactive solvent.
- the non-reactive solvent include hydrocarbon solvents containing alkanes and cycloalkanes exemplified by butylpropylene triglycol, pentane, hexane, heptane, cyclohexane, and decahydronaphthalene, toluene, xylene, benzene, mesitylene, etc.
- Aromatic solvents ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene Glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene Glycol monopropyl ether, propylene glycol monobutyl ether, methyl methoxybutanol, ⁇ -terpineol, ⁇ -terpineol, hexylene glycol, benzyl alcohol, 2-phenylethyl alcohol, isopalmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, Alcohols such as propylene glycol or glycerin; acetone, methyl ethy
- Hydrocarbons Nitriles such as acetonitrile or propionitrile; Amides such as acetamide or N, N-dimethylformamide; Low molecular weight volatile silicone oil or volatile organic modified silicone oil. These may be used alone or in combination of two or more.
- the heat conductive paste may contain other additives as necessary.
- Other additives include silane coupling agents such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, sulfide silane, titanate coupling agent, aluminum coupling agent, aluminum / zirconium coupling agent, etc.
- Illustrative coupling agents colorants such as carbon black, solid low stress components such as silicone oil and silicone rubber, inorganic ion exchangers such as hydrotalcite, antifoaming agents, surfactants, various polymerization inhibitors, And antioxidants.
- the thermally conductive paste can contain one or more of these additives.
- the heat conductive paste of this embodiment may be in a paste form, for example.
- the method for preparing the heat conductive paste is not particularly limited. For example, after premixing the above-described components, kneading is performed using three rolls, and vacuum defoaming is performed to obtain a paste form. The resin composition can be obtained. At this time, for example, by appropriately adjusting the preparation conditions such as premixing under reduced pressure, it is possible to contribute to improvement of long-term workability in the heat conductive paste.
- the lower limit of the viscosity of the heat conductive paste of the present embodiment may be, for example, 10 Pa ⁇ s or more, preferably 20 Pa ⁇ s or more, and more preferably 30 Pa ⁇ s or more. Thereby, workability
- the upper limit of the viscosity of the heat conductive paste may be, for example, 10 3 Pa ⁇ s or less, preferably 5 ⁇ 10 2 Pa ⁇ s or less, more preferably 2 ⁇ 10 2 Pa ⁇ s or less. It is. Thereby, applicability
- the viscosity can be measured using a Brookfield viscometer at room temperature of 25 ° C.
- the ratio of the wet spread area calculated by the following measurement method can be 90% or more.
- the heat conductive paste is applied to the surface of the lead frame so as to cross diagonally. Subsequently, it is left still at room temperature 25 degreeC for 8 hours. Next, a 2 mm ⁇ 2 mm silicon bare chip is mounted on the lead frame via the thermal conductive paste, and then observed with an X-ray apparatus, and the wet spreading area of the thermal conductive paste with respect to the surface of the silicon bare chip Calculate the percentage of.
- FIG. 1 is a cross-sectional view showing an example of an electronic device (semiconductor device 100) according to this embodiment.
- the electronic device (semiconductor device 100) of this embodiment includes the cured product of the heat conductive paste of this embodiment.
- Such a cured product can be used, for example, as an adhesive layer 10 that bonds a base material (substrate 30) and an electronic component (semiconductor element 20) as shown in FIG.
- the semiconductor device 100 of the present embodiment can include, for example, a substrate 30 and a semiconductor element 20 mounted on the substrate 30 via the adhesive layer 10.
- the semiconductor element 20 and the substrate 30 are electrically connected by a bonding wire 40, for example.
- the semiconductor element 20 and the bonding wire 40 are sealed with a mold resin 50 formed, for example, by curing an epoxy resin composition or the like.
- the substrate 30 is, for example, a lead frame or an organic substrate.
- FIG. 1 illustrates the case where the substrate 30 is an organic substrate. In this case, for example, a plurality of solder balls 60 are formed on the back surface of the substrate 30 opposite to the surface on which the semiconductor element 20 is mounted.
- the adhesive layer 10 is formed by curing the heat conductive paste exemplified above. For this reason, it is possible to manufacture the semiconductor device 100 stably.
- a heat conductive paste can be applied to the manufacture of a MAP (Mold Array Package) molded product.
- a semiconductor element is mounted on each adhesive layer after forming a plurality of adhesive layers on the substrate by applying a thermal conductive paste to a plurality of regions on the substrate using a jet dispenser method. It becomes. Thereby, the improvement of the further production efficiency can be aimed at.
