WO2018056429A1 - 希土類焼結磁石形成用焼結体及びその製造方法 - Google Patents
希土類焼結磁石形成用焼結体及びその製造方法 Download PDFInfo
- Publication number
- WO2018056429A1 WO2018056429A1 PCT/JP2017/034433 JP2017034433W WO2018056429A1 WO 2018056429 A1 WO2018056429 A1 WO 2018056429A1 JP 2017034433 W JP2017034433 W JP 2017034433W WO 2018056429 A1 WO2018056429 A1 WO 2018056429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- magnet
- sintered
- sintered body
- forming
- Prior art date
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 252
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 251
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title description 131
- 238000005245 sintering Methods 0.000 claims abstract description 222
- 239000002245 particle Substances 0.000 claims abstract description 218
- 239000000463 material Substances 0.000 claims abstract description 170
- 238000010438 heat treatment Methods 0.000 claims abstract description 152
- 230000005415 magnetization Effects 0.000 claims abstract description 54
- 238000012545 processing Methods 0.000 claims description 62
- 239000002131 composite material Substances 0.000 claims description 41
- 238000004458 analytical method Methods 0.000 claims description 33
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 229910052733 gallium Inorganic materials 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 229920005992 thermoplastic resin Polymers 0.000 claims description 13
- 239000012467 final product Substances 0.000 claims description 11
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 78
- 239000011230 binding agent Substances 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 47
- 238000011282 treatment Methods 0.000 description 41
- 239000000696 magnetic material Substances 0.000 description 37
- 238000003825 pressing Methods 0.000 description 34
- 239000012298 atmosphere Substances 0.000 description 25
- 150000001875 compounds Chemical class 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- 238000001354 calcination Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 16
- 238000010298 pulverizing process Methods 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000006247 magnetic powder Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000000314 lubricant Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229910001172 neodymium magnet Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- WWUVJRULCWHUSA-UHFFFAOYSA-N 2-methyl-1-pentene Chemical compound CCCC(C)=C WWUVJRULCWHUSA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- -1 ethyl acetate Chemical compound 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000007757 hot melt coating Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000001272 pressureless sintering Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005262 decarbonization Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 125000002743 phosphorus functional group Chemical group 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000011802 pulverized particle Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 238000007581 slurry coating method Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- AMKILYTYKJUKPU-UHFFFAOYSA-N 2-methylbut-1-ene pent-2-ene Chemical group CCC=CC.CCC(C)=C AMKILYTYKJUKPU-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000012691 depolymerization reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920003251 poly(α-methylstyrene) Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
- H01F1/0054—Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Definitions
- the present invention relates to a method for producing a sintered body for forming a rare earth sintered magnet, in particular, a method for producing a sintered body for forming a rare earth sintered magnet containing magnet material particles having an easy axis by pressure sintering, and a method thereof.
- the present invention relates to a sintered compact for forming a rare earth sintered magnet.
- the present invention also relates to a rare earth sintered magnet magnetized on a sintered body for forming a rare earth sintered magnet.
- Rare earth permanent magnets are attracting attention as magnets used in rotating equipment such as motors of various electric and electronic equipment.
- Rare earth permanent magnets are usually manufactured through a sintering process in which solid magnet powder formed into a desired shape is baked and hardened in a sintering mold at a high temperature.
- magnetic properties such as coercive force and residual magnetic flux density and heat resistance can be improved as compared with a bonded magnet made by mixing resin.
- shrinkage anisotropic shrinkage
- the shape and dimensions change between the molded product before sintering (material for forming a rare earth magnet) and the sintered body after sintering. There is a problem that it is difficult to control the shape or the like of the magnet as a product.
- pressure sintering is proposed in which a molded product is sintered while being pressed in a sintering mold.
- pressure sintering variation in shrinkage caused by sintering can be suppressed, and a magnet having a desired shape can be obtained, that is, net shape sintering can be performed.
- the magnetic properties of the magnet structure vary due to the pressurization during the pressure sintering, and the magnetic properties are deteriorated compared to the case of so-called vacuum sintering in which no pressurization is performed. End up.
- the invention relating to the rare earth magnet includes the following as conventional techniques that have a problem with heat treatment in the sintering process.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2016-42863 is filed by the applicant of the present application.
- pressure sintering hot press sintering, hot isostatic pressing (HIP) sintering, A green sheet compact that is magnetically oriented to a mixture of magnet powder and binder using high pressure synthetic sintering, gas pressure sintering, discharge plasma (SPS) sintering, etc., more specifically, in a predetermined direction
- a compact including magnet particles having an oriented easy axis is pressureless sintered in a vacuum, uniaxial pressure sintering is performed in a uniaxially pressurized state, and biaxially pressurized.
- Patent Document 2 uses a hot press to compress a green compact produced by molding HDDR powder at a temperature of 500 ° C. to 900 ° C. under a pressure of 20 to 3000 MPa.
- a method for producing a rare earth magnet that is pressure sintered and then heat-treated at 500 ° C. or more and 900 ° C. or less is that if it is performed at a temperature higher than 900 ° C., grain growth of the main phase becomes obvious and the coercive force decreases. .
- the pressing direction during hot pressing is the orientation direction of the easy axis of the HDDR powder in the green compact (the magnetic field applied when forming the green compact). It is preferable to match the direction).
- the inventors of the present application have found that heat treatment performed after pressure sintering needs to be higher than 900 ° C. in order to maintain magnetic properties, and the temperature in heat treatment is sintering. It was found that it was necessary to determine the relationship with the maximum temperature reached during processing.
- Patent Document 2 although the orientation direction of the easy axis of magnetization of the HDDR powder is matched with the pressing direction, there is a possibility that the HDDR powder varies and the magnetic characteristics are deteriorated.
- Patent Document 3 discloses that a compact obtained by mixing an insulating material such as fluoride, which is a non-magnetic material, with a magnetic powder whose surface is coated with a binder is subjected to pressure firing at a temperature of 725 ° C. After that, it is disclosed that the obtained sintered body is subjected to two-stage heat treatment at 900 ° C. ⁇ 2 h and 500 ° C. ⁇ 30 min.
- heat treatment performed after pressure sintering needs to be higher than 900 ° C. in order to maintain magnetic properties, and the temperature in heat treatment is sintering.
- Patent Document 4 discloses a rare earth magnet formed by hot forming.
- a pressure is applied to the molded body at 500 to 900 ° C. by hot pressing, and then a heat treatment of 1000 ° C. ⁇ 1 h is performed.
- the rare earth magnet formed by hot forming is a different type of magnet from a so-called sintered magnet and is not related to the present application. Therefore, Patent Document 4 does not solve the problem associated with pressure sintering as in the present invention.
- Patent Document 4 The pressure used in the method of Patent Document 4 is, for example, about 2 to 4 ton / cm 2 , and the pressure used for pressure sintering, for example, 0.01 MPa to 100 MPa (Patent Document 1) It is completely different, and with the manufacturing method of Patent Document 4, it is difficult to manufacture a magnet having the same magnetic properties and heat resistance as the magnet of the present application.
- the present invention has been made in order to solve such problems in the prior art and employs pressure sintering in order to suppress the variation in shrinkage that occurs during sintering.
- a rare earth sintered magnet that provides a rare earth sintered magnet having a desired shape having a magnetic property equivalent to or higher than that obtained by vacuum sintering by suppressing variations in the magnet structure caused by pressurization, which is a drawback. It is an object of the present invention to provide a manufacturing method, a manufacturing method of a sintered body using the manufacturing method, and a rare earth sintered magnet and a sintered body having predetermined characteristics.
- a method for producing a sintered body for forming a rare earth sintered magnet includes a rare earth magnet-forming material containing magnet material particles containing a rare earth material and having an easy axis of magnetization. This is a method for producing a sintered body for forming a rare earth sintered magnet comprising a sintered body in which the magnet material particles are integrally sintered by heating to a sintering temperature while applying pressure in a sintering mold.
- the rare earth magnet forming material including the magnet material particles is filled in a sintering mold having a cavity having a shape corresponding to the rare earth sintered magnet as the final product, and the rare earth filled in the mold
- the magnet material particles were integrally sintered by heating and sintering the rare earth magnet forming material to a sintering temperature while applying a predetermined amount of pressure to the magnet forming material. Forming a sintered body, and then When the pressure sintering is performed on the body within the range of the highest temperature that is set to be higher than 900 ° C. and not higher than 1100 ° C. under a pressure lower than the applied pressure at the time of sintering.
- a high-temperature heat treatment is performed at a temperature that has a difference from the maximum temperature of 250 ° C. or less.
- the method for manufacturing a sintered body for forming a rare earth sintered magnet according to this aspect by adopting pressure sintering, it is possible to suppress variation in shrinkage that occurs during sintering.
- by performing high-temperature heat treatment after the sintering treatment it is possible to correct the variation in the magnet material particles caused by the pressurization.
- a sintered body having the above magnetic properties can be provided.
- the rare earth magnet forming material is obtained by heating the composite obtained by mixing the magnet material particles in a thermoplastic resin before sintering. It is preferable that the thermoplastic resin is obtained by scattering the thermoplastic resin from the body. According to the method for producing a sintered body for forming a rare earth sintered magnet of this aspect, the amount of carbon remaining in the composite is reduced by scattering the thermoplastic resin, and the residual magnetic flux density and coercive force of the magnet are reduced. Can be suppressed. Further, in the present invention, the rare earth magnet forming material can be an aggregate of magnet material particles containing a rare earth substance and having an easy axis of magnetization. In this case, an aggregate of magnet material particles is put into a sintering mold and pressure sintering is performed.
- the sintered body is subjected to low temperature heat treatment at a temperature of 350 ° C. to 650 ° C.
- a grain boundary layer is formed between sintered particles by performing low temperature heat treatment in addition to high temperature heat treatment, and magnetic separation between sintered particles is performed. It is possible to improve the coercive force of the magnet.
- the high temperature heat treatment is preferably maintained for about 1 to 50 hours near the maximum temperature set for the high temperature heat treatment.
- the pressure increase may be started when the temperature reaches at least 300 ° C. By starting the pressure increase when the temperature reaches at least 300 ° C., the fusion of the magnet material particles contained in the rare earth magnet forming material begins, and the strength of the rare earth magnet forming material increases, resulting in cracks. Sintering can be performed while pressurizing without performing.
- the rate of temperature increase until reaching the maximum temperature may be 20 ° / min or more.
- the said applied pressure is pressure
- the said highest ultimate temperature is higher than 900 degreeC. It is possible to prevent the formation of voids in the rare earth magnet forming material by making the maximum temperature achieved during heating and sintering higher than 900 ° C., and to produce a sintered body for forming a rare earth sintered magnet having a desired shape. It becomes easy.
- the maximum temperature of the high-temperature heat treatment is x (° C.) and the holding time near the maximum temperature is y (hours)
- 1.13x It is preferable that + 1173 ⁇ y ⁇ ⁇ 1.2x + 1166 (where 1100 ° C. ⁇ x> 900 ° C.) is satisfied.
- the upper limit of the maximum temperature reached in the high-temperature heat treatment is based on the average particle diameter of the magnet material particles, and the average particle diameter is 1900 ⁇ m from 900 ° C.
- the average particle size is preferably set to 1100 ° C. or lower for an average particle size of 5 ⁇ m. Since the upper limit of the maximum attainable temperature set for the high-temperature heat treatment is affected by the average particle diameter of the magnet material particles, it is preferable to determine the upper limit according to the average particle diameter.
- a sintered body for forming a rare earth sintered magnet according to another aspect of the present invention is provided.
- a rare earth comprising a sintered body of magnet material particles containing a rare earth material and having an axis of easy magnetization, and a rare earth-rich phase in which the rare earth material is contained at a higher concentration in the grain boundary between the sintered particles than in other regions
- a sintered magnet in which the area ratio of the rare earth-rich phase containing Cu in the entire rare earth-rich phase in the magnet cross section is 40% or more, and the aspect ratio of the pole figure representing the orientation variation by EBSD analysis is 1 .2 or more
- a rare earth comprising a sintered body of magnet material particles containing a rare earth material and having an axis of easy magnetization, and a rare earth-rich phase in which the rare earth material is contained at a higher concentration in the grain boundary between the sintered particles than in other regions
- a rare earth comprising a sintered body of magnet material particles containing a rare earth material and having an axis of easy magnetization, and a rare earth-rich phase in which the rare earth material is contained at a higher concentration in the grain boundary between the sintered particles than in other regions
- a sintered body for forming a sintered magnet wherein the area ratio of the rare earth-rich phase containing both Cu and Ga in the rare earth-rich phase in the magnet cross section is less than 2 ⁇ m in the average particle diameter of the magnet material particles Is 10% or more, and when the average particle diameter of the magnetic material particles is 2 ⁇ m or more, it is 17% or more, and the aspect ratio of the pole figure representing the orientation variation by EBSD analysis is 1.2 or more.
- the area ratio occupied by the rare earth-rich phase containing Cu and Ga is preferably large.
- the fact that the aspect ratio of the pole figure representing the orientation variation is large means that pressurization is appropriately performed. This variation is caused by the pressure applied by pressure sintering. Therefore, the aspect ratio is preferably 1.2 or more.
- the sintered body for forming a rare earth sintered magnet is a sintered body of magnet material particles containing a rare earth material and having an axis of easy magnetization, and the rare earth material is present at the grain boundary between the sintered particles.
- the average value of the area ratio of the rare earth rich phase having an area of 2 or more in the total rare earth rich phase is 35% or more and the aspect ratio of the pole figure representing the orientation variation by EBSD analysis is 1.2 or more. It is characterized by.
- the coercive force can be 14 kOe or more.
- the magnet material particles may contain 1% by weight or less of Dy or Tb, and Br (kG) + Hcj (kOe) may be 27.5 or more. it can.
- the magnetic material particles include 1% by weight or more of Dy or Tb, and Br (kG) + Hcj (kOe) may be 30.0 or more. it can.
- the squareness defined by the formula Hk / Hcj (%) can be 90% or more.
- a rare earth sintered magnet is manufactured by magnetizing a sintered body using the method for manufacturing a sintered body for forming a rare earth sintered magnet described above. can do.
- a rare earth sintered magnet can be manufactured by magnetizing the sintered body for forming a rare earth sintered magnet described above.
- the manufacturing method of the present invention includes a rare earth containing magnetic material particles having an easy axis of magnetization. It is particularly suitable for a method for manufacturing a sintered magnet.
- the perspective view which shows an example of the rare earth magnet formation material for the rare earth sintered magnet manufactured using the method by one Embodiment of this invention, and an example of the rare earth sintered magnet manufactured from this rare earth magnet formation material It is.
- It is the schematic which shows an orientation angle and an orientation axis
- (a) is a cross-sectional view which shows an example of orientation of the magnetization easy axis
- the orientation angle distribution based on the EBSD analysis is shown, wherein (a) is a perspective view showing the direction of the axis of the rare earth magnet, and (b) is obtained by EBSD analysis at the center and both ends of the magnet. (C) shows the orientation axis angle in the cross section of the magnet along the A2 axis in (a). It is a figure which shows a part of production
- FIG. 1 (a) is a perspective view of a rare earth magnet forming material 3 for obtaining a sintered body for forming a rare earth sintered magnet 1 manufactured using the method according to an embodiment of the present invention.
- a trapezoidal shape is shown, but it is needless to say that the shape of the rare earth magnet forming material 3 is not limited to such a shape.
- the directions of “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” shown in FIG. 1 are orthogonal to each other.
- the rare earth sintered magnet 1 shown in FIG. 1B is manufactured by pressure sintering the rare earth magnet forming material 3 shown in FIG.
- the rare earth magnet forming material 3 includes a magnet material containing a rare earth substance.
- the magnet material for example, an Nd—Fe—B based magnet material can be used.
- the Nd—Fe—B based magnet material is, for example, R in weight percentage (R is one or more of rare earth elements including Y) 27.0 to 40.0 wt%, more preferably It may contain 27.0 to 35 wt%, B may be 0.6 to 2 wt%, more preferably 0.6 to 1.1 wt%, and Fe may be included in a proportion of 60 to 75 wt%.
- the Nd—Fe—B based magnet material contains 27 to 40 wt% Nd, 0.8 to 2 wt% B, and 60 to 70 wt% Fe as electrolytic iron.
- This magnet material has Dy, Tb, Co, Cu, Al, Si, Ga, Nb, V, Pr, Mo, Zr, Ta, Ti, W, Ag, Bi, Zn, Mg for the purpose of improving magnetic properties. A small amount of other elements such as may be included.
- the magnet material is included in the rare earth magnet forming material 3 in the state of fine magnet material particles 3a.