- the MAP molded product include MAP-BGA (Ball Grid Array) and MAP-QFN (Quad Flat Non-Leaded Package).
- Thermosetting resin Thermosetting resin 1: Bisphenol F type epoxy resin (Nippon Kayaku SB-403S)
- Thermosetting resin 2 Epoxy resin having a biphenyl skeleton (solid at room temperature of 25 ° C., manufactured by Mitsubishi Chemical, YX-4000K, weight average molecular weight Mw: 354) (Curing agent)
- Hardener 1 Phenolic resin having biphenyl skeleton (solid at room temperature 25 ° C., manufactured by Honshu Chemical Industry, biphenol)
- Curing agent 2 Phenolic resin having bisphenol F skeleton (solid at room temperature 25 ° C., manufactured by DIC, DIC-BPF)
- Thermally conductive filler 2 Silver powder (manufactured by DOWA Electronics, AG2-1C, spherical) D 50 and D 95 of
- the obtained heat conductive paste was applied to the surface of the copper lead frame so as to cross diagonally. Subsequently, it left still at room temperature 25 degreeC for 8 hours. Next, a silicon bare chip (thickness 0.525 mm) having a surface of 2 mm ⁇ 2 mm was mounted on the lead frame through the thermal conductive paste with a load of 50 g and 50 ms, and then observed with an X-ray apparatus. By binarizing the image obtained by X-ray observation, the ratio (%) of the wet spreading area of the thermal conductive paste to the surface area of 100% of the silicon bare chip was calculated. The evaluation results are shown in Table 2.
- an Ag plating chip (length x width x thickness: 2 mm x 2 mm x 0.35 mm) is placed on a support Ag plating frame (made by Shinko, copper lead frame plated with Ag).
- the sample 1 was prepared by mounting and curing with an oven at a curing temperature profile of 175 ° C. for 60 minutes (temperature increase rate from 25 ° C. to 175 ° C. at 5 ° C./min).
- an Au plated chip (vertical x horizontal x thickness: 2 mm x 2 mm x 0.35 mm) is mounted on an Au plated chip (vertical x horizontal x thickness: 5 mm x 5 mm x 0.35 mm), and an oven is used.
- Sample 2 was prepared by curing at a curing temperature profile of 175 ° C. for 60 minutes (a temperature increase rate of 5 ° C./minute from 25 ° C. to 175 ° C.).
- the obtained samples 1 and 2 were subjected to moisture absorption treatment for 72 hours under the conditions of 85 ° C. and 85% humidity, and then the hot die shear strength at 260 ° C. was measured (unit: N / 1 mm 2 ).
- the evaluation results are shown in Table 1.
- thermal conductive pastes of Examples 1 to 4 were superior in thermal conductivity (thermal conductivity) and metal adhesion (die shear strength) as compared with Comparative Examples 1 and 2. It was also found that the thermal conductive pastes of Examples 1 to 4 were excellent in ejection stability, room temperature storage stability and wettability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Conductive Materials (AREA)
- Die Bonding (AREA)
Abstract
Description
熱硬化性樹脂と、硬化剤と、アクリル化合物と、熱伝導性フィラーと、を含む、熱伝導性ペーストであって、
前記熱硬化性樹脂および前記硬化剤の少なくとも一方が、ビフェニル骨格を有する樹脂を含み、
前記アクリル化合物が、(メタ)アクリルモノマーを含む、熱伝導性ペーストが提供される。
熱伝導性ペーストに含まれる熱硬化性樹脂としては、加熱により3次元的網目構造を形成する一般的な熱硬化性樹脂を用いることができる。本実施形態において、熱硬化性樹脂は、とくに限定されないが、たとえばシアネート樹脂、エポキシ樹脂、ラジカル重合性の炭素-炭素二重結合を1分子内に2つ以上有する樹脂、およびマレイミド樹脂から選択される一種または二種以上を含むことができる。これらの中でも、熱伝導性ペーストの接着性を向上させる観点からは、エポキシ樹脂を含むことがとくに好ましい。
これらの中でも、塗布作業性や接着性を向上させる観点から、ビスフェノール型エポキシ樹脂を含むことがより好ましく、ビスフェノールF型エポキシ樹脂を含むことがとくに好ましい。また、本実施形態においては、塗布作業性をより効果的に向上させる観点からは、室温(25℃)において液状である液状エポキシ樹脂を含むことがより好ましい。
ビフェニル骨格を有するエポキシ樹脂は、その分子構造内にビフェニル骨格を有し、かつ、エポキシ基を2個以上有するものであれば、その構造は特に限定するものではないが、例えば、ビフェノールまたはその誘導体をエピクロロヒドリンで処理した2官能エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂などが挙げられ、これらを単独で用いても混合して用いても差し支えない。これらの中でも、特に分子内にエポキシ基が2個のものは、耐熱性の向上が優れたものとなるため好ましい。そのようなエポキシ樹脂としては、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂などの、ビフェノール誘導体をエピクロロヒドリンで処理した2官能エポキシ樹脂;ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂のうち、エポキシ基が2個であるもの(フェノール核体数が2であると表現されることもある);ビフェニレン骨格を有するナフトールアラルキル型樹脂のうち、エポキシ基が2個であるもの;などが挙げられる。
本実施形態の熱伝導性ペーストは、アクリル化合物を含むことができる。
本実施形態に係るアクリル化合物としては、(メタ)アクリルモノマーを含むことが好ましい。本実施形態において、(メタ)アクリルモノマーとは、アクリレートモノマー、メタクリレートモノマーまたはこれらの混合物を表し、少なくとも1以上の官能基(アクリル基またはメタクリル基)を有するモノマーを表す。
他のアクリル化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,2-シクロヘキサンジオールモノ(メタ)アクリレート、1,3-シクロヘキサンジオールモノ(メタ)アクリレート、1,4-シクロヘキサンジオールモノ(メタ)アクリレート、1,2-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,2-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジエタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレートなどの水酸基を有する(メタ)アクリレートやこれら水酸基を有する(メタ)アクリレートとジカルボン酸またはその誘導体を反応させて得られるカルボキシ基を有する(メタ)アクリレートなどが挙げられる。ここで使用可能なジカルボン酸としては、例えばしゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸およびこれらの誘導体が挙げられる。
本実施形態の熱伝導性ペーストは、熱伝導性フィラーを含むことができる。
熱伝導性フィラーとしては、熱伝導性に優れたフィラーであれば特に限定されないが、例えば、金属、酸化物、または窒化物を含むことができる。
上記金属フィラーとしては、例えば、銀粉、金粉、銅粉等の金属粉が挙げられる。上記酸化物フィラーとしては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、アルミナ、マグネシア、ベーマイト、シリカ、溶融シリカ等の酸化物粒子や、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物粒子が挙げられる。上記窒化物フィラーとしては、例えば、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物粒子が挙げられる。
また、本実施形態の熱伝導性フィラーとしては、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、;チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等の他の無機充填材を含んでもよい。