- Each of these magnetic material particles has an easy magnetization axis “g” oriented in a predetermined direction “G” shown in FIG.
- the easy magnetization axis “g” is, for example, along the direction perpendicular to both the upper surface 21 and the bottom surface 22 of the sintered magnet 1 (in the direction of the arrow “ ⁇ ” in the drawing), in other words, in the thickness direction of the sintered magnet 1. Or may be oriented from the bottom surface 22 toward the top surface 21. Further, these easy magnetization axes “g” are oriented in a plane formed by the “ ⁇ direction” and the “ ⁇ direction” in FIG.
- each cross section in the “ ⁇ - ⁇ ” direction orthogonal to the “ ⁇ ” direction is oriented.
- the easy magnetization axes “g” may all be directed in the same direction (parallel orientation), or may be partially directed in different directions (non-parallel orientation).
- the “non-parallel orientation” here includes, for example, those in which “alignment axis angles” described later of the easy magnetization axis “g” differ from each other by 20 ° or more.
- orientation angle means an angle in the direction of the easy axis of the magnet material particles with respect to a predetermined reference line.
- the section for determining the orientation axis angle is a quadrangular section including at least 30, for example, 200 to 300 magnet material particles, or a square section having a side of 35 ⁇ m.
- FIG. 2 shows the orientation angle and the orientation axis angle.
- FIG. 2 (a) is a cross-sectional view showing an example of the orientation of the easy axis of the magnet material particles in the rare earth magnet.
- the rare earth magnet M includes the first surface S-1 and the first surface S. -1 to a second surface S-2 that is spaced by a thickness t, and a width W. End faces E-1 and E-2 are formed at both ends in the width W direction. Yes.
- the first surface S-1 and the second surface S-2 are flat surfaces parallel to each other.
- the first surface S-1 and the second surface S are shown.
- -2 is represented by two straight lines parallel to each other.
- the end surface E-1 is an inclined surface inclined in the upper right direction with respect to the first surface S-1, and similarly, the end surface E-2 is upper left with respect to the second surface S-2.
- the inclined surface is inclined in the direction.
- Arrow B-1 schematically shows the direction of the orientation axis of the easy axis of magnetization of the magnet material particles in the central region in the width direction of the rare earth magnet M.
- the arrow B-2 schematically shows the direction of the orientation axis of the easy magnetization axis of the magnetic material particles in the region adjacent to the end face E-1.
- an arrow B-3 schematically shows the direction of the orientation axis of the easy axis of magnetization of the magnetic material particles in the region adjacent to the end face E-2.
- FIG. 2B is a schematic enlarged view showing a procedure for determining the “orientation angle” and “orientation axis angle” of the easy magnetization axis of each magnetic material particle.
- the quadrangular section R includes a large number of magnet material particles P such as 30 or more, for example, 200 to 300. As the number of magnet material particles included in the quadrangular section increases, the measurement accuracy increases, but even about 30 particles can be measured with sufficient accuracy.
- Each magnet material particle P has an easy axis P-1.
- the easy magnetization axis P-1 usually has no polarity, but becomes a vector having polarity by magnetizing magnetic material particles.
- FIG. 2B in consideration of the polarity to be magnetized, it is indicated by an arrow with directionality on the easy magnetization axis.
- the term “orientation direction of the easy axis” or similar term is used to represent the direction in consideration of the polarity to be magnetized in this way.
- the easy magnetization axis P-1 of each magnetic material particle P has an “orientation angle” that is an angle between a direction in which the easy magnetization axis is directed and a reference line. Then, among the “orientation angles” of the easy magnetization axes P-1 of the magnet material particles P in the quadrangular section R shown in FIG. To do.
- FIG. 3 is a chart showing a procedure for obtaining the orientation angle variation angle.
- the distribution of the difference ⁇ in the orientation angle of the easy magnetization axes of the individual magnetic material particles with respect to the easy magnetization axis is represented by a curve C.
- the position at which the cumulative frequency shown on the vertical axis is maximum is 100%, and the value of the orientation angle difference ⁇ at which the cumulative frequency is 50% is the half width.
- the orientation angle of the easy magnetization axis P-1 in each magnetic material particle P can be obtained by an “electron backscattering diffraction analysis method” (EBSD analysis method) based on a scanning electron microscope (SEM) image.
- EBSD analysis method based on a scanning electron microscope (SEM) image.
- SEM scanning electron microscope
- EBSD detection method AZtecHKL EBSD Nordlys Nano Integrated
- JSM-70001F manufactured by JEOL Ltd., Akishima City, Tokyo, or EDAX.
- SUPER40VP manufactured by ZEISS which is a scanning electron microscope equipped with an EBSD detector manufactured by KK (Hikari High Speed EBSD Detector).
- FIG. 4 shows an example of the orientation display of the easy magnetization axis by the EBSD analysis method.
- FIG. 4A is a perspective view showing the direction of the axis of the rare earth magnet, and FIG. It shows an example of a pole figure obtained by EBSD analysis in the section.
- FIG. 4C shows the orientation axis angle in the cross section of the magnet along the A2 axis.
- the orientation axis angle can be displayed by dividing the orientation vector of the easy magnetization axis of the magnetic material particle into a component in a plane including the A1 axis and the A2 axis and a component in a plane including the A1 axis and the A3 axis.
- the A2 axis is the width direction
- the A1 axis is the thickness direction.
- the center diagram of FIG. 4B shows that the orientation of the easy axis is substantially in the direction along the A1 axis at the center in the width direction of the magnet.
- FIG. 4B shows that the orientation of the easy axis at the left end in the width direction of the magnet is inclined from the bottom to the top right along the plane of the A1 axis-A2 axis. .
- the diagram on the right side of FIG. 4B shows that the orientation of the easy axis at the right end in the width direction of the magnet is inclined from the bottom to the top left along the plane of the A1 axis-A2 axis.
- FIG. 4C Such an orientation is shown in FIG. 4C as an orientation vector.
- the pole figure shown in FIG. 4B is a pole figure obtained by a SUPRA40VP manufactured by ZEISS, which is a scanning electron microscope equipped with an EBSD detector manufactured by EDAX (Hikari High Speed EBSD Detector).
- Crystal orientation diagram It is a figure which displays the inclination
- a rare earth magnet forming material 3 that is the basis of the rare earth sintered magnet 1 is prepared.
- FIG. 5 shows a part of the production process of the rare earth magnet forming material 3.
- an ingot of a magnet material made of an Nd—Fe—B alloy having a predetermined fraction is manufactured by a casting method.
- an Nd—Fe—B alloy used in a neodymium magnet has a composition containing Nd of 30 wt%, preferably iron containing 67 wt% and B of 1.0 wt%.
- this ingot is roughly pulverized to a particle size of about 200 ⁇ m using a known means such as a stamp mill or a crusher.
- the ingot can be melted, flakes can be produced by strip casting, and coarsely pulverized by hydrogen cracking.
- coarsely pulverized magnet material particles 115 are obtained (see FIG. 5A).
- the coarsely pulverized magnet material particles 115 are finely pulverized by a wet method using a bead mill 116 or a dry method using a jet mill.
- the coarsely pulverized magnet particles 115 are finely pulverized in a solvent to a predetermined average particle diameter, for example, 0.1 ⁇ m to 5.0 ⁇ m, and the magnet material particles are dispersed in the solvent.
- a dispersed state is set (see FIG. 5B).
- the magnet particles contained in the solvent after the wet pulverization are dried by means such as drying under reduced pressure, and the dried magnet particles are taken out (not shown).
- the type of solvent used for grinding is not particularly limited, alcohols such as isopropyl alcohol, ethanol and methanol, esters such as ethyl acetate, lower hydrocarbons such as pentane and hexane, benzene, toluene, xylene and the like.
- Organic solvents such as aromatics, ketones and mixtures thereof, or inorganic solvents such as liquefied nitrogen, liquefied helium, and liquefied argon can be used.
- a solvent containing no oxygen atom in the solvent it is preferable to use a solvent containing no oxygen atom in the solvent.
- the average particle diameter is more preferably 1.0 to 5.0 ⁇ m, and further preferably 2.0 to 5.0 ⁇ m.
- the coarsely pulverized magnet material particles 115 are subjected to (a) nitrogen gas having an oxygen content of 0.5% or less, preferably substantially 0%, Ar gas, Jet mill in an atmosphere composed of an inert gas such as He gas, or (b) an atmosphere composed of an inert gas such as nitrogen gas, Ar gas or He gas having an oxygen content of 0.0001 to 0.5%
- the average particle diameter is more preferably 1.0 to 5.0 ⁇ m, and further preferably 2.0 to 5.0 ⁇ m.
- the oxygen concentration being substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but contains oxygen in such an amount as to form an oxide film very slightly on the surface of the fine powder. Means that it may be.
- the magnet material particles finely pulverized by the bead mill 116 or the like are formed into a desired shape.
- a mixture obtained by mixing the finely pulverized magnet material particles and the binder made of the resin material as described above, that is, a composite material is prepared.
- the resin used as the binder is preferably a depolymerizable polymer that does not contain an oxygen atom in the structure.
- the composite material of the magnet particles and the binder can be reused for the remainder of the composite material generated when the composite material is formed into a desired shape, and the composite material is heated and softened. It is preferable to use a thermoplastic resin as the resin material so that the magnetic field orientation can be performed.
- a polymer composed of one or two or more polymers or copolymers formed from the monomer represented by the following general formula (1) is preferably used.
- R 1 and R 2 represent a hydrogen atom, a lower alkyl group, a phenyl group or a vinyl group.
- polystyrene-butadiene block copolymer which is a copolymer of styrene and isoprene (SIS), butyl rubber (IIR) which is a copolymer of isobutylene and isoprene, styrene-butadiene block copolymer (SBS) which is a copolymer of styrene and butad
- Ethylene-butadiene-styrene Copolymer SEBS
- SEPS styrene-ethylene-propylene-styrene copolymer
- EPM ethylene-propylene copolymer
- EPDM obtained by copolymerization of a diene monomer with ethylene and propylene
- 2-methyl-1-pentene polymer resin that is a polymer of 2-methyl-1-pentene
- 2 polymer that is 2-methyl-1-butene -Methyl-1-butene polymer resin PEBS
- SEPS styrene-ethylene-propylene-styrene copolymer
- EPM ethylene-propylene copolymer
- the resin used for the binder may include a small amount of a polymer or copolymer of a monomer containing an oxygen atom or a nitrogen atom (for example, polybutyl methacrylate, polymethyl methacrylate, etc.). Furthermore, a monomer that does not correspond to the general formula (1) may be partially copolymerized. Even in that case, the object of the present invention can be achieved.
- thermoplastic resin that softens at 250 ° C. or lower in order to appropriately perform magnetic field orientation, more specifically, a thermoplastic resin having a glass transition point or a flow start temperature of 250 ° C. or lower is used. It is desirable.
- an alignment lubricant As the alignment lubricant, alcohol, carboxylic acid, ketone, ether, ester, amine, imine, imide, amide, cyan, phosphorus functional group, sulfonic acid, compound having unsaturated bond such as double bond and triple bond, It is desirable to add at least one of the liquid saturated hydrocarbon compounds. A mixture of a plurality of these substances may be used. As will be described later, when applying a magnetic field to a mixture of magnet material particles and a binder, that is, a composite material to magnetically orient the magnet material, the mixture is heated so that the binder component is softened and magnetic field orientation is performed. Process.
- the amount of carbon remaining in the sintered body after sintering can be 2000 ppm or less, more preferably 1000 ppm or less.
- the amount of oxygen remaining in the sintered body after sintering can be 5000 ppm or less, more preferably 2000 ppm or less.
- the amount of the binder added is an amount that can appropriately fill the gaps between the magnetic material particles so as to improve the thickness accuracy of the molded product obtained as a result of molding when molding a slurry or a heat-melted composite material.
- the ratio of the binder to the total amount of the magnetic material particles and the binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, still more preferably 3 wt% to 20 wt%, and particularly preferably 5 wt% to 15 wt%. .
- the ratio of the resin to the total amount of the resin used for the binder and the magnetic material particles is preferably 1 wt% to 30 wt%, more preferably 2 wt% to 20 wt%, still more preferably 3 wt% to 15 wt%, and particularly preferably 3.5 wt% to 10 wt%.
- a parallel magnetic field is applied in the state of a molded body once formed of a composite material into a shape other than the product shape to orient the magnetic material particles in the magnetic field, and then the molded body is formed into a desired product shape. Then, a sintered magnet having a desired product shape such as a trapezoidal shape shown in FIG. 1 is obtained by performing a sintering process.
- a mixture of magnetic material particles and a binder that is, a composite material 117 is once molded into a sheet-shaped green molded body (hereinafter referred to as “green sheet”), and then molded for orientation treatment. Body shape.
- the composite material is particularly formed into a sheet shape, for example, by heating the composite material 117 that is a mixture of magnet material particles and a binder and then forming into a sheet shape, or by combining the magnet material particles and the binder
- the molding may be performed by putting the composite material 117 in a molding die and pressurizing to a pressure of 0.1 to 100 MPa while heating to room temperature to 300 ° C.
- a method in which the composite material 117 heated to a softening temperature is pressed and filled into a mold by applying an injection pressure is possible to employ a method in which the composite material 117 heated to a softening temperature is pressed and filled into a mold by applying an injection pressure.
- a binder As already described, by mixing a binder with magnetic material particles finely pulverized by a bead mill 116 or the like, a clay-like mixture composed of magnet material particles and a binder, that is, a composite material 117 is produced.
- a binder as described above, a mixture of a resin and an alignment lubricant can be used.
- the resin it is preferable to use a thermoplastic resin that does not contain an oxygen atom in the structure and is made of a depolymerizable polymer.
- the alignment lubricant alcohol, carboxylic acid, ketone, ether, It is preferable to add at least one of an ester, amine, imine, imide, amide, cyan, phosphorus functional group, sulfonic acid, and a compound having an unsaturated bond such as a double bond or a triple bond.
- a compound having an unsaturated bond examples include a compound having a double bond and a compound having a triple bond, and in particular, the effect of reducing cracks in the sintered body. From the viewpoint that can be expected, a compound having a triple bond is more preferable.
- the compound having a triple bond it is preferable to use a compound that can be easily removed in a calcining process described later.
- the compound used preferably has no hetero atom, and is a hydrocarbon.
- Particularly preferred is a compound composed solely of
- the compound having a triple bond is preferably a compound having a triple bond at the terminal.
- the number of carbons as its constituent elements is preferably 10 or more, and more preferably 14 or more, in order to facilitate handling by increasing the boiling point. 16 or more, more preferably 18 or more.
- the upper limit of carbon number is not specifically limited, For example, it can be 30 or less.
- a compound having a functional group having a hetero atom is used in order to be able to interact more strongly with the surface of the magnetic material particles and to exert a high orientation lubricating effect. It is preferable to use a compound having a functional group having a hetero atom at the terminal.
- the number of carbon atoms in the compound having a double bond is preferably 6 or more, more preferably 10 or more, still more preferably 12 or more, and particularly preferably 14 or more. Although the upper limit of carbon number is not specifically limited, For example, it can be 30 or less.
- the above compound having a triple bond and the above compound having a double bond may be used in combination.
- the amount of the binder added is such that the ratio of the binder to the total amount of the magnetic material particles and the binder in the composite material 117 after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%. Is 3 wt% to 20 wt%, particularly preferably 5 wt% to 15 wt%.
- the ratio of the resin to the total amount of the resin used for the binder and the magnetic material particles is preferably 1 wt% to 30 wt%, more preferably 2 wt% to 20 wt%, still more preferably 3 wt% to 15 wt%, and particularly preferably 3.5 wt% to 10 wt%.
- the addition amount of the oriented lubricant is preferably determined according to the particle size of the magnet material particles, and it is recommended that the addition amount be increased as the particle size of the magnet material particles is smaller.
- the specific addition amount is 0.01 to 20 parts by weight, more preferably 0.3 to 10 parts by weight, still more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the magnetic material particles. Part by weight, particularly preferably 0.8 to 3 parts by weight.
- the addition amount is small, the dispersion effect is small and the orientation may be lowered.
- there is too much addition amount there exists a possibility of contaminating a magnet material particle.
- the orientation lubricant added to the magnet material particles adheres to the surface of the magnet material particles, disperses the magnet material particles, gives a clay-like mixture, and rotates the magnet material particles in the orientation process in the magnetic field described later. Acts to assist. As a result, orientation is easily performed when a magnetic field is applied, and the easy magnetization axis directions of the magnet particles can be aligned in substantially the same direction, that is, the degree of orientation can be increased. In particular, when a binder is mixed with magnetic material particles, the binder is present on the surface of the particles, which increases the frictional force during magnetic field alignment treatment, which may reduce the orientation of the particles. The effect of adding more increases.