これらを単独で用いても2種以上を組み合わせて用いてもよい。
また、熱伝導性フィラーの平均粒径D95の下限値は、例えば、1μm以上でもよく、好ましくは2μm以上であり、より好ましくは3μm以上である。これにより、熱伝導性ペーストの熱伝導率を向上させることができる。一方で、熱伝導性フィラーの平均粒径D95の上限値は、例えば、15μm以下でもよく、好ましくは13μm以下であり、より好ましくは10μm以下である。これにより、熱伝導性ペーストの保存安定性を向上させることができる。
なお、熱伝導性フィラーの平均粒径は、たとえばレーザー回折散乱法、または動的光散乱法等によって測定することができる。
熱伝導性ペーストは、たとえば硬化剤を含むことができる。これにより、熱伝導性ペーストの硬化性を向上させることができる。硬化剤は、たとえば脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、およびフェノール化合物から選択される一種または二種以上を含むことができる。これらの中でも、ジシアンジアミドおよびフェノール化合物のうちの少なくとも一方を含むことが、製造安定性を向上させる観点からとくに好ましい。
ビフェニル骨格を有するフェノール樹脂としては、その分子構造内にビフェニル骨格を有し、かつ、フェノール基を2個以上有するものであれば、その構造は特に限定するものではない。
熱伝導性ペーストは、たとえば硬化促進剤を含むことができる。
熱硬化性樹脂としてエポキシ樹脂を用いる場合には、硬化促進剤として、たとえばエポキシ樹脂と、硬化剤と、の架橋反応を促進させるものを用いることができる。このような硬化促進剤は、たとえばイミダゾール類、トリフェニルホスフィンまたはテトラフェニルホスフィンの塩類、ジアザビシクロウンデセンなどのアミン系化合物およびその塩類、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3など有機過酸化物からなる群から選択される一種または二種以上を含むことができる。これらの中でも、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-C11H23-イミダゾール、2-メチルイミダゾールと2,4-ジアミノ-6-ビニルトリアジンとの付加物等のイミダゾール化合物が好適に用いられる。なかでもとくに好ましいのは融点が180℃以上のイミダゾール化合物である。
熱伝導性ペーストは、たとえば反応性希釈剤を含むことができる。
反応性希釈剤は、たとえばフェニルグリシジルエーテル、クレジルグリシジルエーテル、t-ブチルフェニルグリシジルエーテルなどの1官能の芳香族グリシジルエーテル類、脂肪族グリシジルエーテル類から選択される一種または二種以上を含むことができる。これにより、塗布作業性をより効果的に向上させつつ、接着層の平坦化を図ることが可能となる。
上記非反応性溶剤としては、例えば、ブチルプロピレントリグリコール、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、およびデカヒドロナフタレン等に例示されるアルカンやシクロアルカンを含む炭化水素溶剤、トルエン、キシレン、ベンゼン、メシチレン等の芳香族溶剤、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコールもしくはグリセリン等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3,5,5-トリメチル-2-シクロヘキセン-1-オン)もしくはジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)等のケトン類;酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジルもしくはリン酸トリペンチル等のエステル類;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタンもしくは1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類;n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素類;アセトニトリルもしくはプロピオニトリル等のニトリル類;アセトアミドもしくはN,N-ジメチルホルムアミド等のアミド類;低分子量の揮発性シリコンオイル、または揮発性有機変成シリコンオイルが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
本実施形態において、熱伝導性ペーストの調製方法は、とくに限定されないが、たとえば上述した各成分を予備混合した後、3本ロールを用いて混練を行い、さらに真空脱泡することにより、ペースト状の樹脂組成物を得ることができる。この際、たとえば予備混合を減圧下にて行う等、調製条件を適切に調整することによって、熱伝導性ペーストにおける長期作業性の向上に寄与することが可能である。
本実施形態において、粘度は、室温25℃で、ブルックフィールド粘度計を用いて測定できる。
(濡れ広がり面積の測定方法)
リードフレームの表面に当該熱伝導性ペーストを対角線状に交差するように塗布する。次いで、室温25℃で8時間静置する。次いで、2mm×2mmのシリコンベアチップを前記リードフレームに当該熱伝導性ペーストを介してマウントした後、X線装置にて観察し、前記シリコンベアチップの表面に対する、当該熱伝導性ペーストの上記濡れ広がり面積の割合を算出する。
図1は、本実施形態に係る電子装置(半導体装置100)の一例を示す断面図である。