- the mixing of the magnet material particles and the binder is preferably performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
- the mixing of the magnet material particles and the binder is performed, for example, by putting the magnet material particles and the binder into a stirrer and stirring with the stirrer. In this case, heating and stirring may be performed to promote kneading properties.
- the binder is added to the solvent and kneaded without taking out the magnet particles from the solvent used for pulverization, and then the solvent is volatilized. May be obtained.
- the green sheet described above is created by forming the composite material 117 into a sheet shape.
- the composite material 117 is heated to melt the composite material 117 so as to have fluidity, and then applied onto the support substrate 118. Thereafter, the composite material 117 is solidified by heat radiation, and a long sheet-like green sheet 119 is formed on the support base 118 (see FIG. 5D).
- the temperature at which the composite material 117 is heated and melted varies depending on the type and amount of the binder used, but is usually 50 ° C. to 300 ° C. However, the temperature needs to be higher than the flow start temperature of the binder to be used.
- slurry coating When slurry coating is used, magnetic material particles, a binder, and optionally an alignment lubricant that promotes alignment are dispersed in a large amount of solvent, and the slurry is coated on the support substrate 118. Work. Thereafter, the long sheet-like green sheet 119 is formed on the support substrate 118 by drying and volatilizing the solvent.
- the die method and the comma coating method are particularly excellent in layer thickness controllability, that is, a method capable of applying a high-accuracy thickness layer to the surface of the substrate.
- the composite material 117 heated and fluidized is pumped by a gear pump, injected into the die, and discharged from the die for coating.
- the composite material 117 is fed into the nip gap between two heated rolls in a controlled amount, and the composite material 117 melted by the heat of the roll on the support substrate 118 while rotating the roll.
- a silicone-treated polyester film is preferably used as the support substrate 118.
- the composite material 117 melted by extrusion molding or injection molding is extruded on the support substrate 118 while being molded into a sheet shape, thereby forming a green on the support substrate 118.
- the sheet 119 can also be formed.
- the composite material 117 is applied using a slot die 120.
- the sheet thickness of the green sheet 119 after coating is measured, and the nip between the slot die 120 and the support substrate 118 is controlled by feedback control based on the measured value. It is desirable to adjust the gap. In this case, it is possible to reduce the fluctuation of the amount of the fluid composite material 117 supplied to the slot die 120 as much as possible, for example, to suppress the fluctuation to ⁇ 0.1% or less, and also to reduce the fluctuation of the coating speed as much as possible. For example, it is desirable to suppress fluctuations of ⁇ 0.1% or less. By such control, it is possible to improve the thickness accuracy of the green sheet 119.
- the thickness accuracy of the formed green sheet 119 is preferably within ⁇ 10%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to a design value such as 1 mm.
- a design value such as 1 mm.
- the thickness of the green sheet 119 is preferably set in the range of 0.05 mm to 20 mm. If the thickness is less than 0.05 mm, it is necessary to carry out multilayer lamination in order to achieve the necessary magnet thickness, so that productivity is lowered.
- a processing sheet piece 3 cut out to a size corresponding to a desired magnet size is created from the green sheet 119 formed on the support base material 118 by the hot melt coating described above. Since the processing sheet piece 3 is filled in a sintering mold later and is a source of a rare earth sintered magnet, it can be regarded as an example of a rare earth magnet forming material. Moreover, since the green sheet 119 is a material of the processing sheet piece 3 and is a source of the rare earth sintered magnet, it is of course included in the concept of the rare earth magnet forming material. Furthermore, as will be described later, not only the molded body manufactured by the green sheet method described above, but also a molded body manufactured by the compacting method can be used as the rare earth magnet forming material, for example. This point will be described later.
- the shape thereof is set in consideration of the rare earth sintered magnet 1 which is the final product, and the actual size cut out is the size in the pressing direction in the sintering process.
- a predetermined magnet size is obtained after the sintering process.
- the processing sheet piece 3 is contracted in the pressing direction (the “ ⁇ ” direction in FIG. 1).
- the difference between the rare earth sintered magnet 1 as the final product and the processing sheet piece 3 is the same in the pressing direction “ ⁇ ” of the rare earth sintered magnet 1 as the final product.
- the length “D” of the side is only contracted to about half of the length “d” of the side in the same direction “ ⁇ ” of the processing sheet piece 3.
- the rare earth sintered magnet 1 is obtained by magnetizing what sintered the sheet piece 3 for processing, the sintered compact which sintered the sheet piece 3 for processing is also rare earth sintered magnet 1 Can be considered to have the same shape and dimensions.
- the magnet material particles can be rotated in the binder, and their easy magnetization axes are parallel magnetic fields. Oriented in the direction along.
- the processing sheet piece 3 is heated until the viscosity of the binder contained in the processing sheet piece 3 is 1 to 1500 Pa ⁇ s, more preferably 1 to 500 Pa ⁇ s.
- the temperature and time for heating the processing sheet piece 3 vary depending on the type and amount of the binder used, but are, for example, 40 to 250 ° C. and 0.1 to 60 minutes. In any case, in order to soften the binder in the processing sheet piece 3, the heating temperature needs to be higher than the glass transition point or the flow start temperature of the binder used.
- a means for heating the processing sheet piece for example, there is a system using a hot plate or a heat medium such as silicone oil as a heat source.
- the strength of the magnetic field in the application of the magnetic field can be 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe], and particularly preferably 25000 [Oe] to 70000 [Oe]. .
- the easy magnetization axes of the crystals of the magnet material particles contained in the processing sheet piece 3 are oriented in parallel in the direction “ ⁇ ” along the parallel magnetic field “G”.
- a configuration in which a magnetic field is simultaneously applied to the plurality of processing sheet pieces 3 may be employed.
- a mold having a plurality of cavities may be used, or a plurality of molds may be arranged and a parallel magnetic field may be applied simultaneously.
- the step of applying a magnetic field to the processing sheet piece 3 may be performed simultaneously with the heating step, or after the heating step and before the binder of the processing sheet piece 3 is solidified.
- the oriented processing sheet piece 3 in which the axis of easy magnetization is oriented is atmospheric pressure, or a pressure higher or lower than atmospheric pressure, for example, 0.1 MPa to 70 MPa, preferably 1.
- the calcination treatment is performed by maintaining the binder decomposition temperature for several hours to several tens of hours, for example, 5 hours.
- the supply amount of hydrogen during the calcination is, for example, 5 L / min.
- the binder in other words, the organic compound contained in the composite in which the magnet material particles are mixed with the thermoplastic resin is decomposed into monomers by a depolymerization reaction or other reaction, and then dispersed and removed. It becomes possible. That is, a decarbonization process that is a process of reducing the amount of carbon remaining in the processing sheet piece 3 is performed. Further, the calcination treatment is desirably performed under the condition that the amount of carbon remaining in the processing sheet piece 3 is 2000 ppm or less, more preferably 1000 ppm or less. Thereby, the whole processing sheet piece 3 can be densely sintered by the subsequent sintering process, and it is possible to suppress a decrease in residual magnetic flux density and coercive force.
- a pressure when making pressurization conditions at the time of performing the calcination process mentioned above into a pressure higher than atmospheric pressure, it is desirable that a pressure shall be 15 Mpa or less.
- the pressurizing condition is a pressure higher than the atmospheric pressure, more specifically 0.2 MPa or more, the effect of reducing the residual carbon amount can be expected.
- the temperature of the calcining treatment may be 250 ° C. to 600 ° C., more preferably 300 ° C. to 550 ° C., for example 450 ° C., depending on the type of binder.
- calcination treatment it is preferable to reduce the rate of temperature rise compared to a general rare earth magnet sintering treatment. Specifically, a preferable result can be obtained by setting the temperature rising rate to 2 ° C./min or less, for example, 1.5 ° C./min. Therefore, when performing the calcination treatment, as shown in FIG. 6, the temperature is increased at a predetermined temperature increase rate of 2 ° C./min or less, and after reaching a preset temperature, that is, a binder decomposition temperature, The calcination treatment is performed by maintaining the set temperature for several hours to several tens of hours.
- the carbon in the processing sheet piece 3 is not removed rapidly, but is removed stepwise, so that the level is sufficient. It is possible to reduce the remaining carbon and increase the density of the sintered body for forming a permanent magnet after sintering. That is, by reducing the amount of residual carbon, the voids in the permanent magnet can be reduced. As described above, if the rate of temperature rise is about 2 ° C./min, the density of the sintered body for forming a permanent magnet after sintering can be 98% or more, for example, 7.40 g / cm 3 or more, It can be expected to achieve high magnet characteristics in the magnet after magnetization.
- a deoiling treatment for volatilizing oil components such as an alignment lubricant and a plasticizer may be performed.
- the temperature of the deoiling treatment may be 60 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C., depending on the type of oil component contained.
- a preferable result can be obtained by setting the temperature rising rate to 5 ° C./min or less, for example, 0.7 ° C./min.
- a more preferable result is obtained by performing the oil removal step in a reduced pressure atmosphere, and it is preferable to perform it under a reduced pressure of 0.01 Pa to 20 Pa, more preferably 0.1 Pa to 10 Pa. Note that the magnetic characteristics of the rare earth sintered magnet as the final product do not change depending on whether or not the oil removal treatment is performed.
- FIG. 7 the outline of the heat processing performed at a sintering process is shown.
- the horizontal axis represents time, and the vertical axis represents temperature (° C.).
- the sintering process includes a high-temperature heat treatment “B” performed thereafter and a low-temperature heat treatment “C” performed thereafter.
- the inventors of the present application conducted a high-temperature heat treatment “B” satisfying a predetermined condition after the sintering process “A”, and finally obtained a sintered body obtained through a sintering process, We have found that the characteristics of the rare earth sintered magnets are significantly improved.
- an additional effect such as an effect of suppressing anisotropic shrinkage can be obtained by combining such a high-temperature heat treatment “B” and the like and a sintering treatment “A” satisfying a predetermined condition.
- a high-temperature heat treatment “B” and the low-temperature heat treatment “C” will be described as a part of the sintering process.
- these treatments are substantially merely heat treatments, This is different from the pressure sintering in the sintering process “A”.
- the sintering step is performed in a state where the processing sheet piece 3 (see FIG. 1) is filled in a sintering mold (not shown) made up of a pair of male and female molds prepared in advance.
- the sintering mold includes a cavity having a shape corresponding to the rare earth sintered magnet as the final product, for example, a cavity having a trapezoidal cross section corresponding to the processing sheet 3.
- the easy axis of magnetization of the processing sheet piece 3 is oriented in one plane, that is, one plane formed by the “ ⁇ direction” and “ ⁇ direction” in FIG. It is in an oriented state.
- ⁇ Sintering treatment> In the sintering process “A”, the calcined processing sheet piece 3 is heated while applying a pressing force by being sandwiched between a male mold and a female mold and applying a pressing pressure. Sintering, that is, pressure sintering.
- the pressing direction is a direction (“ ⁇ ” direction in FIG. 1) orthogonal to the orientation direction of the easy magnetization axis (“G” direction in FIG. 1) in the processing sheet piece 3. By applying pressure in this direction, it is possible to suppress the change in the orientation of the easy axis of magnetization given to the magnet material particles, and a sintered body with higher orientation can be obtained.
- the initial load when sandwiched between the male mold and the female mold is set to a relatively small constant pressure such as 0.5 MPa (the initial load is not particularly shown in FIG. 7). ). However, it is not always necessary to apply the initial load.
- the processing sheet piece 3 is heated from room temperature to the pressure increase start temperature.
- the temperature increase is preferably performed at a constant temperature increase rate.
- the temperature raising rate may be 3 ° C./min to 30 ° C./min, for example, 20 ° C./min.
- Boosting starts, for example, when the temperature reaches 300 ° C. (in the example shown in FIG. 7, the boosting start temperature is shown as about 700 ° C.).
- the fusion of the magnet material particles contained in the rare earth magnet forming material starts, and the strength of the rare earth magnet forming material increases, so that the rare earth magnet forming material does not crack. This is because sintering can be performed while applying pressure. Therefore, it is sufficient that the temperature reaches at least 300 ° C., and of course, boosting may be started at a temperature of 300 ° C. or higher. More preferably, the pressure increase is started in the range of 500 ° C. to 900 ° C., more preferably in the range of 700 ° C.
- the pressure increase rate may be 14 kPa / second or more, for example.
- the final ultimate load (pressing force) is, for example, 1 MPa to 30 MPa, preferably 3 MPa to 20 MPa, and more preferably 3 MPa to 15 MPa.
- the pressure is smaller than 3 MPa, the contraction of the processing sheet piece 3 occurs not only in the pressurizing direction but also in all directions, or the processing sheet piece 3 undulates. Even if the high-temperature heat treatment “B” is performed, it becomes difficult to control the shape and the like of the magnet that is the final product.
- the pressurization is continued until the contraction rate in the pressurization direction becomes substantially zero for a predetermined time even after reaching the final ultimate load.
- the “predetermined time” here is, for example, a case where the rate of change per 10 seconds in the pressurizing direction is maintained at zero for about 5 minutes. After confirming that the shrinkage rate in the pressing direction is substantially zero, pressurization is terminated.
- the processing sheet piece 3 is heated at the above-described constant temperature increase rate until the predetermined maximum temperature is reached.
- the maximum temperature reached is preferably set higher than 900 ° C. in a reduced pressure atmosphere of several Pa or less, for example.
- the temperature is 900 ° C. or lower, voids are generated in the processing sheet piece 3, and when the high temperature heat treatment “B” is performed thereafter, the contraction of the processing sheet piece 3 is not only in the pressing direction but also in all directions. Therefore, it becomes difficult to control the shape and the like of the magnet that is the final product.
- the maximum temperature By setting the maximum temperature to be higher than 900 ° C., the shape can be easily controlled.
- the maximum temperature reached is preferably determined in consideration of the particle diameter and composition of the magnet material particles forming the processing sheet piece 3. In general, when the particle size is large, it is necessary to make the temperature higher, and even in the case of a composition with few rare earths, it is necessary to make the temperature higher. In addition, it is preferable to reach
- the rare earth sintered magnet 1 shown in FIG. 1B shows the sintered body 1A. It can also be considered as a thing (the same applies to sintered bodies 1B and 1C described later).
- the calcined processing sheet piece 3 is placed in a direction (“ ⁇ ” direction in FIG.
- Examples of the pressure sintering technique used in the sintering process “A” include hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, and discharge plasma ( Any known technique such as SPS) sintering may be employed.
- HIP hot isostatic pressing
- SPS gas pressure sintering
- the sintered body 1A subjected to the sintering process “A” is cooled to room temperature, and then heated again to a predetermined temperature by high-temperature heat treatment “B”.
- the cooling to room temperature may be natural cooling.
- the heating is performed under a reduced pressure atmosphere, more specifically, at a pressure lower than the applied pressure in the sintering process “A”. Note that a reduced-pressure atmosphere is not necessary as long as the atmosphere is an inert gas atmosphere such as argon gas, nitrogen gas, or helium gas.
- the sintered body 1A reaches the maximum temperature preset for the high temperature heat treatment within a predetermined time, for example, within 10 hours, more preferably within 5 hours, and even more preferably within 2 hours.
- the maximum attainable temperature set for the high-temperature heat treatment is set to be higher than 900 ° C and not higher than 1100 ° C. Further, the set temperature is set so that the difference from the maximum temperature reached in the sintering process “A” is within 250 ° C., preferably within 150 ° C., and more preferably within 100 ° C.
- the temperature is held for a predetermined time (section “b” shown in FIG. 7), for example, 1 to 50 hours.
- this holding time is preferably determined in relation to the maximum temperature reached.
- the maximum temperature and holding time may vary somewhat, and it is sufficient if the temperature is held for about 1 to 50 hours near the maximum temperature.
- the maximum temperature reached and the holding time satisfy the following relationship. -1.13x + 1173 ⁇ y ⁇ ⁇ 1.2x + 1166 (however, 1100 ° C ⁇ x> 900 ° C)
- x (° C.) represents the maximum temperature reached
- y (time) represents the holding time near the maximum temperature reached.
- the setting of the maximum temperature reached is also affected by the average particle diameter of the magnet material particles after pulverization. For example, it is preferably set to be higher than 900 ° C. for an average particle diameter of 1 ⁇ m and 1100 ° C. or less for an average particle diameter of 5 ⁇ m.
- the average particle size is measured using a laser diffraction / scattering particle size distribution measuring device (device name: LA950, manufactured by HORIBA). Specifically, after gradually pulverizing the finely pulverized magnet material particles at a relatively low oxidation rate, several hundred mg of the gradually oxidized powder is added to silicone oil (product name: KF-96H-1 million cs, manufactured by Shin-Etsu Chemical). Was mixed into a paste and sandwiched between quartz glass as a test sample (HORIBA paste method), and the value of D50 in the graph of particle size distribution (volume%) was defined as the average particle size. However, when the particle size distribution was a double peak, the average particle size was determined by calculating D50 for only the peak with a small particle size.
- silicone oil product name: KF-96H-1 million cs, manufactured by Shin-Etsu Chemical
- the sintered body 1B (see FIG. 1) that has been subjected to the high-temperature heat treatment “B” is again cooled to room temperature, and then heated again to a predetermined temperature by the low-temperature heat treatment “C”.
- the cooling to room temperature may be natural cooling.
- the heating is performed in a reduced pressure atmosphere as in the high temperature heat treatment “B”. Note that a reduced-pressure atmosphere is not necessary as long as the atmosphere is an inert gas atmosphere such as argon gas, nitrogen gas, or helium gas.
- the temperature of the sintered body 1B is increased so as to reach the maximum temperature preset for the low temperature heat treatment within a predetermined time, for example, within 10 hours, preferably within 5 hours, and more preferably within 2 hours.
- the maximum temperature set for the low-temperature heat treatment is set to be lower than the high-temperature heat treatment temperature, for example, 350 ° C. to 650 ° C., preferably 450 ° C. to 600 ° C., more preferably 450 ° C. to 550 ° C. .
- the temperature is held for a predetermined time (section “c” shown in FIG. 7), for example, 2 hours. It is preferable to perform rapid cooling immediately after completion of the holding.
- the sintered body 1C (see FIG. 1) subjected to the low-temperature heat treatment is inserted, for example, in an unmagnetized state in a magnet insertion slot (not shown) of the rotor core of the electric motor. May be. Thereafter, the sintered body 1C inserted in the slot is magnetized along the easy axis of magnetization of the magnetic material particles contained therein, that is, the C axis. Thereby, the sintered body 1 ⁇ / b> C becomes the rare earth sintered magnet 1.
- the plurality of sintered bodies 1C inserted into the plurality of slots of the rotor core are magnetized so that N poles and S poles are alternately arranged along the circumferential direction of the rotor core.
- a permanent magnet can be manufactured.
- any known means such as a magnetizing coil, a magnetizing yoke, or a condenser magnetizing power supply device may be used.
- the sintered body 1C may be magnetized to be the permanent magnet 1 before being inserted into the slot, and the magnetized magnet 1 may be inserted into the slot.
- Examples and Comparative Examples Examples of the method of the present invention and comparative examples will be described below.
- evaluation and analysis were performed from the viewpoint of magnetic properties and physical properties of sintered bodies manufactured under various conditions, or rare earth sintered magnets obtained by magnetizing the sintered bodies.
- magnetic characteristics residual magnetic flux density (Br), coercive force (H cj ), Br (kG) + Hcj (kOe), and squareness (H k / H cj ) (%) are different.
- a processing sheet piece having either a rectangular parallelepiped shape shown in FIG. 8 or a trapezoidal shape shown in FIG. 9 was used as the rare earth magnet forming material.
- the sintered body 1C obtained by applying all of “sintering treatment A”, “high temperature heat treatment B”, and “low temperature heat treatment C” in the sintering process to this processing sheet piece is polished, and a 7 mm square cube Processed into samples.
- the sample was extracted from the approximate center position of the sintered body 1 ⁇ / b> C. Therefore, the original shape of the processing sheet piece does not affect the characteristic evaluation.
- the thickness was set to 7 mm.
- the sample was magnetized by applying an external magnetic field of 7T. The maximum magnetic field applied during the evaluation was 2.5T. Table 1 shows the results.
- Example 1 Using the trapezoidal processing sheet piece shown in FIG. 9, a sintered body was manufactured according to the following procedure. No oil removal treatment is performed. ⁇ Coarse grinding> The alloy obtained by the strip casting method was occluded with hydrogen at room temperature and held at 0.85 MPa for 1 day. Then, hydrogen crushing was performed by holding at 0.2 MPa for 1 day while cooling with liquefied Ar.
- the composition of the alloy is “Nd: 25.25 wt%, Pr: 6.75 wt%, B: 1.01 wt%, Ga: 0.13 wt%, Nb: 0.2 wt%, Co: 2.0 wt%, Cu: 0.13 wt%, balance Fe, Al: 0.10 wt% and other inevitable impurities ”.
- the fine pulverization was performed by jet mill pulverization as follows. 1 part by weight of methyl caproate was mixed with 100 parts by weight of the hydrogen-pulverized alloy coarse powder, and then pulverized by a helium jet mill pulverizer (device name: PJM-80HE, manufactured by NPK). The pulverized alloy particles were collected and separated by a cyclone method, and the ultrafine powder was removed.
- the supply rate during pulverization was 1 kg / h
- the introduction pressure of He gas was 0.6 MPa
- the flow rate was 1.3 m 3 / min
- the oxygen concentration was 1 ppm or less
- the dew point was ⁇ 75 ° C. or less.
- the particle diameter after pulverization was about 1 ⁇ m.
- a mixer device name: TX-0.5, manufactured by Inoue Seisakusho
- a stainless steel (SUS) mold containing the composite material after molding is subjected to orientation treatment by applying a parallel magnetic field from the outside using a superconducting solenoid coil (device name: JMTD-12T100, manufactured by JASTEC). Went. This orientation was performed at an external magnetic field of 7 T and a temperature of 80 ° C. for 10 minutes. Thereafter, the alternating-current magnetic field that attenuates was applied to demagnetize the composite material subjected to the orientation treatment.
- SUS stainless steel
- JMTD-12T100 manufactured by JASTEC
- the composite material subjected to the orientation treatment was subjected to decarbonization treatment under a hydrogen pressure atmosphere of 0.8 MPa.
- the temperature was raised from room temperature to 500 ° C. in 8 hours and held for 2 hours.
- the hydrogen flow rate was 1 to 3 L / min.
- High temperature heat treatment B The sample after the sintering treatment “A” was cooled to room temperature, and then subjected to high-temperature heat treatment “B” in a reduced pressure atmosphere.
- the maximum temperature reached for the high temperature heat treatment was 970 ° C., the temperature was raised in 1 hour and 15 minutes, and the holding time was 8 hours.
- Example 1 anisotropic contraction could be suppressed while exhibiting high magnetic properties. Specifically, with respect to the magnetic properties Br [kG] + Hcj [kOe], the difference from the value obtained when sintering without pressurization shown in Comparative Example 5 is within ⁇ 4.5, in other words In this case, 27.1 or more and the squareness Hk / Hcj could be 80% or more.
- Examples 2 to 9, Comparative Examples 1 to 5 Except having changed into the conditions of Table 1, operation similar to Example 1 was performed and each sintered compact was obtained.
- Comparative Examples 1 and 4 when the high temperature heat treatment “B” is not performed, the squareness Hk / Hcj exceeds 90%, but the coercive force Hcj is about 12 [kOe]. Only very low values were obtained. Further, as shown in Comparative Examples 2 and 3, when the temperature of the high temperature heat treatment “B” is as low as 700 ° C. or 900 ° C., it is compared with the case where the high temperature heat treatment “B” shown in Comparative Examples 1 and 4 is not performed. As a result, the coercive force was hardly improved.
- the heat treatment temperature after pressure sintering which has been conventionally used for producing sintered magnets, is often 900 ° C. or less. It is clear that heat treatment in the temperature range has little effect. Further, as is clear from Comparative Example 5, when sintered without pressure, the magnetic properties were high, but anisotropic shrinkage was not suppressed. As is apparent from Examples 2 and 3, there is no problem even if the boost start temperature is 300 ° C. or 500 ° C. Even if the boost start temperature is set to such a low temperature, the magnetic characteristics and anisotropic shrinkage are suppressed. Was found to be compatible.
- Example 10 to 17, Comparative Examples 6 and 7 The same evaluation and analysis as in Table 1 were performed on the sintered body produced by changing the conditions in Table 1 or the rare earth sintered magnet obtained by magnetizing the sintered body. Table 2 shows the results. Note that conditions other than those specified in Table 2 were the same as those in Example 1.
- the alloy composition “A” means the alloy composition used in Example 1, while the alloy composition “B” is “Nd: 22.25 wt%, Dy: 3.00 wt%, Pr: 6”. .75 wt%, B: 1.01 wt%, Ga: 0.13 wt%, Nb: 0.2 wt%, Co: 2.0 wt%, Cu: 0.13 wt%, balance Fe, Al: 0.10 wt%, etc. It includes “inevitable impurities”.
- the finely pulverized pulverized particle size that is the basis of the rare earth magnet forming material was set to about 3 ⁇ m by setting the raw material supply rate at the time of pulverization to 4.3 kg / h.
- the composite material subjected to the orientation treatment in other words, the compound inserted in the graphite mold penetrating in the direction perpendicular to the orientation direction (length direction) is placed in a vacuum atmosphere.
- the oil was removed.
- a rotary pump was used as an exhaust pump for creating a vacuum atmosphere, and the temperature was raised from room temperature to 100 ° C. in 2 hours and held for 50 hours. Then, the calcination process was performed.
- Comparative Example 6 when high-temperature heat treatment was not performed at a temperature higher than 900 ° C., anisotropic shrinkage was suppressed, but both coercive force and squareness were low. . Further, in Comparative Example 7 where pressure sintering was not performed, the magnetic properties were high, but anisotropic shrinkage was not suppressed.
- Examples 18 to 33, Comparative Examples 8 and 9 Except having changed into the conditions of Table 3, operation similar to Example 1 was performed and each sintered compact was obtained. However, magnetic powder pulverized to an average particle size of 3 ⁇ m by jet mill pulverization is used, and the pressure increase rate in the sintering process “A”, that is, the time required to reach a predetermined final load from the initial load is 5 minutes, The holding time at the highest temperature reached was 10 minutes. The initial load was 2.6 MPa.
- the temperature of the high-temperature heat treatment “B” was studied in the range of 930 ° C. to 1030 ° C., but the magnetic characteristics were the same as in Comparative Example 8 where the high-temperature heat treatment “B” was not performed under any conditions. Compared to the case, it was greatly improved. Specifically, for the magnetic properties Br [kG] + Hcj [kOe], the difference from the value obtained when sintering without pressurization shown in Comparative Example 11 is within ⁇ 4.5, in other words In this case, 27.8 or more and the squareness Hk / Hcj could be 80% or more. In addition, regarding the time of the high temperature heat treatment “B”, it is preferable that the heat treatment temperature is low when the heat treatment temperature is low.
- Examples 31 to 33 show the results when the applied pressure in the sintering process “A” is 25.6 MPa. Even when the pressure is high, the magnetic properties are greatly improved by performing the high-temperature heat treatment “B”. I was able to.
- the pressurization in the sintering process “A” caused sintering shrinkage mainly in the direction parallel to the pressurizing direction. It was possible to control the shape as intended.
- Examples 34 to 38, Comparative Example 11 Except having changed into the conditions of Table 4, it performed operation similar to Example 1 and obtained each sintered compact. However, magnetic powder pulverized to an average particle size of 3 ⁇ m by jet mill pulverization is used, and the pressure increase rate in the sintering process “A”, that is, the time required to reach a predetermined final load from the initial load is 5 minutes, The holding time at the highest temperature reached was 10 minutes. The initial load was 1.3 MPa in Example 34 and 2.6 MPa in Examples 33 to 38.
- the squareness Hk / Hcj [%] could be 80% or more.
- the maximum value of the applied pressure in the sintering process “A” is preferably 3 MPa or more and smaller than 40 MPa.
- the density of the sintered body after the sintering process “A” can be set to 7.3 g / cm 3 or more. As a result, the dimensional change (shrinkage rate) of the sintered body could be suppressed even when the high temperature heat treatment “B” was performed.
- Example 39, 40, and 37 About Example 39, 40, except having changed into the conditions of Table 5, operation similar to Example 1 was performed and each sintered compact was obtained. However, magnetic powder pulverized to an average particle size of 3 ⁇ m by jet mill pulverization is used, and the pressure increase rate in the sintering process “A”, that is, the time required to reach a predetermined final load from the initial load is 5 minutes, The holding time at the highest temperature reached was 10 minutes. The initial load was 2.6 MPa.
- Examples 39 and 40 are the results of studying the maximum temperature achieved when the applied pressure in the sintering process “A” was applied. As is clear from these examples, the magnetic properties are improved by the high-temperature heat treatment “B” regardless of whether the maximum attained temperature is 850 ° C. or 900 ° C. when the applied pressure is applied in the sintering process “A”.
- the difference from the value of Br [kG] + Hcj [kOe] representing the magnetic properties of Comparative Example 11, which is pressureless sintering using the same magnetic powder, can be made within ⁇ 4.5, and square
- the property Hk / Hcj [%] could be 80% or more.
- Example 39 when the maximum temperature reached was 850 ° C., the surface irregularity of the sintered body after the sintering treatment “A” was as small as 10 ⁇ m, but the sintered body density was Since it was as low as 6.8 g / cm 3 , further shrinkage of the sintered body occurred after the high-temperature heat treatment “B”, and the volume shrinkage ratio due to the high-temperature heat treatment “B” was a very large value of 9.1%.
- Example 40 when the maximum temperature reached 900 ° C., the density of the sintered body after the sintering process “A” was 7.3 g / cm 3 , and the sintering was almost completely completed. Therefore, the volume shrinkage ratio of the sintered body by the high temperature heat treatment “B” was a small value of 2.8%. As is clear from Example 37, when the maximum temperature reached 970 ° C., the sintered body density was 7.48 g / cm 3 , and in this case, almost no surface unevenness occurred, and the high temperature heat treatment was performed. The volume shrinkage of the sintered body due to “B” was a very small value of 1.8%.
- FIG. 10 shows the relationship between the maximum temperature achieved by the high temperature heat treatment “B” in Examples 1 to 40 and Comparative Examples 1 to 11 and the holding time at that temperature. From this figure, with respect to the sintered body sintered while applying the pressing force in the sintering process “A”, the pressure is lower than the pressing force at the time of sintering and is higher than 900 ° C. and lower than 1100 ° C.
- the magnetic properties can be enhanced by performing the high temperature heat treatment “B” within the range. Specifically, the magnetic properties of the sintered body that was sintered without applying pressure in the sintering process “A”, and further subjected to the low temperature heat treatment “C” without performing the high temperature heat treatment “B”.
- the difference of Br [kG] + Hcj [kOe] is set to ⁇ 4.5 or less and the value of the squareness Hk / Hcj is set to 80% or more compared with the value of Br [kG] + Hcj [kOe] obtained from We were able to.
- the maximum temperature reached at the heat treatment temperature “B” is x (where 1100 ° C. ⁇ x> 900 ° C.)
- the relationship with the holding time y (hour) in the vicinity of the maximum temperature is: -1.13x + 1173 ⁇ y ⁇ -1.2x + 1166
- Examples 1, 26, Comparative Examples 4, 5, 8, 10 In addition to the evaluations performed in Tables 1 to 5, each sintered body of Examples 1 and 26 and Comparative Examples 4, 5, 8, and 10 or each rare earth sintered magnet obtained by magnetizing this sintered body From the viewpoint of physical properties, the following properties (1) to (4) were evaluated.
- FIG. 11 shows an example of a pole figure representing the orientation variation of the sintered body 1C.
- JSM-70001F manufactured by JEOL was used for measuring the aspect ratio of the pole figure, and the above-mentioned software Channel 5 was used for the analysis. Since the drawing of the pole figure differs depending on the measurement device and analysis software, it is preferable to use the above-described device and software.
- the pole figure is preferably converted so that the center area having the maximum frequency is positioned at the intersection of the “X0” axis and the “Y0” axis.
- FIG. 11 shows a pole figure before conversion.
- the physical properties of the sintered body 1C can also be understood from the viewpoint of triple point impurities. As a result of analysis, it was revealed that the triple point included in the sintered body 1C contains at least Cu or Ga. Therefore, for example, in the cross section of the sintered body 1C, the physical properties of the sintered body can be grasped by analyzing the area ratio in which these Cu, Ga, or Cu and Ga are detected.
- the mechanism by which Cu and Ga appear in the cross section is not necessarily clear, but is presumed to be roughly as follows. That is, before the sintering process “A” is performed, the contaminants are uniformly distributed in the rare earth-rich phase, but the contaminants are sintered by the pressure of the pressurizing process in the sintering process “A”. It is segregated on the surface of the body 1A, and in the subsequent high-temperature heat treatment “B”, impurities are diffused in the rare earth-rich phase.