本実施形態の電子装置(半導体装置100)は、本実施形態の熱伝導性ペーストの硬化物を備えるものである。かかる硬化物は、例えば、図1に示すように、基材(基板30)と電子部品(半導体素子20)とを接着する接着層10として使用することができる。
基板30は、たとえばリードフレームまたは有機基板である。図1においては、基板30が有機基板である場合が例示されている。この場合、基板30のうち半導体素子20が搭載される表面と反対側の裏面には、たとえば複数の半田ボール60が形成される。
各実施例および各比較例のそれぞれについて、表1に示す配合に従って各成分を配合し、常圧で5分、70cmHgの減圧下で15分、予備混合した。次いで、3本ロールを用いて混練し、脱泡することにより熱伝導性ペーストを得た。なお、表1中における各成分の詳細は下記のとおりである。また、表1中の単位は、質量%である。
熱硬化性樹脂1:ビスフェノールF型エポキシ樹脂(日本化薬製、SB-403S)
熱硬化性樹脂2:ビフェニル骨格を有するエポキシ樹脂(室温25℃で固体、三菱化学製、YX-4000K、重量平均分子量Mw:354)
(硬化剤)
硬化剤1:ビフェニル骨格を有するフェノール樹脂(室温25℃で固体、本州化学工業製、ビフェノール)
硬化剤2:ビスフェノールF骨格を有するフェノール樹脂(室温25℃で固体、DIC製、DIC-BPF)
(熱伝導性フィラー)
熱伝導性フィラー1:銀粉(福田金属箔粉工業社製、AgC-2611、フレーク状)
熱伝導性フィラー2:銀粉(DOWAエレクトロニクス社製、AG2-1C、球状)
熱伝導性フィラーのD50、D95はレーザー回折散乱法により測定した。結果を表1に示す。
(アクリル化合物)
アクリル化合物1:(メタ)アクリルモノマー(1,6-ヘキサンジオールジメタクリレート、共栄化学社製、ライトエステル1.6HX)
アクリル化合物2:(メタ)アクリルモノマー(エチレングリコールジメタクリレート、共栄化学社製、ライトエステルEG)
(硬化促進剤)
硬化促進剤1:有機過酸化物(化薬アクゾ社製、パーカドックスBC)
硬化促進剤2:イミダゾール系(2-フェニル-4,5-ジヒドロキシメチルイミダゾール、四国化成工業製、2PHZ)
(溶剤)
溶剤1:ブチルプロピレントリグリコール(日本乳化剤製、BFTG)
(反応性希釈剤)
反応性希釈剤1:モノエポキシモノマー(t-ブチルフェニルグリシジルエーテル、日本化薬製、SBT-H)
ブルックフィールド粘度計(HADV-3Ultra、スピンドルCP-51(角度1.565°、半径1.2cm))を用い、25℃、0.5rpmの条件にて、作製直後の上記熱伝導性ペーストにおける粘度を測定した。粘度の単位はPa・Sである。評価結果を表1に示す。
得られた熱伝導性ペーストを用いて1cm角、厚さ1mmのディスク状の試験片を作製した。(硬化条件は175℃4時間。ただし175℃までは室温から60分間かけて昇温した。)レーザーフラッシュ法(t1/2法)にて測定した熱拡散係数(α)、DSC法により測定した比熱(Cp)、JIS-K-6911準拠で測定した密度(ρ)より熱伝導率(=α×Cp×ρ)を算出し、5W/m・K以上の場合を合格とした。熱伝導率の単位はW/m・Kである。評価結果を表1に示す。
5ccのシリンジ(武蔵社製)に、得られた熱伝導性ペーストを詰め、中栓、外栓をした後、シリンジ立てにセットし25℃の恒温漕で48h処理をした。その後、外観を目視で確認し、熱伝導性ペーストの分離の有無を確認した。表2中において、分離がない場合を○、分離がある場合を×で示した。評価結果を表2に示す。
銅製のリードフレームの表面に、得られた熱伝導性ペーストを対角線状に交差するように塗布した。次いで、室温25℃で8時間静置した。次いで、2mm×2mmの表面を有するシリコンベアチップ(厚み0.525mm)を、当該熱伝導性ペーストを介してリードフレームに、50g、50msの荷重でマウントした後、X線装置にて観察した。X線観察により得られた画像を二値化することにより、シリコンベアチップの表面積100%に対する、当該熱伝導性ペーストの濡れ広がり面積の割合(%)を算出した。評価結果を表2に示す。
5ccのシリンジ(武蔵社製)に詰めた、得られた熱伝導性ペーストをShotmaster300(武蔵社製)にセットし、吐出圧100kPa、吐出時間100msにて打点塗布を実施した(280打点)。その後、塗布形状が円形でないものの数(糸引き数)を目視で確認し、280打点に対する割合を計算し糸引き発生率(%)とした。評価結果を表1に示す。
得られた熱伝導性ペーストを用いて、Agメッキチップ(縦×横×厚み:2mmx2mmx0.35mm)を支持体Agメッキフレーム(新光製、銅のリードフレームにAgのメッキを施したもの)上にマウントし、オーブンを用いて175℃60分(25℃から175℃まで昇温速度5℃/分)の硬化温度プロファイルにて硬化してサンプル1を作成した。
得られたサンプル1、2について、85℃、湿度85%の条件の下で72時間吸湿処理した後、260℃における熱時ダイシェア強度を測定した(単位:N/1mm2)。評価結果を表1に示す。
Claims (15)
- 熱硬化性樹脂と、硬化剤と、アクリル化合物と、熱伝導性フィラーと、を含む、熱伝導性ペーストであって、
前記熱硬化性樹脂および前記硬化剤の少なくとも一方が、ビフェニル骨格を有する樹脂を含み、
前記アクリル化合物が、(メタ)アクリルモノマーを含む、熱伝導性ペースト。 - 請求項1に記載の熱伝導性ペーストであって、
前記ビフェニル骨格を有する樹脂が、ビフェニル骨格を有するフェノール樹脂を含む、熱伝導性ペースト。 - 請求項1または2に記載の熱伝導性ペーストであって、
当該熱伝導性ペーストの粘度が、10Pa・s以上103Pa・s以下である、熱伝導性ペースト。 - 請求項1から3のいずれか1項に記載の熱伝導性ペーストであって、