- FIG. 13 shows an example of an element mapping image obtained by performing image analysis on the cross section of the sintered body 1C after EPMA analysis.
- Cu (“31” in FIG. 13)
- Ga (“32” in FIG. 13)
- a rare earth-rich phase containing Cu and Ga occupies in the entire rare earth-rich phase in the field of view.
- Each area ratio (%) was calculated.
- the magnetic properties of the sintered body produced by the production method of the present invention, in particular, the coercive force thereof, does not undergo the high-temperature heat treatment “B”.
- the cross section of the sintered body 1C includes a rare earth-rich phase containing a rare earth material at a higher concentration than other regions and an R2Fe14B composition (R is a rare earth containing yttrium).
- R is a rare earth containing yttrium
- the rare earth-rich phase at the triple point surrounded by the magnetic material particles (main phase) grows greatly through the sintering process “A”. Therefore, when the particle size (sintered particle size) of the main phase particles is ⁇ ⁇ m, attention is paid to the area ratio (%) of the rare earth rich phase having an area of ⁇ ⁇ m 2 or more in the total rare earth rich phase. .
- the measurement was performed in three fields of view, and the average value of the area ratio was used.
- the measurement visual field is, for example, as shown in FIG. 12, and is set to contain 75 ⁇ m ⁇ 75 ⁇ m square, 35 ⁇ m ⁇ 35 ⁇ m square, or at least 50 particles.
- the “sintered particle diameter” was calculated by carrying out EBSD analysis (detector: NordlysNanos manufactured by Oxford Instruments) using the above-mentioned JSMOL JSM-7001F. Specifically, from the crystal orientation map obtained by EBSD, a portion where the angle difference between adjacent particles is 2 ° or more is defined as a grain boundary, and the equivalent circle diameter of an area surrounded by the grain boundary is calculated. The particle size of the corresponding particle was used. Further, the average value of the particle diameters of the particles in the measurement field of view was calculated and used as “sintered particle diameter”. The above processing was performed in the above-described Channel 5.
- the cross-section is observed at one side of the rare-earth sintered magnet 1, here the end face at the side “D”, that is, a point 1 mm from the front end face 23, the center of the side “D”, Three points in the middle of the two points were used, and at each of these points, the depth direction “ ⁇ ” was the center, and the width direction “ ⁇ ” was the width direction center.
- the field of view was determined so that at least 50 particles were included in the field of view.
- the viewing angle is 35 ⁇ m ⁇ 35 ⁇ m square.
- the pole figure which shows the orientation variation of Nd2Fe14B crystal structure within that range was acquired.
- the half width of the Gaussian function used for obtaining the pole figure was set to 10 ° and the cluster angle was set to 5 °. Then, processing was performed so that the direction in which the c-axis is most frequently oriented becomes the center of the pole figure.
- ⁇ Three-point impurities> The sample was embedded using a thermosetting epoxy resin imparted with conductivity, and then cured at 40 ° C. for 8 hours.
- a cross section of this sample was prepared by a mechanical polishing method, and further subjected to flat milling treatment with Ar ions, and then FE-EPMA measurement was performed using JSM-7001F manufactured by JEOL.
- JXA-8500F manufactured by JEOL was used, the acceleration voltage was 15.0 kV / irradiation current was 200 nA, and at least 50 main phase particles were contained.
- element mapping images were acquired at a direct magnification of 3,000 (field range: 33 ⁇ m ⁇ 33 ⁇ m).
- the optimal field of view was selected in a timely manner.
- the cross-section is observed at three points that divide one side of the rare earth sintered magnet 1, here, the side “D” along the long side direction “ ⁇ ” into three parts in the depth direction. “ ⁇ ” is the central portion, and “ ⁇ ” is the central portion in the width direction.
- the area (%) of the rare earth rich phase containing Cu with respect to the total rare earth rich phase area is calculated using the image analysis processing of the image analysis processing software (ImageJ), and the analysis results of three points The average value of was used.
- the element mapping image takes into account the P / B ratio (ratio between the peak value of characteristic X-rays and the background), and sets the maximum signal intensity for each element as the maximum value, and the minimum value for the base material (main phase). Set to signal strength.
- ⁇ Area ratio of large rare earth-rich phase> The sample was cured at 40 ° C. for 8 hours after embedding using a thermosetting epoxy resin. Next, the cross-section was prepared by using both the mechanical polishing method and the ion polishing processing method, and the FE-SEM observation was performed on the sample subjected to the conductive treatment. The ion polishing process was performed under the condition of an acceleration voltage of 6.0 kV or less using SM09010 made by JEOL.
- FE-SEM observation was performed using a Hitachi SU8020 with an acceleration voltage of 5.0 kV and directly observed at a magnification of 1000 (field range of 125 ⁇ m ⁇ 95 ⁇ m) to obtain a YAG-BSE image.
- the cross-section is observed at three points that divide one side of the sintered body 1C, here, the side “D” into four equal parts, and at each of these points, the depth direction “ ⁇ ”. Is the center, and the width direction “ ⁇ ” is the center in the width direction.
- the observation part is set to three points that divide the side “D” along the pressing direction “ ⁇ ” into four equal parts, the same result can be obtained regardless of the direction in which the side is actually selected (hereinafter, the same).
- the YAG-BSE image was subjected to image analysis processing using image analysis processing software (ImageJ), and the rare earth rich phase identified by binarization processing was analyzed. Specifically, when the sintered particle diameter calculated by EBSD analysis is ⁇ ⁇ m, the area ratio (%) of the rare earth rich phase having an area of ⁇ ⁇ m 2 or more in the total rare earth rich phase in the field of view is calculated. did. The measurement visual field was set so that approximately 50 particles (however, at least 50 particles) were included in the viewing angle. Next, the average value of the rare earth-rich phase having an area of ⁇ ⁇ m 2 or more, which is the object of analysis, identified in the visual field range of each of the three observation points was calculated.
- imageJ image analysis processing software
- Example 1 the sintering process “A”, that is, the high temperature heat treatment “B” is performed at a temperature higher than 900 ° C. after the pressure sintering, the comparative example 4 is a condition only for the pressure sintering, and the comparative example 5 is Sintered by vacuum sintering.
- the same magnetic powder is used, and the average particle diameter of the magnet material particles is 1 ⁇ m, that is, less than 2 ⁇ m.
- the sintering treatment “A”, that is, the high temperature heat treatment “B” is performed at 1000 ° C. for 10 hours after the pressure sintering, and the comparative example 8 does not perform the high temperature heat treatment “B”.
- Example 10 high-temperature heat treatment “B” was performed at 900 ° C. for 10 hours after heat sintering.
- the same magnetic powder is used, and the average particle diameter of the magnet material particles is 3 ⁇ m, that is, 2 ⁇ m or more.
- Example 1 Regarding the triple-point impurities that are surrounded by the main phase and the main phase, a specific structure was obtained with respect to Cu and Ga. Comparing Example 1 and Comparative Examples 4 and 5, in Example 1 with high magnetic properties and Comparative Example 5 of vacuum sintering, the area of the triple point containing Cu was 45% and 41%, respectively. Regarding Example 1, the area of the triple point containing Ga was 17%, and the area of the triple point containing both Cu and Ga was 13%. In Comparative Example 4 where only pressure sintering was performed, such a structure was not observed.
- Example 26 and Comparative Examples 8 and 10 were compared, in Example 26 in which the high temperature heat treatment “B” was performed at 1000 ° C. and the magnetic properties were improved, the area of the triple point containing Cu was 66%, It was 40% or more. The area of the triple point containing Ga was 19%, and the area of the triple point containing both Cu and Ga was 17%. In Comparative Example 8 in which only pressure sintering was performed and in Comparative Example 10 in which high-temperature heat treatment “B” was performed at 900 ° C., such a structure was not observed.
- the triple point area is 40% or more, and the triple point area containing Ga is 15% or more when the sintered particle diameter is less than 2 ⁇ m, and 19% or more when the sintered particle diameter is 2 ⁇ m or more.
- the area of the triple point containing both Cu and Ga was found to be a structure of 10% or more when the sintered particle diameter is less than 2 ⁇ m, and 17% or more when the sintered particle diameter is 2 ⁇ m or more. With the above structure, it is possible to improve the magnetic characteristics even if pressure sintering is performed.
- the ratio tends to increase by increasing the high-temperature heat treatment “B” above 900 ° C.
- the area ratio of the rare earth-rich phase having an area of ⁇ ⁇ m 2 or more was 41%, and in Example 26, it was 36%.
- the area ratio of the rare earth-rich phase having an area of ⁇ ⁇ m 2 or more was 35% or more.
- Comparative Examples 4, 5, 8, and 10 where the high-temperature heat treatment “B” was not performed the area ratio of the rare earth-rich phase having an area of ⁇ ⁇ m 2 or more was less than 35%.
- the aspect ratio of the pole figure was 1.2 or more in Examples 1 and 26 and Comparative Examples 4, 8 and 10 which are pressure sintering. This is presumably because the orientation of the sintered body became more uneven in the pressurizing direction due to the pressure applied during pressure sintering. Thereby, anisotropic shrinkage at the time of sintering is suppressed, the shrinkage rate in the pressurizing direction is about 50%, and it becomes possible to sinter in a target shape.
- the present invention can be similarly applied when the orientation direction of the easy magnetization axis is so-called non-parallel orientation.
- the pressing direction in the sintering process is set to a direction perpendicular to the orientation direction, and thus the orientation is disturbed. In such a case, it can be particularly suitable for non-parallel alignment.
- the rare earth magnet forming material for example, a conventionally formed compact manufactured by a compacting method can be used.
- the finely pulverized magnet powder is put into a mold in the same manner as the green sheet method described above, and is molded in a magnetic field with its crystal axis oriented by applying a magnetic field.
- the forming in the magnetic field may be performed at a pressure of about 0.3 to 3.0 t / cm 2 (30 to 300 MPa) in a magnetic field of about 12 to 20 kOe (960 to 1600 kA / m).
- a pulse application magnetic field may be used.
- the magnetic field applied here can be generated using any of various magnetic circuits based on the direction of the magnet particles to be oriented. For example, when manufacturing magnets with polar anisotropic orientation, a magnetic field corresponding to polar anisotropic orientation is generated by energizing the magnetic field coils using a mold with a number of magnetic field coils corresponding to the number of magnetic poles. Can be made.
- Sintered rare earth magnet 1A to 1C Sintered body 3 Forming material for rare earth magnet (sheet piece for processing, green sheet) 21 Upper surface 22 Bottom surface 23 Front end surface 24 Rear end surface
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
この態様の希土類焼結磁石形成用焼結体の製造方法によれば、加圧焼結を採用したことにより、焼結時に生じる収縮のバラツキを抑制することができるため、所望形状の焼結体を提供することができ、且つ、焼結処理の後に高温熱処理を行うことにより、加圧によって生じた磁石材料粒子のバラツキを修正することができるため、真空焼結を行った場合と同等又はそれ以上の磁気特性を有する焼結体を提供することができる。
この態様の希土類焼結磁石形成用焼結体の製造方法によれば、熱可塑性樹脂を飛散させることにより、複合体に残存する炭素量を低減させ、磁石の残留磁束密度及び保磁力の低下を抑制することができる。
また、本発明においては、希土類磁石形成用材料は、希土類物質を含有し磁化容易軸を有する磁石材料粒子の集合体とすることができる。この場合には、磁石材料粒子の集合体が焼結用型内に投入されて、加圧焼結が行われる。
この態様の希土類焼結磁石形成用焼結体の製造方法によれば、高温熱処理に加えて低温熱処理を行うことにより、焼結粒子間に粒界層を形成し、焼結粒子間の磁気分断を進行させて、磁石の保磁力を向上させることができる。
また、上記態様の希土類焼結磁石形成用焼結体の製造方法において、温度が少なくとも300℃に達したときに昇圧が開始されてもよい。少なくとも300℃に達したときに昇圧が開始されることで、希土類磁石形成用材料に含まれる磁石材料粒子同士の融着が始まり、希土類磁石形成用材料の強度が増加することにより、割れが発生することなく加圧しながら焼結を行うことが可能となる。
更に、上記態様の希土類焼結磁石形成用焼結体の製造方法において、前記最高到達温度に達するまでの昇温速度が20°/分以上であってもよい。
加圧力を3MPa以上とすることにより、希土類焼結磁石形成用焼結体を加圧方向にのみ収縮させ、最終製品である磁石の形状等を制御することが容易となる。
加熱焼結時の最高到達温度を900℃より高くすることにより、希土類磁石形成用材料にボイドが発生することを防止して、所望形状の希土類焼結磁石形成用焼結体を製造することが容易となる。
-1.13x+1173≧y≧-1.2x+1166 (ただし、1100℃≧x>900℃)を満たすのが好ましい。
このような条件の下で高温熱処理を行うことにより、希土類焼結磁石形成用焼結体の磁気特性を向上させることができる。
高温熱処理について設定された最高到達温度の上限は、磁石材料粒子の平均粒子径の影響を受けることから、平均粒子径に応じて上限を定めるのが好ましい。
希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石であって、磁石断面において、Cuが含まれる希土類リッチ相が全希土類リッチ相において占める面積割合が40%以上であり、且つ、EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であるか、
希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石形成用焼結体であって、磁石断面において、Gaが含まれる希土類リッチ相が全希土類リッチ相において占める面積割合が、前記磁石材料粒子の平均粒子径が2μm未満の場合は15%以上であり、前記磁石材料粒子の平均粒子径が2μm以上の場合は19%以上であり、且つ、EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であるか、
希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石形成用焼結体であって、磁石断面において、CuとGaが共に含まれる希土類リッチ相が全希土類リッチ相において占める面積割合が、前記磁石材料粒子の平均粒子径が2μm未満の場合は10%以上であり、前記磁石材料粒子の平均粒子径が2μm以上の場合は17%以上であり、且つ、EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であることを特徴とする。
Cu及びGaは磁気特性の向上に貢献していると推察されることから、Cu及びGaが含まれる希土類リッチ相の占める面積割合は大きいのが好ましい。
また、磁化容易軸を有する磁石材料粒子を含む希土類焼結磁石においては、特に、配向バラツキを表す極点図のアスペクト比が大きいということは、加圧が適切になされていることを意味する。このバラツキは、加圧焼結の加圧力によって生じたものだからである。よって、アスペクト比は、1.2以上であるのが好ましい。
焼結処理の後に高温熱処理を行うことにより、加圧によって生じた磁石材料粒子のバラツキが修正されていることから、このような高い磁気特性を得ることができる。
図1(b)に示す希土類焼結磁石1は、図1(a)に示す希土類磁石形成用材料3を加圧焼結することによって製造される。希土類磁石形成用材料3は、希土類物質を含有する磁石材料を含む。磁石材料として、例えば、Nd-Fe-B系磁石材料を使用することができる。この場合において、Nd-Fe-B系磁石材料は、例えば、重量百分率でR(RはYを含む希土類元素のうちの1種又は2種以上)27.0~40.0wt%、より好ましくは27.0~35wt%、Bを0.6~2wt%、より好ましくは0.6~1.1wt%、Feを60~75wt%の割合で含むものとすることができる。典型的には、Nd-Fe-B系磁石材料は、Ndを27ないし40wt%、Bを0.8ないし2wt%、電解鉄であるFeを60ないし70wt%の割合で含む。この磁石材料には、磁気特性向上を目的として、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。
〔配向角〕
配向角は、予め定めた基準線に対する磁石材料粒子の磁化容易軸の方向の角度を意味する。
磁石の特定の面内において予め定めた区画内にある磁石形成材料粒子の配向角のうち、最も頻度が高い配向角である。配向軸角度を定める区画は、磁石材料粒子を少なくとも30個、例えば200個ないし300個含む4角形区画又は一辺が35μmの正方形区画とする。
任意の4角形区画における配向軸角度と、該区画内に存在する磁石材料粒子のすべてについて、その磁化容易軸の配向角との差を求め、該配向角の差の分布における半値幅により表される角度の値を配向角バラツキ角度とする。図3は、配向角バラツキ角度を求める手順を示す図表である。図3において、磁化容易軸に対する個々の磁石材料粒子の磁化容易軸の配向角の差Δθの分布が、曲線Cにより表される。縦軸に示す累積頻度が最大になる位置を100%とし、累積頻度が50%になる配向角差Δθの値が半値幅である。
個々の磁石材料粒子Pにおける磁化容易軸P-1の配向角は、走査電子顕微鏡(SEM)画像に基づく「電子後方散乱回折解析法」(EBSD解析法)により求めることができる。この解析のための装置としては、Oxford Instruments社製のEBSD検出器(AZtecHKL EBSD NordlysNano Integrated)を備えた走査電子顕微鏡である、東京都昭島市所在の日本電子株式会社製JSM-70001F、もしくは、EDAX社製のEBSD検出器(Hikari High Speed EBSD Detector)を備えた走査電子顕微鏡である、ZEISS社製SUPRA40VPがある。また、外部委託によりEBSD解析を行う事業体としては、東京都中央区日本橋所在のJFEテクノリサーチ株式会社及び大阪府茨木市所在の株式会社日東分析センターがある。EBSD解析によれば、所定の区画内に存在する磁石材料粒子の磁化容易軸の配向角及び配向軸角度を求めることができ、これらの値に基づき、配向角バラツキ角度も取得することができる。図4は、EBSD解析法による磁化容易軸の配向表示の一例を示すもので、図4(a)は、希土類磁石の軸の方向を示す斜視図を、同(b)は、中央部と両端部におけるEBSD解析により得られた極点図の例を示すものである。また、図4(c)にA2軸に沿った磁石の断面における配向軸角度を示す。配向軸角度は、磁石材料粒子の磁化容易軸の配向ベクトルを、A1軸とA2軸を含む平面における成分と、A1軸とA3軸を含む平面における成分に分けて表示することができる。A2軸は幅方向であり、A1軸は厚み方向である。図4(b)の中央の図は、磁石の幅方向中央においては、磁化容易軸の配向がほぼA1軸に沿った方向であることを示す。これに対し、図4(b)の左の図は、磁石の幅方向左端部における磁化容易軸の配向が下から右上方向にA1軸-A2軸の面に沿って傾斜していることを示す。同様に、図4(b)の右の図は、磁石の幅方向右端部における磁化容易軸の配向が下から左上方向にA1軸-A2軸の面に沿って傾斜していることを示す。このような配向を、配向ベクトルとして、図4(c)に示す。なお、図4(b)に示した極点図は、EDAX社製のEBSD検出器(Hikari High Speed EBSD Detector)を備えた走査電子顕微鏡である、ZEISS社製SUPRA40VPにより取得した極点図である。
任意の区画内に存在する個々の磁石材料粒子について、観察面に垂直な軸に対する該磁石材料粒子の磁化容易軸の傾斜角を表示する図である。この図は、走査電子顕微鏡(SEM)画像に基づき作成することができる。
図1(b)に示した希土類焼結磁石1を製造するための本発明の一実施形態による製造方法を説明する。
希土類焼結磁石1の元になる希土類磁石形成用材料3を準備する。図5に、希土類磁石形成用材料3の生成工程の一部を示す。先ず、所定分率のNd-Fe-B系合金からなる磁石材料のインゴットを鋳造法により製造する。代表的には、ネオジム磁石に使用されるNd-Fe-B系合金は、Ndが30wt%、電解鉄であることが好ましいFeが67wt%、Bが1.0wt%の割合で含まれる組成を有する。次いで、このインゴットを、スタンプミル又はクラッシャー等の公知の手段を使用して粒子径200μm程度の大きさに粗粉砕する。代替的には、インゴットを溶解し、ストリップキャスト法によりフレークを作製し、水素解砕法で粗粉化することもできる。それによって、粗粉砕磁石材料粒子115が得られる(図5(a)参照)。水素解砕法で粗粉化する場合には、550℃以下の温度にて合金に水素を吸蔵させることで粗粉化することが好ましい。550℃を超えた温度で水素吸蔵を行うとHDDR反応が進行することで粒子径が小さくなり、後述する高温熱処理「B」の効果が発現しない恐れがあるためである。
なお、三重結合を有する上記化合物と二重結合を有する上記化合物を併用してもよい。
加工用シート片3を加熱するとともに、図1(a)の矢印「G」方向に沿って平行磁場を印加する。加熱及び磁場の印加を行う際、加工用シート片3は、該加工用シート片3に対応する形状のキャビティを有する磁場印加用型内に収容されている(図示せず)。平行磁場の方向「α」は、加工用シート片3の上面21と底面22の双方に直角である。磁場の印加により、加工用シート片3に含まれる磁石材料粒子の磁化容易軸は、磁場の方向「G」に、言い換えれば、厚み方向「α」に沿って平行に配向される。磁場を印加する際に加熱することにより、加工用シート片3に含まれるバインダーは軟化し、この結果、磁石材料粒子はバインダー内で回動できるようになり、それらの磁化容易軸は平行磁場に沿った方向に配向される。バインダーを軟化させるため、例えば、加工用シート片3内に含まれるバインダーの粘度が1ないし1500Pa・s、より好ましくは1ないし500Pa・sとなるまで加工用シート片3を加熱する。
磁化容易軸が配向された配向後の加工用シート片3を、大気圧、或いは、大気圧より高い圧力又は低い圧力、例えば、0.1MPaないし70MPa、好ましくは、1.0Pa又は1.0MPaに調節した非酸化性雰囲気において、バインダー分解温度で数時間ないし数十時間、例えば5時間保持することにより仮焼処理を行う。この処理では、水素雰囲気又は水素と不活性ガスの混合ガス雰囲気を用いることが推奨される。水素雰囲気のもとで仮焼処理を行う場合には、仮焼中の水素の供給量は、例えば5L/minとする。仮焼処理を行うことによって、バインダー、言い換えれば、磁石材料粒子を熱可塑性樹脂に混合した複合体に含まれる有機化合物を、解重合反応、その他の反応によりモノマーに分解し、飛散させて除去することが可能となる。すなわち、加工用シート片3に残存する炭素の量を低減させる処理である脱炭素処理が行われることとなる。
また、仮焼処理は、加工用シート片3内に残存する炭素の量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うことが望ましい。それによって、その後の焼結処理で加工用シート片3の全体を緻密に焼結させることが可能となり、残留磁束密度及び保磁力の低下を抑制することが可能になる。なお、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力とする場合には、圧力は15MPa以下とすることが望ましい。ここで、加圧条件は、大気圧より高い圧力、より具体的には0.2MPa以上とすれば、特に残存炭素量軽減の効果が期待できる。バインダーの種類により異なるが、仮焼処理の温度は、250℃ないし600℃、より好ましくは300℃ないし550℃、例えば450℃とすればよい。
仮焼処理の前に、配向潤滑剤、可塑剤などのオイル成分を揮発させる脱オイル処理を行ってもよい。含有するオイル成分の種類により異なるが、脱オイル処理の温度は、60℃ないし120℃、より好ましくは80℃ないし100℃とすればよい。上記脱オイル処理においては、昇温速度を5℃/min以下、例えば0.7℃/minとすることにより、好ましい結果を得ることができる。また、脱オイル工程は減圧雰囲気で行うことでより好ましい結果が得られ、0.01Paないし20Pa、より好ましくは0.1Paないし10Paの減圧下で行うのが良い。尚、脱オイル処理を行うか否かによって、最終製品である希土類焼結磁石の磁気特性は変化しない。
図7に、焼結工程で行われる熱処理の概略を示す。この図において、横軸は時間を、縦軸は温度(℃)を、それぞれ示す。焼結工程は、焼結処理「A」に加え、その後に行われる高温熱処理「B」と、更にその後に行われる低温熱処理「C」とを含む。鋭意研究を重ねた結果、本願発明者等は、焼結処理「A」の後に、所定の条件を満たす高温熱処理「B」を行うことによって、焼結工程を経て得られる焼結体や、最終製品である希土類焼結磁石の特性が著しく向上することを突き止めた。また、このような高温熱処理「B」等と所定の条件を満たす焼結処理「A」との組み合わせにより、異方収縮の抑制効果といった付加的な効果も得られることも突き止めた。尚、便宜上、高温熱処理「B」と低温熱処理「C」を焼結工程の一部として説明するが、以下の記載から明らかなように、これらの処理は実質的には単なる熱処理であって、焼結処理「A」における加圧焼結とは異なる。
焼結処理「A」では、仮焼された加工用シート片3を、オス型の型とメス型の型との間に挟み込んでプレス圧をかけることにより、加圧力を作用させながら加熱して焼結する、つまり、加圧焼結する。
加圧方向は、加工用シート片3における磁化容易軸の配向方向(図1の「G」方向)に直交する方向(図1の「β」方向)とする。この方向に加圧を行うことにより、磁石材料粒子に与えられた磁化容易軸の配向が変化することを抑制することができ、より配向性の高い焼結体が得られる。
オス型の型とメス型の型との間に挟み込んでいるときの初期荷重は、例えば、0.5MPaといった比較的小さな一定の圧力に設定する(図7には、初期荷重は特に示していない)。但し、初期荷重をかけることは必ずしも必要ではない。この状態で、加工用シート片3を、室温から昇圧開始温度まで昇温させる。昇温は一定の昇温速度で行うのが好ましい。昇温速度は、3℃/分~30℃/分、例えば、20℃/分であってもよい。
焼結処理「A」がなされた焼結体1Aを室温まで冷却し、続く高温熱処理「B」で再び所定の温度まで加熱する。室温への冷却は自然冷却であってもよい。加熱は、減圧雰囲気下、更に言えば、少なくとも、焼結処理「A」における加圧力よりも低い圧力のもとで行う。なお、アルゴンガスや窒素ガス、ヘリウムガスのような不活性ガス雰囲気下であれば、減圧雰囲気でなくともよい。高温熱処理「B」では、焼結体1Aを、高温熱処理について予め設定された最高到達温度に所定時間内、例えば、10時間以内、より好ましくは5時間以内、更に好ましくは2時間以内で達するように昇温する。高温熱処理について設定される最高到達温度は、900℃よりも高く1100℃以下の範囲内とする。また、この設定温度は、焼結処理「A」で到達する最高到達温度との差が250℃以内、好ましくは、150℃以内、より好ましくは、100℃以内となるように設定する。焼結処理「A」で到達する最高到達温度との差を上記範囲内にすることで焼結後密度を高くしながら、高温熱処理「B」による磁気特性の向上を両立することが可能である。最高到達温度に達した後は、その温度を所定時間(図7に示す区間「b」)、例えば、1~50時間保持する。高温熱処理では、焼結体に与える総熱量も重要であることから、この保持時間は、最高到達温度との関係で定めるのが好ましい。更に言えば、総熱量が実質的に変化しないのであれば、最高到達温度や保持時間は多少変動してもよく、最高到達温度付近で、約1~50時間、保持されれば足りる。後述する図10から導くことができるように、最高到達温度と保持時間は、以下の関係を満たすのが好ましい。
-1.13x+1173≧y≧-1.2x+1166 (ただし、1100℃≧x>900℃)
ここで、x(℃)は最高到達温度を、y(時間)は最高到達温度付近での保持時間を表す。
最高到達温度の設定は、また、微粉砕後の磁石材料粒子の平均粒子径の影響を受ける。例えば、平均粒子径1μmに対しては900℃より高く、平均粒子径5μmに対しては1100℃以下に設定するのが好ましい。平均粒子径は、レーザ回折/散乱式粒子径分布測定装置(装置名:LA950、HORIBA製)を使用して測定する。具体的には、微粉砕後の磁石材料粒子を比較的低い酸化速度で徐酸化した後に、数百mgの徐酸化粉をシリコーンオイル(製品名:KF-96H-100万cs、信越化学製)と均一に混合してペースト状とし、それを石英ガラスに挟むことで被験サンプルとして(HORIBAペースト法)、粒度分布(体積%)のグラフにおけるD50の値を平均粒子径とした。ただし、粒度分布がダブルピークの場合は、粒子径が小さいピークのみに対してD50を算出することで、平均粒子径とした。