前記熱伝導性フィラーが、金属、酸化物、または窒化物を含む、熱伝導性ペースト。 - 請求項1から4のいずれか1項に記載の熱伝導性ペーストであって、
前記熱伝導性フィラーが、銀、銅、アルミナからなる群から選択される一種以上を含有する、熱伝導性ペースト。 - 請求項1から5のいずれか1項に記載の熱伝導性ペーストであって、
前記熱伝導性フィラーの平均粒径D50が、0.1μm以上10μm以下である、熱伝導性ペースト。 - 請求項1から6のいずれか1項に記載の熱伝導性ペーストであって、
前記熱伝導性フィラーの平均粒径D95が、1μm以上15μm以下である、熱伝導性ペースト。 - 請求項1から7のいずれか1項に記載の熱伝導性ペーストであって、
前記熱伝導性フィラーの含有量は、当該熱伝導性ペースト全体に対して、50質量%以上88質量%以下である、熱伝導性ペースト。 - 請求項1から8のいずれか1項に記載の熱伝導性ペーストであって、
下記の測定方法で算出された濡れ広がり面積の割合が90%以上である、熱伝導性ペースト。
(濡れ広がり面積の測定方法)
リードフレームの表面に当該熱伝導性ペーストを対角線状に交差するように塗布する。次いで、室温25℃で8時間静置する。次いで、2mm×2mmのシリコンベアチップを前記リードフレームに当該熱伝導性ペーストを介してマウントした後、前記シリコンベアチップの表面に対する、当該熱伝導性ペーストの上記濡れ広がり面積の割合を算出する。 - 請求項1から9のいずれか1項に記載の熱伝導性ペーストであって、
溶剤を含まない、熱伝導性ペースト。 - 請求項1から10のいずれか1項に記載の熱伝導性ペーストであって、
前記ビフェニル骨格を有する樹脂および前記(メタ)アクリルモノマーの含有量は、当該熱伝導性ペースト全体に対して、3質量%以上20質量%以下である、熱伝導性ペースト。 - 請求項1から11のいずれか1項に記載の熱伝導性ペーストであって、
前記(メタ)アクリルモノマーの含有量は、前記ビフェニル骨格を有する樹脂および前記(メタ)アクリルモノマーの合計量100質量%に対して、30質量%以上95質量%以下である、熱伝導性ペースト。 - 請求項1から12のいずれか1項に記載の熱伝導性ペーストであって、
反応性希釈剤を含む、熱伝導性ペースト。 - 請求項1から13のいずれか1項に記載の熱伝導性ペーストであって、
硬化促進剤を含む、熱伝導性ペースト。 - 請求項1から14のいずれか1項に記載の熱伝導性ペーストの硬化物を備える、電子装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197013438A KR102029853B1 (ko) | 2016-10-31 | 2017-10-24 | 열전도성 페이스트 및 전자 장치 |
JP2018526739A JP6455635B2 (ja) | 2016-10-31 | 2017-10-24 | 熱伝導性ペーストおよび電子装置 |
US16/346,040 US20190338171A1 (en) | 2016-10-31 | 2017-10-24 | Thermally conductive paste and electronic device |
CN201780067775.2A CN109890903A (zh) | 2016-10-31 | 2017-10-24 | 导热性膏和电子装置 |
SG11201903855PA SG11201903855PA (en) | 2016-10-31 | 2017-10-24 | Thermally conductive paste and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213663 | 2016-10-31 | ||
JP2016-213663 | 2016-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079533A1 true WO2018079533A1 (ja) | 2018-05-03 |
Family
ID=62024935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/038314 WO2018079533A1 (ja) | 2016-10-31 | 2017-10-24 | 熱伝導性ペーストおよび電子装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190338171A1 (ja) |
JP (1) | JP6455635B2 (ja) |
KR (1) | KR102029853B1 (ja) |
CN (1) | CN109890903A (ja) |
SG (1) | SG11201903855PA (ja) |
TW (1) | TWI782928B (ja) |
WO (1) | WO2018079533A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111171242A (zh) * | 2018-11-09 | 2020-05-19 | 台光电子材料股份有限公司 | 树脂组合物及由其制成的制品 |
WO2022097443A1 (ja) * | 2020-11-04 | 2022-05-12 | リンテック株式会社 | 接着フィルム、支持シート付き接着フィルム、および構造体 |
WO2024162423A1 (ja) * | 2023-01-31 | 2024-08-08 | 積水化学工業株式会社 | 硬化性組成物、及び熱伝導性部材 |