高温熱処理「B」がなされた焼結体1B(図1参照)を再び室温まで冷却し、続く低温熱処理「C」で再び所定の温度まで加熱する。室温への冷却は自然冷却であってもよい。加熱は、高温熱処理「B」と同様に減圧雰囲気下で行う。なお、アルゴンガスや窒素ガス、ヘリウムガスのような不活性ガス雰囲気下であれば、減圧雰囲気でなくともよい。低温熱処理「C」では、焼結体1Bを、低温熱処理について予め設定した最高到達温度に所定時間内、例えば、10時間以内、好ましくは5時間以内、更に好ましくは2時間以内で達するよう昇温する。低温熱処理について設定される最高到達温度は、高温熱処理温度より低い温度、例えば、350℃~650℃、好ましくは、450℃~600℃、より好ましくは、450℃~550℃となるように設定する。最高到達温度に達した後は、その温度を所定時間(図7に示す区間「c」)、例えば、2時間保持する。保持終了後は、直ちに急冷を行うのが好ましい。
低温熱処理がなされた焼結体1C(図1参照)は、例えば、電動モータのロータコアの磁石挿入用スロット(図示されていない)内に、未着磁の状態で挿入されてもよい。その後、このスロット内に挿入された焼結体1Cに対して、その中に含まれる磁石材料粒子の磁化容易軸すなわちC軸に沿って着磁を行う。これにより、焼結体1Cは、希土類焼結磁石1となる。例えば、ロータコアの複数のスロットに挿入された複数の焼結体1Cに対して、ロータコアの周方向に沿って、N極とS極とが交互に配置されるように着磁を行う。その結果、永久磁石を製造することが可能となる。焼結体1Cの着磁には、着磁コイル、着磁ヨーク、コンデンサー式着磁電源装置等の公知の手段のいずれを用いてもよい。勿論、スロットに挿入する前に焼結体1Cに着磁を行って永久磁石1とし、この着磁された磁石1をスロットに挿入するようにしてもよい。
以下、本発明の方法の実施例及び比較例を説明する。
実施例及び比較例では、様々な条件で製造した焼結体、又は、これを着磁することによって得られた希土類焼結磁石について、磁気特性及び物性の観点から評価、分析を行った。磁気特性については、残留磁束密度(Br)、保磁力(Hcj)、Br(kG)+Hcj(kOe)、及び角形性(Hk/Hcj)(%)を、また、物性については、異方収縮の抑制、熱処理後密度(g/cm3)、焼結後密度(g/cm3)、熱処理後の表面凹凸(μm)、焼結後の表面凹凸(μm)、及び熱処理による収縮率(%)を、下記(1)乃至(5)に掲げる方法で評価した。尚、焼結体を着磁したものが磁石であるから、磁気特性以外の事項に関する焼結体の評価、分析結果は、磁石の評価、分析結果でもある。
得られた各焼結体に対して研磨を行い、BHトレーサー(TRF-5BH-25、東英工業製)を使用して測定した。尚、BrとHcjは、トレードオフの関係にあり、その和を求めることで磁気特性の優劣を判断することが可能である。
(2)異方収縮の抑制の評価
焼結後のサンプルを焼結用型から取出し、型への追従性を目視で評価した。型に焼結体が追従している場合は、異方収縮が抑制されている、つまり、主に加圧方向への収縮のみが生じていることから「○」評価とした。型に追従できていない場合は、異方収縮が生じていることから「×」評価とした。ここで、上記「型に焼結体が追従している場合」とは、焼結工程における焼結処理「A」において、オス型の型とメス型の型との間に挟み込んでプレス圧をかけたときに、オス型によるプレス圧によってほとんどプレス方向のみに収縮が起こり、メス型と加工用シート片とが接する面方向には収縮がほとんど起こらず、その結果、焼結体とメス型との間に隙間がほとんど生じず型に追従している状態を意味する。一方、「型に追従できていない場合」とは、メス型と加工用シート片とが接する面方向にも収縮が起こり、その結果、焼結体とメス型との間に隙間が生じ、型に追従できていない状態を意味する。
(3)熱処理後密度(g/cm3)、及び、焼結後密度(g/cm3)
「焼結後」とは、焼結工程における焼結処理「A」、高温熱処理「B」、及び低温熱処理「C」のうち、焼結処理「A」が終了した後を意味し、「熱処理後」とは、焼結処理「A」と高温熱処理「B」が終了した後を意味する。これら処理後の密度を、アルキメデスの原理により測定した。
(4)熱処理後の表面凹凸(μm)、及び、焼結後の表面凹凸(μm)
「焼結後」及び「熱処理後」の意味は、(3)で説明したとおりである。焼結体の表面凹凸は、キーエンス製3D測定マクロスコープ(VR-3200)を用いて測定を行った。具体的には、焼結処理「A」における加圧方向「β」(図1参照)と平行な面の内、もっとも面積の大きな面における、その最大と最小の高さの差を表面凹凸の値とした。これら表面凹凸の値は、型への追従性、換言すれば、異方収縮の抑制と密接に関連しており、型に追従することで焼結体の表面凹凸は小さくなり、異方収縮の抑制効果についても良好な結果が得られる。
(5)熱処理による収縮率(%)
高温熱処理「B」を行う前後の焼結体の寸法から体積を計算することにより、その収縮率の割合(%)を求めた。
図9に示す台形形状の加工用シート片を用いて、下記の手順で焼結体を製造した。脱オイル処理は行っていない。
<粗粉砕>
ストリップキャスティング法により得られた合金を、室温にて水素を吸蔵させ、0.85MPaで1日保持した。その後、液化Arで冷却しながら、0.2MPaで1日保持することにより、水素解砕を行った。合金の組成は、「Nd:25.25wt%、Pr:6.75wt%、B:1.01wt%、Ga:0.13wt%、Nb:0.2wt%、Co:2.0wt%、Cu:0.13wt%、残部Fe、Al:0.10wt%、その他不可避不純物を含む」である。
微粉砕はジェットミル粉砕により、次の通り行った。水素粉砕された合金粗粉100重量部に対して、カプロン酸メチル1重量部を混合した後、ヘリウムジェットミル粉砕装置(装置名:PJM-80HE、NPK製)により粉砕を行った。粉砕した合金粒子の捕集は、サイクロン方式により分離回収し、超微粉は除去した。粉砕時の供給速度を1kg/hとし、Heガスの導入圧力は0.6MPa、流量1.3m3/min、酸素濃度1ppm以下、露点-75℃以下であった。粉砕後の粒子径は約1μmであった。
微粉砕後の合金粒子100重量部に対して、1-オクテンを40重量部添加し、ミキサー(装置名:TX-0.5、井上製作所製)により60℃で1時間加熱撹拌を行った。そして、1-オクテンとその反応物を減圧下で加熱することにより取り除き、脱水素処理を行った後、混練工程を行った。混練工程は、オクテン処理後の合金粒子100重量部に対して、配向潤滑剤として1-オクタデシン1.7重量部、1-オクタデセン4.3重量部、ポリマーとしてポリイソブチレン(PIB)(製品名:B150、BASF社製)のトルエン溶液(7重量%)57.1重量部を混合し、ミキサー(装置名:TX-0.5、井上製作所製)により70℃で加熱撹拌を行いながら、トルエンを減圧雰囲気により取り除いた。その後、減圧下で2時間混練を行ない、粘土状の複合材料を作製した。
混練により作製した複合材料をSUS製の型枠を用いて、70℃に加熱しながら、プレス成型した。
成型後の複合材料が収められたステンレス鋼(SUS)製の型を、超伝導ソレノイドコイル(装置名:JMTD-12T100、JASTEC製)を用いて、外部から平行磁場を印加することにより、配向処理を行った。この配向は、外部磁場を7Tとし、温度80℃で10分間行った。その後、減衰する交流磁場を印加することで、配向処理のされた複合材料を脱磁処理した。
配向処理を行った複合材料に対して、0.8MPaの水素加圧雰囲気下にて、脱炭素処理を行った。室温から500℃まで8時間で昇温し、2時間保持した。また、水素流量は1~3L/minであった。
(焼結処理A)
長さ方向に貫通したグラファイト型に脱炭素後のサンプルを挿入した後、グラファイト製の押しピンを挿入し、押しピンを加圧することで、真空雰囲気下で加圧焼結を行った。加圧方向は、サンプルの長さ方向(配向方向に対して垂直方向)で行った。昇温は、常温から昇圧開始温度まで20℃/分の速度で行い、予め定めた最高到達温度である970℃まで昇温した。その間、初期荷重として0.1MPaを加え、昇圧開始温度を700℃として、50kPa/秒の速度で昇圧し、最終到達荷重を11.8MPaとた。最高到達温度である970℃に達した後は、11.8MPaの圧力を加えながら、加圧方向への収縮率、更に言えば、加圧方向の10秒当たりの変化率が5分程度の間ほぼゼロになるまで保持した。
焼結処理「A」後のサンプルを室温まで冷却後、減圧雰囲気下にて、高温熱処理「B」を行った。高温熱処理について設定した最高到達温度は970℃であり、1時間15分で昇温し、保持時間は8時間とした。
高温熱処理「B」後のサンプルを室温まで冷却後、低温熱処理「C」を行った。低温熱処理について設定した最高到達温度は500℃であり、30分で昇温し、保持時間は1時間とした。保持が終了した後に、速やかに送風により冷却を行った。
表1に記載の条件に変更したこと以外は、実施例1と同様の操作を行い、各焼結体を得た。
また、比較例2、3に示すように、高温熱処理「B」の温度が700℃や900℃と低い場合においては、比較例1、4に示した高温熱処理「B」を行わない場合と比較して、保磁力の向上は、ほとんど見られなかった。特許文献2、3の記載からも明らかなように、焼結磁石を製造するために従来一般に用いられてきた加圧焼結後の熱処理温度は900℃以下が多く、このことから、一般的な温度域での熱処理では効果がほとんどないことは明らかである。更に、比較例5から明らかなように、無加圧で焼結した場合には磁気特性が高いものの、異方収縮が抑制されない結果となった。
尚、実施例2、3から明らかなように、昇圧開始温度は300℃や500℃でも問題がなく、昇圧開始温度をこのような低い温度に設定したとしても、磁気特性と異方収縮の抑制が両立可能であることが分かった。
表1の条件を変更して製造した焼結体、又は、これを着磁することによって得られた希土類焼結磁石について、表1と同じ評価、分析を行った。表2に結果を示す。尚、表2で特記されている条件以外の条件については、実施例1と同じ条件とした。
また、表2に示す脱オイル工程では、配向処理された複合材料、言い換えれば、配向方向に垂直な方向(長さ方向)に貫通したグラファイト型に挿入されたコンパウンドに対して、真空雰囲気下にて、脱オイル処理を行った。真空雰囲気にするための排気ポンプには、ロータリーポンプを用い、室温から100℃まで2時間で昇温し、50時間保持した。その後、仮焼工程を行った。
表3に記載の条件に変更したこと以外は、実施例1と同様の操作を行い、各焼結体を得た。ただし、ジェットミル粉砕により平均粒子径3μmに粉砕した磁粉を用い、また、焼結処理「A」における昇圧速度、即ち、初期荷重から予め定めた最終到達荷重に達するまでに要する時間は5分、最高到達温度での保持時間は10分とした。また、初期荷重は2.6MPaであった。
なお、実施例10~33ではいずれも焼結処理「A」における加圧により、主に加圧方向に平行な方向に焼結収縮が生じたため、加圧焼結型への追従性は良く、狙い通りの形状に制御することができた。
表4に記載の条件に変更したこと以外は、実施例1と同様の操作を行い、各焼結体を得た。ただし、ジェットミル粉砕により平均粒子径3μmに粉砕した磁粉を用い、また、焼結処理「A」における昇圧速度、即ち、初期荷重から予め定めた最終到達荷重に達するまでに要する時間は5分、最高到達温度での保持時間は10分とした。また、初期荷重は、実施例34においては1.3MPa、実施例33~38においては2.6MPaであった。
但し、異方収縮の抑制効果に関しては、加圧力が高くなるほど良い傾向にあり、3.0MPa以上の加圧力を作用させることで、焼結処理「A」及び高温熱処理「B」後の焼結体表面の凹凸を300μm以下にすることができた。これは加圧力が3.0MPa以上になることで、焼結時の収縮が主に加圧方向に平行な方向に生じ、加圧焼結型への追従性が良好となり、狙い通りの形状に制御することが可能となったためと考えられる。
更に、加圧力が40.0MPaであっても、同じ磁粉を用いた無加圧焼結である比較例11の磁気特性を表すBr[kG]+Hcj[kOe]の値との差を-4.5以内とし、かつ、角形性Hk/Hcj[%]を80%以上とすることができた。しかしながら、この場合には、高温熱処理「B」での磁気特性向上効果が少なくなる傾向にあり、また、加圧焼結後の焼結体に割れが生じる頻度も増加する傾向を示した。
以上のことから、焼結処理「A」における加圧力の最大値は3MPa以上であって、かつ、40MPaより小さいことが好ましい。また、焼結処理「A」における加圧力の最大値を3MPa以上とすることで、焼結処理「A」の後の焼結体の密度を7.3g/cm3以上とすることができ、この結果、高温熱処理「B」を行っても焼結体の寸法変化(収縮率)を抑制することができた。
実施例39、40については、表5に記載の条件に変更したこと以外は、実施例1と同様の操作を行い、各焼結体を得た。ただし、ジェットミル粉砕により平均粒子径3μmに粉砕した磁粉を用い、また、焼結処理「A」における昇圧速度、即ち、初期荷重から予め定めた最終到達荷重に達するまでに要する時間は5分、最高到達温度での保持時間は10分とした。また、初期荷重は2.6MPaであった。
また、実施例39から明らかなように、最高到達温度が850℃の場合、焼結処理「A」の後の焼結体の表面凹凸は10μmと極僅かであったが、焼結体密度は6.8g/cm3と低いため、高温熱処理「B」の後に焼結体の更なる収縮が生じ、高温熱処理「B」による体積収縮率は9.1%と非常に大きい値となった。
以上のことから、焼結処理「A」において加圧力を印加しているときの最高到達温度を900℃以上とすることで、焼結体の形状を所望の形状(加圧焼結型に沿った形状)に制御しながら、磁気特性を向上させることができることが分かった。 実施例1~40と比較例1~11における高温熱処理「B」の最高到達温度とその温度における保持時間との関係を図10に示す。この図から、焼結処理「A」にて加圧力を作用させながら焼結させた焼結体に対し、焼結時の加圧力よりも低い圧力のもと、900℃より高く1100℃以下の範囲内で高温熱処理「B」を行うことで、磁気特性を高めることが可能であることが分かる。具体的には、焼結処理「A」にて加圧力を作用させずに焼結を行い、更に、高温熱処理「B」を行わず、低温熱処理「C」を行った焼結体の磁気特性から得られるBr[kG]+Hcj[kOe]の値と比較して、Br[kG]+Hcj[kOe]の差を-4.5以下とし、かつ、角形性Hk/Hcjの値を80%以上にすることができた。
-1.13x+1173≧y≧-1.2x+1166
を満足することにより、磁気特性を向上させることができた。具体的には、焼結処理「A」にて加圧力を作用させずに焼結を行い、更に高温熱処理「B」を行わずに低温熱処理「C」を行った焼結体の磁気特性から得られるBr[kG]+Hcj[kOe]の値と比較して、その差を-2以下、かつ、角形性Hk/Hcjの値を90%以上にすることができた。換言すれば、加圧力を作用させずに焼結処理「A」を行った場合との差をより縮めることができた。
表1~5で行った評価に加え、実施例1、26及び比較例4、5、8、10の各焼結体、又は、これを着磁することによって得られた各希土類焼結磁石について、物性の観点から、以下の(1)乃至(4)に挙げる特性を評価した。
焼結工程を経る前の加工用シート片の寸法と、焼結工程後に室温まで十分に冷却した後の焼結体の寸法の、加圧方向(図8、図9参照)における差を比較し、その収縮率の割合(%)を求めたものである。
焼結体1Cの物性は、例えば、EBSD分析による配向バラツキを表す極点図のアスペクト比の観点から捉えることができる。ここで、配向バラツキを表す極点図のアスペクト比が大きいということは、加圧が適切になされていることをも意味する。アスペクト比は、焼結処理「A」、即ち、加圧焼結時の加圧力によって大きくなるからである。極点図の詳細については、図4(b)等を参照して既に説明したとおりである。
焼結体1Cの物性は、三重点の來雑物の観点から捉えることもできる。分析の結果、焼結体1Cに含まれる三重点は、少なくともCu又はGaを含有することが明らかとなった。従って、例えば、焼結体1Cの断面において、これらCu、Ga、又は、Cu及びGaが検出された面積割合を分析することにより、焼結体の物性を捉えることができる。断面にCuやGaが現れるメカニズムは必ずしも明らかでないが、おおよそ次のようなものであると推察される。即ち、焼結処理「A」がなされる前は、來雑物は希土類リッチ相に均一に分布していたが、焼結処理「A」における加圧処理による圧力によって、來雑物が焼結体1Aの表面に偏析し、その後の高温熱処理「B」において、希土類リッチ相に來雑物が拡散したもの、というものである。
上述したように、焼結体1Cの断面には、希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相とR2Fe14B組成(Rはイットリウムを含む希土類元素)を有する主相が存在する。鋭意実験を重ねることにより、特に、磁石材料粒子(主相)に囲まれた三重点にある希土類リッチ相については、焼結処理「A」を通じて、大きく成長することが明らかとなった。そこで、主相粒子の粒子径(焼結粒子径)をαμmとした場合に、αμm2以上の面積を有する希土類リッチ相が、全希土類リッチ相において占める面積割合(%)に注目することとした。測定は3視野にて行い、その面積割合の平均値を用いた。測定視野は、例えば、図12に示すようなものであって、75μm×75μm角、35μm×35μm角、あるいは最低50個の粒子が入るように設定した。ここで、「焼結粒子径」は、上述したJEOL製JSM-7001Fを用いてEBSD分析(検出器:Oxford Instruments社製 NordlysNano)を実施することにより算出した。具体的には、EBSDにて得られた結晶方位マップより、隣接する粒子の角度差が2°以上である部分を粒界とし、その粒界に囲まれるエリアの円相当径を算出したものを該当粒子の粒子径とした。更に、測定視野内における、それら粒子の粒子径の平均値を算出し、「焼結粒子径」とした。以上の処理は、上述のChannel 5にて行った。
試料を導電性を付与させた熱硬化性エポキシ樹脂を用いて包埋後に40℃×8時間で硬化させた。その後、機械研磨法にて断面調製を行い、JEOL製JSM-7001Fを用いてEBSD分析(検出器:Oxford Instruments社製 NordlysNano)を実施し、結晶方位の分析を行った。断面の観察箇所は、図1に示すように、希土類焼結磁石1の一辺、ここでは辺「D」における端面、即ち、前端面23から1mmの点と、辺「D」の中央部と、前記2点の中間部の3点とし、これらの各点において、深さ方向「α」については中央部、幅方向「γ」については幅方向中央部とした。
導電性を付与させた熱硬化性エポキシ樹脂を用いて試料を包埋後に40℃×8時間で硬化させた。この試料を機械研磨法で断面調製を行い、さらにArイオンでフラットミリング処理を施した後、JEOL製JSM-7001Fを用いてFE-EPMA測定を実施した。FE-EPMA測定はJEOL製JXA-8500Fを用いて、加速電圧15.0kV/照射電流200nAとし、少なくとも主相粒子が50個以上入るようにした。実施例1、比較例4,5では、直接倍率×3,000(視野範囲33μm×33μm)で元素マッピング像を取得した。粒子径が大きい場合は、適時最適な視野を選択した。断面の観察箇所は、図1(b)に示すように、希土類焼結磁石1の一辺、ここでは長辺方向「β」に沿う辺「D」を三等分する3点とし、深さ方向「α」については中央部、幅方向「γ」については幅方向中央部とした。
試料を熱硬化性エポキシ樹脂を用いて包埋後に40℃×8時間で硬化させた。次に機械研磨法とイオンポリッシング加工法を併用して断面調製を行い、導電処理を行った試料についてFE-SEM観察を行った。イオンポリッシング加工は、JEOL製SM09010を用いて、加速電圧6.0kV以下の条件で実施した。
実施例1は、焼結処理「A」、即ち、加圧焼結後に900℃よりも高い温度で高温熱処理「B」を行い、比較例4は加圧焼結だけの条件、比較例5は真空焼結で焼結を行ったものである。尚、これらの実施例及び比較例では、同一の磁粉を用いており、磁石材料粒子の平均粒子径は、1μm、即ち、2μm未満である。 また、実施例26は、焼結処理「A」、即ち、加圧焼結後に1000℃で10時間、高温熱処理「B」を行い、比較例8は、高温熱処理「B」を行わず、比較例10は、加熱焼結後に900℃で10時間、高温熱処理「B」を行ったものである。これら実施例及び比較例では、同一の磁粉を用いており、磁石材料粒子の平均粒子径は、3μm、即ち、2μm以上である。
希土類磁石形成用材料として、例えば、従来一般の、圧粉工法によって製造された成形体を使用することもできる。圧粉工法により希土類磁石形成用材料を作製する場合には、上述したグリーンシート工法と同様に微粉砕した磁石粉を金型に入れ磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12~20kOe(960~1600kA/m)前後の磁場中で、0.3~3.0t/cm2(30~300MPa)前後の圧力で行なえばよい。また、磁場印加方法は前述の他に、パルス印加磁場を用いてもよい。ここで印加される磁場は、配向させたい磁石粒子の方向に基づき、任意の各種磁気回路を用いて発生させることができる。例えば、極異方配向の磁石を製造する場合には、磁極数に対応する数の磁場コイルを埋没した金型を用い、当該磁場コイルに通電することで極異方配向に対応した磁場を発生させることができる。
1A~1C 焼結体
3 希土類磁石用形成材料(加工用シート片、グリーンシート)
21 上面
22 底面
23 前端面
24 後端面
Claims (20)
- 希土類物質を含有し磁化容易軸を有する磁石材料粒子を含む希土類磁石形成用材料を、焼結用型内において加圧しながら焼結温度に加熱して焼結し、前記磁石材料粒子が一体焼結された焼結体からなる希土類焼結磁石形成用焼結体を製造する方法であって、
最終製品である希土類焼結磁石に対応する形状のキャビティを備える焼結用型内に、前記磁石材料粒子を含む前記希土類磁石形成用材料を充填し、
前記型内に充填された前記希土類磁石形成用材料に対して、所定の大きさの加圧力を作用させながら、前記希土類磁石形成用材料を焼結温度に加熱して焼結することにより、前記磁石材料粒子が一体焼結された焼結体を形成し、
その後、前記焼結体に対し、焼結時の前記加圧力よりも低い圧力のもとで、900℃より高く1100℃以下に設定された最高到達温度の範囲内で、かつ、前記加圧焼結を行うときの最高到達温度との差が250℃以内である温度のもとでの高温熱処理を行う