JP7661704B2 (ja) | 2021-01-20 | 2025-04-15 | 住友ベークライト株式会社 | 導電性ペースト、高熱伝導性材料および半導体装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7643338B2 (ja) * | 2019-10-30 | 2025-03-11 | 三菱ケミカル株式会社 | 樹脂組成物、硬化物、複合成形体、半導体デバイス |
WO2021153383A1 (ja) * | 2020-01-28 | 2021-08-05 | 住友ベークライト株式会社 | 導電性ペーストおよび半導体装置 |
WO2021153405A1 (ja) * | 2020-01-29 | 2021-08-05 | 住友ベークライト株式会社 | ペースト状樹脂組成物、高熱伝導性材料、および半導体装置 |
CN111276645A (zh) * | 2020-03-23 | 2020-06-12 | 成都科成精化科技有限公司 | 一种锂电池铝塑膜胶粘剂的填料增强体系设计方法 |
CN116348563A (zh) * | 2020-09-28 | 2023-06-27 | 株式会社力森诺科 | 电路连接用黏合剂薄膜、含无机填料组合物、以及电路连接结构体及其制造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181482A (ja) * | 1999-12-27 | 2001-07-03 | Hitachi Chem Co Ltd | 樹脂ペースト組成物及びこれを用いた半導体装置 |
JP2003183401A (ja) * | 2001-12-20 | 2003-07-03 | Showa Denko Kk | 硬化性樹脂組成物およびその硬化物 |
JP2008266647A (ja) * | 2007-04-23 | 2008-11-06 | Chang Chun Plastics Co Ltd | 難燃性樹脂組成物 |
JP2011080024A (ja) * | 2009-10-09 | 2011-04-21 | Sumitomo Bakelite Co Ltd | 樹脂組成物及び樹脂組成物を使用して作製した半導体装置 |
JP2011195673A (ja) * | 2010-03-18 | 2011-10-06 | Sekisui Chem Co Ltd | 樹脂組成物、樹脂シート、樹脂シートの製造方法及び積層構造体 |
WO2015019407A1 (ja) * | 2013-08-05 | 2015-02-12 | 日立化成株式会社 | エポキシ樹脂組成物及び電子部品装置 |
JP2015199814A (ja) * | 2014-04-08 | 2015-11-12 | 住友ベークライト株式会社 | 樹脂組成物、接着フィルム、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、ダイシングテープ兼バックグラインドテープ一体型接着シート、および、電子装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI473245B (zh) * | 2006-10-31 | 2015-02-11 | Sumitomo Bakelite Co | 半導體電子零件及使用該半導體電子零件之半導體裝置 |
WO2010090246A1 (ja) * | 2009-02-05 | 2010-08-12 | 三菱レイヨン株式会社 | ビニル重合体粉体、硬化性樹脂組成物及び硬化物 |
JP6123277B2 (ja) | 2011-12-28 | 2017-05-10 | 日立化成株式会社 | 樹脂組成物、樹脂組成物シート及び樹脂組成物シートの製造方法、金属箔付樹脂組成物シート、bステージシート、半硬化の金属箔付樹脂組成物シート、メタルベース配線板材料、メタルベース配線板、led光源部材、並びにパワー半導体装置 |
JP6712402B2 (ja) * | 2015-11-13 | 2020-06-24 | 味の素株式会社 | 被覆粒子 |
-
2017
- 2017-10-24 SG SG11201903855PA patent/SG11201903855PA/en unknown
- 2017-10-24 WO PCT/JP2017/038314 patent/WO2018079533A1/ja active Application Filing
- 2017-10-24 CN CN201780067775.2A patent/CN109890903A/zh active Pending
- 2017-10-24 KR KR1020197013438A patent/KR102029853B1/ko active Active
- 2017-10-24 JP JP2018526739A patent/JP6455635B2/ja active Active
- 2017-10-24 US US16/346,040 patent/US20190338171A1/en not_active Abandoned
- 2017-10-30 TW TW106137306A patent/TWI782928B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181482A (ja) * | 1999-12-27 | 2001-07-03 | Hitachi Chem Co Ltd | 樹脂ペースト組成物及びこれを用いた半導体装置 |
JP2003183401A (ja) * | 2001-12-20 | 2003-07-03 | Showa Denko Kk | 硬化性樹脂組成物およびその硬化物 |
JP2008266647A (ja) * | 2007-04-23 | 2008-11-06 | Chang Chun Plastics Co Ltd | 難燃性樹脂組成物 |
JP2011080024A (ja) * | 2009-10-09 | 2011-04-21 | Sumitomo Bakelite Co Ltd | 樹脂組成物及び樹脂組成物を使用して作製した半導体装置 |
JP2011195673A (ja) * | 2010-03-18 | 2011-10-06 | Sekisui Chem Co Ltd | 樹脂組成物、樹脂シート、樹脂シートの製造方法及び積層構造体 |
WO2015019407A1 (ja) * | 2013-08-05 | 2015-02-12 | 日立化成株式会社 | エポキシ樹脂組成物及び電子部品装置 |
JP2015199814A (ja) * | 2014-04-08 | 2015-11-12 | 住友ベークライト株式会社 | 樹脂組成物、接着フィルム、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、ダイシングテープ兼バックグラインドテープ一体型接着シート、および、電子装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111171242A (zh) * | 2018-11-09 | 2020-05-19 | 台光电子材料股份有限公司 | 树脂组合物及由其制成的制品 |
CN111171242B (zh) * | 2018-11-09 | 2022-09-23 | 台光电子材料股份有限公司 | 树脂组合物及由其制成的制品 |
WO2022097443A1 (ja) * | 2020-11-04 | 2022-05-12 | リンテック株式会社 | 接着フィルム、支持シート付き接着フィルム、および構造体 |
JP7661704B2 (ja) | 2021-01-20 | 2025-04-15 | 住友ベークライト株式会社 | 導電性ペースト、高熱伝導性材料および半導体装置 |
WO2024162423A1 (ja) * | 2023-01-31 | 2024-08-08 | 積水化学工業株式会社 | 硬化性組成物、及び熱伝導性部材 |
Also Published As
Publication number | Publication date |
---|---|
US20190338171A1 (en) | 2019-11-07 |
TW201829632A (zh) | 2018-08-16 |
KR102029853B1 (ko) | 2019-10-08 |
SG11201903855PA (en) | 2019-05-30 |
JPWO2018079533A1 (ja) | 2018-10-25 |
TWI782928B (zh) | 2022-11-11 |
CN109890903A (zh) | 2019-06-14 |
JP6455635B2 (ja) | 2019-01-23 |
KR20190057400A (ko) | 2019-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6455635B2 (ja) | 熱伝導性ペーストおよび電子装置 | |
JP5061939B2 (ja) | 熱伝導性樹脂組成物、接着剤層、及びそれらを用いて作製した半導体装置。 | |
KR20070118071A (ko) | 영역 실장형 반도체 장치 및 이에 이용되는 다이 본딩용수지 조성물, 및 밀봉용 수지 조성물 | |
JP5428134B2 (ja) | 液状樹脂組成物および該液状樹脂組成物を使用して作製した半導体装置 | |
JP5266797B2 (ja) | 樹脂組成物、接着剤層、及びそれらを用いて作製した半導体装置 | |
JP6119603B2 (ja) | 半導体装置 | |
JP4352282B1 (ja) | 半導体用接着剤組成物およびそれを用いて製造した半導体装置 | |
JP2010047696A (ja) | 樹脂組成物、および樹脂組成物を用いて作製した半導体装置 | |
JP5880450B2 (ja) | 樹脂組成物および半導体装置 | |
JP6455630B2 (ja) | 熱伝導性ペーストおよび電子装置 | |
JP6111535B2 (ja) | 熱硬化性樹脂組成物、半導体装置および半導体装置の製造方法 | |
JP6119832B2 (ja) | 半導体装置 | |
JP7661704B2 (ja) | 導電性ペースト、高熱伝導性材料および半導体装置 | |
JP7371792B2 (ja) | 導電性ペーストおよび半導体装置 | |
JP2015213098A (ja) | 半導体装置の製造方法、および接着剤組成物 | |
TWI663608B (zh) | Conductive resin composition and semiconductor device | |
JP6119094B2 (ja) | 半導体装置 | |
JP2022111634A (ja) | 導電性ペースト、高熱伝導性材料および半導体装置 | |
JP5625430B2 (ja) | 半導体用接着剤および半導体装置 | |
JP2017119880A (ja) | 熱硬化性樹脂組成物および半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018526739 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17866120 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197013438 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17866120 Country of ref document: EP Kind code of ref document: A1 |