ことを特徴とする希土類焼結磁石形成用焼結体の製造方法。 - 請求項1に記載した希土類焼結磁石形成用焼結体の製造方法であって、前記希土類磁石形成用材料は、前記磁石材料粒子を熱可塑性樹脂に混合した複合体を加熱して焼結する前に、該複合体から前記熱可塑性樹脂を熱により飛散させることで得られることを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 請求項1又は請求項2に記載した希土類焼結磁石形成用焼結体の製造方法であって、前記高温熱処理の後で、前記焼結体に対して、350℃~650℃の温度のもとで低温熱処理を行うことを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 請求項1から請求項3までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、前記高温熱処理は、前記高温熱処理について設定された最高到達温度付近で約1~50時間保持されることを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 請求項1から請求項4までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、温度が少なくとも300℃に達したときに昇圧が開始されることを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 請求項1から請求項5までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、前記最高到達温度に達するまでの昇温速度が20°/分以上であることを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 請求項1から請求項6までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、前記加圧力が3MPa以上に昇圧されることを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 請求項1から請求項7までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、
前記最高到達温度は900℃より高いことを特徴とする希土類焼結磁石形成用焼結体の製造方法。 - 請求項1から請求項8までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、
前記高温熱処理の最高到達温度をx(℃)、最高到達温度付近での保持時間をy(時間)とすると
-1.13x+1173≧y≧-1.2x+1166 (ただし、1100℃≧x>900℃)
を満たすことを特徴とする希土類焼結磁石形成用焼結体の製造方法。 - 請求項1から請求項9までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法であって、前記高温熱処理の最高到達温度は、前記磁石材料粒子の平均粒子径に基づき、平均粒子径1μmに対しては900℃より高く、平均粒子径5μmに対しては1100℃以下に設定されることを特徴とする希土類焼結磁石形成用焼結体の製造方法。
- 希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石形成用焼結体であって、磁石断面において、Cuが含まれる希土類リッチ相が全希土類リッチ相において占める面積割合が40%以上であり、且つ、
EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であることを特徴とする希土類焼結磁石形成用焼結体。 - 希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石形成用焼結体であって、磁石断面において、Gaが含まれる希土類リッチ相が全希土類リッチ相において占める面積割合が、前記磁石材料粒子の平均粒子径が2μm未満の場合は15%以上であり、前記磁石材料粒子の平均粒子径が2μm以上の場合は19%以上であり、且つ、EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であることを特徴とする希土類焼結磁石形成用焼結体。
- 希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石形成用焼結体であって、磁石断面において、CuとGaが共に含まれる希土類リッチ相が全希土類リッチ相において占める面積割合が、前記磁石材料粒子の平均粒子径が2μm未満の場合は10%以上であり、前記磁石材料粒子の平均粒子径が2μm以上の場合は17%以上であり、且つ、
EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であることを特徴とする希土類焼結磁石形成用焼結体。 - 希土類物質を含有し磁化容易軸を有する磁石材料粒子の焼結体からなり、焼結粒子間の粒界に希土類物質が他の領域よりも高濃度で含まれる希土類リッチ相が形成されている希土類焼結磁石形成用焼結体であって、EBSD分析により算出される焼結粒子径をαμmとした場合に、αμm2以上の面積を有する希土類リッチ相が全希土類リッチ相において占める面積割合の平均値が35%以上であり、且つ、
EBSD分析による配向バラツキを表す極点図のアスペクト比が1.2以上であることを特徴とする希土類焼結磁石形成用焼結体。 - 請求項11から請求項14までのいずれか1項に記載した希土類焼結磁石形成用焼結体であって、保磁力が14kOe以上であることを特徴とする希土類焼結磁石形成用焼結体。
- 請求項11から請求項15までのいずれか1項に記載した希土類焼結磁石形成用焼結体であって、前記磁石材料粒子は、1重量%以下のDy又はTbを含み、Br(kG)+Hcj(kOe)が27.5以上であることを特徴とする希土類焼結磁石形成用焼結体。
- 請求項11から請求項15までのいずれか1項に記載した希土類焼結磁石形成用焼結体であって、前記磁石材料粒子は、1重量%以上のDy又はTbを含み、Br(kG)+Hcj(kOe)が30.0以上であることを特徴とする希土類焼結磁石形成用焼結体。
- 請求項11から請求項17までのいずれか1項に記載した希土類焼結磁石形成用焼結体であって、式Hk/Hcj(%)で定義される角形性が90%以上であることを特徴とする希土類焼結磁石形成用焼結体。
- 請求項1から請求項10までのいずれか1項に記載した希土類焼結磁石形成用焼結体の製造方法を用いた焼結体を着磁することを特徴とする希土類焼結磁石の製造方法。
- 請求項11から請求項18までのいずれか1項に記載した希土類焼結磁石形成用焼結体を着磁した希土類焼結磁石。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/336,063 US20190228888A1 (en) | 2016-09-23 | 2017-09-25 | Rare-earth sintered magnet-forming sintered body, and production method therefor |
JP2018540332A JP6560832B2 (ja) | 2016-09-23 | 2017-09-25 | 希土類焼結磁石形成用焼結体及びその製造方法 |
CN202111385099.8A CN114203430A (zh) | 2016-09-23 | 2017-09-25 | 稀土类烧结磁体形成用烧结体及其制造方法 |
CN201780058995.9A CN109791836B (zh) | 2016-09-23 | 2017-09-25 | 稀土类烧结磁体形成用烧结体及其制造方法 |
KR1020197010169A KR102340439B1 (ko) | 2016-09-23 | 2017-09-25 | 희토류 소결 자석 형성용 소결체 및 그 제조 방법 |
EP17853196.8A EP3518259B1 (en) | 2016-09-23 | 2017-09-25 | Method for manufacturing a rare earth sintered magnet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016185997 | 2016-09-23 | ||
JP2016-185997 | 2016-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056429A1 true WO2018056429A1 (ja) | 2018-03-29 |
Family
ID=61691027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034433 WO2018056429A1 (ja) | 2016-09-23 | 2017-09-25 | 希土類焼結磁石形成用焼結体及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190228888A1 (ja) |
EP (1) | EP3518259B1 (ja) |
JP (2) | JP6560832B2 (ja) |
KR (1) | KR102340439B1 (ja) |
CN (3) | CN112599317A (ja) |
TW (1) | TWI719259B (ja) |
WO (1) | WO2018056429A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020161790A (ja) * | 2019-03-25 | 2020-10-01 | 日立金属株式会社 | R−t−b系焼結磁石 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6706487B2 (ja) * | 2015-11-19 | 2020-06-10 | 日東電工株式会社 | 希土類永久磁石をもった回転子を備える回転電機 |
JP6645219B2 (ja) * | 2016-02-01 | 2020-02-14 | Tdk株式会社 | R−t−b系焼結磁石用合金、及びr−t−b系焼結磁石 |
JP6989713B2 (ja) | 2018-12-25 | 2022-01-05 | ダイセルミライズ株式会社 | 表面に粗面化構造を有する希土類磁石前駆体または希土類磁石成形体とそれらの製造方法 |
CN111243806B (zh) * | 2020-01-10 | 2021-07-06 | 太原科技大学 | 一种高性能烧结钕铁硼磁体的制备方法 |
CN113496816A (zh) * | 2020-03-18 | 2021-10-12 | 中国科学院宁波材料技术与工程研究所 | 钐钴基永磁块体的生产方法及钐钴基永磁块体 |
CN112017855B (zh) * | 2020-07-30 | 2025-02-28 | 烟台正海磁性材料股份有限公司 | 一种极异方性取向磁石及其制造方法和应用 |
CN112397301A (zh) | 2020-11-20 | 2021-02-23 | 烟台首钢磁性材料股份有限公司 | 高稀土含量烧结钕铁硼磁体的制备方法 |
CN113514485B (zh) * | 2021-06-24 | 2023-12-01 | 国合通用测试评价认证股份公司 | 钕铁硼电子背散射衍射分析样品的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08167516A (ja) * | 1994-12-09 | 1996-06-25 | Sumitomo Special Metals Co Ltd | R−Fe−B系永久磁石材料の製造方法 |
JP2014057075A (ja) * | 2009-12-09 | 2014-03-27 | Aichi Steel Works Ltd | 希土類異方性磁石とその製造方法 |
WO2014123079A1 (ja) * | 2013-02-05 | 2014-08-14 | インターメタリックス株式会社 | 焼結磁石製造方法 |
JP2014225537A (ja) * | 2013-05-15 | 2014-12-04 | 株式会社豊田中央研究所 | 永久磁石およびその製造方法 |
JP2015079925A (ja) * | 2013-10-18 | 2015-04-23 | 住友電気工業株式会社 | 希土類磁石の製造方法 |
JP2016042531A (ja) * | 2014-08-18 | 2016-03-31 | 日東電工株式会社 | 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111307A (ja) * | 1994-10-07 | 1996-04-30 | Sumitomo Special Metals Co Ltd | R−Fe−B系永久磁石用原料粉末の製造方法 |
US5666635A (en) * | 1994-10-07 | 1997-09-09 | Sumitomo Special Metals Co., Ltd. | Fabrication methods for R-Fe-B permanent magnets |
CN1136588C (zh) * | 1995-10-16 | 2004-01-28 | 坩埚材料有限公司 | 稀土-Fe-B磁体及其改进方法 |
JPH10163055A (ja) | 1996-11-29 | 1998-06-19 | Hitachi Metals Ltd | 高電気抵抗希土類永久磁石の製造方法 |
JP2010263172A (ja) | 2008-07-04 | 2010-11-18 | Daido Steel Co Ltd | 希土類磁石およびその製造方法 |
JP2011210879A (ja) | 2010-03-29 | 2011-10-20 | Hitachi Metals Ltd | 希土類磁石の製造方法 |
CN103069510B (zh) * | 2011-08-24 | 2016-04-06 | 古河电气工业株式会社 | 超导导体用基材的制造方法、超导导体的制造方法、超导导体用基材以及超导导体 |
JP5969781B2 (ja) * | 2012-03-12 | 2016-08-17 | 日東電工株式会社 | 希土類永久磁石の製造方法 |
WO2013137134A1 (ja) * | 2012-03-12 | 2013-09-19 | 日東電工株式会社 | 希土類永久磁石及び希土類永久磁石の製造方法 |
JP5411956B2 (ja) * | 2012-03-12 | 2014-02-12 | 日東電工株式会社 | 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置 |
JP2016042763A (ja) | 2014-08-18 | 2016-03-31 | 日東電工株式会社 | 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法 |
CN104505207B (zh) * | 2014-12-15 | 2017-09-29 | 钢铁研究总院 | 大长径比辐向热压永磁环及其制备方法 |
WO2016152978A1 (ja) * | 2015-03-24 | 2016-09-29 | 日東電工株式会社 | 非平行の磁化容易軸配向を有する希土類永久磁石形成用焼結体の製造方法 |
CN105321645B (zh) * | 2015-11-25 | 2020-12-15 | 中国科学院宁波材料技术与工程研究所 | 高矫顽力纳米晶热变形稀土永磁材料及其制备方法 |
JP2018056429A (ja) * | 2016-09-30 | 2018-04-05 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
-
2017
- 2017-09-22 TW TW106132609A patent/TWI719259B/zh not_active IP Right Cessation
- 2017-09-25 KR KR1020197010169A patent/KR102340439B1/ko active Active
- 2017-09-25 JP JP2018540332A patent/JP6560832B2/ja active Active
- 2017-09-25 WO PCT/JP2017/034433 patent/WO2018056429A1/ja unknown
- 2017-09-25 CN CN202011266618.4A patent/CN112599317A/zh active Pending
- 2017-09-25 EP EP17853196.8A patent/EP3518259B1/en active Active
- 2017-09-25 CN CN202111385099.8A patent/CN114203430A/zh active Pending
- 2017-09-25 US US16/336,063 patent/US20190228888A1/en not_active Abandoned
- 2017-09-25 CN CN201780058995.9A patent/CN109791836B/zh active Active
-
2019
- 2019-07-19 JP JP2019133585A patent/JP2019204963A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08167516A (ja) * | 1994-12-09 | 1996-06-25 | Sumitomo Special Metals Co Ltd | R−Fe−B系永久磁石材料の製造方法 |
JP2014057075A (ja) * | 2009-12-09 | 2014-03-27 | Aichi Steel Works Ltd | 希土類異方性磁石とその製造方法 |
WO2014123079A1 (ja) * | 2013-02-05 | 2014-08-14 | インターメタリックス株式会社 | 焼結磁石製造方法 |
JP2014225537A (ja) * | 2013-05-15 | 2014-12-04 | 株式会社豊田中央研究所 | 永久磁石およびその製造方法 |
JP2015079925A (ja) * | 2013-10-18 | 2015-04-23 | 住友電気工業株式会社 | 希土類磁石の製造方法 |
JP2016042531A (ja) * | 2014-08-18 | 2016-03-31 | 日東電工株式会社 | 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3518259A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020161790A (ja) * | 2019-03-25 | 2020-10-01 | 日立金属株式会社 | R−t−b系焼結磁石 |
JP7367428B2 (ja) | 2019-03-25 | 2023-10-24 | 株式会社プロテリアル | R-t-b系焼結磁石 |
Also Published As
Publication number | Publication date |
---|---|
KR20190058517A (ko) | 2019-05-29 |
EP3518259A1 (en) | 2019-07-31 |
TWI719259B (zh) | 2021-02-21 |
CN112599317A (zh) | 2021-04-02 |
KR102340439B1 (ko) | 2021-12-16 |
JP6560832B2 (ja) | 2019-08-14 |
EP3518259B1 (en) | 2023-01-11 |
CN109791836B (zh) | 2021-11-23 |
TW201826292A (zh) | 2018-07-16 |
EP3518259A4 (en) | 2020-04-29 |
JPWO2018056429A1 (ja) | 2019-07-04 |
CN109791836A (zh) | 2019-05-21 |
US20190228888A1 (en) | 2019-07-25 |
JP2019204963A (ja) | 2019-11-28 |
CN114203430A (zh) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6560832B2 (ja) | 希土類焼結磁石形成用焼結体及びその製造方法 | |
KR102453981B1 (ko) | 희토류 자석 형성용 소결체 및 희토류 소결 자석 | |
KR102421822B1 (ko) | 희토류 영구자석 및 희토류 영구자석을 갖는 회전기 | |
WO2016152978A1 (ja) | 非平行の磁化容易軸配向を有する希土類永久磁石形成用焼結体の製造方法 | |
JP2021106271A (ja) | 希土類磁石形成用焼結体及び希土類焼結磁石 | |
JP7063812B2 (ja) | 焼結磁石形成用焼結体の製造方法及び焼結磁石形成用焼結体を用いた永久磁石の製造方法 | |
US20200161032A1 (en) | Rare-earth sintered magnet and rare-earth sintered magnet sintered body for use with same, and magnetic field applying device usable for manufacturing same | |
WO2017022685A1 (ja) | 希土類磁石形成用焼結体及び希土類焼結磁石 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17853196 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018540332 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197010169 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017853196 Country of ref document: EP Effective date: 20190423 |